Science.gov

Sample records for arctic polar vortex

  1. Warming Arctic, weakening polar vortex and winter cooling

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir; Esau, Igor; Outten, Stephen

    2014-05-01

    Spatiotemporal patterns of air temperature trends (1958-2012) are evaluated using reanalysis datasets and radiosonde data. Our analysis demonstrates large discrepancies between the reanalysis datasets, possibly due to differences in the data assimilation procedures as well as sparseness and inhomogeneity of high-latitude observations. A change of sign in the winter temperature trend from negative to positive in the mid- to late 1980s is documented in the upper troposphere/ lower stratosphere with a maximum over the Canadian Arctic. This change from cooling to warming tendency is associated with weakening of the stratospheric polar vortex and shift of its center toward the Siberian coast and possibly can be explained by the changes in the dynamics of the Arctic Oscillation. This pattern is likely linked to the observed multi-decadal variability in the Arctic with implications for recently observed winter cooling in Siberia and continental United States. Possible dynamical mechanisms linking the weakening of the polar vortex and weather in mid-latitudes are demonstrated in a number of model frameworks.

  2. Arctic Vortex

    Atmospheric Science Data Center

    2013-06-26

    article title:  A Vortex Street in the Arctic     View Larger Image ... 650 kilometers northeast of Iceland in the north Atlantic Ocean. Jan Mayen's Beerenberg volcano rises about 2.2 kilometers above the ...

  3. MLS CLO observations and arctic polar vortex temperatures

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.; Lait, L. R.; Waters, J. W.; Froidevaux, L.; Ready, W. G.

    1993-01-01

    Analysis of Upper Altmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) observations in early January 1992 shows a clear relationship between predicted polar stratospheric cloud formation along the back trajectory and elevated ClO amounts. These findings are in good agreement with aircraft observations. The MLS observed variation of ClO amounts within the vortex also fits the pattern of ClO change as a result of air parcel solar exposure and nitric acid photolysis. Outside the polar vortex, the occasional highly elevated ClO appear statistically consistent with MLS measurement noise.

  4. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankai; Tian, Wenshou; Chipperfield, Martyn P.; Xie, Fei; Huang, Jinlong

    2016-12-01

    The wintertime Arctic stratospheric polar vortex has weakened over the past three decades, and consequently cold surface air from high latitudes is now more likely to move into the middle latitudes. However, it is not known if the location of the polar vortex has also experienced a persistent change in response to Arctic climate change and whether any changes in the vortex position have implications for the climate system. Here, through the analysis of various data sets and model simulations, we show that the Arctic polar vortex shifted persistently towards the Eurasian continent and away from North America in February over the past three decades. This shift is found to be closely related to the enhanced zonal wavenumber-1 waves in response to Arctic sea-ice loss, particularly over the Barents-Kara seas (BKS). Increased snow cover over the Eurasian continent may also have contributed to the shift. Our analysis reveals that the vortex shift induces cooling over some parts of the Eurasian continent and North America which partly offsets the tropospheric climate warming there in the past three decades. The potential vortex shift in response to persistent sea-ice loss in the future, and its associated climatic impact, deserve attention to better constrain future climate changes.

  5. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    SciTech Connect

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  6. On connections between the stratospheric polar vortex and sea ice in the Arctic

    NASA Astrophysics Data System (ADS)

    Lukovich, J. V.; Barber, D. G.

    2009-12-01

    The unprecedented decline in sea ice extent and thickness in the Arctic in the early part of the 21st century establishes conditions conducive to increased communication between oceanic, sea-ice and atmospheric phenomena. In this study we explore the correspondence between stratospheric dynamic variability in winter and changes in sea ice in the Arctic. Investigated in particular are anomalies and trends in Eliassen-Palm flux components in the northern hemisphere to determine changes in upward wave propagation in response to an accelerated decline in Arctic ice cover in the early part of the 21st century. Connections between the strength and position of the polar vortex and changes in sea ice extent, concentration, and motion are examined in the context of sudden stratospheric warmings and vortex splitting and displacement events. Relative vorticity is used to study the permeability of the polar vortex in response to storm activity in the Arctic with reduced ice cover. Initial results from this analysis suggest a decline in upward wave propagation in winter and an increase in upward wave propagation in fall in recent decades. Spatial coincidence is observed between composites of surface winds for years associated with vortex displacement events and record lows in ice extent. The implications of a poleward increase in cyclonic activity from 70 °N - 80 °N during spring and summer for seasonal variations in the stratospheric polar vortex are also examined.

  7. A consistent definition of the Arctic polar vortex breakup in both the lower and upper stratosphere

    NASA Astrophysics Data System (ADS)

    Choi, W.; Seo, J.

    2014-12-01

    Breakup of the polar vortex is a dominant feature of the seasonal transition from winter to summer in the stratosphere, which significantly affects stratospheric O3 concentration and tropospheric weather. Previously several criteria for the vortex breakup have been suggested based on the potential vorticity (PV) and wind speed, however, those mainly have focused on the lower stratospheric vortex of which spatiotemporal evolution and decay are more continuous than those of the upper stratospheric vortex. To find a consistent criterion for the vortex breakup in both the lower and upper stratosphere, the present study defined a polar vortex breakup day as when PV gradient at the polar vortex edge becomes lower than that at the subtropical edge on the area equivalent latitude based on PV. With applying the new definition to the UK Met Office reanalysis data, the breakup days of the Arctic polar vortices on 18 isentropic levels from 450 K to 1300 K were calculated for the period of 1993-2005. In comparison with CH4, N2O and O3 measured by the ILAS and POAM II/III satellite instruments, the breakup days are well consistent with changes in the distribution of such tracers as well as their zonal standard deviations associated with the vortex structure breaking and irreversible mixing. The vortex breakup in the upper stratosphere occurs more or less a month prior to that in the middle and lower stratosphere while the stratospheric final warming events occurs simultaneously in the upper and lower stratosphere.

  8. Stratospheric meteorological conditions in the Arctic polar vortex, 1991 to 1992

    NASA Technical Reports Server (NTRS)

    Newman, P.; Lait, L. R.; Schoeberl, M.; Nash, E. R.; Kelly, K.; Fahey, D. W.; Nagatani, R.; Toohey, D.; Avallone, L.; Anderson, J.

    1993-01-01

    Stratospheric meteorological conditions during the Airborne Arctic Stratospheric Expedition II (AASE II) presented excellent observational opportunities from Bangor, Maine, because the polar vortex was located over southeastern Canada for significant periods during the 1991-1992 winter. Temperature analyses showed that nitric acid trihydrates (NAT temperatures below 195 K) should have formed over small regions in early December. The temperatures in the polar vortex warmed beyond NAT temperatures by late January (earlier than normal). Perturbed chemistry was found to be associated with these cold temperatures.

  9. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta about 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(sub y)) had also been removed, with layers of enhanced (sub y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (about 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micron) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of theta is estimated to have been dehydrated in this event.

  10. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoerberl, M. R.; Elkins, J. W.; Wamsley, P. R.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta = 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NOy) had also been removed, with layers of enhanced NOy at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approx. 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of theta is estimated to have been dehydrated in this event.

  11. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (0-450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 microns) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of 0 is estimated to have been dehydrated in this event.

  12. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta approximately 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range Transport of theta is estimated to have been dehydrated in this event.

  13. Weakening of the stratospheric polar vortex by Arctic sea-ice loss.

    PubMed

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea-ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhances the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  14. Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013

    NASA Astrophysics Data System (ADS)

    Manney, G. L.; Lawrence, Z. D.; Santee, M. L.; Livesey, N. J.; Lambert, A.; Pitts, M. C.

    2015-05-01

    A sudden stratospheric warming (SSW) in early January 2013 caused the Arctic polar vortex to split and temperatures to rapidly rise above the threshold for chlorine activation. However, ozone in the lower stratospheric polar vortex from late December 2012 through early February 2013 reached the lowest values on record for that time of year. Analysis of Aura Microwave Limb Sounder (MLS) trace gas measurements and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) polar stratospheric cloud (PSC) data shows that exceptional chemical ozone loss early in the 2012/13 Arctic winter resulted from a unique combination of meteorological conditions associated with the early-January 2013 SSW: unusually low temperatures in December 2012, offspring vortices within which air remained well isolated for nearly 1 month after the vortex split, and greater-than-usual vortex sunlight exposure throughout December 2012 and January 2013. Conditions in the two offspring vortices differed substantially, with the one overlying Canada having lower temperatures, lower nitric acid (HNO3), lower hydrogen chloride, more sunlight exposure/higher ClO in late January, and a later onset of chlorine deactivation than the one overlying Siberia. MLS HNO3 and CALIPSO data indicate that PSC activity in December 2012 was more extensive and persistent than at that time in any other Arctic winter in the past decade. Chlorine monoxide (ClO, measured by MLS) rose earlier than previously observed and was the largest on record through mid-January 2013. Enhanced vortex ClO persisted until mid-February despite the cessation of PSC activity when the SSW started. Vortex HNO3 remained depressed after PSCs had disappeared; passive transport calculations indicate vortex-averaged denitrification of about 4 parts per billion by volume. The estimated vortex-averaged chemical ozone loss, ~ 0.7-0.8 parts per million by volume near 500 K (~21 km), was the largest December/January loss in the MLS

  15. Polar processing in a split vortex: early winter Arctic ozone loss in 2012/13

    NASA Astrophysics Data System (ADS)

    Manney, G. L.; Lawrence, Z. D.; Santee, M. L.; Livesey, N. J.; Lambert, A.; Pitts, M. C.

    2015-02-01

    -averaged chemical ozone loss by late January near 500 K (~ 21 km), with substantial loss occurring from ~ 450 to 550 K. The surface area of PSCs in December 2012 was larger than that in any other December observed by CALIPSO. As a result of denitrification, HNO3 abundances in 2012/13 were among the lowest in the MLS record for the Arctic. ClO enhancement was much greater in December 2012 through mid-January 2013 than that at the corresponding time in any other Arctic winter observed by MLS. Furthermore, reformation of HCl appeared to play a greater role in chlorine deactivation than in more typical Arctic winters. Ozone loss in December 2012 and January 2013 was larger than any previously observed in those months. This pattern of exceptional early winter polar processing and ozone loss resulted from the unique combination of dynamical conditions associated with the early January 2013 SSW, namely unusually low temperatures in December 2012 and offspring vortices that remained well-confined and largely in sunlit regions for about a month after the vortex split.

  16. The anomalous Arctic lower stratospheric polar vortex of 1992-1993

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Zurek, R. W.; Gelman, M. E.; Miller, A. J.; Nagatani, R.

    1994-01-01

    Potential vorticity (PV) gradients defining the lower stratospheric vortex during the 1992-1993 winter were anomalously strong and persistent compared to those during the last 16 Arctic winters. For approximately equal to 3 months PV gradients were closer to typical Antarctic values than to most Arctic values. Air motion diagnostics computed for 3-dimensional air parcels confirm that the 1992-1993 Arctic lower stratospheric vortex was substantially more isolated than is typical. Such isolation will delay and reduce the export of the higher ozone typical of the winter lower stratospheric vortex to mid-latitudes. This may have contributed to the record-low total ozone amounts observed in northern mid-latitudes in 1993.

  17. Measurements of condensation nuclei in the Airborne Arctic Stratospheric Expedition - Observations of particle production in the polar vortex

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Stolzenburg, M. R.; Clark, W. E.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1990-01-01

    The ER-2 Condensation Nucleus Counter (ER-2 CNC) was operated in the Airborne Arctic Stratospheric Expedition (AASE) in January and February 1989. The ER-2 CNC measures the mixing ratio of particles, CN, with diameters from approximately 0.02 to approximately 1 micron. The spatial distribution of CN in the Arctic polar vortex was found to resemble that measured in the Antarctic in the Spring of 1987. The vertical profile of CN in the vortex was lowered by subsidence. At altitudes above the minimum in the CN mixing ratio profile, CN mixing ratios correlated negatively with that of N2O, demonstrating new particle production. CN serve as nuclei in the formation of Polar Stratospheric Clouds (PSCs) and the concentration of CN can affect PSC properties.

  18. Arctic sea ice melt, the Polar vortex, and mid-latitude weather: Are they connected?

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Overland, James; Francis, Jennifer; Hall, Richard; Hanna, Edward; Kim, Seong-Joong

    2015-04-01

    The potential of recent Arctic changes to influence broader hemispheric weather is a difficult and controversial topic with considerable skepticism, as time series of potential linkages are short (<10 years) and the signal-to-noise ratio relative to chaotic weather events is small. A way forward is through further understanding of potential atmospheric dynamic mechanisms. Although not definitive of change in a statistical or in a causality sense, the exceptionally warm Arctic winters since 2007 do contain increased variability according to some climate indices, with six negative (and two positive) Arctic Oscillation atmospheric circulation index events that created meridional flow reaching unusually far north and south. High pressure anomalies developed east of the Ural Mountains in Russia in response to sea-ice loss in the Barents/Kara Seas, which initiated eastward-propagating wave trains of high and low pressure that advected cold air over central and eastern Asia. Increased Greenland blocking and greater geopotential thickness related to low-level temperatures increases led to northerly meridional flow into eastern North America, inducing persistent cold periods. Arctic connections in Europe and western North America are less clear. The quantitative impact of potential Arctic change on mid-latitude weather will not be resolved within the foreseeable future, yet new approaches to high-latitude atmospheric dynamics can contribute to improved extended range forecasts as outlined by the WMO/Polar Prediction Program and other international activities.

  19. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Weigel, Ralf; Kandler, Konrad; Günther, Gebhard; Molleker, Sergej; Grooß, Jens-Uwe; Vogel, Bärbel; Weinbruch, Stephan; Borrmann, Stephan

    2016-07-01

    Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate / carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ˜ 5 µm) taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  20. Ozone depletion in filaments of the Arctic Polar Vortex observed during the first Global Hawk UAS science mission

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Hintsa, E. J.; Dutton, G. S.; Hall, B. D.; Moore, F. L.; Gao, R.; Oltmans, S. J.; Patrick, L.; Johnson, B. J.; Ray, E. A.; Nance, D.; Fahey, D. W.; Newman, P. A.

    2011-12-01

    One of the important potential uses of the NASA Global Hawk Unmanned Aircraft System (UAS) in scientific research is to study stratospheric ozone (O3) depletion in polar regions. Manned flights involve remote and hazardous duty, which pose great risks to pilots, crew, and scientists. Arctic ozone depletion observed in the spring of 2010 by satellites, manned aircraft campaigns, ground-base stations was less severe than that observed this year (2011). The Global Hawk UAS flight on 23 April 2010 was the first to observe ozone-depleted air with a UAS platform. Temperatures in the polar vortex were cold enough for Type II Polar Stratospheric Clouds (PSC) to form for a short period (days) at 50 hPa in 2010, and cold temperatures existed for almost 2 months for Type I PSC formation. Based on the NOAA Unmanned aircraft systems Chromatograph for Atmospheric Trace Species (UCATS) ozone versus nitrous oxide tracer correlation plot (below), there is 21% less ozone in air from a polar filament sampled on 7 April 2010 compared to the Arctic air sampled later on 23 April 2010. The NOAA UAS Fast Ozone Instrument showed a similar pattern with respect to N2O. Age-of-air values derived from on board SF6 observations were about 5 years in the filament versus about 3 years outside the filament in the subsequent polar flight. The Global Hawk UAS flights were part of the Global Hawk Pacific Experiment (GloPac), which demonstrated flights up to 28.6 hr duration, altitudes as high as 19.8 km and a maximum range of 9200 nm while carrying a payload of in situ and remote instrumentation for atmospheric chemical and aerosol tracers. This first science mission of the NASA Global Hawk UAS demonstrated its huge potential for stratospheric ozone research over remote and hazardous polar areas.

  1. The effect of preceding wintertime Arctic polar vortex on springtime NDVI patterns in boreal Eurasia, 1982-2015

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fan, Ke; Xu, Jianjun; Powell, Alfred M.; Kogan, Felix

    2016-08-01

    The polar vortex is implicated in certain cold events in boreal Eurasia and has a further influence on land surface properties (e.g., vegetation and snow) during spring. The Normalized Difference Vegetation Index (NDVI) can be used as a proxy of land surface responses to climate changes to a certain degree. In this study, we demonstrate the significant correlation between preceding wintertime Arctic polar vortex intensity (WAPVI) and springtime NDVI (SNDVI) over a 34-year period (1982-2015) in boreal Eurasia (50°-75°N, 0°-150°E). Results show that a positive phase of WAPVI tends to increase the SNDVI in Europe and Lake Baikal, but causes a significant decrease in Siberia; the physical mechanisms involved in this relationship are then investigated. A positive phase of WAPVI leads to anomalies in surface air temperature and rainfall over Eurasia, which then induces a significant decrease in snow cover and snow depth in Europe and Lake Baikal and an increase of snow depth in Siberia. The colder ground temperature in Siberia during spring is considered responsible for the stronger snow depth and weaker vegetation growth in this region. The weaker and thinner snow cover in Europe and Baikal produces a decrease in albedo and an increase in heat. Thin snow melts fast in the following spring and land releases more heat to the atmosphere; consequently, warm and moist land surface facilitates vegetation growth in Europe and the Baikal regions during positive WAPVI years. In addition, WAPVI can induce sea surface temperature (SST) anomalies in the North Atlantic, which displays a tripole pattern similar to that of the empirical mode pattern in winter. Furthermore, the SST anomalous pattern persisting from winter to spring can trigger a stationary wave-train propagating from west to east in boreal Eurasia, with "negative-positive-negative-positive" geopotential height anomalies, which further exerts an impact on vegetation growth through modulation of the heat balance.

  2. Chemical loss of ozone in the Arctic polar vortex in the winter of 1991- 1992

    NASA Technical Reports Server (NTRS)

    Salawitch, R. J.; Wofsy, S. C.; Gottlieb, E. W.; Lait, L. R.; Newman, P. A.; Schoeberl, M. R.; Loewenstein, M.; Podolske, J. R.; Strahan, S. E.; Proffitt, M. H.

    1993-01-01

    In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.

  3. Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992

    NASA Technical Reports Server (NTRS)

    Salawitch, R. J.; Wofsy, S. C.; Gottlieb, E. W.; Lait, L. R.; Newman, P. A.; Schoeberl, M. R.; Strahan, S. E.; Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Proffitt, M. H.; Fahey, D. W.; Kelly, K. K.; Webster, C. R.; May, R. D.; Baumgardner, D.; Dye, J. E.; Wilson, J. C.; Elkins, J. W.; Anderson, J. G.

    1993-01-01

    In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.

  4. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  5. Polar vortex dynamics

    NASA Technical Reports Server (NTRS)

    Mcintyre, Michael

    1988-01-01

    Recent work with high resolution, one-layer numerical models of fluid flows resembling those in the real stratosphere has suggested that: (1) the interiors of strong cyclonic vortices like the Antarctic polar vortex may be almost completely isolated laterally from their surroundings - perhaps even completely isolated, under some circumstances; (2) by contrast, material near the edge of such and isolated region can easily be eroded (or mixed one-sidedly) into the surrounding region; and (3) the erosion characteristically produces extremely steep gradients in isentropic distributions of potential vorticity (PV) and of other tracers, possibly down to horizontal length scales of a few kilometers only. Such length scales may occur both at the edge of the main polar vortex and in smaller features outside it, such as thin filamentary structures, produced by the erosion process.

  6. A strong phase reversal of the Arctic Oscillation in midwinter 2015/2016: Role of the stratospheric polar vortex and tropospheric blocking

    NASA Astrophysics Data System (ADS)

    Cheung, Hoffman H. N.; Zhou, Wen; Leung, Marco Y. T.; Shun, C. M.; Lee, S. M.; Tong, H. W.

    2016-11-01

    In January 2016, Asia and North America experienced unusual cold temperatures, although the global average of surface air temperature broke the warmest record during a strong El Niño event. This was closely related to the remarkable phase transition of the Arctic Oscillation (AO), which can be explained by stratosphere-troposphere interactions. First, the quasi-biennial oscillation changed to its westerly phase in summer 2015 and the stratospheric polar vortex was stronger in early to midwinter 2015/2016. As blocking did not occur in December, the associated downward propagation signal resulted in a strongly positive AO in late December 2015. Second, after late December, the positive phase of Pacific-North America pattern became apparent in El Niño event, which strengthened the Aleutian anticyclone in the stratosphere. In addition, an equivalent barotropic ("blocking") anticyclone was established in the troposphere over Asia. The coexistence of blocking over Asia and North America characterized the negative AO and a strong zonal wave number 2 pattern. Due to stronger zonal wave number 2 signals from the troposphere, the stronger stratospheric polar vortex was elongated, with two cyclonic centers over Asia and the North Atlantic in January. The resultant southward displacement of polar vortices was followed by rare snowfall in the subtropical region of East Asia and a heavy snowstorm on the East Coast of the United States.

  7. The Arctic Vortex in March 2011: A Dynamical Perspective

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  8. The Structure of the Polar Vortex

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark R.; Lait, Leslie R.; Newman, Paul A.; Rosenfield, Joan E.

    1992-05-01

    Reconstruction of the Airborne Antarctic Ozone Experiment and Airborne Arctic Stratosphere Expedition aircraft constituent observations, radiative heating rate computations, and trajectory calculations are used to generate comparative pictures of the 1987 southern hemisphere (SH) late winter and 1989 northern hemisphere (NH) mid-winter, lower stratospheric, polar vortices. Overall, both polar vortices define a region of highly isolated air, where the exchange of trace gases occurs principally at the vortex edge through erosional wave activity. Aircraft measurement showed that (1) between 50 and 100 mbar, horizontally stratified long-lived tracers such as N2O are displaced downward 2-3 km on the cyclonic (poleward) side of the jet with the meridional tracer gradient sharpest at the jet core. (2) Eddy mixing rates, computed using parcel ensemble statistics, are an order of magnitude or more lower on the cyclonic side of the jet compared to those on the anticyclonic side. (3) Poleward zonal mean meridional flow on the anticyclonic side of the jet terminates in a descent zone at the jet core. Despite the similarities between the SH and NH winter vortices, there are important differences. During the aircraft campaign periods, the SH vortex jet core was located roughly 8°-10° equatorward of its NH counterpart after pole centering. As a result of the larger size of the SH vortex, the dynamical heating associated with the jet core descent zone is displaced further from the pole. The SH polar vortex can therefore approach radiative equilibrium temperatures over a comparatively larger area than the NH vortex. The subsequent widespread formation of polar stratospheric clouds within the much colder SH vortex core gives rise to the interhemispheric differences in the reconstructed H2O, NOy, ClO, and O3, species which are affected by polar stratospheric clouds.

  9. Chemical Observations of a Polar Vortex Intrusion

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  10. The structure of the polar vortex

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Lait, Leslie R.; Newman, Paul A.; Rosenfield, Joan E.

    1992-01-01

    The paper develops a comparative picture of the 1987 Southern Hemisphere and 1989 Northern Hemisphere lower stratospheric, polar vortex circulation and constituent distributions as observed by the Airborne Antarctic Ozone Experiment, August 17-September 22, 1987, and Airborne Arctic Stratospheric Expedition, January 3-February 19, 1989 aircraft campaigns. Overall, both polar vortices define a region of highly isolated air, where the exchange of trace gases occurs principally at the vortex edge through erosional wave activity. Aircraft measurement showed that between 50 and 100 mbar, horizontally stratified long-lived tracers such as N2O are displaced downward 2-3 km on the cyclonic (poleward) side of the jet with the meridional tracer gradient sharpest at the jet core. Eddy mixing rates, computed using parcel ensemble statistics, are an order of magnitude or more lower on the cyclonic side of the jet compared to those on the anticyclonic side. Poleward zonal mean meridional flow on the anticyclonic side of the jet terminates in a descent zone at the jet core.

  11. Quantifying Subsidence in the 1999-2000 Arctic Winter Vortex

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Elkins, James W.; Moore, Fred L.; Ray, Eric A.; Sen, Bhaswar; Margitan, James J.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Quantifying the subsidence of the polar winter stratospheric vortex is essential to the analysis of ozone depletion, as chemical destruction often occurs against a large, altitude-dependent background ozone concentration. Using N2O measurements made during SOLVE on a variety of platforms (ER-2, in-situ balloon and remote balloon), the 1999-2000 Arctic winter subsidence is determined from N2O-potential temperature correlations along several N2O isopleths. The subsidence rates are compared to those determined in other winters, and comparison is also made with results from the SLIMCAT stratospheric chemical transport model.

  12. The potential for ozone depletion in the Arctic polar stratosphere

    NASA Technical Reports Server (NTRS)

    Brune, W. H.; Anderson, J. G.; Toohey, D. W.; Fahey, D. W.; Kawa, S. R.; Poole, L. R.

    1991-01-01

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (CHl and ClONO2) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl2O2 thoroughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO3, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15 percent at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8 percent losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50 percent over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  13. The potential for ozone depletion in the arctic polar stratosphere.

    PubMed

    Brune, W H; Anderson, J G; Toohey, D W; Fahey, D W; Kawa, S R; Jones, R L; McKenna, D S; Poole, L R

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  14. Trace Gas Transport in the Arctic Vortex Inferred from ATMOS ATLAS-2 Observations During April 1993

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Manney, G. L.; Gunson, M. R.; Abbas, M. M.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C, P,; Salawitch, R. J.; Stiller, G. P.; Zander, R.

    1996-01-01

    Measurements of the long-lived tracers CH4, N2O, and HF from the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Atmospheric Laboratory for Science and Applications-2 (ATLAS-2) Space Shuttle mission in April 1993 are used to infer average winter descent rates ranging from 0.8 km/month at 20 km to 3.2 km/month at 40 km in the Arctic polar vortex during the 1992-93 winter. Descent rates in the mid-stratosphere are similar to those deduced for the Antarctic vortex using ATMOS/ATLAS-3 measurements in November 1994, but the shorter time period of descent in the Arctic leads to smaller total distances of descent. Strong horizontal gradients observed along the vortex edge indicate that the Arctic vortex remains a significant barrier to transport at least until mid-April in the lower to middle stratosphere.

  15. Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking

    NASA Technical Reports Server (NTRS)

    Waugh, D. W.; Plumb, R. A.; Atkinson, R. J.; Schoeberl, M. R.; Lait, L. R.; Newman, P. A.; Loewenstein, M.; Toohey, D. W.; Avallone, L. M.; Webster, C. R.

    1994-01-01

    The fine-scale structure in lower stratospheric tracer transport during the period of the two Arctic Airborne Stratospheric Expeditions (January and February 1989; December 1991 to March 1992) is investigated using contour advection with surgery calculations. These calculations show that Rossby wave breaking is an ongoing occurrence during these periods and that air is ejected from the polar vortex in the form of long filamentary structures. There is good qualitative agreement between these filaments and measurements of chemical tracers taken aboard the NASA ER-2 aircraft. The ejected air generally remains filamentary and is stretched and mixed with midlatitude air as it is wrapped around the vortex. This process transfers vortex air into midlatitudes and also produces a narrow region of fine-scale filaments surrounding the polar vortex. Among other things, this makes it difficult to define a vortex edge. The calculations also show that strong stirring can occur inside as well as outside the vortex.

  16. The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016

    NASA Astrophysics Data System (ADS)

    Matthias, V.; Dörnbrack, A.; Stober, G.

    2016-12-01

    The Arctic polar vortex in the early winter 2015/2016 was the strongest and coldest of the last 68 years. Using global reanalysis data, satellite observations, and mesospheric radar wind measurements over northern Scandinavia we investigate the characteristics of the early stage polar vortex and relate them to previous winters. We found a correlation between the planetary wave (PW) activity and the strength and temperature of the northern polar vortex in the stratosphere and mesosphere. In November/December 2015, a reduced PW generation in the troposphere and a stronger PW filtering in the troposphere and stratosphere, caused by stronger zonal winds in midlatitudes, resulted in a stronger polar vortex. This effect was strengthened by the equatorward shift of PWs due to the strong zonal wind in polar latitudes resulting in a southward shift of the Eliassen-Palm flux divergence and hence inducing a decreased deceleration of the polar vortex by PWs.

  17. Synoptic Evolution of the Arctic Vortex During Elevated Stratopause Events: WACCM vs. Observations

    NASA Astrophysics Data System (ADS)

    Harvey, V.; Collins, R. L.; Randall, C. E.

    2013-12-01

    The structure of the Arctic polar vortex is diagnosed during 15 elevated stratopause (ES) events using 40 years of output from the Whole Atmosphere Community Climate Model (WACCM). For each event, stratopause height maxima are interpreted in the context of the structure of the Arctic vortex. The WACCM results are compared to the 2006, 2009, 2012, and 2013 ES events observed by the Microwave Limb Sounder (MLS) and the Arctic vortex in the Goddard Earth Observing System (GEOS) version 5 analyses. The stratopause first reforms at high altitudes over confined geographic regions before it becomes elevated over the entire polar cap. Thus, defining the day that the stratopause reformed using polar cap averaged temperatures results in a later date than if polar maps of stratopause height are used. Even once an ES event has started based on polar cap mean temperatures, the ES is not at a uniform altitude over the polar cap. Complex patterns change rapidly from day-to-day. ES events simulated by WACCM are zonally asymmetric 33% of the time due to large amplitude planetary waves in the upper stratosphere. This frequency agrees with observations in that the 2012 ES event was zonally asymmetric. For the 66% of ES events that are zonally symmetric in a monthly mean following each event, there are significant periods when zonal symmetry is violated and the vortex structure tilts westward with height over 270o in longitude.

  18. Titan's South Polar Vortex in Motion

    NASA Video Gallery

    This movie captured by NASA'S Cassini spacecraft shows a south polar vortex, or a swirling mass of gas around the pole in the atmosphere, at Saturn’s moon Titan. The swirling mass appears to exec...

  19. Venus's southern polar vortex reveals precessing circulation.

    PubMed

    Luz, D; Berry, D L; Piccioni, G; Drossart, P; Politi, R; Wilson, C F; Erard, S; Nuccilli, F

    2011-04-29

    Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.

  20. The stratospheric polar vortex: evolving perspectives

    NASA Astrophysics Data System (ADS)

    Plumb, R. A.

    2005-12-01

    The discovery of dramatic Antarctic ozone depletion occurred at a time of rapid change in our understanding of stratospheric dynamics. The existence of the polar vortex, encircled by the polar night jet, had been well known for some time, as had the planetary scale Rossby waves that so dominate stratospheric meteorology. But, 25 years ago, the concepts of Rossby wave breaking, and of the "surf zone" and the sharpness of its boundaries at the vortex edge and in the subtropics, were relatively new, and the role of these waves in the driving of the mean diabatic circulation was not fully appreciated. While the local importance of gravity wave drag in the mesosphere was recognized by that time, its impact in the stratosphere was by no means clear. For a time, it was thought by many that the "ozone hole" was produced by anomalous polar upwelling, whose existence seemed to be demanded by observations of widespread, anomalously low temperatures in high southern latitudes in spring, which (at first) did not appear to be a consequence of depleted ozone. In the event, of course, chemical observations provided overwhelming support for the chemical depletion theory, while tracer observations, as well as revised radiative calculations, undermined the case for polar upwelling. The demands of stratospheric chemistry have always required that dynamical understanding of the stratosphere should extend beyond traditional meteorology to include questions of the transport of chemical species. Stratospheric transport has many facets, of which one - the impermeability of the vortex edge - was brought into focus by the appearance of the ozone hole and the need to understand the degree to which vortex air is isolated from its environment. The issue was controversial for a time, but analyses of tracer observations have confirmed expectations based on dynamical theory and on modeling studies that the isolation is strong, except during major vortex disturbances. Interest in polar vortex

  1. Law of mass action in the Arctic lower stratospheric polar vortex January-March 2000: ClO scaling and the calculation of ozone loss rates in a turbulent fractal medium

    NASA Astrophysics Data System (ADS)

    Tuck, Adrian F.; Hovde, Susan J.; Gao, Ru-Shan; Richard, Erik C.

    2003-08-01

    We consider the effects of power law scaling in the 1999-2000 Arctic lower stratospheric vortex from the point of view of the law of mass action and its application to the chemical kinetics of ozone loss embedded in a turbulent, macroscopic, fractal medium. The ER-2 observations of ClO obey power law scaling; the exponent varies with time in a manner shown to be consistent with the scaling of NOy and O3, via the influences of polar stratospheric clouds and actinic solar radiation. While the microscopic rate coefficient for ClO three-body recombination to the dimer applies as measured to three-dimensional volumes in which the sole transport mechanism is molecular diffusion, this cannot be true in the 2.56-dimensional space in which macroscopically fluctuating ClO reacts in the lower stratosphere. We show that the rate of loss of ozone via the ClO dimer mechanism is proportional to [ClO]2.20 in late January/early February and to [ClO]2.55 in March. Chemical ozone loss had already occurred by the date of the first flight, 20000120.

  2. On the Origin of Polar Vortex Air

    NASA Technical Reports Server (NTRS)

    Rosenfield, J. E.; Schoeberl, M. R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The existence of the multi-year HALOE CH4 data set, together with some comparisons of forward with back trajectory calculations which we have carried out, has motivated us to reexamine the question of polar vortex descent. Three-dimensional diabatic trajectory calculations have been carried out for the seven month fall to spring period in both the northern hemisphere (NH) and southern hemisphere (SH) polar stratosphere for the years 1992-1999. These computations are compared to fixed descent computations where the parcels were fixed at their latitude-longitude locations and allowed to descend without circulating. The forward trajectory computed descent is always less than the fixed descent due to horizontal parcel motions and variations in heating rates with latitude and longitude. Although the forward calculations estimate the maximum amount of descent that can occur, they do not necessarily indicate the actual origin of springtime vortex air. This is because more equator-ward air can be entrained within the vortex during its formation. To examine the origin of the springtime vortex air, the trajectory model was run backward for seven months from spring to fall. The back trajectories show a complex distribution of parcels in which one population originates in the upper stratosphere and mesosphere and experiences considerable descent in the polar regions, while the remaining parcels originate at lower altitudes of the middle and lower stratosphere and are mixed into the polar regions during vortex formation without experiencing as much vertical transport. The amount of descent experienced by the first population shows little variability from year to year, while the computed descent and mixing of the remaining parcels show considerable interannual variability due to the varying polar meteorology. Because of this complex parcel distribution it is not meaningful to speak of a net amount of descent experienced over the entire winter period. Since the back trajectories

  3. Defining the Polar Vortex Edge from a N20: Potential Temperature Correlation

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.

    2002-01-01

    A prerequisite to studying phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESEO 2000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by more than 400 km and omit the identification of small, extravortex filaments within the vortex.

  4. Chemical change in the arctic vortex during AASE 2

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Jucks, Kenneth W.; Johnson, David G.; Chance, Kelly V.

    1994-01-01

    We measured column abundances of HF, HCl, O3, HNO3, and H2O on the NASA DC-8 during the AASE II campaign, using thermal emission spectroscopy. We made multiple traversals of the Arctic vortex and surroundings. Using HF as a tracer, we remove the effects of subsidence from the measured column abundances; perturbations in the resulting column abundances are attributed to chemical processing. We find that by January 1992 the stratospheric column in the vortex had been chemically depleted by about (55+/-10)% in HCl and (35+/-10)% in O3, and enhanced by about (15+/-10)% in HNO3 and (0+/-10)% in H2O.

  5. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Lawrence, Zachary D.

    2016-12-01

    The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS) show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5-6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW) began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers) show rapid vortex erosion and extensive mixing during

  6. Intrusions into the lower stratospheric Arctic vortex during the winter of 1991-1992

    NASA Technical Reports Server (NTRS)

    Plumb, R. A.; Waugh, D. W.; Atkinson, R. J.; Newman, P. A.; Lait, L. R.; Schoeberl, M. R.; Browell, E. V.; Simmons, A. J.; Loewenstein, M.

    1994-01-01

    Investigations of the kinematics of the lower stratospheric Arctic vortex during the winter of 1991-1992 using the contour advection with surgery technique reveal three distinct events in which there was substantial intrusion of midlatitude air into the vortex, in apparent contradiction of the view that the polar vortex constitutes an isolated air mass. Two of these events, in late January and mid-February, were well documented. They were predicted in high-resolution forecasts by the European Centre for Medium-Range Weather Forecasts, most clearly in experimental forecasts with reduced diffusion. Direct confirmation of the presence of the intrusions and of their calculated locations was provided by aerosol observations from the airborne differential absorption laser lidar aboard the NASA DC-8, taken as part of the second Airborne Arctic Stratospheric Expedition campaign; aerosol-rich air of midlatitude origin was seen in the expected position of the intrusions. The reality of the February event was also confirmed by in situ measurements from the NASA ER-2. Such events may be significant for the chemical processes taking place within the winter vortex. The intrusions were evidently related to the meteorology of the northern stratosphere during this winter and in particular to persistent tropospheric blocking over the northeastern Atlantic Ocean and western Europe and concomitant ridging into the lower stratospheric vortex in this region. Nevertheless, preliminary investigations have indicated that such events are not uncommon in other northern hemisphere winters, although no such events were found in the southern hemisphere during the Antarctic winter of 1987.

  7. Polar Climate: Arctic sea ice

    USGS Publications Warehouse

    Stone, R.S.; Douglas, David C.; Belchansky, G.I.; Drobot, S.D.

    2005-01-01

    Recent decreases in snow and sea ice cover in the high northern latitudes are among the most notable indicators of climate change. Northern Hemisphere sea ice extent for the year as a whole was the third lowest on record dating back to 1973, behind 1995 (lowest) and 1990 (second lowest; Hadley Center–NCEP). September sea ice extent, which is at the end of the summer melt season and is typically the month with the lowest sea ice extent of the year, has decreased by about 19% since the late 1970s (Fig. 5.2), with a record minimum observed in 2002 (Serreze et al. 2003). A record low extent also occurred in spring (Chapman 2005, personal communication), and 2004 marked the third consecutive year of anomalously extreme sea ice retreat in the Arctic (Stroeve et al. 2005). Some model simulations indicate that ice-free summers will occur in the Arctic by the year 2070 (ACIA 2004).

  8. Evolution of the 1991-1992 Arctic vortex and comparison with the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Rosenfield, J. E.; Loewenstein, M.; Podolske, J. R.; Weaver, A.

    1994-01-01

    Nitrous oxide (N2O) measured on board the ER-2 aircraft during the Airborne Arctic Stratospheric Expedition 2 (AASE 2) has been used to monitor descent of air inside the Arctic vortex between October 1991 and March 1992. Monthly mean N2O fields are calculated from the flight data and then compared with mean fields calculated from the high-resolution Geophysical Fluid Dynamics Laboratory general circulation model SKYHI in order to evaluate the model's simulation of the polar vortex. From late fall through winter the model vortex evolves in much the same way as the 1991-1992 vortex, with N2O gradients at the edge becoming progressively steeper. The October to March trends in N2O profiles inside the vortex are used to verify daily net heating rates in the vortex that were computed from clear sky radiative heating rates and National Meteorological Center temperature observations. The computed heating rates successfully estimate the descent of vortex air from December through February but suggest that before December, air at high latitudes may not be isolated from the midlatitudes. SKYHI heating rates are in good agreement with the computed rates but tend to be slightly higher (i.e., less cooling) due to meteorological differences between SKYHI and the 1991-1992 winter. Three ER-2 flights measured N2O just north of the subtropical jet. These low-midlatitude profiles show only slight differences from the high-midlatitude profiles (45 deg - 60 deg N), indicating strong meridional mixing in the midlatitude 'surf zone.' Mean midwinter N2O profiles inside and outside the vortex calculated from AASE 2 data are shown to be nearly identical to 1989 AASE profiles, pointing to the N2O/potential temperature relationship as an excellent marker for vortex air.

  9. Polar Vortex Tightens Grip on U.S.

    MedlinePlus

    ... A polar vortex is bringing extreme cold and winds to the central and eastern United States this ... being warned to guard against frostbite and hypothermia. Wind chills could fall to 30 to 40 degrees ...

  10. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  11. Arctic polar stratospheric cloud observations by airborne lidar

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Poole, L. R.; Kent, G. S.; Hunt, W. H.; Osborn, M. T.

    1990-01-01

    Lidar observations obtained from January 24 to February 2, 1989, during the Airborne Arctic Stratospheric expedition (AASE) mission further support the existence of two distinct classes (Types 1 and 2) of polar stratospheric clouds (PSCs). Most of the Type 1 PSCs observed were formed by rapid adiabatic cooling and exhibited very low depolarization ratios and low-to-intermediate scattering ratios. Type 2 PSCs were observed in regions of lowest temperature and showed much larger depolarization and scattering ratios, as would be expected from larger ice crystals. PSCs with low scattering ratios but moderate depolarization ratios were observed near the center of the vortex on one flight. These may have been either sparse Type 2 PSCs or Type 1 PSCs formed by less rapid cooling.

  12. Defining the Polar Vortex Edge Using an N2O: Potential Temperature Correlation Versus the Nash Criterion: A Comparison

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A prerequisite to study phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESE02000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by up to 466 km, and omit the identification of small, extra-vortex filaments within the vortex.

  13. Cassini ISS observation of Saturn's north polar vortex and comparison to the south polar vortex

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Blalock, John J.; Dyudina, Ulyana A.; Ewald, Shawn P.; Ingersoll, Andrew P.

    2017-03-01

    We present analyses of Saturn's north pole using high-resolution images captured in late 2012 by the Cassini spacecraft's Imaging Science Subsystem (ISS) camera. The images reveal the presence of an intense cyclonic vortex centered at the north pole. In the red and green visible continuum wavelengths, the north polar region exhibits a cyclonically spiraling cloud morphology extending from the pole to 85°N planetocentric latitude, with a 4700 km radius. Images captured in the methane bands, which sense upper tropospheric haze, show an approximately circular hole in the haze extending up to 1.5° latitude away from the pole. The spiraling morphology and the "eye"-like hole at the center are reminiscent of a terrestrial tropical cyclone. In the System III reference frame (rotation period of 10h39m22.4s, Seidelmann et al. 2007; Archinal et al. 2011), the eastward wind speed increases to about 140 m s-1 at 89°N planetocentric latitude. The vorticity is (6.5± 1.5) × 10-4 s-1 at the pole, and decreases to (1.3± 1.2) × 10-4 s-1 at 89°N. In addition, we present an analysis of Saturn's south polar vortex using images captured in January 2007 to compare its cloud morphology to the north pole. The set of images captured in 2007 includes filters that have not been analyzed before. Images captured in the violet filter (400 nm) also reveal a bright polar cloud. The south polar morphology in 2007 was more smooth and lacked the small clouds apparent around the north pole in 2012. Saturn underwent equinox in August 2009. The 2007 observation captured the pre-equinox south pole, and the 2012 observation captured the post-equinox north pole. Thus, the observed differences between the poles are likely due to seasonal effects. If these differences indeed are caused by seasonal effects, continuing observations of the summer north pole by the Cassini mission should show a formation of a polar cloud that appears bright in short-wavelength filters.

  14. Occurrence of ozone laminae near the boundary of the stratospheric polar vortex

    SciTech Connect

    Reid, S.J.; Vaughan, G. ); Kyro, E. )

    1993-05-20

    The authors report on observations of laminae in ozone distributions observed at high northern latitudes near the polar vortex. Regions of enhanced and depleted ozone density are observed. Data from ozonesonde collections and lidar measurements during the Airborne Arctic Stratosphere Expedition (AASE) are analyzed, and compared with earlier work. The ozonesonde archives of the World Meteorological Organization are also examined in this analysis. The laminae are observed to distribute differently as a function of season, and with the potential temperature. Transport of ozone equatorward is also found with a class of these laminae.

  15. On the motion of air through the stratospheric polar vortex

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Zurek, R. W.; O'Neill, A.; Swinbank, R.

    1994-01-01

    Trajectory calculations using horizontal winds from the U.K. Meteorological Office data assimilation system and vertical velocities from a radiation calculation are used to simulate the three-dimensional motion of air through the stratospheric polar vortex for Northern Hemisphere (NH) and Southern Hemisphere (SH) winters since the launch of the Upper Atmosphere Research Satellite (UARS). Throughout the winter, air from the upper stratosphere moves poleward and descends into the middle stratosphere. In the SH lower to middle stratosphere, strongest descent occurs near the edge of the polar vortex, with that edge defined by mixing characteristics. The NH shows a similar pattern in late winter, but in early winter strongest descent is near the center of the vortex, except when wave activity is particularly strong. Strong barriers to latitudinal mixing exist above about 420 K throughout the winter. Below this, the polar night jet is weak in early winter, so air descending below that level mixes between polar and middle latitudes. In late winter, parcels descend less and the polar night jet moves downward, so there is less latitudinal mixing. The degree of mixing in the lower stratosphere thus depends strongly on the position and evolution of the polar night jet and on the amount of descent experienced by the air parcels; these characteristics show considerable interannual variability in both hemispheres. The computed trajectories provide a three-dimensional picture of air motion during the final warming. Large tongues of air are drawn off the vortex and stretched into increasingly long and narrow tongues extending into low latitudes. This vortex erosion process proceeds more rapidly in the NH than in he SH. In the lower stratosphere, the majority of air parcels remain confined within a lingering region of strong potential vorticity gradients into December in the SH and April in the NH, well after the vortex breaks up in the midstratosphere.

  16. On the Motion of Air through the Stratospheric Polar Vortex.

    NASA Astrophysics Data System (ADS)

    Manney, G. L.; Zurek, R. W.; O'Neill, A.; Swinbank, R.

    1994-10-01

    Trajectory calculations using horizontal winds from the U.K. Meteorological Office data assimilation system and vertical velocities from a radiation calculation are used to simulate the three-dimensional motion of air through the stratospheric polar vortex for Northern Hemisphere (NH) and Southern Hemisphere (SH) winters since the launch of the Upper Atmosphere Research Satellite. Throughout the winter, air from the upper stratosphere moves poleward and descends into the middle stratosphere. In the SH lower to middle stratosphere, strongest descent occurs near the edge of the polar vortex, with that edge defined by mixing characteristics. The NH shows a similar pattern in late winter, but in early winter strongest descent is near the center of the vortex, except when wave activity is particularly strong. Strong barriers to latitudinal mixing exist above about 420 K throughout the winter. Below this, the polar night jet is weak in early winter, so air descending below that level mixes between polar and middle latitudes. In late winter, parcels descend less and the polar night jet moves downward, so there is less latitudinal mixing. The degree of mixing in the lower stratosphere thus depends strongly on the position and evolution of the polar night jet and on the amount of descent experienced by the air parcels; these characteristics show considerable interannual variability in both hemispheres.The computed trajectories provide a three-dimensional picture of air motion during the final warming. Large tongues of air are drawn off the vortex and stretched into increasingly long and narrow tongues extending into low latitudes. This vortex erosion process proceeds more rapidly in the NH than in the SH. In the lower stratosphere, the majority of air parcels remain confined within a lingering region of strong potential vorticity gradients into December in the SH and April in the NH, well after the vortex breaks up in the midstratosphere.

  17. High Latitude Gravity Wave Forcing by the Disturbed Polar Vortex

    NASA Astrophysics Data System (ADS)

    Mehta, D.; Gerrard, A. J.; Ebihara, Y.; Weatherwax, A. T.

    2015-12-01

    We present mesopause gravity wave observations from 589-nm Na all-sky data taken by a multiwavelength all-sky imager located at South Pole, Antarctica. Focusing on gravity waves observed during the 2003 and 2004 austral winter seasons, we investigate possible sources of observed waves using linear gravity wave ray-tracing. By comparing wave ray paths with the structure of the polar vortex obtained from the ECMWF operational model, we show that a unique generator of gravity waves that then propagate into the high latitude mesospause is the disturbance of the polar vortex near 40-km altitude due to the formation of baroclinic instabilities.

  18. Interannual Variability of the North Polar Vortex in the Lower Stratosphere During the UARS Mission

    NASA Technical Reports Server (NTRS)

    Zurek, R. W.; Manney, G. L.; Miller, A. J.; Gelman, M. E.; Nagatani, R. M.

    1996-01-01

    Northern winters since the 1991 launch of UARS are compared to earlier years (1978 -1991) with respect to the potential for formation of Polar Stratospheric Clouds and for isolation of the north polar vortex. Daily NMC temperature minima at 465 K late in the winter of 1993-94 and again in December 1994 were the lowest values experienced during these times of the year (since 1978). Northern PV gradients were unusually strong in 1991-92 prior to late January and throughout the winter in both 1992-93 and 1994-95. Of all northern winters since 1978, 1994-95 with its early extended cold spell and persistently strong PV gradients most resembled the Antarctic winter lower stratosphere. Even so, temperatures was never as low, nor was the polar vortex as large, as during a typical southern winter. Judged by daily temperature minima and PV gradients at 465 K, meteorological conditions in the Arctic winter lower stratosphere during the UARS period were more conducive to vortex ozone loss by heterogeneous chemistry than in most previous winters since 1978-79.

  19. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    NASA Astrophysics Data System (ADS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles.

  20. Nighttime OClO in the Winter Arctic Vortex

    NASA Technical Reports Server (NTRS)

    Canty, T.; Riviere, E. D.; Salawitch, R. J.; Berthet, G.; Renard, J. -B.; Pfeilsticker, K.; Dorf, M.; Butz, A.; Bosch, H.; Stimpfle, R. M.; Wilmouth, D. M.; Richard, E. C.; Fahey, D. W.; Popp, P. J.; Schoeberl, M. R.; Lait, L. R.; Bui, T. P.

    2005-01-01

    We show that a nighttime profile of OClO in the Arctic vortex during the winter of 2000 is overestimated, by nearly a factor of 2, using an isentropic trajectory model constrained by observed profiles of ClOx (ClO + 2 X ClOOCl) and BrO. Calculated abundances of nighttime OClO are shown to be sensitive to the abundance of BrOx (BrO + BrCl), details of the air parcel history during the most recent sunrise/sunset transitions, and the BrCl yield from the reaction BrO + ClO. Many uncertainties are considered, and the discrepancy between measured and modeled nighttime OClO appears to be robust. This discrepancy suggests that production of OClO occurs more slowly than implied by standard photochemistry. If the yield of BrCl from the reaction of BrO + ClO is increased from 7% (JPL 2002 value) to 11% (near the upper limit of the uncertainty), good agreement is found between measured and modeled nighttime OClO. This study highlights the importance of accurate knowledge of BrO + ClO reaction kinetics as well as air parcel trajectories for proper interpretation of nighttime OClO. These factors have a considerably smaller impact on the interpretation of OClO observations obtained during twilight (90(deg) <=SZA <= 92(deg)), when photolytic processes are still active.

  1. Chemical ozone loss in Arctic and Antarctic polar vortices derived from SCIAMACHY limb-scattered solar radiation

    NASA Astrophysics Data System (ADS)

    Sonkaew, Thiranan; von Savigny, Christian; Eichmann, Kai-Uwe; Weber, Mark; Rozanov, Alexei; Bovensmann, Heinrich; Burrows, John P.

