Science.gov

Sample records for arcuate nucleus neuropeptide

  1. Neuromedin B and gastrin releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong renilla GFP in NPY neurons

    PubMed Central

    van den Pol, Anthony N.; Yao, Yang; Fu, Li-Ying; Foo, Kylie; Huang, Hao; Coppari, Roberto; Lowell, Brad; Broberger, Christian

    2009-01-01

    Neuropeptide Y (NPY) is one of the most widespread neuropeptides in the brain. Transgenic mice were generated that expressed bright renilla GFP in most or all of the known NPY cells in the brain, which otherwise were not identifiable. GFP expression in NPY cells was confirmed with immunocytochemistry and single cell RT-PCR. NPY neurons in the hypothalamic arcuate nucleus play an important role in energy homeostasis and endocrine control. Whole cell patch clamp recording was used to study identified arcuate NPY cells. Primary agents that regulate energy balance include melanocortin receptor agonists, AgRP, and cannabinoids; none of these substances substantially influenced electrical properties of NPY neurons. In striking contrast, neuropeptides of the bombesin family, including gastrin releasing peptide and neuromedin B which are found in axons in the arcuate nucleus and may also be released from the gut to signal the brain, showed strong direct excitatory actions at nanomolar levels on the NPY neurons, stronger than the actions of ghrelin and hypocretin/orexin. Bombesin-related peptides reduced input resistance and depolarized the membrane potential. The depolarization was attenuated by several factors: substitution of choline for sodium, extracellular Ni2+, inclusion of BAPTA in the pipette, KB-R7943 and SKF96365. Reduced extracellular calcium enhanced the current, which reversed around − 20 mV. Together, these data suggest two mechanisms, activation of non-selective cation channels and the sodium/calcium exchanger. Since both NPY and POMC neurons, which we also studied, are similarly directly excited by bombesin-like peptides, the peptides may function to initiate broad activation, rather than the cell-type selective activation or inhibition reported for many other compounds that modulate energy homeostasis. PMID:19357287

  2. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity.

    PubMed

    Yi, Chun-Xia; Foppen, Ewout; Abplanalp, William; Gao, Yuanqing; Alkemade, Anneke; la Fleur, Susanne E; Serlie, Mireille J; Fliers, Eric; Buijs, Ruud M; Tschöp, Matthias H; Kalsbeek, Andries

    2012-02-01

    Glucocorticoid receptors are highly expressed in the hypothalamic paraventricular nucleus (PVN) and arcuate nucleus (ARC). As glucocorticoids have pronounced effects on neuropeptide Y (NPY) expression and as NPY neurons projecting from the ARC to the PVN are pivotal for balancing feeding behavior and glucose metabolism, we investigated the effect of glucocorticoid signaling in these areas on endogenous glucose production (EGP) and insulin sensitivity by local retrodialysis of the glucocorticoid receptor agonist dexamethasone into the ARC or the PVN, in combination with isotope dilution and hyperinsulinemic-euglycemic clamp techniques. Retrodialysis of dexamethasone for 90 min into the ARC or the PVN did not have significant effects on basal plasma glucose concentration. During the hyperinsulinemic-euglycemic clamp, retrodialysis of dexamethasone into the ARC largely prevented the suppressive effect of hyperinsulinemia on EGP. Antagonizing the NPY1 receptors by intracerebroventricular infusion of its antagonist largely blocked the hepatic insulin resistance induced by dexamethasone in the ARC. The dexamethasone-ARC-induced inhibition of hepatic insulin sensitivity was also prevented by hepatic sympathetic denervation. These data suggest that glucocorticoid signaling specifically in the ARC neurons modulates hepatic insulin responsiveness via NPY and the sympathetic system, which may add to our understanding of the metabolic impact of clinical conditions associated with hypercortisolism.

  3. Developmental Changes in Synaptic Distribution in Arcuate Nucleus Neurons

    PubMed Central

    Kirigiti, Melissa A.; Baquero, Karalee C.; Lee, Shin J.; Smith, M. Susan; Grove, Kevin L.

    2015-01-01

    Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9–10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements. PMID:26041922

  4. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B.

    PubMed

    Goodman, Robert L; Lehman, Michael N; Smith, Jeremy T; Coolen, Lique M; de Oliveira, Cleusa V R; Jafarzadehshirazi, Mohammad R; Pereira, Alda; Iqbal, Javed; Caraty, Alain; Ciofi, Philippe; Clarke, Iain J

    2007-12-01

    Kisspeptin is a potent stimulator of GnRH secretion that has been implicated in the feedback actions of ovarian steroids. In ewes, the majority of hypothalamic kisspeptin neurons are found in the arcuate nucleus (ARC), with a smaller population located in the preoptic area. Most arcuate kisspeptin neurons express estrogen receptor-alpha, as do a set of arcuate neurons that contain both dynorphin and neurokinin B (NKB), suggesting that all three neuropeptides are colocalized in the same cells. In this study we tested this hypothesis using dual immunocytochemistry and also determined if kisspeptin neurons contain MSH or agouti-related peptide. To assess colocalization of kisspeptin and dynorphin, we used paraformaldehyde-fixed tissue from estrogen-treated ovariectomized ewes in the breeding season (n = 5). Almost all ARC, but no preoptic area, kisspeptin neurons contained dynorphin. Similarly, almost all ARC dynorphin neurons contained kisspeptin. In experiment 2 we examined colocalization of kisspeptin and NKB in picric-acid fixed tissue collected from ovary intact ewes (n = 9). Over three quarters of ARC kisspeptin neurons also expressed NKB, and a similar percentage of NKB neurons contained kisspeptin. In contrast, no kisspeptin neurons stained for MSH or agouti-related peptide. These data demonstrate that, in the ewe, a high percentage of ARC kisspeptin neurons also produce dynorphin and NKB, and we propose that a single subpopulation of ARC neurons contains all three neuropeptides. Because virtually all of these neurons express estrogen and progesterone re-ceptors, they are likely to relay the feedback effects of these steroids to GnRH neurons to regulate reproductive function.

  5. Hypothalamic Paraventricular and Arcuate Nuclei Contribute to Elevated Sympathetic Nerve Activity in Pregnant Rats: Roles of Neuropeptide Y and α-Melanocyte-Stimulating Hormone.

    PubMed

    Shi, Zhigang; Cassaglia, Priscila A; Gotthardt, Laura C; Brooks, Virginia L

    2015-12-01

    Pregnancy increases sympathetic nerve activity (SNA), but the mechanisms are unknown. Here, we investigated the contributions of the hypothalamic paraventricular and arcuate nuclei in α-chloralose-anesthetized pregnant and nonpregnant rats. Baseline arterial pressure (AP) was lower, and heart rate (HR), lumbar sympathetic activity, and splanchnic SNA were higher in pregnant rats compared with nonpregnant rats. Inhibition of the paraventricular nucleus via bilateral muscimol nanoinjections decreased AP and HR more in pregnant rats than in nonpregnant rats and decreased lumbar SNA only in pregnant rats. Similarly, after arcuate muscimol nanoninjections, the decreases in AP, HR, and lumbar, renal, and splanchnic sympathetic nerve activities were greater in pregnant rats than in nonpregnant rats. Major arcuate neuronal groups that project to the paraventricular nucleus express inhibitory neuropeptide Y (NPY) and excitatory α-melanocyte-stimulating hormone. Inhibition of paraventricular melanocortin 3/4 receptors with SHU9119 also decreased AP, HR, and lumbar SNA in pregnant rats but not in nonpregnant rats. Conversely, paraventricular nucleus NPY expression was reduced in pregnant animals, and although blockade of paraventricular NPY Y1 receptors increased AP, HR, and lumbar sympathetic activity in nonpregnant rats, it had no effects in pregnant rats. Yet, the sympathoinhibitory, depressor, and bradycardic effects of paraventricular NPY nanoinjections were similar between groups. In conclusion, the paraventricular and arcuate nuclei contribute to increased basal SNA during pregnancy, likely due in part to decreased tonic NPY inhibition and increased tonic α-melanocyte-stimulating hormone excitation of presympathetic neurons in the paraventricular nucleus.

  6. NPY and VGF Immunoreactivity Increased in the Arcuate Nucleus, but Decreased in the Nucleus of the Tractus Solitarius, of Type-II Diabetic Patients

    PubMed Central

    Saderi, Nadia; Salgado-Delgado, Roberto; Avendaño-Pradel, Rafael; Basualdo, Maria del Carmen; Ferri, Gian-Luca; Chávez-Macías, Laura; Escobar, Carolina; Buijs, Ruud M.

    2012-01-01

    Ample animal studies demonstrate that neuropeptides NPY and α-MSH expressed in Arcuate Nucleus and Nucleus of the Tractus Solitarius, modulate glucose homeostasis and food intake. In contrast is the absence of data validating these observations for human disease. Here we compare the post mortem immunoreactivity of the metabolic neuropeptides NPY, αMSH and VGF in the infundibular nucleus, and brainstem of 11 type-2 diabetic and 11 non-diabetic individuals. α-MSH, NPY and tyrosine hydroxylase in human brain are localized in the same areas as in rodent brain. The similar distribution of NPY, α-MSH and VGF indicated that these neurons in the human brain may share similar functionality as in the rodent brain. The number of NPY and VGF immuno positive cells was increased in the infundibular nucleus of diabetic subjects in comparison to non-diabetic controls. In contrast, NPY and VGF were down regulated in the Nucleus of the Tractus Solitarius of diabetic patients. These results suggest an activation of NPY producing neurons in the arcuate nucleus, which, according to animal experimental studies, is related to a catabolic state and might be the basis for increased hepatic glucose production in type-2 diabetes. PMID:22808091

  7. Neuronal cell death in the arcuate nucleus of the medulla oblongata in stillbirth.

    PubMed

    Folkerth, Rebecca D; Zanoni, Sallie; Andiman, Sarah E; Billiards, Saraid S

    2008-02-01

    The hypothesis that unexplained stillbirth arises in a similar manner as the sudden infant death syndrome (SIDS) is based in part on shared neuropathologic features between the two entities, including hypoxic-ischemic lesions such as white matter and brainstem gliosis, as well as aplasia or hypoplasia of the arcuate nucleus on the ventral surface of the medulla. The arcuate nucleus is the putative homologue of the respiratory chemosensory region at the ventral medullary surface in animals that is involved in central chemosensitivity. To determine arcuate nucleus pathology in stillbirth, and its co-occurrence with evidence of hypoxia-ischemia, we reviewed brain specimens from the archives of our hospitals from 22 consecutive stillbirths from 22 to 41 gestational weeks. Explained causes of death (n=17) included nuchal cord, acute chorioamnionitis, placental abruption, and fetal glomerulosclerosis; 5 cases were unexplained. In 12 brains, we observed nuclear karyorrhexis and/or pyknosis with cytoplasmic hypereosinophilia in neurons in the arcuate nucleus in both explained (n=8) and unexplained (n=4) cases (54.5% of total cases). Three additional cases had arcuate aplasia (n=1) or hypoplasia (n=2) (13.6% of total cases); one of the latter cases also had neuronal necrosis in the hypoplastic arcuate. The degree of gliosis in the region of the arcuate nucleus was variable across all cases, without statistically significant differences between groups with and without arcuate nucleus necrosis. Other lesions in association with (n=14) and without (n=8) arcuate nucleus abnormalities were diffuse cerebral white matter gliosis, periventricular leukomalacia (PVL), and neuronal necrosis in the hippocampus, basal ganglia, thalamus, basis pontis, and brainstem tegmentum. In 16/20 (80.0%) cases (with or without histologic necrosis of the arcuate), immunostaining with caspase-3 demonstrated positive neurons. Our findings suggest that neuronal pathology in the arcuate nucleus may be

  8. Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus.

    PubMed

    Cabral, Agustina; Portiansky, Enrique; Sánchez-Jaramillo, Edith; Zigman, Jeffrey M; Perello, Mario

    2016-05-01

    Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin's orexigenic action vs. its role as a stress signal are anatomically dissociated.

  9. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss.

    PubMed

    Secher, Anna; Jelsing, Jacob; Baquero, Arian F; Hecksher-Sørensen, Jacob; Cowley, Michael A; Dalbøge, Louise S; Hansen, Gitte; Grove, Kevin L; Pyke, Charles; Raun, Kirsten; Schäffer, Lauge; Tang-Christensen, Mads; Verma, Saurabh; Witgen, Brent M; Vrang, Niels; Bjerre Knudsen, Lotte

    2014-10-01

    Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.

  10. Arcuate nucleus destruction does not block food deprivation-induced increases in food foraging and hoarding

    PubMed Central

    Dailey, Megan J.; Bartness, Timothy J.

    2010-01-01

    The mechanisms underlying the control of food intake are considerably better understood than those underlying the appetitive ingestive behaviors of foraging and hoarding of food, despite the prevalence of the latter across species including humans. Neuropeptide Y (NPY) and agouti-related protein (AgRP), two orexigenic neuropeptides known to stimulate food intake in a variety of species, applied centrally to Siberian hamsters increases foraging and especially hoarding with lesser increases in food intake. Both are expressed in the arcuate nucleus (Arc) and their synthesis increases with food deprivation, a naturally-occurring stimulus that markedly increases foraging and hoarding in Siberian hamsters. Therefore, we tested whether destruction of Arc neurons blocks these ingestive behaviors. This was accomplished either by microinjecting NPY conjugated to saporin (NPY-SAP) bilaterally into the Arc to kill NPY receptor-bearing neurons or via neonatal monosodium glutamate (MSG) treatment. For both methods, Arc cresyl violet staining (cell density) and NPY and Y1 receptor immunoreactivity (ir) were significantly decreased. Although baseline foraging and food hoarding were not affected, food deprivation-induced increased food hoarding was surprisingly exaggerated ∼100 % with both types of Arc destruction. We found a substantial amount of remaining NPY-ir fibers, likely emanating from the brainstem, and a significant upregulation of Y1 receptors in Arc NPY projections areas (hypothalamic paraventricular nucleus and perifornical area) after Arc denervation and their activation may have accounted for the exaggerated increases. The converging evidence from both Arc destruction methods suggests an intact Arc is not necessary for food deprivation-induced increases in food foraging and hoarding. PMID:20138163

  11. Arcuate nucleus destruction does not block food deprivation-induced increases in food foraging and hoarding.

    PubMed

    Dailey, Megan J; Bartness, Timothy J

    2010-04-06

    The mechanisms underlying the control of food intake are considerably better understood than those underlying the appetitive ingestive behaviors of foraging and hoarding of food, despite the prevalence of the latter across species including humans. Neuropeptide Y (NPY) and Agouti-related protein (AgRP), two orexigenic neuropeptides known to stimulate food intake in a variety of species, applied centrally to Siberian hamsters increases foraging and especially hoarding with lesser increases in food intake. Both are expressed in the arcuate nucleus (Arc) and their synthesis increases with food deprivation, a naturally-occurring stimulus that markedly increases foraging and hoarding in Siberian hamsters. Therefore, we tested whether destruction of Arc neurons blocks these ingestive behaviors. This was accomplished either by microinjecting NPY conjugated to saporin (NPY-SAP) bilaterally into the Arc to kill NPY receptor-bearing neurons or via neonatal monosodium glutamate (MSG) treatment. For both methods, Arc cresyl violet staining (cell density) and NPY and Y1 receptor-immunoreactivity (ir) were significantly decreased. Although baseline foraging and food hoarding were not affected, food deprivation-induced increased food hoarding was surprisingly exaggerated approximately 100% with both types of Arc destruction. We found a substantial amount of remaining NPY-ir fibers, likely emanating from the brainstem, and a significant up-regulation of Y1 receptors in Arc NPY projections areas (hypothalamic paraventricular nucleus and perifornical area) after Arc denervation and their activation may have accounted for the exaggerated increases. The converging evidence from both Arc destruction methods suggests an intact Arc is not necessary for food deprivation-induced increases in food foraging and hoarding.

  12. Glucose reverses fasting-induced activation in the arcuate nucleus of mice.

    PubMed

    Becskei, Csilla; Lutz, Thomas A; Riediger, Thomas

    2008-01-08

    The hypothalamic arcuate nucleus is an important target for metabolic and hormonal signals controlling food intake. As demonstrated by c-Fos studies, arcuate neurons are activated in food-deprived mice, whereas refeeding reverses the fasting-induced activation. To evaluate whether an increase in blood glucose has an inhibitory effect on these neurons, we analyzed the c-Fos response to an intraperitoneal glucose injection in fasted mice. This treatment increased blood glucose levels twofold and reduced 2-h food intake. Similar to refeeding, it also reversed the fasting-induced activation in the arcuate nucleus. Therefore, an increase in blood glucose might be an important feeding-related signal acting via the arcuate nucleus to oppose orexigenic stimuli.

  13. MCT2 Expression and Lactate Influx in Anorexigenic and Orexigenic Neurons of the Arcuate Nucleus

    PubMed Central

    Cortes-Campos, Christian; Elizondo, Roberto; Carril, Claudio; Martínez, Fernando; Boric, Katica; Nualart, Francisco; Garcia-Robles, Maria Angeles

    2013-01-01

    Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs). Hypothalamic glial cells (tanycytes) release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ∼60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels. PMID:23638108

  14. Direct modulation of GFAP-expressing glia in the arcuate nucleus bi-directionally regulates feeding

    PubMed Central

    Chen, Naiyan; Barak, Boaz; Sur, Mriganka

    2016-01-01

    Multiple hypothalamic neuronal populations that regulate energy balance have been identified. Although hypothalamic glia exist in abundance and form intimate structural connections with neurons, their roles in energy homeostasis are less known. Here we show that selective Ca2+ activation of glia in the mouse arcuate nucleus (ARC) reversibly induces increased food intake while disruption of Ca2+ signaling pathway in ARC glia reduces food intake. The specific activation of ARC glia enhances the activity of agouti-related protein/neuropeptide Y (AgRP/NPY)-expressing neurons but induces no net response in pro-opiomelanocortin (POMC)-expressing neurons. ARC glial activation non-specifically depolarizes both AgRP/NPY and POMC neurons but a strong inhibitory input to POMC neurons balances the excitation. When AgRP/NPY neurons are inactivated, ARC glial activation fails to evoke any significant changes in food intake. Collectively, these results reveal an important role of ARC glia in the regulation of energy homeostasis through its interaction with distinct neuronal subtype-specific pathways. DOI: http://dx.doi.org/10.7554/eLife.18716.001 PMID:27751234

  15. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus

    PubMed Central

    Chua, Streamson; Jo, Young-Hwan

    2016-01-01

    The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat. PMID:27611685

  16. Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin

    PubMed Central

    Zhang, Xiaobing

    2015-01-01

    We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike

  17. Sudden and unexpected fetal death associated with agenesis of the arcuate nucleus in the medulla oblongata.

    PubMed

    Franciosi, Ralph A; Segura, Annette D

    2004-10-01

    Abnormalities have been reported in the medullary arcuate nucleus (ARCN) in unexpected late fetal death. They speculated that this developmental anomaly may underlie cardioventilatory abnormalities intrapartum and postpartum. This article describes a case of an unexpected late fetal death associated with absence of the ARCN.

  18. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    PubMed Central

    Guzmán-Ruiz, Mara

    2017-01-01

    Abstract The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively removing SCN-arcuate nucleus (ARC) interconnectivity in Wistar rats result in a loss of rhythmicity in locomotor activity, corticosterone levels, and body temperature in constant dark (DD) conditions. Elimination of these reciprocal connections did not affect SCN clock gene rhythmicity but did cause the ARC to desynchronize. Moreover, unilateral SCN lesions with contralateral retrochiasmatic microcuts resulted in identical arrhythmicity, proving that for the expression of physiological rhythms this reciprocal SCN-ARC interaction is essential. The unaltered SCN c-Fos expression following glucose administration in disconnected animals as compared to a significant decrease in controls demonstrates the importance of the ARC as metabolic modulator of SCN neuronal activity. Together, these results indicate that the SCN is more than an autonomous clock, and forms an essential component of a larger network controlling homeostasis. The present novel findings illustrate how an imbalance between SCN and ARC communication through circadian disruption could be involved in the etiology of metabolic disorders. PMID:28374011

  19. The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive.

    PubMed

    Fu, Yu Hong; Watson, Charles

    2012-01-01

    The arcuate nucleus is a prominent cell group in the human hindbrain, characterized by its position on the pial surface of the pyramid. It is considered to be a precerebellar nucleus and has been implicated in the pathology of several disorders of respiration. An arcuate nucleus has not been convincingly demonstrated in other mammals, but we have found a similarly positioned nucleus in the C57BL/6J mouse. The mouse arcuate nucleus consists of a variable group of neurons lying on the pial surface of the pyramid. The nucleus is continuous with the ventrolateral part of the principal nucleus of the inferior olive and both groups are calbindin positive. At first we thought that this mouse nucleus was homologous with the human arcuate nucleus, but we have discovered that the neurons of the human nucleus are calbindin negative, and are therefore not olivary in nature. We have compared the mouse arcuate neurons with those of the inferior olive in terms of molecular markers and cerebellar projection. The neurons of the arcuate nucleus and of the inferior olive share three major characteristics: they both contain neurons utilizing glutamate, serotonin or acetylcholine as neurotransmitters; they both project to the contralateral cerebellum, and they both express a number of genes not present in the major mossy fiber issuing precerebellar nuclei. Most importantly, both cell groups express calbindin in an area of the ventral hindbrain almost completely devoid of calbindin-positive cells. We conclude that the neurons of the hindbrain mouse arcuate nucleus are a displaced part of the inferior olive, possibly separated by the caudal growth of the pyramidal tract during development. The arcuate nucleus reported in the C57BL/6J mouse can therefore be regarded as a subgroup of the rostral inferior olive, closely allied with the ventral tier of the principal nucleus.

  20. The Suprachiasmatic Nucleus Modulates the Sensitivity of Arcuate Nucleus to Hypoglycemia in the Male Rat.

    PubMed

    Herrera-Moro Chao, D; León-Mercado, L; Foppen, E; Guzmán-Ruiz, M; Basualdo, M C; Escobar, C; Buijs, R M

    2016-09-01

    The suprachiasmatic nucleus (SCN) and arcuate nucleus (ARC) have reciprocal connections; catabolic metabolic information activates the ARC and inhibits SCN neuronal activity. Little is known about the influence of the SCN on the ARC. Here, we investigated whether the SCN modulated the sensitivity of the ARC to catabolic metabolic conditions. ARC neuronal activity, as determined by c-Fos immunoreactivity, was increased after a hypoglycemic stimulus by 2-deoxyglucose (2DG). The highest ARC neuronal activity after 2DG was found at the end of the light period (zeitgeber 11, ZT11) with a lower activity in the beginning of the light period (zeitgeber 2, ZT2), suggesting the involvement of the SCN. The higher activation of ARC neurons after 2DG at ZT11 was associated with higher 2DG induced blood glucose levels as compared with ZT2. Unilateral SCN-lesioned animals, gave a mainly ipsilateral activation of ARC neurons at the lesioned side, suggesting an inhibitory role of the SCN on ARC neurons. The 2DG-induced counterregulatory glucose response correlated with increased ARC neuronal activity and was significantly higher in unilateral SCN-lesioned animals. Finally, the ARC as site where 2DG may, at least partly, induce a counterregulatory response was confirmed by local microdialysis of 2DG. 2DG administration in the ARC produced a higher increase in circulating glucose compared with 2DG administration in surrounding areas such as the ventromedial nucleus of the hypothalamus (VMH). We conclude that the SCN uses neuronal pathways to the ARC to gate sensory metabolic information to the brain, regulating ARC glucose sensitivity and counterregulatory responses to hypoglycemic conditions.

  1. Muscimol microinjected in the arcuate nucleus affects metabolism, body temperature & ventilation.

    PubMed

    Schlenker, Evelyn H

    2016-06-15

    Effects of microinjection of 2 doses of γ-aminobutyric acid (GABA)A receptor agonist, muscimol (M), into the hypothalamic arcuate nucleus on oxygen consumption and control of ventilation over time and body temperature (BT) at the end of the experiment were compared in adult male and female rats. Relative to cerebrospinal fluid (CSF, 0 nmol), BT was decreased only in male rats with both doses of M, while in female rats, the 5 nmol dose depressed oxygen consumption. Ventilation was depressed by 5 nmol M in male and 10 nmol M in female rats by decreasing tidal volume. M did not affect the ventilatory response of male or female rats to hypoxia, whereas in females 5 and 10 nmol M and in males 10 nmol M depressed the ventilatory response to hypercapnia. Thus, in rats GABAA receptors in the arcuate nucleus modulate BT, oxygen consumption, and ventilation in air and in response to hypercapnia in a sexually dimorphic manner.

  2. Suprachiasmatic Nucleus Neuropeptide Expression in Patients with Huntington's Disease

    PubMed Central

    van Wamelen, Daniel J.; Aziz, N. Ahmad; Anink, Jasper J.; van Steenhoven, Robin; Angeloni, Debora; Fraschini, Franco; Jockers, Ralf; Roos, Raymund A. C.; Swaab, Dick F.

    2013-01-01

    Study Objective: To study whether sleep and circadian rhythm disturbances in patients with Huntington's disease (HD) arise from dysfunction of the body's master clock, the hypothalamic suprachiasmatic nucleus. Design: Postmortem cohort study. Patients: Eight patients with HD and eight control subjects matched for sex, age, clock time and month of death, postmortem delay, and fixation time of paraffin-embedded hypothalamic tissue. Measurements and Results: Using postmortem paraffin-embedded tissue, we assessed the functional integrity of the suprachiasmatic nucleus in patients with HD and control subjects by determining the expression of two major regulatory neuropeptides, vasoactive intestinal polypeptide and arginine vasopressin. Additionally, we studied melatonin 1 and 2 receptor expression. Compared with control subjects, the suprachiasmatic nucleus contained 85% fewer neurons immunoreactive for vasoactive intestinal polypeptide and 33% fewer neurons for arginine vasopressin in patients with HD (P = 0.002 and P = 0.027). The total amount of vasoactive intestinal polypeptide and arginine vasopressin messenger RNA was unchanged. No change was observed in the number of melatonin 1 or 2 receptor immunoreactive neurons. Conclusions: These findings indicate posttranscriptional neuropeptide changes in the suprachiasmatic nucleus of patients with HD, and suggest that sleep and circadian rhythm disorders in these patients may at least partly arise from suprachiasmatic nucleus dysfunction. Citation: van Wamelen DJ; Aziz NA; Anink JJ; van Steenhoven R; Angeloni D; Fraschini F; Jockers R; Roos RAC; Swaab DF. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's disease. SLEEP 2013;36(1):117–125. PMID:23288978

  3. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control

  4. Research Resource: Gene Profiling of G Protein–Coupled Receptors in the Arcuate Nucleus of the Female

    PubMed Central

    Fang, Yuan; Zhang, Chunguang; Nestor, Casey C.; Mao, Peizhong; Kelly, Martin J.

    2014-01-01

    The hypothalamic arcuate nucleus controls many critical homeostatic functions including energy homeostasis, reproduction, and motivated behavior. Although G protein–coupled receptors (GPCRs) are involved in the regulation of these functions, relatively few of the GPCRs have been identified specifically within the arcuate nucleus. Here, using TaqMan low-density arrays we quantified the mRNA expression of nonolfactory GPCRs in mouse arcuate nucleus. An unprecedented number of GPCRs (total of 292) were found to be expressed, of which 183 were known and 109 were orphan GPCRs. The known GPCR genes expressed were classified into several functional clusters including hormone/neurotransmitter, growth factor, angiogenesis and vasoactivity, inflammation and immune system, and lipid messenger receptors. The plethora of orphan genes expressed in the arcuate nucleus were classified into 5 structure-related classes including class A (rhodopsin-like), class B (adhesion), class C (other GPCRs), nonsignaling 7-transmembrane chemokine-binding proteins, and other 7-transmembrane proteins. Therefore, for the first time, we provide a quantitative estimate of the numerous GPCRs expressed in the hypothalamic arcuate nucleus. Finally, as proof of principle, we documented the expression and function of one of these receptor genes, the glucagon-like peptide 1 receptor (Glp1r), which was highly expressed in the arcuate nucleus. Single-cell RT-PCR revealed that Glp1r mRNA was localized in proopiomelanocortin neurons, and using whole-cell recording we found that the glucagon-like peptide 1-selective agonist exendin-4 robustly excited proopiomelanocortin neurons. Thus, the quantitative GPCR data emphasize the complexity of the hypothalamic arcuate nucleus and furthermore provide a valuable resource for future neuroendocrine/endocrine-related experiments. PMID:24933249

  5. Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus.

    PubMed

    Lloyd, Steven A; Corkill, Beau; Bruster, Matthew C; Roberts, Rick L; Shanks, Ryan A

    2017-03-18

    Methamphetamine is a powerful psychostimulant drug and its use and abuse necessitates a better understanding of its neurobiobehavioral effects. The acute effects of binge dosing of methamphetamine on the neurons in the CNS are well studied. However, the long-term effects of chronic, low-dose methamphetamine are less well characterized, especially in other cell types and areas outside of the major dopamine pathways. Mice were administered 5mg/kg/day methamphetamine for ten days and brain tissue was analyzed using histochemistry and image analysis. Increased microglia activity in the striatum confirmed toxic effects of methamphetamine in this brain region using this dosing paradigm. A significant decrease in microglia activity in the arcuate nucleus of the hypothalamus was observed with no effect noted on dopamine neurons in the arcuate nucleus. Given the importance of this area in homeostatic and neuroendocrine regulation, the current study highlights the need to more fully understand the systemic effects of chronic, low-dose methamphetamine use. The novel finding of microglia downregulation after chronic methamphetamine could lead to advances in understanding neuroinflammatory responses towards addiction treatment and protection from psychostimulant-induced neurotoxicity.

  6. PYY(3–36) Into The Arcuate Nucleus Inhibits Food Deprivation-Induced Increases In Food Hoarding and Intake

    PubMed Central

    Teubner, Brett J.W.; Bartness, Timothy J.

    2013-01-01

    Central administration of neuropeptide Y (NPY) increases food intake in laboratory rats and mice, as well as food foraging and hoarding in Siberian hamsters. The NPY-Y1 and Y5 receptors (Rs) within the hypothalamus appear sufficient to account for these increases in ingestive behaviors. Stimulation of NPY-Y2Rs in the Arcuate nucleus (Arc) has an anorexigenic effect as shown by central or peripheral administration of its natural ligand peptide YY (3–36) and pharmacological NPY-Y2R antagonism by BIIE0246 increases food intake. Both effects on food intake by NPY-Y2R agonism and antagonism are relatively short-lived lasting ~4 h. The role of NPY-Y2Rs in appetitive ingestive behaviors (food foraging/hoarding) is untested, however. Therefore, Siberians hamsters, a natural food hoarder, were housed in a semi-natural burrow/foraging system that had a) foraging requirement (10 revolutions/ pellet), no free food (true foraging group), b) no running wheel access, free food (general malaise control) or c) running wheel access, free food (exercise control). We microinjected BIIE0246 (antagonist) and PYY(3–36) (agonist) into the Arc to test the role of NPY-Y2Rs there on ingestive behaviors. Food foraging, hoarding, and intake were not affected by Arc BIIE0246 microinjection in fed hamsters 1, 2, 4, and 24 h post injection. Stimulation of NPY-Y2Rs by PYY(3–36) inhibited food intake at 0–1 and 1–2 h and food hoarding at 1–2 h without causing general malaise or affecting foraging. Collectively, these results implicate a sufficiency, but not necessity, of the Arc NPY-Y2R in the inhibition of food intake and food hoarding by Siberian hamsters. PMID:23816798

  7. PYY(3-36) into the arcuate nucleus inhibits food deprivation-induced increases in food hoarding and intake.

    PubMed

    Teubner, Brett J W; Bartness, Timothy J

    2013-09-01

    Central administration of neuropeptide Y (NPY) increases food intake in laboratory rats and mice, as well as food foraging and hoarding in Siberian hamsters. The NPY-Y1 and Y5 receptors (Rs) within the hypothalamus appear sufficient to account for these increases in ingestive behaviors. Stimulation of NPY-Y2Rs in the Arcuate nucleus (Arc) has an anorexigenic effect as shown by central or peripheral administration of its natural ligand peptide YY (3-36) and pharmacological NPY-Y2R antagonism by BIIE0246 increases food intake. Both effects on food intake by NPY-Y2R agonism and antagonism are relatively short-lived lasting ∼4h. The role of NPY-Y2Rs in appetitive ingestive behaviors (food foraging/hoarding) is untested, however. Therefore, Siberians hamsters, a natural food hoarder, were housed in a semi-natural burrow/foraging system that had (a) foraging requirement (10 revolutions/pellet), no free food (true foraging group), (b) no running wheel access, free food (general malaise control) or (c) running wheel access, free food (exercise control). We microinjected BIIE0246 (antagonist) and PYY(3-36) (agonist) into the Arc to test the role of NPY-Y2Rs there on ingestive behaviors. Food foraging, hoarding, and intake were not affected by Arc BIIE0246 microinjection in fed hamsters 1, 2, 4, and 24h post injection. Stimulation of NPY-Y2Rs by PYY(3-36) inhibited food intake at 0-1 and 1-2h and food hoarding at 1-2h without causing general malaise or affecting foraging. Collectively, these results implicate a sufficiency, but not necessity, of the Arc NPY-Y2R in the inhibition of food intake and food hoarding by Siberian hamsters.

  8. Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction.

    PubMed

    Wiater, Michael F; Li, Ai-Jun; Dinh, Thu T; Jansen, Heiko T; Ritter, Sue

    2013-10-15

    Previously, we investigated the role of neuropeptide Y and leptin-sensitive networks in the mediobasal hypothalamus in sleep and feeding and found profound homeostatic and circadian deficits with an intact suprachiasmatic nucleus. We propose that the arcuate nuclei (Arc) are required for the integration of homeostatic circadian systems, including temperature and activity. We tested this hypothesis using saporin toxin conjugated to leptin (Lep-SAP) injected into Arc in rats. Lep-SAP rats became obese and hyperphagic and progressed through a dynamic phase to a static phase of growth. Circadian rhythms were examined over 49 days during the static phase. Rats were maintained on a 12:12-h light-dark (LD) schedule for 13 days and, thereafter, maintained in continuous dark (DD). After the first 13 days of DD, food was restricted to 4 h/day for 10 days. We found that the activity of Lep-SAP rats was arrhythmic in DD, but that food anticipatory activity was, nevertheless, entrainable to the restricted feeding schedule, and the entrained rhythm persisted during the subsequent 3-day fast in DD. Thus, for activity, the circuitry for the light-entrainable oscillator, but not for the food-entrainable oscillator, was disabled by the Arc lesion. In contrast, temperature remained rhythmic in DD in the Lep-SAP rats and did not entrain to restricted feeding. We conclude that the leptin-sensitive network that includes the Arc is required for entrainment of activity by photic cues and entrainment of temperature by food, but is not required for entrainment of activity by food or temperature by photic cues.

  9. Estradiol implants in the arcuate nucleus induce lactogenesis in virgin rats. Role of progesterone.

    PubMed

    Carón, R W; Deis, R P

    1998-01-01

    The aim of this study was to determine the effect of the centrally administered estradiol, and the effects of the consequent hypersecretion of prolactin (PRL) and progesterone, on lactogenesis as evaluated by mammary accumulation of casein and lactose. Bilateral cannulae containing 17beta-estradiol or cholesterol were implanted in the arcuate nucleus of virgin rats on the day of estrus (Day 0). In the first experiment different groups of rats were killed on Days 6, 9, 15, 17, or 19. Trunk blood was collected and abdominal mammary glands were taken. In the second experiment, estradiol-implanted rats received the progesterone antagonist mifepristone or vehicle at 14.00 h on Day 8 or 16 post-implant, and were killed 28 or 48 h later. Serum PRL and progesterone and mammary casein were measured by RIA and lactose was determined by an enzymatic assay. Estradiol-implanted rats showed a significant increase in both milk components at all time points after implant compared to controls. On Day 9 after estradiol implant, mifepristone had no effect on mammary content of casein or lactose. By contrast, on Day 16, mifepristone markedly increased both casein and lactose contents without modifying serum PRL and progesterone concentrations. In conclusion, 17beta-estradiol implants in the arcuate nucleus of virgin rats results in hyperprolactinaemia and stimulates mammary accumulation of casein and lactose in the absence of feto-placental units. Despite the prolonged luteal activation, the sustained high levels of circulating progesterone become inhibitory to lactogenesis after a relatively long period after implant.

  10. GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus.

    PubMed

    Chitravanshi, Vineet C; Kawabe, Kazumi; Sapru, Hreday N

    2015-07-01

    We have previously reported that stimulation of the hypothalamic arcuate nucleus (ARCN) by microinjections of N-methyl-d-aspartic acid (NMDA) elicits tachycardia, which is partially mediated via inhibition of vagal inputs to the heart. The neuronal pools and neurotransmitters in them mediating tachycardia elicited from the ARCN have not been identified. We tested the hypothesis that the tachycardia elicited from the ARCN may be mediated by inhibitory neurotransmitters in the nucleus ambiguus (nAmb). Experiments were done in urethane-anesthetized, artificially ventilated, male Wistar rats. In separate groups of rats, unilateral and bilateral microinjections of muscimol (1 mM), gabazine (0.01 mM), and strychnine (0.5 mM) into the nAmb significantly attenuated tachycardia elicited by unilateral microinjections of NMDA (10 mM) into the ARCN. Histological examination of the brains showed that the microinjections sites were within the targeted nuclei. Retrograde anatomic tracing from the nAmb revealed direct bilateral projections from the ARCN and hypothalamic paraventricular nucleus to the nAmb. The results of the present study suggest that tachycardia elicited by stimulation of the ARCN by microinjections of NMDA is mediated via GABAA and glycine receptors located in the nAmb.

  11. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats.

    PubMed

    Sanchis-Segura, Carles; Correa, Mercé; Miquel, Marta; Aragon, Carlos M G

    2005-03-07

    Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.

  12. Reproductive experience increases prolactin responsiveness in the medial preoptic area and arcuate nucleus of female rats.

    PubMed

    Anderson, Greg M; Grattan, David R; van den Ancker, Willemijn; Bridges, Robert S

    2006-10-01

    The experience of pregnancy plus lactation produces long-term enhancements in maternal behavior as well as reduced secretion of prolactin, a key hormone for the initial establishment of maternal care. Given that prolactin acts centrally to induce maternal care as well as regulate its own secretion, we tested whether prolactin receptors in brain regions known to regulate behavioral and neuroendocrine processes were up-regulated and more responsive to prolactin in reproductively experienced females. Diestrous primiparous (8 wk after weaning) and age-matched virgin rats were treated with 250 microg ovine prolactin sc or vehicle and the brains collected 2 h later for measurement of mRNA for genes involved in prolactin signaling. Reproductively experienced rats had lower serum prolactin concentrations, compared with virgin rats, suggesting enhanced prolactin feedback on the arcuate neurons regulating prolactin secretion. In the medial preoptic area and arcuate nucleus (regions involved in regulating maternal behavior and prolactin secretion, respectively), the level of long-form prolactin receptor mRNA was higher in primiparous rats, and prolactin treatment induced a further increase in receptor expression in these animals. In the same regions, suppressors of cytokine signaling-1 and -3 mRNA levels were also markedly increased after prolactin treatment in reproductively experienced but not virgin rats. These results support the idea that reproductive experience increases central prolactin responsiveness. The induction of prolactin receptors and enhanced prolactin responsiveness as a result of pregnancy and lactation may help account for the retention of maternal behavior and shifts in prolactin secretion in reproductively experienced females.

  13. Brain-derived neurotrophic factor is required for axonal growth of selective groups of neurons in the arcuate nucleus

    PubMed Central

    Liao, Guey-Ying; Bouyer, Karine; Kamitakahara, Anna; Sahibzada, Niaz; Wang, Chien-Hua; Rutlin, Michael; Simerly, Richard B.; Xu, Baoji

    2015-01-01

    Objective Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development, and the Bdnf gene produces two populations of transcripts with either a short or long 3′ untranslated region (3′ UTR). Deficiencies in BDNF signaling have been shown to cause severe obesity in humans; however, it remains unknown how BDNF signaling impacts the organization of neuronal circuits that control energy balance. Methods We examined the role of BDNF on survival, axonal projections, and synaptic inputs of neurons in the arcuate nucleus (ARH), a structure critical for the control of energy balance, using Bdnfklox/klox mice, which lack long 3′ UTR Bdnf mRNA and develop severe hyperphagic obesity. Results We found that a small fraction of neurons that express the receptor for BDNF, TrkB, also expressed proopiomelanocortin (POMC) or neuropeptide Y (NPY)/agouti-related protein (AgRP) in the ARH. Bdnfklox/klox mice had normal numbers of POMC, NPY, and TrkB neurons in the ARH; however, retrograde labeling revealed a drastic reduction in the number of ARH axons that project to the paraventricular hypothalamus (PVH) in these mice. In addition, fewer POMC and AgRP axons were found in the dorsomedial hypothalamic nucleus (DMH) and the lateral part of PVH, respectively, in Bdnfklox/klox mice. Using immunohistochemistry, we examined the impact of BDNF deficiency on inputs to ARH neurons. We found that excitatory inputs onto POMC and NPY neurons were increased and decreased, respectively, in Bdnfklox/klox mice, likely due to a compensatory response to marked hyperphagia displayed by the mutant mice. Conclusion This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons. PMID:26042201

  14. Molecular Properties of Kiss1 Neurons in the Arcuate Nucleus of the Mouse

    PubMed Central

    Gottsch, Michelle L.; Popa, Simina M.; Lawhorn, Janessa K.; Qiu, Jian; Tonsfeldt, Karen J.; Bosch, Martha A.; Kelly, Martin J.; Rønnekleiv, Oline K.; Sanz, Elisenda; McKnight, G. Stanley; Clifton, Donald K.; Palmiter, Richard D.

    2011-01-01

    Neurons that produce kisspeptin play a critical role in reproduction. However, understanding the molecular physiology of kisspeptin neurons has been limited by the lack of an in vivo marker for those cells. Here, we report the development of a Kiss1-CreGFP knockin mouse, wherein the endogenous Kiss1 promoter directs the expression of a Cre recombinase-enhanced green fluorescent protein (GFP) fusion protein. The pattern of GFP expression in the brain of the knockin recapitulates what has been described earlier for Kiss1 in the male and female mouse, with prominent expression in the arcuate nucleus (ARC) (in both sexes) and the anteroventral periventricular nucleus (in females). Single-cell RT-PCR showed that the Kiss1 transcript is expressed in 100% of GFP-labeled cells, and the CreGFP transcript was regulated by estradiol in the same manner as the Kiss1 gene (i.e. inhibited in the ARC and induced in the anteroventral periventricular nucleus). We used this mouse to evaluate the biophysical properties of kisspeptin (Kiss1) neurons in the ARC of the female mouse. GFP-expressing Kiss1 neurons were identified in hypothalamic slice preparations of the ARC and patch clamped. Whole-cell (and loose attached) recordings revealed that Kiss1 neurons exhibit spontaneous activity and expressed both h- (pacemaker) and T-type calcium currents, and hyperpolarization-activated cyclic nucleotide-regulated 1–4 and CaV3.1 channel subtypes (measured by single cell RT-PCR), respectively. N-methyl-D-aspartate induced bursting activity, characterized by depolarizing/hyperpolarizing oscillations. Therefore, Kiss1 neurons in the ARC share molecular and electrophysiological properties of other CNS pacemaker neurons. PMID:21933870

  15. Kisspeptin, Neurokinin B, and Dynorphin Act in the Arcuate Nucleus to Control Activity of the GnRH Pulse Generator in Ewes

    PubMed Central

    Hileman, Stanley M.; Nestor, Casey C; Porter, Katrina L.; Connors, John M.; Hardy, Steve L.; Millar, Robert P.; Cernea, Maria; Coolen, Lique M.; Lehman, Michael N.

    2013-01-01

    Recent work has led to the hypothesis that kisspeptin/neurokinin B/dynorphin (KNDy) neurons in the arcuate nucleus play a key role in GnRH pulse generation, with kisspeptin driving GnRH release and neurokinin B (NKB) and dynorphin acting as start and stop signals, respectively. In this study, we tested this hypothesis by determining the actions, if any, of four neurotransmitters found in KNDy neurons (kisspeptin, NKB, dynorphin, and glutamate) on episodic LH secretion using local administration of agonists and antagonists to receptors for these transmitters in ovariectomized ewes. We also obtained evidence that GnRH-containing afferents contact KNDy neurons, so we tested the role of two components of these afferents: GnRH and orphanin-FQ. Microimplants of a Kiss1r antagonist briefly inhibited LH pulses and microinjections of 2 nmol of this antagonist produced a modest transitory decrease in LH pulse frequency. An antagonist to the NKB receptor also decreased LH pulse frequency, whereas NKB and an antagonist to the receptor for dynorphin both increased pulse frequency. In contrast, antagonists to GnRH receptors, orphanin-FQ receptors, and the N-methyl-D-aspartate glutamate receptor had no effect on episodic LH secretion. We thus conclude that the KNDy neuropeptides act in the arcuate nucleus to control episodic GnRH secretion in the ewe, but afferent input from GnRH neurons to this area does not. These data support the proposed roles for NKB and dynorphin within the KNDy neural network and raise the possibility that kisspeptin contributes to the control of GnRH pulse frequency in addition to its established role as an output signal from KNDy neurons that drives GnRH pulses. PMID:23959940

  16. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond.

    PubMed

    Könner, A Christine; Klöckener, Tim; Brüning, Jens C

    2009-07-14

    As the obesity epidemic, diabetes mellitus type 2, and associated comorbidities show no signs of abating, large efforts have been put into a better understanding of the homeostatic control mechanisms involved in regulation of body weight and energy homeostasis. For decades, the hypothalamic arcuate nucleus (ARC), which integrates peripheral signals and modulates appetite and metabolism, has been the focus of investigation. Besides these basic homeostatic circuits, food palatability and reward are thought to be major factors involved in the regulation of food intake. Highly palatable food is easily available, and is ingested even when there is no metabolic need for it. Thus, overriding of the homeostatic control systems by the cognitive, rewarding, social, and emotional aspects of palatable food may contribute to the obesity epidemic. This review aims to provide an updated view, how insulin and leptin as signals originating from the periphery of the body and communicating energy availability to the CNS act not only on ARC neurons, but also directly control the activity of neuronal circuits in control of food-associated reward mechanisms.

  17. Evidence that the Arcuate Nucleus Is an Important Site of Progesterone Negative Feedback in the Ewe

    PubMed Central

    Holaskova, Ida; Nestor, Casey C.; Connors, John M.; Billings, Heather J.; Valent, Miro; Lehman, Michael N.; Hileman, Stanley M.