    Stratospheric ozone profiles are retrieved for the period 2002 -2009 from SCIAMACHY mea-surements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone loss in both placeArctic and Antarctic polar vortices using the vortex average method. The chemical ozone loss at the 450 -600 K isentropic levels is derived from the difference between observed ozone abundances and the ozone modeled considering diabatic cooling, but no chemical ozone loss. At the 475 K isentropic level, the results show accumulated chemical ozone losses of up to 20 -40% be-tween the beginning of January and the end of March inside the Arctic polar vortex. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing the largest chemical ozone losses. The Antarctic vortex averaged ozone loss does not vary much from year to year. The ozone losses of 70 -80% between mid-August and mid-November are observed every year inside the vortex, also in the anomalous year 2002. However, because the variations in the size of the polar vortex lead to inter-annual changes in total ozone mass loss, the polar vortex size is determined and the total mass of ozone chemically lost inside the polar vortex is estimated. Comparisons of the vertical variation of ozone loss derived from SCIAMACHY observations with several independent techniques for the northern hemisphere winter 2004/2005 show very good agreement.

  2. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  3. Venusian Polar Vortex reproduced by a general circulation model

    NASA Astrophysics Data System (ADS)

    Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro

    2016-10-01

    Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the mid-latitudes at cloud-top levels (~65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ~60 degree latitude, which is a unique feature called 'cold collar' in the Venus atmosphere [e.g. Taylor et al. 1980; Piccioni et al. 2007]. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. In addition, an axi-asymmetric feature is always seen in the warm polar vortex. It changes temporally and sometimes shows a hot polar dipole or S-shaped structure as shown by a lot of infrared measurements [e.g. Garate-Lopez et al. 2013; 2015]. However, its vertical structure has not been investigated. To solve these problems, we performed a numerical simulation of the Venus atmospheric circulation using a general circulation model named AFES for Venus [Sugimoto et al. 2014] and reproduced these puzzling features.And then, the reproduced structures of the atmosphere and the axi-asymmetirc feature are compared with some previous observational results.In addition, the quasi-periodical zonal-mean zonal wind fluctuation is also seen in the Venus polar vortex reproduced in our model. This might be able to explain some observational results [e.g. Luz et al. 2007] and implies that the polar vacillation might also occur in the Venus atmosphere, which is silimar to the Earth's polar atmosphere. We will also show some initial results about this point in this presentation.

  4. Titan's winter polar vortex structure revealed by chemical tracers

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.; de Kok, R.; Irwin, P. G. J.; Osprey, S.; Vinatier, S.; Gierasch, P. J.; Read, P. L.; Flasar, F. M.; Conrath, B. J.; Achterberg, R. K.; Bézard, B.; Nixon, C. A.; Calcutt, S. B.

    2008-12-01

    The winter polar vortex on Saturn's largest moon Titan has profound effects on atmospheric circulation and chemistry and for the current northern midwinter season is the major dynamical feature of Titan's stratosphere and mesosphere. We use 2 years of observations from Cassini's composite infrared spectrometer to determine cross sections of five independent chemical tracers (HCN, HC3N, C2H2, C3H4, and C4H2), which are then used to probe dynamical processes occurring within the vortex. Our results provide compelling evidence that the vortex acts as a strong mixing barrier in the stratosphere and mesosphere, effectively separating a tracer-enriched air mass in the north from air at lower latitudes. In the mesosphere, above the level of the vortex jet, a tracer-depleted zone extends away from the north pole toward the equator and enrichment is confined to high northern latitudes. However, below this level, mixing processes cause tongues of gas to extend away from the polar region toward the equator. These features are not reproduced by current general circulation models and suggest that a residual polar circulation is present and that waves and instabilities form a more important part of Titan's atmospheric dynamics than previously thought. We also observe an unexpected enrichment of C4H2 in the northern stratosphere, which suggests photochemical polymerization of C2H2. Our observations provide stringent new constraints for dynamical and photochemical models and identify key polar processes for the first time. Some of the processes we see have analogues in Earth's polar vortex, while others are unique to Titan.

  5. Climatology of the stratospheric polar vortex and planetary wave breaking

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Holton, James R.

    1988-01-01

    The distribution of Ertel's potential vorticity (PV) on the 850 K isentropic surface is used to establish a climatology for the transient evolution of the planetary scale circulation in the Northern Hemisphere winter midstratosphere. PV distributions are computed from gridded NMC daily temperature and height maps for the 10 and 30 mb levels, and show that a very good approximation for 850 K PV can be derived from 10 mb heights and temperatures alone. It is assumed that reversals of the latitudinal gradient of PV, localized in longitude and latitude may be regarded as signatures of planetary wave breaking. Wave breaking identified by such signatures tends to occur mainly in the vicinity of the Aleutian anticyclone, with a secondary maximum over Europe. The area of the polar vortex, defined as the area enclosed by PV contours greater than a certain critical value, is strongly influenced by wave breaking. Erosion of the polar vortex due to transport and mixing of PV leads to a preconditioned state, when defined in terms of vortex area, that always occurs prior to major stratospheric warmings. During winters with little PV transport or mixing, the vortex area evolves rather uniformly in response to radiative forcing. During winters with major sudden warmings, the wave breaking signature as defined here first appears at low values of PV, then rapidly moves toward higher values as the vortex area is reduced and the 'surf-zone' structure becomes well defined.

  6. Transport into the south polar vortex in early spring

    NASA Technical Reports Server (NTRS)

    Hartmann, D. L.; Heidt, L. E.; Loewenstein, M.; Podolske, J. R.; Vedder, J.

    1989-01-01

    The effect of transport on the springtime decline in ozone in the southern polar vortex was investiated using data on long-lived gas tracers (N2O, CH4, CCl4, CH3CCl3, CO, CFC-11, CFC-12, and CFC-113) obtained by the ER-2 aircraft in the period between August 23 and September 22 during the Airborne Antarctic Ozone Experiment. It was found that, while the concentrations of long-lived trace gases remained relatively constant for fixed potential temperature and latitude, the ozone mixing ratio over the same period declined by more than 50 percent inside the polar vortex near 18-km altitude. These data indicate a substantial photochemical sink of ozone. The evidence of the zero or negative time tendencies for long-lived trace gases and the meridional and vertical gradients of ozone imply that transport is supplying ozone to the polar region during springtime.

  7. Determination of the polarization states of an arbitrary polarized terahertz beam: Vectorial vortex analysis

    PubMed Central

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J. Scott; Otani, Yukitoshi

    2015-01-01

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1–1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams. PMID:25799965

  8. Titan's south polar stratospheric vortex evolution

    NASA Astrophysics Data System (ADS)

    Teanby, Nicholas A.; Vinatier, Sandrine; Sylvestre, Melody; de Kok, Remco; Nixon, Conor; Irwin, Patrick Gerard Joseph

    2016-10-01

    Titan experienced northern spring equinox in August 2009 when the south polar region was plunged into perpetual darkness. Following equinox, the south pole experienced the most extreme changes in stratospheric behaviour ever observed: the global stratospheric circulation cell reversed direction (Teanby et al 2012), HCN ice clouds (de Kok et al 2014) and other exotic condensates appeared over the south pole (Jennings et al 2015, West et al 2016), and significant composition and temperature changes occurred (Vinatier et al 2015, Teanby et al 2015, Coustenis et al 2016). Here we use Cassini CIRS limb and nadir observations from 2004-2016 to investigate the evolution of south polar stratospheric temperature and composition in the post-equinox period. Reversal following equinox was extremely rapid, taking less than 6 months (1/60th of a Titan year), which resulted in an initial adiabatic polar hot spot and increased trace gas abundances (Teanby et al 2012). However, rather than develop this trend further as winter progressed, Titan's polar hot spot subsequently disappeared, with the formation of a polar cold spot. Recently in late 2015 / early 2016 a more subdued hotspot began to return with associated extreme trace gas abundances. This talk will reveal the rapid and significant changes observed so far and discuss implications for possible polar feedback mechanisms and Titan's atmospheric dynamics.Coustenis et al (2016), Icarus, 270, 409-420.de Kok et al (2014), Nature, 514, 65-67.Jennings et al (2015), ApJL, 804, L34.Teanby et al (2012), Nature, 491, 732-735.Teanby et al (2015), DPS47, National Harbor, 205.02.Vinatier et al (2015), Icarus, 250, 95-115.West et al (2016), Icarus, 270, 399-408.

  9. Transport into the south polar vortex in early spring

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; Heidt, L. E.; Loewenstein, M.; Podolske, J.; Starr, Walter L.; Vedder, James F.

    1988-01-01

    Estimates of the mean circulation and diffusive transport of ozone and other species into the Antarctic polar vortex during the spring of 1987 are made using data from the Airborne Antarctic Ozone Experiment. Measurements of long-lived tracers of tropospheric origin remained relatively constant at the levels of the maximum rate of decline of ozone during September. At lower levels in the stratosphere some evidence exists to support intrusions of tropospheric or low latitude air. Given the distribution in latitude and height of these tracers measured from the ER-2 aircraft, it can be inferred that the Lagrangian or diabatic mean circulation was zero or downward over Antarctica during the period of the ozone decline. The observation of a decline in ozone therefore requires a photochemical sink for ozone. The magnitude of the required photochemical sink must be sufficient to offset the transport of ozone into the polar region and produce the observed decline. Quasi-isentropic mixing and downward motion are coupled and are difficult to estimate from a single tracer. The full suite of measured tracers and auxiliary information are brought together to provide an estimate of the rate at which air is cycled through the polar vortex during spring. Estimates of large scale transport of potential vorticity and ozone from previous years are generally consistent with the data from the airborne experiment in suggesting a relatively slow rate of mass flow through the polar vortex in the lower stratosphere during September.

  10. Airborne lidar observations in the wintertime Arctic stratosphere - Polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Carter, A. F.; Higdon, N. S.; Butler, C. F.; Robinette, P. A.; Toon, O. B.; Schoeberl, M. R.

    1990-01-01

    Polar stratospheric cloud (PSC) distributions in the wintertime Arctic stratosphere and their optical characteristics were measured with a multiwavelength airborne lidar system as part of the 1989 Airborne Arctic Stratospheric Expedition. PSCs were observed on 10 flights between January 6 and February 2, 1989, into the polar vortex. The PSCs were found in the 14-27 km altitude range in regions where the temperatures were less than 195 K. Two types of aerosols with different optical characteristics (Types 1a and 1b) were observed in PSCs thought to be composed of nitric acid trihydrate. Water ice PSCs (Type 2) were observed to have high scattering ratios (greater than 10) and high aerosol depolarizations (greater than 10 percent) at temperatures less than 190 K.

  11. How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?

    NASA Astrophysics Data System (ADS)

    Lubis, Sandro W.; Silverman, Vered; Matthes, Katja; Harnik, Nili; Omrani, Nour-Eddine; Wahl, Sebastian

    2017-02-01

    It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry-climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.

  12. Venusian Polar Vortex reproduced in an Atmospheric General Circulation Model

    NASA Astrophysics Data System (ADS)

    Ando, Hiroki; Imamura, Takeshi; Takagi, Masahiro; Sugimoto, Norihiko; Kashimura, Hiroki

    The Venus atmosphere has a polar vortex rotating in the retrograde direction with a period of about three days. The vortex has a warm feature surrounded by a cold collar (e.g., Taylor et al. 1980; Piccioni et al. 2006). Although the Venusian polar vortex has been reported by many observations, its mechanism is still unknown. Elson (1982, 1989) examined the structure of the polar vortex by linear calculations. However, the background zonal wind assumed in the calculations was much stronger or weaker than those retrieved in the previous measurements (e.g., Peralta et al. 2008; Kouyama et al. 2012). Lee et al. (2010) and Yamamoto and Takahashi (2012) performed numerical simulations with general circulation models (GCMs) of the Venus atmosphere and obtained vertical structure in the polar region. However, the models included artificial forcing of Kelvin and/or Rossby waves. We have developed a new Venusian GCM by modifying the Atmospheric GCM For the Earth Simulator (Sugimoto et al. 2012; 2013). The basic equations of the GCM are primitive ones in the sigma coordinate on a sphere without topography. The model resolution is T42 (i.e., about 2.8 deg x 2.8 deg grids) and L60 (Deltaz is about 2 km). Rayleigh friction (sponge layer) in the upper layer (>80 km) is applied to prevent the reflection of waves, whose effect increases gradually with height. In the model, the atmosphere is dry and forced by the solar heating and Newtonian cooling. The vertical profile of the solar heating is based on Crisp (1986), and zonally averaged distribution is used. In addition diurnal component of the solar heating, which excites the diurnal and semi-diurnal tides, is also included. Newtonian cooling relaxes the temperature to the zonally uniform basic temperature which has a virtual static stability of Venus with almost neutral layers, and its coefficient is based on Crisp (1986). To prevent numerical instability, the biharmonic hyper-diffusion is included with 0.8 days of e-folding time

  13. The tropospheric-stratospheric polar vortex breakdown of January 1977

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.

    1977-01-01

    An extraordinary warming of the stratosphere in December-January 1976-77 was followed by tropospheric warming in the polar region and cooling in middle latitudes. During January 10-20, the associated polar anticyclone extended from the surface to 10 mb. Antecedents of the polar vortex breakdown are reviewed with the aid of results of zonal-harmonic analyses of planetary waves, for heights of the pressure surfaces (700-10 mb), temperature, and mean stratospheric temperature (the latter determined from satellite radiation measurements). Wave 1 in height and temperature played a dominant role in the stratosphere, attaining amplitudes of 1600 gpm and 25 C, respectively, at 10 mb. On the other hand, superposition of retrogressing wave 1 and quasi-stationary wave 2 in the height of the 300-mb surface, with individual amplitudes exceeding 300 gpm, is judged to have been an important factor in the overall development.

  14. Wintertime Polar Ozone Evolution during Stratospheric Vortex Break-Down

    NASA Astrophysics Data System (ADS)

    Tweedy, O.; Limpasuvan, V.; Smith, A. K.; Richter, J. H.; Orsolini, Y.; Stordal, F.; Kvissel, O.

    2011-12-01

    Stratospheric Sudden Warming (SSW) is characterized by the rapid warming of the winter polar stratosphere and the weakening of the circumpolar flow. During the onset of a major SSW (when the circumpolar flow reverses direction), the warm stratopause layer (SL) descends from its climatological position to the mid-stratosphere level. As the vortex recovers from SSW, a "new" SL forms in the mid-mesosphere region before returning to its typical level. This SL discontinuity appears in conjunction with enhanced downward intrusion of chemical species from the lower thermosphere/upper mesosphere to the stratosphere. The descended species can potentially impact polar ozone. In this study, the NCAR's Whole Atmosphere Community Climate Model (WACCM) is used to investigate the behavior of polar ozone related to major SSWs. Specifically, dynamical evolution and chemistry of NOx, CO, and O3 are examined during three realistic major SSWs and compared with a non-SSW winter season. The simulated (zonal-mean) polar ozone distribution exhibits a "primary" maximum near 40 km, a "secondary" maximum between 90-105 km, and a "tertiary" maximum near 70 km. The concentration of the secondary maximum reduces by ~1.5 parts per million by volume (ppmv) as the vortex recovers and the upper mesospheric polar easterlies return. Enhanced downwelling above the newly formed SL extends up to just above this secondary maximum (~110 km). With an averaged concentration of 2 ppmv, the tertiary ozone maximum layer displaces upward with enhanced upwelling during SSW in conjunction with the lower mesospheric cooling. The downward propagation of the stratospheric wind reversal is accompanied by CO intrusion toward the lowermost stratosphere and anomalous behavior in the primary ozone maximum. Overall, the major SSW, SL, and polar ozone evolution mimic recently reported satellite observations.

  15. Polarization radiation of vortex electrons with large orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Ivanov, Igor P.; Karlovets, Dmitry V.

    2013-10-01

    Vortex electrons—freely propagating electrons whose wave functions have helical wave fronts—could become a novel tool in the physics of electromagnetic radiation. They carry a nonzero intrinsic orbital angular momentum (OAM) ℓ with respect to the propagation axis and, for ℓ≫1, a large OAM-induced magnetic moment μ≈ℓμB (μB is the Bohr magneton), which influences the radiation of electromagnetic waves. Here, we consider in detail the OAM-induced effects caused by such electrons in two forms of polarization radiation, namely, in Cherenkov radiation and transition radiation. Thanks to the large ℓ, we can neglect quantum or spin-induced effects, which are of the order of ℏω/Ee≪1, but retain the magnetic moment contribution ℓℏω/Ee≲1, which makes the quasiclassical approach to polarization radiation applicable. We discuss the magnetic moment contribution to polarization radiation, which has never been experimentally observed, and study how its visibility depends on the kinematical parameters and the medium permittivity. In particular, it is shown that this contribution can, in principle, be detected in azimuthally nonsymmetrical problems, for example when vortex electrons obliquely cross a metallic screen (transition radiation) or move near it (diffraction radiation). We predict a left-right angular asymmetry of the transition radiation (in the plane where the charge radiation distributions would stay symmetric), which appears due to an effective interference between the charge radiation field and the magnetic moment contribution. Numerical values of this asymmetry for vortex electrons with Ee=300 keV and ℓ=100-1000 are 0.1%-1%, and we argue that this effect could be detected with existing technology. The finite conductivity of the target and frequency dispersion play crucial roles in these predictions.

  16. Polarity-Dependent Vortex Pinning and Spontaneous Vortex-Antivortex Structures in Superconductor/Ferromagnet Hybrids

    NASA Astrophysics Data System (ADS)

    Bending, Simon J.; Milošević, Milorad V.; Moshchalkov, Victor V.

    Hybrid structures composed of superconducting films that are magnetically coupled to arrays of nanoscale ferromagnetic dots have attracted enormous interest in recent years. Broadly speaking, such systems fall into one of two distinct regimes. Ferromagnetic dots with weak moments pin free vortices, leading to enhanced superconducting critical currents, particularly when the conditions for commensurability are satisfied. Dots with strong moments spontaneously generate one or more vortex-antivortex (V-AV) pairs which lead to a rich variety of pinning, anti-pinning and annihilation phenomena. We describe high resolution Hall probe microscopy of flux structures in various hybrid samples composed of superconducting Pb films deposited on arrays of ferromagnetic Co or Co/Pt dots with both weak and strong moments. We show directly that dots with very weak perpendicular magnetic moments do not induce vortex-antivortex pairs, but still act as strong polarity-dependent vortex pinning centres for free vortices. In contrast, we have directly observed spontaneous V-AV pairs induced by large moment dots with both in-plane and perpendicular magnetic anisotropy, and studied the rich physical phenomena that arise when they interact with added "free" (anti)fluxons in an applied magnetic field. The interpretation of our imaging results is supported by bulk magnetometry measurements and state-of-the-art Ginzburg-Landau and London theory calculations.

  17. The structure and maintenance of tropopause polar vortices over the Arctic

    NASA Astrophysics Data System (ADS)

    Cavallo, Steven M.

    2009-12-01

    Tropopause polar vortices (TPVs) are coherent vortices based the tropopause in polar regions, where they are isolated from the wind shear associated with the midlatitude jet stream. Cyclonic TPVs are a common feature of the Arctic, have radii up to 1500 km, and can have lifetimes of over one month. The Arctic is a particularly favorable region for these features due to the isolation from the jet stream, an environment conducive for vortex longevity. Further, TPVs can have an impact on surface weather since they provide more favorable conditions for surface cyclogenesis. The intensification of cyclonic TPVs is examined using an Ertel Potential Vorticity (EPV) framework to test the hypothesis that diabatic effects are able to intensify the vortices due to a dominance of radiative cooling within the vortices that can be seen in high latitudes. This thesis first generalizes the diabatic intensification mechanisms by applying the EPV framework methods to a large sample of cyclones in the Canadian Arctic, and shows that there is a net tendency to create EPV in the vortex, and hence intensify cyclones from radiative processes. While the effects of latent heating are considerable, they are smaller in magnitude. The physical mechanisms leading to these observations are then examined in idealized numerical experiments, where it is shown that longwave radiative cooling is the most important mechanism for intensification. Dry air from the downward intrusion of stratospheric air in the vortex strengthens the vertical gradient of water vapor near the tropopause, and weakens the vertical gradient of water vapor in the lower stratosphere. This results in relatively high radiative cooling near the tropopause, and relatively low radiative cooling in the lower stratosphere with respect to the background environment in the vortex core, enhancing EPV generation in the vortex core. The impact of radiative processes to the climatology of cyclonic TPVs is then examined by comparing a

  18. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems.

    PubMed

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-08-04

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization.

  19. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems

    NASA Astrophysics Data System (ADS)

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-08-01

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization.

  20. Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Pitts, M. C.; Voelger, P.; Achtert, P.; Kaphlanov, M.; Murtagh, D.; Fricke, K.-H.

    2011-04-01

    The sedimentation of HNO3 containing Polar Stratospheric Cloud (PSC) particles leads to a permanent removal of HNO3 and thus to a denitrification of the stratosphere, an effect which plays an important role in stratospheric ozone depletion. The polar vortex in the Arctic winter 2009/2010 was very cold and stable between end of December and end of January. Strong denitrification was observed in the Arctic in mid of January by the Odin Sub Millimetre Radiometer (Odin/SMR) which was the strongest denitrification that had been observed in the entire Odin/SMR measuring period (2001-2010). Lidar measurements of PSCs were performed in the area of Kiruna, Northern Sweden with the IRF (Institutet för Rymdfysik) lidar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kiruna during the entire period of observations. The formation of PSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulations are performed along air parcel trajectories calculated six days backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperature history of the trajectories and the box model simulations we find two PSC regions, one over Kiruna according to the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model simulations along backward trajectories together with the observations of Odin/SMR, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and the ground-based lidar we investigate how and by which type of PSC particles the denitrification that was observed during the Arctic winter 2009/2010 was caused. From our analysis we find that due to an unusually strong synoptic cooling event in mid January, ice particle formation on NAT may be a possible mechanism that caused denitrification during the Arctic winter 2009/2010.

  1. Optical backscatter characteristics of Arctic polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Schaffner, S. K.; Poole, L. R.; Mccormick, M. P.; Hunt, W. H.

    1990-01-01

    Airborne lidar measurements have been made of polar stratospheric clouds (PSCs) during the Airborne Arctic Stratospheric Expedition in January-February 1989. These show the existence of a systematic relationship between the backscatter depolarization ratio and the (aerosol + molecular)/molecular backscatter ratio. The data are consistent with a two population PSC particle model.

  2. Visualization of stratospheric ozone depletion and the polar vortex

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.

    1995-01-01

    Direct analysis of spacecraft observations of stratospheric ozone yields information about the morphology of annual austral depletion. Visual correlation of ozone with other atmospheric data illustrates the diurnal dynamics of the polar vortex and contributions from the upper troposphere, including the formation and breakup of the depletion region each spring. These data require care in their presentation to minimize the introduction of visualization artifacts that are erroneously interpreted as data features. Non geographically registered data of differing mesh structures can be visually correlated via cartographic warping of base geometries without interpolation. Because this approach is independent of the realization technique, it provides a framework for experimenting with many visualization strategies. This methodology preserves the fidelity of the original data sets in a coordinate system suitable for three-dimensional, dynamic examination of atmospheric phenomena.

  3. Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams.

    PubMed

    Bliokh, Konstantin Y; Shadrivov, Ilya V; Kivshar, Yuri S

    2009-02-01

    We study, analytically and numerically, reflection and transmission of an arbitrarily polarized vortex beam on an interface separating two dielectric media and derive general expressions for linear and angular Goos-Hänchen (GH) and Imbert-Fedorov shifts. We predict a novel vortex-induced GH shift and also reveal a direct connection between the spin-induced angular shifts and the vortex-induced linear shifts.

  4. Pipeline under the arctic ice: the Polar Gas Project

    SciTech Connect

    Kaustinen, O.M.

    1982-06-01

    The Polar Gas Project was established in 1972 to determine the best means of moving frontier natural gas from Canada's high arctic to southern markets. Pipeline was found to be most feasible. Several pipeline routings from two major supply areas--the MacKenzie Delta/Beaufort Sea region, and the Sverdrup Basin of the Arctic Islands--have been considered. Field programs to determine the type and ice content of soils along the route have been undertaken. The most challenging engineering aspect will be two marine crossings in arctic waters at either end of Victoria Island, at Dolphin and Union Strait, and at McClure's strait. The ''Ice Hole Bottom Pull'' technique has been recommended, and is illustrated in detail. The planned pipeline demonstration would significantly enhance the current state-of-the-art for deepwater pipelining worldwide.

  5. Polarization evolution of radially polarized partially coherent vortex fields: role of Gouy phase of Laguerre-Gauss beams.

    PubMed

    Martínez-Herrero, R; Prado, F

    2015-02-23

    In the framework of the paraxial approximation, we derive the analytical expressions for describing the effect of the Gouy phase of Laguerre-Gauss beams on the polarization evolution of partially coherent vortex fields whose electric field vector at some transverse plane exhibits a radially polarized behavior. At each transverse plane, the polarization distribution across the beam profile is characterized by means of the percentage of irradiance associated with the radial or azimuthal components. The propagation laws for these percentages are also presented. As an illustrative example, we analyze a radially polarized partially coherent vortex beam.

  6. Bioluminescence as an ecological factor during high Arctic polar night

    PubMed Central

    Cronin, Heather A.; Cohen, Jonathan H.; Berge, Jørgen; Johnsen, Geir; Moline, Mark A.

    2016-01-01

    Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20–40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night. PMID:27805028

  7. Bioluminescence as an ecological factor during high Arctic polar night.

    PubMed

    Cronin, Heather A; Cohen, Jonathan H; Berge, Jørgen; Johnsen, Geir; Moline, Mark A

    2016-11-02

    Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20-40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night.

  8. Bioluminescence as an ecological factor during high Arctic polar night

    NASA Astrophysics Data System (ADS)

    Cronin, Heather A.; Cohen, Jonathan H.; Berge, Jørgen; Johnsen, Geir; Moline, Mark A.

    2016-11-01

    Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20–40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night.

  9. Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Toohey, D. W.; Avallone, L. M.; Anderson, J. G.; Newman, P.; Lait, L.; Schoeberl, M. R.; Elkins, J. W.; Chan, K. R.

    1993-01-01

    Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses of up to 1 ppbv, which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 -/+ 4 kelvin. High ClO was always accompanied by loss of HCl mixing ratios equal to 1/2(ClO+ 2Cl2O2). These data indicate that the heterogeneous reaction HCl + ClONO2 - Cl2 + HNO3 on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO2, not HCl.

  10. The Distribution of Ozone in the Early Stages of Polar Vortex Development

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Bevilacqua, R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season, 1999-2000 has a characteristic distribution, which is consistent between in situ and satellite measurements [Kawa et al., The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex, submitted manuscript, 2001 ]. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx.10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of POAM data shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer in September before the vortex circulation sets up. This suggests a possible feedback role between O3 chemistry and the formation of the vortex, which is dominated by the seasonal radiation balance. Here we show that these characteristic O3 distributions are consistent from year to year and between the hemispheres. We will attempt to determine whether variations in fall vortex O3 are related in any way to O3 abundances and vortex structure later during winter and into spring.

  11. Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.

    2001-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.

  12. Tracer-based Determination of Vortex Descent in the 1999/2000 Arctic Winter

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffrey B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Chrisotopher R.

    2002-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999/2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for 26 November 1999, whose error bars encompassed the observed variability. High-latitude extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences we inferred descent prior to 26 November: as much as 397 plus or minus 15 K (lsigma) at 30 ppbv N2O and 640 ppbv CH4, and falling to 28 plus or minus 13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from 26 November through 12 March, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between 26 November and 27 January: 0.82 plus or minus 0.20 K/day averaged over 50- 250 ppbv N2O. By late winter (26 February to 12 March), the average rate had decreased to 0.10 plus or minus 0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (26 November to 5 March) descent rate varied from 0.75 plus or minus 0.10 K/day at 50 ppbv to 0.40 plus or minus 0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999/2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very

  13. The 2015-2016 Arctic winter: Perspectives on extremes in polar processing and meteorological variability from the 12-year record of Aura Microwave Limb Sounder measurements

    NASA Astrophysics Data System (ADS)

    Santee, Michelle; Manney, Gloria; Lambert, Alyn; Livesey, Nathaniel; Lawrence, Zachary

    2016-04-01

    In the last decade, the Arctic lower stratosphere has seen some of the most dynamically disturbed winters, with stratospheric sudden warmings that curtailed polar processing early in the season and limited chemical ozone loss, as well as several winters marked by exceptionally cold conditions and severe chemical ozone loss. The occurrence in recent winters of different combinations of extreme meteorological conditions, and their impact on polar chemical processes, has underscored the Arctic stratosphere's sensitivity to a spectrum of dynamical variability. Launched as part of NASA's Aura satellite in July 2004, the Microwave Limb Sounder (MLS) provides an extensive suite of measurements enabling quantification of polar processing and chemical ozone loss. Here we use MLS observations in conjunction with meteorological analyses in a comprehensive analysis of the Arctic winter of 2015-2016. An unusually large volume of low temperatures in the early winter led to strong depletion in gas-phase HNO3 and H2O associated with polar stratospheric cloud formation. As a consequence of this early-winter processing and an elongated vortex with significant portions exposed to sunlight, substantial chlorine activation (enhanced abundances of ClO, depressed abundances of HCl) was evident far earlier than is typical in Arctic winter. The degree of polar processing and chemical ozone loss in this winter will be placed in the context of the previous 11 Arctic winters observed by Aura MLS.

  14. Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Seviour, William J. M.; Gray, Lesley J.; Mitchell, Daniel M.

    2016-02-01

    Sudden stratospheric warming (SSW) events can occur as either a split or a displacement of the stratospheric polar vortex. Recent observational studies have come to different conclusions about the relative impacts of these two types of SSW upon surface climate. A clearer understanding of their tropospheric impact would be beneficial for medium-range weather forecasts and could improve understanding of the physical mechanism for stratosphere-troposphere coupling. Here we perform the first multimodel comparison of stratospheric polar vortex splits and displacements, analyzing 13 stratosphere-resolving models from the fifth Coupled Model Intercomparison Project (CMIP5) ensemble. We find a wide range of biases among models in both the mean state of the vortex and the frequency of vortex splits and displacements, although these biases are closely related. Consistent with observational results, almost all models show vortex splits to occur barotropically throughout the depth of the stratosphere, while vortex displacements are more baroclinic. Vortex splits show a slightly stronger North Atlantic surface signal in the month following onset. However, the most significant difference in the surface response is that vortex displacements show stronger negative pressure anomalies over Siberia. This region is shown to be colocated with differences in tropopause height, suggestive of a localized response to lower stratospheric potential vorticity anomalies.

  15. Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1993-01-01

    Winds derived from analyzed geopotential height fields are used to study quasi-horizontal mixing by the large-scale flow in the lower stratosphere during austral spring. This is the period when the Antarctic ozone hole appears and disappears. Trajectories are computed for large ensembles of particles initially inside and outside the main polar vortex. Mixing and transport are diagnosed through estimates of finite time Lyapunov exponents and Lagrangian dispersion statistics of the tracer trajectories. At 450 K and above prior to the vortex breakdown: Lyapunov exponents are a factor of 2 smaller inside the vortex than outside; diffusion coefficients are an order of magnitude smaller inside than outside the vortex; and the trajectories reveal little exchange of air across the vortex boundary. At lower levels (425 and 400 K) mixing is greater, and there is substantial exchange of air across the vortex boundary. In some years there are large wave events that expel small amounts of vortex air into the mid-latitudes. At the end of the spring season during the vortex breakdown there is rapid mixing of air across the vortex boundary, which is evident in the mixing diagnostics and the tracer trajectories.

  16. Lidar measurements of polar stratospheric clouds during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Browell, Edward V.

    1991-01-01

    The Airborne Arctic Stratospheric Expedition (AASE) was conducted during January to February 1989 from the Sola Air Station, Norway. As part of this expedition, the NASA Langley Research Center's multiwavelength airborne lidar system was flown on the NASA Ames Research Center's DC-8 aircraft to measure ozone (O3) and aerosol profiles in the region of the polar vortex. The lidar system simultaneously transmitted laser beams at 1064, 603, 311, and 301.5 nm to measure atmospheric scattering, polarization and O3 profiles. Long range flights were made between Stavanger, Norway, and the North Pole, and between 40 deg W and 20 deg E meridians. Eleven flights were made, each flight lasting an average of 10 hours covering about 8000 km. Atmospheric scattering ratios, aerosol polarizations, and aerosol scattering ratio wavelength dependences were derived from the lidar measurements to altitudes above 27 km. The details of the aerosol scattering properties of lidar observations in the IR, VIS, and UV regions are presented along with correlations with the national meteorological Center's temperature profiles.

  17. Polar Vortex Takes Aim At U.S.

    MedlinePlus

    ... vortex is expected to bring extreme cold and winds to the central and eastern United States this ... being warned to guard against frostbite and hypothermia. Wind chills could fall to 30 to 40 degrees ...

  18. Microbial Communities in a High Arctic Polar Desert Landscape

    PubMed Central

    McCann, Clare M.; Wade, Matthew J.; Gray, Neil D.; Roberts, Jennifer A.; Hubert, Casey R. J.; Graham, David W.

    2016-01-01

    The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices. PMID:27065980

  19. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation

    PubMed Central

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-01-01

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system. PMID:26024434

  20. In-Situ Measurements of Changes in Stratospheric Aerosol and the N2O - Aerosol Relationship inside and outside of the Polar Vortex

    NASA Technical Reports Server (NTRS)

    Borrmann, S.; Dye, J. E.; Baumgardner, D.; Wilson, J. C.; Jonsson, H. H.; Brock, C. A.; Loewenstein, M.; Podolske, J. R.; Ferry, G. V.; Barr, K. S.

    1993-01-01

    Two optical particle counters on the ER-2, together covering a particle size diameter range from 0.1 micrometers to 23 micrometers, were used to measure the aerosol bulk quantities integral number, aerosol surface and volume, as well as detailed size distributions inside and outside of the polar vortex in the lower stratosphere. While AASE I (Arctic Airborne Stratospheric Expedition, (Dec. 1988 - Feb. 1989) was conducted in a period of relative volcanic quiescence, enhancements in aerosol number, surface and volume of factors around 10, 25 and 100 were observed during AASE II (Aug. 1991 - Mar. 1992) due to the eruption of Mt. Pinatubo. The changes in these bulk quantities as well as in the size distributions measured both outside and inside the the polar vortex are presented and compared with those obtained in polar stratospheric cloud events (AASE I). Except for a shift towards larger aerosol mixing ratios the general shape of correlograms between the measured N2O and particle mixing ratios remain similar before and after the eruption. Similar correlograms are used to interpret data from vertical profiles inside and outside of the polar vortex.

  1. In-situ measurements of changes in stratospheric aerosol and the N2O-aerosol relationship inside and outside of the polar vortex

    NASA Technical Reports Server (NTRS)

    Borrmann, S.; Dye, J. E.; Baumgardner, D.; Wilson, J. C.; Jonsson, H. H.; Brock, C. A.; Loewenstein, M.; Podolske, J. R.; Ferry, G. V.; Barr, K. S.

    1993-01-01

    Two optical particle counters on the ER-2, together covering a particle size diameter range from 0.1 microns to 23 microns, were used to measure the aerosol bulk quantities integral number, aerosol surface and volume, as well as detailed size distributions inside and outside of the polar vortex in the lower stratosphere. While AAES I (Arctic Airborne Stratospheric Expedition, (Dec. 88 - Feb. 89) was conducted in a period of relative volcanic quiescence, enhancements in aerosol number, surface and volume of factors around 10, 25 and 100 were observed during AASE 2 (Aug. 91 - Mar. 92) due to the eruption of Mt. Pinatubo. The changes in these bulk quantities as well as in the size distributions measured both outside and inside the polar vortex are presented and compared with those obtained in polar stratospheric cloud events (AASE I). Except for a shift towards larger aerosol mixing ratios the general shape of correlograms between the measured N2O and particle mixing ratios remain similar before and after the eruption. Similar correlograms are used to interpret data from vertical profiles inside and outside of the polar vortex.

  2. Assessment of the Breakup of the Antarctic Polar Vortex in Two New Chemistry-Climate Models

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Newman, P. A.; Oman, L. D.; Li, F.; Morgenstern, O.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Successful simulation of the breakup of the Antarctic polar vortex depends on the representation of tropospheric stationary waves at Southern Hemisphere middle latitudes. This paper assesses the vortex breakup in two new chemistry-climate models (CCMs). The stratospheric version of the UK Chemistry and Aerosols model is able to reproduce the observed timing of the vortex breakup. Version 2 of the Goddard Earth Observing System (GEOS V2) model is typical of CCMs in that the Antarctic polar vortex breaks up too late; at 10 hPa, the mean transition to easterlies at 60 S is delayed by 12-13 days as compared with the ERA-40 and National Centers for Environmental Prediction reanalyses. The two models' skill in simulating planetary wave driving during the October-November period accounts for differences in their simulation of the vortex breakup, with GEOS V2 unable to simulate the magnitude and tilt of geopotential height anomalies in the troposphere and thus underestimating the wave driving. In the GEOS V2 CCM the delayed breakup of the Antarctic vortex biases polar temperatures and trace gas distributions in the upper stratosphere in November and December.

  3. Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Pitts, M. C.; Voelger, P.; Achtert, P.; Kaphlanov, M.; Santee, M. L.; Manney, G. L.; Murtagh, D.; Fricke, K.-H.

    2011-08-01

    The sedimentation of HNO3 containing Polar Stratospheric Cloud (PSC) particles leads to a permanent removal of HNO3 and thus to a denitrification of the stratosphere, an effect which plays an important role in stratospheric ozone depletion. The polar vortex in the Arctic winter 2009/2010 was very cold and stable between end of December and end of January. Strong denitrification between 475 to 525 K was observed in the Arctic in mid of January by the Odin Sub Millimetre Radiometer (Odin/SMR). This was the strongest denitrification that had been observed in the entire Odin/SMR measuring period (2001-2010). Lidar measurements of PSCs were performed in the area of Kiruna, Northern Sweden with the IRF (Institutet för Rymdfysik) lidar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kiruna during the entire period of observations. The formation of PSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulations are performed along air parcel trajectories calculated six days backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperature history of the backward trajectories and the box model simulations we find two PSC regions, one over Kiruna according to the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model simulations along backward trajectories together with the observations of Odin/SMR, Aura/MLS (Microwave Limb Sounder), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and the ground-based lidar we investigate how and by which type of PSC particles the denitrification that was observed during the Arctic winter 2009/2010 was caused. From our analysis we find that due to an unusually strong synoptic cooling event in mid January, ice particle formation on NAT may be a possible formation mechanism during

  4. Barotropic simulation of large-scale mixing in the Antarctic polar vortex

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1993-01-01

    Theory and observations suggest that the Antarctic polar vortex is relatively isolated from midlatitudes, although others have interpreted the observations to indicate that there is substantial mixing from the interior of the vortex into middle latitudes. The equivalent barotropic model of Salby et al. is used to study quasi-horizontal mixing by the large-scale flow in the lower stratosphere during Southern Hemisphere spring, which is when the Antarctic ozone hole appears and disappears. The model is forced by relaxation to observed climatological monthly mean zonal-mean winds and by an idealized wave 1 or 2 forcing at the lower boundary. Mixing and transport are diagnosed primarily through Lagrangian tracer trajectories. For September, October, and November basic states, there is little or no mixing in the interior of the vortex. Mixing occurs near the critical lines for the waves: in the tropics and subtropics for a stationary wave 1, and in midlatitudes on the equatorial flank of the jet for an eastward-moving wave 2. For the December basic state, the wave 2 forcing rapidly mixes the interior of the vortex. Mixing of Lagrangian tracer particles can be significant even when the waves do not `break', as evidenced by the potential vorticity field. In the model there does not appear to be any significant transport of air out of the interior of the polar vortex prior to the vortex breakdown. The principal factor that leads to the vortex breakdown and mixing of the vortex interior is the deceleration of the jet to the point where winds in the interior of the vortex are close to the phase velocity of the wavenumber 2 forcing. The tracer transport is very similar to many aspects of the behavior of the total ozone field during the spring season.

  5. Intra-seasonal variability of extreme boreal stratospheric polar vortex events and their precursors

    NASA Astrophysics Data System (ADS)

    Díaz-Durán, Adelaida; Serrano, Encarna; Ayarzagüena, Blanca; Abalos, Marta; de la Cámara, Alvaro

    2017-01-01

    The dynamical variability of the boreal stratospheric polar vortex has been usually analysed considering the extended winter as a whole or only focusing on December, January and February. Yet recent studies have found intra-seasonal differences in the boreal stratospheric dynamics. In this study, the intra-seasonal variability of anomalous wave activity preceding polar vortex extremes in the Northern Hemisphere is examined using ERA-Interim reanalysis data. Weak (WPV) and strong (SPV) polar vortex events are grouped into early, mid- or late winter sub-periods depending on the onset date. Overall, the strongest (weakest) wave-activity anomalies preceding polar vortex extremes are found in mid- (early) winter. Most of WPV (SPV) events in early winter occur under the influence of east (west) phase of the Quasi-Biennial Oscillation (QBO) and an enhancement (inhibition) of wavenumber-1 wave activity (WN1). Mid- and late winter WPV events are preceded by a strong vortex and an enhancement of WN1 and WN2, but the spatial structure of the anomalous wave activity and the phase of the QBO are different. Prior to mid-winter WPVs the enhancement of WN2 is related to the predominance of La Niña and linked to blockings over Siberia. Mid-winter SPV events show a negative phase of the Pacific-North America pattern that inhibits WN1 injected into the stratosphere. This study suggests that dynamical features preceding extreme polar vortex events in mid-winter should not be generalized to other winter sub-periods.

  6. EOS Microwave Limb Sounder Observations of the Antarctic Polar Vortex Breakup in 2004

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Santee, M. L.; Livesey, N. J.; Froidevaux, L.; Read, W. G.; Pumphrey, H. C.; Waters, J. W.; Pawson, S.

    2005-01-01

    Observations from the Microwave Limb Sounder (MLS) on NASA's new Aura satellite give an unprecedentedly detailed picture of the spring Antarctic polar vortex breakup throughout the stratosphere. HCl is a particularly valuable tracer in the lower stratosphere after chlorine deactivation. MLS HCl, N2O, H2O broke up in the upper stratosphere by early October, in the midstratosphere by early November, and in the lower stratosphere by late December. The subvortex broke up just a few days later than the lower stratospheric vortex. Vortex remnants persisted in the midstratosphere through December, but only through early January 2005 in the lower stratosphere. MLS N2O observations show diabatic descent continuing throughout November, with evidence of weak ascent after late October in the lower stratospheric vortex core.

  7. OMAE 1996 -- Proceedings of the 15. international conference on offshore mechanics and arctic engineering. Volume 4: Arctic/polar technology

    SciTech Connect

    Nixon, W.A.; Sodhi, D.S.; Kennedy, K.P.; Bugno, W.

    1996-12-01

    Volume 4 contains papers on the following topics: arctic/polar technology and development; ice properties; ice engineering; applied ice mechanics; ice-structure interaction; arctic structures and operations; frozen soil properties; and Russian Arctic development. In addition to the regular topics covered in OMAE conferences, there has been a special workshop as part of this year`s conference. In keeping with issues of current interest, there is a workshop on development of oil resources in the Russian Arctic. Over two days, papers dealing with development of oil and gas resources in the Russian Arctic are presented. Volume 4 contains papers from this workshop. Some of the papers have been processed separately for inclusion on the data base.

  8. Aircraft deployment, and airborne arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Condon, Estelle; Tuck, Adrian; Hipskind, Steve; Toon, Brian; Wegener, Steve

    1990-01-01

    The Airborne Arctic Stratospheric Expedition had two primary objectives: to study the production and loss mechanisms of ozone in the north polar stratosphere and to study the effect on ozone distribution of the Arctic Polar Vortex and of the cold temperatures associated with the formation of Polar Stratospheric Clouds. Two specially instrumented NASA aircraft were flown over the Arctic region. Each aircraft flew to acquire data on the meteorological, chemical and cloud physical phenomena that occur in the polar stratosphere during winter. The chemical processes which occur in the polar stratosphere during winter were also observed and studied. The data acquired are being analyzed.

  9. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  10. Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current

    PubMed Central

    2014-01-01

    We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed. PMID:25147490

  11. Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current.

    PubMed

    Guslienko, Konstantin Y; Sukhostavets, Oksana V; Berkov, Dmitry V

    2014-01-01

    We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.

  12. The January 30, 1989 Arctic polar stratospheric clouds (PSC) event - Evidence for a mechanism of dehydration

    NASA Technical Reports Server (NTRS)

    Gandrud, B. W.; Dye, J. E.; Baumgardner, D.; Ferry, G. V.; Loewenstein, M.; Chan, K. R.; Sanford, L.; Gary, B.

    1990-01-01

    In-situ particle measurements made aboard the NASA ER-2 in the Arctic on 890130 (YYMMDD) show Type 1 PSC particles over much of the flight, with instances of embedded Type 2 PSCs. The Type 2 particles were observed at temperatures warmer than the local frost-point temperature of water; extended up to the upper size cutoff of the instrument (about 24-micron diameter); and are shown to contain too large a volume to be primarily NAT. Based on measured vertical temperature profiles, it is concluded that the Type 2 particles observed on this day were formed above the aircraft in a region where saturation with respect to ice was achieved and were sufficiently large to have fallen into the path of the ER-2. Although the amount of material in the particles, expressed as water, is small by comparison to the total (vapor + aerosol) water concentration, the flux of water from the falling particles is of sufficient magnitude, if sustained, to lead to dehydration of the source region. These observations verify the mechanism for dehydration of polar vortex air masses by precipitation of ice particles.

  13. The January 30, 1989 Arctic polar stratospheric clouds (PSC) event - Evidence for a mechanism of dehydration

    NASA Astrophysics Data System (ADS)

    Gandrud, B. W.; Dye, J. E.; Baumgardner, D.; Ferry, G. V.; Loewenstein, M.; Chan, K. R.; Sanford, L.; Gary, B.

    1990-03-01

    In-situ particle measurements made aboard the NASA ER-2 in the Arctic on 890130 (YYMMDD) show Type 1 PSC particles over much of the flight, with instances of embedded Type 2 PSCs. The Type 2 particles were observed at temperatures warmer than the local frost-point temperature of water; extended up to the upper size cutoff of the instrument (about 24-micron diameter); and are shown to contain too large a volume to be primarily NAT. Based on measured vertical temperature profiles, it is concluded that the Type 2 particles observed on this day were formed above the aircraft in a region where saturation with respect to ice was achieved and were sufficiently large to have fallen into the path of the ER-2. Although the amount of material in the particles, expressed as water, is small by comparison to the total (vapor + aerosol) water concentration, the flux of water from the falling particles is of sufficient magnitude, if sustained, to lead to dehydration of the source region. These observations verify the mechanism for dehydration of polar vortex air masses by precipitation of ice particles.

  14. Nonorographic generation of Arctic polar stratospheric clouds during December 1999

    NASA Astrophysics Data System (ADS)

    Hitchman, Matthew H.; Buker, Marcus L.; Tripoli, Gregory J.; Browell, Edward V.; Grant, William B.; McGee, Thomas J.; Burris, John F.

    2003-03-01

    During December 1999, polar stratospheric clouds (PSCs) were observed in the absence of conditions conducive to generation by topographic gravity waves. The possibility is explored that PSCs can be generated by inertia gravity waves (IGW) radiating from breaking synoptic-scale Rossby waves on the polar front jet. The aerosol features on 7 and 12 December are selected for comparison with theory and with simulations using the University of Wisconsin Nonhydrostatic Modeling System (UWNMS). Consistent with Rossby adjustment theory, a common feature in the UWNMS simulations is radiation of IGW from the tropopause polar front jet, especially from sectors which are evolving rapidly in the Rossby wave breaking process. Packets of gravity wave energy radiate upward and poleward into the cold pool, while individual wave crests propagate poleward and downward, causing mesoscale variations in vertical motion and temperature. On 12 December the eastbound DC-8 lidar observations exhibited a fairly uniform field of six waves in aerosol enhancement in the 14-20 km layer, consistent with vertical displacement by a field of IGW propagating antiparallel to the flow, with characteristic horizontal and vertical wavelengths of ˜300 and ˜10 km. UWNMS simulations show emanation of a field of IGW upward and southwestward from a northward incursion of the polar front jet. The orientation and evolution of the aerosol features on 7 December are consistent with a single PSC induced by an IGW packet propagating from a breaking Rossby wave over western Russia toward the northeast into the coldest part of the base of the polar vortex, with characteristic period ˜9 hours, vertical wavelength ˜12 km, and horizontal wavelength ˜1000 km. Linear theory shows that for both of these cases, IGW energy propagates upward at ˜1 km/hour and horizontally at ˜100 km/hour, with characteristic trace speed ˜30 m/s. The spatial orientation of the PSC along IGW phase lines is contrasted with the nearly

  15. Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents

    SciTech Connect

    Yu, Young-Sang; Lee, Ki-Suk; Jung, Hyunsung; Choi, Youn-Seok; Yoo, Myoung-Woo; Han, Dong-Soo; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2011-05-01

    We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields produced with orthogonal and unipolar Gaussian-pulse currents. The optimal width of the orthogonal pulses and their time delay are found, from analytical and micromagnetic numerical calculations, to be determined only by the angular eigenfrequency ωD for a given vortex-state disk of polarization p, such that σ=1/ωD and Δt=π/2p/ωD. The estimated optimal pulse parameters are in good agreement with the experimental results. Finally, this work lays a foundation for energy-efficient information recording in vortex-core cross-point architecture.

  16. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US

    NASA Astrophysics Data System (ADS)

    Puntsag, Tamir; Mitchell, Myron J.; Campbell, John L.; Klein, Eric S.; Likens, Gene E.; Welker, Jeffrey M.

    2016-03-01

    Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ18O and δ2H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To study the changing water cycle in the northeastern US, we examined the longest (1968–2010) record of precipitation isotope values, collected at the Hubbard Brook Experimental Forest in New Hampshire, US (43o56‧N, 71o45‧W). We found a significant reduction in δ18O and δ2H values over the 43-year record, coupled with a significant increase in d-excess values. This gradual reduction in δ18O and δ2H values unexpectedly occurred during a period of regional warming. We provide evidence that these changes are governed by the interactions among the Atlantic Multidecadal Oscillation, loss of Arctic sea ice, the fluctuating jet stream, and regular incursions of polar air into the northeastern US.

  17. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US.

    PubMed

    Puntsag, Tamir; Mitchell, Myron J; Campbell, John L; Klein, Eric S; Likens, Gene E; Welker, Jeffrey M

    2016-03-14

    Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ(18)O and δ(2)H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To study the changing water cycle in the northeastern US, we examined the longest (1968-2010) record of precipitation isotope values, collected at the Hubbard Brook Experimental Forest in New Hampshire, US (43(°)56'N, 71(°)45'W). We found a significant reduction in δ(18)O and δ(2)H values over the 43-year record, coupled with a significant increase in d-excess values. This gradual reduction in δ(18)O and δ(2)H values unexpectedly occurred during a period of regional warming. We provide evidence that these changes are governed by the interactions among the Atlantic Multidecadal Oscillation, loss of Arctic sea ice, the fluctuating jet stream, and regular incursions of polar air into the northeastern US.

  18. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US

    PubMed Central

    Puntsag, Tamir; Mitchell, Myron J.; Campbell, John L.; Klein, Eric S.; Likens, Gene E.; Welker, Jeffrey M.

    2016-01-01

    Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ18O and δ2H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To study the changing water cycle in the northeastern US, we examined the longest (1968–2010) record of precipitation isotope values, collected at the Hubbard Brook Experimental Forest in New Hampshire, US (43o56′N, 71o45′W). We found a significant reduction in δ18O and δ2H values over the 43-year record, coupled with a significant increase in d-excess values. This gradual reduction in δ18O and δ2H values unexpectedly occurred during a period of regional warming. We provide evidence that these changes are governed by the interactions among the Atlantic Multidecadal Oscillation, loss of Arctic sea ice, the fluctuating jet stream, and regular incursions of polar air into the northeastern US. PMID:26971874

  19. Stratospheric water vapour and temperature variability and their effect on polar stratospheric cloud formation and existence in the Arctic

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Lossow, Stefan; Stiller, Gabriele; Weigel, Katja; Braesicke, Peter; Pitts, Michael C.; Murtagh, Donal

    2015-04-01

    Based on more than 10-years of satellite measurements from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS and SciSat/ACE-FTS we investigate water vapour (H2O) variability in the northern hemisphere polar regions. We find from the observations a connection between cold winters and enhanced water vapour mixing ratios in the lower polar stratosphere (475 to 525 K). We perform a sensitivity study along air parcel trajectories to test how an increase of stratospheric water vapour of 1 ppmv or a temperature decrease of 1 K affects the time period during which polar stratospheric clouds (PSCs) can be formed and exist. Air parcel trajectories were calculated 6-days backward in time. The trajectories were started at the time and locations where PSCs were observed by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations) during the Arctic winter 2010/2011. We test the sensitivity of PSCs formation and existence to changes in H2O and temperature based on PSC observations during this winter since it was one of the coldest Arctic winters in the last decade. The polar vortex persisted over a period of four months, thus leading to extensive PSC formation. During this winter PSCs were detected by CALIPSO on 42 days. In total, 738 trajectories were calculated and analysed. The resulting statistic derived from the air parcel trajectories shows a clear prolongation of the time period where PSCs can be formed and exist when the temperature in the stratosphere is decreased by 1 K and H2O is increased by 1 ppmv. We derive an increase in time where the stratospheric air is exposed to temperatures below Tice and TNAT, respectively, by ~6000 h. Thus, changes in stratospheric water vapour and temperature can prolong PSC formation and existence and thus have a significant influence on the chemistry of the polar stratosphere.

  20. PolarPortal.org Communicates Real-Time Developments in the Arctic

    NASA Astrophysics Data System (ADS)

    Langen, P. L.; Andersen, S. B.; Andersen, K. K.; Andersen, M. L.; Ahlstrom, A. P.; van As, D.; Barletta, V. R.; Box, J. E.; Citterio, M.; Colgan, W. T.; Dybkjær, G.; Forsberg, R.; Høyer, J. L.; Jensen, M. B.; Kliem, N.; Mottram, R.; Nielsen, K. P.; Olesen, M.; Quaglia, F. C.; Rasmussen, T. A.; Rodehacke, C. B.; Stendel, M.; Sandberg Sørensen, L.; Tonboe, R. T.

    2014-12-01

    PolarPortal.org was launched in June 2013 by a consortium of Danish institutions, including the Danish Meteorological Institute (DMI), the Geological Survey of Denmark and Greenland (GEUS) and the National Space Institute at the Technical University of Denmark (DTU-Space). Polar Portal is a single web portal presenting a wide range of near real-time information on both the Greenland ice sheet and Arctic sea-ice in a format geared for non-specialists. Polar Portal aims to meet widespread public interest in a diverse range of climate-cryosphere processes in the Arctic: What is the present Greenland ice sheet contribution to sea level rise? How quickly are outlet glaciers retreating or advancing right now? How extensive is Arctic sea-ice or how warm is the Arctic Ocean at this moment? Although public interest in such topics is widely acknowledged, an important primary task for the scientists behind Polar Portal was collaborating with media specialists to establish the knowledge range of the general public on these topics, in order for Polar Portal to appropriately present useful climate-cryosphere information. Consequently, Polar Portal is designed in a highly visual exploratory format, where individual data products are accompanied by plain written summaries, with hyperlinks to relevant journal papers for more scrutinizing users. Numerous satellite and in situ observations, together with model output, are channeled daily into the Greenland ice sheet and Arctic sea-ice divisions of Polar Portal.

  1. Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer

    SciTech Connect

    Dussaux, A.; Rache Salles, B.; Jenkins, A. S.; Bortolotti, P.; Grollier, J.; Cros, V.; Fert, A.; Khvalkovskiy, A. V.; Kubota, H.; Fukushima, A.; Yakushiji, K.; Yuasa, S.

    2014-07-14

    We investigate the microwave response of a spin transfer vortex based oscillator in a magnetic tunnel junction with an in-plane reference layer combined with a spin valve with an out-of-plane magnetization spin polarizing layer. The main advantage of this perpendicular spin polarizer is to induce a large spin transfer force even at zero magnetic field, thus leading to a record emitted power (up to 0.6 μW) associated to a very narrow spectral linewidth of a few hundreds of kHz. The characteristics of this hybrid vortex based spin transfer nano-oscillator obtained at zero field and room temperature are of great importance for applications based on rf spintronic devices as integrated and tunable microwave source and/or microwave detector.

  2. Spatial variation of ozone depletion rates in the springtime Antarctic polar vortex

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.; Allen, Mark; Crisp, David; Zurek, Richard W.; Sander, Stanley P.

    1990-01-01

    An area-mapping technique, designed to filter out synoptic perturbations of the Antarctic polar vortex such as distortion or displacement away from the pole, was applied to the Nimbus-7 TOMS (Total Ozone Mapping Spectrometer) data. This procedure reveals the detailed morphology of the temporal evolution of column O3. The results for the austral spring of 1987 suggest the existence of a relatively stable collar region enclosing an interior that is undergoing large variations. A simplified photochemical model of O3 loss and the temporal evolution of the area-mapped polar O3 are used to constrain the chlorine monoxide (ClO) concentrations in the springtime Antarctic vortex. The O3 loss rates could be larger than deduced here because of underestimates of total O3 by TOMS near the terminator.

  3. Climatic anomalous patterns associated with the Arctic and Polar cell strength variations

    NASA Astrophysics Data System (ADS)

    Qian, Weihong; Wu, Kaijun; Leung, Jeremy Cheuk-Hin

    2017-01-01

    The Arctic cell as a reversed and closed loop next to the Polar cell has been recently revealed in the Northern Hemisphere (NH). In this paper, we study the interannual variability of the Arctic and Polar cell strengths during 1979-2012, and their influence on surface air temperature (SAT), precipitation, and sea-ice concentration (SIC) at mid- and high-latitudes of the NH. We show that there is a significant negative correlation between the Arctic and Polar cell strengths. Both the Arctic and Polar cell strengths can well indicate the recurring climatic anomalies of SAT, precipitation, and SIC in their extreme winters. The surface large-scale cold-warm and dry-wet anomalous patterns in these extreme winters are directly linked with the vertical structure of height and temperature anomalies in the troposphere. Results suggest that the past climatic anomalies are better indicated by the strength anomalies of the Polar and Arctic cells than the traditional indices of mid-high latitude pattern such as the Arctic Oscillation and North Atlantic Oscillation. This study illustrates a three-dimensional picture of atmospheric variable anomalies in the troposphere that result in surface climatic anomalies.

  4. Numerical simulation study of polar lows in Russian Arctic: dynamical characteristics

    NASA Astrophysics Data System (ADS)

    Verezemskaya, Polina; Baranyuk, Anastasia; Stepanenko, Victor

    2015-04-01

    Polar Lows (hereafter PL) are intensive mesoscale cyclones, appearing above the sea surface, usually behind the arctic front and characterized by severe weather conditions [1]. All in consequence of the global warming PLs started to emerge in the arctic water area as well - in summer and autumn. The research goal is to examine PLs by considering multisensory data and the resulting numerical mesoscale model. The main purpose was to realize which conditions induce PL development in such thermodynamically unusual season and region as Kara sea. In order to conduct the analysis we used visible and infrared images from MODIS (Aqua). Atmospheric water vapor V, cloud liquid water Q content and surface wind fields W were resampled by examining AMSR-E microwave radiometer data (Aqua)[2], the last one was additionally extracted from QuickSCAT scatterometer. We have selected some PL cases in Kara sea, appeared in autumn of 2007-2008. Life span of the PL was between 24 to 36 hours. Vortexes' characteristics were: W from 15m/s, Q and V values: 0.08-0.11 kg/m2 and 8-15 kg/m2 relatively. Numerical experiments were carried out with Weather Research and Forecasting model (WRF), which was installed on supercomputer "Lomonosov" of Research Computing Center of Moscow State University [3]. As initial conditions was used reanalysis data ERA-Interim from European Centre for Medium-Range Weather Forecasts. Numerical experiments were made with 5 km spatial resolution, with Goddard center microphysical parameterization and explicit convection simulation. Modeling fields were compared with satellite observations and shown good accordance. Than dynamic characteristics were analyzed: evolution of potential and absolute vorticity [4], surface heat and momentum fluxes, and CAPE and WISHE mechanisms realization. 1. Polar lows, J. Turner, E.A. Rasmussen, 612, Cambridge University press, Cambridge, 2003. 2. Zabolotskikh, E. V., Mitnik, L. M., & Chapron, B. (2013). New approach for severe marine

  5. Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley

    2003-03-01

    A quantitative comparison of six meteorological analyses is presented for the cold 1999/2000 and 1995/1996 Arctic winters. Using different analyzed data sets to obtain temperatures and temperature histories can have significant consequences. The area with temperatures below a polar stratospheric cloud (PSC) formation threshold commonly varies by ˜25% between the analyses, with some differences over 50%. Biases between analyses vary from year to year; in January 2000, Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses were warmest, while NCEP analyses were usually coldest in 1995/1996 and NCEP/National Center for Atmospheric Research Reanalysis (REAN) were usually warmest. Freie Universität Berlin analyses are often colder than others at T ≲ 205 K. European Centre for Medium-Range Weather Forecasts (ECMWF) temperatures agreed better with other analyses in 1999/2000, after improvements in the assimilation system, than in 1995/1996. Temperature history case studies show substantial differences using Met Office, NCEP, REAN, ECMWF, and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), all analyses gave qualitatively similar results. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with the cold region near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly between the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days, while in 1996 they were at 1-3 days. Different meteorological conditions in comparably cold winters have a large impact on expectations for PSC formation and on the effects of discrepancies between different meteorological analyses. Met Office, NCEP, REAN, ECMWF, and DAO analyses are commonly used in modeling polar processes

  6. Observations of deformation and mixing of the total ozone field in the Antaractic Polar Vortex

    SciTech Connect

    Bowman, K.P. ); Mangus, N.J. )

    1993-09-01

    Total Ozone Mapping Spectrometer (TOMS) images of the springtime Southern Hemisphere commonly show concentric layers in the total ozone field outside the Antarctic polar vortex. The layering appears to result from horizontal folding and stretching of regions on the equatorward flank of the polar vortex near the midlatitude ozone maximum. This folding and stretching interleaves low and high ozone air from the subtropics and midlatitudes, respectively. Occasional large amplitude wave events can extract very low ozone air from the interior of the polar vortex (the Antarctic ozone hole), but the folding and stretching results in relatively rapid horizontal mixing of the atmosphere on the equatorward flank of the jet. This type of lagrangian behavior may be common in the atmosphere, but is only visible when local tracer gradients are large and observations with high spatial resolution are available. Also, experimentation has shown that gray-scale images of TOMS data show the details of the spatial distribution of ozone much more clearly than contour maps of false-color images. 22 refs., 3 figs., 2 tabs.

  7. Polar stratospheric clouds over Finland in the 2012/2013 Arctic winter measured by two Raman lidars

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Giannakaki, Eleni; Kivi, Rigel; Schrems, Otto; Immler, Franz; Komppula, Mika

    2013-04-01

    Already in December 2012, the Arctic stratospheric vortex reached temperatures sufficiently low for polar stratospheric cloud (PSC) formation over wide areas of Northern Europe and whole Finland. Within Finland, stratospheric aerosol lidar measurements have been and are performed with two Raman lidar systems, the PollyXT, owned by the Finnish Meteorological Institute (FMI) and situated well below the Arctic circle close to Kuopio (63 N, 27 E) and the MARL lidar owned by the Alfred-Wegener-Institute for Polar and Marine Research (AWI), and situated at the FMI Arctic Research Centre in Sodankylä (67 N, 26 E). The PollyXT has been designed as an autonomous tropospheric lidar system, but it has proven to be able to detect aerosol backscatter and depolarization at least as high up as 25 km. Measurements are ongoing as far as low clouds allow for stratospheric analysis with both lidars until the end of PSC season in February. For the winter 2012/2013, PSC occurrence frequency, types and characteristics will be determined. Comparative analysis with Calipso lidar profiles covering Finland will be performed. Preliminary results from December 17-24 show PSCs detected in Kuopio during seven days with the PollyXT lidar. The altitude of the clouds varied in the range of 17-25 km. In Sodankylä the measurements were running on one day during the period and PSCs were observed between altitudes 17-25 km. For the same time period (December 17-24, 2012) CALIPSO has observed stratospheric layers at all overpasses over Finland (9 tracks on five days). The clouds were observed between 18.5 and 26 km, with varying geometric and optical thickness.

  8. The evolution of ozone observed by UARS MLS in the 1992 late winter southern polar vortex

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Elson, L. S.; Fishbein, E. F.; Zurek, R. W.; Harwood, R. S.; Lahoz, W. A.

    1993-01-01

    The evolution of ozone (O3) observed by the Microwave Limb Sounder on board the Upper Atmosphere Research Satellite is described for 14 Aug through 20 Sep 1992, in relation to the polar vortex. The development of an ozone hole is observed in column O3, and a corresponding decrease is seen in O3 mixing ratio in the polar lower stratosphere, consistent with chemical destruction. The observations also suggest that poleward transport associated with episodes of strong planetary wave activity is important in increasing O3 in the mid-stratosphere.

  9. Effect of Dzyaloshinskii-Moriya interaction on the magnetic vortex oscillator driven by spin-polarized current

    SciTech Connect

    Chen, Shujun; Zhang, Senfu; Zhu, Qiyuan; Liu, Xianyin; Jin, Chendong; Wang, Jianbo; Liu, Qingfang

    2015-05-07

    By micromagnetic simulation, we investigated the dynamic of magnetic vortex driven by spin-polarized current in Permalloy nanodisks in the presence of interfacial/superficial Dzyaloshinskii-Moriya interactions (DMI). It is found that spin-polarized current can drive the vortex precession. In the presence of DMI, the oscillation frequency of the vortex is about 3 times higher than that of without DMI for the same nanodisk. Moreover, the linewidth is more narrow than that of without DMI when the radius of nanodisk is 50 nm. In addition, the vortex can support a higher current density than that of without DMI. Introduction of DMI in this system can provide a new way to design magnetic vortex oscillator.

  10. Observations of Hydration and Dehydration in the Winter 2000 Arctic Stratosphere

    NASA Technical Reports Server (NTRS)

    Herman, R.; Webster, C.; Ordla, K.; Bui, P.; Gandrud, B.

    2000-01-01

    During the January 2000 deployment of the SAGE III Ozone Loss Validation Experiment (SOLVE), the NASA ER-2 aircraft intercepted air parcels with unusual water mixing ratios within the the Arctic polar vortex.

  11. The magnetic vortex gyration mediated by spin-polarized current in a confined off-centered nanocontact structure

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Li, Dongfei; Wang, Yaxin; Hua, Zhong

    2017-02-01

    We study the magnetic vortex dynamical behaviors in a confined off-centered nanocontact system through micromagnetic simulations. It is found that the vortex core could be pinned when the nanocontact is shifted to large enough distance from the center of the nanodisk. We also find that the position of nanocontact exerts great influence on the vortex core gyration, including trajectory, eigenfrequency, excitation time, and instantaneous velocity. The simulations show that it is possible to utilize the nanocontact position to change the total effective potential energy of the system so as to realize both the pinning of the vortex core and the controllability of vortex core gyration. The characteristic gyration in this system is advantageous to control the polarity switching and other dynamical behaviors of magnetic vortex.

  12. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming

    2016-08-01

    A metasurface, which is composed of printed cross-dipole elements with different arm lengths, is designed, fabricated, and experimentally demonstrated to generate orbital angular momentum (OAM) vortex waves of dual polarizations and dual modes in the radio frequency domain simultaneously. The prototype of a practical metasurface is fabricated and measured to validate the results of theoretical analysis and design at 5.8 GHz. Numerical and experimental results verify that vortex waves with dual OAM modes and dual polarizations can be flexibly generated by using a reflective metasurface. The proposed method paves a way to generate diverse OAM vortex waves for radio frequency and microwave wireless communication applications.

  13. The mechanism of polar vortex strengthening after large tropical volcanic eruptions as simulated in the MPI-ESM

    NASA Astrophysics Data System (ADS)

    Bittner, Matthias; Timmreck, Claudia; Schmidt, Hauke; Toohey, Matthew; Krueger, Kirstin

    2016-04-01

    State-of-the-art climate models that have participated in the recent CMIP5 model intercomparison activity do, on average, not produce the strengthened northern hemispheric (NH) polar vortex after historical large tropical volcanic eruptions as suggested by observations. Here, we study the impact of volcanic eruptions of different strength on the NH winter stratosphere in the MPI-ESM Earth system model. We compare the dynamical impact in ensemble simulations of a very large Tambora eruption in 1815 with the response to the two largest eruptions of the CMIP5 historical simulations (Krakatau, 1883; and Mt. Pinatubo, 1991). The mechanism, of the strengthening of the vortex can clearly be identified in the simulations for the Tambora eruption. An increased meridional stratospheric temperature gradient is often assumed to be the cause of the vortex strengthening. The position of the maximum temperature anomaly gradient is located, however, at approximately 30°N, far away from the polar vortex . Hence, the vortex strengthening is caused only indirectly by the changed temperature gradient which first produces a subtropical wind anomaly in early winter. This leads planetary waves propagating more equatorward causing finally the vortex strengthening. The simulated response to the weaker eruptions of Krakatau and Pinatubo is also a slight average strengthening of the polar vortex, but individual ensemble members differ strongly indicating that internal variability can mask the impact on the polar vortex in the NH post-eruption winter under such moderate eruption strengths. The large forcing of the Tambora eruption does not only cause a mean vortex strengthening but also a reduction of the ensemble variability of the vortex.

  14. An International Polar Year Adventure in the Arctic

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2008-12-01

    Native students in the UA system who participated in RAHI are nearly twice as likely to earn a bachelor's degree, than those who did not attend RAHI. The past two summers, in celebration of the International Polar Year, in collaboration with Ilisagvik College, at the completion of the traditional RAHI program, ten RAHI students flew to Barrow for an additional two weeks of study. Five students participated in an archaeological dig and five students performed research with the Barrow Arctic Science Consortium scientists studying climate change. And another student was the Alaskan delegate to the Students on Ice, a 2-week ship-based adventure in northern Canada. In addition, ten students from Greenland visited the program, with plans to more fully participate next summer. This added dimension to the program has proved successful, allowing the students to compare and contrast between their own countries and indigenous perspectives. Global warming was an issue that was hotly debated, as its effects are so evident in the Polar Regions. In the Arctic, one's life is directly tied to the ice and snow. As the ice disappears and/or changes, the Indigenous people have to adapt. RAHI would like to share with you some of the results of this past summer's IPY activities.

  15. Ross Ice Shelf airstream driven by polar vortex cyclone

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    The powerful air and ocean currents that flow in and above the Southern Ocean, circling in the Southern Hemisphere's high latitudes, form a barrier to mixing between Antarctica and the rest of the planet. Particularly during the austral winter, strong westerly winds isolate the Antarctic continent from heat, energy, and mass exchange, bolstering the scale of the annual polar ozone depletion and driving the continent's record-breaking low temperatures. Pushing through this wall of high winds, the Ross Ice Shelf airstream (RAS) is responsible for a sizable amount of mass and energy exchange from the Antarctic inland areas to lower latitudes. Sitting due south of New Zealand, the roughly 470,000-square-kilometer Ross Ice Shelf is the continent's largest ice shelf and a hub of activity for Antarctic research. A highly variable lower atmospheric air current, RAS draws air from the inland Antarctic Plateau over the Ross Ice Shelf and past the Ross Sea. Drawing on modeled wind patterns for 2001-2005, Seefeldt and Cassano identify the primary drivers of RAS.

  16. Analysis of isentropic potential vorticities for the relationship between stratospheric polar vortex and the cooling process in China

    NASA Astrophysics Data System (ADS)

    Lu, C.

    2015-12-01

    We analyze the relationships between stratospheric polar vortex anomalies and cooling events in eastern China using isentropic reanalysis data from the European Center for Medium-Range Weather Forecasts. Daily mean data from 2000 to 2011 are used to explore the effective stratospheric signals. First, diagnoses of the 2009/2010 winter show that after the stratospheric sudden warming (SSW) of the Atlantic-East Asian (AEA) pattern, the stratospheric high isentropic potential vorticity(IPV) center derived from the split polar vortex will move to the northeast of the Eurasian continent. The air mass, accompanied by some southward and eastward movements and characterized by high IPV values, will be stretched vertically, leading to apparent reinforcements of the positive vorticity and the development of a cold vortex system in the troposphere. The northerly wind on the western side of the cold vortex can transport cold air southward and downward, resulting in this distinct cooling process in eastern China. Secondly, the Empirical Orthogonal Function analyses of IPV anomalies on the 430 K isentropic surface during 2000-2011 winters indicate that the IPV distribution and time series of the first mode are able to represent the polar vortex variation features, which significantly influence cold-air activity in eastern China, especially in the AEA-type SSW winter. When the time series increases significantly, the polar vortex will be split and the high-IPV center will move to the northeast of the Eurasian continent with downward and southward developments, inducing obvious cooling in eastern China. Moreover, all the four times SSW events of AEA pattern from 2000 to 2011 are reflected in the first time series, and after the strong polar vortex disturbances, cooling processes of different intensities are observed in eastern China. The cooling can sustain at least one week. For this reason the first time series can be used as an available index of polar vortex oscillation and has

  17. Spatial variation of ozone depletion rates in the springtime antarctic polar vortex

    SciTech Connect

    Yung, Y.L.; Allen, M.; Crisp, D.; Zurek, R.W.; Sander, S.P. )

    1990-05-11

    An area-mapping technique, designed to filter out synoptic perturbations of the Antarctic polar vortex such as distortion or displacement away from the pole, was applied to the Nimbus-7 TOMS (Total Ozone Mapping Spectrometer) data. This procedure reveals the detailed morphology of the temporal evolution of column O{sub 3}. The results for the austral spring of 1987 suggest the existence of a relatively stable collar region enclosing an interior that is undergoing large variations. There is tentative evidence for quasi-periodic O{sub 3} fluctuations in the collar and for upwelling of tropospheric air in late spring. A simplified photochemical model of O{sub 3} loss and the temporal evolution of the area-mapped polar O{sub 3} are used to constrain the chlorine monoxide (ClO) concentrations in the springtime Antarctic vortex. The concentrations required to account for the observed loss of O{sub 3} are higher than those previously reported by Anderson et al. but are comparable to their recently revised values. However, the O{sub 3} loss rates could be larger than deduced here because of underestimates of total O{sub 3} by TOMS near the terminator. This uncertainty, together with the uncertainties associated with measurements acquired during the Airborne Antarctic Ozone Experiment, suggests that in early spring, closer to the vortex center, there may be even larger ClO concentrations than have yet been detected.

  18. Polar bear and walrus response to the rapid decline in Arctic sea ice

    USGS Publications Warehouse

    Oakley, K.; Whalen, M.; Douglas, D.; Udevitz, M.; Atwood, T.; Jay, C.

    2012-01-01

    The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?

  19. Topological features of vector vortex beams perturbed with uniformly polarized light

    PubMed Central

    D’Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-01

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams. PMID:28079134

  20. Topological features of vector vortex beams perturbed with uniformly polarized light

    NASA Astrophysics Data System (ADS)

    D’Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-01

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.

  1. Troposphere-Stratosphere Dynamic Coupling Under Strong and Weak Polar Vortex Conditions

    NASA Technical Reports Server (NTRS)

    Perlwitz, Judith; Graf, Hans-F.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The relationship between Northern Hemisphere (NH) tropospheric and stratospheric wave-like anomalies of spherical zonal wave number (ZWN) 1 is studied by applying Canonical Correlation Analysis (CCA). A lag-correlation technique is used with 10-day lowpass filtered daily time series of 50- and 500-hPa geopotential heights. Generally stratospheric circulation is determined by ultralong tropospheric planetary waves. During winter seasons characterized either by any anomalously strong or weak polar winter vortex different propagation characteristics for waves of ZWN 1 are observed. The non-linear perspective of the results have implications for medium range weather forecast and climate sensitivity experiments.

  2. Polar bear maternal den habitat in the Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Durner, George M.; Amstrup, Steven C.; Ambrosius, Ken J.

    2006-01-01

    Polar bears (Ursus maritimus) give birth during mid-winter in dens of ice and snow. Denning polar bears subjected to human disturbances may abandon dens before their altricial young can survive the rigors of the Arctic winter. Because the Arctic coastal plain of Alaska is an area of high petroleum potential and contains existing and planned oil field developments, the distribution of polar bear dens on the plain is of interest to land managers. Therefore, as part of a study of denning habitats along the entire Arctic coast of Alaska, we examined high-resolution aerial photographs (n = 1655) of the 7994 km2 coastal plain included in the Arctic National Wildlife Refuge (ANWR) and mapped 3621 km of bank habitat suitable for denning by polar bears. Such habitats were distributed uniformly and comprised 0.29% (23.2 km2) of the coastal plain between the Canning River and the Canadian border. Ground-truth sampling suggested that we had correctly identified 91.5% of bank denning habitats on the ANWR coastal plain. Knowledge of the distribution of these habitats will help facilitate informed management of human activities and minimize disruption of polar bears in maternal dens.

  3. The Vector Vortex Coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization

    NASA Astrophysics Data System (ADS)

    Mawet, Dimitri; Pueyo, Laurent; Moody, Dwight; Krist, John; Serabyn, Eugene

    2010-07-01

    The Vector Vortex Coronagraph is a phase-based coronagraph, one of the most efficient in terms of inner working angle, throughput, discovery space, contrast, and simplicity. Using liquid-crystal polymer technology, this new coronagraph has recently been the subject of lab demonstrations in the near-infrared, visible and was also used on sky at the Palomar observatory in the H and K bands (1.65 and 2.2 μm, respectively) to image the brown dwarf companion to HR 7672, and the three extra-solar planets around HR 8799. However, despite these recent successes, the Vector Vortex Coronagraph is, as are most coronagraphs, sensitive to the central obscuration and secondary support structures, low-order aberrations (tip-tilt, focus, etc), bandwidth (chromaticism), and polarization when image-plane wavefront sensing is performed. Here, we consider in detail these sensitivities as a function of the topological charge of the vortex and design features inherent to the manufacturing technology, and show that in practice all of them can be mitigated to meet specific needs.

  4. The Vector Vortex Coronagraph: Sensitivity to Low-Order Aberrations, Central Obscuration, Chromaticism, and Polarization

    NASA Technical Reports Server (NTRS)

    Mawet, Dimitri; Pueyo, Laurent; Moody, Dwight; Krist, John; Serabyn, Eugene

    2010-01-01

    The Vector Vortex Coronagraph is a phase-based coronagraph, one of the most efficient in terms of inner working angle, throughput, discovery space, contrast, and simplicity. Using liquid-crystal polymer technology, this new coronagraph has recently been the subject of lab demonstrations in the near-infrared, visible and was also used on sky at the Palomar observatory in the H and K bands (1.65 and 2.2 micrometers, respectively) to image the brown dwarf companion to HR 7672, and the three extasolar planets around HR 8799. However, despite these recent successes, the Vector Vortex Coronagraph is, as are most coronagraphs, sensitive to the central obscuration and secondary support structures, low-order aberrations (tip-tilt, focus, etc), bandwidth (chromaticism), and polarization when image-plane wavefront sensing is performed. Here, we consider in detail these sensitivities as a function of the topological charge of the vortex and design properties inherent to the manufacturing technology, and show that in practice all of them can be mitigated to meet specific needs.

  5. Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Fan, Hong; Xu, Hua-Feng; Qu, Jun; Huang, Wei

    2015-06-01

    The three-dimensional (3D) focus shaping technique using the combination of partially coherent circularly polarized vortex beams with a binary diffractive optical element (DOE) is reported. It is found that the intensity distribution near the focus can be tailored in three dimensions by appropriately adjusting the parameters of the incident beams, numerical aperture of the objective lens, and the design of the DOE. Numerical results show that partially coherent circularly polarized vortex beams can be used to generate several special beam patterns, such as optical chain, optical needle, optical dark channel, flat-topped field, and 3D optical cage. Furthermore, compared with the ordinary 3D optical cage, this kind of 3D optical cage generated by our method has a controllable switch; that is, it can be easy to ‘open’ and ‘close’ by controlling the coherence length of the incident beams. Our work may find valuable applications in optical tweezers, microscopes, laser processing, and so on.

  6. Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex

    NASA Astrophysics Data System (ADS)

    Graf, Hans-F.; Zanchettin, Davide; Timmreck, Claudia; Bittner, Matthias

    2014-12-01

    A composite analysis of Northern Hemisphere's mid-winter tropospheric anomalies under the conditions of strong and weak stratospheric polar vortex was performed on NCEP/NCAR reanalysis data from 1948 to 2013 considering, as additional grouping criteria, the coincidental states of major seasonally relevant climate phenomena, such as El Niño-Southern Oscillation (ENSO), Quasi Biennial Oscillation and strong volcanic eruptions. The analysis reveals that samples of strong polar vortex nearly exclusively occur during cold ENSO states, while a weak polar vortex is observed for both cold and warm ENSO. The strongest tropospheric and near-surface anomalies are found for warm ENSO and weak polar vortex conditions, suggesting that internal tropospheric circulation anomalies related to warm ENSO constructively superpose on dynamical effects from the stratosphere. Additionally, substantial differences are found between the continental winter warming patterns under strong polar vortex conditions in volcanically-disturbed and volcanically-undisturbed winters. However, the small-size samples obtained from the multi-compositing prevent conclusive statements about typical patterns, dominating effects and mechanisms of stratosphere-troposphere interaction on the seasonal time scale based on observational/reanalysis data alone. Hence, our analysis demonstrates that patterns derived from observational/reanalysis time series need to be taken with caution as they not always provide sufficiently robust constraints to the inferred mechanisms implicated with stratospheric polar vortex variability and its tropospheric and near-surface signature. Notwithstanding this argument, we propose a limited set of mechanisms that together may explain a relevant part of observed climate variability. These may serve to define future numerical model experiments minimizing the sample biases and, thus, improving process understanding.

  7. NSF Antarctic and Arctic Data Consortium; Scientific Research Support & Data Services for the Polar Community

    NASA Astrophysics Data System (ADS)

    Morin, P. J.; Pundsack, J. W.; Carbotte, S. M.; Tweedie, C. E.; Grunow, A.; Lazzara, M. A.; Carpenter, P.; Sjunneskog, C. M.; Yarmey, L.; Bauer, R.; Adrian, B. M.; Pettit, J.

    2014-12-01

    The U.S. National Science Foundation Antarctic & Arctic Data Consortium (a2dc) is a collaboration of research centers and support organizations that provide polar scientists with data and tools to complete their research objectives. From searching historical weather observations to submitting geologic samples, polar researchers utilize the a2dc to search andcontribute to the wealth of polar scientific and geospatial data.The goals of the Antarctic & Arctic Data Consortium are to increase visibility in the research community of the services provided by resource and support facilities. Closer integration of individual facilities into a "one stop shop" will make it easier for researchers to take advantage of services and products provided by consortium members. The a2dc provides a common web portal where investigators can go to access data and samples needed to build research projects, develop student projects, or to do virtual field reconnaissance without having to utilize expensive logistics to go into the field.Participation by the international community is crucial for the success of a2dc. There are 48 nations that are signatories of the Antarctic Treaty, and 8 sovereign nations in the Arctic. Many of these organizations have unique capabilities and data that would benefit US ­funded polar science and vice versa.We'll present an overview of the Antarctic & Arctic Data Consortium, current participating organizations, challenges & opportunities, and plans to better coordinate data through a geospatial strategy and infrastructure.

  8. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise.

    PubMed

    Lindberg, Steve E; Brooks, Steve; Lin, C J; Scott, Karen J; Landis, Matthew S; Stevens, Robert K; Goodsite, Mike; Richter, Andreas

    2002-03-15

    Gaseous elemental mercury (Hg0) is a globally distributed air toxin with a long atmospheric residence time. Any process that reduces its atmospheric lifetime increases its potential accumulation in the biosphere. Our data from Barrow, AK, at 71 degrees N show that rapid, photochemically driven oxidation of boundary-layer Hg0 after polar sunrise, probably by reactive halogens, creates a rapidly depositing species of oxidized gaseous mercury in the remote Arctic troposphere at concentrations in excess of 900 pg m(-3). This mercury accumulates in the snowpack during polar spring at an accelerated rate in a form that is bioavailable to bacteria and is released with snowmelt during the summer emergence of the Arctic ecosystem. Evidence suggests that this is a recent phenomenon that may be occurring throughout the earth's polar regions.

  9. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  10. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  11. Analysis of UARS data in the Southern Polar Vortex n September, 1992 Using a Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Chipperfield, M. P.; Santee, M. L.; Froidevaux, L.; Manney, G. L.; Read, W. G.; Waters, J. W.; Roche, A. E.; Russel, J. M.

    1996-01-01

    We have used a new, isentropic-coordinate three-dimensional chemical transport model to investigate the decay of C1O and evolution of other species in the Antarctic polar vortex during September, 1992. The model simulations cover the same southern hemisphere period studied in a companion data paper by Santee et al.

  12. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.

    PubMed

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Zhang, Peng

    2016-09-05

    Focusing fields of optical vortex (OV) beams with circular or radial polarizations carry both spin angular momentum (SAM) and orbital angular momentum (OAM), and can realize non-axial spinning and orbiting motion of absorptive particles. Using the T-matrix method, we evaluate the optical forces and torques exerted on micro-sized particles induced by the OV beams. Numerical results demonstrate that the particle is trapped on the circle of intensity maxima, and experiences a transverse spin torque along azimuthal direction, a longitudinal spin torque, and an orbital torque, respectively. The direction of spinning motion is not only related to the sign of topological charge of the OV beam, but also to the polarization state. However, the topological charge controls the direction of orbiting motion individually. Optically induced rotations of particles with varying sizes and absorptivity are investigated in OV beams with different topological charges and polarization states. These results may be exploited in practical optical manipulation, especially for optically induced rotations of micro-particles.

  13. The stratospheric pathway for Arctic impacts on midlatitude climate

    NASA Astrophysics Data System (ADS)

    Nakamura, Tetsu; Yamazaki, Koji; Iwamoto, Katsushi; Honda, Meiji; Miyoshi, Yasunobu; Ogawa, Yasunobu; Tomikawa, Yoshihiro; Ukita, Jinro

    2016-04-01

    Recent evidence from both observations and model simulations suggests that an Arctic sea ice reduction tends to cause a negative Arctic Oscillation (AO) phase with severe winter weather in the Northern Hemisphere, which is often preceded by weakening of the stratospheric polar vortex. Although this evidence hints at a stratospheric involvement in the Arctic-midlatitude climate linkage, the exact role of the stratosphere remains elusive. Here we show that tropospheric AO response to the Arctic sea ice reduction largely disappears when suppressing the stratospheric wave mean flow interactions in numerical experiments. The results confirm a crucial role of the stratosphere in the sea ice impacts on the midlatitudes by coupling between the stratospheric polar vortex and planetary-scale waves. Those results and consistency with observation-based evidence suggest that a recent Arctic sea ice loss is linked to midlatitudes extreme weather events associated with the negative AO phase.

  14. Interhemispheric Differences in Dentifrication and Related Processes Affecting Polar Ozone

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1994-01-01

    The severe depletion of stratospheric ozone over Antarctica in late winter and early spring is caused by enhanced CLO abundances arising from heterogeneous reactions on polar stratospheric clouds (PSCs). CLO abundances comparable to those over Antarctica have also been observed throughout the Arctic Vortex, but the accompanying loss of Arctic ozone has been much less severe.

  15. IHY-IPY conference report from Polar Gateways Arctic Circle Sunrise 2008

    NASA Astrophysics Data System (ADS)

    Cooper, John; Kauristie, Kirsti; Weatherwax, Allan; Thompson, Barbara; Sheehan, Glenn; Smith, Roger; Sandahl, Ingrid

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this unique circumpolar conference hosted January 23-29, 2008 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. Science presentations spanned the solar system from the polar Sun and heliospheric environment to Earth, Moon, Mars, Jupiter, Saturn, the Kuiper Belt, and the solar wind termination shock now crossed by both Voyager spacecraft. Many of the science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times during the conference. U.S. remote contributions came from the University of Alaska at Fairbanks, the University of California at Berkeley, the University of Arizona, NASA Jet Propulsion Laboratory, and NASA Goddard Space Flight Center. Convening during the first week of 2008 Arctic sunrise at Barrow, this conference served as a prelude that year to international Sun-Earth Day celebrations for IHY, while also commemorating Barrow scientific and native cultural support for the first International Polar Year 1882-1883. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The conference proceedings are Internet accessible via the home page at http://polargateways2008.org/.

  16. Lower Stratospheric Temperature Differences Between Meteorological Analyses in two cold Arctic Winters and their Impact on Polar Processing Studies

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)

    2001-01-01

    A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the

  17. Interhemispheric comparison of the development of the stratospheric polar vortex during fall - A 3-dimensional perspective for 1991-1992

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Zurek, Richard W.

    1993-01-01

    The development of the stratospheric polar vortex during fall and early winter in the Northern Hemisphere (NH) during 1991-1992, and the Southern Hemisphere (SH) during 1992 is examined using National Meteorological Center data. Compared to the NH, the polar vortex in the SH developed with less variability on short time scales, deepened more rapidly and continued to expand well into winter. Daily minimum temperatures in the lower stratosphere were lowest at equivalent seasonal dates in both hemispheres, but values below the condensation temperatures of polar stratospheric clouds occurred earlier, persisted much longer, and occupied a larger volume of air in the SH. These interhemispheric meteorological differences can account for some of the key features of the chlorine monoxide distributions observed by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite.

  18. Ozone and aerosol changes during the 1991-1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Buller, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Schoeberl, Mark R.; Toon, Owen B.; Loewenstein, Max; Podolske, James R.

    1993-01-01

    Stratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers. No polar stratospheric clouds were observed and no evidence was found for frozen volcanic aerosols inside the vortex. Between January and March, ozone depletion was observed inside the vortex from 14 to 20 kilometers with a maximum average loss of about 23 percent near 18 kilometers.

  19. Ozone and aerosol changes during the 1991-1992 Airborne Arctic Stratospheric Expedition

    SciTech Connect

    Browell, E.V.; Grant, W.B.; Ismail, S. ); Butler, C.F.; Fenn, M.A. ); Schoeberl, M.R. ); Toon, O.B.; Loewenstein, M.; Podolske, J.R. )

    1993-08-27

    Stratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers. No polar stratospheric clouds were observed and no evidence was found for frozen volcanic aerosols inside the vortex. Between January and March, ozone depletion was observed inside the vortex from 14 to 20 kilometers with a maximum average loss of about 23 percent near 18 kilometers.

  20. A comparison of polar vortex trend response to Pacific and Indian Ocean warming

    NASA Astrophysics Data System (ADS)

    Li, S.

    2009-12-01

    During the past decades the tropical Indo-Pacific Ocean has become warmer than before. Meanwhile, both the northern and the southern hemispheric polar vortex (NPV and SPV) exhibit a deepening trend in boreal winter-half year. Although previous studies reveal that the tropical Indian Ocean Warming (IOW) favors intensifying the NPV and weakening the SPV, how the tropical Pacific Ocean Warming (POW) influences the NPV and the SPV is unclear. In this study, a comparative analysis is conducted through ensemble atmospheric general circulation model (AGCM) experiments. The results show that, for the northern hemisphere, the two warming exert an opposite impact in boreal winter, in that the IOW intensifies the NPV while the POW weakens the NPV. For the southern hemisphere, both the IOW and POW warm the southern polar atmosphere and weaken the SPV. A diagnostic analysis based on vorticity budget reveals that such an interhemispheric different influence in boreal winter between the IOW and the POW is associated with the different roles of transient eddy momentum flux convergence. Furthermore, this difference may be linked to the different strength of stationary wave activity between the hemispheres in boreal winter.

  1. United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat

    NASA Astrophysics Data System (ADS)

    Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.

    2012-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed

  2. Arctic Forecasts Available from Polar Bear Exhibit as an Example of Formal/Informal Collaboration

    NASA Astrophysics Data System (ADS)

    Landis, C. E.; Cervenec, J.

    2012-12-01

    A subset of the general population enjoys and frequents informal education venues, offering an opportunity for lifelong learning that also enhances and supports formal education efforts. The Byrd Polar Research Center (BPRC) at The Ohio State University collaborated with the Columbus Zoo & Aquarium (CZA) in the development of their Polar Frontier exhibit, from its initial planning to the Grand Opening of the exhibit, through the present. Of course, the addition to the Zoo of polar bears and Arctic fox in the Polar Frontier has been very popular, with almost a 7% increase in visitors in 2010 when the exhibit opened. The CZA and BPRC are now investigating ways to increase the climate literacy impact of the exhibit, and to increase engagement with the topics through follow-on activities. For example, individuals or classes anywhere in the world can check forecasts from the Polar Weather and Research Forecasting model and compare them to observed conditions-- allowing deep investigation into changes in the Arctic. In addition, opportunities exist to adapt the Zoo School experience (affecting several Central Ohio school districts) and/or to enable regular participation through social media such as Facebook, Twitter, and other forms of digital communication. BPRC's sustained engagement with the CZA is an example of a trusted and meaningful partnership where open dialogue exists about providing the best learning experience for visitors. This presentation will share some of the lessons learned from this unique partnership, and strategies that are adopted to move it forward.

  3. Increased Arctic Sea Ice Drift Alters Polar Bear Movements and Energetics

    NASA Astrophysics Data System (ADS)

    Douglas, D. C.; Durner, G. M.; Albeke, S. E.; Whiteman, J. P.; Amstrup, S. C.; Richardson, E.; Wilson, R. R.; Ben-David, M.

    2015-12-01

    Recent thinning of Arctic sea ice has increased its drift from currents and winds. Increased ice drift could affect movements and energy balance of polar bears (Ursus maritimus) which rely, almost exclusively, on this substrate for hunting seals. Foraging by polar bears is a relatively sedentary behavior, as they typically capture their main prey by waiting at breathing holes, where seals haul-out along leads, or by short-distance stalking. We examined the response of polar bears to ice drift in the Beaufort (BS) and Chukchi (CS) seas, and between two periods with different sea ice characteristics: 1987-1998 and 1999-2013. We used satellite-tracked adult female polar bear locations, standardized by a continuous-time correlated random walk, coupled with modeled ice drift, to estimate displacement and drift-corrected bear movements along east-west and north-south axes. Sea ice drift in both regions increased with greater westward and more extreme northward and southward rates from 1987-1998 to 1999-2013. Polar bears responded with greater eastward movements and, in the CS greater movements north and south. We show that efforts by polar bears to compensate for greater westward ice drift in recent years translated into a model-derived estimate of 5.7-7.2% increase in energy expenditure. We also estimated that polar bears increased their travel time 18-20% between the two time periods, suggesting time allocated to foraging was reduced. Increased energetic costs and travel time resulting from greater ice drift, in conjunction with ongoing habitat loss, suggest that recent changes to Arctic sea ice may affect movements and energy balance of polar bears.

  4. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-06-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high latitude effects result from robust enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. While there is significant ensemble variability in the high latitude response to each aerosol forcing set, the mean response is sensitive to the forcing set used. Significant differences, for example, are found in the NH polar stratosphere temperature and zonal wind response to two different forcing data sets constructed from different versions of SAGE II aerosol observations. Significant strengthening of the polar vortex, in rough agreement with the expected response, is achieved only using aerosol forcing extracted from prior coupled aerosol-climate model simulations. Differences in the dynamical response to the different forcing sets used imply that reproducing

  5. The Arctic Human Health Initiative: a legacy of the International Polar Year 2007–2009

    PubMed Central

    Parkinson, Alan J.

    2013-01-01

    Background The International Polar Year (IPY) 2007–2008 represented a unique opportunity to further stimulate cooperation and coordination on Arctic health research and increase the awareness and visibility of Arctic regions. The Arctic Human Health Initiative (AHHI) was a US-led Arctic Council IPY coordinating project that aimed to build and expand on existing International Union for Circumpolar Health (IUCH) and Arctic Council human health interests. The project aimed to link researchers with potential international collaborators and to serve as a focal point for human health research, education, outreach and communication activities during the IPY. The progress of projects conducted as part of this initiative up until the end of the Arctic Council Swedish chairmanship in May 2013 is summarized in this report. Design The overall goals of the AHHI was to increase awareness and visibility of human health concerns of Arctic peoples, foster human health research, and promote health strategies that will improve health and well-being of all Arctic residents. Proposed activities to be recognized through the initiative included: expanding research networks that will enhance surveillance and monitoring of health issues of concern to Arctic peoples, and increase collaboration and coordination of human health research; fostering research that will examine the health impact of anthropogenic pollution, rapid modernization and economic development, climate variability, infectious and chronic diseases, intentional and unintentional injuries, promoting education, outreach and communication that will focus public and political attention on Arctic health issues, using a variety of publications, printed and electronic reports from scientific conferences, symposia and workshops targeting researchers, students, communities and policy makers; promoting the translation of research into health policy and community action including implementation of prevention strategies and health

  6. Large magnetic to electric field contrast in azimuthally polarized vortex beams generated by a metasurface (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Veysi, Mehdi; Guclu, Caner; Capolino, Filippo

    2015-09-01

    We investigate azimuthally E-polarized vortex beams with enhanced longitudinal magnetic field. Ideally, such beams possess strong longitudinal magnetic field on the beam axis where there is no electric field. First we formulate the electric field vector and the longitudinal magnetic field of an azimuthally E-polarized beam as an interference of right- and left-hand circularly polarized Laguerre Gaussian (LG) beams carrying the orbital angular momentum (OAM) states of -1 and +1, respectively. Then we propose a metasurface design that is capable of converting a linearly polarized Gaussian beam into an azimuthally E-polarized vortex beam with longitudinal magnetic field. The metasurface is composed of a rectangular array of double-layer double split-ring slot elements, though other geometries could be adopted as well. The element is specifically designed to have nearly a 180° transmission phase difference between the two polarization components along two orthogonal axes, similar to the optical axes of a half-wave plate. By locally rotating the optical axes of each metasurface element, the transmission phase profile of the circularly polarized waves over the metasurface can be tailored. Upon focusing of the generated vortex beam through a lens with a numerical aperture of 0.7, a 41-fold enhancement of the magnetic to electric field ratio is achieved on the beam axis with respect to that of a plane wave. Generation of beams with large magnetic field to electric field contrast can find applications in future spectroscopy systems based on magnetic dipole transitions, which are usually much weaker than electric dipole transitions.

  7. Vulnerability of polar oceans to anthropogenic acidification: comparison of arctic and antarctic seasonal cycles.

    PubMed

    Shadwick, E H; Trull, T W; Thomas, H; Gibson, J A E

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3°C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320 μmol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic site. Despite a larger uptake of inorganic carbon by summer photosynthesis, the Arctic carbon system exhibits smaller seasonal changes than the more alkaline Antarctic system. In addition, the excess surface nutrients in the Antarctic may allow mitigation of acidification, via CO2 removal by enhanced summer production driven by iron inputs from glacial and sea-ice melting. These differences suggest that the Arctic system is more vulnerable to anthropogenic change due to lower alkalinity, enhanced warming, and nutrient limitation.

  8. Ultra-thin optical vortex phase plate based on the L-shaped nanoantenna for both linear and circular polarized incidences

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guo, Zhongyi; Sun, Yongxuan; Shen, Fei; Li, Yan; Liu, Yi; Wang, Xinshun; Qu, Shiliang

    2015-11-01

    Based on the L-shaped gold nanoantennas, the ultra-thin optical vortex phase plates (VPPs) have been designed to generate the optical vortex beams with different topological charges, which are independent of the incident polarization states and suitable for both X/Y linear and circular polarization incidences simultaneously. The phase and amplitude of transmitted cross-polarization light can be simultaneously manipulated by changing two degrees of freedom (the length and the width) in the L-shaped nanoantenna unit. Evolution properties of the generated vortex beam are demonstrated and analyzed. The different interactions of angular momentums between light and the VPP in the different incident polarization states have also been investigated fully. The designed VPP shows a superior broadband characteristics in near-infrared wavelength ranging from 750 nm to 1200 nm, which enable a potential implication for integrated optics and vortex optics.

  9. Arctic Ozone Depletion from UARS MLS Measurements

    NASA Technical Reports Server (NTRS)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  10. Unexpected Levels of Biological Activity during the Polar Night Offer New Perspectives on a Warming Arctic.

    PubMed

    Berge, Jørgen; Daase, Malin; Renaud, Paul E; Ambrose, William G; Darnis, Gerald; Last, Kim S; Leu, Eva; Cohen, Jonathan H; Johnsen, Geir; Moline, Mark A; Cottier, Finlo; Varpe, Øystein; Shunatova, Natalia; Bałazy, Piotr; Morata, Nathalie; Massabuau, Jean-Charles; Falk-Petersen, Stig; Kosobokova, Ksenia; Hoppe, Clara J M; Węsławski, Jan Marcin; Kukliński, Piotr; Legeżyńska, Joanna; Nikishina, Daria; Cusa, Marine; Kędra, Monika; Włodarska-Kowalczuk, Maria; Vogedes, Daniel; Camus, Lionel; Tran, Damien; Michaud, Emma; Gabrielsen, Tove M; Granovitch, Andrei; Gonchar, Anya; Krapp, Rupert; Callesen, Trine A

    2015-10-05

    The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79°N, we present an entirely different view. Instead of an ecosystem that has entered a resting state, we document a system with high activity levels and biological interactions across most trophic levels. In some habitats, biological diversity and presence of juvenile stages were elevated in winter months compared to the more productive and sunlit periods. Ultimately, our results suggest a different perspective regarding ecosystem function that will be of importance for future environmental management and decision making, especially at a time when Arctic regions are experiencing accelerated environmental change [1].