    2011-01-01

    There is now considerable evidence that dynorphin neurons mediate the negative feedback actions of progesterone to inhibit GnRH and LH pulse frequency, but the specific neurons have yet to be identified. In ewes, dynorphin neurons in the arcuate nucleus (ARC) and preoptic area (POA) are likely candidates based on colocalization with progesterone receptors. These studies tested the hypothesis that progesterone negative feedback occurs in either the ARC or POA by determining whether microimplants of progesterone into either site would inhibit LH pulse frequency (study 1) and whether microimplants of the progesterone receptor antagonist, RU486, would disrupt the inhibitory effects of peripheral progesterone (study 2). Both studies were done in ovariectomized (OVX) and estradiol-treated OVX ewes. In study 1, no inhibitory effects of progesterone were observed during treatment in either area. In study 2, microimplants of RU486 into the ARC disrupted the negative-feedback actions of peripheral progesterone treatments on LH pulse frequency in both OVX and OVX+estradiol ewes. In contrast, microimplants of RU486 into the POA had no effect on the ability of systemic progesterone to inhibit LH pulse frequency. We thus conclude that the ARC is one important site of progesterone-negative feedback in the ewe. These data, which are the first evidence on the neural sites in which progesterone inhibits GnRH pulse frequency in any species, are consistent with the hypothesis that ARC dynorphin neurons mediate this action of progesterone. PMID:21693677

  18. Influence of the Hypothalamic Arcuate Nucleus on Intraocular Pressure and the Role of Opioid Peptides

    PubMed Central

    Jin, Ji; Xu, Guo-xu; Yuan, Zhi-lan

    2014-01-01

    Background An opioid peptide neuron/humoral feedback regulation might be involved in changes of intraocular pressure (IOP). The aims of this study are to investigate the effects of arcuate nucleus (ARC) and opioid peptides on intraocular pressure (IOP). Methods Fifty-four healthy purebred New Zealand white rabbits (108eyes) were randomly divided into 4 groups, including control group, electrical stimulation group, [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) group, and [D-Pen 2, D-Pen5]- enkephalin (DPDPE) group. Bilateral IOP was measured after unilateral electrical stimulation of the ARC or unilateral microinjection into the ARC of the selective μ-opioid receptor agonist DAMGO or the selective δ opioid receptor agonist DPDPE, both alone and after pre-administration of either the non-selective opioid receptor antagonist naloxone or saline. Results Both electrical stimulation in ARC and micro-injection either or opioid receptor agonists, DAMGO or DPDPE, respectively, caused a significant bilateral reduction in IOP (P<0.05) which was more pronounced in the ipsilateral than in the contralateral eye. Pretreatment with naloxone prevented some, but not all IOP reductions. Conclusion The ARC takes part in the negative regulation of IOP, an action that may involve opioid neurons. PMID:24691128

  19. The Arcuate Nucleus: A Site of Fast Negative Feedback for Corticosterone Secretion in Male Rats.

    PubMed

    Leon-Mercado, Luis; Herrera Moro Chao, Daniela; Basualdo, María Del Carmen; Kawata, Mitsuhiro; Escobar, Carolina; Buijs, Ruud M

    2017-01-01

    Variations in circulating corticosterone (Cort) are driven by the paraventricular nucleus of the hypothalamus (PVN), mainly via the sympathetic autonomic nervous system (ANS) directly stimulating Cort release from the adrenal gland and via corticotropin-releasing hormone targeting the adenohypophysis to release adrenocorticotropic hormone (ACTH). Cort feeds back through glucocorticoid receptors (GRs). Here we show in male Wistar rats that PVN neurons projecting to the adrenal gland do not express GRs, leaving the question of how the ANS in the PVN gets information about circulating Cort levels to control the adrenal. Since the arcuate nucleus (ARC) shows a less restrictive blood-brain barrier, expresses GRs, and projects to the PVN, we investigated whether the ARC can detect and produce fast adjustments of circulating Cort. In low Cort conditions (morning), local microdialysis in the ARC with type I GR antagonist produced a fast and sustained increase of Cort. This was not observed with a type II antagonist. At the circadian peak levels of Cort (afternoon), a type II GR antagonist, but not a type I antagonist, increased Cort levels but not ACTH levels. Antagonist infusions in the PVN did not modify circulating Cort levels, demonstrating the specificity of the ARC to give Cort negative feedback. Furthermore, type I and II GR agonists in the ARC prevented the increase of Cort after stress, demonstrating the role of the ARC as sensor to modulate Cort release. Our findings show that the ARC may be essential to sense blood levels of Cort and adapt Cort secretion depending on such conditions as stress or time of day.

  20. The Arcuate Nucleus: A Site of Fast Negative Feedback for Corticosterone Secretion in Male Rats

    PubMed Central

    Kawata, Mitsuhiro; Escobar, Carolina

    2017-01-01

    Abstract Variations in circulating corticosterone (Cort) are driven by the paraventricular nucleus of the hypothalamus (PVN), mainly via the sympathetic autonomic nervous system (ANS) directly stimulating Cort release from the adrenal gland and via corticotropin-releasing hormone targeting the adenohypophysis to release adrenocorticotropic hormone (ACTH). Cort feeds back through glucocorticoid receptors (GRs). Here we show in male Wistar rats that PVN neurons projecting to the adrenal gland do not express GRs, leaving the question of how the ANS in the PVN gets information about circulating Cort levels to control the adrenal. Since the arcuate nucleus (ARC) shows a less restrictive blood–brain barrier, expresses GRs, and projects to the PVN, we investigated whether the ARC can detect and produce fast adjustments of circulating Cort. In low Cort conditions (morning), local microdialysis in the ARC with type I GR antagonist produced a fast and sustained increase of Cort. This was not observed with a type II antagonist. At the circadian peak levels of Cort (afternoon), a type II GR antagonist, but not a type I antagonist, increased Cort levels but not ACTH levels. Antagonist infusions in the PVN did not modify circulating Cort levels, demonstrating the specificity of the ARC to give Cort negative feedback. Furthermore, type I and II GR agonists in the ARC prevented the increase of Cort after stress, demonstrating the role of the ARC as sensor to modulate Cort release. Our findings show that the ARC may be essential to sense blood levels of Cort and adapt Cort secretion depending on such conditions as stress or time of day. PMID:28275717

  1. Local synaptic release of glutamate from neurons in the rat hypothalamic arcuate nucleus.

    PubMed Central

    Belousov, A B; van den Pol, A N

    1997-01-01

    1. The hypothalamic arcuate nucleus (ARC) contains neuroendocrine neurons that regulate endocrine secretions by releasing substances which control anterior pituitary hormonal release into the portal blood stream. Many neuroactive substances have been identified in the ARC, but the existence of excitatory neurons in the ARC and the identity of an excitatory transmitter have not been investigated physiologically. 2. In the present experiments using whole-cell current- and voltage-clamp recording of neurons from cultures and slices of the ARC, we demonstrate for the first time that some of the neurons in the ARC secrete glutamate as their transmitter. 3. Using microdrop stimulation of presynaptic neurons in ARC slices, we found that local axons from these glutamatergic neurons make local synaptic contact with other neurons in the ARC and that all evoked excitatory postsynaptic potentials could be blocked by the selective ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) and D,L-2-amino-5-phosphonovalerate (AP5; 100 microM). To determine the identity of ARC neurons postsynaptic to local glutamatergic neurons, we used antidromic stimulation to reveal that many of these cells were neuroendocrine neurons by virtue of their maintaining axon terminals in the median eminence. 4. In ARC cultures, postsynaptic potentials, both excitatory and inhibitory, were virtually eliminated by the glutamate receptor antagonists AP5 and CNQX, underlining the functional importance of glutamate within this part of the neuroendocrine brain. 5. GABA was secreted by a subset of ARC neurons from local axons. The GABAA receptor antagonist bicuculline released glutamatergic neurons from chronic inhibition mediated by synaptically released GABA, resulting in further depolarization and an increase in the amplitude and frequency of glutamate-mediated excitatory postsynaptic potentials. Images Figure 1 PMID:9130170

  2. GHRP-6-induced changes in electrical activity of single cells in the arcuate, ventromedial and periventricular nucleus neurones [correction of nuclei] of a hypothalamic slice preparation in vitro.

    PubMed

    Hewson, A K; Viltart, O; McKenzie, D N; Dyball, R E; Dickson, S L

    1999-12-01

    Previously, we demonstrated that systemic injection of the growth hormone secretagogue, growth hormone-releasing peptide (GHRP)-6, selectively activated cells in the hypothalamic arcuate nucleus, as reflected by increased electrical activity and induction of the immediate early gene c-fos. The growth hormone secretagogue receptor distribution is not confined to the arcuate nucleus, suggesting that additional sites of action may exist. In the present study we characterized the electrophysiological responses of cells in the arcuate nucleus, ventromedial nucleus and periventricular nucleus in an in-vitro hypothalamic slice preparation, following bath application of GHRP-6. Additionally, since central somatostatin administration has been shown to attenuate the induction of the c-fos gene by GHRP-6, we sought to determine whether the arcuate cells activated by GHRP-6 are also somatostatin-sensitive. Male Wistar rats (100-150 g body weight (BW)) were anaesthetized (urethane; 1.2 g/kg BW) and the brains removed. Coronal sections (400 microm thickness) were cut through a block of hypothalamus and were transferred to a slice chamber perfused with artificial cerebrospinal fluid. Forty-one arcuate nucleus cells were tested with bath application of 15 microm GHRP-6 for 10 min, 16 of which were tested subsequently (>30 min later) with application of 10 microM somatostatin. Following GHRP-6 administration, 19 cells (46. 3%) showed a significant increase in firing rate during the 15-min period after GHRP-6 application (P<0.001), 17 cells (41.5%) did not respond and the remaining five cells (12.2%) were significantly inhibited. Six of the eight arcuate nucleus cells that were excited by GHRP-6 were significantly inhibited by somatostatin. By contrast, five of the six arcuate nucleus cells that were unresponsive to GHRP-6 were also unresponsive to somatostatin. In the ventromedial nucleus, of 19 cells tested, eight cells (42.1%) were excited by GHRP-6, eight cells (42.1%) were

  3. Regulation of gene expression by 17β-estradiol in the arcuate nucleus of the mouse through ERE-dependent and ERE-independent mechanisms.

    PubMed

    Yang, Jennifer A; Mamounis, Kyle J; Yasrebi, Ali; Roepke, Troy A

    2016-03-01

    17β-Estradiol (E2) modulates gene expression in the hypothalamic arcuate nucleus (ARC) to control homeostatic functions. In the ARC, estrogen receptor (ER) α is highly expressed and is an important contributor to E2's actions, controlling gene expression through estrogen response element (ERE)-dependent and -independent mechanisms. The objective of this study was to determine if known E2-regulated genes are regulated through these mechanisms. The selected genes have been shown to regulate homeostasis and have been separated into three subsections: channels, receptors, and neuropeptides. To determine if ERE-dependent or ERE-independent mechanisms regulate gene expression, two transgenic mouse models, an ERα knock-out (ERKO) and an ERα knock-in/knock-out (KIKO), which lacks a functional ERE binding domain, were used in addition to their wild-type littermates. Females of all genotypes were ovariectomized and injected with oil or estradiol benzoate (E2B). Our results suggest that E2B regulates multiple genes through these mechanisms. Of note, Cacna1g and Kcnmb1 channel expression was increased by E2B in WT females only, suggesting an ERE-dependent regulation. Furthermore, the NKB receptor, Tac3r, was suppressed by E2B in WT and KIKO females but not ERKO females, suggesting that ERα-dependent, ERE-independent signaling is necessary for Tac3r regulation. The adrenergic receptor Adra1b was suppressed by E2B in all genotypes indicating that ERα is not the primary receptor for E2B's actions. The neuropeptide Tac2 was suppressed by E2B through ERE-dependent mechanisms. These results indicate that E2B activates both ERα-dependent and independent signaling in the ARC through ERE-dependent and ERE-independent mechanisms to control gene expression.

  4. Regulation of gene expression by 17β-estradiol in the arcuate nucleus of the mouse through ERE-dependent and ERE-independent mechanisms

    PubMed Central

    Yang, Jennifer A.; Mamounis, Kyle J.; Yasrebi, Ali; Roepke, Troy A.

    2016-01-01

    17β-estradiol (E2) modulates gene expression in the hypothalamic arcuate nucleus (ARC) to control homeostatic functions. In the ARC, estrogen receptor (ER) α is highly expressed and is an important contributor to E2’s actions, controlling gene expression through estrogen response element (ERE)-dependent and -independent mechanisms. The objective of this study was to determine if known E2-regulated genes are regulated through these mechanisms. The selected genes have been shown to regulate homeostasis and have been separated into three subsections: channels, receptors, and neuropeptides. To determine if ERE-dependent or ERE-independent mechanisms regulate gene expression, two transgenic mouse models, an ERα knock-out (ERKO) and an ERα knock-in/knock-out (KIKO), which lacks a functional ERE binding domain, were used in addition to their wild-type littermates. Females of all genotypes were ovariectomized and injected with oil or estradiol benzoate (E2B). Our results suggest that E2B regulates multiple genes through these mechanisms. Of note, Cacna1g and Kcnmb1 channel expression was increased by E2B in WT females only, suggesting an ERE-dependent regulation. Furthermore, the NKB receptor, Tac3r, was suppressed by E2B in WT and KIKO females but not ERKO females, suggesting that ERα-dependent, ERE-independent signaling is necessary for Tac3r regulation. The adrenergic receptor Adra1b was suppressed by E2B in all genotypes indicating that ERα is not the primary receptor for E2B’s actions. The neuropeptide Tac2 was suppressed by E2B through ERE-dependent mechanisms. These results indicate that E2B activates both ERα-dependent and independent signaling in the ARC through ERE-dependent and ERE-independent mechanisms to control gene expression. PMID:26768413

  5. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol

    PubMed Central

    Yasrebi, Ali; Hsieh, Anna; Mamounis, Kyle J.; Krumm, Elizabeth A.; Yang, Jennifer A.; Magby, Jason; Hu, Pu; Roepke, Troy A.

    2015-01-01

    Ghrelin’s receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner. PMID:26577678

  6. Novel insight in distribution of nesfatin-1 and phospho-mTOR in the arcuate nucleus of the hypothalamus of rats

    PubMed Central

    Inhoff, Tobias; Stengel, Andreas; Peter, Lisa; Goebel, Miriam; Taché, Yvette; Bannert, Norbert; Wiedenmann, Bertram; Klapp, Burghard F.; Mönnikes, Hubert; Kobelt, Peter

    2014-01-01

    Recently, two proteins have been localized in the arcuate nucleus (ARC) and implicated in the regulation of food intake: the serine-threonine-kinase mammalian target of rapamycin (mTOR) as part of the TOR signaling complex 1 (TORC1), and nesfatin-1 derived from the precursor protein nucleobindin2. However, the exact cell types are not well described. Therefore, we performed double-labeling studies for NPY, CART, nesfatin-1 and pmTOR in the ARC. In this study, we showed that nesfatin-1 is not only intracellularly co-localized with cocaine- and amphetamine-regulated transcript (CART) peptide as reported before, but also with phospho-mTOR (pmTOR) and neuropeptide Y (NPY) in ARC neurons. Quantification revealed that 59 ± 5% of the pmTOR-immunoreactive (ir) neurons were immunoreactive for nesfatin-1. Moreover, double labeling for nesfatin-1 and NPY exhibited that 19 ± 5% of the NPY positive cells were also immunoreactive for nesfatin-1. Furthermore, we could also confirm results from previous studies, showing that the majority of nesfatin-1 neurons are also positive for CART peptide, whereas most of the pmTOR is co-localized with NPY and only to a lesser extent with CART. PMID:19961888

  7. Transplantable rat glucagonomas cause acute onset of severe anorexia and adipsia despite highly elevated NPY mRNA levels in the hypothalamic arcuate nucleus.

    PubMed Central

    Jensen, P B; Blume, N; Mikkelsen, J D; Larsen, P J; Jensen, H I; Holst, J J; Madsen, O D

    1998-01-01

    We have isolated a stable, transplantable, and small glucagonoma (MSL-G-AN) associated with abrupt onset of severe anorexia occurring 2-3 wk after subcutaneous transplantation. Before onset of anorexia, food consumption is comparable to untreated controls. Anorexia is followed by adipsia and weight loss, and progresses rapidly in severity, eventually resulting in reduction of food and water intake of 100 and 80%, respectively. During the anorectic phase, the rats eventually become hypoglycemic and hypothermic. The tumor-associated anorexia shows no sex difference, and is not affected by bilateral abdominal vagotomy, indicating a direct central effect. The adipose satiety factor leptin, known to suppress food intake by reducing hypothalamic neuropeptide Y (NPY) levels, was not found to be expressed by the tumor, and circulating leptin levels were reduced twofold in the anorectic phase. A highly significant increase in hypothalamic (arcuate nucleus) NPY mRNA levels was found in anorectic rats compared with control animals. Since elevated hypothalamic NPY is among the most potent stimulators of feeding and a characteristic of most animal models of hyperphagia, we conclude that the MSL-G-AN glucagonoma releases circulating factor(s) that overrides the hypothalamic NPY-ergic system, thereby eliminating the orexigenic effect of NPY. We hypothesize a possible central role of proglucagon-derived peptides in the observed anorexia. PMID:9435324

  8. Arcuate nucleus transcriptome profiling identifies ankyrin repeat and suppressor of cytokine signalling box-containing protein 4 as a gene regulated by fasting in central nervous system feeding circuits.

    PubMed

    Li, J-Y; Kuick, R; Thompson, R C; Misek, D E; Lai, Y-M; Liu, Y-Q; Chai, B-X; Hanash, S M; Gantz, I

    2005-06-01

    The arcuate nucleus of the hypothalamus is a primary site for sensing blood borne nutrients and hormonal messengers that reflect caloric status. To identify novel energy homeostatic genes, we examined RNA extracts from the microdissected arcuate nucleus of fed and 48-h fasted rats using oligonucleotide microarrays. The relative abundance of 118 mRNA transcripts was increased and 203 mRNA transcripts was decreased during fasting. One of the down-regulated mRNAs was ankyrin-repeat and suppressor of cytokine signalling box-containing protein 4 (Asb-4). The predicted structure of Asb-4 protein suggested that it might encode an intracellular regulatory protein, and therefore its mRNA expression was investigated further. Reverse transcription quantitative polymerase chain reaction was used to validate down-regulation of Asb-4 mRNA in the arcuate nucleus of the fasted Sprague-Dawley rat (relative expression of Asb-4 mRNA: fed = 4.66 +/- 0.26; fasted = 3.96 +/- 0.23; n = 4, P < 0.01). Down-regulation was also demonstrated in the obese fa/fa Zucker rat, another model of energy disequilibrium (relative expression of Asb-4 mRNA: lean Zucker = 3.91 +/- 0.32; fa/fa = 2.93 +/- 0.26; n = 5, P < 0.001). In situ hybridisation shows that Asb-4 mRNA is expressed in brain areas linked to energy homeostasis, including the arcuate nucleus, paraventricular nucleus, dorsomedial nucleus, lateral hypothalamus and posterodorsal medial amygdaloid area. Double in situ hybridisation revealed that Asb-4 mRNA colocalises with key energy homeostatic neurones. In the fed state, Asb-4 mRNA is expressed by 95.6% of pro-opiomelanocortin (POMC) neurones and 46.4% of neuropeptide Y (NPY) neurones. By contrast, in the fasted state, the percentage of POMC neurones expressing Asb-4 mRNA drops to 73.2% (P < 0.001). Moreover, the density of Asb-4 mRNA per fasted POMC neurone is markedly decreased. Conversely, expression of Asb-4 mRNA by NPY neurones in the fasted state is modestly increased to 52.7% (P < 0

  9. Peptide YY directly inhibits ghrelin-activated neurons of the arcuate nucleus and reverses fasting-induced c-Fos expression.

    PubMed

    Riediger, Thomas; Bothe, Christine; Becskei, Csilla; Lutz, Thomas A

    2004-01-01

    The hypothalamic arcuate nucleus (Arc) monitors and integrates hormonal and metabolic signals involved in the maintenance of energy homeostasis. The orexigenic peptide ghrelin is secreted from the stomach during negative status of energy intake and directly activates neurons of the medial arcuate nucleus (ArcM) in rats. In contrast to ghrelin, peptide YY (PYY) is released postprandially from the gut and reduces food intake when applied peripherally. Neurons in the ArcM express ghrelin receptors and neuropeptide Y receptors. Thus, PYY may inhibit feeding by acting on ghrelin-sensitive Arc neurons. Using extracellular recordings, we (1) characterized the effects of PYY on the electrical activity of ghrelin-sensitive neurons in the ArcM of rats. In order to correlate the effect of PYY on neuronal activity with the energy status, we (2) investigated the ability of PYY to reverse fasting-induced c-Fos expression in Arc neurons of mice. In addition, we (3) sought to confirm that PYY reduces food intake under our experimental conditions. Superfusion of PYY reversibly inhibited 94% of all ArcM neurons by a direct postsynaptic mechanism. The PYY-induced inhibition was dose-dependent and occurred at a threshold concentration of 10(-8)M. Consistent with the opposite effects of ghrelin and PYY on food intake, a high percentage (50%) of Arc neurons was activated by ghrelin and inhibited by PYY. In line with this inhibitory action, peripherally injected PYY partly reversed the fasting-induced c-Fos expression in Arc neurons of mice. Similarly, refeeding of food-deprived mice reversed the fasting-induced activation in the Arc. Furthermore, peripherally injected PYY reduced food intake in 12-hour fasted mice. Thus the activity of Arc neurons correlated with the feeding status and was not only reduced by feeding but also by administration of PYY in non-refed mice. In conclusion, our current observations suggest that PYY may contribute to signaling a positive status of energy intake

  10. Effects of nutritional status and gonadal steroids on expression of appetite-regulatory genes in the hypothalamic arcuate nucleus of sheep.

    PubMed

    Archer, Z A; Findlay, P A; McMillen, S R; Rhind, S M; Adam, C L

    2004-09-01

    Sheep exhibit photoperiod-driven seasonal changes in appetite and body weight so that nutritional status increases in long days (LD) and decreases in short days (SD); additionally, they are reproductively active in SD and inactive in LD. We addressed the hypothesis that appetite-regulatory genes in the hypothalamus respond differently to changes in nutritional feedback induced by photoperiod as opposed to food restriction, and that responses would be influenced by gonadal steroid status. Castrated oestradiol-implanted male sheep were kept in SD (8 h light/day) or LD (16 h light/day) for 11 weeks, with ad libitum or restricted food (experiment 1; n=8/group). Rams were kept in SD or LD for 12 weeks with ad libitum or restricted food (experiment 2; n=6/group). Gene expression (by in situ hybridisation) in the hypothalamic arcuate nucleus for leptin receptor (OB-Rb), neuropeptide Y (NPY), pro-opiomelanocortin (POMC) and agouti-related peptide (AGRP) was unaffected by photoperiod treatment, but food restriction increased NPY and AGRP mRNAs, in experiment 1. In experiment 2, mRNAs for POMC and cocaine- and amphetamine-regulated transcript (CART) were up-regulated and AGRP down-regulated in SD, while food restriction increased OB-Rb mRNA, increased NPY and AGRP mRNAs only in LD and decreased POMC mRNA only in SD. Thus, gene expression responded differently to photoperiod and food restriction, and the melanocortin pathway was up-regulated in SD in reproductively activated rams but not in oestradiol-implanted castrates. These data support the hypothesis that hypothalamic appetite-regulatory pathways respond differently to changes in nutritional feedback induced by photoperiod as opposed to food restriction, with gonadal steroid feedback additionally influencing the responses.

  11. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance.

    PubMed

    Heppner, Kristy M; Baquero, Arian F; Bennett, Camdin M; Lindsley, Sarah R; Kirigiti, Melissa A; Bennett, Baylin; Bosch, Martha A; Mercer, Aaron J; Rønnekleiv, Oline K; True, Cadence; Grove, Kevin L; Smith, M Susan

    2017-01-01

    Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9-39), in ad libitum-fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.

  12. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance

    PubMed Central

    Heppner, Kristy M.; Baquero, Arian F.; True, Cadence; Grove, Kevin L.

    2017-01-01

    Abstract Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9–39), in ad libitum–fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding. PMID:28144621

  13. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  14. Central Administration of Insulin and Leptin Together Enhance Renal Sympathetic Nerve Activity and Fos Production in the Arcuate Nucleus

    PubMed Central

    Habeeballah, Hamza; Alsuhaymi, Naif; Stebbing, Martin J.; Jenkins, Trisha A.; Badoer, Emilio

    2017-01-01

    There is considerable interest in the central actions of insulin and leptin. Both induce sympatho-excitation. This study (i) investigated whether centrally administered leptin and insulin together elicits greater increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) than when given alone, and (ii) quantified the number of activated neurons in brain regions influencing SNA, to identify potential central sites of interaction. In anesthetised (urethane 1.4–1.6 g/kg iv) male Sprague-Dawley rats, RSNA, MAP, and HR were recorded following intracerebroventricular (ICV) saline (control; n = 5), leptin (7 μg; n = 5), insulin (500 mU; n = 4) and the combination of leptin and insulin; (n = 4). Following leptin or insulin alone, RSNA was significantly increased (74 and 62% respectively). MAP responses were not significantly different between the groups. Insulin alone significantly increased HR. Leptin alone also increased HR but it was significantly less than following insulin alone (P < 0.005). When leptin and insulin were combined, the RSNA increase (124%) was significantly greater than the response to either alone. There were no differences between the groups in MAP responses, however, the increase in HR induced by insulin was attenuated by leptin. Of the brain regions examined, only in the arcuate nucleus did leptin and insulin together increase the number of Fos-positive cell nuclei significantly more than leptin or insulin alone. In the lamina terminalis and rostroventrolateral medulla, leptin and insulin together increased Fos, but the effect was not greater than leptin alone. The results suggest that when central leptin and insulin levels are elevated, the sympatho-excitatory response in RSNA will be greater. The arcuate nucleus may be a common site of cardiovascular integration. PMID:28119622

  15. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus

    PubMed Central

    Xu, Ji; Bernstein, Alexander M.; Wong, Angela; Lu, Xiao-Hong; Khoja, Sheraz; Yang, X. William; Davies, Daryl L.; Micevych, Paul; Sofroniew, Michael V.

    2016-01-01

    P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized

  16. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    PubMed

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  17. Estrogen evokes a rapid effect on intracellular calcium in neurons characterized by calcium oscillations in the arcuate nucleus.

    PubMed

    Fricke, Oliver; Kow, Lee-Ming; Bogun, Magda; Pfaff, Donald W

    2007-06-01

    Rapid estrogen effects became an interesting topic to explain estrogen effects not associated with the classical nuclear pathway. The rapid estrogen effect on intracellular calcium oscillations was characterized in neurons of the arcuate nucleus. Ratiometric calcium imaging (fura-2AM) was used to measure intracellular calcium in brain slices of female Swiss Webster mice (median of age 27 days p.n.). Calcium oscillations were dependent on intracellular calcium and also on calcium influx from the extracellular space. The perfusion of slices with calcium-free solution inhibited spontaneous calcium oscillations. The metabotropic glutamate receptor agonist t-ACPD (5 microM) and low concentrated ryanodine (100 nM) induced intracellular calcium release when slices were perfused with calcium-free solution. 17beta-estradiol (10 nM) also induced intracellular calcium release in calcium-free ACSF. This effect was inhibited by the preceding administration of thapsigargin (2 microM) indicating the association of the rapid estrogen effect with intracellular calcium stores. The administration of the non-selective phospholipase C-inhibitor ET-18 (30 microM), but not U73122 (10 microM), and the inhibition of protein kinase A by H-89 (0.25 microM) suppressed the rapid estrogen effect. Analyses indicated a qualitative, but not quantitatively significant effect of 17beta-estradiol on calcium oscillations.

  18. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats.

    PubMed

    Suzuki, Yoshihiro; Nakahara, Keiko; Maruyama, Keisuke; Okame, Rieko; Ensho, Takuya; Inoue, Yoshiyuki; Murakami, Noboru

    2014-04-01

    The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation.

  19. Stimulation of food intake after central galanin is associated with arcuate nucleus activation and does not differ between genetically selected low and high body weight lines of chickens.

    PubMed

    Hagen, Christopher J; Newmyer, Brandon A; Webster, Rebekah I; Gilbert, Elizabeth R; Siegel, Paul B; Tachibana, Tetsuya; Cline, Mark A

    2013-08-01

    Galanin, a 29 residue peptide found in the hypothalamus, causes orexigenic effects in a variety of species. In the present study, we investigated appetite-associated effects of galanin in chicks from lines which have been selected from a common founder population for either low or high body weight. The low line consists of some anorexic individuals and there are obese individuals in the high line. Central galanin caused increased food intake in both lines with the magnitude of response similar in both lines. We also quantified the number of c-Fos immunoreactive cells in several hypothalamic nuclei that are associated with appetite. Only the arcuate nucleus had an increase in the number of reactive cells, a response that was similar for both lines. From these results we concluded that selection for body weight likely did not affect galanin function on induction of feeding in either lines, and that the effect of galanin is associated with arcuate nucleus activation in chicks.

  20. Properties of native P2X receptors in large multipolar neurons dissociated from rat hypothalamic arcuate nucleus.

    PubMed

    Wakamori, Minoru; Sorimachi, Masaru

    2004-04-16

    ATP, the ligand of P2X receptors, is a candidate of neurotransmitter or co-transmitter in the peripheral and the central nervous systems. Anatomical studies have revealed the wide distribution of P2X receptors in the brain. So far, P2X-mediated small synaptic responses have been recorded in some brain regions. To determine the physiological significance of postsynaptic ATP receptors in the brain, we have investigated the P2X responses in rat dissociated hypothalamic arcuate neurons by using the patch-clamp technique. ATP evoked inward currents in a concentration-dependent manner (EC(50)=42 microM) at a holding potential of -70 mV. The current-voltage relationship showed a marked inward rectification starting around -10 mV. Although neither 300 microM alphabeta-methylene-ATP nor 300 microM betagamma-methylene-ATP induced any currents, 100 microM ATPgammaS and 100 microM 2-methylthio-ATP evoked inward currents of which amplitude was about 60% of the control currents evoked by 100 microM ATP. PPADS, one of P2 receptor antagonists, inhibited the ATP-evoked currents in a time- and a concentration-dependent manners (IC(50)=19 microM at 2 min). Permeant Ca(2+) inhibited the ATP-evoked currents in the range of millimolars (IC(50)=7 mM); however, Cd(2+) (1-300 microM), a broad cation channel blocker, facilitated the currents with slow off-response. Zn(2+) in the range of 1-100 microM facilitated the currents whereas Zn(2+) at the concentrations over 100 microM inhibited the currents. These observations suggest that functional P2X receptors are expressed in the hypothalamic arcuate nucleus. The most likely subunit combinations of the P2X receptors are P2X(2)-homomultimer and P2X(2)/P2X(6)-heteromultimer.

  1. Increased litter size and suckling intensity inhibit KiSS-1 mRNA expression in rat arcuate nucleus

    PubMed Central

    Noroozi, Atefeh; Shirazi, Mohammad Reza Jafarzadeh; Zamiri, Mohammad Javad; Tamadon, Amin; Akhlaghi, Amir; Tanideh, Nader; Niazi, Ali; Moghadam, Ali

    2014-01-01

    Objective(s): The effect of litter size and suckling intensity on the expression of KiSS-1 mRNA in the arcuate nucleus (ARC) of rats were evaluated. Materials and Methods: Thirty two pregnant and four non-lactating ovariectomized (as control group) rats were used in this experiment. Lactating rats were allotted to eight equal groups. In three groups, litter size was adjusted to 5, 10, or 15 pups upon parturition and allowed to suckle their pups continuously by 8 days postpartum. In the other three groups, litter size was adjusted to five upon birth; the pups were separated from the dams for 6 hr on day 8 postpartum, after which the pups were allowed to suckle their dams for 2.5, 5, or 7.5 min prior to killing the dams. Two groups of lactating rats with either 10 or 15 pups were separated from their pups for 6 hr on day 8 postpartum, after which the pups were allowed to suckle their dams for 5 min before the dams were killed on day 8 postpartum. The ARC was removed and the expression of KiSS-1 mRNA was evaluated, using real-time PCR. Results: The expression of KiSS-1 mRNA in the ARC was decreased as the litter size and intensity of suckling stimulus were increased. The effect of suckling intensity on the expression of KiSS-1 mRNA was more pronounced than that of litter size. Conclusion: Increased litter size and suckling intensity decreased KiSS-1 mRNA expression in the ARC which may contribute to lactation anestrus in rat. PMID:25422754

  2. Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels.

    PubMed

    Wang, R; Cruciani-Guglielmacci, C; Migrenne, S; Magnan, C; Cotero, V E; Routh, V H

    2006-03-01

    Pharmacological manipulation of fatty acid metabolism in the hypothalamic arcuate nucleus (ARC) alters energy balance and glucose homeostasis. Thus, we tested the hypotheses that distinctive populations of ARC neurons are oleic acid (OA) sensors that exhibit a glucose dependency, independent of whether some of these OA sensors are also glucose-sensing neurons. We used patch-clamp recordings to investigate the effects of OA on ARC neurons in brain slices from 14- to 21-day-old Sprague-Dawley (SD) rats. Additionally, we recorded spontaneous discharge rate in ARC neurons in 8-wk-old fed and fasted SD rats in vivo. Patch-clamp studies showed that in 2.5 mM glucose 12 of 94 (13%) ARC neurons were excited by 2 microM OA (OA-excited or OAE neurons), whereas six of 94 (6%) were inhibited (OA-inhibited2.5 or OAI2.5 neurons). In contrast, in 0.1 mM glucose, OA inhibited six of 20 (30%) ARC neurons (OAI0.1 neurons); none was excited. None of the OAI0.1 neurons responded to OA in 2.5 mM glucose. Thus OAI2.5 and OAI0.1 neurons are distinct. Similarly, in seven of 20 fed rats (35%) the overall response was OAE-like, whereas in three of 20 (15%) it was OAI-like. In contrast, in fasted rats only OAI-like response were observed (three of 15; 20%). There was minimal overlap between OA-sensing neurons and glucose-sensing neurons. In conclusion, OA regulated three distinct subpopulations of ARC neurons in a glucose-dependent fashion. These data suggest that an interaction between glucose and fatty acids regulates OA sensing in ARC neurons.

  3. Chronic oestradiol reduces the dendritic spine density of KNDy (kisspeptin/neurokinin B/dynorphin) neurones in the arcuate nucleus of ovariectomised Tac2-enhanced green fluorescent protein transgenic mice.

    PubMed

    Cholanian, M; Krajewski-Hall, S J; McMullen, N T; Rance, N E

    2015-04-01

    Neurones in the arcuate nucleus that express neurokinin B (NKB), kisspeptin and dynorphin (KNDy) play an important role in the reproductive axis. Oestradiol modulates the gene expression and somatic size of these neurones, although there is limited information available about whether their dendritic structure, a correlate of cellular plasticity, is altered by oestrogens. In the present study, we investigated the morphology of KNDy neurones by filling fluorescent neurones in the arcuate nucleus of Tac2-enhanced green fluorescent protein (EGFP) transgenic mice with biocytin. Filled neurones from ovariectomised (OVX) or OVX plus 17β-oestradiol (E2)-treated mice were visualised with anti-biotin immunohistochemistry and reconstructed in three dimensions with computer-assisted microscopy. KNDy neurones exhibited two primary dendrites, each with a few branches confined to the arcuate nucleus. Quantitative analysis revealed that E2 treatment of OVX mice decreased the cell size and dendritic spine density of KNDy neurones. The axons of KNDy neurones originated from the cell body or proximal dendrite and gave rise to local branches that appeared to terminate within the arcuate nucleus. Numerous terminal boutons were also visualised within the ependymal layer of the third ventricle adjacent to the arcuate nucleus. Axonal branches also projected to the adjacent median eminence and exited the arcuate nucleus. Confocal microscopy revealed close apposition of EGFP and gonadotrophin-releasing hormone-immunoreactive fibres within the median eminence and confirmed the presence of KNDy axon terminals in the ependymal layer of the third ventricle. The axonal branching pattern of KNDy neurones suggests that a single KNDy neurone could influence multiple arcuate neurones, tanycytes in the wall of the third ventricle, axon terminals in the median eminence and numerous areas outside of the arcuate nucleus. In parallel with its inhibitory effects on electrical excitability, E2 treatment

  4. Chronic oestradiol reduces the dendritic spine density of KNDy (kisspeptin/neurokinin B/dynorphin) neurones in the arcuate nucleus of ovariectomised Tac2-enhanced green fluorescent protein transgenic mice

    PubMed Central

    Cholanian, Marina; Krajewski-Hall, Sally J.; McMullen, Nathaniel T.; Rance, Naomi E.

    2016-01-01

    Neurones in the arcuate nucleus that express neurokinin B (NKB), kisspeptin and dynorphin (KNDy) play an important role in the reproductive axis. Oestradiol modulates the gene expression and somatic size of these neurones but there is limited information whether their dendritic structure, a correlate of cellular plasticity, is altered by oestrogens. Here we study the morphology of KNDy neurones by filling fluorescent neurones in the arcuate nucleus of Tac2-EGFP transgenic mice with biocytin. Filled neurones from ovariectomized (OVX) or OVX plus 17β-oestradiol (E2)-treated mice were visualized with anti-biotin immunohistochemistry and reconstructed in three dimensions with computer-assisted microscopy. KNDy neurones exhibited two primary dendrites, each with a few branches confined to the arcuate nucleus. Quantitative analysis revealed that E2 treatment of OVX mice decreased the cell size and dendritic spine density of KNDy neurones. The axons of KNDy neurones originated from the cell body or proximal dendrite and gave rise to local branches that appeared to terminate within the arcuate nucleus. Numerous terminal boutons were also visualized within the ependymal layer of the third ventricle adjacent to the arcuate nucleus. Axonal branches also projected to the adjacent median eminence and exited the arcuate nucleus. Confocal microscopy revealed close apposition of EGFP and GnRH-immunoreactive fibers within the median eminence and confirmed the presence of KNDy axon terminals in the ependymal layer of the third ventricle. The axonal branching pattern of KNDy neurones suggests that a single KNDy neurone could influence multiple arcuate neurones, tanycytes in the wall of the third ventricle, axon terminals in the median eminence and numerous areas outside of the arcuate nucleus. In parallel with its inhibitory effects on electrical excitability, E2 treatment of OVX Tac2-EGFP mice induces structural changes in the somata and dendrites of KNDy neurones. PMID:25659412

  5. Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats

    PubMed Central

    Cassaglia, Priscila A; Hermes, Sam M; Aicher, Sue A; Brooks, Virginia L

    2011-01-01

    Abstract Although the central effects of insulin to activate the sympathetic nervous system and enhance baroreflex gain are well known, the specific brain site(s) at which insulin acts has not been identified. We tested the hypotheses that (1) the paraventricular nucleus of the hypothalamus (PVN) and the arcuate nucleus (ArcN) are necessary brain sites and (2) insulin initiates its effects directly in the PVN and/or the ArcN. In α-chloralose anaesthetised female Sprague–Dawley rats, mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve activity (LSNA) were recorded continuously, and baroreflex gain of HR and LSNA were measured before and during a hyperinsulinaemic–euglycaemic clamp. After 60 min, intravenous infusion of insulin (15 mU kg−1 min−1), but not saline, significantly increased (P < 0.05) basal LSNA (to 228 ± 28% control) and gain of baroreflex control of LSNA (from 3.8 ± 1.1 to 7.4 ± 2.4% control mmHg−1). These effects were reversed (P < 0.05) by local inhibition (bilateral microinjection of musimol) of the PVN (LSNA to 124 ± 8.8% control; LSNA gain to 3.9 ± 1.7% control mmHg−1) or of the ArcN (LSNA in % control: from 100 ± 0 to 198 ± 24 (insulin), then 133 ± 23 (muscimol) LSNA gain in % control mmHg−1: from 3.9 ± 0.3 to 8.9 ± 0.9 (insulin), then 5.1 ± 0.5 (muscimol)). While insulin receptor immunoreactivity was identified in neurons in pre-autonomic PVN subnuclei, microinjection of insulin (0.6, 6 and 60 nU) into the PVN failed to alter LSNA or LSNA gain. However, ArcN insulin increased (P < 0.05) basal LSNA (in % control to 162 ± 19, 0.6 nU; 193 ± 19, 6 nU; and 205 ± 28, 60 nU) and LSNA baroreflex gain (in % control mmHg−1 from 4.3 ± 1.2 to 6.9 ± 1.0, 0.6 nU; 7.7 ± 1.2, 6 nU; and 7.8 ± 1.3, 60 nU). None of the treatments altered MAP, HR, or baroreflex control of HR. Our findings identify the ArcN as the site at which insulin acts to activate the sympathetic nervous system and increase baroreflex

  6. Arcuate nucleus homeostatic systems are not altered immediately prior to the scheduled consumption of large, binge-type meals of palatable solid or liquid diet in rats and Mice.

    PubMed

    Bake, T; Duncan, J S; Morgan, D G A; Mercer, J G

    2013-04-01

    Meal feeding is a critical issue in the over-consumption of calories leading to human obesity. To investigate the mechanisms involved in the regulation of meal feeding in rodents, we studied a scheduled feeding regime that induces substantial food intake over short periods of time. Male Sprague-Dawley rats and C57BL6 mice were fed one of four palatable diets [45% fat pellet, 60% fat pellet or standard pellet supplemented with Ensure (EN; Abbott Laboratories, Maidenhead, UK) or 12.5% sucrose (SUC)] either ad lib. or with daily 2-h scheduled access and standard pellet available for 22 h. Energy balance gene expression in the hypothalamic arcuate nucleus (ARC) and nucleus accumbens (NAcc) reward gene expression were assessed by in situ hybridisation. Rats fed ad lib. on 45% or 60% fat diet were heavier and fatter than controls, and had reduced neuropeptide Y (NPY) gene expression in the ARC. Mice fed ad lib. on any of the palatable diets were heavier, fatter and had higher blood leptin than controls, and had reduced NPY and increased cocaine- and-amphetamine-regulated transcript mRNA in the ARC. Schedule-fed rats and mice quickly adapted their feeding behaviour to 2-h access on palatable food. Three schedule-fed groups binged: the percentage of daily calories consumed in 2 h on 45% fat diet, 60% fat diet or EN, respectively, was 55%, 63% and 49% in rats, and 86%, 86% and 45% in mice. However, changed feeding behaviour was not reflected in an induction of orexigenic neuropeptide or suppression of anorexigenic neuropeptide gene expression in the ARC, in the 2-h period prior to scheduled feeding. The mechanisms underlying large meal/binge-type eating may be regulated by nonhomeostatic processes involving other genes in the hypothalamus or other brain areas. However, assessment of opioid and dopamine receptor gene expression in the NAcc did not reveal evidence of the involvement of these genes in driving large meals, at least at the investigated time point.

  7. Identification of a Neuropeptide S Responsive Circuitry Shaping Amygdala Activity via the Endopiriform Nucleus

    PubMed Central

    Meis, Susanne; Bergado-Acosta, Jorge Ricardo; Yanagawa, Yuchio; Obata, Kunihiko; Stork, Oliver; Munsch, Thomas

    2008-01-01

    Neuropeptide S (NPS) and its receptor are thought to define a set of specific brain circuits involved in fear and anxiety. Here we provide evidence for a novel, NPS-responsive circuit that shapes neural activity in the mouse basolateral amygdala (BLA) via the endopiriform nucleus (EPN). Using slice preparations, we demonstrate that NPS directly activates an inward current in 20% of EPN neurons and evokes an increase of glutamatergic excitation in this nucleus. Excitation of the EPN is responsible for a modulation of BLA activity through NPS, characterized by a general increase of GABAergic inhibition and enhancement of spike activity in a subset of BLA projection neurons. Finally, local injection of NPS to the EPN interferes with the expression of contextual, but not auditory cued fear memory. Together, these data suggest the existence of a specific NPS-responsive circuitry between EPN and BLA, likely involved in contextual aspects of fear memory. PMID:18628994

  8. Nutritional Programming of Accelerated Puberty in Heifers: Involvement of Pro-Opiomelanocortin Neurones in the Arcuate Nucleus.

    PubMed

    Cardoso, R C; Alves, B R C; Sharpton, S M; Williams, G L; Amstalden, M

    2015-08-01

    The timing of puberty and subsequent fertility in female mammals are dependent on the integration of metabolic signals by the hypothalamus. Pro-opiomelanocortin (POMC) neurones in the arcuate nucleus (ARC) comprise a critical metabolic-sensing pathway controlling the reproductive neuroendocrine axis. α-Melanocyte-stimulating hormone (αMSH), a product of the POMC gene, has excitatory effects on gonadotrophin-releasing hormone (GnRH) neurones and fibres containing αMSH project to GnRH and kisspeptin neurones. Because kisspeptin is a potent stimulator of GnRH release, αMSH may also stimulate GnRH secretion indirectly via kisspeptin neurones. In the present work, we report studies conducted in young female cattle (heifers) aiming to determine whether increased nutrient intake during the juvenile period (4-8 months of age), a strategy previously shown to advance puberty, alters POMC and KISS1 mRNA expression, as well as αMSH close contacts on GnRH and kisspeptin neurones. In Experiment 1, POMC mRNA expression, detected by in situ hybridisation, was greater (P < 0.05) in the ARC in heifers that gained 1 kg/day of body weight (high-gain, HG; n = 6) compared to heifers that gained 0.5 kg/day (low-gain, LG; n = 5). The number of KISS1-expressing cells in the middle ARC was reduced (P < 0.05) in HG compared to LG heifers. In Experiment 2, double-immunofluorescence showed limited αMSH-positive close contacts on GnRH neurones, and the magnitude of these inputs was not influenced by nutritional status. Conversely, a large number of kisspeptin-immunoreactive cells in the ARC were observed in close proximity to αMSH-containing varicosities. Furthermore, HG heifers (n = 5) exhibited a greater (P < 0.05) percentage of kisspeptin neurones in direct apposition to αMSH fibres and an increased (P < 0.05) number of αMSH close contacts per kisspeptin cell compared to LG heifers (n = 6). These results indicate that the POMC-kisspeptin pathway may be important

  9. Lipopolysaccharide inhibits ghrelin-excited neurons of the arcuate nucleus and reduces food intake via central nitric oxide signaling.

    PubMed

    Borner, Tito; Pinkernell, Sarah; Lutz, Thomas A; Riediger, Thomas

    2012-08-01

    Lipopolysaccharide (LPS) induces anorexia and expression of inducible nitric oxide synthase (iNOS) in the hypothalamic arcuate nucleus (Arc). Peripheral administration of the iNOS inhibitor 1400 W counteracts the anorectic effects of LPS. Here we investigated the role of central NO signaling in LPS anorexia. In electrophysiological studies we tested whether 1400 W counteracts the iNOS-dependent inhibition of Arc neurons triggered by in vivo or in vitro stimulation with LPS. We used the hormone ghrelin as a functional reference stimulus because ghrelin is known to activate orexigenic Arc neurons. Further, we investigated whether in vitro LPS stimulation induces an iNOS-mediated formation of the second messenger cGMP. Since the STAT1 pathway contributes to the regulation of iNOS expression we investigated whether LPS treatment induces STAT1 phosphorylation in the Arc. Finally we tested the effect of intracerebroventricular injection of 1400 W on LPS-induced anorexia. Superfusion with 1400 W (10(-4) M) increased neuronal activity in 37% of neurons in Arc slices from LPS treated (100 μg/kg ip) but not from saline treated rats. Similarly, 1400 W excited 45% of Arc neurons after in vitro stimulation with LPS (100 ng/ml). In both approaches, a considerable percentage of 1400 W sensitive neurons were excited by ghrelin (10(-8)M; 50% and 75%, respectively). In vitro stimulation with LPS induced cGMP formation in the Arc, which was blocked by co-incubation with 1400 W. LPS treatment elicited a pSTAT1 response in the Arc of mice. Central 1400 W injection (4 μg/rat) attenuated LPS-induced anorexia and counteracted the LPS-dependent decrease in respiratory quotient and energy expenditure. In conclusion, the current findings substantiate a role of central iNOS dependent NO formation in LPS-induced effects on eating and energy homeostasis. A pharmacological blockade of NO formation might be a therapeutic approach to ameliorate disease-related anorexia.

  10. Peroxisome proliferator-activated receptor γ controls ingestive behavior, agouti-related protein, and neuropeptide Y mRNA in the arcuate hypothalamus.

    PubMed

    Garretson, John T; Teubner, Brett J W; Grove, Kevin L; Vazdarjanova, Almira; Ryu, Vitaly; Bartness, Timothy J

    2015-03-18

    Peroxisome proliferator-activated receptor γ (PPARγ) is clinically targeted for type II diabetes treatment; however, rosiglitazone (ROSI), a PPARγ agonist, increases food intake and body/fat mass as side-effects. Mechanisms for these effects and the role of PPARγ in feeding are not understood. Therefore, we tested this role in Siberian hamsters, a model of human energy balance, and C57BL/6 mice. We tested the following: (1) how ROSI and/or GW9662 (2-chloro-5-nitro-N-phenylbenzamide; PPARγ antagonist) injected intraperitoneally or into the third ventricle (3V) affected Siberian hamster feeding behaviors; (2) whether food deprivation (FD) co-increases agouti-related protein (AgRP) and PPARγ mRNA expression in Siberian hamsters and mice; (3) whether intraperitoneally administered ROSI increases AgRP and NPY in ad libitum-fed animals; (4) whether intraperitoneally administered PPARγ antagonism blocks FD-induced increases in AgRP and NPY; and finally, (5) whether intraperitoneally administered PPARγ modulation affects plasma ghrelin. Third ventricular and intraperitoneally administered ROSI increased food hoarding and intake for 7 d, an effect attenuated by 3V GW9662, and also prevented (intraperitoneal) FD-induced feeding. FD hamsters and mice increased AgRP within the arcuate hypothalamic nucleus with concomitant increases in PPARγ exclusively within AgRP/NPY neurons. ROSI increased AgRP and NPY similarly to FD, and GW9662 prevented FD-induced increases in AgRP and NPY in both species. Neither ROSI nor GW9662 affected plasma ghrelin. Thus, we demonstrated that PPARγ activation is sufficient to trigger food hoarding/intake, increase AgRP/NPY, and possibly is necessary for FD-induced increases in feeding and AgRP/NPY. These findings provide initial evidence that FD-induced increases in AgRP/NPY may be a direct PPARγ-dependent process that controls ingestive behaviors.

  11. Corticotropin-releasing factor-overexpressing mice exhibit reduced neuronal activation in the arcuate nucleus and food intake in response to fasting.