  11. The impact of wave-mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Bittner, Matthias; Timmreck, Claudia; Schmidt, Hauke; Toohey, Matthew; Krüger, Kirstin

    2016-05-01

    The current generation of Earth system models that participate in the Coupled Model Intercomparison Project phase 5 (CMIP5) does not, on average, produce a strengthened Northern Hemisphere (NH) polar vortex after large tropical volcanic eruptions as suggested by observational records. Here we investigate the impact of volcanic eruptions on the NH winter stratosphere with an ensemble of 20 model simulations of the Max Planck Institute Earth system model. We compare the dynamical impact in simulations of the very large 1815 Tambora eruption with the averaged dynamical response to the two largest eruptions of the CMIP5 historical simulations (the 1883 Krakatau and the 1991 Pinatubo eruptions). We find that for both the Tambora and the averaged Krakatau-Pinatubo eruptions the radiative perturbation only weakly affects the polar vortex directly. The position of the maximum temperature anomaly gradient is located at approximately 30°N, where we obtain significant westerly zonal wind anomalies between 10 hPa and 30 hPa. Under the very strong forcing of the Tambora eruption, the NH polar vortex is significantly strengthened because the subtropical westerly wind anomalies are sufficiently strong to robustly alter the propagation of planetary waves. The average response to the eruptions of Krakatau and Pinatubo reveals a slight strengthening of the polar vortex, but individual ensemble members differ substantially, indicating that internal variability plays a dominant role. For the Tambora eruption the ensemble variability of the zonal mean temperature and zonal wind anomalies during midwinter and late winter is significantly reduced compared to the volcanically unperturbed period.

  12. Making sense of Arctic maritime traffic using the Polar Operational Limits Assessment Risk Indexing System (POLARIS)

    NASA Astrophysics Data System (ADS)

    Stoddard, M. A.; Etienne, L.; Fournier, M.; Pelot, R.; Beveridge, L.

    2016-04-01

    Maritime traffic volume in the Arctic is growing for several reasons: climate change is resulting in less ice in extent, duration, and thickness; economic drivers are inducing growth in resource extraction traffic, community size (affecting resupply) and adventure tourism. This dynamic situation, coupled with harsh weather, variable operating conditions, remoteness, and lack of straightforward emergency response options, demand robust risk management processes. The requirements for risk management for polar ship operations are specified in the new International Maritime Organization (IMO) International Code for Ships Operating in Polar Waters (Polar Code). The goal of the Polar Code is to provide for safe ship operations and protection of the polar environment by addressing the risk present in polar waters. Risk management is supported by evidence-based models, including threat identification (types and frequency of hazards), exposure levels, and receptor characterization. Most of the information used to perform risk management in polar waters is attained in-situ, but increasingly is being augmented with open-access remote sensing information. In this paper we focus on the use of open-access historical ice charts as an integral part of northern navigation, especially for route planning and evaluation.

  13. Satellite Observations of Arctic and Antarctic Polar Stratospheric Clouds and Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Lambert, A.; Santee, M. L.; Wu, D. L.

    2012-12-01

    We present an overview of polar stratospheric clouds (PSCs) and atmospheric composition during the 2008-2012 Arctic and Antarctic seasons using A-Train measurements of lidar backscatter and gas phase concentrations of HNO3, H2O, HCl and ClO. The processes of denitrification, dehydration and chlorine activation are investigated. PSC types are classified using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite which measures vertical profiles of aerosol and cloud backscatter at 532 nm (total and perpendicular polarization) and 1064 nm. Ambient temperature/pressure profiles and constituent gases are obtained from the Aura Microwave Limb Sounder (MLS). Since April 2008 these two instruments have flown in close formation in the A-Train, maintaining colocation across track to less than 10 km and with temporal sampling differences less than 30 seconds.

  14. Atmospheric aspects of Arctic change

    NASA Astrophysics Data System (ADS)

    Overland, J. E.

    2011-12-01

    Three important features of recent Arctic change are the rather uniform pattern of Arctic temperature amplification in response to greenhouse gas forcing, the modification of atmospheric temperature and wind patterns over newly sea-ice-free regions, and the possible increased linkage between Arctic climate and sub-arctic weather. An important argument for anthropogenic forcing of recent Arctic change is the model predicted rather uniform increases in Arctic temperatures, in contrast to more regional temperature maximums associated with intrinsic climate variability patterns such as those which occurred during the 1930s Arctic warming. Sea-ice-free areas at the end of summer are allowing: added heat and moisture transport into the troposphere as documented during the recent Japanese vessel Mirai cruises, decreased boundary layer stratification, and modification of wind flow through thermal wind processes. Winter 2009-2010 and December 2010 showed a unique connectivity between the Arctic and more southern weather when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a Warm Arctic-Cold Continents pattern. A major challenge of Arctic meteorology is to understand the interaction of forced changes such as loss of sea ice and land impacts with intrinsic climate patterns such as the North Atlantic Oscillation and Pacific North American climate patterns. Could persistent shifts in Arctic climate be triggered by a combination of a gradual upward trend in temperature, an extreme event e.g. fortuitous timing in the natural variability of the atmospheric or ocean general circulation, and Arctic specific feedbacks? Scientific progress on both issues requires sustained decadal observations.

  15. Arctic (and Antarctic) Observing Experiment - an Assessment of Methods to Measure Temperature over Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Henderson, G. R.; Zook, J.; Marshall, C.; Gallage, C.

    2014-12-01

    The Arctic environment has been undergoing profound changes; the most visible is the dramatic decrease in Arctic sea ice extent (SIE). These changes pose a challenge to our ability to measure surface temperature across the Polar Regions. Traditionally, the International Arctic Buoy Programme (IABP) and International Programme for Antarctic Buoys (IPAB) have measured surface air temperature (SAT) at 2-m height, which minimizes the ambiguity of measurements near of the surface. Specifically, is the temperature sensor measuring open water, snow, sea ice, or air? But now, with the dramatic decrease in Arctic SIE, increase in open water during summer, and the frailty of the younger sea ice pack, the IABP has had to deploy and develop new instruments to measure temperature. These instruments include Surface Velocity Program (SVP) buoys, which are commonly deployed on the world's ice-free oceans and typically measure sea surface temperature (SST), and the new robust Airborne eXpendable Ice Beacons (AXIB), which measure both SST and SAT. "Best Practice" requires that these instruments are inter-compared, and early results showing differences in collocated temperature measurements of over 2°C prompted the establishment of the IABP Arctic Observing Experiment (AOX) buoy test site at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. Preliminary results showed that the color of the hull of SVP buoys introduces a bias due to solar heating of the buoy. Since then, we have recommended that buoys should be painted white to reduce biases in temperature measurements due to different colors of the buoys deployed in different regions of the Arctic or the Antarctic. Measurements of SAT are more robust, but some of the temperature shields are susceptible to frosting. During our presentation we will provide an intercomparison of the temperature measurements at the AOX test site (i.e. high quality DOE/ARM observations compared with

  16. The International Arctic Buoy Programme (IABP) - An International Polar Year Every Year

    NASA Astrophysics Data System (ADS)

    Hanna, M.; Rigor, I.; Ortmeyer, M.; Haas, C.

    2004-12-01

    A network of automatic data buoys to monitor synoptic-scale fields of sea level pressure (SLP), surface air temperature (SAT), and ice motion throughout the Arctic Ocean was recommended by the U.S. National Academy of Sciences in 1974. Based on the Academy's recommendation, the Arctic Ocean Buoy Program was established by the Polar Science Center, Applied Physics Laboratory (APL), University of Washington, in 1978 to support the Global Weather Experiment. Operations began in early 1979, and the program continued through 1990 under funding from various agencies. In 1991, the International Arctic Buoy Programme (IABP) succeeded the Arctic Ocean Buoy Program, but the basic objective remains - to maintain a network of drifting buoys on the Arctic Ocean to provide meteorological and oceanographic data for real-time operational requirements and research purposes including support to the World Climate Research Programme and the World Weather Watch Programme. The IABP currently has 37 buoys deployed on the Arctic Ocean. Most of the buoys measure SLP and SAT, but many buoys are enhanced to measure other geophysical variables such as sea ice thickness, ocean temperature and salinity. This observational array is maintained by the 20 Participants from 10 different countries, who support the program through contributions of buoys, deployment logistics, and other services. The observations from the IABP are posted on the Global Telecommunications System for operational use, are archived at the World Data Center for Glaciology at the National Snow and Ice Data Center (http://nsidc.org), and can also be obtained from the IABP web server for research (http://iabp.apl.washington.edu). The observations from the IABP have been essential for: 1.) Monitoring Arctic and global climate change; 2.) Forecasting weather and sea ice conditions; 3.) Forcing, assimilation and validation of global weather and climate models; 4.) Validation of satellite data; etc. As of 2003, over 450 papers have

  17. Arctic Observing Experiment - An Assessment of Instruments Used to Monitor the Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Johnson, J.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Valentic, T. A.; Henderson, G. R.; Marshall, C.; Gallage, C.; Zook, J.; Davis, Z.

    2014-12-01

    To understand and predict weather and climate require an accurate observing network that measures the fundamental meteorological parameters: temperature, air pressure, and wind. Measuring these parameters autonomously in the polar regions is especially challenging. To assess the accuracy of polar measurement networks, we established the Arctic Observing Experiment (AOX) test site in March 2013 at the Department of Energy (DOE) Atmospheric Radiation and Meteorology (ARM) site in Barrow, Alaska. We deployed a myriad of data loggers and autonomous buoys, which represent most of the instruments that are commonly deployed by the International Arctic Buoy Programme (IABP) to measure temperature, air pressure and wind. Estimates of temperature over this area have also been analyzed from satellites (e.g., using the Moderate-resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST)) product, and can complement data from in-situ sensors and provide consistent measurements under clear-sky conditions. Preliminary results reveal that some of the buoys are susceptible to solar heating, icing can block barometers for short periods, and frosting may insulate air temperature sensors and freeze-lock anemometers. Some of these issues may be addressed by simply painting the buoys white to reduce solar heating of the buoys, and using better temperature shields and barometer ports. Nevertheless, frosting of ultrasonic and mechanical anemometers remains a significant challenge. These results will be useful to initiate a protocol to obtain accurate and consistent measurements from the IABP, the Arctic Observing Network (AON), the International Program for Antarctic Buoys, and the Southern Ocean Observing System to monitor polar environments.

  18. Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic

    USGS Publications Warehouse

    Wilson, Ryan R.; Horne, Jon S.; Rode, Karyn D.; Regehr, Eric V.; Durner, George M.

    2014-01-01

    Although sea ice loss is the primary threat to polar bears (Ursus maritimus), little can be done to mitigate its effects without global efforts to reduce greenhouse gas emissions. Other factors, however, could exacerbate the impacts of sea ice loss on polar bears, such as exposure to increased industrial activity. The Arctic Ocean has enormous oil and gas potential, and its development is expected to increase in the coming decades. Estimates of polar bear resource selection will inform managers how bears use areas slated for oil development and to help guide conservation planning. We estimated temporally-varying resource selection patterns for non-denning adult female polar bears in the Chukchi Sea population (2008–2012) at two scales (i.e., home range and weekly steps) to identify factors predictive of polar bear use throughout the year, before any offshore development. From the best models at each scale, we estimated scale-integrated resource selection functions to predict polar bear space use across the population's range and determined when bears were most likely to use the region where offshore oil and gas development in the United States is slated to occur. Polar bears exhibited significant intra-annual variation in selection patterns at both scales but the strength and annual patterns of selection differed between scales for most variables. Bears were most likely to use the offshore oil and gas planning area during ice retreat and growth with the highest predicted use occurring in the southern portion of the planning area. The average proportion of predicted high-value habitat in the planning area was >15% of the total high-value habitat for the population during sea ice retreat and growth and reached a high of 50% during November 2010. Our results provide a baseline on which to judge future changes to non-denning adult female polar bear resource selection in the Chukchi Sea and help guide offshore development in the region. Lastly, our study provides a

  19. Multiple Linear Polarization Lidar with Improved Polarization Retrievals for Enhanced Atmospheric Observation in the Arctic

    NASA Astrophysics Data System (ADS)

    Stillwell, R. A.; Neely, R.; Thayer, J. P.; O'Neill, M.; Barton-Grimley, R. A.

    2015-12-01

    The measurement of orthogonal polarization planes from laser light scattered by clouds and aerosols is a common technique to classify cloud conditions or aerosol types using lidar. Increasingly, polarization measurements are evolving from qualitative assessments of liquid-to-ice phase transitions in clouds to more precise quantitative measurements of mixed phase clouds, cloud particle orientation, and aerosol type classifications. Viewing polarization retrievals in a more quantitative way can enhance the information content related to cloud or aerosol particles but requires a precise understanding of system and scattering effects. Herein, measurements of multiple, non-orthogonal, planes of linear polarization are implemented to advance the use of quantitative assessment of lidar polarization methods for cloud and aerosol studies. Results from the Clouds Aerosols Polarization and Backscatter (CAPABL) Lidar, located at Summit Camp, Greenland (72035'N, 38025'W), will be presented to examine the advantages of using multiple planes of linear polarization. The advantages demonstrated are enhanced signal dynamic range, reduced system effects due to signal saturation, ability to independently measure horizontal orientation of ice crystals, and self-calibration of retrievals. Data from the recently upgraded system will be presented to demonstrate these advantages, which allow CAPABL to adjust and increase signal dynamic range by approximately an order of magnitude while simplifying calibration and reducing systematic errors. These enhancements facilitate a more quantitative retrieval to describe mixed phase clouds and horizontally oriented ice crystals, both, of which, have important implications to Greenland's mass and energy budgets by modulating cloud scattering properties.

  20. Multiple Linear Polarization Lidar with Improved Polarization Retrievals for Enhanced Atmospheric Observation in the Arctic

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert; Neely, Ryan; Thayer, Jeffrey; O'Neill, Michael

    2016-04-01

    The measurement of orthogonal polarization planes from laser light scattered by clouds and aerosols is a common technique to classify cloud conditions or aerosol types using lidar. Increasingly, polarization measurements are evolving from qualitative assessments of liquid-to-ice phase transitions in clouds to more precise quantitative measurements of mixed phase clouds, cloud particle orientation, and aerosol type classifications. Viewing polarization retrievals in a more quantitative way can enhance the information content related to cloud or aerosol particles but requires a precise understanding of system and scattering effects. Herein, measurements of multiple, non-orthogonal, planes of linear polarization are implemented to advance the use of quantitative assessment of lidar polarization methods for cloud and aerosol studies. Results from the Clouds Aerosols Polarization and Backscatter (CAPABL) Lidar, located at Summit Camp, Greenland (72.35'N, 38.25'W), will be presented to examine the advantages of using multiple planes of linear polarization. The advantages demonstrated are enhanced signal dynamic range, reduced system effects due to signal saturation, ability to independently measure horizontal orientation of ice crystals, and self-calibration of retrievals. Data from the recently upgraded system will be presented to demonstrate these advantages, which allow CAPABL to adjust and increase signal dynamic range by approximately an order of magnitude while simplifying calibration and reducing systematic errors. These enhancements facilitate a more quantitative retrieval to describe mixed phase clouds and horizontally oriented ice crystals, both, of which, have important implications to Greenland's mass and energy budgets by modulating cloud scattering properties.

  1. Arctic and Antarctic exploration including the contributions of physicians and effects of disease in the polar regions.

    PubMed

    Fodstad, H; Kondziolka, D; Brophy, B P; Roberts, D W; Girvin, J P

    1999-05-01

    A history of Arctic and Antarctic exploration, whether to find a Northwest Passage, North Pole, or South Pole, is a story of triumph and tribulation. The hardship experienced by polar explorers in the last 1000 years permeates the tales of achievement. Physicians and surgeons have played prominent roles in all major polar explorations. No significant Arctic voyage, particularly in the last 300 years, was made without a member of the party trained in the management of medical emergencies and in basic surgery. During times of health, surgeons functioned as the voyage naturalists with expertise in biology, botany, zoology, and the writing of scientific catalogs. Spurred by our interest and fascination with the history of polar exploration, we reviewed the roles of physicians and natural scientists in Arctic and Antarctic adventures.

  2. Geographical distribution of organochlorine pesticides (OCPs) in polar bears (Ursus maritimus) in the Norwegian and Russian Arctic

    USGS Publications Warehouse

    Lie, E.; Bernhoft, A.; Riget, F.; Belikov, Stanislav; Boltunov, Andrei N.; Derocher, A.E.; Garner, G.W.; Wiig, O.; Skaare, J.U.

    2003-01-01

    Geographical variation of organochlorine pesticides (OCPs) was studied in blood samples from 90 adult female polar bear (Ursus maritimus) from Svalbard, Franz Josef Land, Kara Sea, East-Siberian Sea and Chukchi Sea. In all regions, oxychlordane was the dominant OCP. Regional differences in mean levels of HCB, oxychlordane, trans-nonachlor, ??-HCH, ??-HCH and p,p???-DDE were found. The highest levels of oxychlordane, trans-nonachlor and DDE were found in polar bears from Franz Josef Land and Kara Sea. HCB level was lowest in polar bears from Svalbard. Polar bears from Chukchi Sea had the highest level of ??- and ??-HCH. The lowest ??-HCH concentration was found in bears from Kara Sea. In all the bears, ???HCHs was dominated by ??-HCH. The geographical variation in OCP levels and pattern may suggest regional differences in pollution sources and different feeding habits in the different regions. Polar bears from the Western Russian Arctic were exposed to higher levels of chlordanes and p,p???-DDE than polar bears from locations westwards and eastwards from this region. This may imply the presence of a significant pollution source in the Russian Arctic area. The study suggests that the western Russian Arctic is the most contaminated region of the Arctic and warrants further research. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Long Term Changes in the Polar Vortices

    NASA Astrophysics Data System (ADS)

    Braathen, Geir O.

    2016-04-01

    As the amount of halogens in the stratosphere is slowly declining and the ozone layer slowly recovers it is of interest to see how the meteorological conditions in the vortex develop over the long term since such changes might alter the foreseen ozone recovery. In conjunction with the publication of the WMO Antarctic and Arctic Ozone Bulletins, WMO has acquired the ERA Interim global reanalysis data set for several meteorological parameters. This data set goes from 1979 - present. These long time series of data can be used for several useful studies of the long term development of the polar vortices. Several "environmental indicators" for vortex change have been calculated, and a climatology, as well as trends, for these parameters will be presented. These indicators can act as yardsticks and will be useful for understanding past and future changes in the polar vortices and how these changes affect polar ozone depletion. Examples of indicators are: vortex mean temperature, vortex minimum temperature, vortex mean PV, vortex "importance" (PV*area), vortex break-up time, mean and maximum wind speed. Data for both the north and south polar vortices have been analysed at several isentropic levels from 350 to 850 K. A possible link between changes in PV and sudden stratospheric warmings will be investigated, and the results presented. The unusual meteorological conditions of the 2015 south polar vortex and the 2010/11 and 2015/16 north polar vortices will be compared to other recent years.

  4. Creation of a three-dimensional super-resolution transversally polarized focal spot by 4π tight focusing of radially polarized vortex beams

    NASA Astrophysics Data System (ADS)

    Nie, Zhongquan; Shi, Guang; Li, Dongyu; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2015-05-01

    The intensity profiles near the focus of a 4π high numerical aperture focusing configuration for two counter-propagating radially polarized hollow Gaussian (HG) vortex beams are examined numerically. Theoretical calculations manifest that, in contrast to the single-objective focusing system, a three-dimensional super-resolution focal spot with purely transverse polarization can be formed. Such an unusual pattern stems from combining the faultlessly destructive interference of the longitudinal component of the electric field with the constructive interference of the transverse components (azimuthal and radial components) created by the two counter-propagating radially polarized vortex beams, as well as benefits from the higher-order HG mode (e.g., n = 4) to govern the aspect ratio of the focal spot. Moreover, the tolerances on focusing performance for modest displacement from the center of the HG beams with different orders are researched in detail. We expect that such a three-dimensional super-resolution field with transverse polarization can be extensively used in super-resolution confocal microscopy and three-dimensional high-density optical storage.

  5. Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic.

    PubMed

    Krey, Anke; Kwan, Michael; Chan, Hing Man

    2012-04-01

    Methylmercury (MeHg) is a neurotoxicant that has been found at elevated concentrations in the Arctic ecosystem. Little is known about its internal dose in wildlife such as polar bears. We measured concentrations of mercury (Hg) in three different brain regions (cerebellum, frontal lobe and brain stem) of 24 polar bears collected from the Nunavik, Canada between 2000 and 2003. Speciation of Hg was measured by High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectroscopy (HPLC-ICP-MS). Concentrations of mean total Hg in brain tissue were up to 625 times lower (0.28 ± 0.07 mg kg(-1) dry weight (dw) in frontal lobe, 0.23 ± 0.07 mg kg(-1) dw in cerebellum and 0.12 ± 0.0 3mg kg(-1) dw in brain stem) than the mean total Hg concentration previously reported in polar bear liver collected from Eastern Baffin Island. Methylmercury (MeHg) accounted for 100% of the Hg found in all three brain regions analyzed. These results suggest that polar bear might reduce the toxic effects of Hg by limiting the uptake into the brain and/or decrease the rate of demethylation so that Hg can be excreted from the brain more easily. The toxicokinetics and the blood-brain-barrier mechanisms of polar bears are still unknown and further research is required.

  6. Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades

    NASA Astrophysics Data System (ADS)

    Hu, Jinggao; Li, Tim; Xu, Haiming; Yang, Shuangyan

    2016-09-01

    The decadal change of El Niño teleconnection and the corresponding response of the boreal winter stratospheric polar vortex are investigated through the composite analysis of El Niño events during the two periods 1958-78 and 1979-2015. It is found that, during the period 1958-78, El Niño generates an anomalous Aleutian low in the mid troposphere extending from northeastern Eurasia to the northeastern Pacific with the most significant center in the northwestern Pacific. The anomalous Aleutian low results in a marked increase in planetary wavenumber 1 but a weak decrease in wavenumber 2 from the upper troposphere to lower stratosphere. The Eliassen-Palm (EP) flux of planetary waves converges at the high latitudes in the stratosphere and brings about a significantly weakened polar vortex. In contrast, during the period 1979-2015, the wintertime El Niño-related Aleutian low shifts eastward into the northeastern Pacific. This variation in tropospheric El Niño teleconnection leads to a dramatic decrease in planetary wavenumber 2 but a relatively weak increase in wavenumber 1. Furthermore, the magnitude of the decrease of wavenumber-2 EP flux is comparable to the increase of wavenumber-1 EP flux in the stratosphere. Consequently, the stratospheric response lessens dramatically, showing a less disturbed and slightly enhanced polar vortex. The lessened stratospheric response is quite obvious in the stratosphere below 10 hPa regardless of the long-term trend being removed or not, indicating a dominant role of El Niño in the wintertime variability of lower polar stratosphere.

  7. Polar Gateways Arctic Circle Sunrise 2008 Conference at the Top of the World

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Kauristie, Kirsti; Weatherwax, Allan T.; Sandahl, Ingrid; Ostgaard, Nikolai; Sheehan, Glenn W.; Smith, Roger W.; Lewis, Elaine M.; Cline, Troy D.; Haines-Stiles, Geoff

    2008-01-01

    The Polar Gateways conference was hosted during January 23-29, 2008, the first week of polar sunrise at Barrow, Alaska, at the new Barrow Arctic Research Center of the Barrow Arctic Science consortium (BASC). The dawn week of polar day, the highly variable low temperatures, and the ice-covered shore tundra and adjacent sea ice conditions provided an appropriate locale for a conference dedicated in the spirit of the International Polar and Heliophysical Years 2007-2009 to the educational exploration of polar and icy world science of Earth and the solar system. The many scientific, educational, and cultural interactions with the local community of four thousand residents, sixty percent native Inupiat Eskimo, further provided an unforgettable experience of what life might be someday be like on other remote polar and icy worlds to be explored and eventually inhabited. Over one hundred active participants, more than half participating remotely, contributed science presentations and educational activities during this unique circumpolar and very "green" conference. Most remote contributions came via videoconference from the Swedish Institute of Space Physics (IRF) at Kisuna, Sweden, the EISCAT Svalbard Radar Facility at Spitzbergen, Norway, the University of Alaska at Fairbanks, NASA Goddard Space Flight Center and the Jet Propulsion Laboratory, the University of California at Berkeley, and the University of Arizona. A few contributors participated via teleconference, including one from the Polar Geophysical Institute at Apatity in Russia. These active contributions spanned up to thirteen time zones (Alaska to Russia) at various tirnes during the conference. Primary videoconferencing support between Barrow and other sites was ably provided by the University of Alaska at Fairbanks, and local operators at each remote site collectively made this conference possible. Science presentations spanned the solar system from the polar Sun and heliospheric environment to Earth, Moon

  8. Polar Gateways Arctic Circle Sunrise 2008 Conference at the Top of the World

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Kauristie, K.; Weatherwax, A. T.; Sheehan, G. W.; Smith, R. W.; Cline, T. D.; Lewis, E. M.; Haines-Stiles, G.

    2008-12-01

    The Polar Gateways conference was hosted during January 23-29, 2008, the first week of polar sunrise at Barrow, Alaska, at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium (BASC). The dawn week of polar day, the highly variable low temperatures, and the ice-covered shore tundra and adjacent sea ice conditions provided an appropriate locale for a conference dedicated in the spirit of the International Polar and Heliophysical Years 2007-2009 to the educational exploration of polar and icy world science of Earth and the solar system. The many scientific, educational, and cultural interactions with the local community of four thousand residents, sixty percent native Inupiat Eskimo, further provided an unforgettable experience of what life might be someday be like on other remote polar and icy worlds to be explored and eventually inhabited. Over one hundred active participants, more than half participating remotely, contributed science presentations and educational activities during this unique circumpolar and very "green" conference. Most remote contributions came via videoconference from the Swedish Institute of Space Physics (IRF) at Kiruna, Sweden, the EISCAT Svalbard Radar Facility at Spitzbergen, Norway, the University of Alaska at Fairbanks, NASA Goddard Space Flight Center and the Jet Propulsion Laboratory, the University of California at Berkeley, and the University of Arizona. A few contributors participated via teleconference, including one from the Polar Geophysical Institute at Apatity in Russia. These active contributions spanned up to thirteen time zones (Alaska to Russia) at various times during the conference. Primary videoconferencing support between Barrow and other sites was ably provided by the University of Alaska at Fairbanks, and local operators at each remote site collectively made this conference possible. Science presentations spanned the solar system from the polar Sun and heliospheric environment to Earth, Moon

  9. The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia.

    PubMed

    Godefroit, Pascal; Golovneva, Lina; Shchepetov, Sergei; Garcia, Géraldine; Alekseev, Pavel

    2009-04-01

    A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10 degrees C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.

  10. The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia

    NASA Astrophysics Data System (ADS)

    Godefroit, Pascal; Golovneva, Lina; Shchepetov, Sergei; Garcia, Géraldine; Alekseev, Pavel

    2009-04-01

    A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10°C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.

  11. Evolution of the Antarctic polar vortex in spring: Response of a GCM to a prescribed Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Boville, B. A.; Kiehl, J. T.; Briegleb, B. P.

    1988-01-01

    The possible effect of the Antartic ozone hole on the evolution of the polar vortex during late winter and spring using a general circulation model (GCM) is examined. The GCM is a version of the NCAR Community Climate Model whose domain extends from the surface to the mesosphere and is similar to that described on Boville and Randel (1986). Ozone is not a predicted variable in the model. A zonally averaged ozone distribution is specified as a function of latitude, pressure and month for the radiation parameterization. Rather that explicitly address reasons for the formation of the ozone hole, researchers postulate its existence and ask what effect it has on the subsequent evolution of the vortex. The evolution of the model when an ozone hole is imposed is then discussed.

  12. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed Central

    Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 μmol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111

  13. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.

  14. Wavelet Analysis of the Polar Vortex and Linkages to Climate Change

    NASA Astrophysics Data System (ADS)

    Glovin, G.; Lynch, A. H.; Arbetter, T. E.

    2014-12-01

    Extreme weather events have been linked to unusually amplified atmospheric waves (Screen and Simmons, Nature Clim. Change, 2014). Changes in Rossby wave properties may be linked to changes in climate; hence, an increase in the frequency of extreme weather events may be an indication of a large-scale change in wave properties and thereby large scale climatic changes. Arctic amplification and the related ice-albedo feedback mechanism make this issue more pressing in the polar north, where the rate and magnitude of climate change has been most pronounced (Serreze et al, The Cryosphere, 2009). While there is debate over whether a tipping point will be reached (Tietsche et al, GRL, 2011), dramatic change would be difficult to slow or stop should that occur. In this study, wavelet analysis is applied to time series of zonal phase speeds of Rossby waves at high latitudes. A strong annual signal is found; this signal has tended to increase in power since approximately 1940. It is demonstrated that signals at larger time scales at these latitudes are more isolated, although there may be a westerly propagation pattern. Significant correlations between wavelet power and albedo, snow cover, atmospheric ozone levels, and surface temperature are found at shorter scales. At longer scales there is more ambiguity, but significant correlations with those factors and carbon dioxide levels seem likely. The analysis suggests that patterns of Rossby wave speeds have undergone considerable intensification since 1940. This intensification may have a link to the ice-albedo feedback mechanism, potentially hastening a tipping point in the retreat of the cryosphere.

  15. In the dark: A review of ecosystem processes during the Arctic polar night

    NASA Astrophysics Data System (ADS)

    Berge, Jørgen; Renaud, Paul E.; Darnis, Gerald; Cottier, Finlo; Last, Kim; Gabrielsen, Tove M.; Johnsen, Geir; Seuthe, Lena; Weslawski, Jan Marcin; Leu, Eva; Moline, Mark; Nahrgang, Jasmine; Søreide, Janne E.; Varpe, Øystein; Lønne, Ole Jørgen; Daase, Malin; Falk-Petersen, Stig

    2015-12-01

    Several recent lines of evidence indicate that the polar night is key to understanding Arctic marine ecosystems. First, the polar night is not a period void of biological activity even though primary production is close to zero, but is rather characterized by a number of processes and interactions yet to be fully understood, including unanticipated high levels of feeding and reproduction in a wide range of taxa and habitats. Second, as more knowledge emerges, it is evident that a coupled physical and biological perspective of the ecosystem will redefine seasonality beyond the "calendar perspective". Third, it appears that many organisms may exhibit endogenous rhythms that trigger fitness-maximizing activities in the absence of light-based cues. Indeed a common adaptation appears to be the ability to utilize the dark season for reproduction. This and other processes are most likely adaptations to current environmental conditions and community and trophic structures of the ecosystem, and may have implications for how Arctic ecosystems can change under continued climatic warming.

  16. Organochlorine contaminants in arctic marine food chains: identification, geographical distribution, and temporal trends in polar bears

    SciTech Connect

    Norstrom, R.J.; Simon, M.; Muir, D.C.G.; Schweinsburg, R.E.

    1988-09-01

    Contamination of Canadian arctic and subarctic marine ecosystems by organochlorine (OC) compounds was measured by analysis of polar bear (Ursus maritimus) tissues collected from 12 zones between 1982 and 1984. PCB congeners (S-PCB), chlordanes, DDT and metabolites, chlorobenzenes (S-CBz), hexachlorocyclohexane isomers (S-HC-H), and dieldrin were identified by high-resolution gas chromatography-mass spectrometry. Nonachlor-III, a nonachlor isomer in technical chlordane, was positively identified for the first time as an environmental contaminant. S-PCB and S-CHLOR accounted for >80% of the total organochlorines in adipose tissue. Six PCB congeners constituted approximately 93% of S-PCB in polar bears. Levels of most OCs were lowest in the high Arctic, intermediate in Baffin Bay, and highest in Hudson Bay. Levels of ..cap alpha..-HCH were evaluated in zones influenced by surface runoff. Levels of S-CHLOR were four times higher and levels of the other OCs were two times higher in adipose tissue of bears from Hudson Bay and Baffin Bay in 1984 than in adipose tissue archived since 1969 from these areas; levels of S-DDT did not change.

  17. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    PubMed

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  18. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife

    USGS Publications Warehouse

    Stapleton, Seth P.; LaRue, Michelle A.; Lecomte, Nicolas; Atkinson, Stephen N.; Garshelis, David L.; Porter, Claire; Atwood, Todd C.

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark- recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  19. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  20. Generation of radially polarized high energy mid-infrared optical vortex by use of a passive axially symmetric ZnSe waveplate

    SciTech Connect

    Wakayama, Toshitaka Yonemura, Motoki; Oikawa, Hiroki; Sasanuma, Atsushi; Arai, Goki; Fujii, Yusuke; Dinh, Thanh-Hung; Otani, Yukitoshi; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Miura, Taisuke; Takahashi, Akihiko; Nakamura, Daisuke; Okada, Tatsuo

    2015-08-24

    We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%.

  1. Interannual Variability of Ozone in the Polar Vortex during the Fall Season

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Stolarski, R. S.; Bevilacqua, R.

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season has a characteristic distribution, which is consistent between in situ and satellite measurements. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value near 3 ppmv. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. Model analysis indicates that the characteristic vortex O3 profiles arise from a combination of seasonally accelerated photochemical loss at high latitudes and minimal transport of air from lower latitudes. Analysis of the relatively high-resolution POAM data shows that these characteristic O3 distributions are consistent from year to year and between the hemispheres. Here we emphasize analysis of the 24-year time series of O3 data from SBUV in the lower-to-middle stratosphere at high latitudes in the fall vortex. We find that the variability of O3 from SBUV is relatively small in this regime and no significant trend is detectable. The implications of the findings for stratospheric O3 chemistry and transport will be explored.

  2. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    PubMed

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  3. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    USGS Publications Warehouse

    Kirk, Cassandra M.; Amstrup, S.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  4. Assessment and Consequences of the Delayed Breakup of the Antarctic Polar Vortex in Two Versions of the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M.M.; Newman, P.A.; Li, F.

    2008-01-01

    In mid-winter, winds circle the globe at speeds greater than 200 km/hr (approximately 130mph) in the middle atmosphere. This strong jet bounds the region known as the polar vortex. The presence of the Antarctic polar vortex is a key ingredient in the formation of the 'ozone hole', because the air inside the vortex is cold and isolated from lower latitudes, creating ideal conditions for large-scale chemical ozone depletion. Many atmospheric models are not able to reproduce observed winds in the middle atmosphere. Specifically, the polar vortices tend to break down too late and peak wind speeds are higher than observed. Hurwitz et al. find that the delayed break-up of the Antarctic polar vortex is due to weaker-than-observed wave driving from the lower atmosphere during the October-November period. The delayed break-up of the Antarctic polar vortex changes the temperature structure of the middle atmosphere, which biases the amount of chemical ozone depletion that can occur in late winter and spring. Also, the extended lifetime of the polar vortex strengthens the 'overturning' circulation cell in the middle atmosphere, changing the amount of ozone, methane and other chemical species that is transported from low to high latitudes. As greenhouse gas concentrations continue to rise, the atmospheric temperature structure and resulting wind structure are expected to change. Clearly, if models cannot duplicate the observed late 20th century high-latitude winds, their ability to simulate the polar vortices in future must be poor. Understanding model weaknesses and improving the modeled polar vortices will be necessary for accurate predictions of ozone recovery in the coming century.

  5. Accuracy of Modelled Stratospheric Temperatures in the Winter Arctic Vortex from Infra Red Montgolfier Long Duration Balloon Measurements

    NASA Technical Reports Server (NTRS)

    Pommereau, J.-P.; Garnier, A.; Knudson, B. M.; Letrenne, G.; Durand, M.; Cseresnjes, M.; Nunes-Pinharanda, M.; Denis, L.; Newman, P. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the stratosphere has been measured in the Arctic vortex every 9-10 minutes along the trajectory of four Infra Red Montgolfier long duration balloons flown for 7 to 22 days during the winters of 1997 and 1999. From a number of comparisons to independent sensors, the accuracy of the measurements is demonstrated to be plus or minus 0.5 K during nighttime and at altitude below 28 km (10 hPa). The performances of the analyses of global meteorological models, European Center for Medium Range Weather Forecasts (ECMWF) 31 and 50 levels, United Kingdom Meteorological Office (UKMO), Data Assimilation Office (DAO), National Climatic Prediction Center (NCEP) and NCEP/NCAR reanalysis, used in photochemical simulations of ozone destruction and interpretation of satellite data, are evaluated by comparison to this large (3500 data points) and homogeneous experimental data set. Most of models, except ECMWF31 in 1999, do show a smal1 average warm bias of between 0 and 1.6 K, with deviations particularly large, up to 20 K at high altitude (5hPa) in stratospheric warming conditions in 1999. Particularly wrong was ECMWF 31 levels near its top level at 10 hPa in 1999 where temperature 25 K colder than the real atmosphere were reported. The average dispersion between models and measurements varies from plus or minus 1.0 to plus or minus 3.0 K depending on the model and the year. It is shown to be the result of three contributions. The largest is a long wave modulation likely caused by the displacement of the temperature field in the analyses compared to real atmosphere. The second is the overestimation of the vertical gradient of temperature particularly in warming conditions, which explains the increase of dispersion from 1997 to 1999. Unexpectedly, the third and smallest (plus or minus 0.6-0.7 K) is the contribution of meso and subgrid scale vertical and horizontal features associated to the vertical propagation of orographic or gravity waves. Compared to other

  6. Interannual variability of the 4-day wave and isentropic mixing inside the polar vortex in midwinter of the Southern Hemisphere upper stratosphere

    NASA Astrophysics Data System (ADS)

    Mizuta, Ryo; Yoden, Shigeo

    2002-12-01

    Interannual variations of the flow field and large-scale horizontal transport and mixing inside the wintertime polar vortex of the Southern Hemisphere upper stratosphere are investigated using isentropic winds obtained from the U.K. Met Office assimilated data for nine years of 1992-2000. We focused on the midwinter, July, when the polar vortex is not much distorted, although an eastward propagating wave called the 4-day wave is observed in some years in the polar region. Finite-time Lyapunov exponents are computed, and contour advections are done to examine stirring and mixing in the polar region. When the 4-day wave has a large amplitude, effective mixing through a stretching and folding process is seen inside the polar vortex. Finite-time Lyapunov exponents are sometimes as large as the midlatitudes, and the material contours of small areas grow exponentially in time on the poleward side of 70°S. Such mixing properties are not uniform inside the vortex. When the wave is not clearly seen, on the other hand, wind fields are close to a solid body rotation around the pole, and mixing is very small; Lyapunov exponents are small, and the material contours grow linearly in time by the stretching due to the meridional shear of the polar night jet. Such interannual variability of the strength of the mixing is correlated with the variability of the perturbation amplitude of potential vorticity in the polar region.

  7. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  8. Sailing the Open Polar Sea...Again: What Are You Teaching Your Children about the Arctic Ocean?

    ERIC Educational Resources Information Center

    Stockard, James W. Jr.

    1989-01-01

    Relates how a blunder about the Arctic Ocean and the polar ice cap made by the author in his first year of teaching led to a successful learning experience. Lists five important discussion topics that social studies teachers should use to teach about this remote, but strategic, part of the world. (LS)

  9. Late Cretaceous Extreme Polar Warmth recorded by Vertebrate Fossils from the High Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Vandermark, D.; Tarduno, J. A.; Brinkman, D.

    2006-12-01

    A vertebrate fossil assemblage from Late Cretaceous (Coniacian-Turonian, ~92 to 86 Ma) rocks on Axel Heiberg Island in the High Canadian Arctic reflects what was once a diverse community of freshwater fishes and reptiles. Paleomagnetic data indicate a paleolatitude of ~71° N for the site; the fossils are from non-migratory fauna, so they can provide insight into Late Cretaceous polar climate. The fossil assemblage includes large (> 2.4 m long) champsosaurs (extinct crocodilelike reptiles). The presence of large champsosaurs suggests a mean annual temperature > 14 °C (and perhaps as great as 25 °C). Here we summarize findings and analyses following the discovery of the fossil-bearing strata in 1996. Examination of larger fish elements, isolated teeth and SEM studies of microstructures indicates the presence of lepisosteids, amiids and teleosts (Friedman et al., 2003) Interestingly, the only other known occurrence of amiids and lepisosteids, fossil or recent, are from intervals of extreme warmth during the Tertiary. Turtles present in the assemblage include Boreralochelys axelheibergensis, a generically indeterminate eucryptodire and a trioychid (Brinkman and Tarduno, 2005). The level of turtle diversity is also comparable to mid-latitude assemblages with a mean annual paleotemperature of at least 14 °C. A large portion of the champsosaur fossil assemblage is comprised of elements from subadults. This dominance of subadults is similar to that seen from low latitude sites. Because of the sensitivity of juveniles to ice formation, the make-up of the Arctic champsosaur population further indicates that the Late Cretaceous saw an interval of extreme warmth and low seasonality. We note the temporal coincidence of these fossils with volcanism at large igneous provinces (including high Arctic volcanism) and suggest that a pulse in volcanic carbon dioxide emissions helped cause the global warmth.

  10. The melting sea ice of Arctic polar cap in the summer solstice month and the role of ocean

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yi, Y.

    2014-12-01

    The Arctic sea ice is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic sea ice using the daily sea ice concentration data. Sea ice data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic sea ice melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar sea ice melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic sea ice.

  11. Leveraging scientific credibility about Arctic sea ice trends in a polarized political environment.

    PubMed

    Jamieson, Kathleen Hall; Hardy, Bruce W

    2014-09-16

    This work argues that, in a polarized environment, scientists can minimize the likelihood that the audience's biased processing will lead to rejection of their message if they not only eschew advocacy but also, convey that they are sharers of knowledge faithful to science's way of knowing and respectful of the audience's intelligence; the sources on which they rely are well-regarded by both conservatives and liberals; and the message explains how the scientist arrived at the offered conclusion, is conveyed in a visual form that involves the audience in drawing its own conclusions, and capsulizes key inferences in an illustrative analogy. A pilot experiment raises the possibility that such a leveraging-involving-visualizing-analogizing message structure can increase acceptance of the scientific claims about the downward cross-decade trend in Arctic sea ice extent and elicit inferences consistent with the scientific consensus on climate change among conservatives exposed to misleadingly selective data in a partisan news source.

  12. Comparison and Validation of Four Arctic Sea Ice Thickness Products of the EC POLAR ICE Project

    NASA Astrophysics Data System (ADS)

    Melsheimer, C.; Makynen, M.; Rasmussen, T. S.; Rudjord, Ø.; Simila, M.; Solberg, R.; Walker, N. P.

    2016-08-01

    Sea ice thickness (SIT) is an important parameter for monitoring Arctic change, modelling and predicting weather and climate, and for navigation and offshore operations. However, SIT is still not very well monitored operationally. In the European Commission (EC) FP7 project "POLAR ICE", three novel SIT products based on different satellite data as well as SIT from a state-of-the- art ocean and sea ice model are fed into a common data handling and distribution system for end users. Each SIT product has different scopes and limitations as to, e.g., spatial and temporal resolution, ice thickness range and geographical domain. The aim of this study is to compare the four different SIT products with each other and with SIT in-situ measurements in order to better understand the differences and limitations, and possibly give recommendations on how to best profit from the synergy of the different data.

  13. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic?

    PubMed

    Nielsen, Uffe N; Wall, Diana H

    2013-03-01

    The polar regions are experiencing rapid climate change with implications for terrestrial ecosystems. Here, despite limited knowledge, we make some early predictions on soil invertebrate community responses to predicted twenty-first century climate change. Geographic and environmental differences suggest that climate change responses will differ between the Arctic and Antarctic. We predict significant, but different, belowground community changes in both regions. This change will be driven mainly by vegetation type changes in the Arctic, while communities in Antarctica will respond to climate amelioration directly and indirectly through changes in microbial community composition and activity, and the development of, and/or changes in, plant communities. Climate amelioration is likely to allow a greater influx of non-native species into both the Arctic and Antarctic promoting landscape scale biodiversity change. Non-native competitive species could, however, have negative effects on local biodiversity particularly in the Arctic where the communities are already species rich. Species ranges will shift in both areas as the climate changes potentially posing a problem for endemic species in the Arctic where options for northward migration are limited. Greater soil biotic activity may move the Arctic towards a trajectory of being a substantial carbon source, while Antarctica could become a carbon sink.

  14. Subsidence, Mixing and Denitrification of Polar Vortex Air Measured During Polaris

    NASA Technical Reports Server (NTRS)

    Rex, M.; Salawitch, R.; Toon, G.; Sen, B.; Margitan, J.; Osterman, G.; Blavier, J.; Gao, R.; Del Negro, L.; Donnelly, S.; Keim, E.; Neuman, J.; Fahey, D.; Webster, C.; Scott, D.; Herman, B.; May, R.; Moyer, L.; Gunson, M.; Irion, F.; Chang, A.; Rinsland, R.; Bui, P.; Loewenstein, M.

    1998-01-01

    We use the correlation between CH(sub 4) and N(sub 2)O as measured during the POLARIS campaign in spring 1997 to estimate the degree of mixing between descended air masses from the vortex and air masses from mid-latitudes.

  15. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook

    USGS Publications Warehouse

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.

    2015-01-01

    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  16. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  17. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  18. Arctic Expedition of the Frozen Five: an Alternative way of Education and Outreach During the International Polar Year

    NASA Astrophysics Data System (ADS)

    Senger, K.; Björkman, M.; Garny, H.; Girard, L.; Lichteneger, J.

    2006-12-01

    In March 2007, a group of international students of the geosciences will embark on a two month expedition across the wilderness of Svalbard. The journey will involve traversing up to 1000 km of high Arctic glaciers between 76° an 80°N, reaching both the southernmost and northernmost capes of Spitsbergen, Svalbard's largest island. We expect to be frequently camping at -30°C, as well as having a high probability of encountering polar bears, crevasses and arctic storms during the expedition. Through this expedition, we wish to promote the multi-disciplinary approach required in successful Arctic science. Our team, young and energetic, has already demonstrated a strong research interest in the Arctic and is ready to share their passion with the general public. Presentations by the various team members focus on the enhanced climate change and related processes witnessed at high latitudes. The concept of alternative energy, including solar power and kites used while en route, is given a high priority throughout. Here we present the education and outreach framework of the project, as well as introducing the research background of the team. We highlight current progress on the integration of this expedition in high schools around the world. The Frozen Five expedition runs in close collaboration with New Zealand's Youth Steering Committee, a major IPY project, aiming to network young polar researchers and promote the study of the polar regions to potential scientists.

  19. Polar Stratospheric Cloud formation and denitrification during the Arctic winter 2009/2010 and 2010/2011

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Pitts, Michael C.; Kirner, Oliver; Braesicke, Peter; Santee, Michelle L.; Manney, Gloria L.; Murtagh, Donal

    2015-04-01

    The sedimentation of HNO3 containing polar stratospheric cloud particles leads to a permanent removal of HNO3 from the stratosphere. The so-called denitrification is an effect that plays an important role in stratospheric ozone depletion. The Arctic winter 2009/2010 and 2010/2011 were both quite unique. The Arctic winter 2010/2011 was one of the coldest winters on record leading to the strongest depletion of ozone measured in the Arctic. Though the Arctic winter 2009/2010 was rather warm in the climatological sense it was distinguished by an exceptionally cold stratosphere from mid December 2009 to mid January 2010 leading to prolonged PSC formation and significant denitrification. Model simulations and space-borne observations are used to investigate PSC formation and denitrification during these two winters. Model simulations were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) and compared to observations by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Satellite (CALIPSO) and the Odin Sub-Millimetre Radiometer (Odin/SMR) as well as with observations from the Microwave Limb Sounder on Aura (Aura/MLS). While PSCs were present during the Arctic winter 2010/2011 over nearly four months, from mid December to end of March, they were not as persistent as the ones that occurred during the shorter (one month) cold period during the Arctic winter 2009/2010. Although the PSC season during the Arctic winter 2009/2010 was much shorter than in 2010/2011, denitrification during the Arctic winter 2009/2010 was similar in magnitude than during 2010/2011.

  20. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  1. Relationship between the lunar tidal amplification in the equatorial electrojet and weakening of the northern polar vortex

    NASA Astrophysics Data System (ADS)

    Adnan Siddiqui, Tarique; Luehr, Hermann; Stolle, Claudia; Matzka, Jürgen

    2016-07-01

    Enhanced lunar tidal effects in the equatorial electrojet (EEJ) during boreal winters have been reported in the form of so-called "big L days" for a long time. Recent studies have suggested a relation between these enhanced lunar tidal observations and stratospheric sudden warming (SSW) events in the northern hemisphere through changes in tidal propagation conditions due to increased planetary wave activity. In this study we have used the horizontal component of the magnetic field recorded at Huancayo, Peru from 1997-2013 to study the relation between the timing and magnitude of the semimonthly lunar tide in the EEJ and the stratospheric polar vortex weakening (PVW). The definition of PVW is used to characterize the individual SSW events, and the intensity of PVW during each winter is estimated by taking into account the stratospheric temperature and wind conditions at polar latitudes. Our results indicate that the semimonthly lunar tide in the EEJ gets enhanced during boreal winters when a significant weakening in the polar vortex occurs and its timing and magnitude is correlated with the timing and intensity of the PVW. Our results suggest that the initiation of the lunar tidal enhancement in most of the cases is closely related to a PVW event. Further, we also discuss the longitudinal differences in lunar tidal enhancements of the EEJ during the SSW years. Finally, we extend the lunar tidal time series by utilizing the recently digitized magnetic recordings from Huancayo. The additional data of Huancayo recordings between 1962-1984 will open new perspectives in investigating long term trends of equatorial electrodynamics.

  2. Denitrification in the Arctic mid-winter 2004/2005 observed by airborne submillimeter radiometry

    NASA Technical Reports Server (NTRS)

    Kleinbohl, Armin; Bremer, Holger; Kullmann, Harry; Kuttippurath, Jayanarayanan; Browell, Edward V.; Canty, Timothy; Salawitch, Ross J.; Toon, Geoffrey C.; Nothol, Justus

    2005-01-01

    We present measurements of unusually low mixing ratios of HNO3 in the exceptionally cold Arctic vortex of late-January and early-February 2005. The measurements were obtained by the airborne submillimeter radiometer ASUR during the polar aura validation experiment (PAVE). The distribution of HNO3 inside the vortex reaches minima below 4 ppbv around 22 km altitude and maxima above 13 ppbv around 16 km altitude, with a considerable spatial variability.

  3. Nitric oxide measurements in the Arctic winter stratosphere

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kawa, S. R.; Chan, K. R.

    1990-01-01

    Measurements of NO from five flights of the NASA ER-2 aircraft during the Airborne Arctic Stratospheric Expedition are presented. The NO values and vertical gradient near 60 deg N latitude are similar to previous measurements near 50 deg N in winter (Ridley et al., 1984, 1987). The NO latitudinal gradient is distinctly negative outside of the polar vortex, approaching zero at the boundary of the vortex, and remaining below the 20 pptv detection limit inside the vortex. Steady state NO2 and NO(x) (NO + NO2) are calculated from measured NO, O3, and ClO, and modeled photodissociation rates. NO(x) outside the vortex shows a negative dependence on latitude and solar zenith angle. Low NO(x) and NO(x)/NO(y), inside and near the vortex boundary may be indications of heterogeneous removal of ClONO2 and N2O5.