    PubMed

    Stengel, Andreas; Goebel, Miriam; Million, Mulugeta; Stenzel-Poore, Mary P; Kobelt, Peter; Mönnikes, Hubert; Taché, Yvette; Wang, Lixin

    2009-01-01

    Corticotropin-releasing factor (CRF) overexpressing (OE) mice are a genetic model that exhibits features of chronic stress. We investigated whether the adaptive feeding response to a hypocaloric challenge induced by food deprivation is impaired under conditions of chronic CRF overproduction. Food intake response to a 16-h overnight fast and ip injection of gut hormones regulating food intake were compared in CRF-OE and wild type (WT) littermate mice along with brain Fos expression, circulating ghrelin levels, and gastric emptying of a nonnutrient meal. CRF-OE mice injected ip with saline showed a 47 and 44% reduction of 30-min and 4-h cumulative food intake response to an overnight fast, respectively, compared with WT. However, the 30-min food intake decrease induced by ip cholecystokinin (3 microg/kg) and increase by ghrelin (300 microg/kg) were similar in CRF-OE and WT mice. Overnight fasting increased the plasma total ghrelin to similar levels in CRF-OE and WT mice, although CRF-OE mice had a 2-fold reduction of nonfasting ghrelin levels. The number of Fos-immunoreactive cells induced by fasting in the arcuate nucleus was reduced by 5.9-fold in CRF-OE compared with WT mice whereas no significant changes were observed in other hypothalamic nuclei. In contrast, fasted CRF-OE mice displayed a 5.6-fold increase in Fos-immunoreactive cell number in the dorsal motor nucleus of the vagus nerve and a 34% increase in 20-min gastric emptying. These findings indicate that sustained overproduction of hypothalamic CRF in mice interferes with fasting-induced activation of arcuate nucleus neurons and the related hyperphagic response.

  12. An Indirect Action Contributes to C-Fos Induction in Paraventricular Hypothalamic Nucleus by Neuropeptide Y

    PubMed Central

    Fan, Shengjie; Dakshinamoorthy, Janani; Kim, Eun Ran; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2016-01-01

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively to examine the underlying NPY orexigenic neural pathways. However, PVH C-Fos induction is in discordance with the abundant expression of NPY receptors, a group of inhibitory Gi protein coupled receptors in the PVH, and with the overall role of PVH neurons in feeding inhibition, suggesting a mechanism of indirect action. Here we showed that the ability of NPY on C-Fos induction in the PVH was blunted in conditions of insulin deficiency and fasting, a condition associated with a high level of NPY and a low level of insulin. Moreover, insulin insufficiency blunted C-Fos induction in the PVH by fasting-induced re-feeding, and insulin and NPY induced c-Fos induction in the same group of PVH neurons. Finally, NPY produced normal C-Fos induction in the PVH with disruption of GABA-A receptors. Thus, our results revealed that PVH C-Fos induction by NPY is mediated by an indirect action, which is at least partially mediated by insulin action, but not GABA-A receptors. PMID:26813148

  13. Neuroendocrine-Autonomic Integration in the Paraventricular Nucleus: Novel Roles for Dendritically Released Neuropeptides

    PubMed Central

    Stern, J. E.

    2015-01-01

    Communication between pairs of neurones in the central nervous system typically involves classical ‘hard-wired’ synaptic transmission, characterised by high temporal and spatial precision. Over the last two decades, however, knowledge regarding the repertoire of communication modalities used in the brain has notably expanded to include less conventional forms, characterised by a diffuse and less temporally precise transfer of information. These forms are best suited to mediate communication among entire neuronal populations, now recognised to be a fundamental process in the brain for the generation of complex behaviours. In response to an osmotic stressor, the hypothalamic paraventricular nucleus (PVN) generates a multimodal homeostatic response that involves orchestrated neuroendocrine (i.e. systemic release of vasopressin) and autonomic (i.e. sympathetic outflow to the kidneys) components. The precise mechanisms that underlie interpopulation cross-talk between these two distinct neuronal populations, however, remain largely unknown. The present review summarises and discusses a series of recent studies that have identified the dendritic release of neuropeptides as a novel interpopulation signalling modality in the PVN. A current working model is described in which it is proposed that the activity-dependent dendritic release of vasopressin from neurosecretory neurones in the PVN acts in a diffusible manner to increase the activity of distant presympathetic neurones, resulting in an integrated sympathoexcitatory population response, particularly within the context of a hyperosmotic challenge. The cellular mechanism underlying this novel form of intercellular communication, as well as its physiological and pathophysiological implications, is discussed. PMID:25546497

  14. [Concentration of monoamines and activity of several enzymes in the arcuate nucleus of the hypothalamus in young and aging rats during the estrous cycle].

    PubMed

    Grantyn', V A

    1976-07-01

    The arcuate nucleus (AN) and the median eminence (ME) of the hypothalamus were investigated in young and ageing female rats. During the estral cycle (EC) the monoamine (MA) content, the monoaminoxidase (MAO), NADP and NAD-diaphorase activities were determined in the AN, and the MA content and the activity of alkaline phosphatase (AP) -- in the ME. In young rats in the proestrus-estrus there was an increase in the activity of the NADP and NAD-diaphorase and of the MA content, but a decrease of the MAO activity. This indicated an intensified function of the nucleus at these stages of the EC. Accumulation of the MA in the ME was noted in the diestrus, while in the proestrus their concentration sharply fell; on the other hand, the activity of the AP was considerably increased. In the ageing rats the dynamics of the indices under study during the EC were largely unchanged. However, the functional activity of the AN proved to increase, and in the ME and elevation of the MA concentration and disturbance of its release from the nerve terminals was seen.

  15. Upregulation of cystathionine β-synthetase in the arcuate nucleus produces pain hypersensitivity via PKC upregulation and GluN2B phosphorylation in rats with chronic pancreatitis.

    PubMed

    Zheng, Hang; Zhu, Hong-Yan; Zhang, Xiao-Yu; Wang, Meng; Xiao, Ying; Xu, Guang-Yin; Jiang, Xing-Hong

    2016-10-25

    Hydrogen sulfide (H2S) contributes to visceral hyperalgesia in primary sensory neurons, but its role in central nervous system remains largely unknown. This study was to investigate the roles and underlying mechanisms of H2S and its endogenous synthesis enzymes in the arcuate nucleus (ARC) in rat pancreatic hyperalgesia. Chronic pancreatitis (CP) was induced in male adult Sprague-Dawley rats by intra-pancreatic ductal injection of trinitrobenzene sulfonic acid (TNBS). Abdominal hyperalgesia was assessed by referred somatic behaviors to mechanical stimulation of rat abdomen. Western blot analysis was performed to detect protein expression in the ARC. CP markedly upregulated cystathionine β-synthetase (CBS) expression but did not alter cystathionine-γ-lyase level in the ARC at 4 weeks after TNBS injection. Although the expression of total GluN2B was not altered, CP greatly enhanced the phosphorylation level of GluN2B in the ARC when compared with age- and sex-matched control rats. CP also significantly increased expression of protein kinase Cγ (PKCγ) in the ARC. Arcuate microinjection of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA, an inhibitor of CBS) significantly attenuated abdominal pain in CP rats in a dose-dependent manner and reversed the CP-induced upregulation of p-GluN2B and PKCγ in the ARC. Furthermore, the GluN2B inhibitor or specific PKC inhibitor chelerythrine significantly attenuated abdominal hyperalgesia in CP rats. The p-GluN2B expression was also suppressed by PKC inhibitor. Taken together, our results suggest that the upregulation of CBS in the ARC leads to an activation of GluN2B via PKCγ, which may play an important role in generation of pain hypersensitivity of CP.

  16. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype.

    PubMed

    Li, Ji-Yao; Chai, Biao-Xin; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W

    2010-01-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein 4 (Asb-4) is specifically expressed in the energy homeostasis-related brain areas and colocalizes with proopiomelanocortin (POMC) neurons of the arcuate nucleus (ARC). Injection of insulin into the third ventricle of the rat brain increased Asb-4 mRNA expression in the paraventricular nucleus but not in the ARC of the hypothalamus, whereas injection of leptin (ip) increased Asb-4 expression in both mouse paraventricular nucleus and ARC. A transgenic mouse in which Myc-tagged Asb-4 is specifically expressed in POMC neurons of the ARC was made and used to study the effects of Asb-4 on ingestive behavior and metabolic rate. Animals with overexpression of Asb-4 in POMC neurons demonstrated an increase in food intake. However, POMC-Asb-4 transgenic animals gained significantly less weight from 6-30 wk of age. The POMC-Asb-4 mice had reduced fat mass and increased lean mass and lower levels of blood leptin. The transgenic animals were resistant to high-fat diet-induced obesity. Transgenic mice had significantly higher rates of oxygen consumption and carbon dioxide production than wild-type mice during both light and dark periods. The locomotive activity of transgenic mice was increased. The overexpression of Asb-4 in POMC neurons increased POMC mRNA expression in the ARC. The transgenic animals had no observed effect on peripheral glucose metabolism and the activity of the autonomic nervous system. These results indicate that Asb-4 is a key regulatory protein in the central nervous system, involved in the control of feeding behavior and metabolic rate.

  17. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    PubMed Central

    Xu, Yuanzhong; Shu, Gang; Wang, Chunmei; Yang, Yongjie; Saito, Kenji; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Yu, Likai; Wu, Qi; Tso, Patrick; Tong, Qingchun; Xu, Yong

    2015-01-01

    Background/Aims Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. Methods We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) and in neurons that express pro-opiomelanocortin (POMC). We then compared anorexigenic effects of apoA-IV in wild type mice and in mutant mice lacking melanocortin 4 receptors (MC4Rs, the receptors of AgRP and the POMC gene product). Finally, we examined expression of apoA-IV in mouse hypothalamus and quantified its protein levels at fed vs. fasted states. Results We demonstrate that apoA-IV inhibited the firing rate of AgRP/NPY neurons. The decreased firing was associated with hyperpolarized membrane potential and decreased miniature excitatory postsynaptic current. We further used c-fos immunoreactivity to show that intracerebroventricular (i.c.v.) injections of apoA-IV abolished the fasting-induced activation of AgRP/NPY neurons in mice. Further, we found that apoA-IV depolarized POMC neurons and increased their firing rate. In addition, genetic deletion of MC4Rs blocked anorexigenic effects of i.c.v. apoA-IV. Finally, we detected endogenous apoA-IV in multiple neural populations in mouse hypothalamus, including AgRP/NPY neurons, and food deprivation suppresses hypothalamic apoA-IV protein levels. Conclusion Our findings support a model where central apoA-IV inhibits AgRP/NPY neurons and activates POMC neurons to activate MC4Rs, which in turn suppresses food intake. PMID:26337236

  18. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse

    PubMed Central

    Navarro, VM; Gottsch, ML; Chavkin, C; Okamura, H; Clifton, DK; Steiner, RA

    2009-01-01

    Kisspeptin is encoded by the Kiss1 gene and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to GnRH neurons, which in turn supports basal LH secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes, but also the NKB receptor gene (NK3) and the Dyn receptor (the kappa opioid receptor, KOR) gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol (E2), as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knockout mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence. PMID:19776272

  19. The effect of blockade of dopamine receptors on the inhibition of episodic luteinizing hormone release during electrical stimulation of the arcuate nucleus in ovariectomized rats.

    PubMed

    Gallo, R V

    1978-04-01

    This study examined the possible involvement of dopamine (DA) in mediating the inhibition of episodic LH release that occurs during electrical stimulation of the arcuate nucleus (ARH) in ovariectomized rats. Animals were treated before stimulation with pimozide (1.26--2.0 mg/kg) or d-butaclamol (1 mg/kg), blockers of DA receptors, or l-butaclamol. Apomorphine, which inhibits episodic LH release by activating DA receptors, was given near the end of the experiment to determine if these receptors were blocked. ARH stimulation suppressed pulsatile LH release in six rats when DA receptors were not blocked by pimozide (as well as two in which blockade was not tested). A transient increase occurred in one other animal. When DA receptors were blocked by pimozide, stimulation of the ARH inhibited episodic LH release in nine rats, suggesting that DA may have no role in mediating this inhibition. However, because increased LH release occurred in five additional animals, as well as in one with partial receptor blockade, the possibility remains that DA may perhaps have a minor role in this inhibitory response. Although ARH stimulation increased LH release after DA receptor blockade by d-butaclamol, this effect could not be ascribed to the DA antagonist property of this agent, because elevated blood LH levels also occurred during stimulation in rats treated with l-butaclamol, in which DA receptors were not blocked. d- and l-butaclamol may possess a non-stereospecific action on a non-dopaminergic event, thus reversing the response to ARH stimulation. Finally, whether DA receptors were blocked or not by pimozide, d-, or l-butaclamol, activation of the ventromedial hypothalamic and periventricular nucleus regions suppressed episodic LH release, but did not increase LH secretion. This suggests that the region through which stimulation can inhibit, but not increase, LH release may extend in the hypothalamus to these two areas.

  20. Involvement of the Beta-Endorphin Neurons of the Hypothalamic Arcuate Nucleus in Ethanol-Induced Place Preference Conditioning in Mice

    PubMed Central

    Pastor, Raúl; Font, Laura; Miquel, Marta; Phillips, Tamara J.; Aragon, Carlos M.G.

    2014-01-01

    Background Increasing evidence indicates that mu- and delta-opioid receptors are decisively involved in the retrieval of memories underlying conditioned effects of ethanol. The precise mechanism by which these receptors participate in such effects remains unclear. Given the important role of the proopiomelanocortin (POMc)-derived opioid peptide beta-endorphin, an endogenous mu- and delta-opioid receptor agonist, in some of the behavioral effects of ethanol, we hypothesized that beta-endorphin would also be involved in ethanol conditioning. Methods In the present study we treated female Swiss mice with estradiol valerate (EV), which induces a neurotoxic lesion of the beta-endorphin neurons of the hypothalamic arcuate nucleus (ArcN). These mice were compared to saline-treated controls to investigate the role of beta-endorphin in the acquisition, extinction and reinstatement of ethanol (0 or 2 g/kg; i.p.)-induced conditioned place preference (CPP). Results Immunohistochemical analyses confirmed a decreased number of POMc-containing neurons of the ArcN with EV treatment. EV did not affect the acquisition or reinstatement of ethanol-induced CPP, but facilitated its extinction. Behavioral sensitization to ethanol, seen during the conditioning days, was not present in EV-treated animals. Conclusions The present data suggest that ArcN beta-endorphins are involved in the retrieval of conditioned memories of ethanol, and are implicated in the processes that underlie extinction of ethanol-cue associations. Results also reveal a dissociated neurobiology supporting behavioral sensitization to ethanol and its conditioning properties, as a beta-endorphin deficit affected sensitization to ethanol, while leaving acquisition and reinstatement of ethanol-induced CPP unaffected. PMID:22014186

  1. Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger–Westphal nucleus urocortin-1 neuropeptide system

    PubMed Central

    Giardino, W J; Rodriguez, E D; Smith, M L; Ford, M M; Galili, D; Mitchell, S H; Chen, A; Ryabinin, A E

    2017-01-01

    Midbrain neurons of the centrally projecting Edinger–Westphal nucleus (EWcp) are activated by alcohol, and enriched with stress-responsive neuropeptide modulators (including the paralog of corticotropin-releasing factor, urocortin-1). Evidence suggests that EWcp neurons promote behavioral processes for alcohol-seeking and consumption, but a definitive role for these cells remains elusive. Here we combined targeted viral manipulations and gene array profiling of EWcp neurons with mass behavioral phenotyping in C57BL/6 J mice to directly define the links between EWcp-specific urocortin-1 expression and voluntary binge alcohol intake, demonstrating a specific importance for EWcp urocortin-1 activity in escalation of alcohol intake. PMID:28140406

  2. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness

    PubMed Central

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10−5–10−2 M dose dependently increased [Ca2+]i in 12–16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation mainly

  3. Neuropeptide signaling in the integration of metabolism and reproduction.

    PubMed

    Crown, Angelena; Clifton, Donald K; Steiner, Robert A

    2007-01-01

    Fertility is gated by nutrition and the availability of stored energy reserves, but the cellular and molecular mechanisms that link energy stores and reproduction are not well understood. Neuropeptides including galanin-like peptide (GALP), neuropeptide Y (NPY), products of the proopiomelanocortin (POMC; e.g., alpha-MSH and beta-endorphin), and kisspeptin are thought to be involved in this process for several reasons. First, the neurons that express these neuropeptides all reside in the hypothalamic arcuate nucleus, a critical site for the regulation of both metabolism and reproduction. Second, these neuropeptides are all targets for regulation by metabolic hormones, such as leptin and insulin. And third, these neuropeptides have either direct or indirect effects on feeding and metabolism, as well as on the secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). As the target for the action of metabolic hormones and sex steroids, these neuropeptides serve as molecular motifs integrating the control of metabolism and reproduction.

  4. Arcuate Kisspeptin/Neurokinin B/Dynorphin (KNDy) Neurons Mediate the Estrogen Suppression of Gonadotropin Secretion and Body Weight

    PubMed Central

    Mittelman-Smith, Melinda A.; Williams, Hemalini; Krajewski-Hall, Sally J.; Lai, Josephine; Ciofi, Philippe; McMullen, Nathaniel T.

    2012-01-01

    Estrogen withdrawal increases gonadotropin secretion and body weight, but the critical cell populations mediating these effects are not well understood. Recent studies have focused on a subpopulation of hypothalamic arcuate neurons that coexpress estrogen receptor α, neurokinin 3 receptor (NK3R), kisspeptin, neurokinin B, and dynorphin for the regulation of reproduction. To investigate the function of kisspeptin/neurokinin B/dynorphin (KNDy) neurons, a novel method was developed to ablate these cells using a selective NK3R agonist conjugated to the ribosome-inactivating toxin, saporin (NK3-SAP). Stereotaxic injections of NK3-SAP in the arcuate nucleus ablated KNDy neurons, as demonstrated by the near-complete loss of NK3R, NKB, and kisspeptin-immunoreactive (ir) neurons and depletion of the majority of arcuate dynorphin-ir neurons. Selectivity was demonstrated by the preservation of proopiomelanocortin, neuropeptide Y, and GnRH-ir elements in the arcuate nucleus and median eminence. In control rats, ovariectomy (OVX) markedly increased serum LH, FSH, and body weight, and these parameters were subsequently decreased by treatment with 17β-estradiol. KNDy neuron ablation prevented the rise in serum LH after OVX and attenuated the rise in serum FSH. KNDy neuron ablation did not completely block the suppressive effects of E2 on gonadotropin secretion, a finding consistent with redundant pathways for estrogen negative feedback. However, regardless of estrogen status, KNDy-ablated rats had lower levels of serum gonadotropins compared with controls. Surprisingly, KNDy neuron ablation prevented the dramatic effects of OVX and 17β-estradiol (E2) replacement on body weight and abdominal girth. These data provide evidence that arcuate KNDy neurons are essential for tonic gonadotropin secretion, the rise in LH after removal of E2, and the E2 modulation of body weight. PMID:22508514

  5. Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication

    PubMed Central

    Barkley-Levenson, Amanda M.; Ryabinin, Andrey E.; Crabbe, John C.

    2016-01-01

    The High Drinking in the Dark (HDID) mice have been selectively bred for drinking to intoxicating blood alcohol levels and represent a genetic model of risk for binge-like drinking. Presently, little is known about the specific genetic factors that promote excessive intake in these mice. Previous studies have identified neuropeptide Y (NPY) as a potential target for modulating alcohol intake. NPY expression differs in some rodent lines that have been selected for high and low alcohol drinking phenotypes, as well as inbred mouse strains that differ in alcohol preference. Alcohol drinking and alcohol withdrawal also produce differential effects on NPY expression in the brain. Here, we assessed brain NPY protein levels in HDID mice of two replicates of selection and control heterogeneous stock (HS) mice at baseline (water drinking) and after binge-like alcohol drinking to determine whether selection is associated with differences in NPY expression and its sensitivity to alcohol. NPY levels did not differ between HDID and HS mice in any brain region in the water-drinking animals. HS mice showed a reduction in NPY levels in the nucleus accumbens (NAc) – especially in the shell – in ethanol-drinking animals vs. water-drinking controls. However, HDID mice showed a blunted NPY response to alcohol in the NAc core and shell compared to HS mice. These findings suggest that the NPY response to alcohol has been altered by selection for drinking to intoxication in a region-specific manner. Thus, the NPY system may represent a potential target for altering binge-like alcohol drinking in these mice. PMID:26779672

  6. Neuropeptide Y in the central nucleus of the amygdala suppresses dependence-induced increases in alcohol drinking.

    PubMed

    Gilpin, Nicholas W; Misra, Kaushik; Koob, George F

    2008-09-01

    The anxiolytic effects of neuropeptide Y (NPY) are mediated in part by the central nucleus of the amygdala (CeA), a brain region involved in the regulation of alcohol-drinking behaviors. Centrally administered NPY suppresses alcohol drinking in subpopulations of rats vulnerable to the development of high alcohol-drinking behavior. The purpose of the current study was to determine the role of NPY in the CeA on elevated alcohol drinking produced by alcohol dependence. Adult male Wistar rats were trained to respond for 10% w/v alcohol in an operant situation with the use of a supersaccharin fading procedure. Following stabilization of responding, rats were divided into two groups matched for intake and given daily access to either alcohol-containing (9.2% v/v) liquid diet or an isocaloric control diet. Following extended access to the diet and reliable separation of operant responding between dependent and non-dependent rats during 6-h withdrawal tests, all rats were implanted bilaterally with cannulae aimed at the CeA. Rats were then infused with 4 NPY doses (0.0, 0.25, 0.5, 1.0 microg/0.5 microl aCSF) in a within-subjects Latin-square design during acute withdrawal and tested for operant alcohol responding 30 min later. Alcohol-dependent rats exhibited higher operant alcohol responding than non-dependent rats when infused with vehicle, but responding was similar in the two groups following infusion of all doses of NPY. These results indicate that NPY abolishes dependence-induced elevations in alcohol drinking and implicate the recruitment of limbic NPY systems in the motivational drive to consume alcohol following the transition to dependence.

  7. Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication.

    PubMed

    Barkley-Levenson, Amanda M; Ryabinin, Andrey E; Crabbe, John C

    2016-04-01

    The High Drinking in the Dark (HDID) mice have been selectively bred for drinking to intoxicating blood alcohol levels and represent a genetic model of risk for binge-like drinking. Presently, little is known about the specific genetic factors that promote excessive intake in these mice. Previous studies have identified neuropeptide Y (NPY) as a potential target for modulating alcohol intake. NPY expression differs in some rodent lines that have been selected for high and low alcohol drinking phenotypes, as well as inbred mouse strains that differ in alcohol preference. Alcohol drinking and alcohol withdrawal also produce differential effects on NPY expression in the brain. Here, we assessed brain NPY protein levels in HDID mice of two replicates of selection and control heterogeneous stock (HS) mice at baseline (water drinking) and after binge-like alcohol drinking to determine whether selection is associated with differences in NPY expression and its sensitivity to alcohol. NPY levels did not differ between HDID and HS mice in any brain region in the water-drinking animals. HS mice showed a reduction in NPY levels in the nucleus accumbens (NAc) - especially in the shell - in ethanol-drinking animals vs. water-drinking controls. However, HDID mice showed a blunted NPY response to alcohol in the NAc core and shell compared to HS mice. These findings suggest that the NPY response to alcohol has been altered by selection for drinking to intoxication in a region-specific manner. Thus, the NPY system may represent a potential target for altering binge-like alcohol drinking in these mice.

  8. Feeding behavior and gene expression of appetite-related neuropeptides in mice lacking for neuropeptide Y Y5 receptor subclass.

    PubMed

    Higuchi, Hiroshi; Niki, Takeshi; Shiiya, Tomohiro

    2008-11-07

    Neuropeptide Y (NPY) is a potent neurotransmitter for feeding. Besides NPY, orexigenic neuropeptides such as agouti-related protein (AgRP), and anorexigenic neuropeptides such as alpha-melatonin stimulating hormone (MSH) and cocaine-amphetamine-regulated transcript (CART) are also involved in central feeding regulation. During fasting, NPY and AgRP gene expressions are up-regulated and POMC and CART gene expressions are down-regulated in hypothalamus. Based on the network of peptidergic neurons, the former are involved in positive feeding regulation, and the latter are involved in negative feeding, which exert these feeding-regulated peptides especially in paraventricular nucleus (PVN). To clarify the compensatory mechanism of knock-out of NPY system on feeding, change in gene expressions of appetite-related neuropeptides and the feeding behavior was studied in NPY Y5-KO mice. Food intake was increased in Y5-KO mice. Fasting increased the amounts of food and water intake in the KO mice more profoundly. These data indicated the compensatory phenomenon of feeding behavior in Y5-KO mice. RT-PCR and ISH suggested that the compensation of feeding is due to change in gene expressions of AgRP, CART and POMC in hypothalamus. Thus, these findings indicated that the compensatory mechanism involves change in POMC/CART gene expression in arcuate nucleus (ARC). The POMC/CART gene expression is important for central compensatory regulation in feeding behavior.

  9. Neuropeptides and central control of sexual behaviour from the past to the present: a review.

    PubMed

    Argiolas, Antonio; Melis, Maria Rosaria

    2013-09-01

    Of the numerous neuropeptides identified in the central nervous system, only a few are involved in the control of sexual behaviour. Among these, the most studied are oxytocin, adrenocorticotropin, α-melanocyte stimulating hormone and opioid peptides. While opioid peptides inhibit sexual performance, the others facilitate sexual behaviour in most of the species studied so far (rats, mice, monkeys and humans). However, evidence for a sexual role of gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin and galanin-like peptide, cholecystokinin, substance P, vasoactive intestinal peptide, vasopressin, angiotensin II, hypocretins/orexins and VGF-derived peptides are also available. Corticotropin releasing factor, neuropeptide Y, cholecystokinin, vasopressin and angiotensin II inhibit, while substance P, vasoactive intestinal peptide, hypocretins/orexins and some VGF-derived peptide facilitate sexual behaviour. Neuropeptides influence sexual behaviour by acting mainly in the hypothalamic nuclei (i.e., lateral hypothalamus, paraventricular nucleus, ventromedial nucleus, arcuate nucleus), in the medial preoptic area and in the spinal cord. However, it is often unclear whether neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except in a few cases (e.g., opioid peptides and oxytocin). Unfortunately, scarce information has been added in the last 15 years on the neural mechanisms by which neuropeptides influence sexual behaviour, most studied neuropeptides apart. This may be due to a decreased interest of researchers on neuropeptides and sexual behaviour or on sexual behaviour in general. Such a decrease may be related to the discovery of orally effective, locally acting type V phosphodiesterase inhibitors for the therapy of erectile dysfunction.

  10. 5-hydroxy-L-tryptophan Suppressed Food Intake in Rats Despite an Increase in the Arcuate NPY Expression.

    PubMed

    Moon, Young Wha; Choi, Si Ho; Yoo, Sang Bae; Lee, Jong-Ho; Jahng, Jeong Won

    2010-12-01

    This study was conducted to define the underlying mechanism of hypophagia induced by increased central serotonergic action. Rats received 3 daily injections of 5-hydroxy-L-tryptophan (5-HTP), a serotonin precursor, at a dose of 100 mg/kg/10 ml saline at 1 h before lights off. A significant suppression in food intake was observed shortly after the 5-HTP injection and persisted during 3 daily 5-HTP injections. Neuropeptide Y (NPY) expression in the arcuate nucleus increased after 3 days of 5-HTP treatment, as high as in the pair-fed group. Immunoreactivity of phosphorylated extracellular signal-regulated protein kinase (pERK1/2) in the hypothalamic paraventricular nucleus (PVN) was increased markedly by 3 days of 5-HTP treatment, but not by 3 days of pair-fed. mRNA expression levels of serotonin reuptake transporter (5-HTT) was increased in the dorsal raphe nucleus of the 5-HTP treated rats, but not in the pair-fed group. Results suggest that increased pERK1/2 in the PVN of 5-HTP injected rats may be a part of serotonergic anorectic signaling, perhaps blunting the orectic action of NPY; i.e., 5-HTP injected rats showed hypophagia despite of increased NPY expression in the arcuate nucleus.

  11. Influence of 17β-estradiol and progesterone on GABAergic gene expression in the arcuate nucleus, amygdala and hippocampus of the rhesus macaque

    PubMed Central

    Noriega, Nigel C.; Eghlidi, Dominique H.; Garyfallou, Vasilios T.; Kohama, Steven G.; Kryger, Sharon G.; Urbanski, Henryk F.

    2009-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, and the responsiveness of neurons to GABA can be modulated by sex steroids. To better understand how ovarian steroids influence GABAergic system in the primate brain, we evaluated the expression of genes encoding GABA receptor subunits, glutamic acid decarboxylase (GAD) and a GABA transporter in the brains of female rhesus macaques. Ovariectomized adults were subjected to a hormone replacement paradigm involving either 17β-estradiol (E), or E plus progesterone (E+P). Untreated animals served as controls. Using GeneChip® microarray analysis and real-time RT-PCR (qPCR), we examined gene expression differences within and between the amygdala (AMD), hippocampus (HPC) and arcuate nuclei of the medial basal hypothalamus (MBH). The results from PCR corresponded with results from representative GeneChip® probesets, and showed similar effects of sex steroids on GABA receptor subunit gene expression in the AMD and HPC, and a more pronounced expression than in the MBH. Exposure to E+P attenuated GAD1, GAD2 and SLC32A1 gene expression in the AMD and HPC, but not in the MBH. GABA receptor subunit gene expression was generally higher in the AMD and HPC than in the MBH, with the exception of receptor subunits ε and γ2. Taken together, the data demonstrate differential regulation of GABA receptor subunits and GABAergic system components in the MBH compared to the AMD and HPC of rhesus macaques. Elevated ε and reduced δ subunit expression in the MBH supports the hypothesis that the hypothalamic GABAergic system is resistant to the modulatory effects of sex steroids. PMID:19833106

  12. Suckling-induced activation of neuronal input to the dorsomedial nucleus of the hypothalamus: possible candidates for mediating the activation of DMH neuropeptide Y neurons during lactation.

    PubMed

    Chen, Peilin; Smith, M Susan

    2003-09-12

    Activation of the neuropeptide Y (NPY) neuronal system in the dorsomedial nucleus of the hypothalamus (DMH) during lactation in the rat is in part due to neural impulses arising from the suckling stimulus. However, the afferent neuronal input to the DMH that is activated during lactation and is responsible for activation of NPY neurons is currently unknown. Previously, using cFos as a marker for neuronal activation, we identified several brain areas in the lactating animals that were activated by the suckling stimulus. Thus, the objective of the present study was to determine if any of these suckling activated areas project directly to the DMH. The retrograde tracer, fluorogold (FG), was injected into the DMH on day 4 postpartum. FG-injected lactating rats were then deprived of their eight-pup litters on day 9 postpartum, and 48 h later, the pups were returned to the females to reinitiate the suckling stimulus for 90 min and induce cFos expression. The animals were then perfused and the brains were subjected to double-label immunohistochemistry to visualize both FG- and cFos-positive cells. Substantial numbers of FG/cFos double-labeled cells were found in forebrain regions, including the preoptic area, lateral septal nucleus, ventral subiculum, and supramammillary nucleus, and in brainstem regions, including the lateral parabrachial nucleus, periaqeductal gray, and ventrolateral medulla. In conclusion, these areas are potentially important candidates for mediating the activation of the NPY neuronal system in the DMH during lactation.

  13. TRPV1 receptor in the human trigeminal ganglion and spinal nucleus: immunohistochemical localization and comparison with the neuropeptides CGRP and SP.

    PubMed

    Quartu, Marina; Serra, Maria Pina; Boi, Marianna; Poddighe, Laura; Picci, Cristina; Demontis, Roberto; Del Fiacco, Marina

    2016-12-01

    This work presents new data concerning the immunohistochemical occurrence of the transient receptor potential vanilloid type-1 (TRPV1) receptor in the human trigeminal ganglion (TG) and spinal nucleus of subjects at different ontogenetic stages, from prenatal life to postnatal old age. Comparisons are made with the sensory neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). TRPV1-like immunoreactive (LI) material was detected by western blot in homogenates of TG and medulla oblongata of subjects at prenatal and adult stages of life. Immunohistochemistry showed that expression of the TRPV1 receptor is mostly restricted to the small- and medium-sized TG neurons and to the caudal subdivision of the spinal trigeminal nucleus (Sp5C). The extent of the TRPV1-LI TG neuronal subpopulation was greater in subjects at early perinatal age than at late perinatal age and in postnatal life. Centrally, the TRPV1 receptor localized to fibre tracts and punctate elements, which were mainly distributed in the spinal tract, lamina I and inner lamina II of the Sp5C, whereas stained cells were rare. The TRPV1 receptor colocalized partially with CGRP and SP in the TG, and was incompletely codistributed with both neuropeptides in the spinal tract and in the superficial laminae of the Sp5C. Substantial differences were noted with respect to the distribution of the TRPV1-LI structures described in the rat Sp5C and with respect to the temporal expression of the receptor during the development of the rat spinal dorsal horn. The distinctive localization of TRPV1-LI material supports the concept of the involvement of TRPV1 receptor in the functional activity of the protopathic compartment of the human trigeminal sensory system, i.e. the processing and neurotransmission of thermal and pain stimuli.

  14. Immunohistochemical mapping of neuropeptide Y in the tree shrew brain.

    PubMed

    Ni, Rong-Jun; Shu, Yu-Mian; Luo, Peng-Hao; Fang, Hui; Wang, Yu; Yao, Lei; Zhou, Jiang-Ning

    2015-02-15

    Day-active tree shrews are promising animals as research models for a variety of human disorders. Neuropeptide Y (NPY) modulates many behaviors in vertebrates. Here we examined the distribution of NPY in the brain of tree shrews (Tupaia belangeri chinensis) using immunohistochemical techniques. The differential distribution of NPY-immunoreactive (-ir) cells and fibers were observed in the rhinencephalon, telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon of tree shrews. Most NPY-ir cells were multipolar or bipolar in shape with triangular, fusiform, and/or globular perikarya. The densest cluster of NPY-ir cells were found in the mitral cell layer of the main olfactory bulb (MOB), arcuate nucleus of the hypothalamus, and pretectal nucleus of the thalamus. The MOB presented a unique pattern of NPY immunoreactivity. Laminar distribution of NPY-ir cells was observed in the MOB, neocortex, and hippocampus. Compared to rats, the tree shrews exhibited a particularly robust and widespread distribution of NPY-ir cells in the MOB, bed nucleus of the stria terminalis, and amygdala as well as the ventral lateral geniculate nucleus and pretectal nucleus of the thalamus. By contrast, a low density of neurons were scattered in the striatum, neocortex, polymorph cell layer of the dentate gyrus, superior colliculus, inferior colliculus, and dorsal tegmental nucleus. These findings provide the first detailed mapping of NPY immunoreactivity in the tree shrew brain and demonstrate species differences in the distribution of this neuropeptide, providing an anatomical basis for the participation of the NPY system in the regulation of numerous physiological and behavioral processes.

  15. Neuropeptides and obesity.

    PubMed

    Beck, B

    2000-10-01

    This review focuses on the expression, content, and release of neuropeptides and on their role in the development of obesity in animal models with single-gene mutations. The balance between neuropeptides that contribute to the control of feeding behavior is profoundly and variously altered in these models, supporting the concept of the existence of several types of obesity. The hypothalamic neuropeptide Y (NPY) and the pro-opiomelanocortin (POMC) systems are the networks most studied in relation to energy intake. Both receive information about the nutritional status and the level of energy storage through insulin and leptin signaling mediated by specific receptors located on POMC and NPY neurons present predominantly in the arcuate nucleus (ARC). When leptin signaling is defective, through a defect in either the receptor (Zucker fa/fa rat, cp/cp rat, and db/db mouse) or in the peptide itself (ob/ob mouse), the NPY system is upregulated as shown by mRNA overexpression and increased peptide release, whereas the content and/or release of some inhibitory peptides (neurotensin, cholecystokinin) are diminished. For the POMC system, there is a complex interaction between the tonic inhibition of food intake exerted by alpha-melanocyte-stimulating hormone (alpha-MSH) and the Agouti-related protein at the level of the type 4 melanocortin receptor. The latter peptide is coexpressed with NPY in the ARC. Corticotropin-releasing factor (CRF) is the link between food intake and environmental factors. It not only inhibits food intake and prevents weight gain, likely through hypothalamic effects, but also activates the hypothalamo-pituitary axis and therefore contributes to energy storage in adipose tissue. The factors that prod the CRF system toward the hypothalamic or hypothalamo-pituitary axis system remain to be more clearly defined (comodulators, connections between limbic system and ARC, cellular location, and type of receptors, etc. ). The pathways used by all of these

  16. Impact of glucose infusion on the structural and functional characteristics of adipose tissue and on hypothalamic gene expression for appetite regulatory neuropeptides in the sheep fetus during late gestation.

    PubMed

    Mühlhäusler, B S; Adam, C L; Marrocco, E M; Findlay, P A; Roberts, C T; McFarlane, J R; Kauter, K G; McMillen, I C

    2005-05-15

    In the present study, our aim was to determine whether intrafetal glucose infusion increases fetal adiposity, synthesis and secretion of leptin and regulates gene expression of the 'appetite regulatory' neuropeptides neuropepetide Y (NPY), agouti-related peptide (AGRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) and receptors (leptin receptor (OB-Rb) and melancortin 3 receptor (MC3R)) within the fetal hypothalamus. Glucose (50% dextrose in saline) or saline was infused (7.5 ml h(-1)) into fetal sheep between 130 and 140 days gestation (term = 150 +/- 3 days gestation). Glucose infusion increased circulating glucose and insulin concentrations, mean lipid locule size (532.8 +/- 3.3 microm2 versus 456.7 +/- 14.8 microm2) and total unilocular fat mass (11.7 +/- 0.6 g versus 8.9 +/- 0.6 g) of the perirenal fat depot. The expression of OB-Rb mRNA was higher in the ventromedial nucleus compared to the arcuate nucleus of the hypothalamus in both glucose and saline infused fetuses (F= 8.04; P < 0.01) and there was a positive correlation between expression of OB-Rb and MC3R mRNA in the arcuate nucleus (r= 0.81; P < 0.005). Glucose infusion increased mRNA expression for POMC, but not for the anorectic neuropeptide CART, or the orexigenic neuropeptides NPY and AGRP, in the arcuate nucleus of the fetal hypothalamus. These findings demonstrate that increased circulating glucose and insulin regulate gene expression of the neuropeptides within the fetal hypothalamus that are part of the neural network regulating energy balance in adult life.

  17. Early weaning is associated with higher neuropeptide Y (NPY) and lower cocaine- and amphetamine-regulated transcript (CART) expressions in the paraventricular nucleus (PVN) in adulthood.

    PubMed

    Younes-Rapozo, Viviane; de Moura, Egberto Gaspar; da Silva Lima, Natália; Barradas, Penha Cristina; Manhães, Alex C; de Oliveira, Elaine; Lisboa, Patricia Cristina

    2012-12-28

    The interruption of lactation for a short period, without the use of pharmacological substances or maternal separation, causes offspring malnutrition and hypoleptinaemia and programmes for metabolic disorders such as higher body weight and adiposity, hyperphagia, hyperleptinaemia and central leptin resistance in adulthood. Here, in order to clarify the mechanisms underlying the phenotype observed in adult early-weaned (EW) rats, we studied the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in different hypothalamic nuclei by immunohistochemistry and Western blot. In the EW group, the teats of lactating rats were blocked with a bandage to interrupt lactation during the last 3 d, while control pups had free access to milk throughout the entire lactation period. At age 180 d, EW offspring showed higher NPY staining in the paraventricular nucleus (PVN), as well as NPY protein content (+68 %) in total hypothalamus than control ones. AgRP showed no changes in staining or Western blot. POMC content was not affected; however, its distribution pattern was altered. CART-positive cells of EW offspring had lower immunoreactivity associated with reduced cell number in the PVN and lower protein content ( - 38 %) in total hypothalamus. The present data indicate that precocious weaning can imprint the neuronal circuitry, especially in the PVN, and cause a long-term effect on the expression of specific orexigenic and anorexigenic neuropeptides, such as NPY and CART, that can be caused by leptin resistance and are coherent with the hyperphagia observed in these animals.

  18. Effect of ghrelin receptor agonist and antagonist on the activity of arcuate nucleus tyrosine hydroxylase containing neurons in C57BL/6 male mice exposed to normal or high fat diet.

    PubMed

    Pirnik, Z; Majercikova, Z; Holubova, M; Pirnik, R; Zelezna, B; Maletinska, L; Kiss, A

    2014-08-01

    Catecholamines participate in the food intake regulation, however, there are no literature data available, dealing with the activity of tyrosine hydroxylase (TH) neurons in response to stimulation or inhibition of GHS-R (growth hormone secretagogue receptor) in the hypothalamic arcuate nucleus (ARC). The present study was focused to reveal whether [Dpr(N-octanoyl) 3ghrelin], a stable GHS-R agonist, itself in doses of 5 or 10 mg/kg (s.c.) or in combination with GHS-R receptor antagonist ([DLys3]GHRP-6) in dose of 10 mg/kg (s.c.), may affect the activity of ARC TH-containing neurons in C57BL/6 male mice fed either with standard (SD) or high fat diet (HFD) that developed a diet-induced obesity (DIO). The data of the present study clearly indicate that both doses of GHS-R agonist stimulated food intake in SD mice and GHS-R antagonist significantly reduced GHS-R agonist orexinergic effect in SD mice and suppressed the voluntary food intake in HFD mice. Both doses of the GHS-R agonist stimulated Fos expression in ARC neurons in both diet groups of mice which was not abolished by GHS-R antagonist pretreatment. Moreover, both doses of the GHS-R agonist significantly influenced the activation of TH neurons in the ARC of SD mice. The GHS-R antagonist also significantly increased TH neurons activation after GHS-R agonist although this effect was less powerful in HFD mice. This is the first study demonstrating response of local ARC TH neurons to peripherally applied GHS-R agonist and antagonist. The present data point out that the response of TH neurons to GHS-R agonist and antagonist is different in normal and DIO mice and extend our knowledge about the further ARC neuronal phenotype responding to peripheral ghrelin. To bring insight into the understanding of the functional significance of the activated TH neurons in ARC, in the context of the ghrelin peripheral increase, further studies are required.

  19. Differential effects of recombinant adeno-associated virus-mediated neuropeptide Y overexpression in the hypothalamic paraventricular nucleus and lateral hypothalamus on feeding behavior.

    PubMed

    Tiesjema, Birgitte; Adan, Roger A H; Luijendijk, Mieneke C M; Kalsbeek, Andries; la Fleur, Susanne E

    2007-12-19

    It is well known that neuropeptide Y (NPY) increases food intake. The hypothalamic paraventricular nucleus (PVN) and the lateral hypothalamus (LH) are both involved in the acute, hyperphagic effects of NPY. Although it is obvious that increased energy intake may lead to obesity, it is less understood which aspects of feeding behavior are affected and whether one or multiple neural sites mediate the effects of long-term increased NPY signaling. By long-term overexpressing NPY in either the PVN or the LH, we uncovered brain site-specific effects of NPY on meal frequency, meal size, and diurnal feeding patterns. In rats injected with adeno-associated virus-NPY in the PVN, increased food intake resulted from an increase in the amount of meals consumed, whereas in rats injected in the LH, increased food intake was attributable to increased meal size. Interestingly, food intake and body weight gain were only temporarily increased in PVN-injected rats, whereas in LH-injected rats hyperphagia and body weight gain remained for the entire 50 d. Moreover, in LH-NPY rats, but not in PVN-NPY rats, diurnal rhythmicity with regard to food intake and body core temperature was lost. These data clearly show that the NPY system differentially regulates energy intake and energy expenditure in the PVN and LH, which together adjust energy balance.

  20. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  1. Appetite regulatory neuropeptides are expressed in the sheep hypothalamus before birth.

    PubMed

    Mühlhäusler, B S; McMillen, I C; Rouzaud, G; Findlay, P A; Marrocco, E M; Rhind, S M; Adam, C L

    2004-06-01

    In the adult, a hypothalamic neural network acts to maintain energy balance in response to nutritional feedback from the periphery. Although there is an immediate requirement for this system to be functional at birth, it is unknown whether the components of this central neural network are expressed in the developing brain before birth. We therefore examined in the fetal sheep hypothalamus during late gestation gene expression for leptin receptor (OB-Rb) and neuropeptides that regulate energy balance in the adult. Brains were collected from fetal sheep at 110 days (n = 12) and 140 days of gestation (n = 5) (term = 150 days) and gene expression was detected in all hypothalami using in situ hybridization with radiolabelled riboprobes for OB-Rb, neuropeptide Y (NPY), agouti-related peptide, pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript (CART). All mRNAs were expressed in the arcuate nucleus of fetuses at both time points. Additional sites of mRNA expression were the dorsomedial hypothalamus (DMH) for NPY, the paraventricular nucleus (PVN), ventromedial hypothalamus (VMH) and lateral hypothalamic area for CART, and the DMH, PVN and VMH for OB-Rb. We have therefore demonstrated that adult-like localization of gene expression for OB-Rb and key appetite regulatory neuropeptides is established in the ovine hypothalamus before birth. Thus, the fetus possesses a central appetite regulatory neural network with the potential to respond to changes in nutrient supply, which could impact on energy balance regulation both before and after birth.

  2. The effects of aging and chronic fluoxetine treatment on circadian rhythms and suprachiasmatic nucleus expression of neuropeptide genes and 5-HT1B receptors

    PubMed Central

    Duncan, Marilyn J.; Hester, James M.; Hopper, Jason A.; Franklin, Kathleen M.

    2010-01-01

    Age-related changes in circadian rhythms, including attenuation of photic phase shifts, are associated with changes in the central pacemaker in the suprachiasmatic nucleus (SCN). Aging decreases expression of mRNA for vasoactive intestinal peptide (VIP), a key neuropeptide for rhythm generation and photic phase shifts, and increases expression of serotonin transporters and 5-HT1B receptors, whose activation inhibits these phase shifts. Here we describe studies in hamsters showing that aging decreases SCN expression of mRNA for gastrin-releasing peptide, which also modulates photic phase resetting. Because serotonin innervation trophically supports SCN VIP mRNA expression, and serotonin transporters decrease extracellular serotonin, we predicted that chronic administration of the serotonin-selective reuptake inhibitor, fluoxetine, would attenuate the age-related changes in SCN VIP mRNA expression and 5-HT1B receptors. In situ hybridization studies showed that fluoxetine treatment does not alter SCN VIP mRNA expression, in either age group, at zeitgeber time (ZT)6 or 13 (ZT12 corresponds to lights off). However, receptor autoradiographic studies showed that fluoxetine prevents the age-related increase in SCN 5-HT1B receptors at ZT6, and decreases SCN 5-HT1B receptors in both ages at ZT13. Therefore, aging effects on SCN VIP mRNA and SCN 5-HT1B receptors are differentially regulated; the age-related increase in serotonin transporter sites mediates the latter but not the former. The studies also showed that aging and chronic fluoxetine treatment decrease total daily wheel running without altering the phase of the circadian wheel running rhythm, in contrast to previous reports of phase resetting by acute fluoxetine treatment. PMID:20525077

  3. Immunohistochemical and genomic evidence for the involvement of hypothalamic neuropeptide Y (NPY) in phenylpropranolamine-mediated appetite suppression.

    PubMed

    Hsieh, Yih-Shou; Hsu, Jeng-Dong; Yang, Shun-Fa; Kuo, Dong-Yih

    2004-12-01

    Phenylpropanolamine (PPA) is an appetite suppressant. The mechanism for the anorectic effect of PPA has been attributed to its action on the site of hypothalamic paraventriculum. Neuropeptide Y (NPY) is an appetite stimulant that is widely distributed in the site of hypothalamus. It is not clear whether hypothalamic NPY is involved in the anorectic action of PPA. This study was aimed to investigate the mechanism underlying the involvement of NPY gene in the anorectic action of PPA. Results revealed that PPA treatment in rats could decrease both NPY content and mRNA level in the hypothalamus. In addition, the expression of NPY immunoreactivity following PPA treatment was decreased in areas of hypothalamic arcuate nucleus, paraventricular nucleus and periventricular area using immunohistochemical staining, suggesting an involvement of NPYergic pathway in the action of PPA anorexia. Our results provided immunohistochemical and genomic evidence to suggest that PPA might reduce feeding by altering NPY gene expression.

  4. Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny.