  4. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data

  5. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    USGS Publications Warehouse

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  6. Dust-acoustic solitary waves in a dusty plasma with dust of opposite polarity and vortex-like ion distribution

    NASA Astrophysics Data System (ADS)

    Zahran, M. A.; El-Shewy, E. K.; Abdelwahed, H. G.; Abdelwahed

    2013-10-01

    The nonlinear propagation of small but finite-amplitude dust-acoustic solitary waves in an unmagnetized, collisionless dusty plasma has been investigated. The fluid model is a generalization to the model of Mamun and Shukla to a more realistic space dusty plasma in different regions of space, viz., cometary tails, mesosphere, and Jupiter's magnetosphere, by considering a four-component dusty plasma consisting of the charged dusty plasma of opposite polarity, isothermal electrons and vortex-like ion distributions in the ambient plasma. A reductive perturbation method was employed to obtain a modified Korteweg-de Vries equation for the first-order potential. The effect of the presence of a positively charged dust fluid, the specific charge ratio μ, the temperature of the positively charged dust fluid, the ratio of constant temperature of free hot ions and the constant temperature of trapped ions, and ion temperature on the soliton properties and dusty grains energy are discussed.

  7. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    NASA Astrophysics Data System (ADS)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  8. The Polar Crust Project- BSC Diversity and Variability in the Arctic and Antarctica

    NASA Astrophysics Data System (ADS)

    Williams, Laura; Borchhardt, Nadine; Komisc-Buchmann, Karin; Becker, Burkhard; Karsten, Ulf; Büdel, Burkhard

    2015-04-01

    The Polar Crust Project is a newly funded DFG initiative that aims to provide a precise evaluation of the biodiversity of eukaryotic green microalgae and cyanobacteria in Biological Soil Crusts (BSC) isolated from the Antarctic Peninsula and Arctic Svalbard. This project will include a thorough investigation into the composition of BSC in the Polar regions, this especially is important for Svalbard due to the severe lack of any previous research on such communities in this area. During our expedition to Spitsbergen, Svalbard in August 2014 we were particularly surprised to find that the coverage of BSC is extremely high and is certainly the dominant vegetation type around Ny Ålesund. Due to this discovery the project has now been extended to include long term measurements of CO2 gas exchange in order to gain exact seasonal carbon fixation rates and therefore discovering how the BSC contributes to the ecosystems carbon balance. The research areas of Spitsbergen were centred around 2 localities: Ny-Ålesund is a research town, home to the AWIPEV station, on the Brøgger peninsula. Longyearbyen, which is the largest settlement on the island, is found in the valley Longyeardalen on the shore of Adventfjorden. Areas where BSC is the prevalent vegetation type were identified, 6 around Ny-Ålesund and 4 for Longyearbyen, and vegetation surveys were conducted. This entailed 625 single point measurements at each site and identifying the crust/or other cover type. For example, green algal lichen, cyanobacterial crust, higher plant, open soil. Samples were also taken at every location in order to study the green algal and cyanobacterial diversity. The vegetation survey will allow us to get a good overview of the BSC composition at the different sites. In January 2015 an expedition to the Antarctic Peninsular took place, here the sampling method was repeated and therefore both Polar Regions BSC composition can be described and compared. Here, we wish to introduce the Polar

  9. New areas of polar lows over the Arctic as a result of the decrease in sea ice extent

    NASA Astrophysics Data System (ADS)

    Zabolotskikh, E. V.; Gurvich, I. A.; Chapron, B.

    2015-12-01

    Three mesocyclones (MCs) over the Russian (Eastern) Arctic are investigated using multispectral satellite remote sensing data, surface analysis maps, and reanalysis data. Advanced retrieval algorithms are used for estimating the geophysical parameter from satellite passive microwave measurements. These methods allow reconstructing in full the geophysical parameter fields characterizing polar lows. Synoptic analysis along with cloud image, atmospheric water vapor content, cloud liquid water content, and sea surface wind speed field analysis show that, while the Arctic sea ice retreats, new areas of open water appear where MCs can arise. A detailed study of several polar low cases reveals the typical conditions of their formation and development. Further studies are in demand due to the danger of MC extreme events for navigation, transport, and fishery operations in these unexplored regions.

  10. Long term changes in the polar vortices

    NASA Astrophysics Data System (ADS)

    Braathen, Geir O.

    2015-04-01

    As the amount of halogens in the stratosphere is slowly declining and the ozone layer slowly recovers it is of interest to see how the meteorological conditions in the vortex develop over the long term since such changes might alter the foreseen ozone recovery. In conjunction with the publication of the WMO Antarctic and Arctic Ozone Bulletins, WMO has acquired the ERA Interim global reanalysis data set for several meteorological parameters. This data set goes from 1979 - present. These long time series of data can be used for several useful studies of the long term development of the polar vortices. Several "environmental indicators" for vortex change have been calculated, and a climatology, as well as trends, for these parameters will be presented. These indicators can act as yardsticks and will be useful for understanding past and future changes in the polar vortices and how these changes affect polar ozone depletion. Examples of indicators are: vortex mean temperature, vortex minimum temperature, vortex mean PV, vortex "importance" (PV*area), vortex break-up time, mean and maximum wind speed. Data for both the north and south polar vortices have been analysed at several isentropic levels from 350 to 850 K. A possible link between changes in PV and sudden stratospheric warmings will be investigated, and the results presented.

  11. Integrating Access to Arctic Environmental Change and Human Health Research for the International Polar Year and Beyond

    NASA Astrophysics Data System (ADS)

    Garrett, C. L.

    2006-12-01

    hosting the Arctic Human Health Initiative (AHHI), the human health focus of the International Polar Year activities. AHHI will coordinate research in the areas of infectious disease; the effects of anthropogenic pollution, UV radiation, and climate variability on human health; and telehealth innovations. A major goal of AHHI is the better integration of the findings of Arctic health research through outreach programs and public education.

  12. A comparison of Arctic lower stratospheric winter temperatures for 1988-89 with temperatures since 1964

    NASA Technical Reports Server (NTRS)

    Nagatani, Ronald M.; Miller, Alvin J.; Gelman, Melvyn E.; Newman, Paul A.

    1990-01-01

    Lower stratospheric temperatures during the Airborne Arctic Stratospheric Expedition are compared with temperatures available since January, 1964. January, 1989, was the coldest averaged January in the last 26 years at high latitude, lower stratospheric levels. There have been other months with temperatures almost as low as the level of January, 1989, and localized temperatures (e.g., minimum polar vortex temperatures) have been lower than that encountered in January 1989. February, 1989, was warmer than average and March, 1989, had some of the highest polar vortex temperatures in the last 26 years. Conditions were therefore not very favorable for Polar Stratospheric Cloud (PSC) formation into early spring.

  13. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam

    PubMed Central

    Tian, Nian; Fu, Ling; Gu, Min

    2015-01-01

    We extend the subtractive imaging method to label-free second harmonic generation (SHG) microscopy to enhance the spatial resolution and contrast. This method is based on the intensity difference between two images obtained with circularly polarized Gaussian and doughnut-shaped beams, respectively. By characterizing the intensity and polarization distributions of the two focused beams, we verify the feasibility of the subtractive imaging method in polarization dependent SHG microscopy. The resolution and contrast enhancement in different biological samples is demonstrated. This work will open a new avenue for the applications of SHG microscopy in biomedical research. PMID:26364733

  14. Synchronous polar winter starphotometry and lidar measurements at a High Arctic station

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Ivanescu, L.; Duck, T. J.; Perro, C.; Herber, A.; Schulz, K.-H.; Schrems, O.

    2015-09-01

    We present recent progress on nighttime retrievals of aerosol and cloud optical properties over the PEARL (Polar Environmental Atmospheric Research Laboratory) station at Eureka (Nunavut, Canada) in the High Arctic (80° N, 86° W). In the spring of 2011 and 2012, a star photometer was employed to acquire aerosol optical depth (AOD) data, while vertical aerosol and cloud backscatter profiles were measured using the CANDAC Raman Lidar (CRL). We used a simple backscatter coefficient threshold (βthr) to distinguish aerosols from clouds and, assuming that aerosols were largely fine mode (FM)/sub-micron, to distinguish FM aerosols from coarse mode (CM)/super-micron cloud or crystal particles. Using prescribed lidar ratios, we computed FM and CM AODs that were compared with analogous AODs estimated from spectral star photometry. We found (βthr dependent) coherences between the lidar and star photometer for both FM events and CM cloud and crystal events with averaged, FM absolute differences being <∼0.03 when associated R2 values were between 0.2 and 0.8. A βthr sensitivity study demonstrated that zero crossing absolute differences and R2 peaks were in comparable regions of the βthr range (or physical reasons were given for their disparity). The utility of spectral vs. temporal cloud screening of star photometer AODs was also illustrated. In general our results are critical to building confidence in the physical fidelity of derived, weak amplitude, star photometry AODs and, in turn, towards the development of AOD climatologies and validation databases for polar winter models and satellite sensors.

  15. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor.

    PubMed

    Nguyen, Tan T; Landfald, Bjarne

    2015-01-01

    Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57-66% of bacterial sequence reads). The Archaea, which constituted 0.7-1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments.

  16. Leveraging scientific credibility about Arctic sea ice trends in a polarized political environment

    PubMed Central

    Hall Jamieson, Kathleen; Hardy, Bruce W.

    2014-01-01

    This work argues that, in a polarized environment, scientists can minimize the likelihood that the audience’s biased processing will lead to rejection of their message if they not only eschew advocacy but also, convey that they are sharers of knowledge faithful to science’s way of knowing and respectful of the audience’s intelligence; the sources on which they rely are well-regarded by both conservatives and liberals; and the message explains how the scientist arrived at the offered conclusion, is conveyed in a visual form that involves the audience in drawing its own conclusions, and capsulizes key inferences in an illustrative analogy. A pilot experiment raises the possibility that such a leveraging–involving–visualizing–analogizing message structure can increase acceptance of the scientific claims about the downward cross-decade trend in Arctic sea ice extent and elicit inferences consistent with the scientific consensus on climate change among conservatives exposed to misleadingly selective data in a partisan news source. PMID:25225380

  17. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor

    PubMed Central

    Nguyen, Tan T.; Landfald, Bjarne

    2015-01-01

    Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57–66% of bacterial sequence reads). The Archaea, which constituted 0.7–1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments. PMID:25667586

  18. Analysis of the physical state of one Arctic polar stratospheric cloud based on observations

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Tabazadeh, A.; Turco, R. P.; Jacobson, M. Z.; Dye, J. E.; Twohy, C.; Baumgardner, D.

    1994-01-01

    During the Arctic Airborne Stratospheric Expedition (AASE) simultaneous measurements of aerosol size distribution and NO(y)(HN03 + NO + NO2 + 2(N205)) were made along ER-2 flight paths. The flow characteristics of the NO(y) instrument allow us to derive the condensed NO(y) amount (assumed to be HN03) present during polar stratospheric cloud (PSC) events. Analysis of the January 24th flight indicates that this condensed HN03 amount does not agree well with the aerosol volume if the observed PSCs are composed of solid nitric acid trihydrate (NAT), as is generally assumed. However, the composition agrees well with that predicted for liquid H2S04/HN03/H20 solution droplets using a new Aerosol Physical Chemistry Model (APCM). The agreement corresponds in detail to variations in temperature and humidity. The weight percentages of H2SO4, HN03, and H2O derived from the measurements all correspond to those predicted for ternary, liquid solutions.

  19. Airborne lidar observations in the wintertime Arctic stratosphere - Ozone

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Carter, A. F.; Butler, C. F.; Fenn, M. A.; Kooi, S. A.; Tuck, A. F.; Toon, O. B.; Loewenstein, M.; Schoeberl, M. R.

    1990-01-01

    Large-scale distributions of ozone (O3) were measured with an airborne lidar system as part of the 1989 Airborne Arctic Stratospheric Expedition. Measurements of O3 distributions were obtained between January 6 and February 15, 1989, on 15 long-range flights into the polar vortex from the Solar Air Station, Norway. The observed O3 distribution was found to clearly indicate the edge of the polar vortex and to be an effective tracer of dynamical processes in the lower stratosphere. On the last two flights of the expedition, large regions with reduced O3 levels were observed by the lidar inside the polar vortex. Ozone had decreased by as much as 17 percent in the center of these areas, and using the in situ measurements made on the ER-2 aircraft, it was concluded that this decline was due to chemical O3 destruction.

  20. Quantifying the response strength of the southern stratospheric polar vortex to Indian Ocean warming in austral summer

    NASA Astrophysics Data System (ADS)

    Li, Shuanglin; Chen, Xiaoting

    2014-03-01

    A previous multiple-AGCM study suggested that Indian Ocean Warming (IOW) tends to warm and weaken the southern polar vortex. Such an impact is robust because of a qualitative consistency among the five AGCMs used. However, a significant difference exists in the modeled strengths, particularly in the stratosphere, with those in three of the AGCMs (CCM3, CAM3, and GFS) being four to five times as strong as those in the two other models (GFDL AM2, ECHAM5). As to which case reflects reality is an important issue not only for quantifying the role of tropical ocean warming in the recent modest recovery of the ozone hole over the Antarctic, but also for projecting its future trend. This issue is addressed in the present study through comparing the models' climatological mean states and intrinsic variability, particularly those influencing tropospheric signals to propagate upward and reach the stratosphere. The results suggest that differences in intrinsic variability of model atmospheres provide implications for the difference. Based on a comparison with observations, it is speculated that the impact in the real world may be closer to the modest one simulated by GFDL AM2 and ECHAM5, rather than the strong one simulated by the three other models (CCM3, CAM3 and GFS). In particular, IOW during the past 50 years may have dynamically induced a 1.0°C warming in the polar lower stratosphere (˜ 100 hPa), which canceled a fraction of radiative cooling due to ozone depletion.

  1. POLAR-UVI and other Coordinated Observations of a Traveling Convection Vortex Event Observed on 24 July 1996

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Baker, J. B.; Ridley, A. J.; Sitar, R. J.; Papitashvili, V. O.; Cumnock, J.; Spann, J. F., Jr.; Brittnacher, M. J.; Parks, G. K.

    1997-01-01

    Coordinated analysis of data from the POLAR UVI instrument, ground magnetometers, incoherent scatter radar, solar wind monitors IMP-8 and WIND, and DMSP satellite is focused on a traveling convection vortex (TCV) event on 24 July 1966. Starting at 10:48 UT, ground magnetometers in Greenland and eastern Canada measure pulsations consistent with the passing overhead of a series of alternating TCV field-aligned current pairs. Sondrestrom incoherent scatter radar measures strong modulation of the strength and direction of ionospheric plasma flow, The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 11:39 UT, at which time the UVI instrument measures a localized intensification of auroral emissions over central and western Greenland. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 11:58 UT at which time the emissions fade. These observations are consistent with the westward passage of two pairs of moderately intense TCVs over central Greenland followed by a third very intense TCV pair. The intensification of auroral emissions at 11:39 UT is associated with the trailing vortex of the third TCV pair, thought to be the result of an upward field-aligned current. Measurements of the solar wind suggest that a pressure change may be responsible for triggering the first two pairs of TCVS, and that a subsequent sudden change in orientation of the IMF may have produced the intensification of the third TCV pair and the associated aurora] brightening. DMSP particle data indicate that the TCVs occur on field lines which map to the boundary plasma sheet or outer edge of the low latitude boundary layer.

  2. Changes in aerobic performance, body composition, and physical activity in polar explorers during a year-long stay at the polar station in the Arctic

    NASA Astrophysics Data System (ADS)

    Maciejczyk, Marcin; Araźny, Andrzej; Opyrchał, Marta

    2016-09-01

    The aim of this study was to evaluate changes in physical activity, aerobic performance, and body composition in polar explorers during a 1-year stay at the polar station. The study group consisted of 10 people, including 8 men and 2 women. Aerobic performance (maximal oxygen uptake), physical activity, body mass, and composition were evaluated for the polar explores of the Polish Polar Station prior to departure, and then during their stay at the station for a period of 1 year. The measurements were performed every 3 months. Compared to the measurements taken before going to the polar station, aerobic performance significantly (p = 0.02) increased in the first 3 months of residing at the polar station and then remained relatively stable for the following duration of the stay. In the first 3 months of the stay, we also observed the highest level of physical activity in participants. In the polar explorers, no significant (p > 0.05) body fatness changes were noted. Nonetheless, lean body mass, body mass, and BMI significantly increased compared to the measurements taken before departure to the polar station. The greatest changes in aerobic performance, physical activity, and body composition were observed during the first 3 months after arrival to the Arctic and then, despite changing biometeorological conditions, they remained stable for the next months of the stay. We recommend the introduction of a physical preparation program before departing to the polar station to improve explorers' physical fitness, so that they can meet the physical challenges they are faced with immediately after arrival to the polar station.

  3. Changes in aerobic performance, body composition, and physical activity in polar explorers during a year-long stay at the polar station in the Arctic.

    PubMed

    Maciejczyk, Marcin; Araźny, Andrzej; Opyrchał, Marta

    2016-09-14

    The aim of this study was to evaluate changes in physical activity, aerobic performance, and body composition in polar explorers during a 1-year stay at the polar station. The study group consisted of 10 people, including 8 men and 2 women. Aerobic performance (maximal oxygen uptake), physical activity, body mass, and composition were evaluated for the polar explores of the Polish Polar Station prior to departure, and then during their stay at the station for a period of 1 year. The measurements were performed every 3 months. Compared to the measurements taken before going to the polar station, aerobic performance significantly (p = 0.02) increased in the first 3 months of residing at the polar station and then remained relatively stable for the following duration of the stay. In the first 3 months of the stay, we also observed the highest level of physical activity in participants. In the polar explorers, no significant (p > 0.05) body fatness changes were noted. Nonetheless, lean body mass, body mass, and BMI significantly increased compared to the measurements taken before departure to the polar station. The greatest changes in aerobic performance, physical activity, and body composition were observed during the first 3 months after arrival to the Arctic and then, despite changing biometeorological conditions, they remained stable for the next months of the stay. We recommend the introduction of a physical preparation program before departing to the polar station to improve explorers' physical fitness, so that they can meet the physical challenges they are faced with immediately after arrival to the polar station.

  4. Space weather monitoring by ground-based means carried out in Polar Geophysical Center at Arctic and Antarctic Research Institute

    NASA Astrophysics Data System (ADS)

    Janzhura, Alexander

    A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is

  5. Persistence of the Lower Stratospheric Polar Vortices

    NASA Technical Reports Server (NTRS)

    Waugh, Darryn W.; Randel, William J.; Pawson, Steven; Newman, Paul A.; Nash, Eric R.

    1999-01-01

    The persistence of the Arctic and Antarctic lower stratospheric vortices is examined over the period 1958 to 1998. Three different vortex-following diagnostics (two using potential vorticity and one based solely on the zonal winds) are compared, and shown to give very similar results for the break up date. The variability in the timing of the breakup of each vortex is qualitatively the same: there are large interannual variations together with smaller decadal-scale variations and there is a significant increase in the persistence since the mid-1980s (all variations are larger for the Arctic vortex). Also, in both hemispheres there is a high correlation between the persistence and the strength and coldness of the spring vortex, with all quantities having the same interannual and decadal variability. However, there is no such correlation between the persistence and the characteristics of the mid-winter vortex. In the northern hemisphere there is also a high correlation between the vortex persistence and the upper tropospheric/lower stratospheric eddy heat flux averaged over the two months prior to the breakup. This indicates that the variability in the wave activity entering the stratosphere over late-winter to early-spring plays a key role in the variability of the vortex persistence (and spring polar temperatures) on both interannual and decadal time scales. However, the decadal variation in the Arctic vortex coldness and persistence for the 1990's falls outside the range of natural variability, while this is not the case for the eddy heat flux. This suggests that the recent increase in vortex persistence is not due solely to changes in the wave activity entering the stratosphere.

  6. What Controls the Arctic Lower Stratosphere Temperature?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.

  7. Relative importance of dynamical and chemical contributions to Arctic wintertime ozone

    NASA Astrophysics Data System (ADS)

    Tegtmeier, S.; Rex, M.; Wohltmann, I.; Krüger, K.

    2008-09-01

    We present the first complete budget of the interannual variability in Arctic springtime ozone taking into account anthropogenic chemical and natural dynamical processes. For the winters 1991/1992 to 2003/2004 the Arctic chemical ozone loss is available from observations. This work investigates the dynamical supply of ozone to the Arctic polar vortex due to mean transport processes for the same winters. The ozone supply is quantified in a vortex-averaged framework using estimates of diabatic descent over winter. We find that the interannual variability of both dynamical ozone supply and chemical ozone loss contribute, in equal shares, to the variability of the total ozone change. Moreover, together they explain nearly all of the interannual variability of Arctic springtime column ozone. Variability in planetary wave activity, characterized by the Eliassen-Palm flux at 100 hPa, contributes significantly to the variability of ozone supply, chemical ozone loss and total springtime ozone.

  8. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in the Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Kauristie, Kirsti; Weatherwax, Allan T.; Sheehan, Glenn W.; Smith, Roger W.; Sandahl, Ingrid; Ostgaard, Nikolai; Chernouss, Sergey; Thompson, Barbara J.; Peticolas, Laura; Moore, Marla H.; Senske, David A.; Tamppari, Leslie K.; Lewis, Elaine M.

    2008-01-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2808 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun- Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedidpodcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference

  9. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in The Solar System

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Kauristie, K.; Weatherwax, A. T.; Sheehan, G. W.; Smith, R. W.; Sandahl, I.; Østgaard, N.; Chernouss, S.; Moore, M. H.; Peticolas, L. M.; Senske, D. A.; Thompson, B. J.; Tamppari, L. K.; Lewis, E. M.

    2008-09-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2008 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun-Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedia/podcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference

  10. The Temperature of the Arctic and Antarctic Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.

  11. ArtArctic Science: a polarTREC effort to educate about Antarctica through art

    NASA Astrophysics Data System (ADS)

    Botella, J.; Racette, B.

    2013-12-01

    Formal scientific education is as important as ever for raising awarness about Antarctic issues, but some people resistance to learning about scienctific issues demands novel approaches for reaching people who are not in the classroom. ArtArctic Science is an interactive exhibit of photography and paintings presented at the Overture Center for the Arts, in Madison, WI by Monona Grove High School students and a science teacher that attempts to educate the general audience about Antarctic science. The exhibit explores art as a form of perceiving and understanding the world around us, and as a way of igniting the spark of curiosity that can lead to scientific inquiries. Antarctica has inspired explorers and scientists for over 100 years, and we add our work to efforts that share scientific results with common people. Antarctica offers stunning views of amazing geometric ice structures complemented and contrasted by the organisms that inhabit it that fascinate most everyone. We probe these scenes through photography and paintings knowing that there is more in each image than what the eye can 'see'. We invite the viewer to discover these secrets by engaging the observer in a mimicking of the scientific method (observation, questioning, finding an explanation, revising the explanation). Each art piece has a question and a scientific explanation hidden under a wooden lid. The observer is invited to explore the scene, involve itself with the scientific query, come up with an answer, and compare his or her idea with the hidden explanation. The exhibit is inspired by an Antarctic PolarTREC expedition in which our science teacher participated as a member of a scientific research team. In this presentation we share the knowledge acquired through this experience in hopes that it will help others attempting a similar Project.

  12. Closing the loop - Approaches to monitoring the state of the Arctic Mediterranean during the International Polar Year 2007-2008

    NASA Astrophysics Data System (ADS)

    Mauritzen, C.; Hansen, E.; Andersson, M.; Berx, B.; Beszczynska-Möller, A.; Burud, I.; Christensen, K. H.; Debernard, J.; de Steur, L.; Dodd, P.; Gerland, S.; Godøy, Ø.; Hansen, B.; Hudson, S.; Høydalsvik, F.; Ingvaldsen, R.; Isachsen, P. E.; Kasajima, Y.; Koszalka, I.; Kovacs, K. M.; Køltzow, M.; LaCasce, J.; Lee, C. M.; Lavergne, T.; Lydersen, C.; Nicolaus, M.; Nilsen, F.; Nøst, O. A.; Orvik, K. A.; Reigstad, M.; Schyberg, H.; Seuthe, L.; Skagseth, Ø.; Skarðhamar, J.; Skogseth, R.; Sperrevik, A.; Svensen, C.; Søiland, H.; Teigen, S. H.; Tverberg, V.; Wexels Riser, C.

    2011-07-01

    During the 4th International Polar Year 2007-2009 (IPY), it has become increasingly obvious that we need to prepare for a new era in the Arctic. IPY occurred during the time of the largest retreat of Arctic sea ice since satellite observations started in 1979. This minimum in September sea ice coverage was accompanied by other signs of a changing Arctic, including the unexpectedly rapid transpolar drift of the Tara schooner, a general thinning of Arctic sea ice and a double-dip minimum of the Arctic Oscillation at the end of 2009. Thanks to the lucky timing of the IPY, those recent phenomena are well documented as they have been scrutinized by the international research community, taking advantage of the dedicated observing systems that were deployed during IPY. However, understanding changes in the Arctic System likely requires monitoring over decades, not years. Many IPY projects have contributed to the pilot phase of a future, sustained, observing system for the Arctic. We now know that many of the technical challenges can be overcome. The Norwegian projects iAOOS-Norway, POLEWARD and MEOP were significant ocean monitoring/research contributions during the IPY. A large variety of techniques were used in these programs, ranging from oceanographic cruises to animal-borne platforms, autonomous gliders, helicopter surveys, surface drifters and current meter arrays. Our research approach was interdisciplinary from the outset, merging ocean dynamics, hydrography, biology, sea ice studies, as well as forecasting. The datasets are tremendously rich, and they will surely yield numerous findings in the years to come. Here, we present a status report at the end of the official period for IPY. Highlights of the research include: a quantification of the Meridional Overturning Circulation in the Nordic Seas (“ the loop”) in thermal space, based on a set of up to 15-year-long series of current measurements; a detailed map of the surface circulation as well as

  13. United States Naval Academy Polar Science Program's Visual Arctic Observing Platforms; IceGoat and IceKids

    NASA Astrophysics Data System (ADS)

    Woods, J. E.; Rigor, I. G.; Valentic, T. A.

    2013-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Observing Platforms. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Engineering Departments, and in close collaboration with SRI International, developed the USNA Visual Arctic Observing Platforms. The experience gained through Polar field studies and data derived from these platforms will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 (IG1) off the USCGC HEALY in September, 2012. IG1 suffered a malfunction to its solar powered webcam system upon deployment, but is still reporting via ARGOS SATCOM systems basic weather parameters of air temperature, pressure, and position. USNA PSP attempted to build a less robust, but more economical system integrating similar low power observing platforms housed in heavy duty coolers. This allowed for a streamlined process to get a complete system completed in one academic year. IceKids (IK) are similar observing platforms, just not designed to float once the sea ice melts. IK1 was deployed to Antarctica from October 2012 through January 2013 and captured over 11,000 web cam images in near real time of two remote environmental monitoring stations. IK2A and IK3T were built to be deployed at the Naval Academy Ice Experiment in Barrow, AK in March 2013. IK2A was unique in trying to collect and transmit underwater acoustic signals in near real time. The system integrated a passive hydrophone into the already developed low power data transport system

  14. On the atmospheric response experiment to a Blue Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Nakamura, Tetsu; Yamazaki, Koji; Honda, Meiji; Ukita, Jinro; Jaiser, Ralf; Handorf, Dörthe; Dethloff, Klaus

    2016-10-01

    We demonstrated atmospheric responses to a reduction in Arctic sea ice via simulations in which Arctic sea ice decreased stepwise from the present-day range to an ice-free range. In all cases, the tropospheric response exhibited a negative Arctic Oscillation (AO)-like pattern. An intensification of the climatological planetary-scale wave due to the present-day sea ice reduction on the Atlantic side of the Arctic Ocean induced stratospheric polar vortex weakening and the subsequent negative AO. Conversely, strong Arctic warming due to ice-free conditions across the entire Arctic Ocean induced a weakening of the tropospheric westerlies corresponding to a negative AO without troposphere-stratosphere coupling, for which the planetary-scale wave response to a surface heat source extending to the Pacific side of the Arctic Ocean was responsible. Because the resultant negative AO-like response was accompanied by secondary circulation in the meridional plane, atmospheric heat transport into the Arctic increased, accelerating the Arctic amplification.

  15. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, L.; Backman, L.; Kivi, R.; Karpechko, A.

    2015-08-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry climate model simulation covering years 1990-2013 is compared to observations (satellite and frostpoint hygrometer soundings) and the sources of stratospheric water vapour are studied. According to observations and the simulations the water vapour concentration in the Arctic stratosphere started to increase after year 2006, but around 2011 the concentration started to decrease. Model calculations suggest that the increase in water vapour during 2006-2011 (at 56 hPa) is mostly explained by transport related processes, while the photochemically produced water vapour plays a relatively smaller role. The water vapour trend in the stratosphere may have contributed to increased ICE PSC occurrence. The increase of water vapour in the precense of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. The polar vortex was unusually cold in early 2010 and allowed large scale formation of the polar stratospheric clouds. The cold pool in the stratosphere over the Northern polar latitudes was large and stable and a large scale persistent dehydration was observed. Polar stratospheric ice clouds and dehydration were observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT atmospheric sounding campaign. The observed changes in water vapour were reproduced by the model. Both the observed and simulated decrease of the water vapour in the dehydration layer was up to 1.5 ppm.

  16. Remote-sensing measurements in the polar vortex: Comparison to in situ observations and implications for the simultaneous retrievals and analysis of the NO2 and OClO species

    NASA Astrophysics Data System (ADS)

    Berthet, G.; Renard, J.-B.; Catoire, V.; Chartier, M.; Robert, C.; Huret, N.; Coquelet, F.; Bourgeois, Q.; RivièRe, E. D.; Barret, B.; LefèVre, F.; Hauchecorne, A.

    2007-11-01

    Nighttime remote-sensing balloon observations conducted by the SALOMON instrument in the arctic polar vortex in January 2006 reveal high amounts of stratospheric NO2 in the lower stratosphere similarly to previously published profiles. NO2 concentration enhancements are also present in the vertical profiles observed by the GOMOS instrument on board the Envisat satellite and obtained coincidently to the balloon measurements. Such quantities are not present in in situ observations obtained by the SPIRALE instrument in similar geophysical conditions. While OClO amounts are acceptably reproduced by Chemistry Transport Model (CTM) calculations, NO2 simulated values are well below the observed quantities. The examination of the slant column densities of NO2 obtained at float altitude highlights unexpected strong enhancements with respect to the elevation angle and displacement of the balloon. It is shown that these fluctuations result from NO2 spatial inhomogeneities located above the balloon float altitude. Potential vorticity maps reveal the presence of midlatitude NO2-rich air in the upper stratosphere or lower mesosphere as a result of the perturbed dynamical situation of the vortex. The presence of spatial inhomogeneities crossed by the lines of sight leads to artificial high concentration values of NO2 in the vertical profile retrieved from the slant column densities assuming spatial homogeneity. A direct implication is that the differences previously observed between measurements of NO2 and OClO and model results are probably mostly due to the improper inversion of NO2 in the presence of perturbed dynamical conditions or when mesospheric NOx production events occur. The dynamical situation will have to be systematically analyzed in future studies involving remote-sensing observations.

  17. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic.

    PubMed

    St Louis, Vincent L; Derocher, Andrew E; Stirling, Ian; Graydon, Jennifer A; Lee, Caroline; Jocksch, Erin; Richardson, Evan; Ghorpade, Sarah; Kwan, Alvin K; Kirk, Jane L; Lehnherr, Igor; Swanson, Heidi K

    2011-07-15

    Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 μg g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 μg g(-1)). On the basis of δ(15)N signatures in hair, in conjunction with published δ(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are ∼ 4.7 and ∼ 4.0 trophic levels long, whereas in WHB they are only ∼ 3.6 and ∼ 3.3 trophic levels long. Furthermore, the more depleted δ(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for ∼ 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western

  18. Arctic chemical Ozone Loss Observed by the AROTEL Instrument during the SOLVE Campaign, December 1999 - March 2000

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Newman, Paul; Heaps,William; Silbert, Donald; Lait, Leslie; Sumnicht, Grant; Twigg, Laurence

    2000-01-01

    During the winter of 1999-2000, the AROTEL instrument was deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss Validation Experiment (SOLVE). Measurements of ozone, temperature and aerosols were made on 18 local science flights from December to March. Extremely low temperatures were observed throughout most of the Arctic vortex and polar stratospheric clouds were observed throughout the Arctic area during January. Significant ozone loss was measured after the sun began to rise on the vortex area in February. Ozone mixing ratios as low as 800 ppbv were observed during flights in March.

  19. Chlorine Partitioning in the Arctic Vortex During Winter 1995 Derived From Submillimeterwave Remote Sensing and in Situ Constituent Measurements

    NASA Technical Reports Server (NTRS)

    Stachnik, R. A.; Hardy, J. C.; Engel, A.; Schmidt, U.

    1995-01-01

    High altitude balloon flights of a combined payload of the Submillimeterwave Limb Sounder and the whole air sampler instruments were performed on 27 January 1995 and 08 March 1995. Both flights were launched from sweden as part of the Second European Stratospheric Arctic and Mid-latitude Experiment (SESAME). Results of the first flight suggest that most of the available chlorine had been converted to CLOx in the observed air parcel, while warmer air in the second flight had much more HCl than CLOx.

  20. On the relationship between weakening of the northern polar vortex and the lunar tidal amplification in the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Tarique A.; Stolle, Claudia; Lühr, Hermann; Matzka, Jürgen

    2015-11-01

    Enhanced lunar tidal effects in the equatorial electrojet (EEJ) during northern winters in the form of "big L" days have been known for a long time. Recent studies suggest that the changes in the tidal propagation conditions due to stratospheric sudden warmings could be responsible for this phenomenon. In this work we have used the H component of the magnetic field recorded at Huancayo from 1997 to 2013 to study the relation between the timing and magnitude of the semimonthly lunar tide in the EEJ and the stratospheric polar vortex weakening (PVW). We prefer a definition of PVW by taking into account the atmospheric conditions from December to February for each winter. Our results indicate that the semimonthly lunar tide in the EEJ gets enhanced during northern winters when a significant PVW occurs and its peak timing and magnitude is correlated with the timing and intensity of PVW. The timing of lunar tidal peaks and PVW correlate better than their respective magnitudes. Our results suggest that the initiation of the lunar tidal enhancement in most of the cases is closely related to a PVW event. Furthermore, we discuss events where the semimonthly lunar tidal enhancements are not well timed with respect to PVW. We also suggest that the amount of tropospheric forcing into the stratosphere plays a major role in the enhancement of the lunar tides in the EEJ.

  1. A comparison of polar vortex response to Pacific and Indian Ocean warming

    NASA Astrophysics Data System (ADS)

    Li, Shuanglin

    2010-05-01

    During recent decades, the tropical Indo-Pacific Ocean has become increasingly warmer. Meanwhile, both the northern and southern hemispheric polar vortices (NPV and SPV) have exhibited a deepening trend in boreal winter. Although previous studies have revealed that the tropical Indian Ocean warming (IOW) favors an intensifying NPV and a weakening SPV, how the tropical Pacific Ocean warming (POW) influences the NPV and SPV remains unclear. In this study, a comparative analysis has been conducted through ensemble atmospheric general circulation model (AGCM) experiments. The results show that, for the Northern Hemisphere, the two warmings exerted opposite impacts in boreal winter, in that the IOW intensified the NPV while the POW weakened the NPV. For the Southern Hemisphere, both the IOW and POW warmed the southern polar atmosphere and weakened the SPV. A diagnostic analysis based on the vorticity budget revealed that such an interhemispheric difference in influences from the IOW and POW in boreal winter was associated with different roles of transient eddy momentum flux convergence between the hemispheres. Furthermore, this difference may have been linked to different strengths of stationary wave activity between the hemispheres in boreal winter.

  2. Multi-Instrument Analysis of a Traveling Convection Vortex Event on July 24, 1996 Coordinated with the Polar UVI

    NASA Technical Reports Server (NTRS)

    Sitar, R. J.; Clauer, C. R.; Baker, J. B.; Ridley, A. J.; Cumnock, J.; Germany, G. A.; Spann, J. F., Jr.; Brittnacher, M. J.; Parks, G. K.

    1998-01-01

    We present the analysis of a coordinated set of observations from the POLAR Ultraviolet Imager (UVI), ground magnetometers, incoherent scatter radar, solar wind monitors, DMSP and GOES satellites, focused on a traveling convection vortex (TCV) event on 24th July 1996. Starting at approximately 10:48 UT, around magnetometers in Greenland and northern Canada observe pulsations consistent with the passing overhead of a series of alternating TCV filed-aligned current pairs. Azimuthal scans by the Sondrestrom incoherent scatter radar located near Kangerlussuaq (formerly Sondrestrom), Greenland, at this time show strong modulation in the strength and direction of ionospheric plasma flow. The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 11:39 UT, at which time images form the UVI instrument show a localized intensification of auroral emissions over central and western Greenland. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 11:58 UT at which time the intensification fades. These observations are consistent with the westward passage of two pairs of moderately intense TCVs over central Greenland followed by a third very intense TCV pair. The intensification of auroral emissions at 11:39 UT is associated with the trailing vortex of the third TCV pair, thought to be the result of an upward field aligned current. The modulated flow observed by the radar is the result of the strong electric fields associated with the impulsive TCV related field aligned current systems as they pass through the field of view of the radar. Measurements of the solar wind from the V;IND and IMP-8 spacecraft suggest that a pressure change may be responsible for triggering the first two pairs of TCVS, and that a subsequent sudden change in the orientation of the interplanetary magnetic field may have produced the intensification of the third TCV pair and the associated auroral brightening

  3. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Backman, Leif; Kivi, Rigel; Karpechko, Alexey Yu.

    2016-04-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry transport model simulation covering the years 1990-2014 is compared to observations (satellite and frost point hygrometer soundings), and the sources of stratospheric water vapour are studied. In the simulations, the Arctic water vapour shows decadal variability with a magnitude of 0.8 ppm. Both observations and the simulations show an increase in the water vapour concentration in the Arctic stratosphere after the year 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes, while the photochemically produced water vapour plays a relatively smaller role. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ice polar stratospheric clouds (PSCs) in the Arctic vortex. We perform a case study of ice PSC formation focusing on January 2010 when the polar vortex was unusually cold and allowed large-scale formation of PSCs. At the same time a large-scale persistent dehydration was observed. Ice PSCs and dehydration observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT (Lapland Atmosphere-Biosphere facility) atmospheric measurement campaign were well reproduced by the model. In particular, both the observed and simulated decrease in water vapour in the dehydration layer was up to 1.5 ppm.

  4. Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam.

    PubMed

    Yan, Weichao; Nie, Zhongquan; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2017-03-01

    Combining the vector diffraction theory with the inverse Faraday effect, we have theoretically studied magnetization shaping generated by tight focusing of an azimuthally polarized multi-Gaussian beam superimposed with a helical phase. By selecting optimized parameters of a multi-Gaussian beam and topological charge of a spiral phase plate, not only a super-long and sub-wavelength longitudinal magnetization needle with single/dual channels for a single-lens high numerical aperture focusing system, but also an extra-long and three-dimensional super-resolution longitudinal magnetization chain with single/dual channels for a 4π high numerical aperture focusing system is achieved in the focal region. Furthermore, by continuously changing the phase difference between two counter-propagating beams, these super-long longitudinal magnetization chains with three-dimensional super-resolution can dynamically move along the z-axis. It is expected that these results pave the path for fabricating magnetic lattices for spin wave operation, multiple atoms or magnetic particle trapping and transportation, confocal and magnetic resonance microscopy, as well as multilayer ultrahigh density magnetic storage.

  5. Arctic Ocean circulation, processes and water masses: A description of observations and ideas with focus on the period prior to the International Polar Year 2007-2009

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2015-03-01

    The evolving knowledge of the Arctic Ocean, its hydrography and its water masses and their transformations and circulation is reviewed starting with the observations made on Fram 1893-1896 and extending to the International Polar Year (IPY) 2007-2009. The expeditions and observations after Fram to the mid 20th century as well as the more extensive and systematic studies of water masses and circulation made from ice stations and airborne expeditions from the late 1940s to the late 1970s are briefly described. The early concepts of the connections and exchanges between the Arctic Ocean and the world ocean are also discussed. In the 1980s scientific icebreakers were beginning to enter the inner parts of the Arctic Ocean and large international programmes were launched, culminating in the IPY. The changes in the Arctic Ocean, first noted in the Atlantic layer in 1990 and shortly after in the upper layers, are described. The exchanges between the Arctic Ocean and the surrounding seas through the four main openings, Fram Strait, Barents Sea, Bering Strait and the Canadian Arctic Archipelago as well the volume and freshwater balances of the Arctic Ocean are examined.

  6. Observational Evidence Against Mountain-Wave Generation of Ice Nuclei as a Prerequisite for the Formation of Three Solid Nitric Acid Polar Stratospheric Clouds Observed in the Arctic in Early December 1999

    NASA Technical Reports Server (NTRS)

    Pagan, Kathy L.; Tabazadeh, Azadeh; Drdla, Katja; Hervig, Mark E.; Eckermann, Stephen D.; Browell, Edward V.; Legg, Marion J.; Foschi, Patricia G.

    2004-01-01

    A number of recently published papers suggest that mountain-wave activity in the stratosphere, producing ice particles when temperatures drop below the ice frost point, may be the primary source of large NAT particles. In this paper we use measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by stratospheric mountain-wave activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid nitric acid (Type Ia or NAT) polar stratospheric clouds (PSCs). By using back trajectories and superimposing the position maps on the AVHRR cloud imagery products, we show that these observed NAT clouds could not have originated at locations of high-amplitude mountain-wave activity. We also show that mountain-wave PSC climatology data and Mountain Wave Forecast Model 2.0 (MWFM-2) raw hemispheric ray and grid box averaged hemispheric wave temperature amplitude hindcast data from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain waves cannot explain how at least three large scale NAT clouds were formed in the stratosphere in early December 1999.

  7. The International Polar Year, 2007-2008, an opportunity to focus on infectious diseases in Arctic regions.

    PubMed

    Parkinson, Alan J

    2008-01-01

    On 3 occasions over the past 125 years, scientists from around the world have worked together to organize scientific and exploration activities in polar regions (www.ipy.org). The first International Polar Year (IPY) in 1881-1884 marked the first major coordinated international scientific initiative to collect standardized meteorological and geophysical data in polar regions. Fifteen expeditions led by 12 nations amassed a large amount of data, but the scientific value was diminished by disjointed publication efforts and lack of long-term institutional commitment; lessons were learned and corrected in subsequent polar years. The second IPY began in 1932. Forty-four nations led expeditions in the Arctic and Antarctic, resulting in greater understanding of the aurora, magnetism, and meteorology. Air and marine navigation, radio operations, and weather forecasting were greatly improved as a result. The third IPY, in 1957-58, was renamed the International Geophysical Year and capitalized on technologic advances developed during World War II. Technologic and scientific momentum was redirected toward research, particularly to studies of the upper atmosphere, a legacy that continues to the present day. Notable achievements included launching the first satellite, measurement of atmospheric greenhouse gases, delineating the system of mid-ocean ridges, and confirming the theory of plate tectonics.

  8. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin

    NASA Astrophysics Data System (ADS)

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-06-01

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the `atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate.

  9. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin.

    PubMed

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-06-02

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the 'atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate.

  10. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin

    PubMed Central

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-01-01

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the ‘atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate. PMID:27251873

  11. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    SciTech Connect

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-08-13

    In this paper we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Finally, taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  12. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    DOE PAGES

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; ...

    2013-08-13

    In this paper we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relativemore » abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Finally, taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.« less

  13. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    PubMed Central

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost. PMID:23967218

  14. The Earth Is Faster Now: Indigenous Observations of Arctic Environmental Change. Frontiers in Polar Social Science.

    ERIC Educational Resources Information Center

    Krupnik, Igor, Ed.; Jolly, Dyanna, Ed.

    This book focuses on documenting and understanding the nature of environmental changes observed by indigenous residents of the Arctic. Common themes include increasing variability and unpredictability of the weather and seasonal climatic patterns, as well as changes in the sea ice and the health of wildlife. Nine papers focus on these changes,…

  15. Arctic Riverine CDOM and its effects on the Polar Marine Light Field

    SciTech Connect

    Orandle, Zoe Ann; Weijer, Wilbert; Elliott, Scott M.; Wang, Shanlin

    2016-09-28

    It is well-known that CDOM (Chromophoric Dissolved Organic Matter) can have a significant effect on biological activity in the photic zones of aquatic ecosystems. However, the extent of CDOM’s interference with biological activity is not well-known. We examined this issue in great detail in the mixed surface layer of the Arctic Ocean. We studied the impacts of CDOM’s light attenuation on Arctic phytoplankton populations to discover if riverine CDOM’s presence in the Arctic ocean could inhibit and possibly prevent local phytoplankton populations from performing photosynthesis. We incorporated biogeochemistry concepts and data with oceanographic models and calculations to approach the problem. The results showed that riverine CDOM can indeed significantly impact the productivity of phytoplankton populations during the spring and summer months near the major Arctic river mouths we chose to examine. Although our study was detailed and inclusive of many variables, the issue of CDOM’s light attenuation and its effects on phytoplankton populations must be explored on a global scale to help understand if riverine CDOM could prove disastrous for phytoplankton populations.

  16. Heterogeneous formation of polar stratospheric clouds-nucleation of nitric acid trihydrate (NAT) in the arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-05-01

    Satellite based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current theory, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid December 2009, a heterogeneous nucleation mechanism is required, occurring on the surface of dust or meteoritic particles. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along tens of thousands of trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarisation (CALIOP) observation points. Comparing the optical properties of the modelled NAT PSCs with these observations enables the thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory and is simple to implement in models. It is shown that the new method is capable of reproducing observed PSCs very well, despite the varied conditions experienced by air parcels travelling along the different trajectories.

  17. Arctic winter 2005: Implications for stratospheric ozone loss and climate change

    NASA Astrophysics Data System (ADS)

    Rex, M.; Salawitch, R. J.; Deckelmann, H.; von der Gathen, P.; Harris, N. R. P.; Chipperfield, M. P.; Naujokat, B.; Reimer, E.; Allaart, M.; Andersen, S. B.; Bevilacqua, R.; Braathen, G. O.; Claude, H.; Davies, J.; De Backer, H.; Dier, H.; Dorokhov, V.; Fast, H.; Gerding, M.; Godin-Beekmann, S.; Hoppel, K.; Johnson, B.; Kyrö, E.; Litynska, Z.; Moore, D.; Nakane, H.; Parrondo, M. C.; Risley, A. D.; Skrivankova, P.; Stübi, R.; Viatte, P.; Yushkov, V.; Zerefos, C.

    2006-12-01

    The Arctic polar vortex exhibited widespread regions of low temperatures during the winter of 2005, resulting in significant ozone depletion by chlorine and bromine species. We show that chemical loss of column ozone (ΔO3) and the volume of Arctic vortex air cold enough to support the existence of polar stratospheric clouds (VPSC) both exceed levels found for any other Arctic winter during the past 40 years. Cold conditions and ozone loss in the lowermost Arctic stratosphere (e.g., between potential temperatures of 360 to 400 K) were particularly unusual compared to previous years. Measurements indicate ΔO3 = 121 +/- 20 DU and that ΔO3 versus VPSC lies along an extension of the compact, near linear relation observed for previous Arctic winters. The maximum value of VPSC during five to ten year intervals exhibits a steady, monotonic increase over the past four decades, indicating that the coldest Arctic winters have become significantly colder, and hence are more conducive to ozone depletion by anthropogenic halogens.

  18. Radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1992-01-01

    Results are presented of a study of the radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASE) in which daily 3D Type I nitric acid trihydrate (NAT) and Type II water ice polar stratospheric clouds (PSCs) were generated in the polar regions during AAOE and the AASE aircraft missions. Mission data on particular composition and size, together with NMC-analyzed temperatures, are used. For AAOE, both Type I and Type II clouds were formed for the time period August 23 to September 17, after which only Type I clouds formed. During AASE, while Type I clouds were formed for each day between January 3 and February 10, Type II clouds formed on only two days, January 24 and 31. Mie theory and a radiative transfer model are used to compute the radiative heating rates during the mission periods, for clear and cloudy lower sky cases. Only the Type II water ice clouds have a significant radiative effect, with the Type I NATO PSCs generating a net heating or cooling of 0.1 K/d or less.

  19. Lidar observations of Arctic polar stratospheric clouds, 1988 - Signature of small, solid particles above the frost point

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Osborn, M. T.; Hunt, W. H.

    1988-01-01

    The paper presents recent (January 1988) Arctic airborne lidar data which suggest that Type I polar stratospheric clouds (PSCs) are composed of small solid particles with radii on the order of 0.5 micron. PSCs were observed remotely in the 21-24 km altitude range north of Greenland during a round-trip flight from Andenes, Norway on January 29, 1988, aboard the NASA Wallops Flight Facility P-3 Orion aircraft. Synoptic analyses at the 30-mb level show local temperatures of 191-193 K, which are well above the estimated frost point temperature of 185 K; this suggests that the PSCs were probably of the binary HNO3-H2O (Type I) class.

  20. Arctic Amplification and Potential Mid-Latitude Weather Linkages

    NASA Astrophysics Data System (ADS)

    Overland, J. E.

    2014-12-01

    Increasing temperatures and other changes continued in the Arctic over the last decade, even though the rate of global warming has decreased in part due to a cool Pacific Ocean. Thus Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures. Credibility for persistent Arctic change comes from multiple indicators which are now available for multiple decades. Further, the spatial pattern of Arctic Amplification differs from patterns of natural variability. The role of the Arctic in the global climate system is based on multiple interacting feedbacks represented by these indicators as a causal basis for Arctic Amplification driven by modest global change. Many of these processes act on a regional basis and their non-linear interactions are not well captured by climate models. For example, future loss of sea ice due to increases in CO2 are demonstrated by these models but the rates of loss appear slow. It is reasonable to suspect that Arctic change which can produce the largest temperature anomalies on the planet and demonstrate recent extremes in the polar vortex could be linked to mid-latitude weather, especially as Arctic change will continue over the next decades. The meteorological community remains skeptical, however, in the sense of "not proven." Natural variability in chaotic atmospheric flow remains the main dynamic process, and it is difficult to determine whether Arctic forcing of a north-south linkage is emerging from the most recent period of Arctic change since 2007. Nonetheless, such a hypothesis is worthy of investigation, given the need to further understand Arctic dynamic atmospheric processes, and the potential for improving mid-latitude seasonal forecasts base on high-latitude forcing. Several AGU sessions and other forums over the next year (WWRP, IASC,CliC) address this issue, but the topic is not ready for a firm answer. The very level of controversy indicates the state of the science.