    PubMed

    Younes-Rapozo, Viviane; Moura, Egberto G; Manhães, Alex C; Pinheiro, Cintia R; Santos-Silva, Ana Paula; de Oliveira, Elaine; Lisboa, Patricia C

    2013-08-01

    Maternal exposure to nicotine during lactation causes hyperleptinemia in the pups and, at adulthood, these animals are overweight and hyperleptinemic, while, in their hypothalamus, the leptin signaling pathway is reduced, evidencing a central leptin resistance. Then, we evaluated the expression of pro-opiomelanocortin (POMC), alpha-melanocyte stimulating hormone (α-MSH), cocaine and amphetamine-regulated transcript (CART), neuropeptide Y (NPY), agouti-related peptide (AgRP) and others in different hypothalamic nuclei in order to better understand the mechanisms underlying the obese phenotype observed in these animals at adulthood. On the 2nd postnatal day (P2), dams were subcutaneously implanted with osmotic minipumps releasing nicotine (NIC-6 mg/kg/day) or saline for 14 days. Offspring were killed in P180 and immunohistochemistry and Western blot analysis were carried out. Significance data had p<0.05. Adult NIC offspring showed more intense NPY staining in the paraventricular nucleus (PVN) (+21%) and increased number of POMC-positive cells in the: arcuate nucleus (+33%), as an increase in fiber density of α-MSH in PVN (+85%). However, the number of CART-positive cells was reduced in the PVN (-25%). CRH staining was more intense in NIC offspring (+136%). Orexins and AgRP were not altered. Thus, maternal nicotine exposure changes hypothalamic neuropeptides in the adult progeny that is partially compatible with leptin resistance.

  5. Forebrain Projections of Arcuate Neurokinin B Neurons Demonstrated by Anterograde Tract-Tracing and Monosodium Glutamate Lesions in the Rat

    PubMed Central

    Krajewski, Sally J.; Burke, Michelle C.; Anderson, Miranda J.; McMullen, Nathaniel T.; Rance, Naomi E.

    2010-01-01

    Neurokinin B (NKB) and kisspeptin receptor signaling are essential components of the reproductive axis. A population of neurons resides within the arcuate nucleus of the rat that expresses NKB, kisspeptin, dynorphin, NK3 receptors and estrogen receptor α. Here we investigate the projections of these neurons using NKB-immunocytochemistry as a marker. First, the loss of NKB-immunoreactive (ir) somata and fibers was characterized after ablation of the arcuate nucleus by neonatal injections of monosodium glutamate. Second, biotinylated dextran amine was injected into the arcuate nucleus and anterogradely labeled NKB-ir fibers were identified using dual-labeled immunofluorescence. Four major projection pathways are described: 1) Local projections within the arcuate nucleus bilaterally, 2) Projections to the median eminence including the lateral palisade zone, 3) Projections to a periventricular pathway extending rostrally to multiple hypothalamic nuclei, the septal region and BNST and dorsally to the dorsomedial nucleus and 4) Projections to a ventral hypothalamic tract to the lateral hypothalamus and medial forebrain bundle. The diverse projections provide evidence that NKB/kisspeptin/dynorphin neurons could integrate the reproductive axis with multiple homeostatic, behavioral and neuroendocrine processes. Interestingly, anterograde tract-tracing revealed NKB-ir axons originating from arcuate neurons terminating on other NKB-ir somata within the arcuate nucleus. Combined with previous studies, these experiments reveal a bilateral interconnected network of sex-steroid responsive neurons in the arcuate nucleus of the rat that express NKB, kisspeptin, dynorphin, NK3 receptors and ERα and project to GnRH terminals in the median eminence. This circuitry provides a mechanism for bilateral synchronization of arcuate NKB/kisspeptin/dynorphin neurons to modulate the pulsatile secretion of GnRH. PMID:20038444

  6. Dopamine D1 and D2 Receptor Immunoreactivities in the Arcuate-Median Eminence Complex and their Link to the Tubero-Infundibular Dopamine Neurons

    PubMed Central

    Romero-Fernandez, W.; Borroto-Escuela, D.O.; Vargas-Barroso, V.; Narváez, M.; Di Palma, M.; Agnati, L.F.; Sahd, J. Larriva

    2014-01-01

    Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially

  7. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.

    PubMed

    McClintick, Jeanette N; McBride, William J; Bell, Richard L; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J

    2015-02-01

    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system.

  8. Crustacean neuropeptides.

    PubMed

    Christie, Andrew E; Stemmler, Elizabeth A; Dickinson, Patsy S

    2010-12-01

    Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ-sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for understanding the general principles governing neural circuit functioning, including modulation by peptides. Here, we review the basic biology of crustacean neuropeptides, discuss methodologies currently driving their discovery, provide an overview of the known families, and summarize recent data on their control of physiology and behavior.

  9. Ethanol-Induced Increase of Agouti-Related Protein (AgRP) Immunoreactivity in the Arcuate Nucleus of the Hypothalamus of C57BL/6J, but not 129/SvJ, Inbred Mice

    PubMed Central

    Cubero, Inmaculada; Navarro, Montserrat; Carvajal, Francisca; Lerma-Cabrera, Jose Manuel; Thiele, Todd E.

    2011-01-01

    Background The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor, pro-opiomelanocortin (POMC). Previous research has shown that MC receptor (MCR) agonists reduce, and MCR antagonists increase, ethanol consumption in rats and mice. Consistently, genetic deletion of the endogenous MCR antagonist, agouti-related protein (AgRP), causes reductions of ethanol-reinforced lever pressing and binge-like ethanol drinking in C57BL/6J mice. Ethanol also has direct effects on the central MC system, as chronic exposure to an ethanol-containing diet causes significant reductions of α-melanocyte stimulating hormone (α-MSH) immunoreactivity in specific brain regions of Sprague-Dawley rats. Together, these observations suggest that the central MC system modulates neurobiological responses to ethanol. To further characterize the role of the MC system in responses to ethanol, here we compared AgRP and α-MSH immunoreactivity in response to an acute injection of saline or ethanol between high ethanol drinking C57BL/6J mice and moderate ethanol drinking 129/SvJ mice. Methods Mice received an intraperitoneal (i.p.) injection of ethanol (1.5 g/kg or 3.5 g/kg; mixed in 0.9% saline) or an equivolume of 0.9% saline. Two hours after injection, animals were sacrificed and their brains were processed for AgRP and α-MSH immunoreactivity. Results Results indicated that acute ethanol administration triggered a dose-dependent increase in AgRP immunoreactivity in the arcuate (ARC) of C57BL/6J mice, an effect that was not evident in the 129/SvJ strain. Although acute administration of ethanol did not influence α-MSH immunoreactivity, C57BL/6J mice had significantly greater overall α-MSH immunoreactivity in the ARC, dorsomedial, and lateral regions of the hypothalamus relative to the 129/SvJ strain. In contrast, C57BL/6J mice displayed significantly lower α-MSH immunoreactivity in the medial amygdala. Conclusions The results show that acute ethanol

  10. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    PubMed Central

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  11. Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons.

    PubMed

    Briggs, Dana I; Enriori, Pablo J; Lemus, Moyra B; Cowley, Michael A; Andrews, Zane B

    2010-10-01

    Circulating ghrelin is decreased in obesity, and peripheral ghrelin does not induce food intake in obese mice. We investigated whether ghrelin resistance was a centrally mediated phenomenon involving dysregulated neuropeptide Y (NPY) and agouti-related peptide (AgRP) circuits. We show that diet-induced obesity (DIO) (12 wk) suppresses the neuroendocrine ghrelin system by decreasing acylated and total plasma ghrelin, decreasing ghrelin and Goat mRNA in the stomach, and decreasing expression of hypothalamic GHSR. Peripheral (ip) or central (intracerebroventricular) ghrelin injection was able to induce food intake and arcuate nucleus Fos immunoreactivity in chow-fed but not high-fat diet-fed mice. DIO decreased expression of Npy and Agrp mRNA, and central ghrelin was unable to promote expression of these genes. Ghrelin did not induce AgRP or NPY secretion in hypothalamic explants from DIO mice. Injection of NPY intracerebroventricularly increased food intake in both chow-fed and high-fat diet-fed mice, indicating that downstream NPY/AgRP neural targets are intact and that defective NPY/AgRP function is a primary cause of ghrelin resistance. Ghrelin resistance in DIO is not confined to the NPY/AgRP neurons, because ghrelin did not stimulate growth hormone secretion in DIO mice. Collectively, our data suggests that DIO causes ghrelin resistance by reducing NPY/AgRP responsiveness to plasma ghrelin and suppressing the neuroendocrine ghrelin axis to limit further food intake. Ghrelin has a number of functions in the brain aside from appetite control, including cognitive function, mood regulation, and protecting against neurodegenerative diseases. Thus, central ghrelin resistance may potentiate obesity-related cognitive decline, and restoring ghrelin sensitivity may provide therapeutic outcomes for maintaining healthy aging.

  12. Introduction: Invertebrate Neuropeptides XIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  13. Introduction: Invertebrate Neuropeptides XV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the fifteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  14. Introduction: Invertebrate Neuropeptides XIV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  15. Introduction: Invertebrate Neuropeptides XVI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  16. Neuropeptide Y and leptin sensitivity is dependent on diet composition.

    PubMed

    van den Heuvel, J K; Eggels, L; van Rozen, A J; Luijendijk, M C M; Fliers, E; Kalsbeek, A; Adan, R A H; la Fleur, S E

    2014-06-01

    Rats on different free-choice (fc) diets for 1 week of either chow, saturated fat and liquid sugar (fcHFHS), chow and saturated fat (fcHF), or chow and liquid sugar (fcHS) have differential levels of neuropeptide Y (NPY) mRNA in the arcuate nucleus. Because these differences were not explained by plasma leptin levels but did predict subsequent feeding behaviour, in the present study, we first examined whether leptin sensitivity could explain these differences. Second, we focused on the role of NPY on feeding behaviour, and measured NPY mRNA levels and sensitivity to NPY after 4 weeks on the different choice diets. To determine leptin sensitivity, we measured food intake after i.p. leptin or vehicle injections in male Wistar rats subjected to the fcHFHS, fcHS, fcHF or Chow diets for 7 days. Next, we measured levels of arcuate nucleus NPY mRNA with in situ hybridisation in rats subjected to the choice diets for 4 weeks. Finally, we studied NPY sensitivity in rats subjected to the fcHFHS, fcHS, fcHF or Chow diet for 4 weeks by measuring food intake after administration of NPY or vehicle in the lateral ventricle. Leptin decreased caloric intake in rats on Chow, fcHS and fcHF but not in rats on the fcHFHS diet. After 4 weeks, rats on the fcHFHS diet remained hyperphagic, whereas fcHS and fcHF rats decreased caloric intake to levels similar to rats on Chow. By contrast to 1 week, after 4 weeks, levels of NPY mRNA were not different between the diet groups. Lateral ventricle administration of NPY resulted in higher caloric intake in fcHFHS rats compared to rats on the other choice diets or rats on Chow. Our data show that consuming a combination of saturated fat and liquid sugar results in leptin resistance and increased NPY sensitivity that is associated with persistent hyperphagia.

  17. Neuropeptide Y conjugated to saporin alters anxiety-like behavior when injected into the central nucleus of the amygdala or basomedial hypothalamus in BALB/cJ mice.

    PubMed

    Lyons, Angela M; Thiele, Todd E

    2010-12-01

    Neuropeptide Y (NPY) is a 36-amino-acid neuromodulator that is distributed throughout the central nervous system and has been implicated in a wide range of neurobiological responses including the integration of emotional behavior. The anxiolytic properties of NPY are modulated by NPY signaling in the hippocampus and in the central (CeA) and basolateral (BLA) nuclei of the amygdala. Recently, the neurotoxin saporin, when conjugated to NPY (NPY-SAP), was shown to selectively kill NPY receptor-expressing neurons and has been used as a tool to study the central NPY neurocircuitry involved with feeding behaviors. Here we determined if NPY-SAP can be used as a tool to study the central NPY neurocircuitry that modulates anxiety-like behaviors. BALB/cJ mice were given injection of either NPY-SAP or a control blank saporin (B-SAP) into the CeA or the basomedial hypothalamus (BMH) as a control injection site. The elevated zero maze test was used to assess anxiety-like behavior and NPY-SAP-induced lesions were verified using NPY Y1 receptor (Y1R) immunoreactivity (IR). Results showed that injection of NPY-SAP into the CeA site-specifically blunted Y1R IR in the CeA which was associated with a significant increase in anxiety-like behavior. Injection of NPY-SAP into the BMH, while locally blunting Y1R IR, promoted a compensatory increase of Y1R IR in the BLA and the CA3 region of the hippocampus which was associated with a significant reduction of anxiety-like behavior. The present set of experiments suggest that the NPY-SAP neurotoxin may be a useful tool for studying the NPY neurocircuitry that modulates anxiety-like behaviors.

  18. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats.

    PubMed

    Kamegai, J; Tamura, H; Shimizu, T; Ishii, S; Sugihara, H; Wakabayashi, I

    2001-11-01

    Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHS-R), was originally purified from the rat stomach. Like the synthetic growth hormone secretagogues (GHSs), ghrelin specifically releases growth hormone (GH) after intravenous administration. Also consistent with the central actions of GHSs, ghrelin-immunoreactive cells were shown to be located in the hypothalamic arcuate nucleus as well as the stomach. Recently, we showed that a single central administration of ghrelin increased food intake and hypothalamic agouti-related protein (AGRP) gene expression in rodents, and the orexigenic effect of this peptide seems to be independent of its GH-releasing activity. However, the effect of chronic infusion of ghrelin on food consumption and body weight and their possible mechanisms have not been elucidated. In this study, we determined the effects of chronic intracerebroventricular treatment with ghrelin on metabolic factors and on neuropeptide genes that are expressed in hypothalamic neurons that have been previously shown to express the GHS-R and to regulate food consumption. Chronic central administration of rat ghrelin (1 microg/rat every 12 h for 72 h) significantly increased food intake and body weight. However, it did not affect plasma insulin, glucose, leptin, or GH concentrations. We also found that chronic central administration of ghrelin increased both neuropeptide Y (NPY) mRNA levels (151.0 +/- 10.1% of saline-treated controls; P < 0.05) and AGRP mRNA levels (160.0 +/- 22.5% of saline-treated controls; P < 0.05) in the arcuate nucleus. Thus, the primary hypothalamic targets of ghrelin are NPY/AGRP-containing neurons, and ghrelin is a newly discovered orexigenic peptide in the brain and stomach.

  19. Neurotransmitters and neuropeptides in the baroreceptor reflex arc: connections between the nucleus of the solitary tract and the ventrolateral medulla oblongata in the rat.

    PubMed

    Palkovits, M; Mezey, E; Fodor, M; Ganten, D; Bahner, U; Geiger, H; Heidland, A

    1995-01-01

    The primary baroreceptor area (nucleus of the solitary tract-NTS) is anatomically interconnected with the rostral ("vasomotor area") and the caudal ("vasodepressor area") ventrolateral medulla by a well-defined arc of neuronal pathways. The chemical character and the direction of these pathways have been investigated with immunohistochemical and neurochemical techniques in intact and brainstem-operated rats. The transection of the neuronal arc resulted in an accumulation of tyrosine hydroxylase immunoreactivity in a small group of cells in the NTS adjacent to the area postrema, ipsilateral to the knife cut. Decreased angiotensinogen mRNA and atrial natriuretic peptide concentrations were measured in the ventrolateral medulla after the cut, and an accumulation of angiotensin II-immunoreactivity was found in neuronal perikarya in the ipsilateral NTS. Intracranial vagotomy caused marked depletions in glutamate levels in the subcommissural portion of the NTS and in the caudal ventrolateral medulla but nowhere else in the brainstem investigated including the rostral ventrolateral medulla.

  20. Distribution, parabrachial region projection, and coexistence of neuropeptide and catecholamine cells of the nucleus of the solitary tract in the pigeon.

    PubMed

    Berk, M L; Smith, S E; Mullins, L A

    1993-01-15

    The chemical nature of the cells of the nucleus of the solitary tract (NTS) that project to the parabrachial nucleus (PB) was investigated in the pigeon by the use of fluorescent bead retrograde tracer and immunofluorescence for the detection of substance P (SP), leucine-enkephalin (LENK), cholecystokinin (CCK), neurotensin (NT), somatostatin (SS), and tyrosine hydroxylase (TH). Cells immunoreactive for CCK were located in subnuclei lateralis dorsalis pars anterior (LDa) and medialis superficialis pars posterior, and caudal NTS (cNTS); 22-26.5% of these cells were double-labeled bilaterally. Immunoreactive SP cells were found in ventral NTS subnuclei; 24-25% of these cells were double-labeled bilaterally. Cells immunoreactive for LENK and NT were concentrated in the anterior NTS; 5.5-7.5% of the LENK cells were double-labeled bilaterally, while 11% (ipsilateral) and 21% (contralateral) of the NT immunoreactive cells were double-labeled. Many SS immunoreactive cells were found in peripherally located subnuclei; 5.5-6.5% of these cells were double-labeled bilaterally. Catecholamine cells were distributed in LDa, peripheral subnuclei, and cNTS; 23% of these cells were double-labeled ipsilaterally and 8.5% contralaterally. A two-color double-labeling immunofluorescence technique revealed many cells immunoreactive for both NT and LENK, only a rare cell immunoreactive for both SS and SP, and no cells immunoreactive for both TH and SP. Cells immunoreactive for SP, CCK, NT, and TH are major contributors to NTS projections to PB. The confinement of these substances to specific NTS subnuclei, which receive visceral sensory information from specific organs, may contribute to the chemical encoding of ascending visceral information.

  1. Relationship of the Chemokine, CXCL12, to Effects of Dietary Fat on Feeding-Related Behaviors and Hypothalamic Neuropeptide Systems

    PubMed Central

    Poon, Kinning; Barson, Jessica R.; Ho, Hui T.; Leibowitz, Sarah F.

    2016-01-01

    The intake of a high fat diet (HFD), in addition to stimulating orexigenic neuropeptides in the hypothalamus while promoting overeating and reducing locomotor behavior, is known to increase inflammatory mediators that modulate neuronal systems in the brain. To understand the involvement of chemokines in the effects of a HFD, we examined in rats whether HFD intake affects a specific chemokine, CXCL12, and its receptors, CXCR4 and CXCR7, in the hypothalamus together with the neuropeptides and whether CXCL12 itself acts similarly to a HFD in stimulating the neuropeptides and altering ingestion and locomotor behavior. Compared to low-fat chow, a HFD for 5 days significantly increased the expression of CXCL12 and its receptors, in both the paraventricular nucleus (PVN) where the neuropeptides enkephalin (ENK) and galanin were also stimulated and the perifornical lateral hypothalamus (PFLH) where orexin (OX) and melanin-concentrating hormone (MCH) were increased. In contrast, the HFD had no impact on expression of CXCL12 or its receptors in the arcuate nucleus (ARC) where the carbohydrate-related peptide, neuropeptide Y (NPY), was suppressed. Analysis of protein levels revealed a similar stimulatory effect of a HFD on CXCL12 levels in the PVN and PFLH, as well as in blood, and an increase in the number of CXCR4-positive cells in the PVN. In the ARC, in contrast, levels of CXCL12 and number of CXCR4-positive cells were too low to measure. When centrally administered, CXCL12 was found to have similar effects to a HFD. Injection of CXCL12 into the third cerebral ventricle immediately anterior to the hypothalamus significantly stimulated the ingestion of a HFD, reduced novelty-induced locomotor activity, and increased expression of ENK in the PVN where the CXCR4 receptors were dense. It had no impact, however, on NPY in the ARC or on OX and MCH in the PFLH where the CXCR4 receptors were not detected. These results, showing CXCL12 in the hypothalamus to be stimulated by a HFD

  2. Arcuate Na+,K+-ATPase senses systemic energy states and regulates feeding behavior through glucose-inhibited neurons.

    PubMed

    Kurita, Hideharu; Xu, Kai Y; Maejima, Yuko; Nakata, Masanori; Dezaki, Katsuya; Santoso, Putra; Yang, Yifei; Arai, Takeshi; Gantulga, Darambazar; Muroya, Shinji; Lefor, Alan K; Kakei, Masafumi; Watanabe, Eiju; Yada, Toshihiko

    2015-08-15

    Feeding is regulated by perception in the hypothalamus, particularly the first-order arcuate nucleus (ARC) neurons, of the body's energy state. However, the cellular device for converting energy states to the activity of critical neurons in ARC is less defined. We here show that Na(+),K(+)-ATPase (NKA) in ARC senses energy states to regulate feeding. Fasting-induced systemic ghrelin rise and glucose lowering reduced ATP-hydrolyzing activity of NKA and its substrate ATP level, respectively, preferentially in ARC. Lowering glucose concentration (LG), which mimics fasting, decreased intracellular NAD(P)H and increased Na(+) concentration in single ARC neurons that subsequently exhibited [Ca(2+)]i responses to LG, showing that they were glucose-inhibited (GI) neurons. Third ventricular injection of the NKA inhibitor ouabain induced c-Fos expression in agouti-related protein (AgRP) neurons in ARC and evoked neuropeptide Y (NPY)-dependent feeding. When injected focally into ARC, ouabain stimulated feeding and mRNA expressions for NPY and AgRP. Ouabain increased [Ca(2+)]i in single NPY/AgRP neurons with greater amplitude than in proopiomelanocortin neurons in ARC. Conversely, the specific NKA activator SSA412 suppressed fasting-induced feeding and LG-induced [Ca(2+)]i increases in ARC GI neurons. NPY/AgRP neurons highly expressed NKAα3, whose knockdown impaired feeding behavior. These results demonstrate that fasting, via ghrelin rise and LG, suppresses NKA enzyme/pump activity in ARC and thereby promotes the activation of GI neurons and NPY/AgRP-dependent feeding. This study identifies ARC NKA as a hypothalamic sensor and converter of metabolic states to key neuronal activity and feeding behaviour, providing a new target to treat hyperphagic obesity and diabetes.

  3. Reduced fasting-induced activation of hypothalamic arcuate neurons is associated with hyperleptinemia and increased leptin sensitivity in obese mice.

    PubMed

    Becskei, Csilla; Lutz, Thomas A; Riediger, Thomas

    2010-08-01

    Fasting increases c-Fos expression in neuropeptide Y (NPY) neurons of the hypothalamic arcuate nucleus (ARC) in lean, but not in hyperleptinemic mice with late-onset obesity (LOO). Although obesity is associated with leptin resistance, we hypothesized that under fasting conditions, leptin sensitivity might be restored and that hyperleptinemia may counteract the neuronal response to fasting. We investigated whether the reduced fasting response of ARC neurons in LOO is paralleled by an increase in leptin sensitivity, as measured by leptin-induced STAT-3 phosphorylation. To assess leptin's role in the modulation of the fasting-induced ARC activation, we investigated c-Fos responses and hormone and metabolite levels in hyperleptinemic diet-induced obese (DIO) and in leptin-deficient ob/ob mice. Leptin induced a stronger STAT-3 phosphorylation in fasted LOO and lean mice than in ad libitum-fed animals. Similar to LOO, hyperleptinemic DIO mice showed no c-Fos response after fasting, while ob/ob mice showed a stronger response than lean control mice. Mimicking hyperleptinemia by repeated leptin injections in lean mice during fasting attenuated the fasting-induced c-Fos expression. Our findings indicate that high leptin levels prevent the fasting-induced activation of ARC neurons in mice. Moreover, leptin sensitivity is dynamic in obese subjects and depends on the feeding status. During short-term increases in leptin sensitivity, e.g., during fasting, leptin signaling appears to be effective, even in hyperleptinemic obesity. As reflected by the blockade of the fasting-induced ARC activation, fasting seems to interfere with the responsiveness of the ARC to signals related to the status of energy intake.

  4. Hypothalamic neuropeptide systems and anticipatory weight change in Siberian hamsters.

    PubMed

    Adam, C L; Mercer, J G

    2001-01-01

    Seasonal animals are able both to programme changes in body weight in response to annual changes in photoperiod (anticipatory regulation) and to correct changes in body weight caused by imposed energetic demand (compensatory regulation). Experimental evidence from the Siberian hamster suggests that seasonally appropriate body weight is continually reset according to photoperiodic history, even when actual body weight is driven away from this target weight by manipulation of energy intake. These characteristics constitute the "sliding set point" of seasonal body weight regulation. To define the mechanisms and molecules underlying anticipatory body weight regulation, we are investigating the involvement of hypothalamic systems with an established role in the compensatory defence of body weight. Weight loss or restricted growth induced by short days (SD) results in low circulating leptin compared with long day (LD) controls. However, this chronic low leptin signal is read differently from acute low leptin resulting from food deprivation; leptin receptor gene expression in the hypothalamic arcuate nucleus (ARC) is lower in SD, whereas food deprivation increases expression levels, suggesting changes in sensitivity to leptin feedback. SD alterations in mRNA levels for a number of hypothalamic neuropeptide and receptor genes appear counter-intuitive for a SD body weight trajectory. However, early increases in ARC cocaine-and amphetamine-regulated transcript (CART) gene expression in SDs could be involved in driving body weight loss or growth restriction. The sites of photoperiod interaction with energy balance neuronal circuitry and the neurochemical encoding of body weight set point require full characterisation. Study of anticipatory regulation in seasonal animals offers new insight into body weight regulation across mammalian species, including man.

  5. Reproductive neuropeptides: prevalence of GnRH and KNDy neural signalling components in a model avian, gallus gallus.

    PubMed

    Joseph, Nerine T; Tello, Javier A; Bedecarrats, Gregoy Y; Millar, Robert P

    2013-09-01

    Diverse external and internal environmental factors are integrated in the hypothalamus to regulate the reproductive system. This is mediated through the pulsatile secretion of GnRH into the portal system to stimulate pituitary gonadotrophin secretion, which in turn regulates gonadal function. A single subpopulation of neurones termed 'KNDy neurones' located in the hypothalamic arcuate nucleus co-localise kisspeptin (Kiss), neurokinin B (NKB) and dynorphin (Dyn) and are responsive to negative feedback effects of sex steroids. The co-ordinated secretion from KNDy neurones appears to modulate the pulsatile release of GnRH, acting as a proximate pacemaker. This review briefly describes the neuropeptidergic control of reproduction in the avian class, highlighting the status of reproductive neuropeptide signalling systems homologous to those found in mammalian genomes. Genes encoding the GnRH system are complete in the chicken with similar roles to the mammalian counterparts, whereas genes encoding Kiss signalling components appear missing in the avian lineage, indicating a differing set of hypothalamic signals controlling avian reproduction. Gene sequences encoding both NKB and Dyn signalling components are present in the chicken genome, but expression analysis and functional studies remain to be completed. The focus of this article is to describe the avian complement of neuropeptidergic reproductive hormones and provide insights into the putative mechanisms that regulate reproduction in birds. These postulations highlight differences in reproductive strategies of birds in terms of gonadal steroid feedback systems, integration of metabolic signals and seasonality. Also included are propositions of KNDy neuropeptide gene silencing and plasticity in utilisation of these neuropeptides during avian evolution.

  6. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  7. Role of neuropeptide Y and proopiomelanocortin in fluoxetine-induced anorexia.

    PubMed

    Myung, Chang-Seon; Kim, Bom-Taeck; Choi, Si Ho; Song, Gyu Yong; Lee, Seok Yong; Jahng, Jeong Won

    2005-06-01

    Fluoxetine is an anorexic agent known to reduce food intake and weight gain. However, the molecular mechanism by which fluoxetine induces anorexia has not been well-established. We examined mRNA expression levels of neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the brain regions of rats using RT-PCR and in situ hybridization techniques after 2 weeks of administering fluoxetine daily. Fluoxetine persistently suppressed food intake and weight gain during the experimental period. The pair-fed group confirmed that the reduction in body weight in the fluoxetine treated rats resulted primarily from decreased food intake. RT-PCR analyses showed that mRNA expression levels of both NPY and POMC were markedly reduced by fluoxetine treatment in all parts of the brain examined, including the hypothalamus. POMC mRNA in situ signals were significantly decreased, NPY levels tended to increase in the arcuate nucleus (ARC) of fluoxetine treated rats (compared to the vehicle controls). In the pair-fed group, NPY mRNA levels did not change, but the POMC levels decreased (compared with the vehicle controls). These results reveal that the chronic administration of fluoxetine decreases expression levels in both NPY and POMC in the brain, and suggests that fluoxetine-induced anorexia may not be mediated by changes in the ARC expression of either NPY or POMC. It is possible that a fluoxetine raised level of 5-HT play an inhibitory role in the orectic action caused by a reduced expression of ARC POMC (alpha-MSH).

  8. Neuropeptides, Microbiota, and Behavior.

    PubMed

    Holzer, P

    2016-01-01

    The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota.

  9. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding

    PubMed Central

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-01-01

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. PMID:27503800

  10. Effects of long-term ingestion of aspartame on hypothalamic neuropeptide Y, plasma leptin and body weight gain and composition.

    PubMed

    Beck, Bernard; Burlet, Arlette; Max, Jean Pierre; Stricker-Krongrad, Alain

    The aim of this study was to determine the effects of the chronic ingestion of aspartame (ASP) on brain neuropeptide Y (NPY) concentrations, plasma hormones, food intake and body fat. Two groups of male Long-Evans rats, fed on a control (C) well-balanced diet, had to drink either a 0.1% ASP solution or water for a period of 14 weeks starting at weaning. Food intake and body weight were weekly recorded. At the end of the experiment, fat pads were sampled, leptin and insulin were measured in the plasma and NPY in several microdissected brain areas. Substituting ASP for water led to lower body weight (-8%; P<.004) and lower fat depot weight (-20%; P<.01) with no differences in energy intake or plasma insulin concentrations. Plasma leptin was significantly reduced by 34% (P<.05). Leptin concentrations were well-correlated with final body weight (r=.47; P<.025) and fat pad mass (r=.53; P<.01). NPY concentrations were 23% lower (P<.03) in the arcuate nucleus of ASP rats with no differences in other brain areas. The beneficial effects on body composition could be related to the decreased effects of NPY on lipid and energy metabolism, independently of insulin. The reasons for the NPY decrease (regulatory or toxicological) are not obvious. The constitutive amino acids of the ASP molecule might participate in the NPY regulation.

  11. Neuropeptide Y and Epilepsy

    PubMed Central

    Colmers, William F.; El Bahh, Bouchaïb

    2003-01-01

    It is a central tenet of the epilepsy field that seizures result from the imbalance of excitation over inhibition 1. The bulk of excitation is mediated by the neurotransmitter glutamate, whereas inhibition results mainly from the actions of γ-aminobutyric acid (GABA). In the neocortex and hippocampus, the intrinsic sources of GABA are the interneurons, which lately have come under intense scrutiny. It has become clear that a large number of distinct types of interneurons can be differentiated in part by the array of neuropeptides they coexpress (cf. 2). Evidence is emerging that the neuropeptide complement of interneurons plays important roles in the way that interneurons regulate excitability. Here we discuss what is known about the relation of one well-characterized neuropeptide, neuropeptide Y (NPY), and epilepsy in experimental animals and humans, and suggest possible roles for the receptors as targets for the control of excessive excitation in epilepsy. PMID:15309085

  12. Neuropeptides as synaptic transmitters.

    PubMed

    Salio, Chiara; Lossi, Laura; Ferrini, Francesco; Merighi, Adalberto

    2006-11-01

    Neuropeptides are small protein molecules (composed of 3-100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.

  13. Early weaning by maternal prolactin inhibition leads to higher neuropeptide Y and astrogliosis in the hypothalamus of the adult rat offspring.

    PubMed

    Younes-Rapozo, Viviane; Moura, Egberto G; Manhães, Alex C; Peixoto-Silva, Nayara; de Oliveira, Elaine; Lisboa, Patricia C

    2015-02-14

    The suppression of prolactin production with bromocriptine (BRO) in the last 3 d of lactation reduces milk yield (early weaning) and increases the transfer of leptin through the milk, causing hyperleptinaemia in pups. In adulthood, several changes occur in the offspring as a result of metabolic programming, including overweight, higher visceral fat mass, hypothyroidism, hyperglycaemia, insulin resistance, hyperleptinaemia and central leptin resistance. In the present study, we investigated whether overweight rats programmed by early weaning with maternal BRO treatment have hypothalamic alterations in adulthood. We analysed the expression of neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), pro-opiomelanocortin (POMC) and α-melanocyte-stimulating hormone (α-MSH) by immunohistochemistry in the following hypothalamic nuclei: medial and lateral arcuate nucleus (ARC); paraventricular nucleus (PVN); lateral hypothalamus (LH). Additionally, we sought to determine whether these programmed rats exhibited hypothalamic inflammation as indicated by astrogliosis. NPY immunostaining showed a denser NPY-positive fibre network in the ARC and PVN (+82% in both nuclei) of BRO offspring. Regarding the anorexigenic neuropeptides, no difference was found for CART, POMC and α-MSH. The number of astrocytes was higher in all the nuclei of BRO rats. The fibre density of glial fibrillary acidic protein was also increased in both medial and lateral ARC (6·06-fold increase and 9·13-fold increase, respectively), PVN (5·75-fold increase) and LH (2·68-fold increase) of BRO rats. We suggest that early weaning has a long-term effect on the expression of NPY as a consequence of developmental plasticity, and the presence of astrogliosis indicates hypothalamic inflammation that is closely related to overweight and hyperleptinaemia observed in our model.

  14. Changes in hypothalamic corticotropin-releasing hormone, neuropeptide Y, and proopiomelanocortin gene expression during chronic rapid eye movement sleep deprivation of rats.

    PubMed

    Koban, Michael; Le, Wei Wei; Hoffman, Gloria E

    2006-01-01

    Chronic rapid eye movement (paradoxical) sleep deprivation (REM-SD) of rats leads to two conspicuous pathologies: hyperphagia coincident with body weight loss, prompted by elevated metabolism. Our goals were to test the hypotheses that 1) as a stressor, REM-SD would increase CRH gene expression in the hypothalamus and that 2) to account for hyperphagia, hypothalamic gene expression of the orexigen neuropeptide Y (NPY) would increase, but expression of the anorexigen proopiomelanocortin (POMC) would decrease. Enforcement of REM-SD of adult male rats for 20 d with the platform (flowerpot) method led to progressive hyperphagia, increasing to approximately 300% of baseline; body weight steadily declined by approximately 25%. Consistent with changes in food intake patterns, NPY expression rapidly increased in the hypothalamic arcuate nucleus by d 5 of REM-SD, peaking at d 20; by contrast, POMC expression decreased progressively during REM-SD. CRH expression was increased by d 5, both in mRNA and ability to detect neuronal perikaryal staining in paraventricular nucleus with immunocytochemistry, and it remained elevated thereafter with modest declines. Taken together, these data indicate that changes in hypothalamic neuropeptides regulating food intake are altered in a manner consistent with the hyperphagia seen with REM-SD. Changes in CRH, although indicative of REM-SD as a stressor, suggest that the anorexigenic actions of CRH are ineffective (or disabled). Furthermore, changes in NPY and POMC agree with current models of food intake behavior, but they are opposite to their acute effects on peripheral energy metabolism and thermogenesis.

  15. Penultimate proline in neuropeptides.

    PubMed

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  16. Leptin regulated calcium channels of neuropeptide Y and proopiomelanocortin neurons by activation of different signal pathways.

    PubMed

    Wang, J-H; Wang, F; Yang, M-J; Yu, D-F; Wu, W-N; Liu, J; Ma, L-Q; Cai, F; Chen, J-G

    2008-09-22

    The fat-derived hormone leptin regulates food intake and body weight in part by modulating the activity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC). To investigate the electrophysiological activity of these neurons and their responses to leptin, we recorded whole-cell calcium currents on NPY and POMC neurons in the ARC of rats, which we identified by morphologic features and immunocytochemical identification at the end of recording. Leptin decreased the peak amplitude of high voltage-activated calcium currents (I(HVA)) in the isolated neurons from ARC, which were subsequently shown to be immunoreactive for NPY. The inhibition was prevented by pretreatment with inhibitors of Janus kinase 2 (JAK2) and mitogen-activated protein kinases (MAPK). In contrast, leptin increased the amplitude of I(HVA) in POMC-containing neurons. The stimulations of I(HVA) were inhibited by blockers of JAK2 and phosphatidylino 3-kinase (PI3-k). Both of these effects were counteracted by the L-type calcium channel antagonist nifedipine, suggesting that L-type calcium channels were involved in the regulation induced by leptin. These data indicated that leptin exerted opposite effects on these two classes of neurons. Leptin directly inhibited I(HVA) in NPY neurons via leptin receptor (LEPR) -JAK2-MAPK pathways, whereas evoked I(HVA) in POMC neurons by LEPR-JAK2-PI3-k pathways. These neural pathways and intracellular signaling mechanisms may play key roles in regulating NPY and POMC neuron activity, anorectic action of leptin and, thereby, feeding.

  17. Effects of early and late neonatal bromocriptine treatment on hypothalamic neuropeptides, dopaminergic reward system and behavior of adult rats.

    PubMed

    Carvalho, Janaine C; Lisboa, Patricia C; de Oliveira, Elaine; Peixoto-Silva, Nayara; Pinheiro, Cintia R; Fraga, Mabel C; Claudio-Neto, Sylvio; Franci, Celso R; Manhães, Alex C; Moura, Egberto G

    2016-06-14

    In humans, bromocriptine (BRO) is used as a treatment for many disorders, such as prolactinomas, even during pregnancy and lactation. Previously we demonstrated that maternal BRO treatment at the end of lactation programs offspring for obesity and several endocrine dysfunctions. Here, we studied the long-term effects of direct BRO injection in neonatal Wistar rats on their dopaminergic pathway, anxiety-like behavior and locomotor activity at adulthood. Male pups were either s.c. injected with BRO (0.1μg/once daily) from postnatal day (PN) 1 to 10 or from PN11 to 20. Controls were injected with methanol-saline. Body mass, food intake, neuropeptides, dopamine pathway parameters, anxiety-like behavior and locomotor activity were analyzed. The dopamine pathway was analyzed in the ventral tegmental area (VTA), nucleus accumbens (NAc) and dorsal striatum (DS) at PN180. PN1-10 BRO-treated animals had normal body mass and adiposity but lower food intake and plasma prolactin (PRL). This group had higher POMC in the arcuate nucleus (ARC), higher tyrosine hydroxylase (TH) in the VTA, higher dopa decarboxylase (DDc), higher D2R and μu-opioid receptor in the NAc. Concerning behavior in elevated plus maze (EPM), BRO-treated animals displayed more anxiety-like behaviors. PN11-20 BRO-treated showed normal body mass and adiposity but higher food intake and plasma PRL. This group had lower POMC in the ARC, lower TH in the VTA and lower DAT in the NAc. BRO-treated animals showed less anxiety-like behaviors in the EPM. Thus, neonatal BRO injection, depending on the time of treatment, leads to different long-term dysfunctions in the dopaminergic reward system, food intake behavior and anxiety levels, findings that could be partially due to PRL and POMC changes.

  18. Neuropeptides in cardiovascular control.

    PubMed

    Ganong, W F

    1984-12-01

    Neuropeptides can affect cardiovascular function in various ways. They can serve as cotransmitters in the autonomic nervous system; for example, vasoactive intestinal peptide (VIP) is released with acetylcholine and neuropeptide Y with norepinephrine from postganglionic neurons. Substance P and, presumably, other peptides can can affect cardiovascular function when released near blood vessels by antidromically conducted impulses in branches of stimulated sensory neurons. In the central nervous system, many different neuropeptides appear to function as transmitters or contransmittes in the neural pathways that regulate the cardiovascular system. In addition neuropeptides such as vasopressin and angiotensin II also circulate as hormones that are involved in cardiovascular control. Large doses of exogenous vasopressin are required to increase blood pressure in normal animals because the increase in total peripheral resistance produced by the hormones is accompanied by a decrease in cardiac output. However, studies with synthetic peptides that selectively antagonize the vasopressor action of vasopressin indicate that circulating vasopressin is important in maintaining blood pressure when animals are hypovolemic due to dehydration, haemorrhage or adrenocortical insufficiency. VIP dilates blood vessels and stimulates renin secretion by a direct action on the juxtaglomerular cells. Renin secretion is stimulated when the concentration of VIP in plasma exceeds 75 pmol/litre, and higher values are seen in a number of conditions. Neostigmine, a drug which increases the secretion of endogenous VIP, also increases renin secretion, and this increase is not blocked by renal denervation or propranolol. Thus, VIP may be a physiologically significant renin stimulating hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Reproduction Symposium: hypothalamic neuropeptides and the nutritional programming of puberty in heifers.

    PubMed

    Amstalden, M; Cardoso, R C; Alves, B R C; Williams, G L

    2014-08-01

    Nutrition during the juvenile period has a major impact on timing reproductive maturity in heifers. Restricted growth delays puberty, whereas elevated BW gain advances the onset of puberty. The initiation of high-frequency episodic release of GnRH and, consequently, LH during the peripubertal period is crucial for maturation of the reproductive axis and establishment of normal estrous cycles. Nutritional signals are perceived by metabolic-sensing cells in the hypothalamus, which interact with estradiol-receptive neurons to regulate the secretory activity of GnRH neurons. The orexigenic peptide, neuropeptide Y (NPY), and the anorexigenic peptide derived from the proopiomelanocortin (POMC) gene, melanocyte-stimulating hormone α (αMSH), are believed to be major afferent pathways that transmit inhibitory (NPY) and excitatory (αMSH) inputs to GnRH neurons. The neuropeptide kisspeptin is considered a major stimulator of GnRH secretion and has been shown to mediate estradiol's effect on GnRH neuronal activity. Kisspeptin may also integrate the neuronal pathways mediating the metabolic and gonadal steroid hormone control of gonadotropin secretion. Recent studies in our laboratories indicate that functional and structural changes in the pathways involving NPY, POMC, and kisspeptin neurons occur in response to high rates of BW gain during the juvenile period in heifers. Changes include regulation of expression in NPY, POMC, and KISS1 and plasticity in the neuronal projections to GnRH neurons and within the neuronal network comprising these cells. Moreover, an intricate pattern of differential gene expression in the arcuate nucleus of the hypothalamus occurs in response to feeding high concentrate diets that promote elevated BW gain. Genes involved include those controlling feeding intake and cell metabolism, neuronal growth and remodeling, and synaptic transmission. Characterizing the cellular pathways and molecular networks involved in the mechanisms that control the

  20. Projections from a single NUCB2/nesfatin-1 neuron in the paraventricular nucleus to different brain regions involved in feeding.

    PubMed

    Maejima, Yuko; Kumamoto, Kensuke; Takenoshita, Seiichi; Shimomura, Kenju

    2016-12-01

    The anorexigenic neuropeptide NEFA/nucleobindin 2 (NUCB2)/nesfatin-1-containing neurons are distributed in the brain regions involved in feeding regulation, including the hypothalamic paraventricular nucleus (PVN). Functionally, NUCB2/nesfatin-1 neurons in the PVN regulate feeding through the hypothalamus and brain stem. However, the neural network of PVN NUCB2/nesfatin-1 neurons has yet to be elucidated. Axon collateral branches allow individual neurons to target multiple neurons. In some cases, each target neuron can be located in different nuclei. Here we show that a single neuron in the PVN projects axonal collaterals to both the dorsal vagal complex (DVC) and the arcuate nucleus (ARC), which are important brain regions for feeding regulation. In this study, after injection of different retrograde tracers into the DVC and ARC, both tracer-labeled neurons were detected in the identical PVN neuron, indicating the axon collateral projections from the single PVN neuron to the DVC and ARC. Furthermore, immunohistochemical analysis revealed that approximately 50 % of the neurons with axon collateral projections from the PVN to the DVC and ARC were found to be NUCB2/nesfatin-1 neurons. Our data suggest that a single NUCB2/nesfatin-1 neuron in the PVN projects to both the ARC and the DVC with axon collateral projection. Although the physiological significance remains to be elucidated, our data offer new perspectives on NUCB2/nesfatin-1 function at the neural network level and food intake regulation.

  1. Differential effects of methamphetamine on expression of neuropeptide Y mRNA in hypothalamus and on serum leptin and ghrelin concentrations in ad libitum-fed and schedule-fed rats.

    PubMed

    Crowley, W R; Ramoz, G; Keefe, K A; Torto, R; Kalra, S P; Hanson, G R

    2005-01-01

    Relatively little is known concerning the interaction of psychostimulants with hypothalamic neuropeptide systems or metabolic hormones implicated in regulation of energy balance. The present studies tested whether methamphetamine alters the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP), two important orexigenic neuropeptides, or proopiomelanocortin (POMC), the precursor for the anorexigenic peptide alpha-melanocyte-stimulating hormone, or the secretion of leptin, insulin and ghrelin, concomitant with inhibition of food intake. Female rats were either fed ad libitum (AL) or placed on a scheduled feeding (SF) regimen, with access to food limited to 4 h/day. Administration of (+/-)-methamphetamine (7.5 mg/kg, i.p.) 2 h prior to food presentation significantly inhibited food intake in SF animals, but did not affect intake in AL animals. In a separate study, AL and SF animals were killed just prior to expected food presentation, and expression of NPY, AgRP and POMC mRNAs in hypothalamus was determined using in situ hybridisation; concentrations of leptin, insulin and ghrelin in serum were determined with radioimmunoassays. In saline-treated, SF controls, NPY and AgRP mRNA expression in arcuate nucleus and serum ghrelin were significantly elevated, and serum leptin and insulin were significantly reduced. Methamphetamine reversed the up-regulation of NPY mRNA expression observed in the SF condition, without affecting AgRP mRNA or the serum concentrations of metabolic hormones. However, in AL animals, NPY mRNA expression in arcuate and dorsomedial nuclei was significantly increased by methamphetamine, which also reduced serum leptin and insulin and increased serum ghrelin concentrations. These findings suggest that the inhibition of NPY expression in SF animals may be a mechanism underlying the anorexigenic effect of methamphetamine seen in this condition. The increase in NPY expression produced by methamphetamine in AL animals may be mediated by the

  2. Role of neuropeptides in cardiomyopathies.

    PubMed

    Dvorakova, Magdalena Chottova; Kruzliak, Peter; Rabkin, Simon W

    2014-11-01

    The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy. Several neuropeptides appear to alter regulation of genes involved in heart failure. Demonstration of an association is an essential first step in proving causality or establishing a role for a factor in a disease. Understanding the complexity of neuropeptide function should be helpful in establishing new or optimal therapeutic strategies for the treatment of heart failure in cardiomyopathies.

  3. Median Arcuate Ligament Syndrome in a patient with Crohn's disease

    PubMed Central

    Sturiale, Alessandro; Alemanno, Giovanni; Giudici, Francesco; Addasi, Rami; Bellucci, Francesco; Tonelli, Francesco

    2013-01-01

    INTRODUCTION The Median Arcuate Ligament Syndrome is a rare condition characterized by postprandial abdominal pain, bowel function disorder and weight loss. We report the first case to our knowledge of Crohn's disease and Median Arcuate Ligament Syndrome. PRESENTATION OF CASE The patient was a 33 year-old female with a previous diagnosis of Crohn's disease. Acute postprandial abdominal pain affected the patient every day; she was, therefore, referred to US-Doppler and magnetic resonance angiography of the abdominal vessels and received a diagnosis of Median Arcuate Ligament Syndrome. Consequently, the patient was surgically treated, releasing the vascular compression. After the operation, she reported a complete relief from postprandial pain which was one of her major concerns. Subocclusive symptoms occurred after six months due to the inflammatory reactivation of the terminal ileitis. DISCUSSION The diagnosis of Median Arcuate Ligament Syndrome is mainly based on the exclusion of other intestinal disorders but it should be always confirmed using noninvasive tests such as US-Doppler, angio-CT or magnetic resonance angiography. CONCLUSION This case demonstrates that the Median Arcuate Ligament Syndrome could be the major cause of symptoms, even in presence of other abdominal disorders. PMID:23500743

  4. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity

    PubMed Central

    Beck, B

    2006-01-01

    Neuropeptide Y (NPY) is one the most potent orexigenic peptides found in the brain. It stimulates food intake with a preferential effect on carbohydrate intake. It decreases latency to eat, increases motivation to eat and delays satiety by augmenting meal size. The effects on feeding are mediated through at least two receptors, the Y1 and Y5 receptors. The NPY system for feeding regulation is mostly located in the hypothalamus. It is formed of the arcuate nucleus (ARC), where the peptide is synthesized, and the paraventricular (PVN), dorsomedial (DMN) and ventromedial (VMN) nuclei and perifornical area where it is active. This activity is modulated by the hindbrain and limbic structures. It is dependent on energy availability, e.g. upregulation with food deprivation or restriction, and return to baseline with refeeding. It is also sensitive to diet composition with variable effects of carbohydrates and fats. Leptin signalling and glucose sensing which are directly linked to diet type are the most important factors involved in its regulation. Absence of leptin signalling in obesity models due to gene mutation either at the receptor level, as in the Zucker rat, the Koletsky rat or the db/db mouse, or at the peptide level, as in ob/ob mouse, is associated with increased mRNA abundance, peptide content and/or release in the ARC or PVN. Other genetic obesity models, such as the Otsuka–Long–Evans–Tokushima Fatty rat, the agouti mouse or the tubby mouse, are characterized by a diminution in NPY expression in the ARC nucleus and by a significant increase in the DMN. Further studies are necessary to determine the exact role of NPY in these latter models. Long-term exposure to high-fat or high-energy palatable diets leads to the development of adiposity and is associated with a decrease in hypothalamic NPY content or expression, consistent with the existence of a counter-regulatory mechanism to diminish energy intake and limit obesity development. On the other hand, an

  5. The Role of the Arcuate Fasciculus in Conduction Aphasia

    ERIC Educational Resources Information Center

    Bernal, Byron; Ardila, Alfredo

    2009-01-01

    In aphasia literature, it has been considered that a speech repetition defect represents the main constituent of conduction aphasia. Conduction aphasia has frequently been interpreted as a language impairment due to lesions of the arcuate fasciculus (AF) that disconnect receptive language areas from expressive ones. Modern neuroradiological…

  6. Increase of Long-Term ‘Diabesity’ Risk, Hyperphagia, and Altered Hypothalamic Neuropeptide Expression in Neonatally Overnourished ‘Small-For-Gestational-Age’ (SGA) Rats

    PubMed Central

    Schellong, Karen; Neumann, Uta; Rancourt, Rebecca C.; Plagemann, Andreas

    2013-01-01

    Background Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and ‘diabesity’ risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. Methods and Findings By rearing in normal (NL) vs. small litters (SL), small-for-gestational-age (SGA) rats were neonatally exposed to either normal (SGA-in-NL) or over-feeding (SGA-in-SL), and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL). SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60), as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05), and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern ‘westernized’ lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05). Lasercapture microdissection (LMD)-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC) revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc) in SGA-in-SL rats (p<0.05). Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy), agouti-related-peptide (Agrp) and galanin (Gal)) was not significantly altered. In essence, the ‘orexigenic index’, proposed here as a neuroendocrine ‘net-indicator’, was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01), correlated to food intake (p<0.05). Conclusion Adult SGA rats developed increased ‘diabesity’ risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal

  7. Mapping of Kisspeptin Receptor mRNA in the Whole Rat Brain and its Co-Localisation with Oxytocin in the Paraventricular Nucleus.

    PubMed

    Higo, S; Honda, S; Iijima, N; Ozawa, H

    2016-04-01

    The neuropeptide kisspeptin and its receptor play an essential role in reproduction as a potent modulator of the gonadotrophin-releasing hormone (GnRH) neurone. In addition to its reproductive function, kisspeptin signalling is also involved in extra-hypothalamic-pituitary-gonadal (HPG) axis systems, including oxytocin and arginine vasopressin (AVP) secretion. By contrast to the accumulating information for kisspeptin neurones and kisspeptin fibres, the histological distribution and function of the kisspeptin receptor in the rat brain remain poorly characterised. Using in situ hybridisation combined with immunofluorescence, the present study aimed to determine the whole brain map of Kiss1r mRNA (encoding the kisspeptin receptor), and to examine whether oxytocin or AVP neurones express Kiss1r. Neurones with strong Kiss1r expression were observed in several rostral brain areas, including the olfactory bulb, medial septum, diagonal band of Broca and throughout the preoptic area, with the most concentrated population being around 0.5 mm rostral to the bregma. Co-immunofluorescence staining revealed that, in these rostral brain areas, the vast majority of the Kiss1r-expressing neurones co-expressed GnRH. Moderate levels of Kiss1r mRNA were also noted in the rostral periventricular area, paraventricular nucleus (PVN), and throughout the arcuate nucleus. Relatively weak Kiss1r expression was observed in the supraoptic nucleus and supramammillary nuclei. Moderate to weak expression of Kiss1r was also observed in several regions in the midbrain, including the periaqueductal gray and dorsal raphe nucleus. We also examined whether oxytocin and AVP neurones in the PVN co-express Kiss1r. Immunofluorescence revealed the co-expression of Kiss1r in a subset of the oxytocin neurones but not in the AVP neurones in the PVN. The present study provides a fundamental anatomical basis for further examination of the kisspeptin signalling system in the extra-HPG axis, as well as in

  8. Interaction between neuropeptide Y and noradrenaline on central catecholamine neurons.

    PubMed

    Illes, P; Regenold, J T

    1990-03-01

    Despite their widespread occurrence in the central nervous system, interactions between co-localized transmitters and their receptors remain poorly understood. Noradrenergic neurons of the nucleus locus coeruleus contain the peptide co-transmitter neuropeptide Y (refs 1,2). In locus coeruleus cells, stimulation of alpha2-adrenoceptors 3,4 or opioid mu-receptors 5,6 increases a potassium conductance and thereby leads to hyperpolarization and inhibition of spontaneous firing. Coupling between these receptors and the inward rectifying K+ channels involves a pertussis toxin-sensitive GTP-binding protein (Gi or Go)7. Here we investigate whether the neuropeptide Y and alpha2-receptors of locus coeruleus neurons interact with one another. When administered alone, neuropeptide Y reduces the discharge of action potentials, probably by increasing the permeability of the membrane to potassium ions through the activation of a G protein; this effect is reduced in the presence of alpha2-adrenoceptor antagonists. Moreover, the peptide selectively increases the hyperpolarizing effect of alpha2-agonists, but does not enhance responses to opioid mu-agonists. We suggest that noradrenaline and its co-transmitter neuropeptide Y stimulate separate receptors, which influence each other in a specific way.

  9. Anatomical Properties of the Arcuate Fasciculus Predict Phonological and Reading Skills in Children

    PubMed Central

    Yeatman, Jason D.; Dougherty, Robert F.; Rykhlevskaia, Elena; Sherbondy, Anthony J.; Deutsch, Gayle K.; Wandell, Brian A.; Ben-Shachar, Michal

    2011-01-01

    For more than a century, neurologists have hypothesized that the arcuate fasciculus carries signals that are essential for language function; however, the relevance of the pathway for particular behaviors is highly controversial. The primary objective of this study was to use diffusion tensor imaging to examine the relationship between individual variation in the microstructural properties of arcuate fibers and behavioral measures of language and reading skills. A second objective was to use novel fiber-tracking methods to reassess estimates of arcuate lateralization. In a sample of 55 children, we found that measurements of diffusivity in the left arcuate correlate with phonological awareness skills and arcuate volume lateralization correlates with phonological memory and reading skills. Contrary to previous investigations that report the absence of the right arcuate in some subjects, we demonstrate that new techniques can identify the pathway in every individual. Our results provide empirical support for the role of the arcuate fasciculus in the development of reading skills. PMID:21568636

  10. Neuropeptide GPCRs in C. elegans

    PubMed Central

    Frooninckx, Lotte; Van Rompay, Liesbeth; Temmerman, Liesbet; Van Sinay, Elien; Beets, Isabel; Janssen, Tom; Husson, Steven J.; Schoofs, Liliane

    2012-01-01

    Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm’s complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans. PMID:23267347

  11. Mesolimbic neuropeptide W coordinates stress responses under novel environments.

    PubMed

    Motoike, Toshiyuki; Long, Jeffrey M; Tanaka, Hirokazu; Sinton, Christopher M; Skach, Amber; Williams, S Clay; Hammer, Robert E; Sakurai, Takeshi; Yanagisawa, Masashi

    2016-05-24

    Neuropeptide B (NPB) and neuropeptide W (NPW) are endogenous neuropeptide ligands for the G protein-coupled receptors NPBWR1 and NPBWR2. Here we report that the majority of NPW neurons in the mesolimbic region possess tyrosine hydroxylase immunoreactivity, indicating that a small subset of dopaminergic neurons coexpress NPW. These NPW-containing neurons densely and exclusively innervate two limbic system nuclei in adult mouse brain: the lateral bed nucleus of the stria terminalis and the lateral part of the central amygdala nucleus (CeAL). In the CeAL of wild-type mice, restraint stress resulted in an inhibition of cellular activity, but this stress-induced inhibition was attenuated in the CeAL neurons of NPW(-/-) mice. Moreover, the response of NPW(-/-) mice to either formalin-induced pain stimuli or a live rat (i.e., a potential predator) was abnormal only when they were placed in a novel environment: The mice failed to show the normal species-specific self-protective and aversive reactions. In contrast, the behavior of NPW(-/-) mice in a habituated environment was indistinguishable from that of wild-type mice. These results indicate that the NPW/NPBWR1 system could play a critical role in the gating of stressful stimuli during exposure to novel environments.

  12. Neuropeptide Y regulation of LHRH release in the median eminence: immunocytochemical and physiological evidence in hens.

    PubMed

    Contijoch, A M; Malamed, S; McDonald, J K; Advis, J P

    1993-01-01

    It has been suggested that hypothalamic median eminence (ME) might be a control site for luteinizing hormone-releasing hormone (LHRH) release. Thus, stimulatory and/or inhibitory inputs acting at this site might be involved in regulating LHRH release from the ME and, therefore, luteinizing hormone (LH) release from the anterior pituitary. Since a role for neuropeptide Y (NPY) on LH release has been suggested, we have hypothesized that NPY might act in the ME to control preovulatory LHRH release in hens. To examine this possibility we have determined: (a) the immunocytochemical distribution of LHRH and NPY in the ME of the hen, (b) the basal and NPY-stimulated release of LHRH in vitro from the ME of hens undergoing a natural or a premature preovulatory surge of LH, and (c) the tissue content of LHRH and NPY in microdissected MEs, at various times before and during a natural or a premature preovulatory surge of LH. A potential role for NPY on LHRH release in the ME is suggested for the following reasons. (a) There are opportunities for synaptic interactions between NPY and LHRH-containing axons at this site. LHRH-containing cell bodies localized in the anterior hypothalamus/medial preoptic area project to the ME. NPY-containing perikarya, concentrated in the ventromedial aspect of the arcuate nucleus, might contact LHRH processes going to the ME and/or might themselves send axons to the ME, (b) Addition of NPY to the incubation media increases LHRH release from microdissected ME tissue of hens killed at the time of the natural preovulatory surge of LH, but not in hens killed 7 h before the occurrence of this surge. However, the stimulatory effect of NPY on LHRH release can be induced at this latter time when a premature LH surge is elicited. While the natural preovulatory surge of LH occurs 4 h before the second ovulation in a sequence (C2 ovulation), administration of progesterone (P4) 10-14 h before the expected natural C2 ovulation advances the natural LH surge by

  13. Neuropeptide Y and sleep.

    PubMed

    Dyzma, Michal; Boudjeltia, Karim Z; Faraut, Brice; Kerkhofs, Myriam

    2010-06-01

    Neuropeptide Y (NPY), a 36-amino-acid peptide from the pancreatic polypeptide family, is one of the more abundant peptides in the central nervous system. It acts as a neurohormone and as a neuromodulator. NPY is widely distributed in the brain, particularly the hypothalamus, the amygdala, the locus coeruleus and the cerebral cortex. At least six NPY receptors subtypes have been identified. NPY is involved in the regulation of several physiological functions such as food intake, hormonal release, circadian rhythms, cardiovascular disease, thermoregulation, stress response, anxiety and sleep. Sleep promoting effects of NPY as well as wakefulness effects of NPY were found in animals, depending on the site of injection as well as on the functional state of the structure. In humans, NPY was found to have hypnotic properties, possibly acting as a physiological antagonist of corticotropin-releasing hormone (CRH). In conclusion, NPY participates in sleep regulation in humans, particularly in the timing of sleep onset and may as such play a role in the integration of sleep regulation, food intake and metabolism.

  14. Brain clock driven by neuropeptides and second messengers

    NASA Astrophysics Data System (ADS)

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  15. Brain clock driven by neuropeptides and second messengers.

    PubMed

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  16. Cloning and expression of a novel neuropeptide Y receptor.

    PubMed

    Weinberg, D H; Sirinathsinghji, D J; Tan, C P; Shiao, L L; Morin, N; Rigby, M R; Heavens, R H; Rapoport, D R; Bayne, M L; Cascieri, M A; Strader, C D; Linemeyer, D L; MacNeil, D J

    1996-07-12

    The neuropeptide Y family of peptides, which includes neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP), are found in the central and peripheral nervous system and display a wide array of biological activities. These actions are believed to be mediated through pharmacologically distinct G protein-coupled receptors, and, to date, three members of the NPY receptor family have been cloned. In this study we describe the cloning and expression of a novel NPY receptor from mouse genomic DNA. This receptor, designated NPY Y5, shares 60% amino acid identity to the murine NPY Y1 receptor. The pharmacology of this novel receptor resembles that of the NPY Y1 receptor and is distinct from that described for the NPY Y2, Y3, and Y4 receptors. In situ hybridization of mouse brain sections reveals expression of this receptor within discrete regions of the hypothalamus including the suprachiasmatic nucleus, anterior hypothalamus, bed nucleus stria terminalis, and the ventromedial nucleus with no localization apparent elsewhere in the brain.

  17. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice

    PubMed Central

    Gotthardt, Juliet D.; Verpeut, Jessica L.; Yeomans, Bryn L.; Yang, Jennifer A.; Yasrebi, Ali; Bello, Nicholas T.

    2016-01-01

    Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%–52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%–13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%–42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%–60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%–32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%–75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy. PMID:26653760

  18. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice.

    PubMed

    Gotthardt, Juliet D; Verpeut, Jessica L; Yeomans, Bryn L; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A; Bello, Nicholas T

    2016-02-01

    Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.

  19. Anorexia in human and experimental animal models: physiological aspects related to neuropeptides.

    PubMed

    Yoshimura, Mitsuhiro; Uezono, Yasuhito; Ueta, Yoichi

    2015-09-01

    Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.

  20. Nematode neuropeptides as transgenic nematicides.

    PubMed

    Warnock, Neil D; Wilson, Leonie; Patten, Cheryl; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2017-02-01

    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  1. Nematode neuropeptides as transgenic nematicides

    PubMed Central

    Patten, Cheryl; Fleming, Colin C.; Maule, Aaron G.

    2017-01-01

    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars. PMID:28241060

  2. Epigenetic control of cancer by neuropeptides

    PubMed Central

    Galoian, Karina; Patel, Parthik

    2017-01-01

    Neuropeptides act as neurohormones, neurotransmitters and/or neuromodulators. Neuropeptides maintain physiological homeostasis and are paramount in molecular mechanisms of disease progression and regulation, including in cancer. Neuropeptides, by their definition, originate and are secreted from the neuronal cells, they are able to signal to neighboring cells or are released into the blood flow, if they act as neurohormones. The majority of neuropeptides exert their functions through G protein-coupled receptors, with certain exceptions. Although previous studies indicate that neuropeptides function in supporting proliferation of malignant cells in many types of solid tumor, the antitumorigenic action of the neuropeptides and their receptors, for example, in gastric cancers and chondrosarcoma, were also reported. It is known that epigenetically modified chromatin regulates molecular mechanisms involved in gene expression and malignant progression. The epigenetic modifications are genetically heritable, although they do not cause changes in DNA sequence. DNA methylation, histone modifications and miRNA expression are subject to those modifications. While there is substantial data on epigenetic regulation of neuropeptides, the epigenetic control of cancer by neuropeptides is considered to be uncharted territory. The aim of the current review is to describe the involvement of neuropeptides in the epigenetic machinery of cancer based on data obtained from our laboratory and from other authors. PMID:28123699

  3. Epigenetic control of cancer by neuropeptides.

    PubMed

    Galoian, Karina; Patel, Parthik

    2017-01-01

    Neuropeptides act as neurohormones, neurotransmitters and/or neuromodulators. Neuropeptides maintain physiological homeostasis and are paramount in molecular mechanisms of disease progression and regulation, including in cancer. Neuropeptides, by their definition, originate and are secreted from the neuronal cells, they are able to signal to neighboring cells or are released into the blood flow, if they act as neurohormones. The majority of neuropeptides exert their functions through G protein-coupled receptors, with certain exceptions. Although previous studies indicate that neuropeptides function in supporting proliferation of malignant cells in many types of solid tumor, the antitumorigenic action of the neuropeptides and their receptors, for example, in gastric cancers and chondrosarcoma, were also reported. It is known that epigenetically modified chromatin regulates molecular mechanisms involved in gene expression and malignant progression. The epigenetic modifications are genetically heritable, although they do not cause changes in DNA sequence. DNA methylation, histone modifications and miRNA expression are subject to those modifications. While there is substantial data on epigenetic regulation of neuropeptides, the epigenetic control of cancer by neuropeptides is considered to be uncharted territory. The aim of the current review is to describe the involvement of neuropeptides in the epigenetic machinery of cancer based on data obtained from our laboratory and from other authors.

  4. Embolization in a Patient with Ruptured Anterior Inferior Pancreaticoduodenal Arterial Aneurysm with Median Arcuate Ligament Syndrome

    SciTech Connect

    Ogino, Hiroyuki; Sato, Yozo; Banno, Tatsuo; Arakawa, Toshinao; Hara, Masaki

    2002-08-15

    In median arcuate ligament syndrome, the root of the celiac artery is compressed and narrowed by the median arcuate ligament of the diaphragm during expiration, causing abdominal angina.Aneurysm may be formed in arteries of the pancreas and duodenum due toa chronic increase in blood flow from the superior mesenteric artery into the celiac arterial region. We report a patient saved by embolization with coils of ruptured aneurysm that developed with markedly dilated anterior inferior pancreaticoduodenal artery due to median arcuate ligament syndrome.

  5. Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation.

    PubMed

    Cservenák, Melinda; Szabó, Éva R; Bodnár, Ibolya; Lékó, András; Palkovits, Miklós; Nagy, György M; Usdin, Ted B; Dobolyi, Arpád

    2013-12-01

    Nursing has important physiological and psychological consequences on mothers during the postpartum period. Tuberoinfundibular peptide of 39 residues (TIP39) may contribute to its effects on prolactin release and maternal motivation. Since TIP39-containing fibers and the receptor for TIP39, the parathyroid hormone 2 receptor (PTH2 receptor) are abundant in the arcuate nucleus and the medial preoptic area, we antagonized TIP39 action locally to reveal its actions. Mediobasal hypothalamic injection of a virus encoding an antagonist of the PTH2 receptor markedly decreased basal serum prolactin levels and the suckling-induced prolactin release. In contrast, injecting this virus into the preoptic area had no effect on prolactin levels, but did dampen maternal motivation, judged by reduced time in a pup-associated cage during a place preference test. In support of an effect of TIP39 on maternal motivation, we observed that TIP39 containing fibers and terminals had the same distribution within the preoptic area as neurons expressing Fos in response to suckling. Furthermore, TIP39 terminals closely apposed the plasma membrane of 82% of Fos-ir neurons. Retrograde tracer injected into the arcuate nucleus and the medial preoptic area labeled TIP39 neurons in the posterior intralaminar complex of the thalamus (PIL), indicating that these cells but not other groups of TIP39 neurons project to these hypothalamic regions. We also found that TIP39 mRNA levels in the PIL markedly increased around parturition and remained elevated throughout the lactation period, demonstrating the availability of the peptide in postpartum mothers. Furthermore, suckling, but not pup exposure without physical contact, increased Fos expression by PIL TIP39 neurons. These results indicate that suckling activates TIP39 neurons in the PIL that affect prolactin release and maternal motivation via projections to the arcuate nucleus and the preoptic area, respectively.

  6. Arcuate Src activation-induced phosphorylation of NR2B NMDA subunit contributes to inflammatory pain in rats.

    PubMed

    Xu, Longsheng; Pan, Yanyan; Zhu, Qi; Gong, Shan; Tao, Jin; Xu, Guang-Yin; Jiang, Xinghong

    2012-12-01

    The tyrosine kinases of Src family play an important role in the central sensitization following peripheral inflammation. However, whether the Src family in the arcuate nucleus (ARC) of mediobasal hypothalamus is involved in central sensitization remains unknown. The aim of this study was to investigate the role and mechanisms of tyrosine kinases of Src family in N-methyl-d-aspartate (NMDA) receptor activity in the ARC following peripheral inflammation. Peripheral inflammation was induced by unilateral injection of complete Freund's adjuvant (CFA) into rat hindpaw. The neuronal activities of the ARC were recorded using electrophysiological field recording from the in vitro mediobasal hypothalamic slices from control and CFA rats. Expression of total and phosphorylated Src and NR2B subunit protein was analyzed by Western blot and immuoprecipitation. Our results showed that CFA injection resulted in an increase in mechanical and thermal sensitivity, which was partially blocked by neonatal monosodium glutamate treatment. CFA injection also enhanced spontaneous firings of ARC neurons, which were reversed by the NMDA receptor NR2B subunit specific antagonist Ro25-6981 and by PP2, an Src family tyrosine kinase inhibitor. In addition, peripheral inflammation enhanced Src phosphorylation and NMDA receptor NR2B subunit phosphorylation without alteration of total NR2B subunit expression in the ARC. Peripheral inflammation also increased the association of NR2B protein with p-Src protein in the ARC. Administration of PP2 blocked the upregulation of NR2B phosphorylation induced by CFA injection. Taken together, our present results suggest that the arcuate Src activation-induced tyrosine phosphorylation of NR2B NMDA subunit may contribute to inflammatory pain.

  7. Learning to read improves the structure of the arcuate fasciculus.

    PubMed

    Thiebaut de Schotten, Michel; Cohen, Laurent; Amemiya, Eduardo; Braga, Lucia W; Dehaene, Stanislas

    2014-04-01

    The acquisition of literacy results from an effortful learning process that leads to functional changes in several cortical regions. We explored whether learning to read also leads to anatomical changes within the left intrahemispheric white matter pathways that interconnect these regions. Using diffusion tensor imaging tractography, we compared illiterates with ex-illiterates who learned to read during adulthood and literates who learned to read during their childhood. Literacy related to an increase in fractional anisotropy and a decrease in perpendicular diffusivity in the temporo-parietal portion of the left arcuate fasciculus. The microstructure within this pathway correlated with the reading performance and the degree of functional activation within 2 dominant brain regions involved in reading: The Visual Word Form Area in response to letter strings, and the posterior superior temporal cortex in response to spoken language. Thus, the acquisition of literacy is associated with a reinforcement of left temporo-parietal connections whose microstructure predicts overall reading performance and the functional specialization of the Visual Word Form Area. This anatomical magnetic resonance imaging marker may be useful to predict developmental reading disorders.

  8. The direct segment of the arcuate fasciculus is predictive of longitudinal reading change.

    PubMed

    Gullick, Margaret M; Booth, James R

    2015-06-01

    Structural coherence across the arcuate fasciculus has previously been related to reading skill, but the arcuate may be divisible into distinct subtracts which support different functions. Here, we examine longitudinal data from 30 children between the ages of 8 and 14 to determine whether initial coherence in any of the arcuate's subsections is predictive of changes in reading across a longitudinal interval of approximately three years. The arcuate was divided using probabilistic tractography; mean fractional anisotropy across each subtract was extracted for each participant. Time 1 to Time 2 change in reading skill (identification, fluency score average) was significantly and uniquely predicted by only direct fronto-temporal arcuate segment coherence. Participants with lower direct segment FA demonstrated decreases in reading scores, potentially reflecting lessened improvements due to continued inefficient processing. These results were consistent in the older and younger halves of the sample. As such, we demonstrate that it is specifically the direct segment of the arcuate that may support and be predictive of reading skill both initially and longitudinally across development.

  9. Hypothalamic neuropeptides and the regulation of appetite.

    PubMed

    Parker, Jennifer A; Bloom, Stephen R

    2012-07-01

    Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.

  10. Signaling by Drosophila capa neuropeptides.

    PubMed

    Davies, Shireen-A; Cabrero, Pablo; Povsic, Manca; Johnston, Natalie R; Terhzaz, Selim; Dow, Julian A T

    2013-07-01

    The capa peptide family, originally identified in the tobacco hawk moth, Manduca sexta, is now known to be present in many insect families, with increasing publications on capa neuropeptides each year. The physiological actions of capa peptides vary depending on the insect species but capa peptides have key myomodulatory and osmoregulatory functions, depending on insect lifestyle, and life stage. Capa peptide signaling is thus critical for fluid homeostasis and survival, making study of this neuropeptide family attractive for novel routes for insect control. In Dipteran species, including the genetically tractable Drosophila melanogaster, capa peptide action is diuretic; via elevation of nitric oxide, cGMP and calcium in the principal cells of the Malpighian tubules. The identification of the capa receptor (capaR) in several insect species has shown this to be a canonical GPCR. In D. melanogaster, ligand-activated capaR activity occurs in a dose-dependent manner between 10(-6) and 10(-12)M. Lower concentrations of capa peptide do not activate capaR, either in adult or larval Malpighian tubules. Use of transgenic flies in which capaR is knocked-down in only Malpighian tubule principal cells demonstrates that capaR modulates tubule fluid secretion rates and in doing so, sets the organismal response to desiccation. Thus, capa regulates a desiccation-responsive pathway in D. melanogaster, linking its role in osmoregulation and fluid homeostasis to environmental response and survival. The conservation of capa action between some Dipteran species suggests that capa's role in desiccation tolerance may not be confined to D. melanogaster.

  11. Anatomical Variant of Atlas : Arcuate Foramen, Occpitalization of Atlas, and Defect of Posterior Arch of Atlas

    PubMed Central

    2015-01-01

    Objective We sought to examine anatomic variations of the atlas and the clinical significance of these variations. Methods We retrospectively reviewed 1029 cervical 3-dimensional (3D) CT images. Cervical 3D CT was performed between November 2011 and August 2014. Arcuate foramina were classified as partial or complete and left and/or right. Occipitalization of the atlas was classified in accordance with criteria specified by Mudaliar et al. Posterior arch defects of the atlas were classified in accordance with criteria specified by Currarino et al. Results One hundred and eight vertebrae (108/1029, 10.5%) showed an arcuate foramen. Bilateral arcuate foramina were present in 41 of these vertebrae and the remaining 67 arcuate foramina were unilateral (right 31, left 36). Right-side arcuate foramina were partial on 18 sides and complete on 54 sides. Left-side arcuate foramina were partial on 24 sides and complete on 53 sides. One case of atlas assimilation was found. Twelve patients (12/1029, 1.17%) had a defect of the atlantal posterior arch. Nine of these patients (9/1029, 0.87%) had a type A posterior arch defect. We also identified one type B, one type D, and one type E defect. Conclusion Preoperative diagnosis of occipitalization of the atlas and arcuate foramina using 3D CT is of paramount importance in avoiding neurovascular injury during surgery. It is important to be aware of posterior arch defects of the atlas because they may be misdiagnosed as a fracture. PMID:26819687

  12. Reduced Volume of the Arcuate Fasciculus in Adults with High-Functioning Autism Spectrum Conditions

    PubMed Central

    Moseley, Rachel L.; Correia, Marta M.; Baron-Cohen, Simon; Shtyrov, Yury; Pulvermüller, Friedemann; Mohr, Bettina

    2016-01-01

    Atypical language is a fundamental feature of autism spectrum conditions (ASC), but few studies have examined the structural integrity of the arcuate fasciculus, the major white matter tract connecting frontal and temporal language regions, which is usually implicated as the main transfer route used in processing linguistic information by the brain. Abnormalities in the arcuate have been reported in young children with ASC, mostly in low-functioning or non-verbal individuals, but little is known regarding the structural properties of the arcuate in adults with ASC or, in particular, in individuals with ASC who have intact language, such as those with high-functioning autism or Asperger syndrome. We used probabilistic tractography of diffusion-weighted imaging to isolate and scrutinize the arcuate in a mixed-gender sample of 18 high-functioning adults with ASC (17 Asperger syndrome) and 14 age- and IQ-matched typically developing controls. Arcuate volume was significantly reduced bilaterally with clearest differences in the right hemisphere. This finding remained significant in an analysis of all male participants alone. Volumetric reduction in the arcuate was significantly correlated with the severity of autistic symptoms as measured by the Autism-Spectrum Quotient. These data reveal that structural differences are present even in high-functioning adults with ASC, who presented with no clinically manifest language deficits and had no reported developmental language delay. Arcuate structural integrity may be useful as an index of ASC severity and thus as a predictor and biomarker for ASC. Implications for future research are discussed. PMID:27242478

  13. Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain.

    PubMed

    Fernández-Miranda, Juan C; Wang, Yibao; Pathak, Sudhir; Stefaneau, Lucia; Verstynen, Timothy; Yeh, Fang-Cheng

    2015-01-01

    The structure and function of the arcuate fascicle is still controversial. The goal of this study was to investigate the asymmetry, connectivity, and segmentation patterns of the arcuate fascicle. We employed diffusion spectrum imaging reconstructed by generalized q-sampling and we applied both a subject-specific approach (10 subjects) and a template approach (q-space diffeomorphic reconstruction of 30 subjects). We complemented our imaging investigation with fiber microdissection of five post-mortem human brains. Our results confirmed the highly leftward asymmetry of the arcuate fascicle. In the template, the left arcuate had a volume twice as large as the right one, and the left superior temporal gyrus provided five times more volume of fibers than its counterpart. We identified four cortical frontal areas of termination: pars opercularis, pars triangularis, ventral precentral gyrus, and caudal middle frontal gyrus. We found clear asymmetry of the frontal terminations at pars opercularis and ventral precentral gyrus. The analysis of patterns of connectivity revealed the existence of a strong structural segmentation in the left arcuate, but not in the right one. The left arcuate fascicle is formed by an inner or ventral pathway, which interconnects pars opercularis with superior and rostral middle temporal gyri; and an outer or dorsal pathway, which interconnects ventral precentral and caudal middle frontal gyri with caudal middle and inferior temporal gyri. The fiber microdissection results provided further support to our tractography studies. We propose the existence of primary and supplementary language pathways within the dominant arcuate fascicle with potentially distinct functional and lesional features.

  14. Aging-Resilient Associations between the Arcuate Fasciculus and Vocabulary Knowledge: Microstructure or Morphology?

    PubMed Central

    Vaden, Kenneth I.; Cute, Stephanie L.; Yeatman, Jason D.; Dougherty, Robert F.

    2016-01-01

    Vocabulary knowledge is one of the few cognitive functions that is relatively preserved in older adults, but the reasons for this relative preservation have not been well delineated. We tested the hypothesis that individual differences in vocabulary knowledge are influenced by arcuate fasciculus macrostructure (i.e., shape and volume) properties that remain stable during the aging process, rather than white matter microstructure that demonstrates age-related declines. Vocabulary was not associated with age compared to pronounced age-related declines in cognitive processing speed across 106 healthy adults (19.92–88.29 years) who participated in this neuroimaging experiment. Fractional anisotropy in the left arcuate fasciculus was significantly related to individual variability in vocabulary. This effect was present despite marked age-related differences in a T1-weighted/T2-weighted ratio (T1w/T2w) estimate of myelin that were observed throughout the left arcuate fasciculus and associated with age-related differences in cognitive processing speed. However, atypical patterns of arcuate fasciculus morphology or macrostructure were associated with decreased vocabulary knowledge. These results suggest that deterioration of tissue in the arcuate fasciculus occurs with normal aging, while having limited impact on tract organization that underlies individual differences in the acquisition and retrieval of lexical and semantic information. SIGNIFICANCE STATEMENT Vocabulary knowledge is resilient to widespread age-related declines in brain structure that limit other cognitive functions. We tested the hypothesis that arcuate fasciculus morphology, which supports the development of reading skills that bolster vocabulary, could explain this relative preservation. We disentangled (1) the effects of age-related declines in arcuate microstructure (mean diffusivity; myelin content estimate) that predicted cognitive processing speed but not vocabulary, from (2) relatively stable

  15. Elucidation of the Anatomy of a Satiety Network: Focus on Connectivity of the Parabrachial Nucleus in the Adult Rat

    PubMed Central

    Zséli, Györgyi; Vida, Barbara; Martinez, Anais; Lechan, Ronald M.; Khan, Arshad M.; Fekete, Csaba

    2017-01-01

    We hypothesized that brain regions showing neuronal activation after refeeding comprise major nodes in a satiety network, and tested this hypothesis with two sets of experiments. Detailed c-Fos mapping comparing fasted and refed rats was performed to identify candidate nodes of the satiety network. In addition to well-known feeding-related brain regions such as the arcuate, dorsomedial and paraventricular hypothalamic nuclei, lateral hypothalamic area, parabrachial nucleus (PB), nucleus of solitary tract and central amygdalar nucleus; other refeeding activated regions were also identified, such as the parastrial and parasubthalamic nuclei. To begin understanding the connectivity of the satiety network, the interconnectivity of PB with other refeeding-activated neuronal groups was studied following administration of anterograde or retrograde tracers into the PB. After allowing for tracer transport time, the animals were fasted and then refed before sacrifice. Refeeding-activated neurons that project to the PB were found in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamic area; arcuate, paraventricular and dorsomedial hypothalamic nuclei; lateral hypothalamic area; parasubthalamic nucleus; central amygdalar nucleus; area postrema; and nucleus of solitary tract. Axons originating from PB were observed to closely associate with refeeding-activated neurons in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamus; paraventricular, arcuate and dorsomedial hypothalamic nuclei; lateral hypothalamic area; central amygdalar nucleus; parasubthalamic nucleus; ventral posterior thalamic nucleus; area postrema; and nucleus of solitary tract. These data indicate that the PB has bidirectional connections with most refeeding-activated neuronal groups, suggesting that short loop feedback circuits exist in this satiety network. PMID:26918800

  16. Pediatric traumatic brain injury: language outcomes and their relationship to the arcuate fasciculus.

    PubMed

    Liégeois, Frédérique J; Mahony, Kate; Connelly, Alan; Pigdon, Lauren; Tournier, Jacques-Donald; Morgan, Angela T

    2013-12-01

    Pediatric traumatic brain injury (TBI) may result in long-lasting language impairments alongside dysarthria, a motor-speech disorder. Whether this co-morbidity is due to the functional links between speech and language networks, or to widespread damage affecting both motor and language tracts, remains unknown. Here we investigated language function and diffusion metrics (using diffusion-weighted tractography) within the arcuate fasciculus, the uncinate fasciculus, and the corpus callosum in 32 young people after TBI (approximately half with dysarthria) and age-matched healthy controls (n=17). Only participants with dysarthria showed impairments in language, affecting sentence formulation and semantic association. In the whole TBI group, sentence formulation was best predicted by combined corpus callosum and left arcuate volumes, suggesting this "dual blow" seriously reduces the potential for functional reorganisation. Word comprehension was predicted by fractional anisotropy in the right arcuate. The co-morbidity between dysarthria and language deficits therefore seems to be the consequence of multiple tract damage.

  17. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales

    PubMed Central

    Mandelblat-Cerf, Yael; Ramesh, Rohan N; Burgess, Christian R; Patella, Paola; Yang, Zongfang; Lowell, Bradford B; Andermann, Mark L

    2015-01-01

    Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better understand the functional roles of AgRP neurons, we performed optetrode electrophysiological recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped, yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons, demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.07122.001 PMID:26159614

  18. Laparoscopic Treatment of Median Arcuate Ligament Syndrome: A Rare Cause of Chronic Severe Abdominal Pain

    PubMed Central

    Divarci, Emre; Celtik, Ulgen; Dokumcu, Zafer; Celik, Ahmet; Ergun, Orkan

    2017-01-01

    Median arcuate ligament syndrome is a rare disorder characterized by chronic postprandial abdominal pain and weight loss caused by compression on celiac artery. A 17-year-old girl with chronic severe abdominal pain and weight loss was referred to our clinic. Other causes of chronic abdominal pain were investigated and excluded. The compression on celiac artery was detected on Doppler ultrasound and diagnosis was confirmed by computed tomography angiography. The patient underwent laparoscopic release of median arcuate ligament. There were no intraoperative complications; however, partial pain response was observed postoperatively that necessitated para-spinal ganglion blockage. The patient is symptom-free in 1-year follow-up period. PMID:28082779

  19. Neuropeptide Y: A stressful review

    PubMed Central

    Reichmann, Florian; Holzer, Peter

    2016-01-01

    Stress is defined as an adverse condition that disturbs the homeostasis of the body and activates adaptation responses. Among the many pathways and mediators involved, neuropeptide Y (NPY) stands out due to its unique stress-relieving, anxiolytic and neuroprotective properties. Stress exposure alters the biosynthesis of NPY in distinct brain regions, the magnitude and direction of this effect varying with the duration and type of stress. NPY is expressed in particular neurons of the brainstem, hypothalamus and limbic system, which explains why NPY has an impact on stress-related changes in emotional-affective behaviour and feeding as well as on stress coping. The biological actions of NPY in mammals are mediated by the Y1, Y2, Y4 and Y5 receptor, Y1 receptor stimulation being anxiolytic whereas Y2 receptor activation is anxiogenic. Emerging evidence attributes NPY a role in stress resilience, the ability to cope with stress. Thus there is a negative correlation between stress-induced behavioural disruption and cerebral NPY expression in animal models of post-traumatic stress disorder. Exogenous NPY prevents the negative consequences of stress, and polymorphisms of the NPY gene are predictive of impaired stress processing and increased risk of neuropsychiatric diseases. Stress is also a factor contributing to, and resulting from, neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease, in which NPY appears to play an important neuroprotective role. This review summarizes the evidence for an implication of NPY in stress-related and neurodegenerative pathologies and addresses the cerebral NPY system as a therapeutic target. PMID:26441327

  20. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides

    PubMed Central

    2016-01-01

    Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides. PMID:27103886

  1. Neuropeptides: developmental signals in placode progenitor formation.

    PubMed

    Lleras-Forero, Laura; Tambalo, Monica; Christophorou, Nicolas; Chambers, David; Houart, Corinne; Streit, Andrea

    2013-07-29

    Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system.

  2. Anatomical Properties of the Arcuate Fasciculus Predict Phonological and Reading Skills in Children

    ERIC Educational Resources Information Center

    Yeatman, Jason D.; Dougherty, Robert F.; Rykhlevskaia, Elena; Sherbondy, Anthony J.; Deutsch, Gayle K.; Wandell, Brian A.; Ben-Shachar, Michal

    2011-01-01

    For more than a century, neurologists have hypothesized that the arcuate fasciculus carries signals that are essential for language function; however, the relevance of the pathway for particular behaviors is highly controversial. The primary objective of this study was to use diffusion tensor imaging to examine the relationship between individual…

  3. RFamide neuropeptide actions on the molluscan heart.

    PubMed

    Moulis, A

    2004-01-01

    FMRFamide and the related tetrapeptide FLRFamide are highly excitatory in molluscan non-cardiac smooth muscle. They are also exceptionally excitatory in the atrium and internally perfused ventricle of Busycon canaliculatum. These two peptides, usually thought of as classic molluscan cardio-acceleratory agents are in fact simply two members of a large and ever growing superfamily, the RFamide family, whose phylogenetic distribution has been so elegantly mapped by Walker. Members of this family, often with extended peptide chains (e.g. penta, hepta and decapeptides), stretch in their known distribution from the cnidaria to the chordates. The effects of some of the members of this superfamily (FMRFamide. FLRFamide, YMRFamide, TNRNFLRFamide, SDPFLRFamide, LMS) were examined. The neuropeptides were found to be very potent at very low concentrations (10(-9) M) in the ventricle of both Buccinium and Busycon. Other neuropeptides (HFMRdFamide, SCPb, NLERFamide and pEGRFamide) were found to be without any effect. The Ca2+ dependency of these neuropeptides was also tested. The peptides appear to induce contraction of the ventricles by release of Ca2+ from internal pools. The neuropeptides appear to stimulate contraction in these cardiac muscles through a completely different pathway to Serotonin (the main excitatory neurotransmitter for the cardiac muscle). When the peptides were applied together with Serotonin an additive effect was observed clearly indicating the release of Ca2+ through different pathways. The nature of the RFamide receptor was also tested. It appears that the RFamide neuropeptides mobilize the 2nd messenger IP3 (Inositol trisphosphate), since the IP3 blocker Neomycin Sulphate inhibited the response of the neuropeptides.

  4. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  5. Effect of progesterone on kisspeptin and neurokinin B cell numbers in the arcuate nucleus of the female pig

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Progesterone acts at the hypothalamus to inhibit LH secretion in the pig, but the mechanism for this is unknown. Kisspeptin and neurokinin B (NKB) have both been shown to influence GnRH/LH secretion and mediate steroid negative feedback in several species and to be critical for normal reproductive f...

  6. The neuropeptide bursicon acts in cuticle metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bursicon is a heterodimeric neuropeptide formed of bursicon a (burs a) and bursicon B (burs B) that controls cuticle tanning and wing expansion in insects. Burs a-a and burs B-B homodimers are also formed; they act via an unknown receptor to induce expression of prophylactic immune and stress genes ...

  7. Crustacean neuropeptides: structures, functions and comparative aspects.

    PubMed

    Keller, R

    1992-05-15

    In this article, an attempt is made to review the presently known, completely identified crustacean neuropeptides with regard to structure, function and distribution. Probably the most important progress has been made in the elucidation of a novel family of large peptides from the X-organ-sinus gland system which includes crustacean hyperglycemic hormone (CHH), putative molt-inhibiting hormone (MIH) and vitellogenesis (= gonad)-inhibiting hormone (VIH). These peptides have so far only been found in crustaceans. Renewed interest in the neurohemal pericardial organs has led to the identification of a number of cardioactive/myotropic neuropeptides, some of them unique to crustaceans. Important contributions have been made by immunocytochemical mapping of peptidergic neurons in the nervous system, which has provided evidence for a multiple role of several neuropeptides as neurohormones on the one hand and as local transmitters or modulators on the other. This has been corroborated by physiological studies. The long-known chromatophore-regulating hormones, red pigment concentrating hormone (RPCH) and pigment-dispending hormone (PDH), have been placed in a broader perspective by the demonstration of an additional role as local neuromodulators. The scope of crustacean neuropeptide research has thus been broadened considerably during the last years.

  8. Neuropeptides as possible targets in sleep disorders.

    PubMed

    Nishino, Seiji; Fujiki, Nobuhiro

    2007-01-01

    Insomnia and hypersomnia are frequent sleep disorders, and they are most often treated pharmacologically with hypnotics and wake-promoting compounds. These compounds act on classical neurotransmitter systems, such as benzodiazepines on GABA-A receptors, and amfetamine-like stimulants on monoaminergic terminals to modulate neurotransmission. In addition, acetylcholine, amino acids, lipids and proteins (cytokines) and peptides, are known to significantly modulate sleep and are, therefore, possibly involved in the pathophysiology of some sleep disorders. Due to the recent developments of molecular biological techniques, many neuropeptides have been newly identified, and some are found to significantly modulate sleep. It was also discovered that the impairment of the hypocretin/orexin neurotransmission (a recently isolated hypothalamic neuropeptide system) is the major pathophysiology of narcolepsy, and hypocretin replacement therapy is anticipated to treat the disease in humans. In this article, the authors briefly review the history of neuropeptide research, followed by the sleep modulatory effects of various neuropeptides. Finally, general strategies for the pharmacological therapeutics targeting the peptidergic systems for sleep disorders are discussed.

  9. Active conformation of an insect neuropeptide family.

    PubMed Central

    Nachman, R J; Roberts, V A; Dyson, H J; Holman, G M; Tainer, J A

    1991-01-01

    To understand the structural and chemical basis for insect neuropeptide activity, we have designed, synthesized, and determined the conformation of a biologically active cyclic analog of the pyrokinins, an insect neuropeptide family that mediates myotropic (visceral muscle contractile) activity. Members of this insect neuropeptide family share the common C-terminal pentapeptide sequence Phe-Xaa-Pro-Arg-Leu-NH2 (Xaa = Ser, Thr, or Val). Circular dichroic, nuclear magnetic resonance, and molecular dynamics analyses of the conformationally restricted cyclic pyrokinin analog cyclo(-Asn-Thr-Ser-Phe-Thr-Pro-Arg-Leu-) indicated the presence of a beta-turn in the active core region encompassing residues Thr-Pro-Arg-Leu. The rigid cyclic analog retains biological activity, suggesting that its C-terminal beta-turn is the active pyrokinin conformation recognized by the myotropic receptor. As individual pyrokinins and pyrokinin-like neuropeptides demonstrate both oviduct-contractile and pheromone-biosynthesis activities in various insects, the biologically active beta-turn structure reported here holds broad significance for many biological processes. Images PMID:2034692

  10. Neuropeptidases and the metabolic inactivation of insect neuropeptides.

    PubMed

    Isaac, R Elwyn; Bland, Nicholas D; Shirras, Alan D

    2009-05-15

    Neuropeptidases play a key role in regulating neuropeptide signalling activity in the central nervous system of animals. They are oligopeptidases that are generally found on the surface of neuronal cells facing the synaptic and peri-synaptic space and therefore are ideally placed for the metabolic inactivation of neuropeptide transmitters/modulators. This review discusses the structure of insect neuropeptides in relation to their susceptibility to hydrolysis by peptidases and the need for specialist enzymes to degrade many neuropeptides. It focuses on five neuropeptidase families (neprilysin, dipeptidyl-peptidase IV, angiotensin-converting enzyme, aminopeptidase and dipeptidyl aminopeptidase III) that have been implicated in the metabolic inactivation of neuropeptides in the central nervous system of insects. Experimental evidence for the involvement of these peptidases in neuropeptide metabolism is reviewed and their properties are compared to similar neuropeptide inactivating peptidases of the mammalian brain. We also discuss how the sequencing of insect genomes has led to the molecular identification of candidate neuropeptidase genes.

  11. The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, from birth to sexual maturity

    NASA Technical Reports Server (NTRS)

    Cepriano, L. M.; Schreibman, M. P.

    1993-01-01

    Immunoreactive neuropeptide Y and dynorphin have been localized in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, at different ages and stages of development from birth to sexual maturity. Immunoreactive neuropeptide Y was found in perikarya and tracts of the nucleus olfactoretinalis, telencephalon, ventral tegmentum and in the neurohypophysis and in the three regions of the adenohypophysis. Immunoreactive dynorphin was found in nerve tracts in the olfactory bulb and in cells of the pars intermedia and the rostral pars distalis of the pituitary gland.

  12. Neuropeptide Y promotes neurogenesis in murine subventricular zone.

    PubMed

    Agasse, Fabienne; Bernardino, Liliana; Kristiansen, Heidi; Christiansen, Søren H; Ferreira, Raquel; Silva, Bruno; Grade, Sofia; Woldbye, David P D; Malva, João O

    2008-06-01

    Stem cells of the subventricular zone (SVZ) represent a reliable source of neurons for cell replacement. Neuropeptide Y (NPY) promotes neurogenesis in the hippocampal subgranular layer and the olfactory epithelium and may be useful for the stimulation of SVZ dynamic in brain repair purposes. We describe that NPY promotes SVZ neurogenesis. NPY (1 microM) treatments increased proliferation at 48 hours and neuronal differentiation at 7 days in SVZ cell cultures. NPY proneurogenic properties are mediated via the Y1 receptor. Accordingly, Y1 receptor is a major active NPY receptor in the mouse SVZ, as shown by functional autoradiography. Moreover, short exposure to NPY increased immunoreactivity for the phosphorylated form of extracellular signal-regulated kinase 1/2 in the nucleus, compatible with a trigger for proliferation, whereas 6 hours of treatment amplified the phosphorylated form of c-Jun-NH(2)-terminal kinase signal in growing axons, consistent with axonogenesis. NPY, as a promoter of SVZ neurogenesis, is a crucial factor for future development of cell-based brain therapy. Disclosure of potential conflicts of interest is found at the end of this article.

  13. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  14. The Role of Neuropeptides in Suicidal Behavior: A Systematic Review

    PubMed Central

    Pompili, Maurizio; Dwivedi, Yogesh; Girardi, Paolo

    2013-01-01

    There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper. PMID:23986909

  15. Identification of a new member of PBAN family of neuropeptides from the fire ant, Solenopsis invicta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide hormones produced by neurosecretory cells in the central or peripheral nervous systems regulate various physiological and behavioral events during insect development and reproduction. Pyrokinin/Pheromone Biosynthesis Activating Neuropeptide (PBAN) is a major neuropeptide family, chara...

  16. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    NASA Technical Reports Server (NTRS)

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  17. Large arcuate scars: A geological legacy of the Earth's accretionary past

    NASA Technical Reports Server (NTRS)

    Saul, J. M.

    1985-01-01

    Immediately following accretion, the surface of the Earth was densely patterned with circular scars which were the surface expressions of 3-D craterform structures. In the course of geological time these structures would have become less and less visible due to the workings of the Earth's atmosphere, surface waters, and plate tectonics regime but there is no compelling reason to assume that they have been entirely eradicated. Furthermore, a very imperfect analogy with the other inner planets suggests that geological processes may not in fact be capable of totally erasing such deep features. Some illustrative examples of arcuate scars are discussed.