  1. Distribution and inventories of polychlorinated biphenyls in the polar mixed layer of seven pan-arctic shelf seas and the interior basins.

    PubMed

    Carrizo, Daniel; Gustafsson, Örjan

    2011-02-15

    Assessment of the Arctic as a global repository of polychlorinated biphenyls (PCBs) and of uptake processes in the base of its marine food chain hinges on reliable information of PCB distribution in surface seawater, yet there is a scarcity of quality-assured PCB measurements in this key compartment. Here, surface seawater PCB concentrations and congener fingerprints are evaluated for all seven pan-Arctic shelf seas and for the interior basins. Particulate and dissolved PCBs were collected via trace-clean protocols on three basin-wide expeditions (AO-01, Beringia-2005, and ISSS-08). Concentrations of the sum of 13 abundant congeners (∑13PCB) were 0.13-21 pg/L, with higher concentrations in the shelf seas and lower concentrations in the Central Arctic Basin. Trichlorinated PCBs constituted about half of the total loadings in the Eastern Arctic (Beaufort, Chukchi, East Siberian, and Laptev Seas) and in the Central Basin, indicating an atmospheric source. In contrast, hexachlorinated PCBs were more abundant than tri-PCBs in the western sector, suggesting a role also for waterborne transport from regions of heavy PCB consumption in North America and Europe. Finally, the inventory of ∑13PCB in the polar mixed layer of the entire Arctic Ocean was 0.39 ton, which implies that only 0.0008% of historical PCB emissions are now residing in Arctic surface waters.

  2. Lidar Measurements of Aerosol and Ozone Distributions During the 1992 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Butler, C. F.; Fenn, M. A.; Grant, W. B.; Carter, A. F.

    1992-01-01

    The LaRC airborne lidar system was operated from the ARC DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition (ASEE-2) to investigate the distribution of stratospheric aerosols and O3 across the Arctic vortex from Jan. to Mar. 1992. Monthly flights were made across the Arctic vortex from Anchorage, Alaska, to Stavanger, Norway, and then back to Bangor, Maine, and additional round-trip flights north into the vortex were made each month from either Stavanger or Bangor depending on the location of the vortex that month. The airborne lidar system uses the differential absorption lidar (DIAL) technique at laser wavelengths of 301.5 and 310.8 nm to measure O3 profiles above the DC-8 over the 12-25 km altitude range. Lidar measurements of aerosol backscatter and depolarization profiles over the 12-30 km altitude range are made simultaneously with the O3 measurements using infrared (IR) and visible (VIS) laser wavelengths of 603 and 1064 nm, respectively. The measurements of Pinatubo aerosols, polar stratospheric clouds, and O3 made with the airborne DIAL system during the AASE-2 expedition and to chemical and dynamical process that contribute to O3 depletion in the wintertime Arctic stratosphere.

  3. POLAR-PALOOZA Polar Researchers and Arctic Residents Engage, Inform and Inspire Diverse Public Audiences by sharing Polar Science and Global Connections during the International Polar Year, using a New Model of Informal Science Education

    NASA Astrophysics Data System (ADS)

    Haines-Stiles, G.; Akuginow, E.

    2006-12-01

    (Please note that the POLAR-PALOOZA initiative described in this Abstract is-as of 9/7/2006-"pending" for possible support from NSF and NASA as part of this year's IPY solicitation. Subject to decisions expected by 9/30, this presentation would either be withdrawn, or amplified with specific participants, locations and dates.) Despite the success of well-regarded movies like "March of the Penguins", the polar regions remain a great unknown for most people. Public knowledge about the Arctic and Antarctic, and the critical role of the Poles in the entire Earth system, is nonexistent, incomplete or burdened with misperceptions. The International Polar Years of 2007-2009-and associated "I*Y" science years such as IHY, IYPE and eGY-present a unique opportunity to change this. The people who can best effect this change are those who know the Poles best, through living or working there. Based on innovative but proven models, POLAR-PALOOZA will use three complementary strategies to engage, inform and inspire large public audiences. (1) A national tour, under the working title "Stories from a Changing Planet", will include in-person presentations at science centers, museums, libraries and schools across North America, including Canada and Mexico. The presentations will be augmented by High Definition Video taped on location at the Poles, audio and video podcasts, and special education and outreach activities for targeted audiences. "Stories from a Changing Planet" will provide diverse audiences with an exciting opportunity to meet and interact directly with polar experts, and to appreciate why the Poles and the research done there are directly relevant to their lives. (2) The "HiDef Video Science Story Capture Corps" is a team of professional videographers, using the latest generation of low-cost, high-quality cameras, deployed to both Poles. They will document the work of multiple researchers and projects, rather than focusing on one topic for a single broadcast program

  4. Sources and sinks of carbonyl compounds in the Arctic Ocean boundary layer: Polar Ice Floe experiment

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Sirju, A.-P.; Hopper, J. R.; Barrie, L. A.; Young, V.; Niki, H.; Dryfhout, H.

    1996-09-01

    Measurements of HCHO, CH3CHO, and CH3C(O)CH3 were made at the Narwhal ice floe camp in the Lincoln Sea at 84°N latitude from April 10 to 24, 1994. During the period April 13 to 18, O3 was below the detection limit of the measurement (i.e., <1 ppb), and the average HCHO, CH3CHO, and CH3C(O)CH3 concentrations were 193, 93, and 1730 ppt, respectively. A box model of the chemistry involved in the surface O3 depletion shows that the majority of BrOx termination reactions occur via Br atom reaction with the aldehydes. The reaction of Br atoms with CH3CHO is shown to be very effective in removing NOx from the Arctic marine boundary layer (MBL), via formation of peroxyacetyl nitrate (PAN). This denitrification of the surface layer has a significant impact on the radical chemistry. In particular, the model indicates that the observed levels of HCHO and CH3CHO cannot be reproduced if, as discussed in recent reports of Arctic ozone chemistry at sunrise, both Br atom and Cl atom chemistry occur simultaneously (at estimated concentrations of 1 × 104 and 1 × 107 atoms/cm3, respectively). However, if only chlorine atoms are present (at 1 × 104 atoms/cm3), reasonable steady state CH3CHO levels (˜80 ppt), but rather low HCHO levels (˜50 ppt) are produced. The model HCHO levels for chlorine-atom-only chemistry are as much as a factor of 10 lower than those observed (by these authors and others) in the Arctic MBL at sunrise. Model simulations show that the ratio CH3C(O)CH3/C2H5CHO could be a useful indicator of the relative importance of Br atom and Cl atom chemistry.

  5. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus) EST libraries

    PubMed Central

    Clark, Melody S; Thorne, Michael AS; Purać, Jelena; Grubor-Lajšić, Gordana; Kube, Michael; Reinhardt, Richard; Worland, M Roger

    2007-01-01

    Background Ice, snow and temperatures of -14°C are conditions which most animals would find difficult, if not impossible, to survive in. However this exactly describes the Arctic winter, and the Arctic springtail Onychiurus arcticus regularly survives these extreme conditions and re-emerges in the spring. It is able to do this by reducing the amount of water in its body to almost zero: a process that is called "protective dehydration". The aim of this project was to generate clones and sequence data in the form of ESTs to provide a platform for the future molecular characterisation of the processes involved in protective dehydration. Results Five normalised libraries were produced from both desiccating and rehydrating populations of O. arcticus from stages that had previously been defined as potentially informative for molecular analyses. A total of 16,379 EST clones were generated and analysed using Blast and GO annotation. 40% of the clones produced significant matches against the Swissprot and trembl databases and these were further analysed using GO annotation. Extraction and analysis of GO annotations proved an extremely effective method for identifying generic processes associated with biochemical pathways, proving more efficient than solely analysing Blast data output. A number of genes were identified, which have previously been shown to be involved in water transport and desiccation such as members of the aquaporin family. Identification of these clones in specific libraries associated with desiccation validates the computational analysis by library rather than producing a global overview of all libraries combined. Conclusion This paper describes for the first time EST data from the arctic springtail (O. arcticus). This significantly enhances the number of Collembolan ESTs in the public databases, providing useful comparative data within this phylum. The use of GO annotation for analysis has facilitated the identification of a wide variety of ESTs

  6. Polarization of 'water-skies' above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance.

    PubMed

    Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor

    2007-01-01

    The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of ice-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic ice-cover during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the ice-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and ice-skies is not higher than 10%.

  7. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the Arctic environment

    USGS Publications Warehouse

    Welch, Andreanna J.; Bedoya-Reina, Oscar C.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte

    2014-01-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate if polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex, and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide, which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of nitric oxide as an adaptive response to control trade-offs between energy production in the form of ATP versus generation of heat (thermogenesis).

  8. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment.

    PubMed

    Welch, Andreanna J; Bedoya-Reina, Oscar C; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D; Lindqvist, Charlotte

    2014-02-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).

  9. Polar Bears Exhibit Genome-Wide Signatures of Bioenergetic Adaptation to Life in the Arctic Environment

    PubMed Central

    Welch, Andreanna J.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte

    2014-01-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis). PMID:24504087

  10. Aboveground activity rhythm in Arctic black-capped marmot ( Marmota camtschatica bungei Katschenko 1901) under polar day conditions

    NASA Astrophysics Data System (ADS)

    Semenov, Youri; Ramousse, Raymond; Le Berre, Michel; Vassiliev, Vladimir; Solomonov, Nikita

    2001-04-01

    Daily aboveground activity of wild black-capped marmots of Yakutia ( Marmota camtschatica bungei) was recorded under 'polar day' conditions at 71°56' N and 127°19' E (north of the Polar Circle). From the beginning of May until the end of August, the sun was permanently above or close to the horizon. However under this condition of continuous lighting, the aboveground activity of these arctic hibernating mammals was periodic. Onset and end of activity showed marked changes throughout the seasons. Activity time increased strongly from hibernation emergence until the end of July and then decreased slowly until onset of hibernation. Below daily mean temperatures of 5 °C, activity started when the sun was 35° above the horizon, and ended when it dropped below 28°. When daily mean temperatures were above 5 °C, activity onset was synchronised with a solar altitude around 17-18° and activity ended at 10°. Activity onset was more precise relative to the solar altitude than the end of activity. This may be explained by late feeding bouts, following a midday thermal stress. In absence of rapid natural light-dark (LD) transitions that occur at civil twilight, our results suggest that the activity pattern of black-capped marmots may be synchronised by the light cycle through the solar altitude and ambient temperature.

  11. The polar bear in the room: diseases of poverty in the Arctic.

    PubMed

    Nelson, Chris

    2013-01-01

    In the face of global warming, budgetary austerity and impoverished Arctic residents, the nations of the circumpolar region are presented with a number of difficult choices regarding the provision of health care to the far-flung and isolated regions of their northernmost provinces. Complicating that picture is the reality of neglected tropical diseases in areas far from their perceived normal equatorial range as well as endemic food-borne diseases, including protozoan and helminth parasites, respiratory and gastrointestinal diseases and vaccine-preventable illnesses. This paper discusses the problems of caring for the health and well-being of indigenous populations suffering from extreme poverty, isolation and discrimination in the circumpolar region. After presenting difficulties as supported by the extant literature, the paper continues by suggesting solutions that include novel telenursing applications, targeted distance-educational programs and local community-based health care assistant (HCA) vocational training. These programs will provide cost-effective care that increases life-spans, improves quality of life and provides opportunities to distressed populations in isolated rural communities of the Far North. The toolkit presented in the paper is intended to spur discussion on community health programs that could be adopted to provide proper and humane care for marginalized Arctic populations in an extreme and rapidly changing environment.

  12. Investigation of polar mesocyclones in Arctic Ocean using COSMO-CLM and WRF numerical models and remote sensing data

    NASA Astrophysics Data System (ADS)

    Varentsov, Mikhail; Verezemskaya, Polina; Baranyuk, Anastasia; Zabolotskikh, Elizaveta; Repina, Irina

    2015-04-01

    Polar lows (PL), high latitude marine mesoscale cyclones, are an enigmatic atmospheric phenomenon, which could result in windstorm damage of shipping and infrastructure in high latitudes. Because of their small spatial scales, short life times and their tendency to develop in remote data sparse regions (Zahn, Strorch, 2008), our knowledge of their behavior and climatology lags behind that of synoptic-scale cyclones. In case of continuing global warming (IPCC, 2013) and prospects of the intensification of economic activity and marine traffic in Arctic region, the problem of relevant simulation of this phenomenon by numerical models of the atmosphere, which could be used for weather and climate prediction, is especially important. The focus of this paper is researching the ability to simulate polar lows by two modern nonhydrostatic mesoscale numerical models, driven by realistic lateral boundary conditions from ERA-Interim reanalysis: regional climate model COSMO-CLM (Böhm et. al., 2009) and weather prediction and research model (WRF). Fields of wind, pressure and cloudiness, simulated by models, were compared with remote sensing data and ground meteorological observations for several cases, when polar lows were observed, in Norwegian, Kara and Laptev seas. Several types of satellite data were used: atmospheric water vapor, cloud liquid water content and surface wind fields were resampled by examining AMSR-E and AMSR-2 microwave radiometer data (MODIS Aqua, GCOM-W1), and wind fields were additionally extracted from QuickSCAT scatterometer. Infrared and visible pictures of cloud cover were obtained from MODIS (Aqua). Completed comparison shown that COSMO-CLM and WRF models could successfully reproduce evolution of polar lows and their most important characteristics such as size and wind speed in short experiments with WRF model and longer (up to half-year) experiments with COSMO-CLM model. Improvement of the quality of polar lows reproduction by these models in

  13. Such Low Temperatures in the Arctic Region: How Can the Polar Bears Call It Home?

    ERIC Educational Resources Information Center

    Pringle, Rose M.

    2002-01-01

    Presents an activity on polar bears that integrates language arts and science. Teaches the characteristics of organisms and how distinct environments support distinct organisms. Uses both mathematics and science skills and targets students at the K-4 grade level. (YDS)

  14. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.

    PubMed

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-10-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.

  15. Influence of transport and mixing in autumn on stratospheric ozone variability over the Arctic in early winter

    NASA Astrophysics Data System (ADS)

    Blessmann, D.; Wohltmann, I.; Rex, M.

    2012-09-01

    Early winter ozone mixing ratios in the Arctic middle stratosphere show an interannual variability of about 10%. We show that ozone variability in early January is caused by dynamical processes during Arctic polar vortex formation in autumn (September to December). Observational data from satellites and ozone sondes are used in conjunction with simulations of the chemistry and transport model ATLAS to examine the relationship between the meridional and vertical origin of air enclosed in the polar vortex and its ozone amount. For this, we use a set of artificial model tracers to deduce the origin of the air masses in the vortex in January in latitude and altitude in September. High vortex mean ozone mixing ratios are correlated with a high fraction of air from low latitudes enclosed in the vortex and a high fraction of air that experienced small net subsidence (in a Lagrangian sense). As a measure for the strength of the Brewer-Dobson circulation and meridional mixing in autumn, we use the Eliassen-Palm flux through the mid-latitude tropopause averaged from September to November. In the lower stratosphere, this quantity correlates well with the origin of air enclosed in the vortex and reasonably well with the ozone amount in early winter.

  16. Influence of transport and mixing in autumn on stratospheric ozone variability over the Arctic in early winter

    NASA Astrophysics Data System (ADS)

    Blessmann, D.; Wohltmann, I.; Rex, M.

    2012-06-01

    Early winter ozone mixing ratios in the Arctic middle stratosphere show a fair amount of interannual variability. We show that ozone variability in early January is caused by dynamical processes during Arctic polar vortex formation in autumn (September to December). Observational data from satellites and ozone sondes are used in conjunction with simulations of the Chemistry and Transport Model ATLAS to examine the relationship between the meridional and vertical origin of air enclosed in the polar vortex and its ozone amount. For this, we use a set of artificial model tracers to deduce the origin of the air masses in the vortex in January in latitude and altitude in September. High vortex mean ozone mixing ratios are related to a high fraction of air from low latitudes enclosed in the vortex and a high fraction of air that experienced small net subsidence. As a measure for the strength of the Brewer-Dobson circulation and meridional mixing in autumn, we use the Eliassen-Palm flux through the mid-latitude tropopause averaged from August to November. In the lower stratosphere, this quantity correlates well with both the ozone amount in early winter and the origin of air enclosed in the vortex.

  17. Application of interleaving models to describe intrusive layers in the Deep Polar Water of the Arctic Basin

    NASA Astrophysics Data System (ADS)

    Zhurbas, Nataliya; Kuzmina, Natalia; Lyzhkov, Dmitry; Izvekova, Yulia N.

    2016-04-01

    Interleaving models of pure thermohaline and baroclinic frontal zones of finite width are applied to describe intrusions at the fronts found in the upper part of the Deep Polar Water, the Eurasian basin, under stable-stable thermohaline stratification. It is assumed that differential mixing is the main mechanism of the intrusion formation. Different parameterizations of differential mixing (Merrryfield, 2002; Kuzmina et al., 2011) are used in the models. Important parameters of interleaving such as the growth rate, vertical scale, and slope of the most unstable modes are calculated. It is found that the interleaving model of a pure thermohaline front can satisfactory describe the important parameters of intrusions observed at a thermohaline, very low baroclinicity front in the Eurasian basin, just in accordance to Merryfield (2002) findings. In the case of baroclinic front, satisfactory agreement over all the interleaving parameters is found between the model calculations and observations provided that the vertical momentum diffusivity significantly exceeds the corresponding mass diffusivity. Under specific (reasonable) constraints of the vertical momentum diffusivity, the most unstable mode has a vertical scale approximately two-three times smaller than the vertical scale of the observed intrusions. A thorough discussion of the results is presented. References Kuzmina N., Rudels B., Zhurbas V., Stipa T. On the structure and dynamical features of intrusive layering in the Eurasian Basin in the Arctic Ocean. J. Geophys. Res., 2011, 116, C00D11, doi:10.1029/2010JC006920. Merryfield W. J. Intrusions in Double-Diffusively Stable Arctic Waters: Evidence for Differential mixing? J. Phys. Oceanogr., 2002, 32, 1452-1439.

  18. Airborne lidar measurements of ozone during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Kooi, Susan A.

    1991-01-01

    The NASA/NOAA Airborne Arctic Stratospheric Expedition (AASE) was conducted during the winter to study the conditions leading to possible ozone (O3) destruction in the wintertime Arctic stratosphere. As part of this experiment, the NASA-Langley airborne differential absorption lidar (DIAL) system was configured for operation on the NASA-Ames DS-8 aircraft to make measurements of O3 profiles from about 1 km above the aircraft to altitudes of 22 to 26 km. The airborne DIAL system remotely sensed O3 above the DC-8 by transmitting two laser beams at 10 Hz using wavelengths of 301.5 and 311 nm. Large scale distributions of O3 were obtained on 15 long range flights into the polar vortex during the AASE. Selected data samples are presented of O3 observed during these flights, general trends observed in O3 distributions, and correlations between these measurements and meteorological and chemical parameters. The O3 distribution observed on the first flight of the DC-8 into the polar vortex on Jan. 6 reflected the result of diabatic cooling of the air inside the vortex during the winter compared to the warmer air outside the vortex. On a potential temperature surface, the O3 mixing ratio generally increases when going from outside to inside the vortex.

  19. Arctic technology and policy

    SciTech Connect

    Dyer, I.; Chryssostomidis, C.

    1984-01-01

    Topics covered include: legal regime of the arctic, including national and international legal frameworks that govern arctic resource development; environmental policy and socio-economic issues, focusing on the political and economic considerations of LNG transport in icebound waterways; risk and safety assessment for arctic offshore projects, drilling systems for the arctic; arctic offshore technology, including island, steel, and concrete structures; icebreaking technology, focusing on the current state of the art and indicating future research areas; arctic oceanography, summarizing characteristics of ice from field experiments pertaining to the design of structures, ships, and pipelines; arctic seismic exploration, detailing signal processes for underwater communication in the context of arctic geology and geophysics; ice morphology, providing information about ice shapes, particularly critical to the determination of overall strength of ice masses; remote sensing; modeling of arctic ice fields, including information about the design and construction of offshore facilities in polar areas; and engineering properties of ice, providing theoretical and experimental studies.

  20. Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis.

    PubMed

    Banerjee, Samiran; Kennedy, Nabla; Richardson, Alan E; Egger, Keith N; Siciliano, Steven D

    2016-06-01

    Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.

  1. Impact of radiosonde data over the Arctic ice on forecasting winter extreme weather over mid latitude

    NASA Astrophysics Data System (ADS)

    Sato, Kazutoshi; Inoue, Jun; Yamazaki, Akira; Kim, Joo-hong; Maturilli, Marion; Dethloff, Klaus; Hudson, Stephen

    2016-04-01

    In February 2015, the Arctic air outbreak caused extreme cold events and heavy snowfall over the mid latitude, in particular over the North America. During the winter, special radiosonde observations were made on the Norwegian RV Lance around the north of Svalbard under the N-ICE2015 project. We investigated the impact of the radiosonde data on forecasting of a cold extreme event over the eastern North America using the AFES-LETKF experimental ensemble reanalysis version2 (ALERA2) data set. ALERA2 was used as the reference reanalysis (CTL) while the observing-system experiment (OSE) assimilated the same observational data set, except for the radiosonde data obtained by the RV Lance. Using these two reanalysis data as initial values, ensemble forecasting experiments were conducted. Comparing these ensemble forecasts, there were large differences in the position and depth of a predicted tropopause polar vortex. The CTL forecast well predicted the southward intrusion of the polar vortex which pushed a cold air over the eastern North America from the Canadian Archipelago. In the OSE forecast, in contrast, the trough associated with southward intrusion of the polar vortex was weak, which prevented a cold outbreak from Arctic. This result suggested that the radiosonde observations over the central Arctic would improve the skill of weather forecasts during winter.

  2. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  3. FTIR measurements of HF, N{sub 2}O and CFCs during the Arctic polar night with the moon as light source, subsidence during winter 1992/93

    SciTech Connect

    Notholt, J.

    1994-11-01

    The author presents ground based measurements of HF, N{sub 2}O, CFC-12 (CF{sub 2}Cl{sub 2}) and CFC-22 (CHF{sub 2}Cl) vertical distributions from the Arctic winter. These long lived trace atmospheric gases can serve as tracers for atmospheric circulation studies, and here the authors analyze the data to obtain information on the vertical circulation in the atmosphere during the polar winter.

  4. Arctic Research and Writing: A Lasting Legacy of the International Polar Year

    ERIC Educational Resources Information Center

    Englert, Karl; Coon, Brian; Hinckley, Matt; Pruis, Matt

    2009-01-01

    Recently, senior-level physics students joined thousands of scientists from over 60 nations to examine a wide range of physical, biological, and social research topics as part of the International Polar Year (IPY). Through a National Science Foundation (NSF)-funded research project, these students applied physics concepts to the study of Arctic…

  5. New space technology advances knowledge of the remote polar regions. [Arctic and Antarctic regions

    NASA Technical Reports Server (NTRS)

    Macdonald, W. R.

    1974-01-01

    The application of ERTS-1 imagery is rapidly increasing man's knowledge of polar regions. Products compiled from this imagery at scales of 1:250,000, 1:500,000 and 1:1,000,000 are already providing valuable information to earth scientists working in Antarctica. Significant finds detected by these bench mark products were glaciological changes, advancement in ice fronts, discovery of new geographic features, and the repositioning of nunataks, islands, and ice tongues. Tests conducted in Antarctica have proven the feasibility of tracking Navy navigation satellites to establish ground control for positioning ERTS-1 imagery in remote areas. ERTS imagery coupled with satellite geodesy shows great promise and may prove to be the most practical and cost effective way to meet the small-scale cartographic requirements of the polar science community.

  6. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    SciTech Connect

    Mitri, F.G.; Li, R.X.; Guo, L.X.; Ding, C.Y.

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  7. Investigation of Polar Stratospheric Cloud Solid Particle Formation Mechanisms Using ILAS and AVHRR Observations in the Arctic

    NASA Technical Reports Server (NTRS)

    Irie, H.; Pagan, K. L.; Tabazadeh, A.; Legg, M. J.; Sugita, T.

    2004-01-01

    Satellite observations of denitrification and ice clouds in the Arctic lower stratosphere in February 1997 are used with Lagrangian microphysical box model calculations to evaluate nucleation mechanisms of solid polar stratospheric cloud (PSC) particles. The occurrences of ice clouds are not correlated in time and space with the locations of back trajectories of denitrified air masses, indicating that ice particle surfaces are not always a prerequisite for the formation of solid PSCs that lead to denitrification. In contrast, the model calculations incorporating a pseudoheterogeneous freezing process occurring at the vapor-liquid interface can quantitatively explain most of the observed denitrification when the nucleation activation free energy for nitric acid dihydrate formation is raised by only approx.10% relative to the current published values. Once nucleated, the conversion of nitric acid dihydrate to the stable trihydrate phase brings the computed levels of denitrification closer to the measurements. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and SblctureC: loud physics and chemistry; 0340 Atmospheric Composition and Structure: Middle atmosphere-composition and chemistry

  8. Interactions Between Temperature and Nutrient Availability in Mediating Microbial Respiration in High Arctic Polar Semi-desert Soils

    NASA Astrophysics Data System (ADS)

    Holland, K. J.; Sullivan, P.; Wallenstein, M.; Arens, S.; Schimel, J. P.; Welker, J. M.

    2005-12-01

    Field respiration measurements in high arctic polar semi-desert in northern Greenland suggest a divergence in respiration rates of microbial communities in fertilization treatments at temperatures above 4°C. We hypothesized that this divergence could be attributed to either greater temperature responsiveness of microbial communities in nitrogen fertilized treatments, or to increased substrate availability in nitrogen fertilization treatments at higher temperatures. Microbial respiration responses to labile substrate addition were equal across fertilization treatments, suggesting that microbial communities had similar temperature sensitivities. To determine whether substrate availability differed between fertilization treatments, we measured 13CO2 of respiration at four temperatures. With increased temperature, rates of CO2 efflux increased and isotopic signatures of respired carbon became lighter, suggesting increasing turnover of more recalcitrant C at higher temperatures. Respiration of nitrogen fertilized soils had lighter 13CO2 signatures than ambient soils, suggesting that nitrogen might increase turnover of more recalcitrant soil carbon. These data suggest the divergence in CO2 efflux in the nitrogen fertilization treatments could be mediated by increasing availability of recalcitrant carbon.

  9. The Severe Arctic Ozone Depletion 2010/11 - Implications for UV Radiation in Europe and North America

    NASA Astrophysics Data System (ADS)

    von Hobe, M.; Griessbach, S.; Wegner, T.

    2011-12-01

    The Arctic winter 2010/11 saw record ozone depletion in the northern polar vortex with column ozone dropping below 250 DU by the end of the winter. One question of concern is, how strongly such a winter affects surface UV radiation in high and mid-latitudes and in particular in central Europe and North America. This obviously depends not only on the degree of ozone depletion but also on the spatial extent and the position of the depleted vortex. Besides, surface UV levels are influenced by other factors such as cloudiness, aerosol loading and variations in the solar flux. Here, monthly average as well as maximum erythemal UV doses are calculated for spring and early summer over different regions in Europe and North America for Arctic winters between 1980 and 2011, using data from the Ozone Monitoring Instrument (OMI) onboard the EOS Aura satellite and the Total Ozone Mapping Spectrometer onboard Nimbus-7, Meteor-3 and Earth-Probe. The comparison of UV data from Arctic winters with very different degrees of polar vortex ozone loss allows to estimate the extent, to which large vortex ozone losses translate directly into higher surface UV in certain areas in high and mid-latitudes. Special attention is given to the 2010/11 winter.

  10. Chlorinated hydrocarbon contaminants in polar bears from eastern Russia, North America, Greenland, and Svalbard: Biomonitoring of Arctic pollution

    USGS Publications Warehouse

    Norstrom, R.J.; Belikov, Stanislav; Born, E.W.; Garner, G.W.; Malone, B.; Olpinski, S.; Ramsay, M.A.; Schliebe, S.; Stirling, I.; Sitshov, M.S.; Taylor, M.K.; Wiig, Øystein

    1998-01-01

    Adipose tissue samples from polar bears (Ursus maritimus) were obtained by necropsy or biopsy between the spring of 1989 to the spring of 1993 from Wrangel Island in Russia, most of the range of the bear in North America, eastern Greenland, and Svalbard. Samples were divided into 16 regions corresponding as much as possible to known stocks or management zones. Concentrations of dieldrin (DIEL), 4,4'-DDE (DDE), sum of 16 polychlorinated biphenyl congeners (sigma PCB), and sum of 11 chlordane-related compounds and metabolites (sigma CHL) were determined. In order to minimize the effect of age, only data for adults (320 bears age 5 years and older) was used to compare concentrations among regions. Concentrations of sigma PCB were 46% higher in adult males than females, and there was no significant trend with age. Concentrations of sigma CHL were 30% lower in adult males than females. Concentrations of sigma PCB, sigma CHL, and DDE in individual adult female bears were standardized to adult males using factors derived from the least-square means of each sex category, and geometric means of the standardized concentrations on a lipid weight basis were compared among regions. Median geometric mean standardized concentrations (lipid weight basis) and ranges among regions were as follows: sigma PCB, 5,942 (2,763-24,316) micrograms/kg; sigma CHL, 1,952 (727-4,632) micrograms/kg; DDE, 219 (52-560) micrograms/kg; DIEL, 157 (31-335) micrograms/kg. Geometric mean sigma PCB concentrations in bears from Svalbard, East Greenland, and the Arctic Ocean near Prince Patrick Island in Canada were similar (20,256-24,316 micrograms/kg) and significantly higher than most other areas. Atmospheric, oceanic, and ice transport, as well as ecological factors may contribute to these high concentrations of sigma PCB. sigma CHL was more uniformly distributed among regions than the other CHCs. Highest sigma CHL concentrations were found in southeastern Hudson Bay, which also had the highest DDE and

  11. Deep lakes in the Polar Urals - unique archives for reconstructing the Quaternary climate and glacial history in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Svendsen, J.; Gyllencreutz, R.; Henriksen, M.; Lohne, O. S.; Mangerud, J.; Nazarov, D.

    2009-12-01

    A lake coring campaign in the Polar Urals is carried out within the framework of the Norwegian-Russian IPY-project “The Ice Age Development and Human Settlement in Northern Eurasia” (ICEHUS). The overall aim of the project is to improve the description and understanding of the Late Quaternary environmental and climate changes in the Russian Arctic and how these changes may have affected the early human occupation. In order to obtain a continuous record of climate variability back in time seismic records and sediment cores have been collected from selected mountain lakes. The summer of 2009 we cored two lakes situated near the water shed in the interior northernmost Urals. Seismic profiles show that both these glacially eroded basins contain thick sequences of Quaternary sediments. The thickest strata were found in Bolshoye Shuchye, the largest and deepest lake in the Ural Mountains. This lake is 13 km long and 140 m deep and contains more than 130 m of acoustically laminated sediments. These strata probably accumulated over a rather long time span, possibly covering several interglacial-glacial cycles. Up to 24 m long cores were obtained from the lake floors. We anticipate that they will provide unique high resolution records of the climate and glacial history during the last Ice Age. The seismic records and the sediment cores will form a well-founded basis for assessing the potential and possibilities to core also the deeper strata that could not be reached with the applied coring equipment. In view of the obtained results from the investigated basins, as well as other geological and geochronological data from the surrounding areas, we find it highly unlikely that any glaciers extended into these lakes during the Last Glacial Maximum (LGM), supporting our current hypothesis that the local glaciers in the Polar Urals remained small during the LGM. Our observations indicate that the mountain valleys have been essentially ice free since Marine Isotope Stage 4, at

  12. Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in Arctic polar bear, beluga whale, and ringed seal.

    PubMed

    Letcher, Robert J; Chu, Shaogang; McKinney, Melissa A; Tomy, Gregg T; Sonne, Christian; Dietz, Rune

    2014-10-01

    Perfluorooctane sulfonate (PFOS) has been reported to be among the most concentrated persistent organic pollutants in Arctic marine wildlife. The present study examined the in vitro depletion of major PFOS precursors, N-ethyl-perfluorooctane sulfonamide (N-EtFOSA) and perfluorooctane sulfonamide (FOSA), as well as metabolite formation using an assay based on enzymatically viable liver microsomes for three top Arctic marine mammalian predators, polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat (Rattus rattus) serving as a general mammalian model and positive control. Rat assays showed that N-EtFOSA (38 nM or 150 ng mL(-1)) to FOSA metabolism was >90% complete after 10 min, and at a rate of 23 pmol min(-1) mg(-1) protein. Examining all species in a full 90 min incubation assay, there was >95% N-EtFOSA depletion for the rat active control and polar bear microsomes, ∼65% for ringed seals, and negligible depletion of N-EtFOSA for beluga whale. Concomitantly, the corresponding in vitro formation of FOSA from N-EtFOSA was also quantitatively rat≈polar bear>ringed seal>beluga whale. A lack of enzymatic ability and/or a rate too slow to be detected likely explains the lack of N-EtFOSA to FOSA transformation for beluga whale. In the same assays, the depletion of the FOSA metabolite was insignificant (p>0.01) and with no concomitant formation of PFOS metabolite. This suggests that, in part, a source of FOSA is the biotransformation of accumulated N-EtFOSA in free-ranging Arctic ringed seal and polar bear.

  13. Interpretative synergy of starphotometry and lidar measurements at two high-Arctic stations during the Polar Winter of 2010-11

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Herber, A.; Ritter, C.; Duck, T. J.; Schulz, K.; Schrems, O.

    2011-12-01

    Aerosols can significantly alter the Arctic's delicate radiative balance, both directly by absorbing and scattering solar and terrestrial radiation, and indirectly by influencing cloud properties through their critical role as cloud condensation nuclei. The understanding of aerosol dynamics, however, is especially poor in the Arctic, where our knowledge of the actual aerosol load, transport as well as physical and chemical properties is very limited. Among the biggest limitations is the absence of consistent night-time aerosol optical depth (AOD) measurements during the Polar Winter. AOD is a multi-spectral indicator of the total vertical extinction due to atmospheric aerosols and is one of the most important (aerosol) radiative forcing parameters. During the day, AOD is traditionally measured using the well-known sunphotometry technique, but night-time AOD measurements up to now have been extremely scarce. Recently developed starphotometry techniques based on extinction measurements of bright-star radiation help to mitigate the lack of any type consistent and regular Polar Night measurements. In an effort to address the dearth of AOD measurements during the Polar Winter , two starphotometers (denoted as SP-NYA and SP-PRL) were installed at two key high-Arctic stations: AWIPEV base at Ny Alesund (Spitsbergen, 78°55"N, 11°55"E) and the PEARL observatory at Eureka, Canada (79°59'N, 85°56'W). In the fall of 2010 both instruments were upgraded, in part to allow semi-automatic data acquisition with remote control capabilities. In addition to starphotometers, both stations are equipped with aerosol backscatter lidar systems: KARL (Koldeway Raman Lidar) and MPL (Micropulsed Lidar) at Ny Alesund and CRL (CANDAC Raman Lidar) at Eureka. During the 2010-11Polar Winter (Oct 2010-Mar 2011) measurements were performed whenever possible. We present preliminary event-driven results, for key optical parameters such as multi-band AOD, fine-mode (sub-micron) and coarse

  14. Similarities and differences in polar mesosphere summer echoes observed in the Arctic and Antarctica

    NASA Astrophysics Data System (ADS)

    Latteck, R.; Singer, W.; Morris, R. J.; Hocking, W. K.; Murphy, D. J.; Holdsworth, D. A.; Swarnalingam, N.

    2008-09-01

    Polar Mesosphere Summer Echoes (PMSE) have been observed in the high latitudes of the Northern and Southern Hemisphere for several years using VHF radars located at Andenes/Norway (69° N, 16° E), Resolute Bay/Canada (75° N, 95° W), and Davis/Antarctica (69° S, 78° E). The VHF radars at the three sites were calibrated using the same methods (noise source and delayed transmitting signal) and identical equipment. Volume reflectivity was derived from the calibrated echo power and the characteristics of the seasonal variation of PMSE were estimated at the sites for the years 2004 to 2007. The largest peak volume reflectivity of about 2×10-9 m-1 was observed at Andenes compared with their counterparts at Davis (~4×10-11 m-1) and Resolute Bay (~6×10-12 m-1). The peak of the PMSE height distribution is 85.6 km at Davis which is about 1 km higher than at Andenes. At Resolute Bay the height distribution peaks at about 85 km but only a few layers were found below 84 km. The mean PMSE occurrence rate is 83% at Andenes, 38% at Davis with larger variability and only 18% at Resolute Bay (in late summer). The duration of the PMSE season varies at Andenes from 104 to 113 days and at Davis from 88 to 93 days. In general the PMSE seasons starts about 5 days later at Davis and ends about 10 days earlier compared to Andenes. In all three seasons the PMSE occurrence suddenly drops to a much lower level at Davis about 32 days after solstice whereas the PMSE season decays smoothly at Andenes. The duration of the PMSE season at Andenes and Davis is highly correlated with the presence of equatorward directed winds, the observed differences in PMSE occurrence are related to the mesospheric temperatures at both sites.

  15. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic.

    PubMed

    Iverson, Samuel A; Gilchrist, H Grant; Smith, Paul A; Gaston, Anthony J; Forbes, Mark R

    2014-03-22

    Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears' ability to meet their energetic demands. In this study, we examined polar bears' use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010-2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator-prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems.

  16. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  17. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign

    NASA Astrophysics Data System (ADS)

    Intrieri, J. M.; de Boer, G.; Shupe, M. D.; Spackman, J. R.; Wang, J.; Neiman, P. J.; Wick, G. A.; Hock, T. F.; Hood, R. E.

    2014-11-01

    In February and March of 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign. The WISPAR science missions were designed to (1) mprove our understanding of Pacific weather systems and the polar atmosphere; (2) evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3) demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB) in California. During the 25 h polar flight on 9-10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean-ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  18. Global Hawk dropsonde observations of the Arctic atmosphere during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign

    NASA Astrophysics Data System (ADS)

    Intrieri, J. M.; de Boer, G.; Shupe, M. D.; Spackman, J. R.; Wang, J.; Neiman, P. J.; Wick, G. A.; Hock, T. F.; Hood, R. E.

    2014-04-01

    In February and March of 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Pacific Ocean and the Arctic during the WISPAR field campaign. The WISPAR science missions were designed to: (1) improve our understanding of Pacific weather systems and the polar atmosphere; (2) evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3) demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards AFB in California. During the 25 h polar flight on 9-10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean-ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically non-existent.

  19. Unraveling the empirical relationship between Arctic stratospheric ozone loss and temperature

    NASA Astrophysics Data System (ADS)

    von Hobe, Marc; Grooß, Jens-Uwe; Müller, Rolf

    2014-05-01

    Ever since the discovery of the Antarctic ozone hole it has been recognized that cold temperatures play a key role in fostering strong ozone depletion in the polar stratosphere. Compact negative correlations between total winter ozone loss and vortex area exposed to temperatures below certain threshold values have been demonstrated (e.g. Harris et al., 2010; Rex et al., 2006; Rex et al., 2004). The most commonly used threshold is the NAT equilibrium temperature, but other choices have been suggested, such as the temperature when the rate of chlorine activation on liquid aerosols exceeds a certain limit. Interestingly, both thresholds relate to critical temperatures in the context of heterogeneous chlorine activation, and Harris et al., 2010, stated that original activation (i.e. the activation in early winter) is the most important factor influencing ozone loss. But at least two other key processes - catalytic ozone loss and denitrification - depend directly on temperature, and temperature also controls the stability and therefore the persistence of the polar vortex. Here, we investigate such "vortex area" correlations for a number of different temperature thresholds, as well as direct correlations with vortex mean temperature and with the date of the final warming. We also carry out sensitivity studies using the Chemical Lagrangian Model of the Stratosphere (CLaMS) to investigate the response of ozone loss to temperature modifications for particle formation and growth, surface reaction probabilities and gas phase reactivity separately. Rex et al., Arctic ozone loss and climate change, Geophys. Res. Lett., 31, L04116, 2004. Rex et al., Arctic winter 2005: Implications for stratospheric ozone loss and climate change, Geophys. Res. Lett., 33, L23808, 2006. Harris et al., A closer look at Arctic ozone loss and polar stratospheric clouds, Atmos. Chem. Phys., 10, 8499-8510, 2010.

  20. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  1. Vulcanized vortex

    SciTech Connect

    Cho, Inyong; Lee, Youngone

    2009-01-15

    We investigate vortex configurations with the 'vulcanization' term inspired by the renormalization of {phi}{sub *}{sup 4} theory in the canonical {theta}-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  2. Comparison of Freshwater Diatom Assemblages from a High Arctic Oasis to Nearby Polar Desert Sites and Their Application to Environmental Inference Models.

    PubMed

    Michelutti, Neal; McCleary, Kathryn; Douglas, Marianne S V; Smol, John P

    2013-02-01

    Arctic oases are regions of atypical warmth and relatively high biological production and diversity. They are small in area (<5 km(2) ) and uncommon in occurrence, yet they are relatively well studied due to the abundance of plant and animal life contained within them. A notable exception is the lack of research on freshwater ecosystems within polar oases. Here, we aim to increase our understanding of freshwater diatom ecology in polar oases. Diatoms were identified and enumerated from modern sediments collected in 23 lakes and ponds contained within the Lake Hazen oasis on Ellesmere Island, and compared with diatom assemblages from 29 sites located outside of the oasis across the northern portion of the island. There were significant differences in water chemistry variables between oasis and northern sites, with oasis sites having higher conductivity and greater concentrations of nutrients and related variables such as dissolved organic carbon (DOC). Taxa across all sites were typical of those recorded in Arctic freshwaters, with species from the genera Achnanthes sensu lato, Fragilaria sensu lato, and Nitzschia dominating the assemblages. A correspondence analysis (CA) ordination showed that oasis sites generally plotted separately from the northern sites, although the sites also appear to plot separately based on whether they were lakes or ponds. Canonical correspondence analysis (CCA) identified specific conductivity, DOC, and SiO2 as explaining significant (P < 0.05) and additional amounts of variation in the diatom data set. The most robust diatom-based inference model was generated for DOC, which will provide useful reconstructions on long-term changes in paleo-optics of high Arctic lakes.

  3. Polar stratospheric ozone: interactions with climate change, results from the EU project RECONCILE, and the 2010/11 Arctic ozone hole

    NASA Astrophysics Data System (ADS)

    von Hobe, Marc

    2013-04-01

    One of the most profound and well known examples of human impacts on atmospheric chemistry is the so called ozone hole. During the second half of the 20th century, anthropogenic emissions of chlorofluorocarbons (CFCs) led to a significant increase in stratospheric chlorine levels and hence the rate of ozone removal by catalytic cycles involving chlorine. While CFCs were essentially banned by the 1987 Montreal Protocol and its subsequent amendments, and stratospheric chlorine levels have recently started to decline again, another anthropogenic influence may at least delay the recovery of the stratospheric ozone layer: climate change, with little doubt a result of human emissions of carbon dioxide and other greenhouse gases, has led to changes in stratospheric temperature and circulation. The large ozone losses that typically occur in polar regions in spring are particularly affected by these changes. Here, we give an overview of the ozone-climate interactions affecting polar stratospheric ozone loss, and present latest results from the international research project RECONCILE funded by the European Commission. Remaining open questions will be discussed including the possible impacts of recently suggested geoengineering concepts to artificially enhance the stratospheric aerosol loading. A special focus will also be put on the 2010/11 Arctic winter that saw the first Arctic Ozone hole, including an impact study on surface UV radiation in the densely populated northern mid-latitudes.

  4. Future Arctic ozone recovery: the importance of chemistry and dynamics

    NASA Astrophysics Data System (ADS)

    Bednarz, Ewa; Maycock, Amanda; Abraham, Luke; Braesicke, Peter; Dessens, Olivier; Pyle, John

    2016-04-01

    Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a 7 member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ~11.5 DU/decade, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ~50-100 DU below the long-term mean to near present day values. Consistent with the global decline in inorganic chlorine over the century, the estimated mean halogen induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of two between 1981-2000 and 2061-2080. However, in the presence of a cold and strong polar vortex elevated halogen losses well above the long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a radiatively-driven cooling trend modelled in the Arctic winter mid- and upper stratosphere, but there is less consistency across the seven ensemble members in the lower stratosphere. This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively-driven stratospheric cooling. However, individual years characterised by significantly suppressed downwelling, reduced transport and low temperatures continue into the future. We conclude that despite the future long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a

  5. QBO Influence on Polar Stratospheric Variability in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Oman, L. D.; Li, F.; Slong, I.-S.; Newman, P. A.; Nielsen, J. E.

    2010-01-01

    The quasi-biennial oscillation modulates the strength of both the Arctic and Antarctic stratospheric vortices. Model and observational studies have found that the phase and characteristics of the quasi-biennial oscillation (QBO) contribute to the high degree of variability in the Arctic stratosphere in winter. While the Antarctic stratosphere is less variable, recent work has shown that Southern Hemisphere planetary wave driving increases in response to "warm pool" El Nino events that are coincident with the easterly phase of the QBO. These events hasten the breakup of the Antarctic polar vortex. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is now capable of generating a realistic QBO, due a new parameterization of gravity wave drag. In this presentation, we will use this new model capability to assess the influence of the QBO on polar stratospheric variability. Using simulations of the recent past, we will compare the modeled relationship between QBO phase and mid-winter vortex strength with the observed Holton-Tan relation, in both hemispheres. We will use simulations of the 21 St century to estimate future trends in the relationship between QBO phase and vortex strength. In addition, we will evaluate the combined influence of the QBO and El Nino/Southern Oscillation (ENSO) on the timing of the breakup of the polar stratospheric vortices in the GEOS CCM. We will compare the influence of these two natural phenomena with trends in the vortex breakup associated with ozone recovery and increasing greenhouse gas concentrations.

  6. Effects of environmental variation and spatial distance on bacteria, archaea and viruses in sub-polar and arctic waters.

    PubMed

    Winter, Christian; Matthews, Blake; Suttle, Curtis A

    2013-08-01

    We investigated the influence of environmental parameters and spatial distance on bacterial, archaeal and viral community composition from 13 sites along a 3200-km long voyage from Halifax to Kugluktuk (Canada) through the Labrador Sea, Baffin Bay and the Arctic Archipelago. Variation partitioning was used to disentangle the effects of environmental parameters, spatial distance and spatially correlated environmental parameters on prokaryotic and viral communities. Viral and prokaryotic community composition were related in the Labrador Sea, but were independent of each other in Baffin Bay and the Arctic Archipelago. In oceans, the dominant dispersal mechanism for prokaryotes and viruses is the movement of water masses, thus, dispersal for both groups is passive and similar. Nevertheless, spatial distance explained 7-19% of the variation in viral community composition in the Arctic Archipelago, but was not a significant predictor of bacterial or archaeal community composition in either sampling area, suggesting a decoupling of the processes regulating community composition within these taxonomic groups. According to the metacommunity theory, patterns in bacterial and archaeal community composition suggest a role for species sorting, while patterns of virus community composition are consistent with species sorting in the Labrador Sea and suggest a potential role of mass effects in the Arctic Archipelago. Given that, a specific prokaryotic taxon may be infected by multiple viruses with high reproductive potential, our results suggest that viral community composition was subject to a high turnover relative to prokaryotic community composition in the Arctic Archipelago.

  7. Magnetic vortex racetrack memory

    NASA Astrophysics Data System (ADS)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  8. Aura Microwave Limb Sounder Observations of Dynamics and Transport During the Record-Breaking 2009 Arctic Stratospheric Major Warming

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Schwartz, Michael J.; Krueger, Kirstin; Santee, Michelle L.; Pawson, Steven; Lee, Jae N.; Daffer, William H.; Fuller, Ryan A.; Livesey, Nathaniel J.

    2009-01-01

    A major stratospheric sudden warming (SSW) in January 2009 was the strongest and most prolonged on record. Aura Microwave Limb Sounder (MLS) observations are used to provide an overview of dynamics and transport during the 2009 SSW, and to compare with the intense, long-lasting SSW in January 2006. The Arctic polar vortex split during the 2009 SSW, whereas the 2006 SSW was a vortex displacement event. Winds reversed to easterly more rapidly and reverted to westerly more slowly in 2009 than in 2006. More mixing of trace gases out of the vortex during the decay of the vortex fragments, and less before the fulfillment of major SSW criteria, was seen in 2009 than in 2006; persistent well-defined fragments of vortex and anticyclone air were more prevalent in 2009. The 2009 SSW had a more profound impact on the lower stratosphere than any previously observed SSW, with no significant recovery of the vortex in that region. The stratopause breakdown and subsequent reformation at very high altitude, accompanied by enhanced descent into a rapidly strengthening upper stratospheric vortex, were similar in 2009 and 2006. Many differences between 2006 and 2009 appear to be related to the different character of the SSWs in the two years.

  9. Vectorial complex-source vortex beams

    NASA Astrophysics Data System (ADS)

    Orlov, S.; Banzer, P.

    2014-08-01

    The scalar complex source vortex model is an accurate description of highly focused scalar vortices. We use it to construct a variety of vectorial solutions of Maxwell's equations describing highly focused and variously polarized vector vortex beams accurately. Three different families of optical vector vortex beams are presented and studied in detail. In this model, optical vortices derived within Cartesian symmetry correspond to circularly and linearly polarized highly focused vortex beams in the focus of a high numerical aperture focusing system. In addition, we report on vortical complex-source beams derived within cylindrical and spherical symmetries which exhibit very special and intriguing properties.

  10. A 3D simulation of the early winter distribution of reactive chlorine in the north polar vortex

    NASA Technical Reports Server (NTRS)

    Douglass, A.; Rood, R.; Waters, J.; Froidevaux, L.; Read, W.; Elson, L.; Geller, M.; Chi, Y.; Cerniglia, M.; Steenrod, S.

    1993-01-01

    Early in December 1991, high values of ClO are seen by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite at latitudes south of areas of temperatures cold enough to form polar stratospheric clouds (PSCs). A 3D simulation shows that the heterogeneous conversion of chlorine reservoirs to reactive chlorine on the surfaces of PSCs (processing) takes place at high latitudes. Often the processed air must be transported to lower latitudes, where the reactive chlorine is photochemically converted to ClO, to be observed by MLS. In this simulation, one incidence of cold temperatures is associated with an anticyclone, and a second with a cyclone. The transport of processed air associated with the anticyclone is marked by shearing; a decrease in the maximum of the processed air is accompanied by growth of the area influenced by the processing. In contrast, the air processed in the cyclonic event spreads more slowly. This shows that transport and shearing is a crucial element to the evolution of reactive chlorine associated with a processing event. In particular, transport and shearing, as well as photochemical processes, can cause variations in observed ClO.

  11. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic.

    PubMed

    Krey, Anke; Ostertag, Sonja K; Chan, Hing Man

    2015-03-15

    Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals.

  12. Extensive sampling of polar bears (Ursus maritimus) in the Northwest Passage (Canadian Arctic Archipelago) reveals population differentiation across multiple spatial and temporal scales.