  18. Physiology of invertebrate oxytocin and vasopressin neuropeptides.

    PubMed

    Gruber, Christian W

    2014-01-01

    Neuropeptides and regulatory peptide hormones control many developmental, physiological and behavioural processes in animals, including humans. The nonapeptides oxytocin and arginine vasopressin are produced and released by the pituitary gland and have actions on many organs and tissues. Receptive cells possess particular receptors to which the peptides bind as ligands, leading to activation of G-protein-coupled receptors, hence cellular responses. In humans and other mammalian species, oxytocin and vasopressin mediate a range of peripheral and central physiological functions that are important for osmoregulation, reproduction, complex social behaviours, memory and learning. The origin of the oxytocin/vasopressin signalling system is thought to date back more than 600 million years. All vertebrate oxytocin- and vasopressin-like peptides have presumably evolved from the ancestral nonapeptide vasotocin by gene duplication and today are present in vertebrates, including mammals, birds, reptiles, amphibians and fish. Oxytocin- and vasopressin-like peptides have been identified in several invertebrate species, including molluscs, annelids, nematodes and arthropods. Members of this peptide family share high sequence similarity, and it is possible that they are functionally related across the entire animal kingdom. However, it is evident that not all animals express oxytocin/vasopressin neuropeptides and that there is little information available about the biology and physiology of this signalling system of invertebrates and, in particular, of insects, which represent more than half of all known living organisms. This report describes the discovery of novel oxytocin- and vasopressin-like peptides in arthropods and summarizes the status quo of the functional relevance of this neuropeptide signalling system in invertebrates, which will have beneficial implications for the design of selective and potent ligands to human oxytocin and vasopressin receptors.

  19. Neuropeptide Y: An Anti-Aging Player?

    PubMed

    Botelho, Mariana; Cavadas, Cláudia

    2015-11-01

    Accumulating evidence suggests that neuropeptide Y (NPY) has a role in aging and lifespan determination. In this review, we critically discuss age-related changes in NPY levels in the brain, together with recent findings concerning the contribution of NPY to, and impact on, six hallmarks of aging, specifically: loss of proteostasis, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing, cellular senescence, and mitochondrial dysfunction. Understanding how NPY contributes to, and counteracts, these hallmarks of aging will open new avenues of research on limiting damage related to aging.

  20. Physiology of invertebrate oxytocin and vasopressin neuropeptides

    PubMed Central

    Gruber, Christian W

    2014-01-01

    New findings • What is the topic of this review? This article describes the discovery and function of invertebrate oxytocin and vasopressin neuropeptides. • What advances does it highlight? The novel discovery of oxytocin-like peptides in arthropods is described. An up-to date overview is gven of the functional role (physiology and behaviour) of oxytocin and vasopressin signalling. The application of natural peptides for drug development is discussed. Neuropeptides and regulatory peptide hormones control many developmental, physiological and behavioural processes in animals, including humans. The nonapeptides oxytocin and arginine vasopressin are produced and released by the pituitary gland and have actions on many organs and tissues. Receptive cells possess particular receptors to which the peptides bind as ligands, leading to activation of G-protein-coupled receptors, hence cellular responses. In humans and other mammalian species, oxytocin and vasopressin mediate a range of peripheral and central physiological functions that are important for osmoregulation, reproduction, complex social behaviours, memory and learning. The origin of the oxytocin/vasopressin signalling system is thought to date back more than 600 million years. All vertebrate oxytocin- and vasopressin-like peptides have presumably evolved from the ancestral nonapeptide vasotocin by gene duplication and today are present in vertebrates, including mammals, birds, reptiles, amphibians and fish. Oxytocin- and vasopressin-like peptides have been identified in several invertebrate species, including molluscs, annelids, nematodes and arthropods. Members of this peptide family share high sequence similarity, and it is possible that they are functionally related across the entire animal kingdom. However, it is evident that not all animals express oxytocin/vasopressin neuropeptides and that there is little information available about the biology and physiology of this signalling system of invertebrates

  1. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution

    PubMed Central

    Semmens, Dean C.; Mirabeau, Olivier; Moghul, Ismail; Pancholi, Mahesh R.; Wurm, Yannick; Elphick, Maurice R.

    2016-01-01

    Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan. PMID:26865025

  2. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution.

    PubMed

    Semmens, Dean C; Mirabeau, Olivier; Moghul, Ismail; Pancholi, Mahesh R; Wurm, Yannick; Elphick, Maurice R

    2016-02-01

    Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an 'intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.

  3. Mimetic analogs of pyrokinin neuropeptides for pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs ...

  4. Neuropeptides of human thymus in normal and pathological conditions.

    PubMed

    Mignini, F; Sabbatini, M; D'Andrea, V; Cavallotti, C

    2011-05-01

    Human thymus of healthy subjects and patients affected by thymoma-associated Myastenia Gravis were studied in order to visualize and compare the morphological distributive pattern of four neuropeptides: vasoactive intestinal peptide, substance P, neuropeptide Y, and neurotensin. Based on our observations, we formulated hypotheses on their relations in neuro-immunomodulation under physiological and pathophysiological conditions. Immuno-histochemical staining for neuropeptides was performed and morphological and morphometrical analyses were conducted on healthy and diseased thymus. In normal thymus, a specific distributive pattern was observed for the several neuropeptide-positive nerves in different thymus lobular zones. In particular substance P-positive fibers were observed in subcapsular zone, specifically located into parenchyma, where they represent the almost total amount of fibers; neurotensin-positive fibers were observed primarily located in parenchyma than perivascular site of several thymus lobular zones, and more abundant the cortico-medullary and medullary zones. Instead VIP- and NPY-positive fibers were widely distributed in perivascular and parenchymal sites of several thymus lobular zones. In thymoma, the distribution of neuropeptide-positive fibers was quantitatively reduced, while cells immunopositive to VIP and substance P were quantitatively increased and dispersed. Observation of the perivascular and parenchymal distribution of the analyzed neuropeptides suggests evidence that a regulatory function is performed by nerves and cells that secrete neuropeptide into the thymus. The alteration of neuropeptide patterns in thymoma suggests that these neurotransmitters play a role in autoimmune diseases such as Myastenia Gravis.

  5. [Effects of neuropeptides on interferon production in vitro].

    PubMed

    Kul'chikov, A E; Makarenko, A N

    2008-01-01

    The study of an interferon-inducing action of neuropeptides (a cerebrolysin model) on production of interferons by human blood leukocytes has shown that neuropeptides induce gamma-interferon production in the titer 267 IU/ml that determines one of the mechanisms of a neuroimmunocorrecting effect of cerebrolysin (Ebewe, Austria) in many neurological diseases (acute stroke, brain traumas and different neuroinfectious diseases).

  6. Mini-review: the evolution of neuropeptide signaling.

    PubMed

    Grimmelikhuijzen, Cornelis J P; Hauser, Frank

    2012-08-10

    Neuropeptides and their G protein-coupled receptors (GPCRs) have an early evolutionary origin and are already abundant in basal animals with primitive nervous systems such as cnidarians (Hydra, jellyfishes, corals, and sea anemones). Most animals emerging after the Cnidaria belong to two evolutionary lineages, the Protostomia (to which the majority of invertebrates belong) and Deuterostomia (to which some minor groups of invertebrates, and all vertebrates belong). These two lineages split about 700 million years (Myr) ago. Many mammalian neuropeptide GPCRs have orthologues in the Protostomia and this is also true for some of the mammalian neuropeptides. Examples are oxytocin/vasopressin, GnRH, gastrin/CCK, and neuropeptide Y and their GPCRs. These results implicate that protostomes (for example insects and nematodes) can be used as models to study the biology of neuropeptide signaling.

  7. NG peptides: a novel family of neurophysin-associated neuropeptides.

    PubMed

    Elphick, Maurice R

    2010-06-15

    Neurophysins are prohormone-derived polypeptides that are required for biosynthesis of the neurohypophyseal hormones vasopressin and oxytocin. Accordingly, mutations in the neurophysin domain of the human vasopressin gene can cause diabetes insipidus. The association of neurophysins with vasopressin/oxytocin-type peptides dates back to the common ancestor of bilaterian animals and until recently it was thought to be unique. This textbook perspective on neurophysins changed with the discovery of a gene in the sea urchin Strongylocentrotus purpuratus (phylum Echinodermata) encoding a precursor protein comprising a neurophysin domain in association with NGFFFamide, a myoactive neuropeptide that is structurally unrelated to vasopressin/oxytocin-type neuropeptides (Elphick, M.R., Rowe, M.L., 2009. NGFFFamide and echinotocin: structurally unrelated myoactive neuropeptides derived from neurophysin-containing precursors in sea urchins. J. Exp. Biol. 212, 1067-1077). What is not known, however, is when and how the association of neurophysin with NGFFFamide-like neuropeptides originated. Here I report the discovery of genes encoding proteins comprising a neurophysin domain in association with putative NGFFFamide-like peptides in the hemichordate Saccoglossus kowalevskii (NGFWNamide and NGFYNamide) and in the cephalochordate Branchiostoma floridae (SFRNGVamide). Together with NGFFFamide, these peptides constitute a novel family of neuropeptides in invertebrate deuterostomes that are derived from neurophysin-containing precursors and that have the sequence motif NG - "NG peptides". Genes encoding NG peptides in association with neurophysin were not found in protostomes, urochordates or vertebrates. Interestingly, however, SFRNGVamide is identical to the N-terminal region of neuropeptide S, a peptide that modulates arousal and anxiety in mammals, whilst NGFFFamide shares sequence similarity with SIFamide (AYRKPPFNGSIFamide), a neuropeptide that regulates sexual behaviour in

  8. Neuropeptide Regulation of Signaling and Behavior in the BNST

    PubMed Central

    Kash, Thomas L.; Pleil, Kristen E.; Marcinkiewcz, Catherine A.; Lowery-Gionta, Emily G.; Crowley, Nicole; Mazzone, Christopher; Sugam, Jonathan; Hardaway, J. Andrew; McElligott, Zoe A.

    2015-01-01

    Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action. PMID:25475545

  9. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony

    PubMed Central

    An, Sungwon; Harang, Rich; Meeker, Kirsten; Granados-Fuentes, Daniel; Tsai, Connie A.; Mazuski, Cristina; Kim, Jihee; Doyle, Francis J.; Petzold, Linda R.; Herzog, Erik D.

    2013-01-01

    Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light–dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or “phase tumbling”, could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag. PMID:24167276

  10. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.

    PubMed

    An, Sungwon; Harang, Rich; Meeker, Kirsten; Granados-Fuentes, Daniel; Tsai, Connie A; Mazuski, Cristina; Kim, Jihee; Doyle, Francis J; Petzold, Linda R; Herzog, Erik D

    2013-11-12

    Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.

  11. [Role of estrogen-sensitive neurons in the arcuate region of the hypothalamus in the mechanism of luteinizing hormone release].

    PubMed

    Babichev, V N; Ignatkov, V Ia

    1978-01-01

    Experiments were conducted on rats; estradiol brought to the arcuate region of the hypothalamus by means of microionophoresis led to the increase of the region of the hypothalamus by means of microionophoresis led to the increase of the blood luteinizing hormone (LH) level during the following stages of the estral cycle-diestrus 1, diestrus 2, and the first half day of the proestrus; as to the second half of the proestrus day--estradiol decreased its level. Changes in the LH level in the hypophysis under the influence of the microionophoretic introduction of estradiol into the arcuate region occurred during the second half of the day of diestrus 2 (reduction), and during the estrus (elevation). In the majority of cases a rise of the blood level was combined with the neuron activation in the arcuate region under the influence of estradiol.

  12. Neuropeptide Y stimulates autophagy in hypothalamic neurons

    PubMed Central

    Aveleira, Célia A.; Botelho, Mariana; Carmo-Silva, Sara; Ferreira-Marques, Marisa; Nóbrega, Clévio; Cortes, Luísa; Valero, Jorge; Sousa-Ferreira, Lígia; Álvaro, Ana R.; Santana, Magda; Kügler, Sebastian; Pereira de Almeida, Luís

    2015-01-01

    Aging is characterized by autophagy impairment that contributes to age-related disease aggravation. Moreover, it was described that the hypothalamus is a critical brain area for whole-body aging development and has impact on lifespan. Neuropeptide Y (NPY) is one of the major neuropeptides present in the hypothalamus, and it has been shown that, in aged animals, the hypothalamic NPY levels decrease. Because caloric restriction (CR) delays aging, at least in part, by stimulating autophagy, and also increases hypothalamic NPY levels, we hypothesized that NPY could have a relevant role on autophagy modulation in the hypothalamus. Therefore, the aim of this study was to investigate the role of NPY on autophagy in the hypothalamus. Using both hypothalamic neuronal in vitro models and mice overexpressing NPY in the hypothalamus, we observed that NPY stimulates autophagy in the hypothalamus. Mechanistically, in rodent hypothalamic neurons, NPY increases autophagy through the activation of NPY Y1 and Y5 receptors, and this effect is tightly associated with the concerted activation of PI3K, MEK/ERK, and PKA signaling pathways. Modulation of hypothalamic NPY levels may be considered a potential strategy to produce protective effects against hypothalamic impairments associated with age and to delay aging. PMID:25775546

  13. Immunohistochemical characterization of the arcuate kisspeptin/neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the hypothalamus during the estrous cycle in heifers

    PubMed Central

    HASSANEEN, A; NANIWA, Yousuke; SUETOMI, Yuta; MATSUYAMA, Shuichi; KIMURA, Koji; IEDA, Nahoko; INOUE, Naoko; UENOYAMA, Yoshihisa; TSUKAMURA, Hiroko; MAEDA, Kei-ichiro; MATSUDA, Fuko; OHKURA, Satoshi

    2016-01-01

    Elucidating the physiological mechanisms that control reproduction is an obvious strategy for improving the fertility of cattle and developing new agents to control reproductive functions. The present study aimed to identify kisspeptin neurons in the bovine hypothalamus, clarifying that a central mechanism is also present in the cattle brain, as kisspeptin is known to play an important role in the stimulation of gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in other mammals. To characterize kisspeptin neurons in the bovine hypothalamus, the co-localizations of kisspeptin and neurokinin B (NKB) or kisspeptin and dynorphin A (Dyn) were examined. Hypothalamic tissue was collected from Japanese Black or Japanese Black × Holstein crossbred cows during the follicular and luteal phases. Brain sections, including the arcuate nucleus (ARC) and the preoptic area (POA), were dual immunostained with kisspeptin and either NKB or Dyn. In the ARC, both NKB and Dyn were co-localized in kisspeptin neurons during both the follicular and luteal phases, demonstrating the presence of kisspeptin/NKB/Dyn-containing neurons, referred to as KNDy neurons, in cows. In the POA, no co-localization of kisspeptin with either NKB or Dyn was detected. Kisspeptin expression in the follicular phase was higher than that in the luteal phase, suggesting that kisspeptin expression in the POA is positively controlled by estrogen in cows. The kisspeptin neuronal populations in the ARC and POA likely play important roles in regulating the GnRH pulse and surge, respectively, in cows. PMID:27349533

  14. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  15. Intracerebral baclofen administration decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum.

    PubMed

    Zhou, Wenxia; Mailloux, Adam W; McGinty, Jacqueline F

    2005-05-01

    In a previous study, systemic administration of the GABA(B) receptor agonist, R-(+)-baclofen (2.5 mg/kg, i.p.) blocked acute amphetamine (2.5 mg/kg, i.p.)-induced rearing and neuropeptide (preprodynorphin (PPD), preprotachykinin (PPT), preproenkephalin (PPE), and secretogranin II (SGII)) mRNA expression in the striatum (Zhou et al, 2004). The purpose of the present study was to investigate the site(s) of action of these baclofen effects in the dorsal and ventral striatal circuitries. Infusion of baclofen (75 ng/side) into the ventral tegmental area (VTA), substantia nigra (SN), nucleus accumbens (NA), caudate-putamen (Cpu), or medial prefrontal cortex (mPFC) had no effect on behavioral activity in saline-treated rats habituated to a photocell apparatus. However, intra-VTA infusion of baclofen (75 ng/side) completely blocked, whereas intra-NA and intra-SN infusion of baclofen attenuated, amphetamine-induced vertical activity without affecting amphetamine-induced total distance traveled. In contrast, intramedial PFC and intra-CPu infusion of baclofen had no effect on behavioral activity in amphetamine-treated rats. Infusion of baclofen into the VTA, NA, or SN decreased amphetamine-induced neuropeptide gene expression in the striatum. These results indicate that GABA(B) receptor stimulation within the ventral striatal circuitry is involved in mediating acute amphetamine-induced behaviors and neuropeptide gene expression in the dorsal and ventral striatum. The present study provides information on the potential targets in the brain for baclofen in the initial behavioral and genomic response to amphetamine.

  16. Hypotension and reduced catecholamines in neuropeptide Y transgenic rats.

    PubMed

    Michalkiewicz, Mieczyslaw; Knestaut, Kriss M; Bytchkova, Elena Yu; Michalkiewicz, Teresa

    2003-05-01

    The neurons that control blood pressure express neuropeptide Y. Administered centrally, this neuropeptide reduces blood pressure and anxiety, together with lowering sympathetic outflow. The generation of neuropeptide Y transgenic rats overexpressing this peptide, under its natural promoter, has allowed us to examine the role of endogenous neuropeptide Y in the long-term control of blood pressure by the sympathetic nervous system. This study tested a hypothesis that endogenous neuropeptide Y acts to reduce blood pressure and catecholamine release. Blood pressure was measured by radiotelemetry in conscious male transgenic and nontransgenic littermates (control). Novel cage with cold water and forced swimming were used as stressors. Catecholamines were determined in 24-hour urine (baseline) and plasma (cold water stress) by a radioenzymatic assay. Blood pressures in baseline and during the stresses were significantly reduced in the transgenic rats. The lower blood pressure was associated with reduced catecholamines, lower decrease in pressure after autonomic ganglionic blockade, and increased longevity. Data obtained through the use of this transgenic rat model support and extend the evidence for the previously postulated sympatholytic and hypotensive effects of neuropeptide Y and provide novel evidence for an important physiological role of endogenous peptide in blood pressure regulation. As indicated by the increased longevity of these rats, in long-term regulation, these buffering actions of neuropeptide Y may have important cardiovascular protective effects against sympathetic hyperexcitation.

  17. GABAB receptor stimulation decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum.

    PubMed

    Zhou, Wenxia; Mailloux, Adam W; Jung, Bruce J; Edmunds, Hayward S; McGinty, Jacqueline F

    2004-04-09

    The purpose of this study was to investigate whether GABA(B) receptor activation blocks acute amphetamine-induced behavioral activity, dopamine release, and neuropeptide mRNA expression in the striatum. Systemic administration of R-(+)-baclofen (1.25 mg/kg, i.p.) did not alter total distance traveled or vertical rearing induced by amphetamine (2.5 mg/kg, i.p.). At 2.5 mg/kg, baclofen did not alter spontaneous motor activity or total distance traveled, but completely blocked vertical rearing induced by amphetamine. At 5.0 mg/kg, baclofen completely blocked both total distance traveled and vertical rearing induced by amphetamine. Quantitative in situ hybridization histochemistry revealed that baclofen (2.5 mg/kg, i.p.) decreased the ability of amphetamine to increase preprodynorphin (PPD), preprotachykinin (PPT), preproenkephalin (PPE), and secretogranin II (SGII) mRNA levels in the striatum without altering the basal levels of these signals. Baclofen also blocked the amphetamine-induced rise in SGII mRNA in the core and shell of the nucleus accumbens and cingulate cortex. In a separate experiment, systemic baclofen (2.5 mg/kg) decreased the amphetamine-induced increase in dialysate dopamine levels in the striatum. These results suggest that reduced striatal dopamine release contributes to the ability of GABA(B) receptor activation to decrease acute amphetamine-induced behavioral activity and striatal neuropeptide gene expression.

  18. A Combined fMRI and DTI Examination of Functional Language Lateralization and Arcuate Fasciculus Structure: Effects of Degree versus Direction of Hand Preference

    ERIC Educational Resources Information Center

    Propper, Ruthe E.; O'Donnell, Lauren J.; Whalen, Stephen; Tie, Yanmei; Norton, Isaiah H.; Suarez, Ralph O.; Zollei, Lilla; Radmanesh, Alireza; Golby, Alexandra J.

    2010-01-01

    The present study examined the relationship between hand preference degree and direction, functional language lateralization in Broca's and Wernicke's areas, and structural measures of the arcuate fasciculus. Results revealed an effect of degree of hand preference on arcuate fasciculus structure, such that consistently-handed individuals,…

  19. Neuromodulatory function of neuropeptides in the normal CNS.

    PubMed

    Merighi, Adalberto; Salio, Chiara; Ferrini, Francesco; Lossi, Laura

    2011-12-01

    Neuropeptides are small protein molecules produced and released by discrete cell populations of the central and peripheral nervous systems through the regulated secretory pathway and acting on neural substrates. Inside the nerve cells, neuropeptides are selectively stored within large granular vesicles (LGVs), and commonly coexist in neurons with low-molecular-weight neurotransmitters (acetylcholine, amino acids, and catecholamines). Storage in LGVs is responsible for a relatively slow response to secretion that requires enhanced or repeated stimulation. Coexistence (i.e. the concurrent presence of a neuropeptide with other messenger molecules in individual neurons), and co-storage (i.e. the localization of two or more neuropeptides within individual LGVs in neurons) give rise to a complicated series of pre- and post-synaptic functional interactions with low-molecular-weight neurotransmitters. The typically slow response and action of neuropeptides as compared to fast-neurotransmitters such as excitatory/inhibitory amino acids and catecholamines is also due to the type of receptors that trigger neuropeptide actions onto target cells. Almost all neuropeptides act on G-protein coupled receptors that, upon ligand binding, activate an intracellular cascade of molecular enzymatic events, eventually leading to cellular responses. The latter occur in a time span (seconds or more) considerably longer (milliseconds) than that of low-molecular-weight fast-neurotransmitters, directly operating through ion channel receptors. As reviewed here, combined immunocytochemical visualization of neuropeptides and their receptors at the ultrastructural level and electrophysiological studies, have been fundamental to better unravel the role of neuropeptides in neuron-to-neuron communication.

  20. NeuroPep: a comprehensive resource of neuropeptides

    PubMed Central

    Wang, Yan; Wang, Mingxia; Yin, Sanwen; Jang, Richard; Wang, Jian; Xue, Zhidong; Xu, Tao

    2015-01-01

    Neuropeptides play a variety of roles in many physiological processes and serve as potential therapeutic targets for the treatment of some nervous-system disorders. In recent years, there has been a tremendous increase in the number of identified neuropeptides. Therefore, we have developed NeuroPep, a comprehensive resource of neuropeptides, which holds 5949 non-redundant neuropeptide entries originating from 493 organisms belonging to 65 neuropeptide families. In NeuroPep, the number of neuropeptides in invertebrates and vertebrates is 3455 and 2406, respectively. It is currently the most complete neuropeptide database. We extracted entries deposited in UniProt, the database (www.neuropeptides.nl) and NeuroPedia, and used text mining methods to retrieve entries from the MEDLINE abstracts and full text articles. All the entries in NeuroPep have been manually checked. 2069 of the 5949 (35%) neuropeptide sequences were collected from the scientific literature. Moreover, NeuroPep contains detailed annotations for each entry, including source organisms, tissue specificity, families, names, post-translational modifications, 3D structures (if available) and literature references. Information derived from these peptide sequences such as amino acid compositions, isoelectric points, molecular weight and other physicochemical properties of peptides are also provided. A quick search feature allows users to search the database with keywords such as sequence, name, family, etc., and an advanced search page helps users to combine queries with logical operators like AND/OR. In addition, user-friendly web tools like browsing, sequence alignment and mapping are also integrated into the NeuroPep database. Database URL: http://isyslab.info/NeuroPep PMID:25931458

  1. Pseudophakic astigmatism reduction with femtosecond laser-assisted corneal arcuate incisions: a pilot study

    PubMed Central

    Blehm, Clayton; Potvin, Richard

    2017-01-01

    Purpose The aim of this study was to assess the effectiveness of the Verion-LenSx guided arcuate incision technique to reduce refractive astigmatism in a pseudophakic population. Patients and methods A prospective single-arm study was conducted in which one or both eyes of subjects required reduction of 1.0–2.0 D of refractive astigmatism after previous cataract surgery or refractive lens exchange. The surgeon used the refractive cylinder in the eye and the Woodcock astigmatism nomogram for preoperative planning, while the LenSx femtosecond laser with the Verion Image Guided System was used to create all arcuate incisions. The primary outcome measure was the uncorrected monocular distance visual acuity (UCVA). Secondary outcome measures included the change in corneal astigmatism, the change in refractive astigmatism, the best-corrected visual acuity and spectacle independence at distance from preoperative stage to 1 month and 2 months postoperatively. Results Twenty-eight eyes of 18 subjects were treated. The best-corrected visual acuity at the 2-month postoperative (PO) stage was not statistically significantly different from the preoperative visual acuity (0.02 logarithm of the minimum angle of resolution [logMAR] in both cases, P>0.05). Uncorrected visual acuity was statistically significantly better at the 2-month PO stage relative to the preoperative value (0.14 versus 0.34 logMAR, P<0.01). The mean change in refractive cylinder from the preoperative stage to the 2-month PO stage was 1.0 D. At the 2-month PO stage, two-thirds of the subjects (12/18) reported that they did not use glasses for distance vision and that their spectacle use for distance vision at 2 months was “lower” or “much lower” than the preoperative stage; in 71% of eyes (20/28), the residual refractive cylinder was ≤0.50 D. Vector changes in keratometric astigmatism were weakly associated with changes in refractive cylinder. Conclusion Arcuate incisions made with a femtosecond

  2. Amphetamine, an appetite suppressant, decreases neuropeptide Y immunoreactivity in rat hypothalamic paraventriculum.

    PubMed

    Hsieh, Yih-Shou; Yang, Shun-Fa; Kuo, Dong-Yih

    2005-04-15

    Amphetamine (AMPH) is a well-known anorectic agent. The mechanism underlying the anorectic response of AMPH has been attributed to its inhibitory effect on hypothalamic neuropeptide Y (NPY), an orexigenic peptide in the brain. However, there is still lack of genomic or in situ immunohistochemical evidence to prove it. The present study was aimed to assess the molecular mechanism of AMPH anorexia by immunostaining of hypothalamic NPY protein in the area of paraventricular nucleus (PVN) and by detecting the change of hypothalamic NPY mRNA level using RT-PCR. Results revealed that an AMPH treatment might reduce the expression of NPY at both transcriptional and posttranslational levels. Comparatively, a treatment of clomipramine, a serotonin transporter inhibitor, was unable to reduce NPY mRNA level, revealing the noninvolvement of hypothalamic NPY gene in serotonin anorexia. Our results provided genomic and in situ immunohistochemical evidence to confirm the mediation of hypothalamic NPY neurons in the anorectic action of AMPH.

  3. [Effect of the intermittent hypoxic training on the functioning of peptidergic neurons of the paraventricular hypothalamic nucleus and brain stem neurons in rats].

    PubMed

    Abramov, A V

    1998-03-01

    Internittent hypoxic training (IHT) increased the quantity and secretory activity of peptidergic neurons of the paraventricular hypothalamic nucleus (PHN) and activated neurons of the dorsal motor nucleus of n.vagus. These structures seem to take part in realisation of the IHT activating effect on condition of the pancreatic delta-cells. The effect involves insulin-stimulating and insuloprotective effects realised via hypothalamic and neuro-conducting ways of regulation of the endocrine pancreas with a direct participation of hypothalamic neuropeptides.

  4. Bilateral agenesis of arcuate fasciculus demonstrated by fiber tractography in congenital bilateral perisylvian syndrome.

    PubMed

    Kilinc, Ozden; Ekinci, Gazanfer; Demirkol, Ezgi; Agan, Kadriye

    2015-03-01

    Congenital bilateral perisylvian syndrome (CBPS) is a type of cortical developmental abnormality associated with distinctive clinical and imaging features. Clinical spectrum of this syndrome is quite heterogeneous, with different degrees of neurological impairment in affected individuals. High-definition magnetic resonance imaging (MRI) has a great importance in revealing the presence of CBPS, but is limited in elucidating the heterogeneous clinical spectrum. The arcuate fasciculus (AF) is a prominent language tract in the perisylvian region interconnecting Broca and Wernicke areas, and has a high probability of being affected developmentally in CBPS. Herein, we report a case of CBPS with investigation of AF using diffusion tensor imaging (DTI) and fiber tractography in relation to clinical findings. We postulated that proven absence of AF on DTI and fiber tractography would correlate with a severe phenotype of CBPS.

  5. Distribution of the neuronal inputs to the ventral premammillary nucleus of male and female rats☆

    PubMed Central

    Cavalcante, Judney Cley; Bittencourt, Jackson Cioni; Elias, Carol Fuzeti

    2014-01-01

    The ventral premammillary nucleus (PMV) expresses dense collections of sex steroid receptors and receptors for metabolic cues, including leptin, insulin and ghrelin. The PMV responds to opposite sex odor stimulation and projects to areas involved in reproductive control, including direct innervation of gonadotropin releasing hormone neurons. Thus, the PMV is well positioned to integrate metabolic and reproductive cues, and control downstream targets that mediate reproductive function. In fact, lesions of PMV neurons blunt female reproductive function and maternal aggression. However, although the projections of PMV neurons have been well documented, little is known about the neuronal inputs received by PMV neurons. To fill this gap, we performed a systematic evaluation of the brain sites innervating the PMV neurons of male and female rats using the retrograde tracer subunit B of the cholera toxin (CTb). In general, we observed that males and females show a similar pattern of afferents. We also noticed that the PMV is preferentially innervated by neurons located in the forebrain, with very few projections coming from brainstem nuclei. The majority of inputs originated from the medial nucleus of the amygdala, the bed nucleus of the stria terminalis and the medial preoptic nucleus. A moderate to high density of afferents was also observed in the ventral subiculum, the arcuate nucleus and the ventrolateral subdivision of the ventromedial nucleus of the hypothalamus. Our findings strengthen the concept that the PMV is part of the vomeronasal system and integrates the brain circuitry controlling reproductive functions. PMID:25084037

  6. Neuropeptide Y-like immunoreactive neurons in the suprachiasmatic-subparaventricular region in the hedgehog-tenrec.

    PubMed

    Künzle, H; Unger, J W

    1992-04-03

    The distribution of the neuropeptide Y (NPY) was studied in geniculate and peri-chiasmatic regions in the lesser hedgehog-tenrec, Echinops telfairi (Insectivora). Only few neurons demonstrated NPY-like immunoreactivity in the ventral lateral geniculate nucleus. In contrast, NPY-immunoreactive perikarya were clearly present in the suprachiasmatic nucleus (SCh) and dorsal and caudal to it. The latter region might correspond to the subparaventricular zone (SPV), recently identified in the rat as an additional area involved in processing circadian rhythms. While the distribution of a distinct cell population across nuclear boundries in both SCh and SPV might conform to the present idea of processing circadian rhythms, the presence of NPY-like immunoreactive neurons in these areas is rather unusual. In mammals, such neurons have only been demonstrated so far in the mentioned insectivore as well as in man.

  7. A review of the arcuate structures in the Iberian Variscides; constraints and genetic models

    NASA Astrophysics Data System (ADS)

    Dias, R.; Ribeiro, A.; Romão, J.; Coke, C.; Moreira, N.

    2016-06-01

    The main Ibero-Armorican Arc (IAA) is essentially defined by a predominant NW-SE trend in the Iberian branch and an E-W trend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previous major one (IAA). Whatever the models, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian - Carboniferous polyphasic indentation of a Gondwana promontory. In this model the CA is essentially a thin-skinned arc, while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.

  8. Hybrid (laparoscopy + stent) treatment of celiac trunk compression syndrome (Dunbar syndrome, median arcuate ligament syndrome (MALS))

    PubMed Central

    Michalik, Maciej; Lech, Paweł; Majda, Kaja; Gutowski, Piotr

    2016-01-01

    Introduction Celiac trunk (CT) compression syndrome caused by the median arcuate ligament (MAL) is a rarely diagnosed disease because of its nonspecific symptoms, which cause a delay in the correct diagnosis. Intestinal ischemia occurs, which causes symptoms of abdominal angina. One method of treatment for this disease is surgical release of the CT – the intersection of the MAL. Laparoscopy is the first step of the hybrid technique combined with percutaneous angioplasty and stenting of the CT. Aim To demonstrate the usefulness and advantages of the laparoscopic approach in the treatment of Dunbar syndrome. Material and methods Between 2013 and 2016 in the General and Minimally Invasive Surgery Department of the Medical Sciences Faculty of the University of Warmia and Mazury in Olsztyn, 6 laparoscopic procedures were performed because of median arcuate ligament syndrome. During the laparoscopy the MAL was cut with a harmonic scalpel. One month after laparoscopy 5 patients had Doppler percutaneous angioplasty of the CT with stent implantation in the Vascular Surgery Department in Pomeranian Medical University in Szczecin. Results In one case, there was a conversion of laparoscopic surgery to open due to unmanageable intraoperative bleeding. In one case, postoperative ultrasound examination of the abdominal cavity demonstrated the presence of a large hematoma in the retroperitoneal space. All patients reported relief of symptoms in the first days after the operation. Conclusions The hybrid method, combining laparoscopy and angioplasty, seems to be a long-term solution, which increases the comfort of the patient, brings the opportunity for normal functioning and minimizes the risk of restenosis. PMID:28194242

  9. Hypothalamic plasticity of neuropeptide Y is lacking in brain-type creatine kinase double knockout mice with defective thermoregulation.

    PubMed

    Van der Zee, Catharina E E M

    2013-11-05

    The neural substrate of adaptive thermoregulation in mice lacking both brain-type creatine kinase isoforms is further investigated. The cytosolic brain-type creatine kinase (CK-B) and mitochondrial ubiquitous creatine kinase (UbCKmit) are expressed in neural cells throughout the central and peripheral nervous system, where they have an important role in cellular energy homeostasis. Several integral functions appear altered when creatine kinases are absent in the brain (Jost et al., 2002; Streijger et al., 2004, 2005), which has been explained by inefficient neuronal transmission. The CK--/-- double knockout mice demonstrate every morning a body temperature drop of ~1.0 °C, and they have impaired thermogenesis, as revealed by severe hypothermia upon cold exposure. This defective thermoregulation is not associated with abnormal food intake, decreased locomotive activity, or increased torpor sensitivity. Although white and brown adipose tissue fat pads are diminished in CK--/-- mice, intravenous norepinephrine infusion results in a normal brown adipose tissue response with increasing core body temperatures, indicating that the sympathetic innervation functions correctly (Streijger et al., 2009). This study revealed c-fos changes following a cold challenge, and that neuropeptide Y levels were decreased in the paraventricular nucleus of wildtype, but not CK--/--, mice. A reduction in hypothalamic neuropeptide Y is coupled to increased uncoupling protein 1 expression in brown adipose tissue, resulting in thermogenesis. In CK--/-- mice the neuropeptide Y levels did not change. This lack of hypothalamic plasticity of neuropeptide Y might be the result of inefficient neuronal transmission or can be explained by the previous observation of reduced circulating levels of leptin in CK--/-- mice.

  10. Advances in Mass Spectrometric Tools for Probing Neuropeptides

    NASA Astrophysics Data System (ADS)

    Buchberger, Amanda; Yu, Qing; Li, Lingjun

    2015-07-01

    Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.

  11. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis

    PubMed Central

    Bakos, Jan; Zatkova, Martina; Bacova, Zuzana; Ostatnikova, Daniela

    2016-01-01

    The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits. PMID:26881105

  12. Locus coeruleus response to single-prolonged stress and early intervention with intranasal neuropeptide Y.

    PubMed

    Sabban, Esther L; Laukova, Marcela; Alaluf, Lishay G; Olsson, Emelie; Serova, Lidia I

    2015-12-01

    Dysregulation of the central noradrenergic system is a core feature of post-traumatic stress disorder (PTSD). Here, we examined molecular changes in locus coeruleus (LC) triggered by single-prolonged stress (SPS) PTSD model at a time when behavioral symptoms are manifested, and the effect of early intervention with intranasal neuropeptide Y (NPY). Immediately following SPS stressors, male SD rats were administered intranasal NPY (SPS/NPY) or vehicle (SPS/V). Seven days later, TH protein, but not mRNA, was elevated in LC only of the SPS/V group. Although 90% of TH positive cells expressed GR, its levels were unaltered. Compared to unstressed controls, LC of SPS/V, but not SPS/NPY, expressed less Y2 receptor mRNA with more CRHR1 mRNA in subset of animals, and elevated corticotropin-releasing hormone (CRH) in central nucleus of amygdala. Following testing for anxiety on elevated plus maze (EPM), there were significantly increased TH, DBH and NPY mRNAs in LC of SPS-treated, but not previously unstressed animals. Their levels highly correlated with each other but not with behavioral features on EPM. Thus, SPS triggers long-term noradrenergic activation and higher sensitivity to mild stressors, perhaps mediated by the up-regulation influence of amygdalar CRH input and down-regulation of Y2R presynaptic inhibition in LC. Results also demonstrate the therapeutic potential of early intervention with intranasal NPY for traumatic stress-elicited noradrenergic impairments. Single-prolonged stress (SPS)-triggered long-term changes in the locus coeruleus/norepinephrine (LC/NE) system with increased tyrosine hydroxylase (TH) protein and CRH receptor 1(CRHR1) mRNA and lower neuropeptide Y receptor 2 (Y2R) mRNA levels as well as elevated corticotropin-releasing hormone (CRH) in the central nucleus of amygdala (CeA) that were prevented by early intervention with intranasal neuropeptide Y (NPY). SPS treatment led to increased sensitivity of LC to mild stress of elevated plus maze

  13. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  14. Discovery of multiple neuropeptide families in the phylum Platyhelminthes.

    PubMed

    McVeigh, Paul; Mair, Gunnar R; Atkinson, Louise; Ladurner, Peter; Zamanian, Mostafa; Novozhilova, Ekaterina; Marks, Nikki J; Day, Tim A; Maule, Aaron G

    2009-09-01

    Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.

  15. Interaction between dopamine and neuropeptide Y in the telencephalon of the Indian major carp, Cirrhinus cirrhosus.

    PubMed

    Saha, Soham; Kumar, Santosh; Singh, Uday; Singh, Omprakash; Singru, Praful S

    2015-09-01

    In teleosts, while neuropeptide Y (NPY) has emerged as one of the potent regulators of GnRH-LH axis, entopeduncular nucleus (EN) in the ventral telencephalon serves as major site for NPY synthesis/storage. Neurons of the EN innervate preoptic area and pituitary, respond to gonadal steroids, undergo reproduction phase-related changes, and are believed to convey sex steroid-borne information to GnRH neurons. In spite of the importance of EN, the neural circuitry associated with the nucleus has not been defined. Aim of the present study is to examine the possibility of the dopaminergic regulation of EN. NPY-immunoreactive cells and fibers were extensively distributed in the forebrain and pituitary of Cirrhinus cirrhosus. NPY immunoreactivity was observed in the olfactory receptor neurons, ganglion cells of terminal nerve, and in neurons of area ventralis telencephali/pars lateralis, EN, nucleus preopticus periventricularis (NPP), and nucleus lateralis tuberis. NPY-fibers were observed in the dorsal telencephalon, tuberal area and pituitary. While the area ventralis telencephali/pars intermedialis (Vi) located just above the EN contained a distinct population of tyrosine hydroxylase neurons, their axons seem to innervate NPY neurons in EN. Superfused brain slices containing EN were treated with DA D1- and D2-like receptor agonists. NPY-immunoreactivity in the EN showed significant increase (P<0.001) following DA D1-like receptor agonist, SKF-38393 treatment, but DA D2-like receptor agonist, quinpirole was ineffective. DA may regulate NPY neurons in EN via D1-like receptors. DA-NPY interaction in the EN might be important in the central regulation of reproduction in teleosts.

  16. The neuropeptide oxytocin modulates consumer brand relationships.

    PubMed

    Fürst, Andreas; Thron, Jesko; Scheele, Dirk; Marsh, Nina; Hurlemann, René

    2015-10-09

    Each year, companies invest billions of dollars into marketing activities to embellish brands as valuable relationship partners assuming that consumer brand relationships (CBRs) and interpersonal relationships rest upon the same neurobiological underpinnings. Given the crucial role of the neuropeptide oxytocin (OXT) in social bonding, this study tests whether OXT-based mechanisms also determine the bond between consumers and brands. We conducted a randomized, placebo-controlled study involving 101 subjects and analyzed the effect of intranasal OXT on consumers' attribution of relationship qualities to brands, brands paired with human celebrity endorsers, and familiar persons. OXT indeed promoted the attribution of relationship qualities not only in the case of social and semi-social stimuli, but also brands. Intriguingly, for subjects scoring high on autistic-like traits, the effect of OXT was completely reversed, evident in even lower relationship qualities across all stimulus categories. The importance of OXT in a CBR context is further corroborated by a three-fold increase in endogenous release of OXT following exposure to one's favorite brand and positive associations between baseline peripheral OXT concentrations and brand relationship qualities. Collectively, our findings indicate that OXT not only plays a fundamental role in developing interpersonal relationships, but also enables relationship formation with objects such as brands.

  17. [Neuropeptide Y and autonomic nervous system].

    PubMed

    Nozdrachev, A D; Masliukov, P M

    2011-01-01

    Neuropeptide Y (NPY) containing 36 amino acid residues belongs to peptides widely spread in the central and peripheral nervous system. NPY and its receptors play an extremely diverse role in the nervous system, including regulation of satiety, of emotional state, of vascular tone, and of gastrointestinal secretion. In mammals, NPY has been revealed in the majority of sympathetic ganglion neurons, in a high number of neurons of parasympathetic cranial ganglia as well as of intramural ganglia of the metasympathetic nervous system. At present, six types of receptors to NPY (Y1-Y6) have been identified. All receptors to NPY belong to the family of G-bound proteins. Action of NPY on peripheral organs-targets is predominantly realized through postsynaptic receptors Y1, Y3-Y5, and presynaptic receptors of the Y2 type. NPY is present in large electron-dense vesicles and is released at high-frequency stimulation. NPY affects not only vascular tone, frequency and strength of heart contractions, motorics and secretion of the gastrointestinal tract, but also has trophic effect and produces proliferation of cells of organs-targets, specifically of vessels, myocardium, and adipose tissue. In early postnatal ontogenesis the percent of the NPY-containing neurons in ganglia of the autonomic nervous system increases. In adult organisms, this parameter decreases. This seems to be connected with the trophic NPY effect on cells-targets as well as with regulation of their functional state.

  18. The neuropeptide oxytocin modulates consumer brand relationships

    PubMed Central

    Fürst, Andreas; Thron, Jesko; Scheele, Dirk; Marsh, Nina; Hurlemann, René

    2015-01-01

    Each year, companies invest billions of dollars into marketing activities to embellish brands as valuable relationship partners assuming that consumer brand relationships (CBRs) and interpersonal relationships rest upon the same neurobiological underpinnings. Given the crucial role of the neuropeptide oxytocin (OXT) in social bonding, this study tests whether OXT-based mechanisms also determine the bond between consumers and brands. We conducted a randomized, placebo-controlled study involving 101 subjects and analyzed the effect of intranasal OXT on consumers’ attribution of relationship qualities to brands, brands paired with human celebrity endorsers, and familiar persons. OXT indeed promoted the attribution of relationship qualities not only in the case of social and semi-social stimuli, but also brands. Intriguingly, for subjects scoring high on autistic-like traits, the effect of OXT was completely reversed, evident in even lower relationship qualities across all stimulus categories. The importance of OXT in a CBR context is further corroborated by a three-fold increase in endogenous release of OXT following exposure to one’s favorite brand and positive associations between baseline peripheral OXT concentrations and brand relationship qualities. Collectively, our findings indicate that OXT not only plays a fundamental role in developing interpersonal relationships, but also enables relationship formation with objects such as brands. PMID:26449882

  19. Ambient Temperature and 17β-Estradiol Modify Fos Immunoreactivity in the Median Preoptic Nucleus, a Putative Regulator of Skin Vasomotion

    PubMed Central

    Dacks, Penny A.; Krajewski, Sally J.

    2011-01-01

    Estrogen has pronounced effects on thermoregulation, but the anatomic sites of integration between the reproductive and thermoregulatory axes are unknown. In this study, we tested whether estradiol-17β (E2) treatment would alter the activity of thermoregulatory brain regions responding to mild changes in ambient temperature (TAMBIENT). Core and tail skin temperatures were recorded at the ambient temperatures of 20, 24, or 31 C in ovariectomized (OVX) rats with and without E2. Neuronal activity was evaluated by counting the number of Fos-immunoreactive cells in the brains of rats killed 90 min after exposure to one of the three ambient temperatures. Of 14 brain areas examined, the median preoptic nucleus (MnPO) was the only site that exhibited increased Fos immunoreactivity at the high TAMBIENT of 31 C. At 24 C, OVX rats exhibited increased numbers of MnPO Fos-immunoreactive cells, compared with OVX + E2 rats. Interestingly, tail skin vasomotion and MnPO Fos expression were affected in a similar manner by TAMBIENT and E2 treatment. In the arcuate nucleus and anteroventral periventricular nucleus (AVPV), Fos immunoreactivity was highest at the low TAMBIENT of 20 C, with inhibitory (arcuate nucleus) and stimulatory (AVPV) effects of E2. No other areas responded to both TAMBIENT and E2 treatment. These results implicate the MnPO, the arcuate nucleus, and the AVPV as sites of integration between the reproductive and thermoregulatory axes. Combined with studies showing the importance of MnPO neurons in heat-defense pathways, the MnPO emerges as a likely site for E2 modulation of thermoregulatory vasomotion. PMID:21521752

  20. Ambient temperature and 17β-estradiol modify Fos immunoreactivity in the median preoptic nucleus, a putative regulator of skin vasomotion.

    PubMed

    Dacks, Penny A; Krajewski, Sally J; Rance, Naomi E

    2011-07-01

    Estrogen has pronounced effects on thermoregulation, but the anatomic sites of integration between the reproductive and thermoregulatory axes are unknown. In this study, we tested whether estradiol-17β (E(2)) treatment would alter the activity of thermoregulatory brain regions responding to mild changes in ambient temperature (T(AMBIENT)). Core and tail skin temperatures were recorded at the ambient temperatures of 20, 24, or 31 C in ovariectomized (OVX) rats with and without E(2). Neuronal activity was evaluated by counting the number of Fos-immunoreactive cells in the brains of rats killed 90 min after exposure to one of the three ambient temperatures. Of 14 brain areas examined, the median preoptic nucleus (MnPO) was the only site that exhibited increased Fos immunoreactivity at the high T(AMBIENT) of 31 C. At 24 C, OVX rats exhibited increased numbers of MnPO Fos-immunoreactive cells, compared with OVX + E(2) rats. Interestingly, tail skin vasomotion and MnPO Fos expression were affected in a similar manner by T(AMBIENT) and E(2) treatment. In the arcuate nucleus and anteroventral periventricular nucleus (AVPV), Fos immunoreactivity was highest at the low T(AMBIENT) of 20 C, with inhibitory (arcuate nucleus) and stimulatory (AVPV) effects of E(2). No other areas responded to both T(AMBIENT) and E(2) treatment. These results implicate the MnPO, the arcuate nucleus, and the AVPV as sites of integration between the reproductive and thermoregulatory axes. Combined with studies showing the importance of MnPO neurons in heat-defense pathways, the MnPO emerges as a likely site for E(2) modulation of thermoregulatory vasomotion.

  1. Local cholinergic and non-cholinergic neural pathways to the rat supraoptic nucleus

    SciTech Connect

    Meeker, M.L.

    1986-01-01

    An estimated two thirds of the input to the supraoptic nucleus of the rat hypothalamus (SON) including a functionally significant cholinergic innervation, arise from local sources of unknown origin. The sources of these inputs were identified utilizing Golgi-Cox, retrograde tracing, choline acetyltransferase immunocytochemistry and anterograde tracing methodologies. Multipolar Golgi impregnated neurons located dorsal and lateral to the SON extend spiney processes into the nucleus. Injections of the retrograde tracers, wheat germ agglutinin or wheat germ agglutinin-horseradish peroxidase, into the SON labeled cells bilaterally in the arcuate nucleus, and ipsilaterally in the lateral hypothalamus, anterior hypothalamus, nucleus of the diagonal band, subfornical organ, medial preoptic area, lateral preoptic area and in the region dorsolateral to the nucleus. Immunocytochemistry for choline acetyltransferase revealed cells within the ventro-caudal portion of cholinergic cell group, Ch4, which cluster dorsolateral to the SON, and extend axon- and dendrite-like processes into the SON. Cells double-labeled by choline acetyltransferase immunocytochemistry and retrograde tracer injections into the SON are localized within the same cholinergic cell group dorsolateral to the SON. Injections of the anterograde tracer, Phaseolus vulgaris-leucoagglutinin, deposited dorsolateral to the SON results in labeled pre-and post-synaptic processes within the SON. The identification and characterization of endogenous immunoglobulin within the SON and other neurons innervating areas lacking a blood-brain barrier established a novel and potentially important system for direct communication of the supraoptic cells with blood-borne constitutents.

  2. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  3. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  4. Costorage and coexistence of neuropeptides in the mammalian CNS.

    PubMed

    Merighi, A

    2002-02-01

    The term neuropeptides commonly refers to a relatively large number of biologically active molecules that have been localized to discrete cell populations of central and peripheral neurons. I review here the most important histological and functional findings on neuropeptide distribution in the central nervous system (CNS), in relation to their role in the exchange of information between the nerve cells. Under this perspective, peptide costorage (presence of two or more peptides within the same subcellular compartment) and coexistence (concurrent presence of peptides and other messenger molecules within single nerve cells) are discussed in detail. In particular, the subcellular site(s) of storage and sorting mechanisms within neurons are thoroughly examined in the view of the mode of release and action of neuropeptides as neuronal messengers. Moreover, the relationship of neuropeptides and other molecules implicated in neural transmission is discussed in functional terms, also referring to the interactions with novel unconventional transmitters and trophic factors. Finally, a brief account is given on the presence of neuropeptides in glial cells.

  5. Multiple Neuropeptide-Coding Genes Involved in Planarian Pharynx Extension.

    PubMed

    Shimoyama, Seira; Inoue, Takeshi; Kashima, Makoto; Agata, Kiyokazu

    2016-06-01

    Planarian feeding behavior involves three steps: moving toward food, extending the pharynx from their planarian's ventral side after arriving at the food, and ingesting the food through the pharynx. Although pharynx extension is a remarkable behavior, it remains unknown what neuronal cell types are involved in its regulation. To identify neurons involved in regulating pharynx extension, we quantitatively analyzed pharynx extension and sought to identify these neurons by RNA interference (RNAi) and in situ hybridization. This assay, when performed using planarians with amputation of various body parts, clearly showed that the head portion is indispensable for inducing pharynx extension. We thus tested the effects of knockdown of brain neurons such as serotonergic, GABAergic, and dopaminergic neurons by RNAi, but did not observe any effects on pharynx extension behavior. However, animals with RNAi of the Prohormone Convertase 2 (PC2, a neuropeptide processing enzyme) gene did not perform the pharynx extension behavior, suggesting the possible involvement of neuropeptide(s in the regulation of pharynx extension. We screened 24 neuropeptide-coding genes, analyzed their functions by RNAi using the pharynx extension assay system, and identified at least five neuropeptide genes involved in pharynx extension. These was expressed in different cells or neurons, and some of them were expressed in the brain, suggesting complex regulation of planarian feeding behavior by the nervous system.

  6. Atypical hemispheric asymmetry in the arcuate fasciculus of completely nonverbal children with autism.

    PubMed

    Wan, Catherine Y; Marchina, Sarah; Norton, Andrea; Schlaug, Gottfried

    2012-04-01

    Despite the fact that as many as 25% of the children diagnosed with autism spectrum disorders are nonverbal, surprisingly little research has been conducted on this population. In particular, the mechanisms that underlie their absence of speech remain unknown. Using diffusion tensor imaging, we compared the structure of a language-related white matter tract (the arcuate fasciculus, AF) in five completely nonverbal children with autism to that of typically developing children. We found that, as a group, the nonverbal children did not show the expected left-right AF asymmetry--rather, four of the five nonverbal children actually showed the reversed pattern. It is possible that this unusual pattern of asymmetry may underlie some of the severe language deficits commonly found in autism, particularly in children whose speech fails to develop. Furthermore, novel interventions (such as auditory-motor mapping training) designed to engage brain regions that are connected via the AF may have important clinical potential for facilitating expressive language in nonverbal children with autism.

  7. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin.

    PubMed

    Wang, Qian; Liu, Chen; Uchida, Aki; Chuang, Jen-Chieh; Walker, Angela; Liu, Tiemin; Osborne-Lawrence, Sherri; Mason, Brittany L; Mosher, Christina; Berglund, Eric D; Elmquist, Joel K; Zigman, Jeffrey M

    2014-02-01

    The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreER(T2) transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression. AgRP neuron-selective GHSR re-expression partially restored the orexigenic response to administered ghrelin and fully restored the lowered blood glucose levels observed upon caloric restriction. The normalizing glucoregulatory effect of AgRP neuron-selective GHSR expression was linked to glucagon rises and hepatic gluconeogenesis induction. Thus, our data indicate that GHSR-containing AgRP neurons are not solely responsible for ghrelin's orexigenic effects but are sufficient to mediate ghrelin's effects on glycemia.

  8. Developmental process of the arcuate fasciculus from infancy to adolescence: a diffusion tensor imaging study

    PubMed Central

    Tak, Hyeong Jun; Kim, Jin Hyun; Son, Su Min

    2016-01-01

    We investigated the radiologic developmental process of the arcuate fasciculus (AF) using subcomponent diffusion tensor imaging (DTI) analysis in typically developing volunteers. DTI data were acquired from 96 consecutive typically developing children, aged 0–14 years. AF subcomponents, including the posterior, anterior, and direct AF tracts were analyzed. Success rates of analysis (AR) and fractional anisotropy (FA) values of each subcomponent tract were measured and compared. AR of all subcomponent tracts, except the posterior, showed a significant increase with aging (P < 0.05). Subcomponent tracts had a specific developmental sequence: First, the posterior AF tract, second, the anterior AF tract, and last, the direct AF tract in identical hemispheres. FA values of all subcomponent tracts, except right direct AF tract, showed correlation with subject's age (P < 0.05). Increased AR and FA values were observed in female subjects in young age (0–2 years) group compared with males (P < 0.05). The direct AF tract showed leftward hemispheric asymmetry and this tendency showed greater consolidation in older age (3–14 years) groups (P < 0.05). These findings demonstrated the radiologic developmental patterns of the AF from infancy to adolescence using subcomponent DTI analysis. The AF showed a specific developmental sequence, sex difference in younger age, and hemispheric asymmetry in older age. PMID:27482222

  9. Neuropeptide Control of Feeding Behavior in Birds and Its Difference with Mammals.

    PubMed

    Tachibana, Tetsuya; Tsutsui, Kazuyoshi

    2016-01-01

    Feeding is an essential behavior for animals to sustain their lives. Over the past several decades, many neuropeptides that regulate feeding behavior have been identified in vertebrates. These neuropeptides are called "feeding regulatory neuropeptides." There have been numerous studies on the role of feeding regulatory neuropeptides in vertebrates including birds. Some feeding regulatory neuropeptides show different effects on feeding behavior between birds and other vertebrates, particularly mammals. The difference is marked with orexigenic neuropeptides. For example, melanin-concentrating hormone, orexin, and motilin, which are regarded as orexigenic neuropeptides in mammals, have no effect on feeding behavior in birds. Furthermore, ghrelin and growth hormone-releasing hormone, which are also known as orexigenic neuropeptides in mammals, suppress feeding behavior in birds. Thus, it is likely that the feeding regulatory mechanism has changed during the evolution of vertebrates. This review summarizes the recent knowledge of peptidergic feeding regulatory factors in birds and discusses the difference in their action between birds and other vertebrates.

  10. Atlas of Central Nervous System and the first Neuropeptide from Fire Ant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In some insects, especially lepidopteran species, regulation of pheromone biosynthesis and production is under hormonal control. The neuropeptide hormone responsible, PBAN (Pheromone Biosynthesis Activating Neuropeptide), is synthesized in the subesophageal ganglion (SG) and released into the hemoly...

  11. Bidirectional iterative parcellation of diffusion weighted imaging data: separating cortical regions connected by the arcuate fasciculus and extreme capsule.

    PubMed

    Patterson, Dianne K; Van Petten, Cyma; Beeson, Pélagie M; Rapcsak, Steven Z; Plante, Elena

    2014-11-15

    This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option "probabilistic tracking with classification targets" in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain.

  12. Paleomagnetic data bearing on the origin of arcuate structures in the French Peak-Massachusetts Mountain area of southern Nevada

    USGS Publications Warehouse

    Hudson, M.R.

    1992-01-01

    The eastern margin of the Yucca Flat basin, in southern Nevada, is bounded by NNW-striking tilted fault blocks of the Halfpint Range whose strikes curve as much as 90?? clockwise into ENE strikes in the French Peak-Massachusetts Mountain (FPMM) area. This pattern of arcuate structures has been attributed to clockwise drag along a postulated NW-trending, right-lateral shear zone. The flexure model implies that rocks within the FPMM area were rotated strongly clockwise about a vertical axis. Directions of remanent magnetization of the middle Miocene Ammonia Tanks and Rainier Mesa Members of the Timber Mountain Tuff and of the Topopah Spring Member of the Paintbrush Tuff indicate no systematic vertical-axis rotation in the FPMM area and disprove the flexure model. The paleomagnetic data indicate that structures in the FPMM area initiated with arcuate trends and were not originally straight elements that were rotated by right-lateral drag. The structures probably formed under the influence of spatially variable stress fields. The FPMM area lies in an accommodation zone between domains of oppositely tilted extensional fault blocks. Interaction between stress fields associated with propagating normal-fault zones may have been responsible for the arcuate structures in the FPMM area. -from Author

  13. Brain neuropeptides in central ventilatory and cardiovascular regulation in trout

    PubMed Central

    Le Mével, Jean-Claude; Lancien, Frédéric; Mimassi, Nagi; Conlon, J. Michael

    2012-01-01

    Many neuropeptides and their G-protein coupled receptors (GPCRs) are present within the brain area involved in ventilatory and cardiovascular regulation but only a few mammalian studies have focused on the integrative physiological actions of neuropeptides on these vital cardio-respiratory regulations. Because both the central neuroanatomical substrates that govern motor ventilatory and cardiovascular output and the primary sequence of regulatory peptides and their receptors have been mostly conserved through evolution, we have developed a trout model to study the central action of native neuropeptides on cardio-ventilatory regulation. In the present review, we summarize the most recent results obtained using this non-mammalian model with a focus on PACAP, VIP, tachykinins, CRF, urotensin-1, CGRP, angiotensin-related peptides, urotensin-II, NPY, and PYY. We propose hypotheses regarding the physiological relevance of the results obtained. PMID:23115556

  14. Job Stress and Neuropeptide Response Contributing to Food Intake Regulation.

    PubMed

    Kim, Ki-Woong; Won, Yong Lim; Ko, Kyung Sun; Kang, Seong-Kyu

    2015-12-01

    The purpose of the present study is to investigate the correlations between food intake behavior and job stress level and neuropeptide hormone concentrations. Job strain and food intake behavior were first identified using a self-reported questionnaire, concentrations of neuropeptide hormones (adiponectin, brain derived neurotrophic factor [BDNF], leptin, and ghrelin) were determined, and the correlations were analyzed. In the results, job strain showed significant correlations with adiponectin (odds ratio [OR], 1.220; 95% confidence interval [CI], 1.001~1.498; p < 0.05) and BDNF (OR, 0.793; 95% CI, 0.646~0.974; p < 0.05), and ghrelin exhibited a significant correlation with food intake score (OR, 0.911; 95% CI, 0.842~0.985, p < 0.05). These results suggest that job stress affects food intake regulation by altering the physiological concentrations of neuropeptide hormones as well as emotional status.

  15. Job Stress and Neuropeptide Response Contributing to Food Intake Regulation

    PubMed Central

    Kim, Ki-Woong; Won, Yong Lim; Ko, Kyung Sun

    2015-01-01

    The purpose of the present study is to investigate the correlations between food intake behavior and job stress level and neuropeptide hormone concentrations. Job strain and food intake behavior were first identified using a self-reported questionnaire, concentrations of neuropeptide hormones (adiponectin, brain derived neurotrophic factor [BDNF], leptin, and ghrelin) were determined, and the correlations were analyzed. In the results, job strain showed significant correlations with adiponectin (odds ratio [OR], 1.220; 95% confidence interval [CI], 1.001~1.498; p < 0.05) and BDNF (OR, 0.793; 95% CI, 0.646~0.974; p < 0.05), and ghrelin exhibited a significant correlation with food intake score (OR, 0.911; 95% CI, 0.842~0.985, p < 0.05). These results suggest that job stress affects food intake regulation by altering the physiological concentrations of neuropeptide hormones as well as emotional status. PMID:26877843

  16. Peptidomics for the discovery and characterization of neuropeptides and hormones

    PubMed Central

    Romanova, Elena V.; Sweedler, Jonathan V.

    2015-01-01

    The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G-protein coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that likely are neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry-based technologies and experimental strategies that have been successful in achieving high throughput characterization of endogenous peptides in nervous and endocrine systems. PMID:26143240

  17. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  18. Ultrastructural study of the nucleus Cuneiformis in the cat.

    PubMed

    Gioia, M; Bianchi, R

    1987-01-01

    The Cuneiformis nucleus (Cu.n.) is a reticular nucleus of the mesencephalic tegmentum which is involved in several functions and particularly in locomotor activities. While the physiological properties and the nervous connections of the nucleus have been studied, there is no data about its ultrastructure. Therefore, we investigated this region in cat at the electron microscope and with morphoquantitative methods to clarify its ultrastructural organization and particularly the characteristics of its synaptic complex. The neurons are small and medium in size, with a high nucleo-cytoplasmic ratio and a modest rough endoplasmic reticulum organization. The neuropil is very extensive. Myelinated axons are very numerous. Dendritic profiles whose plasmalemma is almost completely covered by synaptic boutons are observed frequently. There are few somatic synapses; 81% have symmetrical junctions and 23% have round vesicles only. There are numerous synapses in the neuropil, 40% having asymmetrical junctions and 60% containing round vesicles only. The greater functional complexity indicated by the morphological data and the greater extension of the neuropil synapses with respect to that of the somatic ones, suggest that the neuropil is the main site of modulation and integration of the inputs to the nucleus. A highly significant statistical difference between the sizes of the somatic vesicles and those of the neuropil was found. This may point to the presence of distinct populations of vesicles, which may be correlated with the variety of substances (neurotransmitters, neuropeptides etc ...) found in the nucleus. The remarkable ultrastructural similarity between the Cu.n. and the periaqueductal gray matter is discussed.

  19. Neuropeptides and the microbiota-gut-brain axis.

    PubMed

    Holzer, Peter; Farzi, Aitak

    2014-01-01

    Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides

  20. Cyclic analogs of galanin and neuropeptide Y by hydrocarbon stapling.

    PubMed

    Green, Brad R; Klein, Brian D; Lee, Hee-Kyoung; Smith, Misty D; Steve White, H; Bulaj, Grzegorz

    2013-01-01

    Hydrocarbon stapling is an effective strategy to stabilize the helical conformation of bioactive peptides. Here we describe application of stapling to anticonvulsant neuropeptides, galanin (GAL) and neuropeptide Y (NPY), that are implicated in modulating seizures in the brain. Dicarba bridges were rationally introduced into minimized analogs of GAL and NPY resulting in increased α-helical content, in vitro metabolic stability and n-octanol/water partitioning coefficient (logD). The stapled analogs retained agonist activities towards their respective receptors and suppressed seizures in a mouse model of epilepsy.

  1. SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms.

    PubMed

    Elphick, Maurice R

    2014-09-01

    The SALMFamides are a family of neuropeptides that occur in species belonging to the phylum Echinodermata. The prototypes for this neuropeptide family (S1 and S2) were discovered in starfish but subsequently SALMFamides were identified in other echinoderms. There are two types of SALMFamides: L-type, which have the C-terminal motif SxLxFamide, and F-type, which have the C-terminal motif SxFxFamide. They are derived from two types of precursor proteins: an L-type SALMFamide precursor, which comprises only L-type or L-type-like SALMFamides and an F-type SALMFamide precursor, which contains several F-type or F-type-like SALMFamides and, typically, one or more L-type SALMFamides. Thus, SALMFamides occur as heterogeneous mixtures of neuropeptides - a SALMFamide salmagundi. SALMFamides are produced by distinct populations of neurons in echinoderm larval and adult nervous systems and are present in the innervation of neuromuscular organs. Both L-type and F-type SALMFamides cause muscle relaxation in echinoderms and, for example, in starfish this effect of SALMFamides may mediate neural control of cardiac stomach eversion in species that feed extra-orally (e.g., Asterias rubens). The SALMFamide S1 also causes inhibition of neural release of a relaxin-like gonadotropin in the starfish Asterina pectinifera. An important issue that remains to be resolved are the relationships of SALMFamides with neuropeptides that have been identified in other phyla. However, it has been noted that the C-terminal SxLxFamide motif of L-type SALMFamides is a feature of some members of a bilaterian neuropeptide family that includes gonadotropin-inhibitory hormone (GnIH) in vertebrates and SIFamide-type neuropeptides in protostomes. Similarly, the C-terminal FxFamide motif of F-type SALMFamides is a feature of vertebrate QRFP (26RFa)-type neuropeptides. These sequence similarities may provide a basis for molecular identification of receptors that mediate effects of SALMFamides. Furthermore

  2. Altered anterior-posterior connectivity through the arcuate fasciculus in temporal lobe epilepsy.

    PubMed

    Takaya, Shigetoshi; Liu, Hesheng; Greve, Douglas N; Tanaka, Naoaki; Leveroni, Catherine; Cole, Andrew J; Stufflebeam, Steven M

    2016-12-01

    How the interactions between cortices through a specific white matter pathway change during cognitive processing in patients with epilepsy remains unclear. Here, we used surface-based structural connectivity analysis to examine the change in structural connectivity with Broca's area/the right Broca's homologue in the lateral temporal and inferior parietal cortices through the arcuate fasciculus (AF) in 17 patients with left temporal lobe epilepsy (TLE) compared with 17 healthy controls. Then, we investigated its functional relevance to the changes in task-related responses and task-modulated functional connectivity with Broca's area/the right Broca's homologue during a semantic classification task of a single word. The structural connectivity through the AF pathway and task-modulated functional connectivity with Broca's area decreased in the left midtemporal cortex. Furthermore, task-related response decreased in the left mid temporal cortex that overlapped with the region showing a decrease in the structural connectivity. In contrast, the region showing an increase in the structural connectivity through the AF overlapped with the regions showing an increase in task-modulated functional connectivity in the left inferior parietal cortex. These structural and functional changes in the overlapping regions were correlated. The results suggest that the change in the structural connectivity through the left frontal-temporal AF pathway underlies the altered functional networks between the frontal and temporal cortices during the language-related processing in patients with left TLE. The left frontal-parietal AF pathway might be employed to connect anterior and posterior brain regions during language processing and compensate for the compromised left frontal-temporal AF pathway. Hum Brain Mapp 37:4425-4438, 2016. © 2016 Wiley Periodicals, Inc.

  3. Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipolar disorder

    PubMed Central

    Sun, Zhong Yi; Houenou, Josselin; Duclap, Delphine; Sarrazin, Samuel; Linke, Julia; Daban, Claire; Hamdani, Nora; d’Albis, Marc-Antoine; Le Corvoisier, Philippe; Guevara, Pamela; Delavest, Marine; Bellivier, Frank; Almeida, Jorge; Versace, Amelia; Poupon, Cyril; Leboyer, Marion; Phillips, Mary; Wessa, Michèle; Mangin, Jean-François

    2017-01-01

    Background Abnormal maturation of brain connectivity is supposed to underlie the dysfunctional emotion regulation in patients with bipolar disorder (BD). To test this hypothesis, white matter integrity is usually investigated using measures of water diffusivity provided by MRI. Here we consider a more intuitive aspect of the morphometry of the white matter tracts: the shape of the fibre bundles, which is associated with neurodevelopment. We analyzed the shape of 3 tracts involved in BD: the cingulum (CG), uncinate fasciculus (UF) and arcuate fasciculus (AF). Methods We analyzed diffusion MRI data in patients with BD and healthy controls. The fibre bundles were reconstructed using Q-ball–based tractography and automated segmentation. Using Isomap, a manifold learning method, the differences in the shape of the reconstructed bundles were visualized and quantified. Results We included 112 patients and 82 controls in our analysis. We found the left AF of patients to be further extended toward the temporal pole, forming a tighter hook than in controls. We found no significant difference in terms of shape for the left UF, the left CG or the 3 right fasciculi. However, in patients compared with controls, the ventrolateral branch of the left UF in the orbitofrontal region had a tendency to be larger, and the left CG of patients had a tendency to be smaller in the frontal lobe and larger in the parietal lobe. Limitations This was a cross-sectional study. Conclusion Our results suggest neurodevelopmental abnormalities in the left AF in patients with BD. The statistical tendencies observed for the left UF and left CG deserve further study. PMID:28234596

  4. Seasonal shoreline behaviours along the arcuate Niger Delta coast: Complex interaction between fluvial and marine processes

    NASA Astrophysics Data System (ADS)

    Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Ding, Dong; Ma, Yanyan; Xu, Jishang

    2016-07-01

    Deltaic coasts are dynamic geomorphic systems where continuous changes occur on diverse spatial and temporal scales, and these changes constitute an important aspect of their evolution. Based on three-year satellite-derived shoreline data coupled with re-analyzed wave data and hydro-meteorological data, a comprehensive analysis of the dominant processes governing the seasonal shoreline changes along the oil-rich arcuate section of the Niger Delta, in the Nigerian Shelf of the North Atlantic Ocean has been undertaken. Shoreline analysis results show that the delta coast is characterized by predominant summer erosion and maximum winter accretion. Between 2010 and 2012, erosion dominated over accretion and a total of 9.1 km2 deltaic land was lost to coastline erosion at an annual average erosion rate of 4.55±1.21 km2/yr. A greater understanding of the dominant factors responsible for the change is presented. Shoreline change interactions with cross-shore sediment exchange processes are prominent at seasonal timescale (Summer R2=-0.85 and Winter R2=0.7), and interannual timescale (R2=-0.93) with longshore sediment transport processes. Correlation analysis reveals a gradual degeneration of relationship between the suspended sediment flux and coastal hydrodynamics beginning from 2010 to 2012 (cross-shore transport, R=0.68, 0.36 and 0.2 for 2010, 2011 and 2012, respectively; longshore transport R=0.63, 0.44 and 0.2 for 2010, 2011 and 2012, respectively). The study concludes that the effect of fluvial sediment reduction to the delta coast due to capital dredging of the Lower Niger River channels between 2009 and 2012, and periodic fluctuations in the nearshore hydrodynamics processes caused the observed annual shoreline erosion that eventually forced the deltaic coastline toward a state of landward migration during the study period.

  5. Functional roles of neuropeptides in the insect central nervous system

    NASA Astrophysics Data System (ADS)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  6. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  7. The insect capa neuropeptides impact desiccation and cold stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Insects are so successful because of great resistance to environmental stress, yet little is known about how such responses may be mediated by the neuroendocrine system. Results: We provide evidence that the capability (capa) neuropeptide gene and peptide are critical mediators of desic...

  8. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity. PMID:28154473

  9. Oxytocin: the neuropeptide of love reveals some of its secrets.

    PubMed

    Neumann, Inga D

    2007-04-01

    The neuropeptide oxytocin is synthesized in the brain and released from neurohypophyseal terminals into the blood and within defined brain regions that regulate emotional, cognitive, and social behaviors. A recent study of CD38-/- mice (Jin et al., 2007) has demonstrated an essential role for the transmembrane receptor CD38 in secretion of oxytocin into the blood.

  10. Tethering of the vertebral artery in the congenital arcuate foramen of the atlas vertebra: a possible cause of vertebral artery dissection in children.

    PubMed

    Cushing, K E; Ramesh, V; Gardner-Medwin, D; Todd, N V; Gholkar, A; Baxter, P; Griffiths, P D

    2001-07-01

    Twelve children with vertebrobasilar artery stroke are reported (seven males, five females; aged 6 months to 15 years). Patient 1 showed an arcuate foramen in the posterior arch of the atlas, an anatomical variant occurring in 3 to 15% of the population. It was hypothesized that the presence of the arcuate foramen might cause tethering of the vertebral artery and lead to its dissection by repetitive trauma. Lateral plain films of the cervical spine in cases of posterior circulation stroke were taken. Eight of 11 patients showed aberrant arcuate foramina. Of the remaining three patients, one had normal cervical spine X-rays, one had an absent right posterior arch of the atlas following previous surgery for a cervical meningocele, and one patient had incomplete ossification of the vertebrae. Seven of the nine patients with arcuate foramina had vertebral angiograms. In all cases this showed the vertebral artery passing through the arcuate foramen before entering the brain and an appearance consistent with arterial dissection and occlusion at the same site below the foramen. Most documented cases of posterior circulation stroke in children follow trauma, which may be minimal or repetitive, with thrombotic occlusion of the artery at C1-C2 level. The association with an arcuate foramen and its possible causative role in the genesis of posterior circulation stroke in children has not been previously recognized. There may be a causal association between the presence of an arcuate foramen, tethering of the vertebral artery in the foramen, and dissection from repetitive trauma with movement of the neck.

  11. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    SciTech Connect

    Guo, Xiaoxia; Zhou, Chunyan; Sun, Ningling

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  12. Mass Spectrometric Analysis of Spatio-Temporal Dynamics of Crustacean Neuropeptides

    PubMed Central

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2014-01-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in spatial domain and monitoring their dynamic changes in temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. PMID:25448012

  13. Identification and characterization of a novel neuropeptide (neuropeptide Y-HS) from leech salivary gland of Haemadipsa sylvestris.

    PubMed

    Liu, Wei-Hui; Chen, Yan; Bai, Xue-Wei; Yao, Hui-Min; Zhang, Xu-Guang; Yan, Xiu-Wen; Lai, Ren

    2016-09-01

    The present study was designed to identify immunomodulatory components from the leech salivary gland of Haemadipsa sylvestris. The Sephadex G-50, Resource(TM) S column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify the salivary gland extracts (SGE). Structural analysis of isolated compounds was based on Edman degradation and matrix assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). The cDNA encoding the precursor of the compound was cloned from the cDNA library of the salivary gland of H. sylvestris. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) were assayed using an enzyme-linked immunosorbent assay (ELISA). The effects on cell proliferation and cell viability were observed using MTT assay. A novel neuropeptide Y (Neuropeptide Y-HS) from the leech salivary gland of H. sylvestris was purified and characterized. It was composed of 36 amino acid residues and the amino acid sequence was determined to be FLEPPERPAVFTSVEQMKSYIKALNDYYLLLGRPRF-NH2, containing an amidated C-terminus. It showed significant inhibitory effects on the production of inflammatory cytokines including TNF-α, IFN-γ, IL-6, and MCP-1. Neuropeptide Y was identified from leeches for the first time. The presence of neuropeptide Y-HS in leech salivary gland may help get blood meal from hosts and inhibit inflammation.

  14. Ruptured Pancreaticoduodenal Artery Aneurysm Associated with Median Arcuate Ligament Compression and Aortic Dissection Successfully Treated with Embolotherapy

    PubMed Central

    Terada, Takuro; Tamaki, Masato

    2015-01-01

    A 51-year-old man with a ruptured pancreaticoduodenal artery (PDA) aneurysm caused by compression of the celiac artery by the median arcuate ligament and aortic dissection involving the celiac axis was transferred to our hospital for endovascular treatment. A 4-F catheter was advanced into the superior mesenteric artery through the narrow true lumen via the left brachial artery, and coil embolization of the aneurysm was successfully performed. In this case, rapid increase of blood flow in the superior mesenteric artery, which compensated for the decreased celiac blood flow by aortic dissection, increased hemodynamic stress on the PDA, leading to aneurysmal rupture. PMID:25848431

  15. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  16. Reality of comet nucleus.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The prime problem of a comet mission must be to settle whether the cometary nucleus has an actual tangible material existence, or whether it arises from some optical effect present only at times within comets. The absence of any large particles in a comet seems to be demonstrated by certain meteor showers. A feature that would seem to indicate that a comet consists primarily of a swarm of particles is that the coma in general contracts as the comet approaches the sun, roughly in proportion within the distance, and then expands again as it recedes.

  17. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  18. Distribution of neuropeptide FF-like immunoreactivity in the brain of the lizard Gekko gecko and its relation to catecholaminergic structures.

    PubMed

    Smeets, Wilhelmus J A J; López, Jesús M; González, Agustín

    2006-09-01

    The present study provides a detailed description of the distribution of neuropeptide FF (NPFF)-like immunoreactivity in the brain of the lizard Gekko gecko. NPFF is found to be involved in nociception, cardiovascular regulation, and endocrine function. Because of its known relationship with catecholamines in mammals, double staining with tyrosine hydroxylase (TH) antibodies was used to corroborate this for reptiles. The present study revealed that NPFF-like-immunoreactive (NPFF-ir) cells and fibers were widely distributed throughout the brain. Major NPFF-ir cell groups were observed in the diagonal band nucleus of Broca, hypothalamus, and dorsal horn of the spinal cord. Additional cells were found in the anterior olfactory nucleus, lateral and dorsal cortices, dorsolateral septum, and diencephalic intergeniculate leaflet formation. Dense plexuses of NPFF-ir fibers were identified in the diagonal band nucleus of Broca, septum, preoptic and hypothalamic areas, isthmic region, ventrolateral tegmentum, solitary tract nucleus, and dorsolateral funiculus of the spinal cord. Extensive fiber staining also occurred in the nucleus accumbens and the midbrain tectum. Although an intimate relationship between NPFF-ir and TH-ir structures was obvious at many places in the brain, colocalization of these two substances was not observed. In conclusion, the distribution of NPFF in the brain of Gekko shares more features with anamniotes in terms of number of cell groups, more elaborate networks of fibers, and lack of colocalization with catecholamines than with mammals, suggesting a decrease in the distribution of this peptide in the latter vertebrate group.

  19. Distribution pattern of neuropeptide Y in the brain, pituitary and olfactory system during the larval development of the toad Rhinella arenarum (Amphibia: Anura).

    PubMed

    Heer, T; Pozzi, A G; Yovanovich, C A; Paz, D A

    2009-04-01

    The first NPY-immunoreactivity (ir) in the central nervous system of Rhinella arenarum was obtained just after hatching in the pre-optic area, ventral thalamus and rostral rhombencephalon. During pre-metamorphosis, new NPY-ir cells were observed in other brain areas such as pallium, septum and striatum, infundibulum and pars intermedia of the pituitary. Further maturation continued through pro-metamorphosis with the appearance of cell groups in the diagonal band, amygdala, pre-optic nucleus, dorsal nucleus of the habenula, anterior ventral and dorsal thalamus, suprachiasmatic nucleus, tuberculum posterior, tectum, torus semicircularis, inter-peduncular nucleus and median eminence. During the metamorphic climax and soon after, the relative abundance of NPY-ir fibres decreased in all hypothalamic areas and the staining intensity and number of NPY-ir cells in the pallium also decreased, whereas no cells were found in the striatum, dorsal nucleus of the habenula and tectum. In the olfactory epithelium, nerve or bulb, neither cells nor NPY-ir fibres were found during the stages of development analysed. The ontogeny pattern of the NPY-ir neuronal system in the brain of Rh. arenarum is more similar to the spatiotemporal appearance reported for Rana esculenta than to that reported for Xenopus laevis. Many NPY-ir fibres were found in the median eminence and in the pars intermedia of the pituitary, supporting the idea that this neuropeptide may play a role in the modulation of hypophyseal secretion during development.

  20. Immunohistochemical localization of neuropeptide FF-like in the brain of the turtle: relation to catecholaminergic structures.

    PubMed

    Muñoz, M; Smeets, W J A J; López, J M; Moreno, N; Morona, R; Domínguez, L; González, A

    2008-03-18

    A previous study in the lizard Gekko gecko has revealed that neuropeptide FF (NPFF, a neuropeptide involved in nociception, cardiovascular regulation, and endocrine function) is widely distributed throughout the brain and spinal cord. Although the distribution of NPFF immunoreactivity shares many features with that found in other vertebrates, it was noted that Gekko shared more features with anamniotes in terms of number of cell groups, more elaborate networks of fibers, and lack of colocalization with catecholamines, than with mammals. To assess the primitive or derived character of these features, NPFF and tyrosine hydroxylase (TH) antibodies have been applied to the brain and spinal cord of the turtle, Pseudemys scripta elegans, which belongs to a different radiation of reptiles. As in Gekko, major NPFF-ir cell groups were found in the diagonal band nucleus of Broca and in the hypothalamus, whereas additional cells were identified in the anterior olfactory nucleus, lateral and dorsal cortices, dorsal ventricular ridge, and the intergeniculate leaflet formation. Notable differences are the presence of NPFF-ir cells in the medial cortex and striatum of Pseudemys, which are lacking in Gekko. On the other hand, no NPFF-ir cells could be detected in the septal region and dorsal horn of the spinal cord in Pseudemys. Double staining with NPFF and TH antibodies revealed an intimate relationship between NPFF-ir and TH-ir structures but colocalization could not be established. In conclusion, the distribution of NPFF in the brain of Pseudemys has corroborated previous results in Gekko, but also revealed some notable species differences.

  1. Activation of neurons in the hypothalamic dorsomedial nucleus via hypothalamic projections of the nucleus of the solitary tract following refeeding of fasted rats.

    PubMed

    Renner, Eva; Szabó-Meltzer, Kinga I; Puskás, Nela; Tóth, Zsuzsanna E; Dobolyi, Arpád; Palkovits, Miklós

    2010-01-01

    We report that satiation evokes neuronal activity in the ventral subdivision of the hypothalamic dorsomedial nucleus (DMH) as indicated by increased c-fos expression in response to refeeding in fasted rats. The absence of significant Fos activation following food presentation without consumption suggests that satiation but not craving for food elicits the activation of ventral DMH neurons. The distribution pattern of the prolactin-releasing peptide (PrRP)-immunoreactive (ir) network showed remarkable correlations with the distribution of activated neurons within the DMH. The PrRP-ir fibers and terminals were immunolabeled with tyrosine hydroxylase, suggesting their origin in lower brainstem instead of local, hypothalamic PrRP cells. PrRP-ir fibers arising from neurons of the nucleus of the solitary tract could be followed to the hypothalamus. Unilateral transections of these fibers at pontine and caudal hypothalamic levels resulted in a disappearance of the dense PrRP-ir network in the ventral DMH while PrRP immunoreactivity was increased in transected fibers caudal to the knife cuts as well as in perikarya of the nucleus of the solitary tract ipsilateral to the transections. In accord with these changes, the number of Fos-expressing neurons following refeeding declined in the ipsilateral but remained high in the contralateral DMH. However, the Fos response in the ventral DMH was not attenuated following chemical lesion (neonatal monosodium glutamate treatment) of the hypothalamic arcuate nucleus, another possible source of DMH inputs. These findings suggest that PrRP projections from the nucleus of the solitary tract contribute to the activation of ventral DMH neurons during refeeding, possibly by transferring information on cholecystokinin-mediated satiation.

  2. Neuropeptide Y binding sites in rat brain identified with purified neuropeptide Y-I125

    SciTech Connect

    Walker, M.W.; Miller, R.J.

    1986-03-05

    Neuropeptide Y (NPY) is a widely distributed neuronally localized peptide with 36 amino acids, 5 of which are tyrosines. The authors wished to investigate the properties of specific receptors for NPY. They therefore labeled the tyrosines with I125 using chloramine T and then purified the peptide using HPLC. A single mono-iodinated species of NPY which yielded > 85% specific binding in rat forebrain synaptosomes was selected as the ligand for all subsequent experiments. A time course of binding showed that equilibrium conditions were reached in 60 minutes at 21/sup 0/C. Scatchard plots revealed a single class of binding sites with a Kd and a Bmax of 3 x 10-10 M and 28 pmol/mg, respectively. Competition binding with unlabeled NPY showed 50% displacement of bound ligand at 1 x 10-10 M NPY. Competition binding with rat pancreatic polypeptide (RPP), a homologous peptide possessing little NPY-like activity, showed 50% displacement of bound ligand at 2 x 10/sup -7/ M RPP. No binding was observed on F-11 or PC12 neuronal cell lines, or on HSWP fibroblast cells. They conclude that NPY-I125 purified to homogeneity with HPLC is a highly selective ligand for NPY receptor sites. They are currently investigating such sites in brain, gut, and other tissues.

  3. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  4. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  5. Networking the nucleus

    PubMed Central

    Rajapakse, Indika; Scalzo, David; Tapscott, Stephen J; Kosak, Steven T; Groudine, Mark

    2010-01-01

    The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus. PMID:20664641

  6. Central ghrelin increases food foraging/hoarding that is blocked by GHSR antagonism and attenuates hypothalamic paraventricular nucleus neuronal activation.

    PubMed

    Thomas, Michael A; Ryu, Vitaly; Bartness, Timothy J

    2016-02-01

    The stomach-derived "hunger hormone" ghrelin increases in the circulation in direct response to time since the last meal, increasing preprandially and falling immediately following food consumption. We found previously that peripheral injection of ghrelin potently stimulates food foraging (FF), food hoarding (FH), and food intake (FI) in Siberian hamsters. It remains, however, largely unknown if central ghrelin stimulation is necessary/sufficient to increase these behaviors regardless of peripheral stimulation of the ghrelin receptor [growth hormone secretagogue receptor (GHSR)]. We injected three doses (0.01, 0.1, and 1.0 μg) of ghrelin into the third ventricle (3V) of Siberian hamsters and measured changes in FF, FH, and FI. To test the effects of 3V ghrelin receptor blockade, we used the potent GHSR antagonist JMV2959 to block these behaviors in response to food deprivation or a peripheral ghrelin challenge. Finally, we examined neuronal activation in the arcuate nucleus and paraventricular hypothalamic nucleus in response to peripheral ghrelin administration and 3V GHSR antagonism. Third ventricular ghrelin injection significantly increased FI through 24 h and FH through day 4. Pretreatment with 3V JMV2959 successfully blocked peripheral ghrelin-induced increases in FF, FH, and FI at all time points and food deprivation-induced increases in FF, FH, and FI up to 4 h. c-Fos immunoreactivity was significantly reduced in the paraventricular hypothalamic nucleus, but not in the arcuate nucleus, following pretreatment with intraperitoneal JMV2959 and ghrelin. Collectively, these data suggest that central GHSR activation is both necessary and sufficient to increase appetitive and consummatory behaviors in Siberian hamsters.

  7. Ultrastructural Correlates of Enhanced Norepinephrine and Neuropeptide Y Cotransmission in the Spontaneously Hypertensive Rat Brain.

    PubMed

    Kourtesis, Ioannis; Kasparov, Sergey; Verkade, Paul; Teschemacher, Anja G

    2015-01-01

    The spontaneously hypertensive rat (SHR) replicates many clinically relevant features of human essential hypertension and also exhibits behavioral symptoms of attention-deficit/hyperactivity disorder and dementia. The SHR phenotype is highly complex and cannot be explained by a single genetic or physiological mechanism. Nevertheless, numerous studies including our own work have revealed striking differences in central catecholaminergic transmission in SHR such as increased vesicular catecholamine content in the ventral brainstem. Here, we used immunolabeling followed by confocal microscopy and electron microscopy to quantify vesicle sizes and populations across three catecholaminergic brain areas-nucleus tractus solitarius and rostral ventrolateral medulla, both key regions for cardiovascular control, and the locus coeruleus. We also studied colocalization of neuropeptide Y (NPY) in norepinephrine and epinephrine-containing neurons as NPY is a common cotransmitter with central and peripheral catecholamines. We found significantly increased expression and coexpression of NPY in norepinephrine and epinephrine-positive neurons of locus coeruleus in SHR compared with Wistar rats. Ultrastructural analysis revealed immunolabeled vesicles of 150 to 650 nm in diameter (means ranging from 250 to 300 nm), which is much larger than previously reported. In locus coeruleus and rostral ventrolateral medulla, but not in nucleus tractus solitarius, of SHR, noradrenergic and adrenergic vesicles were significantly larger and showed increased NPY colocalization when compared with Wistar rats. Our morphological evidence underpins the hypothesis of hyperactivity of the noradrenergic and adrenergic system and increased norepinephrine and epinephrine and NPY cotransmission in specific brain areas in SHR. It further strengthens the argument for a prohypertensive role of C1 neurons in the rostral ventrolateral medulla as a potential causative factor for essential hypertension.

  8. Neuropeptide Y mRNA expression levels following chronic olanzapine, clozapine and haloperidol administration in rats.

    PubMed

    Huang, X-F; Deng, Chao; Zavitsanou, Katerina

    2006-06-01

    Using quantitative in situ hybridization, this study examined regional changes in rat brain mRNA levels encoding neuropeptide Y (NPY) following olanzapine, clozapine and haloperidol administration (1.2, 1.5 and 2.0 mg/kg, oral) for 36 days. The NPY mRNA expression levels and patterns were examined after the last drug administration at both time points enabling the measurement of immediate effect at 2h and the effects after 48 h of drug administration. It was found that all these drugs had an immediate effect on NPY mRNA expression, while virtually all these changes normalized 48 h after the drug treatments. A similarity in altered NPY mRNA expression patterns was seen between the olanzapine and clozapine groups; however, haloperidol was very different. Olanzapine and clozapine administration decreased NPY mRNA levels in the nucleus accumbens, striatum and anterior cingulate cortex (from -60% to -77%, p<0.05). Haloperidol decreased NPY mRNA expression in the amygdala and hippocampus (-69%, -64%, p<0.05). In the lateral septal nucleus, NPY mRNA levels significantly decreased in the olanzapine group (-66%, p<0.05), a trend toward a decrease was observed in the clozapine group, and no change was found in the haloperidol treated group. These results suggest that the different effects of atypical and typical antipsychotics on NPY systems may reflect the neural chemical mechanisms responsible for the differences between these drugs in their effects in treating positive and negative symptoms of schizophrenia. The immediate decrease of NPY mRNA levels suggests an immediate reduction of NPY biosynthesis in response to these drugs.

  9. Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family

    PubMed Central

    Semmens, Dean C.; Beets, Isabel; Rowe, Matthew L.; Blowes, Liisa M.; Oliveri, Paola; Elphick, Maurice R.

    2015-01-01

    Neuropeptides are ancient regulators of physiology and behaviour, but reconstruction of neuropeptide evolution is often difficult owing to lack of sequence conservation. Here, we report that the receptor for the neuropeptide NGFFFamide in the sea urchin Strongylocentrotus purpuratus (phylum Echinodermata) is an orthologue of vertebrate neuropeptide-S (NPS) receptors and crustacean cardioactive peptide (CCAP) receptors. Importantly, this has facilitated reconstruction of the evolution of two bilaterian neuropeptide signalling systems. Genes encoding the precursor of a vasopressin/oxytocin-type neuropeptide and its receptor duplicated in a common ancestor of the Bilateria. One copy of the precursor retained ancestral features, as seen in highly conserved vasopressin/oxytocin–neurophysin-type precursors. The other copy diverged, but this took different courses in protostomes and deuterostomes. In protostomes, the occurrence of a disulfide bridge in neuropeptide product(s) of the precursor was retained, as in CCAP, but with loss of the neurophysin domain. In deuterostomes, we see the opposite scenario—the neuropeptides lost the disulfide bridge, and neurophysin was retained (as in the NGFFFamide precursor) but was subsequently lost in vertebrate NPS precursors. Thus, the sea urchin NGFFFamide precursor and receptor are ‘missing links’ in the evolutionary history of neuropeptides that control ecdysis in arthropods (CCAP) and regulate anxiety in humans (NPS). PMID:25904544

  10. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates.

    PubMed

    Elphick, Maurice R; Mirabeau, Olivier

    2014-01-01

    Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide-receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates - urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom.

  11. Genome-wide Census and Expression Profiling of Chicken Neuropeptide and Prohormone Convertase Genes

    PubMed Central

    Delfino, K. R.; Southey, B. R.; Sweedler, J. V.; Rodriguez-Zas, S. L.

    2009-01-01

    Neuropeptides regulate cell-cell signaling and influence many biological processes in vertebrates, including development, growth, and reproduction. The complex processing of neuropeptides from prohormone proteins by prohormone convertases, combined with the evolutionary distance between the chicken and mammalian species that have experienced extensive neuropeptide research, has led to the empirical confirmation of only 18 chicken prohormone proteins. To expand our knowledge of the neuropeptide and prohormone convertase gene complement, we performed an exhaustive survey of the chicken genomic, EST, and proteomic databases using a list of 95 neuropeptide and 7 prohormone convertase genes known in other species. Analysis of the EST resources and 22 microarray studies offered a comprehensive portrait of gene expression across multiple conditions. Five neuropeptide genes (apelin, cocaine-and amphetamine-regulated transcript protein, insulin-like 5, neuropeptide S, and neuropeptide B) previously unknown in chicken were identified and 62 genes were confirmed. Although most neuropeptide gene families known in human are present in chicken, there are several gene not present in the chicken. Conversely, several chicken neuropeptide genes are absent from mammalian species, including C-RF amide, c-type natriuretic peptide 1 precursor, and renal natriuretic peptide. The prohormone convertases, with one exception, were found in the chicken genome. Bioinformatic models used to predict prohormone cleavages confirm that the processing of prohormone proteins into neuropeptides is similar between species. Neuropeptide genes are most frequently expressed in the brain and head, followed by the ovary and small intestine. Microarray analyses revealed that the expression of adrenomedullin, chromogranin-A, augurin, neuromedin-U, platelet-derived growth factor A and D, proenkephalin, relaxin-3, prepronociceptin, and insulin-like growth factor I was most susceptible (P-value < 0.001) to

  12. Involvement of amygdaloid neuropeptide Y in the anxiolytic effects of acupuncture during ethanol withdrawal in rats.

    PubMed

    Zhao, Zhenglin; Kim, Sang Chan; Wu, Yiyan; Zhang, Jie; Xu, Yanji; Cho, Il Je; Yang, Chae Ha; Lee, Bong Hyo; Zhao, Rongjie

    2014-05-01

    The role of neuropeptide Y (NPY) in the central nucleus of amygdala (CeA) in the preventive effects of acupuncture against ethanol withdrawal-induced anxiety was investigated. Rats were treated with 3g/kg/day of ethanol for 28 days, followed by 3 days of withdrawal. Bilateral acupuncture treatment at HT7 (Shen-Men), PC6 (Nei-Guan) or a non-acupoint was respectively added to the rats during the withdrawal once a day for three days. Enzyme-linked immunosorbent assays and real-time polymerase chain reaction analyses showed there was a significant decrease in NPY protein and mRNA expression in the CeA during ethanol withdrawal, which was reversed by acupuncture at HT7 but neither at PC6 nor at a non-acupoint. Acupuncture at HT7 also greatly inhibited the decrease in cAMP response element-binding protein (CREB) phosphorylation in the CeA. In elevated plus maze tests, a selective NPY Y1 receptor antagonist BIBP 3226 into the CeA before the acupuncture abolished almost completely the anxiolytic effect of acupuncture at HT7. These results suggest that acupuncture at HT7 rescues the depletion of amygdaloid NPY and reverses the decrease in CREB phosphorylation to produce anxiolytic effects during ethanol withdrawal.

  13. Knockdown of Neuropeptide Y in the Dorsomedial Hypothalamus Promotes Hepatic Insulin Sensitivity in Male Rats.

    PubMed

    Li, Lin; de La Serre, C Barbier; Zhang, Ni; Yang, Liang; Li, Hong; Bi, Sheng

    2016-12-01

    Recent evidence has shown that alterations in dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) signaling influence glucose homeostasis, but the mechanism through which DMH NPY acts to affect glucose homeostasis remains unclear. Here we report that DMH NPY descending signals to the dorsal motor nucleus of the vagus (DMV) modulate hepatic insulin sensitivity to control hepatic glucose production in rats. Using the hyperinsulinemic-euglycemic clamp, we revealed that knockdown of NPY in the DMH by adeno-associated virus-mediated NPY-specific RNAi promoted insulin's action on suppression of hepatic glucose production. This knockdown silenced DMH NPY descending signals to the DMV, leading to an elevation of hepatic vagal innervation. Hepatic vagotomy abolished the inhibitory effect of DMH NPY knockdown on hepatic glucose production, but this glycemic effect was not affected by vagal deafferentation. Together, these results demonstrate a distinct role for DMH NPY in the regulation of glucose homeostasis through the hepatic vagal efferents and insulin action on hepatic glucose production.