    PubMed

    Campagna, Leonardo; Van Coeverden de Groot, Peter J; Saunders, Brenda L; Atkinson, Stephen N; Weber, Diana S; Dyck, Markus G; Boag, Peter T; Lougheed, Stephen C

    2013-09-01

    As global warming accelerates the melting of Arctic sea ice, polar bears (Ursus maritimus) must adapt to a rapidly changing landscape. This process will necessarily alter the species distribution together with population dynamics and structure. Detailed knowledge of these changes is crucial to delineating conservation priorities. Here, we sampled 361 polar bears from across the center of the Canadian Arctic Archipelago spanning the Gulf of Boothia (GB) and M'Clintock Channel (MC). We use DNA microsatellites and mitochondrial control region sequences to quantify genetic differentiation, estimate gene flow, and infer population history. Two populations, roughly coincident with GB and MC, are significantly differentiated at both nuclear (F ST = 0.01) and mitochondrial (ΦST = 0.47; F ST = 0.29) loci, allowing Bayesian clustering analyses to assign individuals to either group. Our data imply that the causes of the mitochondrial and nuclear genetic patterns differ. Analysis of mtDNA reveals the matrilineal structure dates at least to the Holocene, and is common to individuals throughout the species' range. These mtDNA differences probably reflect both genetic drift and historical colonization dynamics. In contrast, the differentiation inferred from microsatellites is only on the scale of hundreds of years, possibly reflecting contemporary impediments to gene flow. Taken together, our data suggest that gene flow is insufficient to homogenize the GB and MC populations and support the designation of GB and MC as separate polar bear conservation units. Our study also provide a striking example of how nuclear DNA and mtDNA capture different aspects of a species demographic history.

  13. The Rapid Arctic Warming and Its Impact on East Asian Winter Weather in Recent Decade

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Kim, B. M.; Kim, J. H.

    2015-12-01

    The Arctic is warming much more rapidly than the lower latitudes. In contrast to the rapid Arctic warming, in winters of the recent decade, the cold-air outbreaks over East Asia occur more frequently and stronger than in 1990s. By accompanying the snow over East Asia, the strong cold surges have led to a severe socio-economic impact. Such severe cold surges in recent decade over east Asia is consistent with the more dominant negative phase of the Arctic Oscillation (AO), that may be attributed by the Arctic amplification. In both observation-based reanalysis and numerical model experiments, the Arctic sea ice melting leads to the weakening of the AO polarity by reducing the meridional temperature gradient through a heat flux feedback. The Arctic warming and associated sea ice melting over the Kara-Barents area in late fall and early winter first release a lot of heat to the atmosphere from the ocean by a strong contrast in temperature and moisture and higher height anomaly is developed over the Kara/Barents and the Ural mountains The anomalous anticyclonic anomaly over the Arctic strengthen the Siberian High and at the same time the east Asian trough is developed over the western coast of the North Pacific. Through the passage between the margin of the Siberian High and east Asian tough, an extremely cold air is transported from east Siberia to east Asia for sometimes more than a week. Such a severe sold air brings about the moisture from nearby ocean, largely influencing the daily lives and economy in north East China, Korea, and Japan. The recent Arctic and associated sea ice melting is not only contributed to the local climate and weather, but also a severe weather in mid-latitudes through a modulation in polar vortex.

  14. The Rapid Arctic Warming in Recent Decade and Its Impact on Eurasia Winter Weather

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Joong; Kim, Baek-Min; Kim, Joo-Hong; Jun, Sang-Yoon

    2016-04-01

    The Arctic is warming much more rapidly than the lower latitudes. In contrast to the rapid Arctic warming, in winters of the recent decade, the cold-air outbreaks over East Asia occur more frequently and stronger than in 1990s. By accompanying the snow over East Asia, the strong cold surges have led to a severe socio-economic impact. Such severe cold surges in recent decade over east Asia is consistent with the more dominant negative phase of the Arctic Oscillation (AO), that may be attributed by the Arctic amplification. In both observation-based reanalysis and numerical model experiments, the Arctic sea ice melting leads to the weakening of the AO polarity by reducing the meridional temperature gradient through a heat flux feedback. The Arctic warming and associated sea ice melting over the Kara-Barents area in late fall and early winter first release a lot of heat to the atmosphere from the ocean by a strong contrast in temperature and moisture and higher height anomaly is developed over the Kara/Barents and the Ural mountains The anomalous anticyclonic anomaly over the Arctic strengthen the Siberian High and at the same time the east Asian trough is developed over the western coast of the North Pacific. Through the passage between the margin of the Siberian High and east Asian tough, an extremely cold air is transported from east Siberia to east Asia for sometimes more than a week. Such a severe sold air brings about the moisture from nearby ocean, largely influencing the daily lives and economy in Eurasia. The recent Arctic and associated sea ice melting is not only contributed to the local climate and weather, but also a severe weather in mid-latitudes through a modulation in polar vortex.

  15. Redistribution of nitric acid in the Arctic lower stratosphere during the winter of 1996-1997

    NASA Astrophysics Data System (ADS)

    Irie, H.; Koike, M.; Kondo, Y.; Bodeker, G. E.; Danilin, M. Y.; Sasano, Y.

    2001-10-01

    Vertical profiles of HNO3, N2O, O3, and the aerosol extinction coefficient at 780 nm were observed by the Improved Limb Atmospheric Spectrometer (ILAS) on board the Advanced Earth Observing Satellite (ADEOS) during the Arctic winter of 1996-1997. Irreversible redistribution of HNO3 is evaluated using HNO3-N2O and HNO3-O3 correlations. Denitrification and nitrification started to be observed just after the Arctic vortex cooled to below the ice frost point (TICE) on February 10. Trajectory analyses show that denitrification occurred only in air masses, which were once cooled to near TICE and were kept at temperatures below the nitric acid trihydrate saturation threshold continuously for more than 4 days. Such a temperature history provides the necessary conditions for nucleation and growth of particles causing denitrification. The average extent of denitrification at 19 km reached 43% at the center of the vortex, suggesting that stratospheric ozone could be affected by denitrification deep inside the vortex. Denitrification (>2 ppbv) and nitrification (>1 ppbv) covered 40±10% and 35±10% of the vortex area, respectively. Redistributed numbers of HNO3 molecules at each altitude were calculated by integrating the area-weighted changes in the HNO3 concentration. The decreases in total HNO3 concentration at 17-21 km in late February and early March agreed with the increases at 12-15 km to within 25%, confirming conservation of HNO3 during sedimentation and evaporation of HNO3-containing polar stratospheric cloud particles.

  16. Life in a temperate Polar sea: a unique taphonomic window on the structure of a Late Cretaceous Arctic marine ecosystem.

    PubMed

    Chin, Karen; Bloch, John; Sweet, Arthur; Tweet, Justin; Eberle, Jaelyn; Cumbaa, Stephen; Witkowski, Jakub; Harwood, David

    2008-12-07

    As the earth faces a warming climate, the rock record reminds us that comparable climatic scenarios have occurred before. In the Late Cretaceous, Arctic marine organisms were not subject to frigid temperatures but still contended with seasonal extremes in photoperiod. Here, we describe an unusual fossil assemblage from Devon Island, Arctic Canada, that offers a snapshot of a ca 75 Myr ago marine palaeoecosystem adapted to such conditions. Thick siliceous biogenic sediments and glaucony sands reveal remarkably persistent high primary productivity along a high-latitude Late Cretaceous coastline. Abundant fossil faeces demonstrate that this planktonic bounty supported benthic invertebrates and large, possibly seasonal, vertebrates in short food chains. These ancient organisms filled trophic roles comparable to those of extant Arctic species, but there were fundamental differences in resource dynamics. Whereas most of the modern Arctic is oligotrophic and structured by resources from melting sea ice, we suggest that forested terrestrial landscapes helped support the ancient marine community through high levels of terrigenous organic input.

  17. Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  18. Why unprecedented ozone loss in the Arctic in 2011? Is it related to climate change?

    NASA Astrophysics Data System (ADS)

    Pommereau, J.-P.; Goutail, F.; Lefèvre, F.; Pazmino, A.; Adams, C.; Dorokhov, V.; Eriksen, P.; Kivi, R.; Stebel, K.; Zhao, X.; van Roozendael, M.

    2013-05-01

    An unprecedented ozone loss occurred in the Arctic in spring 2011. The details of the event are revisited from the twice-daily total ozone and NO2 column measurements of the eight SAOZ/NDACC (Système d'Analyse par Observation Zénithale/Network for Detection of Atmospheric Composition Changes) stations in the Arctic. It is shown that the total ozone depletion in the polar vortex reached 38% (approx. 170 DU) by the end of March, which is larger than the 30% of the previous record in 1996. Aside from the long extension of the cold stratospheric NAT PSC period, the amplitude of the event is shown to be resulting from a record daily total ozone loss rate of 0.7% d-1 after mid-February, never seen before in the Arctic but similar to that observed in the Antarctic over the last 20 yr. This high loss rate is attributed to the absence of NOx in the vortex until the final warming, in contrast to all previous winters where, as shown by the early increase of NO2 diurnal increase, partial renoxification occurs by import of NOx or HNO3 from the outside after minor warming episodes, leading to partial chlorine deactivation. The cause of the absence of renoxification and thus of high loss rate, is attributed to a vortex strength similar to that of the Antarctic but never seen before in the Arctic. The total ozone reduction on 20 March was identical to that of the 2002 Antarctic winter, which ended around 20 September, and a 15-day extension of the cold period would have been enough to reach the mean yearly amplitude of the Antarctic ozone hole. However there is no sign of trend since 1994, either in PSC (polar stratospheric cloud) volume (volume of air cold enough to allow formation of PSCs), early winter denitrification, late vortex renoxification, and vortex strength or in total ozone loss. The unprecedented large Arctic ozone loss in 2011 appears to result from an extreme meteorological event and there is no indication of possible strengthening related to climate change.

  19. Future Arctic ozone recovery: the importance of chemistry and dynamics

    NASA Astrophysics Data System (ADS)

    Bednarz, Ewa M.; Maycock, Amanda C.; Abraham, N. Luke; Braesicke, Peter; Dessens, Olivier; Pyle, John A.

    2016-09-01

    Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a seven-member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ˜ 11.5 DU decade-1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ˜ 50-100 DU below the corresponding long-term ensemble mean for that period, reaching values characteristic of the near-present-day average level. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen-induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of 2 between the periods 2001-2020 and 2061-2080. However, in the presence of a cold and strong polar vortex, elevated halogen-induced ozone losses well above the corresponding long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a significant cooling trend in the Arctic winter mid- and upper stratosphere, but there is less confidence in the projected temperature trends in the lower stratosphere (100-50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively driven stratospheric cooling. However, individual winters characterised by significantly suppressed downwelling, reduced transport and anomalously low temperatures continue to occur in the future. We conclude that, despite the projected long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue in the future, thereby facilitating episodic reductions in springtime ozone columns

  20. Detrital zircons (U-Pb and Lu-Hf) and host hemipelagic sediments (Pb-Sr-Nd-Os) from the Polar Arctic

    NASA Astrophysics Data System (ADS)

    Kapitonov, Igor; Belyatsky, Boris; Petrov, Eugeny; Sergeev, Sergey

    2015-04-01

    . However, a direct resemblance to the Permo-Triassic and Jurassic sandstones of coastal areas of the Arctic, we also do not see. Another factor in the formation of deep marine sediments is fluvial transference. The total input of the Arctic rivers reaches about 1x106 tonnes per year. When comparing the characteristics of detrital zircons of different river systems, we see that the similar is the distribution of zircon ages from the deposits of the Lena, Yenisei and Yana-Indigirka. Given that the Laptev Sea is the main source of «dirty» sea ice, carried by Transpolar Drift in the central part of the Arctic Ocean, detrital zircons from sediments of Lena river, which is characterized by the highest among Arctic rivers discharge, apparently, ensure the formation of the heavy fraction of hemipelagic mud in a large deep-water area of the Arctic Ocean, including the polar region. The observed variations in local distribution of zircon ages in the studied sampling points do not exclude the presence of local material, but to determine its share and establish with certainty the composition further research is required.

  1. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  2. Magnetic vortex based transistor operations.

    PubMed

    Kumar, D; Barman, S; Barman, A

    2014-02-17

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  3. A simple mechanistic model for the solar cycle modulation of winter Arctic ozone

    NASA Astrophysics Data System (ADS)

    Li, K.; Tung, K. K.

    2013-12-01

    Observational evidence shows that when the equatorial quasi-biennial oscillation (QBO) is in its easterly descending phase or when the 11-year solar cycle is in its solar maximum, or both, the winter Arctic stratosphere is anomalously warm by 5 K and the Arctic ozone is enhaced by 60 DU. For QBO, it has been known that the Holton-Tan effect, which modulates the planetary wave potential vorticity, weakens the polar vortex and eventually leads to enhanced isentropic mixing of the polar air with low latitude air. It has been suggested that similar teleconnection mechanism may be involved in the solar modulation of the polar stratosphere, but a defintive model study is lacking. In this study, a linear two-dimensional model for the residual Eulerian meridional circulation [Tung and Yang, 1994, J. Atmos. Sci., 51, 2708-2721] is employed. The QBO is forced by the equatorial Kelvin and Rossby waves and the solar cycle forcing is represented by the equatorial ozone heating. The mechanism through which the polar vortex is perturbed by the equatorial heating will be investigated.

  4. Circum-arctic comparison of the hatching season of polar cod Boreogadus saida: A test of the freshwater winter refuge hypothesis

    NASA Astrophysics Data System (ADS)

    Bouchard, Caroline; Fortier, Louis

    2011-07-01

    The hypothesis that salt-related differences in winter sea surface temperature dictate regional differences in the hatching season of polar cod Boreogadus saida is tested by contrasting hatch-date frequency distributions among six oceanographic regions of the Arctic Ocean characterized by different freshwater input. Consistent with the hypothesis, hatching started as early as January and extended to July in seas receiving large river discharge (Laptev/East Siberian Seas, Hudson Bay, and Beaufort Sea). By contrast, hatching was restricted to April-July in regions with little freshwater input (Canadian Archipelago, North Baffin Bay, and Northeast Water). Length (weight) in late-summer (14 August) varied from <10 mm (<0.01 g) in July hatchers to 50 mm (0.91 g) in January hatchers. An earlier ice break-up, more frequent winter polynyas, a warmer surface layer, and increased river discharge linked to climate warming could enhance the survival of juvenile 0+ polar cod by enabling a larger fraction of the annual cohort to hatch earlier and reach a larger size before the fall migration to the deep overwintering grounds. A further test of the hypothesis would require the verification that the early winter hatching of polar cod actually occurs in the thermal refuge provided by under-ice river plumes.

  5. Contamination of food by crude oil affects food selection and growth performance, but not appetite, in an Arctic fish the polar cod (Boreogadus saida)

    SciTech Connect

    Christiansen, J.S.; George, S.G.

    1995-04-01

    The polar cod (Boreogadus saida) is recognized as a key species in Arctic marine food webs and it may, therefore, be important for the transfer of xenobiotics from lower trophic levels to its main predators, birds and sea mammals. The present work examines the effects of foods contaminated with 200 or 400 ppm crude oil on food selection patterns and appetite-growth relationship in polar cod using X-radiography. It is shown that sexually mature polar cod consumed mixtures of uncontaminated and oil-contaminated foods, and did not show a reduced overall appetite as compared with fish provided with uncontaminated food only. Food selection was, however, influenced by both sex and individual appetite. Male fish selected uncontaminated food when appetite was low, whereas females ingested contaminated and uncontaminated foods equally, irrespective of appetite level. The ingestion of oil-contaminated food led to a significant depression in growth performance in both male and female fish. Food contaminated with oil at a concentration of 500 ppm was completely rejected by both sexes. 6 refs., 4 figs., 2 tabs.

  6. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. (Invited)

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ferreira, D.; Bitz, C. M.

    2013-12-01

    In recent decades the Arctic has been warming with sea ice disappearing. But the Antarctic has been (mainly) cooling and sea ice is growing. We argue here that inter-hemispheric asymmetries in the mean ocean circulation, with sinking in the northern north Atlantic and upwelling around Antarctica, strongly influences the surface response to GHG forcing, accelerating warming in the Arctic and delaying it in the Antarctic. Moreover, while GHG forcing has been qualitatively similar at the poles, ozone depletion only occurs in the Antarctic. The coupled atmosphere-ocean response to ozone depletion may further help to explain the Antarctic trends. A framework is presented to quantify the processes at work built around `Climate Response Functions' for GHG and Ozone-hole forcing.

  7. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing

    PubMed Central

    Marshall, John; Armour, Kyle C.; Scott, Jeffery R.; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G.; Bitz, Cecilia M.

    2014-01-01

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an

  8. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    PubMed

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  9. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden

  10. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples.

    PubMed

    Lusher, Amy L; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-08

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  11. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    PubMed Central

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  12. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    NASA Astrophysics Data System (ADS)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  13. Teachers, Researchers, and Students Collaborating in Arctic Climate Change Research: The Partnership Between the Svalbard REU and ARCUS PolarTREC programs

    NASA Astrophysics Data System (ADS)

    Roof, S.; Warburton, J.; Oddo, B.; Kane, M.

    2007-12-01

    Since 2004, the Arctic Research Consortium of the U.S. (ARCUS) "TREC" program (Teachers and Researchers Exploring and Collaborating, now "PolarTREC") has sent four K-12 teachers to Svalbard, Norway to work alongside researchers and undergraduate students conducting climate change research as part of the Svalbard Research Experiences for Undergraduates (REU) Program. The benefits of this scientist/educator/student partnership are many. Researchers benefit from teacher participation as it increases their understanding of student learning and the roles and responsibilities of K-12 teachers. The TREC teacher contributes to the research by making observations, analyzing data, and carrying heavy loads of equipment. In collaborating with K- 12 teachers, undergraduate student participants discover the importance of teamwork in science and the need for effective communication of scientific results to a broad audience. The questions that K-12 teachers ask require the scientists and students in our program to explain their work in terms that non-specialists can understand and appreciate. The K-12 teacher provides a positive career role model and several Svalbard REU undergraduate students have pursued K-12 teaching careers after graduating. TREC teachers benefit from working alongside the researchers and by experiencing the adventures of real scientific research in a remote arctic environment. They return to their schools with a heightened status that allows them to share the excitement and importance of scientific research with their students. Together, all parties contribute to greatly enhance public outreach. With ARCUS logistical support, TREC teachers and researchers do live web conferences from the field, reaching hundreds of students and dozens of school administrators and even local politicians. Teachers maintain web journals, describing the daily activities and progress of the researcher team. Online readers from around the world write in to ask questions, which the

  14. Airborne Arctic Stratospheric Expedition 2: Air Parcel Trajectories

    NASA Technical Reports Server (NTRS)

    1993-01-01

    An overview of Airborne Arctic Stratospheric Expedition 2 is given. Effects of Pinatubo aerosol on stratospheric ozone at mid-latitudes, in situ measurements of ClO and ClO/HCl ratio, balloon-borne measurements of ClO, NO, and O3 in a volcanic cloud, and new observations of the NO(y)/N2O correlation in the lower stratosphere are discussed. Among other topics addressed are the following: in situ tracer correlations of methane, nitrous oxide, and ozone as observed aboard the DC-8, in situ measurements of changes in stratospheric aerosol and the N2O-aerosol relationship inside and outside of the polar vortex, measurements of halogenated organic compounds near the tropical tropopause, and airborne brightness measurements of the polar winter troposphere.

  15. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  16. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species.

    PubMed

    Sonne, Christian

    2010-07-01

    The aim of this review is to provide a thorough overview of the health effects from the complexed biomagnified mixture of long-range transported industrial organochlorines (OCs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs) and mercury (Hg) on polar bear (Ursus maritimus) health. Multiple scientific studies of polar bears indicate negative relationships between exposure to these contaminants and health parameters; however, these are all of a correlative nature and do not represent true cause-and-effects. Therefore, information from controlled studies of farmed Norwegian Arctic foxes (Vulpes lagopus) and housed East and West Greenland sledge dogs (Canis familiaris) were included as supportive weight of evidence in the clarification of contaminant exposure and health effects in polar bears. The review showed that hormone and vitamin concentrations, liver, kidney and thyroid gland morphology as well as reproductive and immune systems of polar bears are likely to be influenced by contaminant exposure. Furthermore, exclusively based on polar bear contaminant studies, bone density reduction and neurochemical disruption and DNA hypomethylation of the brain stem seemed to occur. The range of tissue concentration, at which these alterations were observed in polar bears, were ca. 1-70,000 ng/g lw for OCs (blood plasma concentrations of some PCB metabolites even higher), ca. 1-1000 ng/g lw for PBDEs and for PFCs and Hg 114-3052 ng/g ww and 0.1-50 microg/g ww, respectively. Similar concentrations were found in farmed foxes and housed sledge dogs while the lack of dose response designs did not allow an estimation of threshold levels for oral exposure and accumulated tissue concentrations. Nor was it possible to pinpoint a specific group of contaminants being more important than others nor analyze their interactions. For East Greenland polar bears the corresponding daily SigmaOC and SigmaPBDE oral exposure was estimated to be 35 and 0.34 microg/kg body

  17. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic.

    PubMed

    Peacock, Elizabeth; Sonsthagen, Sarah A; Obbard, Martyn E; Boltunov, Andrei; Regehr, Eric V; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N; Sage, George K; Hope, Andrew G; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T; Amstrup, Steven C; Belikov, Stanislav; Born, Erik W; Derocher, Andrew E; Stirling, Ian; Taylor, Mitchell K; Wiig, Øystein; Paetkau, David; Talbot, Sandra L

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow

  18. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic

    USGS Publications Warehouse

    Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei N.; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will

  19. Implications of the Circumpolar Genetic Structure of Polar Bears for Their Conservation in a Rapidly Warming Arctic

    PubMed Central

    Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.

    2015-01-01

    We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will

  20. Arctic Physical Oceanography.

    DTIC Science & Technology

    1984-07-01

    approval to proceed, Polar Science Center, in Fridtjof Nansen , who allowed his especially constructed the fall of 1978, started the detailed planning... Nansen and his negotiating contracts for aircraft and personnel support men conducted a remarkable and wide-ranging services. program of scientific...in the Amerasia the Arctic Midoceanic Ridge, across the Nansen Frac- Basin of the Arctic Ocean. These stations were sup- ture Zone, and up the

  1. Arctic Insecurity: Avoiding Conflict

    DTIC Science & Technology

    2010-02-17

    nations’ EEZs. Arctic nations will face the challenge of protecting fishing industries from outside competition, overfishing , and pollution. A...Council” September 1996. and is apprehensive that North Atlantic 33 Julia L. Gourley, US Senior Arctic Official, Office of Ocean and Polar Affairs...42 Ibid., p 9. 43 Norway’s Defense Minister made comments during a speech to the Atlantic Council of Finland. Norwegian Government, “Norway’s

  2. Vortex methods

    SciTech Connect

    Chorin, A.J. |

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  3. Why unprecedented ozone loss in the Arctic in 2011? Is it related to climatic change?

    NASA Astrophysics Data System (ADS)

    Pommereau, J.-P.; Goutail, F.; Lefèvre, F.; Pazmino, A.; Adams, C.; Dorokhov, V.; Eriksen, P.; Kivi, R.; Stebel, K.; Zhao, X.; van Rozendael, M.

    2013-01-01

    An unprecedented ozone loss occurred in the Arctic in spring 2011. The details of the event are re-visited from the twice-daily total ozone and NO2 columns measurements of the eight SAOZ/NDACC (Système d'Analyse par Observation Zénitale/Network for Detection of Atmospheric Composition Changes) stations in the Arctic. It is shown that the total ozone depletion in the polar vortex reached 38% (approx. 170 DU) by the end of March that is larger than the 30% of the previous record in 1996. Asides from the long extension of the cold stratospheric NAT PSC period, the amplitude of the event is shown to be resulting from a record daily total ozone loss rate of 0.7% day-1 after mid-February, never seen before in the Arctic but similar to that observed in the Antarctic over the last 20 yr. This high loss rate is attributed to the absence of NOx in the vortex until the final warming, in contrast to all previous winters where, as shown by the early increase of NO2 diurnal increase, partial renoxification is occurring by import of NOx or HNO3 from the outside after minor warming episodes, leading to partial chlorine deactivation. The cause of the absence of renoxification and thus of high loss rate, is attributed to a vortex strength similar to that of the Antarctic but never seen before in the Arctic. The total ozone reduction on 20 March was identical to that of the 2002 Antarctic winter, which ended around 20 September, and a 15-day extension of the cold period would have been enough to reach the mean yearly amplitude of the Antarctic ozone hole. However there is no sign of trend since 1994, neither in PSC volume, early winter denitrification, late vortex renoxification, and vortex strength nor in total ozone loss. The unprecedented large Arctic ozone loss in 2011 appears to resulting from an extreme meteorological event and there is no indication of possible strengthening related to climate change.

  4. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-06-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior

  5. Vortex formation and instability in the left ventricle

    NASA Astrophysics Data System (ADS)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  6. Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate

    NASA Astrophysics Data System (ADS)

    Ivy, Diane J.; Solomon, Susan; Calvo, Natalia; Thompson, David W. J.

    2017-02-01

    We present observational evidence for linkages between extreme Arctic stratospheric ozone anomalies in March and Northern Hemisphere tropospheric climate in spring (March–April). Springs characterized by low Arctic ozone anomalies in March are associated with a stronger, colder polar vortex and circulation anomalies consistent with the positive polarity of the Northern Annular Mode/North Atlantic Oscillation in March and April. The associated spring tropospheric circulation anomalies indicate a poleward shift of zonal winds at 500 hPa over the North Atlantic. Furthermore, correlations between March Arctic ozone and March–April surface temperatures reveal certain regions where a surprisingly large fraction of the interannual variability in spring surface temperatures is associated with interannual variability in ozone. We also find that years with low March Arctic ozone in the stratosphere display surface maximum daily temperatures in March–April that are colder than normal over southeastern Europe and southern Asia, but warmer than normal over northern Asia, adding to the warming from increasing well-mixed greenhouse gases in those locations. The results shown here do not establish causality, but nevertheless suggest that March stratospheric ozone is a useful indicator of spring averaged (March–April) tropospheric climate in certain Northern Hemispheric regions.

  7. Mechanisms of Arctic Oscillation response to volcanic aerosols and ozone changes caused by the 1991 Mt. Pinatubo eruption

    NASA Astrophysics Data System (ADS)

    Stenchikov, G.; Robock, A.; Hamilton, K.; Schwarzkopf, M. D.; Ramaswamy, V.; Ramachandran, S.

    2001-12-01

    All strong equatorial volcanic eruptions during the period of instrumental observations have forced a positive phase of the Arctic Oscillation (AO) for one or two years following each eruption. The conventional view is that the volcanic effect on the AO is caused by aerosol heating in the tropical lower stratosphere that produces a stronger polar vortex that prevents the propagation of planetary waves into the polar stratosphere. A shift from transparent to reflective (for planetary waves) stratosphere changes the "top boundary condition" for the tropospheric flow and affects the tropospheric circulation. Here we study the response of Arctic Oscillation to aerosols and observed ozone changes after the June 15, 1991 Mt. Pinatubo eruption in the SKYHI GCM to test the AO mechanism. An enhanced positive phase of the AO is reproduced in the model when forced with either aerosols or ozone. For the ozone case, stratospheric cooling, caused by ozone depletion in winter and early spring in the north polar region, increases the temperature gradient between the pole and midlatitudes in the lower stratosphere strengthening the polar vortex and the AO. Experiments without aerosol absorption (stratospheric heating) show as strong an AO response as with the total aerosol forcing. This suggests that aerosol stratospheric warming in the tropical lower stratosphere is not the dominant AO mechanism. Stratospheric aerosols can also affect the AO by cooling of the land surface and the lower troposphere. This cooling, which is strongest in low latitudes especially in winter, reduces the tropospheric meridional temperature gradient, which leads to a decrease of the mean zonal energy and amplitudes of planetary waves in the troposphere. The corresponding decrease of decelerating Eliassen-Palm flux into the lower stratosphere causes a strengthening of the polar vortex and triggers the "wave feedback," as previously discussed. We suggest that this mechanism can also be applicable to a long

  8. On the influence of North Pacific sea surface temperature on the Arctic winter climate

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.; Garfinkel, C. I.

    2012-10-01

    Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High - Low differences are consistent with a strengthened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in spring, affecting the April clear-sky UV index at Northern Hemisphere midlatitudes.

  9. 2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea

    NASA Astrophysics Data System (ADS)

    Shim, T.; Kim, B.; Kim, S.

    2012-12-01

    In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of

  10. Decadal Time Scale change in terrestrial plant communities in North American arctic and alpine tundra: A contribution to the International Polar Year Back to the Future Project (Invited)

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.; Ebert-May, D.; Hollister, R. D.; Johnson, D. R.; Lara, M. J.; Villarreal, S.; Spasojevic, M.; Webber, P.

    2010-12-01

    The International Polar Year-Back to the Future (IPY-BTF) is an endorsed International Polar Year project (IPY project #214). The overarching goal of this program is to determine how key structural and functional characteristics of high latitude/altitude terrestrial ecosystems have changed over the past 25 or more years and assess if such trajectories of change are likely to continue in the future. By rescuing data, revisiting, re-sampling historic research sites and assessing environmental change over time, we aim to provide greater understanding of how tundra is changing and what the possible drivers of these changes are. Resampling of sites established by Patrick J. Webber between 1964 and 1975 in northern Baffin Island, Northern Alaska and in the Rocky Mountains form a key contribution to the BTF project. Here we report on resampling efforts at each of these locations and initial results of a synthesis effort that finds similarities and differences in change between sites. Results suggest that although shifts in plant community composition are detectable at each location, the magnitude and direction of change differ among locations. Vegetation shifts along soil moisture gradients is apparent at most of the sites resampled. Interestingly, however, wet communities seem to have changed more than dry communities in the Arctic locations, while plant communities at the alpine site appear to be becoming more distinct regardless of soil moisture status. Ecosystem function studies performed in conjunction with plant community change suggest that there has been an increase in plant productivity at most sites resampled, especially in wet and mesic land cover types.

  11. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic.

    PubMed

    Dietz, Rune; Gustavson, Kim; Sonne, Christian; Desforges, Jean-Pierre; Rigét, Frank F; Pavlova, Viola; McKinney, Melissa A; Letcher, Robert J

    2015-07-01

    Polar bears (Ursus maritimus) consume large quantities of seal blubber and other high trophic marine mammals and consequently have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In the present paper we carried out a risk quotient (RQ) evaluation on OHC-exposed polar bears harvested from 1999 to 2008 and from 11 circumpolar subpopulations spanning from Alaska to Svalbard in order to evaluate the risk of OHC-mediated reproductive effects (embryotoxicity, teratogenicity), immunotoxicity and carcinogenicity (genotoxicity). This RQ evaluation was based on the Critical Body Residue (CBR) concept and a Physiologically-Based Pharmacokinetic Modelling (PBPK) approach using OHC concentrations measured in polar bear adipose or liver tissue. The range of OHC concentrations within polar bear populations were as follows for adipose, sum polychlorinated biphenyls ∑PCBs (1797-10,537 ng/g lw), sum methylsulphone-PCB ∑MeSO2-PCBs (110-672 ng/g lw), sum chlordanes ∑CHLs (765-3477 ng/g lw), α-hexachlorocyclohexane α-HCH (8.5-91.3 ng/g lw), β-hexachlorocyclohexane β-HCH (65.5-542 ng/g lw), sum chlorbenzenes ∑ClBzs (145-304 ng/g lw), dichlorodiphenyltrichloroethane ∑DDTs (31.5-206 ng/g lw), dieldrin (69-249 ng/g lw), polybrominated diphenyl ethers ∑PBDEs (4.6-78.4 ng/g lw). For liver, the perfluorooctanesulfonic acid (PFOS) concentrations ranged from 231-2792 ng/g ww. The total additive RQ from all OHCs ranged from 4.3 in Alaska to 28.6 in East Greenland bears for effects on reproduction, immune health and carcinogenicity, highlighting the important result that the toxic effect threshold (i.e. RQ>1) was exceeded for all polar bear populations assessed. PCBs were the main contributors for all three effect categories, contributing from 70.6% to 94.3% of the total risk and a RQ between 3.8-22.5. ∑MeSO2-PCBs were the second highest effect contributor for reproductive and immunological effects (0.17

  12. ATMOS Measurements of H2O + 2CH4 and Total Reactive Nitrogen in the November 1994 Antarctic Stratosphere: Dehydration and Denitrification in the Vortex

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Salawitch, R. J.; Newchurch, M. J.; Zander, R.; Abbas, M. M.; Abrams, M. C.; Manney, G. L.; Michelsen, H. A.; Chang, A. Y.; Goldman, A.

    1996-01-01

    Simultaneous stratospheric volume mixing ratios (VMR's) measured inside and outside the Antarctic vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in November 1994 reveal previously unobserved features in the distributions of total reactive nitrogen (NO(y)) and total hydrogen (H2O + 2CH4). Maximum removal of NO(y) due to sedimentation of polar stratospheric clouds (PSC's) inside the vortex occurred at a potential temperature (Theta) of 500-525 K (approximately 20 km), where values were 5 times smaller than measurements outside. Maximum loss of H2O + 2CH4 due to PSC's occurred in the vortex at 425-450 K, approximately 3 km lower than the peak NO(y) loss. At that level, H2O + 2CH4 VMR's inside the vortex were approximately 70% of corresponding values outside. The Antarctic and April 1993 Arctic measurements by ATMOS show no significant differences in H2O + 2CH4 VMR's outside the vortices in the two hemispheres. Elevated NO(y) VMRs were measured inside the vortex near 700 K. Recent model calculations indicate that this feature results from downward transport of elevated NO(y) produced in the thermosphere and mesosphere.

  13. Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  14. Seasonal variability in physicochemical characteristics of small water bodies across a High Arctic wetland, Polar Bear Pass, Bathurst Island, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Abnizova, A.; Miller, E.; Shakil, S.; Young, K. L.

    2012-12-01

    Small water bodies (lakes, ponds) in permafrost environments make up roughly half of the total area of surface water, but their relevance to nutrient and carbon fluxes on a landscape scale still remains largely unknown. Small variations in pond water balance as a result of seasonal changes in precipitation, evaporation, or drainage processes have the potential to produce considerable changes in the carbon and nutrient budgets as small changes in the water level can have a major effect on volumes and surface areas of ponds. The aims of this study were (1) to identify the main characteristics in pond hydrology both seasonally and between years; (2) to identify factors controlling variation in measured physicochemical variables; and (3) to detect seasonal trends in the hydrological and chemical characteristics of ponds located in an extensive low-gradient High Arctic wetland. We conducted detailed limnological surveys of 50 wetland ponds located at Polar Bear Pass (PBP), Bathurst Island, Nunavut, Canada during 2007-2010. The results indicate large seasonal variability in physicochemical parameters that is associated with pond water budget changes, especially for ponds with steady water levels vs. dynamic ponds (fluctuating water levels). Principal component analysis (PCA) of the datasets indicated that major ion content, specifically calcium (Ca2+), was responsible for much of the variability among the ponds in both 2008 and 2009. Additionally in 2009 most of the variability was also due to specific conductivity in the summer and magnesium (Mg2+) in the fall. These trends are typically identified as a result of dilution or evapo-concentration processes in small water bodies. In 2007, a warm and dry year, pH and potassium (K+) were responsible for much of variation between ponds. This is attributed to high vegetation growth in ponds and a longer growing season. While no trend was identified in 2010 (PCA analysis), calculations of greenhouse gas (GHG) emissions from 50

  15. Evidence for subsidence in the 1989 Arctic winter stratosphere from airborne infrared composition measurements

    NASA Technical Reports Server (NTRS)

    Toon, G. C.; Farmer, C. B.; Schaper, P. W.; Lowes, L. L.; Norton, R. H.; Schoeberl, M. R.; Lait, L. R.; Newman, P. A.

    1992-01-01

    Simultaneous measurements of the stratospheric burdens of CO2, HCN, N2O, CH4, OCS, CF2Cl2, CFCl3, CHF2Cl and HF were made by the Jet propulsion Laboratory MkIV interferometer on board the NASA DC-8 aircraft during January and early February 1989 as part of the Airborne Arctic Stratosphere Experiment. Data were acquired on 11 flights at altitudes of up to 12 km over a geographic region covering the NE Atlantic Ocean, Iceland and Greenland. The results obtained show large variations in the burdens of these tracers due to the effects of transport. The tropospheric source gas burdens were reduced inside the polar vortex, suggesting that the air had subsided with respect to the surrounding midlatitude air. Increased HF burdens inside the vortex support this interpretation. The results obtained from the different tracers are highly consistent with each other and indicate that in the 15- to 20-km altitude range inside the vortex, surfaces of constant volume mixing ratio were located some 5-6 km lower in absolute altitude than outside the vortex. The results also indicate that the magnitude of this subsidence increases with altitude. These conclusions are consistent with other measurements.

  16. Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic.

    PubMed

    Wong, Fiona; Jantunen, Liisa M; Pućko, Monika; Papakyriakou, Tim; Staebler, Ralf M; Stern, Gary A; Bidleman, Terry F

    2011-02-01

    Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg L(-1)) were as follows: α-hexachlorocyclohexane (α-HCH) 465-1013, γ-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg m(-3)) were as follows: α-HCH 7.5-48, γ-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4 - 39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of α-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The α-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic α-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng m(-2) d(-1)) were as follows: α-HCH 6.8 ± 3.2 (2.7-13), γ-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng m(-2) d(-1) (-1.6 to 2.0).

  17. Arctic spring ozone reduction associated with projected sea ice loss

    NASA Astrophysics Data System (ADS)

    Deser, C.; Sun, L.; Tomas, R. A.; Polvani, L. M.

    2013-12-01

    The impact of Arctic sea ice loss on the stratosphere is investigated using the Whole-Atmosphere Community Climate Model (WACCM), by prescribing the sea ice in the late 20th century and late 21st century, respectively. The localized Sea Surface Temperature (SST) change associated with sea ice melt is also included in the future run. Overall, the model simulates a negative annular-mode response in the winter and spring. In the stratosphere, polar vortex strengthens from February to April, peaking in March. Consistent with it, there is an anomalous cooling in the high-latitude stratosphere, and polar cap ozone reduction is up to 20 DU. Since the difference between these two runs lies only in the sea ice and localized SST in the Arctic, the stratospheric circulation and ozone changes can be attributed to the surface forcing. Eliassen-Palm analysis reveals that the upward propagation of planetary waves is suppressed in the spring as a consequence of sea ice loss. The reduction in propagation causes less wave dissipation and thus less zonal wind deceleration in the extratropical stratosphere.

  18. Core contribution to magnetotransport of ferromagnetic dots in vortex state

    NASA Astrophysics Data System (ADS)

    Segal, A.; Gerber, A.

    2012-04-01

    We study the influence of the vortex core on magnetotransport of ferromagnetic dots in a vortex state. The extraordinary Hall effect generated in the core region has a different field symmetry compared to contributions of anisotropic magnetoresistance and the planar Hall effect, which can be used to detect chirality and polarity of the vortex. We propose a method for realization of two-bit per dot magnetic random access memory, in which two states are contributed by clockwise and counter-clockwise chirality and two by up and down core polarity. Dependence of the signal on vortex location, core diameter, and other parameters is discussed.

  19. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    NASA Astrophysics Data System (ADS)

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    Arctic sea-ice extent has rapidly declined over the past few decades, and most climate models project a continuation of this trend during the 21st century in response to greenhouse gas forcing. A number of recent studies have shown that this sea-ice loss induces vertically propagating Rossby waves, which weaken the stratospheric polar vortex and increase the frequency of sudden stratospheric warmings (SSWs). SSWs have been shown to increase the probability of a negative NAO in the following weeks, thereby driving anomalous weather conditions over Europe and other mid-latitude regions. In contrast, other studies have shown that Arctic sea-ice loss strengthens the polar vortex, increasing the probability of a positive NAO. Sun et al. (2015) suggest these conflicting results may be due to the region of sea-ice loss considered. They find that if only regions within the Arctic Circle are considered in sea-ice projections, the polar vortex weakens; if only regions outwith the Arctic Circle are considered, the polar vortex strengthens. This is because the anomalous Rossby waves forced in the former/latter scenario constructively/destructively interfere with climatological Rossby waves, thus enhancing/suppressing upward wave propagation. In this study, we investigate whether Sun et al.'s results are robust to a different model. We also divide the regions of sea-ice loss they considered into further sub-regions, in order to examine the regional differences in more detail. We do this by using the intermediate complexity climate model, IGCM4, which has a well resolved stratosphere and does a good job of representing stratospheric processes. Several simulations are run in atmosphere only mode, where one is a control experiment and the others are perturbation experiments. In the control run annually repeating historical mean surface conditions are imposed at the lower boundary, whereas in each perturbation run the model is forced by SST perturbations imposed in a specific

  20. Building Partnerships in Polar Research and Education. Report from the Arctic Science Education Workshop (New Orleans, Louisiana, April 6-8, 1997).

    ERIC Educational Resources Information Center

    Arctic Research Consortium of the United States, Fairbanks, AK.

    To examine the role of arctic science in U.S. primary and secondary education, 58 teachers, researchers, and curriculum specialists met in a workshop in April 1997 in New Orleans. The workshop sought to provide a forum for development of K-12 educational materials investigating the Arctic and to bring current research activities into K-12…

  1. Investigation of elliptical vortex beams propagating in atmospheric turbulence by numerical simulations

    NASA Astrophysics Data System (ADS)

    Taozheng

    2015-08-01

    In recent years, due to the high stability and privacy of vortex beam, the optical vortex became the hot spot in research of atmospheric optical transmission .We numerically investigate the propagation of vector elliptical vortex beams in turbulent atmosphere. Numerical simulations are realized with random phase screen. To simulate the vortex beam transport processes in the atmospheric turbulence. Using numerical simulation method to study in the atmospheric turbulence vortex beam transmission characteristics (light intensity, phase, polarization, etc.) Our simulation results show that, vortex beam in the atmospheric transmission distortion is small, make elliptic vortex beam for space communications is a promising strategy.

  2. Stratospheric ozone loss in the 1996/1997 Arctic winter: Evaluation based on multiple trajectory analysis for double-sounded air parcels by ILAS

    NASA Astrophysics Data System (ADS)

    Terao, Yukio; Sasano, Yasuhiro; Nakajima, Hideaki; Tanaka, H. L.; Yasunari, Tetsuzo

    2002-12-01

    Quantitative chemical ozone loss rates and amounts in the Arctic polar vortex for the spring of 1997 are analyzed based on ozone profile data obtained by the Improved Limb Atmospheric Spectrometer (ILAS) using an extension of the Match technique. In this study, we calculated additional multiple trajectories and set very strict criteria to overcome the weakness of the satellite sensor data (lower vertical resolution and larger sampling air mass volume) and to identify more accurately a double-sounded air mass. On the average inside the inner edge of the vortex boundary (north of about 70°N equivalent latitude), the local ozone loss rate was 50-80 ppbv/day at the maximum during late February between the levels of 450 and 500 K potential temperatures. The integrated ozone loss during February to March reached 2.0 ± 0.1 ppmv at 475-529 K levels, and the column ozone loss between 400 and 600 K during the 2 months was 96 ± 0.3 DU. Using a relative potential vorticity (rPV) scale, the vortex was divided into some rPV belts, and it was shown that the magnitude of the ozone loss increased gradually toward the vortex center from the edge. The maximum ozone loss rate of 6.0 ± 0.6 ppbv/sunlit hour near the vortex center was higher than near the vortex edge by a factor of 2-3. When we expanded the area of interest to include all the data obtained inside the vortex edge (north of about 65°N equivalent latitude), the local ozone loss rate was about 50 ppbv/day at the maximum. This value is slightly larger than that estimated by the Match analysis using ozonesondes for the same winter by ˜10 ppbv/day. Temperature histories of double-sounded air parcels indicated that the extreme ozone loss in the innermost part of the vortex was observed when the air parcel experienced temperatures below TNAT during the two soundings and had experienced temperatures near Tice in the 10 days prior to the first sounding. These facts suggest that the high ozone loss rate deep inside the vortex

  3. All-electrical magnetic vortex array sensing

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Gieraltowski, J.

    2016-08-01

    Vortex sensing magnetometers based on arrays of soft magnetic dots are good candidates for high-resolution and accurate spatial magnetic-field estimation. When the arrays are laid out along different spatial directions they can perform tensor gradiometry allowing the measurement of field components and their spatial derivatives as a function of orientation. Detection is based on using spin-polarized currents to counteract vortex displacements or to excite vortex oscillation modes triggered by magnetic-field application. Sensor linearization, field detection range and conditions to obtain large sensitivity electronic compatibility and scalability are discussed.

  4. Microbial Community Structure in Lake and Wetland Sediments from a High Arctic Polar Desert Revealed by Targeted Transcriptomics

    PubMed Central

    Stoeva, Magdalena K.; Aris-Brosou, Stéphane; Chételat, John; Hintelmann, Holger; Pelletier, Philip; Poulain, Alexandre J.

    2014-01-01

    While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake. PMID:24594936

  5. USGS Arctic science strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  6. Live from the Arctic

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  7. Polar Vortex and Temperature Diagnostics for Intercomparisons and MLS Data Inspection: Update on Antarctic 2012 Meteorology in Relation to MLS Data

    NASA Astrophysics Data System (ADS)

    Lawrence, Zachary; Manney, Gloria; Minschwaner, Ken

    2012-10-01

    Stratospheric temperature diagnostics are important indicators for evaluating the severity of polar winters and the susceptibility to conditions that lead to ozone loss at the poles. The availability of many meteorological datasets with temperature products that span multiple years allows for direct comparisons between satellite measurements (the Aura Microwave Limb Sounder, MLS), operational data assimilation systems, and reanalysis data sets produced by meteorological forecast centers. We focus on two diagnostics: first, the area where temperatures are less than the threshold temperatures for the formation of Polar Stratospheric Clouds (PSCs), and second, the minimum daily temperatures over the course of the polar winters. Both diagnostics have a long history of use for monitoring the wintertime polar stratosphere, and we will present a comparison of results based on updated data products and analysis techniques, along with an update on meteorological conditions and ozone for the 2012 Antarctic winter.

  8. Climatology of the Martian Polar Vortices

    NASA Astrophysics Data System (ADS)

    McDunn, T. L.; Kass, D. M.; McCleese, D. J.; Kleinboehl, A.; Schofield, J. T.

    2013-12-01

    In the martian atmosphere, as in the terrestrial stratosphere, an intense cyclonic vortex forms over the winter pole. This vortex is known as the polar vortex and its edge is associated with the strong westerly jet that occurs over mid-latitudes during the winter season. The weather on Mars over the mid-to-high winter latitudes is heavily influenced by the polar vortex. However, the size, shape, and position of the vortex are not well characterized. Previous work has shown that the shape of the vortex can be deformed by baroclinic activity. Earlier work has also shown that southern-hemisphere dust activity can push the center of the northern vortex off the pole, resulting in marked deviations in the northern-hemisphere jet stream. It remains unknown how often such deformations in vortex shape and shifts in vortex position occur. Another feature of the vortex that remains poorly characterized is its strength. A strong vortex acts as a barrier against mixing, causing the winter air over the pole to become very cold, while a weak vortex permits mixing and is associated with less-cold polar temperatures. How frequently each of these phases occur and how long they persist remain unanswered questions. Here, we use temperature observations from the Mars Reconnaissance Orbiter Mars Climate Sounder to diagnose the size, shape, position, and strength of the polar vortex. We report the daily and seasonal behavior of both the northern and southern vortices.

  9. Exploring transverse pattern formation in a dual-polarization self-mode-locked monolithic Yb: KGW laser and generating a 25-GHz sub-picosecond vortex beam via gain competition.

    PubMed

    Chang, M T; Liang, H C; Su, K W; Chen, Y F

    2016-04-18

    Formation of transverse modes in a dual-polarization self-mode-locked monolithic Yb: KGW laser under high-power pumping is thoroughly explored. It is experimentally observed that the polarization-resolved transverse patterns are considerably affected by the pump location in the transverse plane of the gain medium. In contrast, the longitudinal self-mode-locking is nearly undisturbed by the pump position, even under the high-power pumping. Under central pumping, a vortex beam of the Laguerre-Gaussian LGp,l mode with p = 1 and l = 1 can be efficiently generated through the process of the gain competition with a sub-picosecond pulse train at 25.3 GHz and the output power can be up to 1.45 W at a pump power of 10.0 W. Under off-center pumping, the symmetry breaking causes the transverse patterns to be dominated by the high-order Hermite-Gaussian modes. Numerical analyses are further performed to manifest the symmetry breaking induced by the off-center pumping.

  10. Polar stratospheric optical depth observed between 1978 and 1985

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Trepte, C. R.

    1987-01-01

    Observations of the stratospheric optical depth at 1.0 micron obtained for high latitudes are presented for a 7-year period. Weekly averaged data determined from measurements made by the Stratospheric Aerosol Measurement experiment from October 1978-1985 show that the overall yearly values in both polar regions are controlled by volcanic perturbations, with most volcanic effects being experienced in Arctic latitudes. Conservatively, peak values found in the Antarctic region were approximately 0.02 and in the Arctic region about 0.55. Probable values for these regions are estimated to be 0.26 and 0.11, respectively. The weekly averaged data also show the seasonal fluctuations due to microphysical and dynamical processes. Comparison of the optical depth record with a weekly averaged 50-mbar temperature record indicates that polar stratospheric clouds are present in the southern high latitudes each year near this level from early June to early September. A depression observed in the optical depth record each austral spring season is believed to be the result of the downward displacement of particles caused by subsidence and sedimentation during the course of winter. Following the breakup of the vortex, optical depth values increase as aerosol is transported poleward. These features are noted to be present in the Arctic region as well, but on a smaller scale because of the satellite sampling methodology and the averaging scheme employed.

  11. Measurements of total reactive nitrogen during the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Fahey, D. W.; Anderson, L. C.; Loewenstein, M.; Chan, K. R.

    1990-01-01

    Composite distributions of measured total reactive nitrogen NO(y), from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition are presented. The observed features of these distributions are discussed in terms of the controlling dynamical, chemical and microphysical processes. In the latitudinal profile from 58 deg N to within about 4 deg poleward of the polar vortex boundary, NO(y) conforms closely to predictions of NO(y) based on N2O measurements. Poleward of 5 deg of latitude within the boundary, the average NO(y) decreases sharply and is significantly lower than that predicted from N2O. This feature is consistent with loss of NO(y) through sedimentation of particles containing NO(y) in polar stratospheric clouds.

  12. Operational Arctic: The Potential for Crisis or Conflict in the Arctic Region and Application of Operational Art

    DTIC Science & Technology

    2014-05-22

    could not apply as one 145David Curtis Wright, Panda Bear Readies to Meet Polar Bear...Arctic claims with the same entitlement as the Arctic littoral nations. In The Panda Bear Readies to meet the Polar Bear, Wright assesses for the...157Ibid., 10. 158Ibid., 10. 159Wright, Panda Bear Readies to Meet Polar Bear, 5-10. 160Ibid

  13. Entangled vector vortex beams

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  14. The Airborne Arctic Stratospheric Expedition - Prologue

    NASA Technical Reports Server (NTRS)

    Turco, Richard; Plumb, Alan; Condon, Estelle

    1990-01-01

    This paper presents an introduction to the initial scientific results of the Airborne Arctic Stratospheric Expedition (AASE), as well as data from other atmospheric experiments and analyses carried out during the Arctic polar winter of 1989. Mission objectives of the AASE were to study the mechanisms of ozone depletion and redistribution in the northern polar stratosphere, including the influences of Arctic meteorology, and polar stratospheric clouds formed at low temperatures. Some major aspects of the AASE are described including: logistics and operations, meteorology, polar stratospheric clouds, trace composition and chemistry, and ozone depletion. It is concluded that the Arctic-89 experiments have provided the scientific community with a wealth of new information that will contribute to a better understanding of the polar winter stratosphere and the critical problem of global ozone depletion.

  15. Optical vortex conversion in the elliptic vortex-beam propagating orthogonally to the crystal optical axis: the experiment

    NASA Astrophysics Data System (ADS)

    Sokolenko, Bogdan; Kudryavtseva, Maria; Zinovyev, Alexey; Konovalenko, Victor; Rubass, Alex

    2012-01-01

    We have experimentally analyzed the topological reactions occurred in the elliptic vortex-beam transmitting orthogonally to the optical axis of the SiO2 crystal. We have revealed that the oscillations of the polarization state when propagating the beam are accompanied by reconstruction of the polarization singularities at the beam cross-section that, in turn, entails the reconstruction of the wavefront in each circularly polarized beam component. Both synchronic oscillations of the spin angular momentum and the sign of the vortex topological charge are expressing in a field structure as birth and annihilation of topological dipoles. Also periodical conversion of the vortex ellipticity along the crystal length z and huge splash of spin angular momentum were analysed. The run of the dislocation reactions in the beam component results in converting the sign of the topological charge in the centered optical vortex, the distance of the vortex conversion being about 0.05 of the wavelength.

  16. Islands of the Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, Julian; Hambrey, Michael

    2002-11-01

    The Arctic islands are characterized by beautiful mountains and glaciers, in which the wildlife lives in delicate balance with its environment. It is a fragile region with a long history of exploration and exploitation that is now experiencing rapid environmental change. All of these themes are explored in Islands of the Arctic, a richly illustrated volume with superb photographs from the Canadian Arctic archipelago, Greenland, Svalbard and the Russian Arctic. It begins with the various processes shaping the landscape: glaciers, rivers and coastal processes, the role of ice in the oceans and the weather and climate. Julian Dowdeswell and Michael Hambrey describe the flora and fauna in addition to the human influences on the environment, from the sustainable approach of the Inuit, to the devastating damage inflicted by hunters and issues arising from the presence of military security installations. Finally, they consider the future prospects of the Arctic islands Julian Dowdeswell is Director of the Scott Polar Research Institute and Professor of Physical Geography at 0he University of Cambridge. He received the Polar Medal from Queen Elizabeth for his contributions to the study of glacier geophysics and the Gill Memorial Award from the Royal Geographical Society. He is chair of the Publications Committee of the International Glaciological Society and head of the Glaciers and Ice Sheets Division of the International Commission for Snow and Ice. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for Glaciers (Cambridge University Press). Hambrey is also the author of Glacial Environments (British Columbia, 1994).

  17. Vortex Flow Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. F. (Editor); Osborn, R. F. (Editor); Foughner, J. T., Jr. (Editor)

    1986-01-01

    Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

  18. Chemical composition and severe ozone loss derived from SCIAMACHY and GOME-2 observations during Arctic winter 2010/2011 in comparisons to Arctic winters in the past

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Eichmann, K.-U.; Aschmann, J.; Bramstedt, K.; Weber, M.; von Savigny, C.; Richter, A.; Rozanov, A.; Wittrock, F.; Bauer, R.; Khosrawi, F.; Burrows, J. P.

    2013-06-01

    Record breaking losses of ozone (O3) in the Arctic stratosphere have been reported in winter and spring 2011. Trace gas amounts and polar stratospheric cloud (PSC) distributions retrieved using differential optical absorption spectroscopy (DOAS) and scattering theory applied to the measurements of radiance and irradiance by satellite-born and ground-based instrumentation, document the unusual behaviour. A chemical transport model has been used to relate and compare Arctic winter-spring conditions in 2011 with those in previous years. We examine in detail the composition and transformations occurring in the Arctic polar vortex using total column and vertical profile data products for O3, bromine oxide (BrO), nitrogen dioxide (NO2), chlorine dioxide (OClO), and PSCs retrieved from measurements made by the instrument SCIAMACHY onboard the ESA satellite Envisat, as well as the total column ozone amount, retrieved from the measurements of GOME-2 on the EUMETSAT operational meteorological polar orbiter Metop-A. In the late winter and spring 2010/2011 the chemical loss of O3 in the polar vortex is consistent with and confirms findings reported elsewhere. More than 70% of O3 was depleted between the 425 K and 525 K isentropic surfaces, i.e. in the altitude range ~16-20 km. In contrast, during the same period in the previous winter only slightly more than 20% depletion occurred below 20 km, whereas 40% of the O3 was removed above the 575 K isentrope (~23 km). This loss above the 575 K isentrope is explained by the catalytic destruction by the NOx descending from the mesosphere. At lower altitudes O3 loss results from processing by halogen driven O3 catalytic removal cycles, activated by the large volume of PSC generated throughout this winter and spring. The mid-winter 2011 conditions, prior to the catalytic cycles being fully effective, are also investigated. Surprisingly, a significant loss of O3 with 60% is observed in mid-January 2011 below 500 K (~19 km), which was

  19. A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation

    NASA Astrophysics Data System (ADS)

    Hegyi, Bradley M.; Deng, Yi

    2011-10-01

    The temporal and spatial characteristics of decadal-scale variability in the Northern Hemisphere (NH) cool-season (October-March) Arctic precipitation are identified from both the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP) precipitation data sets. This decadal variability is shown to be partly connected to the decadal-scale variations in tropical central Pacific sea surface temperatures (SSTs) that are primarily associated with a decadal modulation of the El Niño-Southern Oscillation (ENSO), i.e., transitions between periods favoring typical eastern Pacific warming (EPW) events and periods favoring central Pacific warming (CPW) events. Regression and composite analyses reveal that increases of central Pacific SSTs drive a stationary Rossby wave train that destructively interferes with the wave number-1 component of the extratropical planetary wave. This destructive interference is opposite to the mean effect of typical EPW on the extratropical planetary wave. It leads to suppressed upward propagation of wave energy into the polar stratosphere, a stronger stratospheric polar vortex, and a tendency toward a positive phase of the Arctic Oscillation (AO). The positive AO tendency is synchronized on the decadal scale with a poleward shift of the NH storm tracks, particularly in the North Atlantic. Storm track variations further induce changes in the amount of moisture transported into the Arctic by synoptic eddies. The fluctuations in the eddy moisture transport ultimately contribute to the observed decadal-scale variations in the total Arctic precipitation in the NH cool season.

  20. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  1. Optical vortex beam generator at nanoscale level

    NASA Astrophysics Data System (ADS)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; de Angelis, Francesco

    2016-07-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications.

  2. Water vapour variability and trends in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Kivi, Rigel; Backman, Leif; Karpechko, Alexey

    2014-05-01

    Water vapour in the upper troposphere-lower stratosphere (UTLS) is a radiatively and chemically important trace gas. Stratospheric water vapour also affects ozone chemistry through odd-hydrogen chemistry and formation of polar stratospheric clouds (PSC). Both transport and chemistry contribute to the extratropical lower stratospheric water vapour distribution and trends. The main sources of stratospheric water vapour are intrusion through the tropical tropopause and production from oxidation of methane. Accurate observations of UTLS water vapour are difficult to obtain due to the strong gradient in the water vapour profile over the tropopause. However, modelling the stratospheric water vapour distribution is challenging and accurate measurements are needed for model validation. Trends in Arctic water vapour will be analysed and explained in terms of contribution from different processes (transport and chemistry), using observations and chemistry transport model (CTM) simulations. Accurate water vapour soundings from Sodankylä will be used to study water vapour within the Arctic polar vortex, including process studies on formation of PSCs and dehydration. Water vapour profiles measured during the LAPBIAT atmospheric sounding campaign in Sodankylä in January 2010 indicated formation of ice clouds and dehydration. Effects on ozone chemistry will also be studied. Global middle atmospheric simulations have been performed with the FinROSE-ctm using ERA-Interim winds and temperatures. The FinROSE-ctm is a global middle atmosphere model that produces the distribution of 30 long-lived species and tracers and 14 short-lived species. The chemistry describes around 110 gas phase reactions, 37 photodissociation processes and the main heterogeneous reactions related to aerosols and polar stratospheric clouds.

  3. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  4. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  5. Coordination, Data Management and Enhancement of the International Arctic Buoy Programme (IABP), A US Interagency Arctic Buoy Programme (USIABP) Contribution to the IABP

    DTIC Science & Technology

    2012-09-30

    International Arctic Buoy Programme ( IABP ) A US Interagency Arctic Buoy Programme (USIABP) contribution to the IABP Dr. Ignatius G. Rigor Polar...distribution of sea ice. Over the Arctic Ocean, this fundamental observing network is maintained by the IABP , and is a critical component of the...the International Arctic Buoy Programme ( IABP ) A US Interagency Arctic Buoy Programme (USIABP) contribution to the IABP 5a. CONTRACT NUMBER 5b

  6. Dynamical and chemical contributions to variability in microwave limb sounder Arctic stratoshperic column ozone

    NASA Technical Reports Server (NTRS)

    Manney, G.; Froidevaux, L.; Sabutis, J. L.; Santee, M. L.; Livesey, N. J.; Waters, J. W.

    2002-01-01

    Analyses of column ozone above 100 hPa (Col100) derived from Upper Atmosphere Research Satellite Microwave Limb Sounder (MLS) data in February/March 1992-1998 show that about half of the interannual variability in Col100 in the Arctic polar vortex in late winter results from interannual variability in chemical loss. A majority of the remainder results from interannual variability in day-to-day dynamical motions including adiabatic warming/cooling and poleward advection of underlying upper tropospheric subtropical air on short timescales, rather than from variations in descent rates and large-scale transport over the winters. The morphology of Col100 from MLS remains very similar to that in the dynamical models even in the years with most chemical ozone loss. The amount and character of day-to-day variability in dynamical models closely follows that in MLS Col100. Although the morphology of and day-to-day variability in Arctic column ozone are controlled by dynamical processes, chemical ozone loss was a major factor in producing both the low values of and the large interannual variability in Arctic column ozone observed during the 1990s.

  7. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    NASA Astrophysics Data System (ADS)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2016-07-01

    The changes of atmospheric flow patterns related to Arctic Amplification have impacts well beyond the Arctic regional weather and climate system. Here we examine modulations of vertically propagating planetary waves, a major feature of the climate response to Arctic sea ice reduction by comparing the corresponding results of an atmospheric general circulation model with reanalysis data for periods of high and low sea ice conditions. Under low sea ice condition we find enhanced coupling between troposphere and stratosphere starting in November with preferred polar stratospheric vortex breakdowns in February, which then feeds back to the troposphere. The model experiment and ERA-Interim reanalysis data agree well with respect to temporal and spatial characteristics associated with vertical planetary wave propagation including its precursors. The upward propagating planetary wave anomalies resemble a wave number 1 and 2 pattern depending on region and timing. Since our experimental design only allows influences from sea ice changes and there is a high degree of resemblance between model results and observations, we conclude that sea ice is a main driver of observed winter circulation changes.

  8. Polar Science Is Cool!

    ERIC Educational Resources Information Center

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  9. Large-Scale Ozone Variations in the Arctic During SOLVE-2 and Comparisons of Remote and In Situ Ozone Profile Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Fenn, M. A.; Grant, W. B.; Avery, M. A.; Neuber, R.; McGee, T. J.; Trepte, C. R.; Butler, C. F.; Kooi, S. A.; Notari, A.; Hair, J. W.; Lait, L. R.

    2003-12-01

    Ozone cross sections were obtained from near the surface to above 30 km along the ground track of the NASA DC-8 on long-range flights across the Arctic during the 2003 SAGE-III (Stratospheric Aerosol and Gas Experiment) Ozone Loss and Validation Experiment (SOLVE-2). Extensive regions of lower than expected ozone were found inside the polar vortex below about 22 km at the start of the mission (January 9, 2003), and by the end of mission (February 12, 2003) ozone had decreased to less than 2.0 ppm in localized regions inside the vortex at about 19 km. These regions of particularly low ozone were associated with air masses that had seen extended periods of sunlight. Extensive structure was observed in the ozone field near the edge of the vortex on many flights, and on occasion, large filaments of extra-vortex air were observed inside the vortex. When the vortex divided into two separate vortices, the ozone field reflected the separation with extra-vortex air in between. The nadir ozone data showed strong evidence of downward transport in vicinity of jet streams, and these intrusions were observed to extend down to below 4 km in some cases. Directly under the vortex, large-scale descent of stratospheric air produced ozone levels exceeding 100 ppbv down to 5 km. This is the first time the entire ozone cross section was obtained during an airborne field experiment, and it will provide important new information on atmospheric dynamics and ozone chemistry in the Arctic. This experiment also provided a unique opportunity to compare ozone measurements from several different remote and in situ instruments. Ozone profiles were measured above and below the DC-8 with the airborne UV Differential Absorption Lidar (DIAL) system, and the Airborne Raman Ozone, Temperature, and Aerosol Lidar (AROTAL) measured ozone profiles above the aircraft. In situ ozone measurements were made at the DC-8 flight level, and ground-based lidar and ozonesonde measurements were made from Ny

  10. The Arctic Circle

    NASA Astrophysics Data System (ADS)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  11. Public Perceptions of Arctic Change

    NASA Astrophysics Data System (ADS)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  12. A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009

    NASA Astrophysics Data System (ADS)

    Stone, R. S.; Herber, A.; Vitale, V.; Mazzola, M.; Lupi, A.; Schnell, R. C.; Dutton, E. G.; Liu, P. S. K.; Li, S.-M.; Dethloff, K.; Lampert, A.; Ritter, C.; Stock, M.; Neuber, R.; Maturilli, M.

    2010-07-01

    The Arctic climate is modulated, in part, by atmospheric aerosols that affect the distribution of radiant energy passing through the atmosphere. Aerosols affect the surface-atmosphere radiation balance directly through interactions with solar and terrestrial radiation and indirectly through interactions with cloud particles. Better quantification of the radiative forcing by different types of aerosol is needed to improve predictions of future climate. During April 2009, the airborne campaign Pan-Arctic Measurements and Arctic Regional Climate Model Inter-comparison Project (PAM-ARCMIP) was conducted. The mission was organized by Alfred Wegener Institute for Polar and Marine Research of Germany and utilized their research aircraft, Polar-5. The goal was to obtain a snapshot of surface and atmospheric conditions over the central Arctic prior to the onset of the melt season. Characterizing aerosols was one objective of the campaign. Standard Sun photometric procedures were adopted to quantify aerosol optical depth AOD, providing a three-dimensional view of the aerosol, which was primarily haze from anthropogenic sources. Independent, in situ measurements of particle size distribution and light extinction, derived from airborne lidar, are used to corroborate inferences made using the AOD results. During April 2009, from the European to the Alaskan Arctic, from sub-Arctic latitudes to near the pole, the atmosphere was variably hazy with total column AOD at 500 nm ranging from ˜0.12 to >0.35, values that are anomalously high compared with previous years. The haze, transported primarily from Eurasian industrial regions, was concentrated within and just above the surface-based temperature inversion layer. Extinction, as measured using an onboard lidar system, was also greatest at low levels, where particles tended to be slightly larger than at upper levels. Black carbon (BC) (soot) was observed at all levels sampled, but at moderate to low concentrations compared with

  13. Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.; Rind, David; Lonergan, Patrick

    1998-04-01

    The chemical reactions responsible for stratospheric ozone depletion are extremely sensitive to temperature. Greenhouse gases warm the Earth's surface but cool the stratosphere radiatively and therefore affect ozone depletion. Here we investigate the interplay between projected future emissions of greenhouse gases and levels of ozone-depleting halogen species using a global climate model that incorporates simplified ozone-depletion chemistry. Temperature and wind changes induced by the increasing greenhouse-gas concentrations alter planetary-wave propagation in our model, reducing the frequency of sudden stratospheric warmings in the Northern Hemisphere. This results in a more stable Arctic polar vortex, with significantly colder temperatures in the lower stratosphere and concomitantly increased ozone depletion. Increased concentrations of greenhouse gases might therefore be at least partly responsible for the very large Arctic ozone losses observed in recent winters. Arctic losses reach a maximum in the decade 2010 to 2019 in our model, roughly a decade after the maximum in stratospheric chlorine abundance. The mean losses are about the same as those over the Antarctic during the early 1990s, with geographically localized losses of up to two-thirds of the Arctic ozone column in the worst years. The severity and the duration of the Antarctic ozone hole are also predicted to increase because of greenhouse-gas-induced stratospheric cooling over the coming decades.

  14. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2015-11-01

    Sadovskii vortices are patches of fluid with uniform vorticity surrounded by a vortex sheet. They were first constructed as models for wakes behind bluff objects. We investigate the Sadovskii vortex in a straining field and examine limiting cases to validate our computational method. One limit is the patch vortex in strain (Moore & Saffman, Aircraft wake turbulence and its detection 1971), where there is no vortex sheet. We solve this as a free-boundary problem, and show that a simple method using the Biot-Savart law quickly gives solutions for stable shapes. When used for the more elongated (stronger straining field) situations, the method also leads to new vortex shapes. In the hollow vortex case, where there is no vortex patch and the circulation is entirely due to the vortex sheet (Llewellyn Smith and Crowdy, J. Fluid Mech. 691 2012), we use the Birkhoff-Rott equation to calculate the velocity of the fluid on the vortex boundary. The combination of these two methods can then be used to calculate the shape and velocity field of the Sadovksii vortex in strain.

  15. Arctic Watch

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  16. Microphysical Simulations of Polar Stratospheric Clouds Compared with Calipso and MLS Observations

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Toon, O. B.; Kinnison, D. E.; Lambert, A.; Brakebusch, M.

    2014-12-01

    Polar stratospheric clouds (PSCs) form in the lower stratosphere during the polar night due to the cold temperature inside the polar vortex. PSCs are important to understand because they are responsible for the formation of the Antarctic ozone hole and the ozone depletion over the Arctic. In this work, we explore the formation and evolution of STS particles (Super-cooled Ternary Solution) and NAT (Nitric-acid Trihydrate) particles using the SD-WACCM/CARMA model. SD-WACCM/CARMA couples the Whole Atmosphere Community Climate Model using Specific Dynamics with the microphysics model (CARMA). The 2010-2011 Arctic winter has been simulated because the Arctic vortex remained cold enough for PSCs from December until the end of March (Manney et al., 2011). The unusual length of this cold period and the presence of PSCs caused strong ozone depletion. This model simulates the growth and evaporation of the STS particles instead of considering them as being in equilibrium as other models do (Carslaw et al., 1995). This work also explores the homogeneous nucleation of NAT particles and derives a scheme for NAT formation based on the observed denitrification during the winter 2010-2011. The simulated microphysical features (particle volumes, size distributions, etc.) of both STS (Supercooled Ternary Solutions) and NAT particles show a consistent comparison with historical observations. The modeled evolution of PSCs and gas phase ozone related chemicals inside the vortex such as HCl and ClONO2 are compared with the observations from MLS, MIPAS and CALIPSO over this winter. The denitrification history indicate the surface nucleation rate from Tabazadeh et al. (2002) removes too much HNO3 over the winter. With a small modification of the free energy term of the equation, the denitification and the PSC backscattering features are much closer to the observations. H2O, HCl, O3 and ClONO2 are very close to MLS and MIPAS observations inside the vortex. The model underestimates ozone

  17. A study of the effects of stratospheric warming on the arctic oscillation and its teleconnections

    NASA Astrophysics Data System (ADS)

    Mooring, R.

    2003-04-01

    The Arctic Oscillation (AO), the leading mode of mean sea level pressure from 20oN poleward, is a robust naturally occurring phenomenon that has teleconnections with several tropospheric and stratospheric fields. It is believed, however, that stratospheric heating is responsible for a major portion of the variability of the AO. Because ozone and other greenhouse gas concentrations help to regulate the lower stratosphere's temperature, it is my belief that by varying the concentrations of these greenhouse gases, the polar vortex, AO, and their teleconnections can be affected. The case studies used here vary the concentrations of O_3 and CO_2 in the lower stratosphere and H_2O in the lower stratosphere and upper troposphere of the stand alone version of the CCM3 global climate model. This poster identifies the significant differences and similarities found in each case study as compared to a control run with no changes.

  18. An Assessment of the Ozone Loss During the 1999-2000 SOLVE Arctic Campaign

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Newman, Paul A.; Lait, Leslie R.; McGee, Thomas J.; Burris, John F.; Browell, Edward V.; Grant, William B.; Richard, Eric; VonderGathen, Peter; Bevilacqua, Richard; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Ozone observations from ozonesondes, the lidars aboard the DC-8, in situ ozone measurements from the ER-2, and satellite ozone measurements from Polar Ozone and Aerosol Measurement III (POAM) were used to assess ozone loss during the Sage III Ozone Loss and Validation Experiment (SOLVE) 1999-2000 Arctic campaign. Two methods of analysis were used. In the first method a simple regression analysis is performed on the ozonesonde and POAM measurements within the vortex. In the second method, the ozone measurements from all available ozone data were injected into a free running diabatic trajectory model and carried forward in time from December 1 to March 15. Vortex ozone loss was then estimated by comparing the ozone values of those parcels initiated early in the campaign with those parcels injected later in the campaign. Despite the variety of observational techniques used during SOLVE, the measurements provide a fairly consistent picture. Over the whole vortex, the largest ozone loss occurs between 550 and 400 K potential temperatures (approximately 23-16 km) with over 1.5 ppmv lost by March 15, the end of the SOLVE mission period. An ozone loss rate of 0.04-0.05 ppmv/day was computed for March 15. Ozonesondes launched after March 15 suggest that an additional 0.5 ppmv or more ozone was lost between March 15 and April 1. The small disagreement between ozonesonde and POAM analysis of January ozone loss is found to be due to biases in vortex sampling. POAM makes most of its solar occultation measurements at the vortex edge during January 2000 which bias samples toward air parcels that have been exposed to sunlight and likely do experience ozone loss. Ozonesonde measurements and the trajectory technique use observations that are more distributed within the interior of the vortex. Thus the regression analysis of the POAM measurements tends to overestimate mid-winter vortex ozone loss. Finally, our loss calculations are broadly consistent with other loss computations

  19. Dynamics of recent climate change in the Arctic.

    PubMed

    Moritz, Richard E; Bitz, Cecilia M; Steig, Eric J

    2002-08-30

    The pattern of recent surface warming observed in the Arctic exhibits both polar amplification and a strong relation with trends in the Arctic Oscillation mode of atmospheric circulation. Paleoclimate analyses indicate that Arctic surface temperatures were higher during the 20th century than during the preceding few centuries and that polar amplification is a common feature of the past. Paleoclimate evidence for Holocene variations in the Arctic Oscillation is mixed. Current understanding of physical mechanisms controlling atmospheric dynamics suggests that anthropogenic influences could have forced the recent trend in the Arctic Oscillation, but simulations with global climate models do not agree. In most simulations, the trend in the Arctic Oscillation is much weaker than observed. In addition, the simulated warming tends to be largest in autumn over the Arctic Ocean, whereas observed warming appears to be largest in winter and spring over the continents.

  20. Satellite-derived attributes of cloud vortex systems and their application to climate studies

    NASA Technical Reports Server (NTRS)

    Carleton, Andrew M.

    1987-01-01

    Defense Meteorological Satellite Program (DMSP) visible and infrared mosaics are analyzed in conjunction with synoptic meteorological observations of sea level pressure (SLP) and upper-air height to derive composite patterns of cyclonic cloud vortices for the Northern Hemisphere. The patterns reveal variations in the structure and implied dynamics of cyclonic systems at different stages of development that include: (1) increasing vertical symmetry of the lower-level and upper-air circulations and (2) decreasing lower-tropospheric thicknesses and temperature advection, associated with increasing age of the vortex. Cloud vortices are more intense in winter than in summer and typically reach maximum intensity in the short-lived prespiral signature stage. There are major structural differences among frontal wave, polar air, and 'instant occlusion' cyclogenesis types. Cyclones in the dissipation stage may reintensify (deepen), as denoted by the appearance in the imagery of an asymmetric cloud band or a tightened spiral vortex. The satellite-derived statistics on cloud vortex intensity, which are seasonal- and latitude- as well as type-dependent, are applied to a preliminary examination of the synoptic manifestations of seasonal climate variability. An apparently close relationship is found, for two winter and spring seasons, between Northern Hemisphere cyclonic activity and variations in cryosphere variables, particularly the extent of Arctic sea ice. The results may indicate that increased snow and ice extent accompany a southward displacement of cyclonic activity and/or a predominance of deeper systems. However, there is also a strong regional dependence to the ice-synoptics feedback. This study demonstrates the utility of high resolution meteorological satellite imagery for studies of climate variations (climate dynamics).

  1. Modeling the Frozen-In Anticyclone in the 2005 Arctic Summer Stratosphere

    NASA Technical Reports Server (NTRS)

    Allen, D. R.; Douglass, A. R.; Manney, G. L.; Strahan, S. E.; Krosschell, J. C.; Trueblood, J.

    2010-01-01

    Immediately following the breakup of the 2005 Arctic spring stratospheric vortex, a tropical air mass, characterized by low potential vorticity (PV) and high nitrous oxide (N2O), was advected poleward and became trapped in the easterly summer polar vortex. This feature, known as a "Frozen-In Anticyclone (FrIAC)", was observed in Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) data to span the potential temperature range from approximately 580 to 1100 K (approximately 25 to 40 km altitude) and to persist from late March to late August 2005. This study compares MLS N2O observations with simulations from the Global Modeling Initiative (GMI) chemistry and transport model, the GEOS-5/MERRA Replay model, and the VanLeer Icosahedral Triangular Advection isentropic transport model to elucidate the processes involved in the lifecycle of the FrIAC which is here divided into three distinct phases. During the "spin-up phase" (March to early April), strong poleward flow resulted in a tight isolated anticyclonic vortex at approximately 70-90 deg N, marked with elevated N2O. GMI, Replay, and VITA all reliably simulted the spin-up of the FrIAC, although the GMI and Replay peak N2O values were too low. The FrIAC became trapped in the developing summer easterly flow and circulated around the polar region during the "anticyclonic phase" (early April to the end of May). During this phase, the FrIAC crossed directly over the pole between the 7th and 14th of April. The VITA and Replay simulations transported the N2O anomaly intact during this crossing, in agreement with MLS, but unrealistic dispersion of the anomaly occurred in the GMI simulation due to excessive numerical mixing of the polar cap. The vortex associated with the FrIAC was apparently resistant to the weak vertical hear during the anticyclonic phase, and it thereby protected the embedded N20 anomaly from stretching. The vortex decayed in late May due to diabatic processes, leaving the N2O anomaly exposed to

  2. Modeling the Frozen-In Anticyclone in the 2005 Arctic Summer Stratosphere

    NASA Astrophysics Data System (ADS)

    Allen, D. R.; Douglass, A. R.; Manney, G. L.; Strahan, S. E.; Krosschell, J. C.; Trueblood, J. V.; Nielsen, J. E.; Pawson, S.; Zhu, Z.

    2011-05-01

    Immediately following the breakup of the 2005 Arctic spring stratospheric vortex, a tropical air mass, characterized by low potential vorticity (PV) and high nitrous oxide (N2O), was advected poleward and became trapped in the easterly summer polar vortex. This feature, known as a "Frozen-In Anticyclone (FrIAC)", was observed in Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) data to span the potential temperature range from ~580 to 1100 K (~25 to 40 km altitude) and to persist from late March to late August 2005. This study compares MLS N2O observations with simulations from the Global Modeling Initiative (GMI) chemistry and transport model, the GEOS-5/MERRA Replay model, and the Van Leer Icosahedral Triangular Advection (VITA) isentropic transport model to elucidate the processes involved in the lifecycle of the FrIAC, which is here divided into three distinct phases. During the "spin-up phase" (March to early April), strong poleward flow resulted in a tight isolated anticyclonic vortex at ~70-90° N, marked with elevated N2O. GMI, Replay, and VITA all reliably simulated the spin-up of the FrIAC, although the GMI and Replay peak N2O values were too low. The FrIAC became trapped in the developing summer easterly flow and circulated around the polar region during the "anticyclonic phase" (early April to the end of May). During this phase, the FrIAC crossed directly over the pole between 7 and 14 April. The VITA and Replay simulations transported the N2O anomaly intact during this crossing, in agreement with MLS, but unrealistic dispersion of the anomaly occurred in the GMI simulation due to excessive numerical mixing of the polar cap. The vortex associated with the FrIAC was apparently resistant to the weak vertical shear during the anticyclonic phase, and it thereby protected the embedded N2O anomaly from stretching. The vortex decayed in late May due to diabatic processes, leaving the N2O anomaly exposed to horizontal and vertical wind shears

  3. Modeling the Frozen-In Anticyclone in the 2005 Arctic summer stratosphere

    NASA Astrophysics Data System (ADS)

    Allen, D. R.; Douglass, A. R.; Manney, G. L.; Strahan, S. E.; Krosschell, J. C.; Trueblood, J. V.; Nielsen, J. E.; Pawson, S.; Zhu, Z.

    2011-02-01

    Immediately following the breakup of the 2005 Arctic spring stratospheric vortex, a tropical air mass, characterized by low potential vorticity (PV) and high nitrous oxide (N2O), was advected poleward and became trapped in the easterly summer polar vortex. This feature, known as a "Frozen-In Anticyclone (FrIAC)", was observed in Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) data to span the potential temperature range from ~580 to 1100 K (~25 to 40 km altitude) and to persist from late March to late August 2005. This study compares MLS N2O observations with simulations from the Global Modeling Initiative (GMI) chemistry and transport model, the GEOS-5/MERRA Replay model, and the Van Leer Icosahedral Triangular Advection (VITA) isentropic transport model to elucidate the processes involved in the lifecycle of the FrIAC, which is here divided into three distinct phases. During the "spin-up phase" (March to early April), strong poleward flow resulted in a tight isolated anticyclonic vortex at ~70-90° N, marked with elevated N2O. GMI, Replay, and VITA all reliably simulated the spin-up of the FrIAC, although the GMI and Replay peak N2O values were too low. The FrIAC became trapped in the developing summer easterly flow and circulated around the polar region during the "anticyclonic phase" (early April to the end of May). During this phase, the FrIAC crossed directly over the pole between the 7 and 14 April. The VITA and Replay simulations transported the N2O anomaly intact during this crossing, in agreement with MLS, but unrealistic dispersion of the anomaly occurred in the GMI simulation due to excessive numerical mixing of the polar cap. The vortex associated with the FrIAC was apparently resistant to the weak vertical shear during the anticyclonic phase, and it thereby protected the embedded N2O anomaly from stretching. The vortex decayed in late May due to diabatic processes, leaving the N2O anomaly exposed to horizontal and vertical wind shears

  4. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    DTIC Science & Technology

    2015-10-16

    from the surface, in a 3D version of the "vortex rebound" in 2D vortex dynamics. Many of the discoveries of phenomena in this work are seen for the... 3D vortex-wall interactions. The key to the significant reorganization of vortex structure, is the rapid circulation decay at regions along the vortex...development of vortex configurations interacting with a surface. In further studies, the dynamics of secondary vorticity and the development of 3D

  5. The Polar Stratosphere in a Changing Climate (POLSTRACC)

    NASA Astrophysics Data System (ADS)

    Oelhaf, Hermann; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Rapp, Markus; Dörnbrack, Andreas; Engel, Andreas; Boenisch, Harald

    2015-04-01

    The POLSTRACC mission aims at providing new scientific knowledge on the Arctic lowermost stratosphere (LMS) and upper troposphere under the present load of halogens and state of climate variables. POLSTRACC is the only HALO (High Altitude and LOng Range Research Aircraft, German Research Community) mission dedicated to study the UTLS at high latitudes several years after the last intensive Arctic campaigns. The scientific scope of POLSTRACC will be broadened by its combination with the SALSA (Seasonality of Air mass transport and origin in the Lowermost Stratosphere using the HALO Aircraft) and GW-LCYCLE (Gravity Wave Life Cycle Experiment, a BMBF/ROMIC project) missions, which address complementary scientific goals sharing the same HALO payload. POLSTRACC, SALSA and GW-LCYCLE will offer the unique opportunity to study the bottom of the polar vortex and the high-latitude UTLS along with their impact on lower latitudes throughout an entire winter/spring cycle. The POLSTRACC consortium includes national (KIT, Forschungszentrum Jülich, DLR, Max Planck Institute for Chemistry, Universities of Frankfurt, Heidelberg, Mainz and Wuppertal) and international partners (e.g. NASA). The payload for the combined POLSTRACC, SALSA and GW-LCYCLE campaigns comprises an innovative combination of remote sensing techniques providing 2- and 3-D distributions of temperature and a large number of substances, and precise in-situ instruments measuring T, O3, H2O, tracers of different lifetimes and chemically active species at the aircraft level with high time-resolution. Drop sondes will add information about temperature, humidity and wind in the atmosphere underneath the aircraft. The field campaign will be divided into three phases for addressing (i) the early polar vortex and its wide-scale vicinity in December 2015 (from Oberpfaffenhofen, Germany), (ii) the mid-winter vortex from January to March 2016 (from Kiruna, Sweden), and (iii) the late dissipating vortex and its wide

  6. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  7. Episodes of Cross-Polar Transport in the Arctic Troposphere During July 2008 as Seen from Models, Satellite, and Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Schlager, H.; Blechschmidt, A.-M.; Kristjansson, J. E.; Stohl, A.

    2011-01-01

    During the POLARCAT summer campaign in 2008, two episodes (2 5 July and 7 10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the

  8. MAMM (Methane and other greenhouse gases in the Arctic - Measurements, process studies and Modelling) progress report

    NASA Astrophysics Data System (ADS)

    Nisbet, E. G.; Pyle, J. A.

    2012-12-01

    MAMM consortium (led by JA Pyle, Univ. Cambridge, with partners from Univ. East Anglia; Univ. Manchester; Royal Holloway, Univ. of London; NERC Centre for Ecology and Hydrology). The UK MAMM project (Methane and other greenhouse gases in the Arctic - Measurements, process studies and Modelling) is designed to improve quantitative knowledge of Arctic methane and other greenhouse gases from various sources (e.g. wetlands, natural gas, clathrates), to determine magnitudes and spatial distributions, and to develop process understanding (e.g. dependence of fluxes on temperature). In Arctic Finland, Sweden, Norway and Spitsbergen, intensive low-level aircraft campaigns (flights in spring, summer, autumn 2012 and 2013, with the UK FAAM BAe146 aircraft) are designed to measure concentrations of CH4 and other gases across the Arctic by time and location, with in situ sampling for δ13CCH4 at selected sites on land (Zeppelin, Pallas, Alert) and Keeling-plot diel determination of wetland source signatures. High altitude flights sampled stratosphere-troposphere exchange in the Arctic to assess the impact of the polar vortex on methane isotope budgets. Methane column profiles are measured by combining ground based eddy covariance and chamber measurements with aircraft measurements, using a landscape-scale box model approach and flying up and downwind of source regions. Airborne remote sensing is being used to retrieve CH4 columns for comparison with in-situ profiles and testing of hyperspectral retrieval methods from satellite platforms. Longer-term time series measurements are also being established in Kjølnes, northern Norway, for a range of greenhouse and related species via continuous or flask/bag sampling. Modelling studies are in progress to assess the overall Arctic influence on the global methane budget, including detailed back-trajectory analysis of the measurements, especially the isotopic data, to identify sources of methane by location, type (e.g. gasfield, wetland

  9. Detection of the phase shift from a single Abrikosov vortex.

    PubMed

    Golod, T; Rydh, A; Krasnov, V M

    2010-06-04

    We probe a quantum mechanical phase rotation induced by a single Abrikosov vortex in a superconducting lead, using a Josephson junction, made at the edge of the lead, as a phase-sensitive detector. We observe that the vortex induces a Josephson phase shift equal to the polar angle of the vortex within the junction length. When the vortex is close to the junction it induces a π step in the Josephson phase difference, leading to a controllable and reversible switching of the junction into the 0-π state. This in turn results in an unusual Φ(0)/2 quantization of the flux in the junction. The vortex may hence act as a tunable "phase battery" for quantum electronics.

  10. Control of vortex dynamics

    NASA Astrophysics Data System (ADS)

    Chang, Hsiao-Lung

    Discrete vortex methods are used to provide computationally efficient simulations of vortex dynamics in fluid flows. An adaptive LQG controller is applied to reduce the oscillations in the wake caused by the vortex dynamics. The controller design is based on a discrete-time input/output model rather than the nonlinear differential equations of the discrete vortex model. The control philosophy is to identify time-varying parameters in the input/output model adaptively and use the identified parameters to update the control law. For numerically stable identification, an adaptive algorithm based on inverse QR decomposition is introduced. The derivation shows that this algorithm is a square-root implementation of recursive least squares estimation. For a preliminary test of the control strategy, the adaptive LQG controller is applied to a vortex street model simulated by discrete vortices. The identification shows that the stability of the identified zeros depends on whether the sensor is upstream or downstream of the actuator. Flow past a flat plate is another important application of the discrete vortex method. A control problem is studied and simulated in which suction at the back face of the plate is used to trap vortices behind the plate. Qualitatively, the results obtained with the discrete-vortex method used here agree with earlier results for a substantially different vortex method involving a small number of differential equations.

  11. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  12. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  13. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  14. Normal Shock Vortex Interaction

    DTIC Science & Technology

    2003-03-01

    Figure 9: Breakdown map for normal-shock vortex-interaction. References [1] O. Thomer, W. Schroder and M. Meinke , Numerical Simulation of Normal...and Oblique-Shock Vortex Interaction, ZAMM Band 80, Sub. 1, pp. 181-184, 2000. [2] O. Thomer, E. Krause, W. Schroder and M. Meinke , Computational

  15. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  16. Aerodynamics of vortex generators

    NASA Technical Reports Server (NTRS)

    Breidenthal, Robert E., Jr.; Russell, David A.

    1988-01-01

    An experimental and theoretical study was undertaken of the separation delay and dramatic boundary-layer thinning that can occur in vortex-generator installations. Wind tunnel measurements of the dynamic-pressure profile downstream of a vortex generator were found to compare under certain conditions with that downstream of a suction slit, while water-tunnel visualization studies of vortex-generator height and geometry suggested optimum configurations, and only a minor effect of base porosity. A series of progressively more complex inviscid flow models was developed to be applied to a 3-D integral boundary-layer code. This code predicted layer thinning downstream of the suction site of the vortex models, and other observed features. Thin-layer Navier-Stokes equations are now being used with the ultimate goal of clarifying the physical processes involved in vortex generator performance and developing calculational procedures capable of predicting it.

  17. Ferroelectric nanostructure having switchable multi-stable vortex states

    DOEpatents

    Naumov, Ivan I.; Bellaiche, Laurent M.; Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  18. Vortex core reversal due to spin wave interference.

    PubMed

    Bauer, Hans G; Sproll, Markus; Back, Christian H; Woltersdorf, Georg

    2014-02-21

    In this Letter we address spin wave dynamics involved in fast and selective vortex core polarity reversal by rotating magnetic field bursts. In a first example we explain the origin of the delayed switching for excitations with short bursts of only one period duration as an interference effect between spin wave modes. Second, when the vortex core is initially no longer at rest but in gyrotropic motion, the magnetization dynamics become more complicated and the interaction of spin waves with the vortex core leads to a variety of nonlinear effects. Our analysis allows us to explain the experimentally observed switching diagram for simultaneous excitation of spin waves and gyrotropic mode.

  19. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  20. Unprecedented Arctic ozone loss in 2011.

    PubMed

    Manney, Gloria L; Santee, Michelle L; Rex, Markus; Livesey, Nathaniel J; Pitts, Michael C; Veefkind, Pepijn; Nash, Eric R; Wohltmann, Ingo; Lehmann, Ralph; Froidevaux, Lucien; Poole, Lamont R; Schoeberl, Mark R; Haffner, David P; Davies, Jonathan; Dorokhov, Valery; Gernandt, Hartwig; Johnson, Bryan; Kivi, Rigel; Kyrö, Esko; Larsen, Niels; Levelt, Pieternel F; Makshtas, Alexander; McElroy, C Thomas; Nakajima, Hideaki; Parrondo, Maria Concepción; Tarasick, David W; von der Gathen, Peter; Walker, Kaley A; Zinoviev, Nikita S

    2011-10-02

    Chemical ozone destruction occurs over both polar regions in local winter-spring. In the Antarctic, essentially complete removal of lower-stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over the Arctic in early 2011 was--for the first time in the observational record--comparable to that in the Antarctic ozone hole. Unusually long-lasting cold conditions in the Arctic lower stratosphere led to persistent enhancement in ozone-destroying forms of chlorine and to unprecedented ozone loss, which exceeded 80 per cent over 18-20 kilometres altitude. Our results show that Arctic ozone holes are possible even with temperatures much milder than those in the Antarctic. We cannot at present predict when such severe Arctic ozone depletion may be matched or exceeded.

  1. Estimation of polar low characteristics for the Nordic Seas for 1995-2008 using satellite data

    NASA Astrophysics Data System (ADS)

    Smirnova, Julia; Chapron, Bertrand; Zabolotskikh, Elizaveta; Leonid Bobylev, Mr

    In recent years the scientific research confirmed the fact of the global warming. The Arctic climate is warming even more rapidly. Powerful storm polar lows having wind speeds of about 25 m/c are known to be the cause of hazardous weather. Polar lows present themselves as the atmospheric phenomena the horizontal dimensions of which do not exceed 1,000 km, appear and which exist from 12 to 24 hours. The wave fall and low temperatures can lead to increased probability of vessel icing the intensity of which increases with the high wind speed and large wave height. Study of the mesoscale processes, such as polar lows in the Arctic has become especially relevant due to the sharp sea ice decreasing in the Arctic Ocean and Arctic seas in recent years. Only the use of satellite data allows obtaining regular and spacious information about the polar lows. Early detection and evaluation of the characteristics of the polar lows is an extremely important task to ensure the safety of navigation, fishing and oil industry in the Arctic region. With new open areas dangerous polar lows can arise over them. So early detection of the polar lows, studying their characteristics, tracking their movement and prediction presents one the most important problems of the modern science. The present-day meteorological observational network has severe limitations in detecting all, especially small mesoscale cyclones, so there is a strong need for new and/or improved methods to detect and monitor polar lows. Satellite remote sensing seems to be the most feasible tool for early detection and monitoring of the polar lows. Several remote sensing sensors are capable to detect a polar low but each of them suffers from various deficiencies. In the work, satellite passive microwave data have been intensively exploited aiming at obtaining the fields of geophysical parameters inside the polar lows. DMSP Special Sensor Microwave/Imager - SSM/I data were used in the research. The polar lows have been

  2. Aura's Microwave Limb Sounder Estimates of Ozone Loss, 2004/2005 Arctic Winter

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These data maps from Aura's Microwave Limb Sounder depict levels of hydrogen chloride (top), chlorine monoxide (center), and ozone (bottom) at an altitude of approximately 19 kilometers (490,000 feet) on selected days during the 2004-05 Arctic winter. White contours demark the boundary of the winter polar vortex.

    The maps from December 23, 2004, illustrate vortex conditions shortly before significant chemical ozone destruction began. By January 23, 2005, chlorine is substantially converted from the 'safe' form of hydrogen chloride, which is depleted throughout the vortex, to the 'unsafe' form of chlorine monoxide, which is enhanced in the portions of the region that receive sunlight at that time of year. Ozone increased over the month as a result of dynamical effects, and chemical ozone destruction is just beginning at this time. A brief period of intense cold a few days later promotes further chlorine activation and consequent changes in hydrogen chloride and chlorine monoxide levels on January 27, 2005. Peak chlorine monoxide enhancement occurs in early February.

    By February 24, 2005, chlorine deactivation is well underway, with chlorine monoxide abundances dropping and hydrogen chloride abundances rising. Almost all chlorine monoxide has been quenched by March 10, 2005. The fact that hydrogen chloride has not fully rebounded to December abundances suggests that some of that chemical was recovered into another chlorine reservoir species.

    Ozone maps for January 27, 2005, through March 10, 2005, show indications of mixing of air from outside the polar vortex into it. Such occurrences throughout this winter, especially in late February and early March, complicate analyses, and detailed calculations are required to rigorously disentangle chemical and dynamical effects and accurately diagnose chemical ozone destruction.

    Based on various analyses of Microwave Limb Sounder data, we estimate that maximum local ozone loss of approximately 2 parts

  3. Arctic terrestrial ecosystem contamination.

    PubMed

    Thomas, D J; Tracey, B; Marshall, H; Norstrom, R J

    1992-07-15

    Limited data have been collected on the presence of contaminants in the Arctic terrestrial ecosystem, with the exception of radioactive fallout from atmospheric weapons testing. Although southern and temperate biological systems have largely cleansed themselves of radioactive fallout deposited during the 1950s and 1960s, Arctic environments have not. Lichens accumulate radioactivity more than many other plants because of their large surface area and long life span; the presence and persistence of radioisotopes in the Arctic is of concern because of the lichen----reindeer----human ecosystem. Effective biological half-life of cesium 137 is reckoned to be substantially less than its physical half-life. The database on organochlorines in Canadian Arctic terrestrial mammals and birds is very limited, but indications are that the air/plant/animal contaminant pathway is the major route of these compounds into the terrestrial food chain. For terrestrial herbivores, the most abundant organochlorine is usually hexachlorobenzene followed by hexachlorocyclohexane isomers. PCB accumulation favours the hexachlorobiphenyl, pentachlorobiphenyl and heptachlorobiphenyl homologous series. The concentrations of the various classes of organochlorine compounds are substantially lower in terrestrial herbivore tissues than in marine mammal tissues. PCBs and DDT are the most abundant residues in peregrine falcons (a terrestrial carnivore) reaching average levels of 9.2 and 10.4 micrograms.g-1, respectively, more than 10 times higher than other organochlorines and higher than in marine mammals, including the polar bear. Contaminants from local sources include metals from mining activities, hydrocarbons and waste drilling fluids from oil and gas exploration and production, wastes from DEW line sites, naturally occurring radionuclides associated with uranium mineralization, and smoke containing SO2 and H2SO4 aerosol from the Smoking Hills at Cape Bathurst, N.W.T.

  4. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  5. Wake Vortex Free Flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A 10% scale B-737-100 model was tested in the vicinity of a vortex wake generated by a wing mounted on a support in the forward section of the NASA-Langley 30 x 60 ft. Wind Tunnel. The wing span, angle of attack, and generating wing location were varied to provide vortex strengths consistent with a large variety of combinations of leader-follower aircraft pairs during vortex encounters. The test, conducted as part of the AST Terminal Area Productivity Program, will provide data for validation of aerodynamic models which will be used for developing safe separate standards to apply to aircraft in terminal areas while increasing airport capacity.

  6. Influence of Mountain Waves and NAT Nucleation Mechanisms on Polar Stratospheric Cloud Formation at Local and Synoptic Scales during the 1999-2000 Arctic Winter

    DTIC Science & Technology

    2005-03-07

    B., Dörnbrack, A., Leut - becher, M., Volkert, H., Renger, W., Bacmeister, J., and Peter, T.: Particle microphysics and chemistry in remotely...observed moun- tain polar stratospheric clouds, J. Geophys. Res., 103, 5785– 5796, 1998a. Carslaw, K. S., Wirth, M., Tsias, A., Luo, B., Dörnbrack, A., Leut

  7. Vortex Lift Augmentation by Suction

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1983-01-01

    Lift performance is improved on a 60 degrees swept Gothic wing. Vortex lift at moderate to high angles of attack on highly swept wings used to improve takeoff performance and maneuverability. New design proposed in which suction of propulsion system augments vortex. Turbofan placed at down stream end of leading-edge vortex system induces vortex to flow into inlet which delays onset of vortex breakdown.

  8. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image Stratus clouds are common in the Arctic during the summer months, and are important modulators of ... from MISR's two most obliquely forward-viewing cameras. The cold, stable air causes the clouds to persist in stratified layers, and this ...

  9. Arctic Refuge

    Atmospheric Science Data Center

    2014-05-15

    ... The Arctic National Wildlife Refuge (often abbreviated to ANWR) was established by President Eisenhower in 1960, and is the largest ... 40 species of coastal and freshwater fish. Although most of ANWR was designated as wilderness in 1980, the area along the coastal plain was ...

  10. A mesoscale vortex over Halley Station, Antarctica

    SciTech Connect

    Turner, J.; Lachlan-Cope, T.A.; Warren, D.E. ); Duncan, C.N. )

    1993-05-01

    A detailed analysis of the evolution and structure of a mesoscale vortex and associated cloud comma that developed at the eastern edge of the Weddell Sea, Antarctica, during the early part of January 1986 is presented. The system remained quasi-stationary for over three days close to the British research station Halley (75[degrees]36'S, 26'42[degrees]W) and gave severe weather with gale-force winds and prolonged snow. The formation and development of the system were investigated using conventional surface and upper-air meteorological observations taken at Halley, analyses from the U.K. Meteorological Office 15-level model, and satellite imagery and sounder data from the TIROS-N-NOAA series of polar orbiting satellites. The thermal structure of the vortex was examined using atmospheric profiles derived from radiance measurements from the TIROS Operational Vertical Sounder. Details of the wind field were examined using cloud motion vectors derived from a sequence of Advanced Very High Resolution Radiometer images. The vortex developed inland of the Brunt Ice Shelf in a strong baroclinic zone separating warm air, which had been advected polewards down the eastern Weddell Sea, and cold air descending from the Antarctic Plateau. The system intensified when cold, continental air associated with an upper-level short-wave trough was advected into the vortex. A frontal cloud band developed when slantwise ascent of warm air took place at the leading edge of the cold-air outbreak. Most of the precipitation associated with the low occurred on this cloud band. The small sea surface-atmospheric temperature differences gave only limited heat fluxes and there was no indication of deep convection associated with the system. The vortex was driven by baroclinic forcing and had some features in common with the baroclinic type of polar lows that occur in the Northern Hemisphere. 25 refs., 14 figs.

  11. Arctic Change Information for a Broad Audience

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J.

    2002-12-01

    Demonstrable environmental changes have occurred in the Arctic over the past three decades. NOAA's Arctic Theme Page is a rich resource web site focused on high latitude studies and the Arctic, with links to widely distributed data and information focused on the Arctic. Included is a