  14. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  15. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  16. Ligands of the Neuropeptide Y Y2 receptor

    PubMed Central

    Mittapalli, Gopi Kumar; Roberts, Edward

    2015-01-01

    Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and exerts a variety of physiological processes in humans via four different receptor subtypes Y1, Y2, Y4 and Y5. Y2 receptor is the most abundant Y subtype receptor in the central nervous system and implicated with food intake, bone formation, affective disorders, alcohol and drugs of abuse, epilepsy, pain, and cancer. The lack of small molecule non-peptidic Y2 receptor modulators suitable as in vivo pharmacological tools hampered the progress to uncover the precise pharmacological role of Y2. Only in recent years, several potent, selective and non-peptidic Y2 antagonists have been discovered providing the tools to validate Y2 receptor as a therapeutic target. This article reviews Y2 receptor modulators mainly non-peptidic antagonists and their structure-activity relationships. PMID:24365162

  17. Neuropeptide signals cell non-autonomous mitochondrial unfolded protein response

    PubMed Central

    Shao, Li-Wa; Niu, Rong; Liu, Ying

    2016-01-01

    Neurons have a central role in the systemic coordination of mitochondrial unfolded protein response (UPRmt) and the cell non-autonomous modulation of longevity. However, the mechanism by which the nervous system senses mitochondrial stress and communicates to the distal tissues to induce UPRmt remains unclear. Here we employ the tissue-specific CRISPR-Cas9 approach to disrupt mitochondrial function only in the nervous system of Caenorhabditis elegans, and reveal a cell non-autonomous induction of UPRmt in peripheral cells. We further show that a neural sub-circuit composed of three types of sensory neurons, and one interneuron is required for sensing and transducing neuronal mitochondrial stress. In addition, neuropeptide FLP-2 functions in this neural sub-circuit to signal the non-autonomous UPRmt. Taken together, our results suggest a neuropeptide coordination of mitochondrial stress response in the nervous system. PMID:27767096

  18. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans

    PubMed Central

    Leinwand, Sarah G.; Chalasani, Sreekanth H.

    2013-01-01

    Neural circuits detect environmental changes and drive behavior. The routes of information flow through dense neural networks are dynamic; however, the mechanisms underlying this circuit flexibility are poorly understood. Here, we define a novel, sensory context-dependent and neuropeptide-regulated switch in the composition of a C. elegans salt sensory circuit. The primary salt detectors, ASE sensory neurons, use BLI-4 endoprotease-dependent cleavage to release the insulin-like peptide INS-6 in response to large but not small changes in external salt stimuli. Insulins, signaling through the insulin receptor DAF-2, functionally switch the AWC olfactory sensory neuron into an interneuron in the salt circuit. Animals with disrupted insulin signaling have deficits in salt attraction, suggesting that peptidergic signaling potentiates responses to high salt stimuli, which may promote ion homeostasis. Our results show that sensory context and neuropeptide signaling modify neural networks and suggest general mechanisms for generating flexible behavioral outputs by modulating neural circuit composition. PMID:24013594

  19. New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities.

    PubMed

    Barreiro-Iglesias, A; Anadón, R; Rodicio, M C

    2010-05-05

    Lampreys are useful models for studying the evolution of the nervous system of vertebrates. Here we used immunofluorescence and tract-tracing methods to study new aspects of the neuropeptide Y-immunoreactive (NPY-ir) system in larval sea lampreys. NPY-ir neurons were observed in brain nuclei that contain NPY-ir cells in other lamprey species. Moreover, a group of NPY-ir cells that migrated away the periventricular layer was observed in the lateral part of the dorsal hypothalamus, which suggests a role for NPY in feeding behavior in lampreys. We also report NPY-ir cells in the dorsal column nucleus, which appears to be unique among vertebrates, and in the habenula. A combination of tract-tracing and immunohistochemical labeling demonstrated the presence of spinal projecting NPY-ir reticular cells in the anterior rhombencephalic reticular formation, and the relationships between the NPY-ir system and the reticulospinal nuclei and some afferent systems. The colocalization of catecholamines and GABA in lamprey NPY-ir neurons was investigated by double immunofluorescence methods. Colocalization of tyrosine hydroxylase (TH) and NPY immunoreactivities was not observed in any brain neuron, although reported in amphibians and mammals. The frequent presence of NPY-ir terminals on TH-ir cells suggests that NPY modulates the activity of some dopaminergic nuclei in lampreys. Colocalization of NPY and GABA immunoreactivities was frequently observed in neurons of different rhombencephalic and diencephalic NPY-ir populations. These results in lampreys suggest that the coexpression of NPY and GABA in neurons appeared early on in the brains of vertebrates.

  20. Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney.

    PubMed

    Mark, Allyn L; Agassandian, Khristofor; Morgan, Donald A; Liu, Xuebo; Cassell, Martin D; Rahmouni, Kamal

    2009-02-01

    The hypothalamic arcuate nucleus was initially regarded as the principal site of leptin action, but there is increasing evidence for functional leptin receptors in extrahypothalamic sites, including the nucleus tractus solitarii (NTS). We demonstrated previously that arcuate injection of leptin increases sympathetic nerve activity (SNA) to brown adipose tissue and kidney. In this study, we tested the hypothesis that leptin signaling in the NTS affects sympathetic neural outflow. Using a stereotaxic device in anesthetized rats, we microinjected leptin (0.25 to 1.00 microg) or saline into the NTS while recording SNA to kidney and brown adipose tissue. Microinjection of leptin into the commissural and medial subnuclei of the caudal NTS at the level of the area postrema in Sprague-Dawley rats produced a dose-related increase in renal SNA (+112+/-15% with leptin 1 microg; n=7; P<0.001) but did not increase SNA to brown adipose tissue (-15+/-12%; P value not significant). This effect depended on intact functional leptin receptors, because it was not observed in Zucker obese rats that have a missense mutation in the leptin receptor. Rostral NTS injection of leptin failed to increase SNA, indicating that leptin signaling in the NTS is probably confined to the caudal NTS at the level of the area postrema. In summary, this study demonstrates that leptin signaling in the caudal NTS increases SNA to the kidney but not to the brown adipose tissue. The study strengthens the concept of a distributed brain network of leptin action and demonstrates that these distributed brain sites can mediate contrasting sympathetic responses to leptin.

  1. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  2. Parasite neuropeptide biology: Seeding rational drug target selection?

    PubMed Central

    McVeigh, Paul; Atkinson, Louise; Marks, Nikki J.; Mousley, Angela; Dalzell, Johnathan J.; Sluder, Ann; Hammerland, Lance; Maule, Aaron G.

    2011-01-01

    The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components – putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths. PMID:24533265

  3. Insect capa neuropeptides impact desiccation and cold tolerance.

    PubMed

    Terhzaz, Selim; Teets, Nicholas M; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G; Nachman, Ronald J; Dow, Julian A T; Denlinger, David L; Davies, Shireen-A

    2015-03-03

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.

  4. [Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis].

    PubMed

    Fehér, Erzsébet

    2015-11-22

    Neuropeptide Y and substance P were thought to play a role in the function of immune cells and in amplification or elimination of the inflammatory processes. In hepatitis the number of both neuropeptide Y and substance P immunoreactive nerve fibres are increased, where the increase of neoropeptide Y is significant. A large number of lymphocytes and mast cells are also stained for neuropeptide Y and substance P. Very close associations (less than 1 µm) were observed between neuropeptide Y immunoreactive nerve fibres and immune cells stained also with neuropeptide Y. Some immune cells were also found to be immunoreactive for tumor necrosis factor-α and NF-κB. Some of the SP IR immunocells were also stained for TNF-α and nuclear factor kappaB. Based on these data it is hypothesized that neuropeptid Y and substance P released from nerve fibres and immune cells play a role in inflammation and elimination of inflammation in hepatitis.

  5. The intercalatus nucleus of Staderini.

    PubMed

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  6. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates

    PubMed Central

    Elphick, Maurice R.; Mirabeau, Olivier

    2014-01-01

    Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide–receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates – urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom. PMID:24994999

  7. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity

    PubMed Central

    Boughton, C K; Murphy, K G

    2013-01-01

    Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 PMID:23121386

  8. Neuropeptide Y (NPY) and peptide YY (PYY) receptors in rat brain

    SciTech Connect

    Ohkubo, T.; Niwa, M.; Yamashita, K.; Kataoka, Y.; Shigematsu, K. )

    1990-12-01

    1. Specific binding sites for neuropeptide Y (NPY) and peptide YY (PYY) were investigated in rat brain areas using quantitative receptor autoradiography with {sup 125}I-Bolton-Hunter NPY ({sup 125}I-BH-NPY) and {sup 125}I-PYY, radioligands for PP-fold family peptides receptors. 2. There were no differences between localization of {sup 125}I-BH-NPY and {sup 125}I-PYY binding sites in the rat brain. High densities of the binding sites were present in the anterior olfactory nucleus, lateral septal nucleus, stratum radiatum of the hippocampus, posteromedial cortical amygdaloid nucleus, and area postrema. 3. In cold ligand-saturation experiments done in the presence of increasing concentrations of unlabeled NPY and PYY, {sup 125}I-BH-NPY and {sup 125}I-PYY binding to the stratum radiatum of the hippocampus, layer I of the somatosensory frontoparietal cortex, molecular layer of the cerebellum, and area postrema was single and of a high affinity. There was a significant difference between the affinities of {sup 125}I-BH-NPY (Kd = 0.96 nM) and {sup 125}I-PYY binding (Kd = 0.05 nM) to the molecular layer of the cerebellum. The binding of the two radioligands to the other areas examined had the same affinities. 4. When comparing the potency of unlabeled rat pancreatic polypeptide (rPP), a family peptide of NPY and PYY, to inhibit the binding to the areas examined, rPP displaced {sup 125}I-BH-NPY and {sup 125}I-PYY binding to the area postrema more potently than it did the binding to the stratum radiatum of the hippocampus, layer I of the somatosensory frontoparietal cortex, and molecular layer of the cerebellum. 5. Thus, the quantitative receptor autoradiographic method with {sup 125}I-BH-NPY and {sup 125}I-PYY revealed differences in binding characteristics of specific NPY and PYY binding sites in different areas of the rat brain. The results provide further evidence for the existence of multiple NPY-PYY receptors in the central nervous system.

  9. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats

    PubMed Central

    Kobelt, Peter; Wisser, Anna-Sophia; Stengel, Andreas; Goebel, Miriam; Inhoff, Tobias; Noetzel, Steffen; Veh, Rüdiger W.; Bannert, Norbert; van der Voort, Ivo; Wiedenmann, Bertram; Klapp, Burghard F.; Taché, Yvette; Mönnikes, Hubert

    2009-01-01

    Peripheral ghrelin has been shown to act as a gut–brain peptide exerting a potent orexigenic effect on food intake. The dorsomedial nucleus of the hypothalamus (DMH) is innervated by projections from other brain areas being part of the network of nuclei controlling energy homeostasis, among others NPY/AgRP-positive fibers arising from the arcuate nucleus (ARC). The aim of the study was to determine if peripherally administered ghrelin affects neuronal activity in the DMH, as assessed by Fos expression. The number of Fos positive neurons was determined in the DMH, paraventricular nucleus of the hypothalamus (PVN), ARC, ventromedial hypothalamic nucleus (VMH), nucleus of the solitary tract (NTS) and in the area postrema(AP) in non-fasted Sprague–Dawley rats in response to intraperitoneally (ip) injected ghrelin (3 nmol/rat) or vehicle (0.15 M NaCl). Peripheral ghrelin induced a significant increase in the number of Fos-ir positive neurons/section compared with vehicle in the ARC (mean±SEM: 49±2 vs. 23±2 neurons/section, p=0.001), PVN (69±5 vs. 34±3, p=0.001), and DMH (142±5 vs. 83±5, p<0.001). Fos-ir positive neurons were mainly localized within the ventral part of the DMH. No change in Fos expression was observed in the VMH (53±8 vs. 48±6, p=0.581), NTS (42±2 vs.40±3, p=0.603), and in the AP (7±1 vs. 5±1, p=0.096). Additional double-labelling with anti-Fos and anti-AgRP revealed that Fos positive neurons in the DMH were encircled by a network of AgRP-ir positive fibers. These data indicate that peripheral ghrelin activates DMH neurons and that NPY-/AgRP-positive fibers may be involved in the response. PMID:18329635

  10. Orogen-parallel mass transport along the arcuate Himalayan front into Nanga Parbat and the western Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Whipp, David; Beaumont, Christopher

    2016-04-01

    Along the length of the Himalayan arc, Quaternary rock exhumation rates are highest in the Himalayan syntaxes at the lateral ends of the arc. In the western Himalayan syntaxis, these rates may exceed 10 mm/a over the past 2 Ma, requiring an additional source of crustal mass into this region to maintain the high-elevation topography. We have previously demonstrated that strain partitioning of oblique convergence can produce a significant orogen-parallel mass flux into the syntaxis of a Himalaya-like orogen and balance the rapid rates of surface denudation. However, the magnitude of this orogen parallel mass flux and whether strain is partitioned across the Himalayan thrust front is affected by the strength of the material bounding and within the Himalayan orogenic wedge, the dip angle of the basal detachment and the convergence obliquity angle γ. Strain partitioning is expected for a finite-length Himalaya-like segmented linear orogen with an obliquity of γ = 30 - 40°, but the obliquity angle in the Himalayan arc varies from 0 at the center of the arc to ˜ 40° in the western Himalayan syntaxis region. Thus, the conditions in which strain partitioning will occur may not be met along much of the length of the arc. Though there is clear evidence of strain partitioning in the Himalaya, preliminary results from 3D numerical geodynamic models of an orogen with an arcuate geometry based on the Himalaya suggest strain partitioning does not occur for the same conditions observed in earlier models of segmented linear orogens or orogens with a smaller arc radius. In those models, the proportion of the orogen length with a high obliquity angle was greater, which favors strain partitioning. In numerical experiments of an arcuate Himalayan orogen with weak material (friction angle φ ≤ 5°) at the back of the orogenic wedge, strain partitioning is only observed in the toe of the orogenic wedge (10-15 km from the thrust front) at the western end of the arc, rather than for

  11. Altered integrity of the right arcuate fasciculus as a trait marker of schizophrenia: a sibling study using tractography-based analysis of the whole brain.

    PubMed

    Wu, Chen-Hao; Hwang, Tzung-Jeng; Chen, Yu-Jen; Hsu, Yun-Chin; Lo, Yu-Chun; Liu, Chih-Min; Hwu, Hai-Gwo; Liu, Chen-Chung; Hsieh, Ming H; Chien, Yi Ling; Chen, Chung-Ming; Tseng, Wen-Yih Isaac

    2015-03-01

    Trait markers of schizophrenia aid the dissection of the heterogeneous phenotypes into distinct subtypes and facilitate the genetic underpinning of the disease. The microstructural integrity of the white matter tracts could serve as a trait marker of schizophrenia, and tractography-based analysis (TBA) is the current method of choice. Manual tractography is time-consuming and limits the analysis to preselected fiber tracts. Here, we sought to identify a trait marker of schizophrenia from among 74 fiber tracts across the whole brain using a novel automatic TBA method. Thirty-one patients with schizophrenia, 31 unaffected siblings and 31 healthy controls were recruited to undergo diffusion spectrum magnetic resonance imaging at 3T. Generalized fractional anisotropy (GFA), an index reflecting tract integrity, was computed for each tract and compared among the three groups. Ten tracts were found to exhibit significant differences between the groups with a linear, stepwise order from controls to siblings to patients; they included the right arcuate fasciculus, bilateral fornices, bilateral auditory tracts, left optic radiation, the genu of the corpus callosum, and the corpus callosum to the bilateral dorsolateral prefrontal cortices, bilateral temporal poles, and bilateral hippocampi. Posthoc between-group analyses revealed that the GFA of the right arcuate fasciculus was significantly decreased in both the patients and unaffected siblings compared to the controls. Furthermore, the GFA of the right arcuate fasciculus exhibited a trend toward positive symptom scores. In conclusion, the right arcuate fasciculus may be a candidate trait marker and deserves further study to verify any genetic association.

  12. MALDI imaging mass spectrometry of neuropeptides in Parkinson's disease.

    PubMed

    Hanrieder, Jörg; Ljungdahl, Anna; Andersson, Malin

    2012-02-14

    MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples(2) (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity(2). Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson's disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age(3,4). The most common symptomatic treatment is based on dopamine replacement using L-DOPA(5). However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)(1,3,6). One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA(7). The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control(7,8). However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson's disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By

  13. MALDI Imaging Mass Spectrometry of Neuropeptides in Parkinson's Disease

    PubMed Central

    Hanrieder, Jörg; Ljungdahl, Anna; Andersson, Malin

    2012-01-01

    MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples2 (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity2. Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson's disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age3,4. The most common symptomatic treatment is based on dopamine replacement using L-DOPA5. However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)1,3,6. One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA7. The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control7,8. However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson's disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By contrast MALDI

  14. Neuropeptides associated with the regulation of feeding in insects.

    PubMed

    Audsley, N; Weaver, R J

    2009-05-15

    The stomatogastric nervous system plays a pivotal role in feeding behaviour. Central to this system is the frontal ganglion, which is responsible for foregut motor activity, and hence the passage of food through the gut. Many insect peptides, which exhibit myoactivity on the visceral muscles of the gut in vitro, have been detected in the stomatogastric nervous system by immunochemical or mass spectrometric techniques. This localisation of myoactive peptides, particularly in the frontal ganglion, implies roles for these peptides in the neural control and modulation of feeding in insects. Insect sulfakinins, tachykinins, allatotropin and proctolin have all been shown to stimulate the foregut muscles, whereas myosuppressins, myoinhibitory peptides and allatostatins all inhibited spontaneous contractions of the foregut in a variety of insects. Some of these peptides, when injected, inhibited feeding in vivo. Both the A-type and B-type allatostatins suppressed feeding activity when injected into the cockroach, Blattella germanica and the Manduca sexta C-type allatostatin and allatotropin inhibited feeding when injected into the larvae of two noctuid moths, Lacanobia oleracea and Spodoptera frugiperda, respectively. Injection of sulfakinins into the fly Phormia regina, the locust Schistocera gregaria and the cockroach B. germanica also suppressed feeding, whereas silencing the sulfakinin gene through the injection of double stranded RNA resulted in an increase in food consumption in the cricket Gryllus bimaculatus. The regulation of feeding in insects is clearly very complex, and involves the interaction of a number of mechanisms, one of which is the release, either centrally or locally, of neuropeptides. However, the role of neuropeptides, their mechanisms of action, interactions with each other, and their release are still poorly understood. It is also unclear why insects possess such a number of different peptides, some with multiples copies or homologues, which

  15. Surface albedo of cometary nucleus

    NASA Astrophysics Data System (ADS)

    Mukai, T.; Mukai, S.

    A variation of the albedo on the illuminated disk of a comet nucleus is estimated, taking into account the multiple reflection of incident light due to small scale roughness. The dependences of the average albedo over the illuminated disk on the degree of roughness and on the complex refractive index of the surface materials are examined. The variation estimates are compared with measurements of the nucleus albedo of Comet Halley (Reitsema et al., 1987).

  16. CGRP as a neuropeptide in migraine: lessons from mice

    PubMed Central

    Russo, Andrew F

    2015-01-01

    Migraine is a neurological disorder that is far more than just a bad headache. A hallmark of migraine is altered sensory perception. A likely contributor to this altered perception is the neuropeptide calcitonin gene-related peptide (CGRP). Over the past decade, CGRP has become firmly established as a key player in migraine. Although the mechanisms and sites of action by which CGRP might trigger migraine remain speculative, recent advances with mouse models provide some hints. This brief review focuses on how CGRP might act as both a central and peripheral neuromodulator to contribute to the migraine-like symptom of light aversive behaviour in mice. PMID:26032833

  17. Simultaneous demonstrations of neuropeptide Y gene expression and peptide storage in single neurons of the human brain

    SciTech Connect

    Chan-Palay, V.; Yasargil, G.; Hamid, Q.; Polak, J.M.; Palay, S.L.

    1988-05-01

    A combination of in situ hybridization for neuropeptide Y mRNA that used a /sup 32/P-labeled complementary RNA probe and immunocytochemistry with polyclonal antibodies against neuropeptide Y were applied to human cortical brain samples to simultaneously localize neuropeptide Y and its mRNA. These two techniques allowed simultaneous identification of neuropeptide Y gene expression and peptide storage in single neutrons of the human brain.

  18. Neuropeptide Control of Feeding Behavior in Birds and Its Difference with Mammals

    PubMed Central

    Tachibana, Tetsuya; Tsutsui, Kazuyoshi

    2016-01-01

    Feeding is an essential behavior for animals to sustain their lives. Over the past several decades, many neuropeptides that regulate feeding behavior have been identified in vertebrates. These neuropeptides are called “feeding regulatory neuropeptides.” There have been numerous studies on the role of feeding regulatory neuropeptides in vertebrates including birds. Some feeding regulatory neuropeptides show different effects on feeding behavior between birds and other vertebrates, particularly mammals. The difference is marked with orexigenic neuropeptides. For example, melanin-concentrating hormone, orexin, and motilin, which are regarded as orexigenic neuropeptides in mammals, have no effect on feeding behavior in birds. Furthermore, ghrelin and growth hormone-releasing hormone, which are also known as orexigenic neuropeptides in mammals, suppress feeding behavior in birds. Thus, it is likely that the feeding regulatory mechanism has changed during the evolution of vertebrates. This review summarizes the recent knowledge of peptidergic feeding regulatory factors in birds and discusses the difference in their action between birds and other vertebrates. PMID:27853416

  19. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata).

    PubMed

    In, Vu Van; Ntalamagka, Nikoleta; O'Connor, Wayne; Wang, Tianfang; Powell, Daniel; Cummins, Scott F; Elizur, Abigail

    2016-08-01

    The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation.

  20. Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8

    PubMed Central

    Tanaka, Hirokazu; Yoshida, Tetsuo; Miyamoto, Norimasa; Motoike, Toshiyuki; Kurosu, Hiroshi; Shibata, Kenji; Yamanaka, Akihiro; Williams, S. Clay; Richardson, James A.; Tsujino, Natsuko; Garry, Mary G.; Lerner, Michael R.; King, David S.; O'Dowd, Brian F.; Sakurai, Takeshi; Yanagisawa, Masashi

    2003-01-01

    GPR7 and GPR8 are orphan G protein-coupled receptors that are highly similar to each other. These receptors are expressed predominantly in brain, suggesting roles in central nervous system function. We have purified an endogenous peptide ligand for GPR7 from bovine hypothalamus extracts. This peptide, termed neuropeptide B (NPB), has a C-6-brominated tryptophan residue at the N terminus. It binds and activates human GPR7 or GPR8 with median effective concentrations (EC50) of 0.23 nM and 15.8 nM, respectively. In situ hybridization shows distinct localizations of the prepro-NPB mRNA in mouse brain, i.e., in paraventricular hypothalamic nucleus, hippocampus, and several nuclei in midbrain and brainstem. Intracerebroventricular (i.c.v.) injection of NPB in mice induces hyperphagia during the first 2 h, followed by hypophagia. Intracerebroventricular injection of NPB produces analgesia to s.c. formalin injection in rats. Through EST database searches, we identified a putative paralogous peptide. This peptide, termed neuropeptide W (NPW), also has an N-terminal tryptophan residue. Synthetic human NPW binds and activates human GPR7 or GPR8 with EC50 values of 0.56 nM and 0.51 nM, respectively. The expression of NPW mRNA in mouse brain is confined to specific nuclei in midbrain and brainstem. These findings suggest diverse physiological functions of NPB and NPW in the central nervous system, acting as endogenous ligands on GPR7 and/or GPR8. PMID:12719537

  1. Ethological principles predict the neuropeptides co-opted to influence parenting

    PubMed Central

    Cunningham, Christopher B.; Badgett, Majors J.; Meagher, Richard B.; Orlando, Ron; Moore, Allen J.

    2017-01-01

    Ethologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring. We quantify neuropeptide abundance in brains collected from three behavioural states: solitary virgins, individuals actively parenting or post-parenting solitary adults and quantify 133 peptides belonging to 18 neuropeptides. Eight neuropeptides differ in abundance in one or more states, with increased abundance during parenting in seven. None of these eight neuropeptides have been associated with parental care previously, but all have roles in predicted behavioural precursors for parenting. Our study supports the hypothesis that predictable traits and pathways are targets of selection during the evolution of parenting and suggests additional candidate neuropeptides to study in the context of parenting. PMID:28145404

  2. Neuropeptide Y protects cerebral cortical neurons by regulating microglial immune function

    PubMed Central

    Li, Qijun; Dong, Changzheng; Li, Wenling; Bu, Wei; Wu, Jiang; Zhao, Wenqing

    2014-01-01

    Neuropeptide Y has been shown to inhibit the immunological activity of reactive microglia in the rat cerebral cortex, to reduce N-methyl-D-aspartate current (INMDA) in cortical neurons, and protect neurons. In this study, after primary cultured microglia from the cerebral cortex of rats were treated with lipopolysaccharide, interleukin-1β and tumor necrosis factor-α levels in the cell culture medium increased, and mRNA expression of these cytokines also increased. After primary cultured cortical neurons were incubated with the lipopolysaccharide-treated microglial conditioned medium, peak INMDA in neurons increased. These effects of lipopolysaccharide were suppressed by neuropeptide Y. After addition of the neuropeptide Y Y1 receptor antagonist BIBP3226, the effects of neuropeptide Y completely disappeared. These results suggest that neuropeptide Y prevents excessive production of interleukin-1β and tumor necrosis factor-α by inhibiting microglial reactivity. This reduces INMDA in rat cortical neurons, preventing excitotoxicity, thereby protecting neurons. PMID:25206918

  3. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  4. Neuropeptide W stimulates adrenocorticotrophic hormone release via corticotrophin-releasing factor but not via arginine vasopressin.

    PubMed

    Yogo, Kosuke; Oki, Yutaka; Iino, Kazumi; Yamashita, Miho; Shibata, Shoko; Hayashi, Chiga; Sasaki, Shigekazu; Suenaga, Toshiko; Nakahara, Daiichiro; Nakamura, Hirotoshi

    2012-01-01

    Neuropeptide W (NPW) was isolated as an endogenous ligand for NPBWR1, an orphan G protein-coupled receptor localized in the rat brain, including the paraventricular nucleus. It has been reported that central administration of NPW stimulates corticosterone secretion in rats. We hypothesized that NPW activates the hypothalamic-pituitary-adrenal (HPA) axis via corticotrophin-releasing factor (CRF) and/or arginine vasopressin (AVP). NPW at 1 pM to 10 nM did not affect basal or ACTH-induced corticosterone release from dispersed rat adrenocortical cells, or basal and CRF-induced ACTH release from dispersed rat anterior pituitary cells. In conscious and unrestrained male rats, intravenous administration of 2.5 and 25 nmol NPW did not affect plasma ACTH levels. However, intracerebroventricular (icv) administration of 2.5 and 5.0 nmol NPW increased plasma ACTH levels in a dose-dependent manner at 15 min after stimulation (5.0 vs. 2.5 nmol NPW vs. vehicle: 1802 ± 349 vs. 1170 ± 204 vs. 151 ± 28 pg/mL, respectively, mean ± SEM). Pretreatment with astressin, a CRF receptor antagonist, inhibited the increase in plasma ACTH levels induced by icv administration of 2.5 nmol NPW at 15 min (453 ± 176 vs. 1532 ± 343 pg/mL, p<0.05) and at 30 min (564 ± 147 vs. 1214 ± 139 pg/mL, p<0.05) versus pretreatment with vehicle alone. However, pretreatment with [1-(β-mercapto-β, β-cyclopentamethylenepropionic acid), 2-(Ο-methyl)tyrosine]-arg-vasopressin, a V1a/V1b receptor antagonist, did not affect icv NPW-induced ACTH release at any time (p>0.05). In conclusion, we suggest that central NPW activates the HPA axis by activating hypothalamic CRF but not AVP.

  5. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine

    PubMed Central

    Oliveira, Margarida-Martins; Akerman, Simon; Tavares, Isaura; Goadsby, Peter J.

    2016-01-01

    Abstract Migraine is a painful neurologic disorder with premonitory symptomatology that can include disturbed appetite. Migraine pathophysiology involves abnormal activation of trigeminocervical complex (TCC) neurons. Neuropeptide Y (NPY) is synthesized in the brain and is involved in pain modulation. NPY receptors are present in trigeminal ganglia and trigeminal nucleus caudalis suggesting a role in migraine pathophysiology. The present study aimed to determine the effect of systemic administration of NPY on TCC neuronal activity in response to dural nociceptive trigeminovascular activation. We performed in vivo electrophysiology in anesthetized rats, administered NPY (10, 30, and 100 µg·kg−1), and investigated the receptors involved by studying NPY Y1 (30 µg·kg−1), Y2 (30 µg·kg−1), and Y5 receptor agonists (100·µg·kg−1), and NPY Y1 receptor antagonist (30 µg·kg−1). NPY (30 and 100 µg·kg−1) significantly reduced TCC neuronal firing in response to dural-evoked trigeminovascular activation, but only NPY (30 µg·kg−1) significantly reduced spontaneous trigeminal firing. NPY Y1 receptor agonist also significantly reduced dural-evoked and spontaneous TCC neuronal firing. NPY (10 µg·kg−1), NPY Y2, and Y5 receptor agonists, and the NPY Y1 receptor antagonist had no significant effects on nociceptive dural-evoked neuronal firing in the TCC or spontaneous trigeminal firing. This study demonstrates that NPY dose dependently inhibits dural-evoked trigeminal activity, through NPY Y1 receptor activation, indicating antinociceptive actions of NPY in a migraine animal model. Based on the role of NPY in appetite regulation, it is possible that disruption of the NPY system might explain changes of appetite in migraineurs. PMID:27023421

  6. Allatotropin: An Ancestral Myotropic Neuropeptide Involved in Feeding

    PubMed Central

    Alzugaray, María Eugenia; Adami, Mariana Laura; Diambra, Luis Anibal; Hernandez-Martinez, Salvador; Damborenea, Cristina; Noriega, Fernando Gabriel; Ronderos, Jorge Rafael

    2013-01-01

    Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion. PMID:24143240

  7. Neuropeptide Y is an angiogenic factor in cardiovascular regeneration.

    PubMed

    Saraf, Rabya; Mahmood, Feroze; Amir, Rabia; Matyal, Robina

    2016-04-05

    In diabetic cardiomyopathy, there is altered angiogenic signaling and increased oxidative stress. As a result, anti-angiogenic and pro-inflammatory pathways are activated. These disrupt cellular metabolism and cause fibrosis and apoptosis, leading to pathological remodeling. The autonomic nervous system and neurotransmitters play an important role in angiogenesis. Therapies that promote angiogenesis may be able to relieve the pathology in these disease states. Neuropeptide Y (NPY) is the most abundantly produced and expressed neuropeptide in the central and peripheral nervous systems in mammals and plays an important role in promoting angiogenesis and cardiomyocyte remodeling. It produces effects through G-protein-coupled Y receptors that are widely distributed and also present on the myocardium. Some of these receptors are also involved in diseased states of the heart. NPY has been implicated as a potent growth factor, causing cell proliferation in multiple systems while the NPY3-36 fragment is selective in stimulating angiogenesis and cardiomyocyte remodeling. Current research is focusing on developing a drug delivery mechanism for NPY to prolong therapy without having significant systemic consequences. This could be a promising innovation in the treatment of diabetic cardiomyopathy and ischemic heart disease.

  8. Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila

    PubMed Central

    Zhang, Mo; Loschek, Laura F.; Grunwald Kadow, Ilona C.

    2016-01-01

    A female’s reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female’s preference for important nutrients, thereby ensuring optimal conditions for her growing progeny. PMID:27145127

  9. [Neuropeptides and psychiatry report presented at the French-Swiss Psychiatric meeting in Bel-Air, Geneva, 4 May 1980].

    PubMed

    Taban, C H

    1981-01-01

    In this mini-review the definition, some localizations and effects of 18 neuropeptides (as known at the beginning of 1980) are recalled, as well as some of the methods used. The hypothesis that neuropeptides may modify both functions and structures is presented. After a brief comment on the neuropeptides/monoamines relations and on some pharmacological results, the possible implications of neuropeptides dysfunctions in various psychiatric disorders are discussed. Some facts leading to the suspicion that both substance P and endorphines are increased in some psychoses are mentioned. The results of therapeutic trials are discussed. The importance of neuropeptides for the maintenance of internal homeostasis and behavioural adjustments is stressed.

  10. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.

    PubMed

    Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C; Olson, David P; Strochlic, David E; Garfield, Alastair S; Vong, Linh; Pei, Hongjuan; Watabe-Uchida, Mitsuko; Uchida, Naoshige; Liberles, Stephen D; Lowell, Bradford B

    2014-03-13

    Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.

  11. A circadian neuropeptide, pigment-dispersing factor-PDF, in the last-summer cicada Meimuna opalifera: cDNA cloning and immunocytochemistry.

    PubMed

    Sato, Seiji; Chuman, Yoshiro; Matsushima, Ayami; Tominaga, Yoshiya; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2002-08-01

    Pigment-dispersing factor (PDF), an 18-amino acid neuropeptide, is a principal circadian neuromodulator functioning downstream of the insect brain's circadian clock, modulating daily rhythms of locomotor activity. Recently, we found that PDF precursors of the cricket Gryllus bimaculatus comprise a nuclear localization signal (NLS). Moreover, the nuclear localization of PDF immunoreactivity and the translocation of GFP-fused PDF precursor into the nucleus have both been demonstrated. These suggest a fundamental role for PDF peptide in the circadian clock system within the nucleus, in addition to its role in downstream neural events. In the present study, we carried out the cDNA cloning of PDF from adult brains of the last-summer cicada Meimuna opalifera, and found that an isolated clone (545 bp) encodes an ordinary PDF precursor protein. PDF peptide itself shows a high sequence identity (78-94%) and similarity (89-100%) to insect PDFs and also to the crustacean beta-PDH peptides. The computer-assisted sequence analysis of PDF precursor revealed a possible translocation into the nucleus, despite the lack of a definite NLS-like sequence. Using immunocytochemistry, the optic lobes of M. opalifera revealed PDF-immunoreactive neurons in both the medulla and lamina neuropiles. All these PDF cells exhibited prominent immunolabeling of both their perikarya and axons, but not their nuclei. Our results provide the first structural and immunocytochemical identification of PDF neurons in Hemiptera.

  12. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  13. More than two decades of research on insect neuropeptide GPCRs: an overview

    PubMed Central

    Caers, Jelle; Verlinden, Heleen; Zels, Sven; Vandersmissen, Hans Peter; Vuerinckx, Kristel; Schoofs, Liliane

    2012-01-01

    This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years. PMID

  14. Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus.

    PubMed

    Carson, Dean S; Hunt, Glenn E; Guastella, Adam J; Barber, Lachlan; Cornish, Jennifer L; Arnold, Jonathon C; Boucher, Aurelie A; McGregor, Iain S

    2010-10-01

    Recent preclinical evidence indicates that the neuropeptide oxytocin may have potential in the treatment of drug dependence and drug withdrawal. Oxytocin reduces methamphetamine self-administration, conditioned place preference and hyperactivity in rodents. However, it is unclear how oxytocin acts in the brain to produce such effects. The present study examined how patterns of neural activation produced by methamphetamine were modified by co-administered oxytocin. Male Sprague-Dawley rats were pretreated with either 2 mg/kg oxytocin (IP) or saline and then injected with either 2 mg/kg methamphetamine (IP) or saline. After injection, locomotor activity was measured for 80 minutes prior to perfusion. As in previous studies, co-administered oxytocin significantly reduced methamphetamine-induced behaviors. Strikingly, oxytocin significantly reduced methamphetamine-induced Fos expression in two regions of the basal ganglia: the subthalamic nucleus and the nucleus accumbens core. The subthalamic nucleus is of particular interest given emerging evidence for this structure in compulsive, addiction-relevant behaviors. When administered alone, oxytocin increased Fos expression in several regions, most notably in the oxytocin-synthesizing neurons of the supraoptic nucleus and paraventricular nucleus of the hypothalamus. This provides new evidence for central actions of peripheral oxytocin and suggests a self-stimulation effect of exogenous oxytocin on its own hypothalamic circuitry. Overall, these results give further insight into the way in which oxytocin might moderate compulsive behaviors and demonstrate the capacity of peripherally administered oxytocin to induce widespread central effects.

  15. Relative Importance of the Arcuate and Anteroventral Periventricular Kisspeptin Neurons in Control of Puberty and Reproductive Function in Female Rats

    PubMed Central

    Hu, M. H.; Li, X. F.; McCausland, B.; Li, S. Y.; Gresham, R.; Kinsey-Jones, J. S.; Gardiner, J. V.; Sam, A. H.; Bloom, S. R.; Poston, L.; Lightman, S. L.; Murphy, K. G.

    2015-01-01

    Kisspeptin plays a critical role in pubertal timing and reproductive function. In rodents, kisspeptin perikarya within the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei are thought to be involved in LH pulse and surge generation, respectively. Using bilateral microinjections of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC or AVPV of female rats at postnatal day 10, we investigated the relative importance of these two kisspeptin populations in the control of pubertal timing, estrous cyclicity, and LH surge and pulse generation. A 37% knockdown of kisspeptin in the AVPV resulted in a significant delay in vaginal opening and first vaginal estrous, abnormal estrous cyclicity, and reduction in the occurrence of spontaneous LH surges, although these retained normal amplitude. This AVPV knockdown had no effect on LH pulse frequency, measured after ovariectomy. A 32% reduction of kisspeptin in the ARC had no effect on the onset of puberty but resulted in abnormal estrous cyclicity and decreased LH pulse frequency. Additionally, the knockdown of kisspeptin in the ARC decreased the amplitude but not the incidence of LH surges. These results might suggest that the role of AVPV kisspeptin in the control of pubertal timing is particularly sensitive to perturbation. In accordance with our previous studies, ARC kisspeptin signaling was critical for normal pulsatile LH secretion in female rats. Despite the widely reported role of AVPV kisspeptin neurons in LH surge generation, this study suggests that both AVPV and ARC populations are essential for normal LH surges and estrous cyclicity. PMID:25875299

  16. Words are not enough: nonword repetition as an indicator of arcuate fasciculus integrity during brain tumor resection.

    PubMed

    Sierpowska, Joanna; Gabarrós, Andreu; Fernandez-Coello, Alejandro; Camins, Àngels; Castañer, Sara; Juncadella, Montserrat; Morís, Joaquín; Rodríguez-Fornells, Antoni

    2017-02-01

    OBJECTIVE Subcortical electrical stimulation during brain surgery may allow localization of functionally crucial white matter fibers and thus tailoring of the tumor resection according to its functional limits. The arcuate fasciculus (AF) is a white matter bundle connecting frontal, temporal, and parietal cortical areas that is often disrupted by left brain lesions. It plays a critical role in several cognitive functions related to phonological processing, but current intraoperative monitoring methods do not yet allow mapping of this tract with sufficient precision. In the present study the authors aimed to test a new paradigm for the intraoperative monitoring of the AF. METHODS In this report, the authors studied 12 patients undergoing awake brain surgery for tumor resection with a related risk of AF damage. To preserve AF integrity and the cognitive processes sustained by this tract in the intraoperative context, the authors used real word repetition (WR) and nonword repetition (NWR) tasks as complements to standard picture naming. RESULTS Compared with the errors identified by WR or picture naming, the NWR task allowed the detection of subtle errors possibly related to AF alterations. Moreover, only 3 patients demonstrated phonological paraphasias in standard picture naming, and in 2 of these patients the paraphasias co-occurred with the total loss of WR and NWR ability. Before surgery, lesion volume predicted a patient's NWR performance. CONCLUSIONS The authors suggest that monitoring NWR intraoperatively may complement the standard naming tasks and could permit better preservation of the important language production functions subserved by the AF.

  17. Relative Importance of the Arcuate and Anteroventral Periventricular Kisspeptin Neurons in Control of Puberty and Reproductive Function in Female Rats.

    PubMed

    Hu, M H; Li, X F; McCausland, B; Li, S Y; Gresham, R; Kinsey-Jones, J S; Gardiner, J V; Sam, A H; Bloom, S R; Poston, L; Lightman, S L; Murphy, K G; O'Byrne, K T

    2015-07-01

    Kisspeptin plays a critical role in pubertal timing and reproductive function. In rodents, kisspeptin perikarya within the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei are thought to be involved in LH pulse and surge generation, respectively. Using bilateral microinjections of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC or AVPV of female rats at postnatal day 10, we investigated the relative importance of these two kisspeptin populations in the control of pubertal timing, estrous cyclicity, and LH surge and pulse generation. A 37% knockdown of kisspeptin in the AVPV resulted in a significant delay in vaginal opening and first vaginal estrous, abnormal estrous cyclicity, and reduction in the occurrence of spontaneous LH surges, although these retained normal amplitude. This AVPV knockdown had no effect on LH pulse frequency, measured after ovariectomy. A 32% reduction of kisspeptin in the ARC had no effect on the onset of puberty but resulted in abnormal estrous cyclicity and decreased LH pulse frequency. Additionally, the knockdown of kisspeptin in the ARC decreased the amplitude but not the incidence of LH surges. These results might suggest that the role of AVPV kisspeptin in the control of pubertal timing is particularly sensitive to perturbation. In accordance with our previous studies, ARC kisspeptin signaling was critical for normal pulsatile LH secretion in female rats. Despite the widely reported role of AVPV kisspeptin neurons in LH surge generation, this study suggests that both AVPV and ARC populations are essential for normal LH surges and estrous cyclicity.

  18. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  19. Mild Traumatic Brain Injury and Conduction Aphasia from a Close Proximity Blast Resulting in Arcuate Fasciculus Damage Diagnosed on DTI Tractography

    DTIC Science & Technology

    2009-11-01

    Conduction Aphasia from a Close Proximity Blast Resulting in Arcuate Fasciculus Damage Diagnosed on DTI Tractography Guarantor: J. Wesson Ashford...November 2009 issue. 1 The authors present a case demonstrating that a blast injury was associated with both conduction aphasia and an abnormality in...study demonstrating that damage to the AF is associated with conduction aphasia .2 Based on the patient’s length of posttraumatic amnesia this

  20. Cloning, expression and processing of the CP2 neuropeptide precursor of Aplysia.

    PubMed

    Vilim, F S; Alexeeva, V; Moroz, L L; Li, L; Moroz, T P; Sweedler, J V; Weiss, K R

    2001-12-01

    The cDNA sequence encoding the CP2 neuropeptide precursor is identified and encodes a single copy of the neuropeptide that is flanked by appropriate processing sites. The distribution of the CP2 precursor mRNA is described and matches the CP2-like immunoreactivity described previously. Single cell RT-PCR independently confirms the presence of CP2 precursor mRNA in selected neurons. MALDI-TOF MS is used to identify additional peptides derived from the CP2 precursor in neuronal somata and nerves, suggesting that the CP2 precursor may give rise to additional bioactive neuropeptides.

  1. Dcf1 regulates neuropeptide expression and maintains energy balance.

    PubMed

    Liu, Qiang; Chen, Yu; Li, Qian; Wu, Liang; Wen, Tieqiao

    2017-04-01

    Neuropeptide Y (NPY) is an important neurotransmitter in the brain that plays a pivotal role in food intake and energy storage. Although many studies have focused on these functions, the regulation of NPY expression remains unclear. Here we showed that dendritic cell factor 1 (Dcf1) regulates NPY expression and maintains energy balance. We found that NPY expression is significantly reduced in the hypothalamus of Dcf1 knockout (Dcf1(-/-), KO) mice. In contrast, Dcf1 overexpression significantly increases NPY expression in the cell line. We also found that Dcf1 acts upstream of the NPY gene to regulate NPY expression and modulates the NPY-NPY receptor 1-GABA signal. Notably, we observed a significant increase in the ATP concentration in Dcf1(-/-) mice, suggesting a greater demand for energy in the absence of Dcf1. We studied the relationship between Dcf1 and NPY and revealed that Dcf1 plays a critical role in energy balance.

  2. The effect of obesogenic diets on brain Neuropeptide Y.

    PubMed

    Gumbs, Myrtille C R; van den Heuvel, José K; la Fleur, Susanne E

    2016-08-01

    Obesity is a major health problem characterized by accumulated fat mass. The availability of an energy-dense, highly palatable diet plays an important role in obesity development. Neuropeptide Y (NPY), an orexigenic peptide, is affected by dietary composition and NPY can affect dietary preference. The hypothalamic NPY system is well characterized and has been studied in several models of obesity. However, findings from models of diet-induced obesity are not straightforward. In addition, NPY plays a role in (food-)motivated behaviors and interacts with the mesolimbic dopamine system, both of which are altered in obesity. We here review the effect of obesogenic diets on NPY levels in the hypothalamus and reward-related regions.

  3. Salusin-β as a powerful endogenous antidipsogenic neuropeptide

    PubMed Central

    Suzuki-Kemuriyama, Noriko; Nakano-Tateno, Tae; Tani, Yuji; Hirata, Yukio; Shichiri, Masayoshi

    2016-01-01

    Salusin-β is an endogenous parasympathomimetic peptide, predominantly localized to the hypothalamus and posterior pituitary. Subcutaneously administered salusin-β (50 nmol/mouse) significantly increased water intake but did not affect locomotor activity or food intake. The salusin-β-induced increase in water intake was completely abrogated by pretreatment with muscarinic antagonist, atropine sulphate. In contrast, intracerebroventricular injection of salusin-β, at lower doses (10–100 fmol/mouse) caused a long-lasting decrease in water intake and locomotor activity throughout the entire dark phase of the diurnal cycle. Pre-injection of intracerebroventricular anti-salusin-β IgG completely abrogated the central salusin-β mediated suppression of water intake and locomotor activity. These results demonstrate contrasting actions of salusin-β in the control of water intake via the central and peripheral systems and highlight it as a potent endogenous antidipsogenic neuropeptide. PMID:26869388

  4. Sexual experience affects ethanol intake in Drosophila through Neuropeptide F

    PubMed Central

    Shohat-Ophir, G.; Kaun, K.R.; Azanchi, R.; Mohammed, H; Heberlein, U.

    2014-01-01

    The brain's reward systems evolved to reinforce behaviors required for species survival, including sex, food consumption, and social interaction. Drugs of abuse co-opt these neural pathways, which can lead to addiction. Here, we use Drosophila melanogaster to investigate the relationship between natural and drug rewards. In males, mating increased Neuropeptide F (NPF) levels, whereas sexual deprivation reduced NPF. Activation or inhibition of the NPF system in turn enhanced or reduced ethanol preference. These results thus link sexual experience, NPF system activity, and ethanol consumption. Artificial activation of NPF neurons was in itself rewarding and precluded the ability of ethanol to act as a reward. We propose that activity of the NPF/NPF receptor axis represents the state of the fly reward system and modifies behavior accordingly. PMID:22422983

  5. A d-Amino Acid-Containing Neuropeptide Discovery Funnel

    PubMed Central

    2016-01-01

    A receptor binding class of d-amino acid-containing peptides (DAACPs) is formed in animals from an enzymatically mediated post-translational modification of ribosomally translated all-l-amino acid peptides. Although this modification can be required for biological actions, detecting it is challenging because DAACPs have the same mass as their all-l-amino acid counterparts. We developed a suite of mass spectrometry (MS) protocols for the nontargeted discovery of DAACPs and validated their effectiveness using neurons from Aplysia californica. The approach involves the following three steps, with each confirming and refining the hits found in the prior step. The first step is screening for peptides resistant to digestion by aminopeptidase M. The second verifies the presence of a chiral amino acid via acid hydrolysis in deuterium chloride, labeling with Marfey’s reagent, and liquid chromatography–mass spectrometry to determine the chirality of each amino acid. The third involves synthesizing the putative DAACPs and comparing them to the endogenous standards. Advantages of the method, the d-amino acid-containing neuropeptide discovery funnel, are that it is capable of detecting the d-form of any common chiral amino acid, and the first two steps do not require peptide standards. Using these protocols, we report that two peptides from the Aplysia achatin-like neuropeptide precursor exist as GdYFD and SdYADSKDEESNAALSDFA. Interestingly, GdYFD was bioactive in the Aplysia feeding and locomotor circuits but SdYADSKDEESNAALSDFA was not. The discovery funnel provides an effective means to characterize DAACPs in the nervous systems of animals in a nontargeted manner. PMID:27788334

  6. GABA excitation in mouse hilar neuropeptide Y neurons

    PubMed Central

    Fu, Li-Ying; van den Pol, Anthony N

    2007-01-01

    Neuropeptide Y-containing interneurons in the dentate hilar area play an important role in inhibiting the activity of hippocampal circuitry. Hilar cells are often among the first lost in hippocampal epilepsy. As many types of neurons are found in the hilus, we used a new transgenic mouse expressing green fluorescent protein (GFP) in a subset of neurons that colocalized neuropeptide Y (NPY), somatostatin (SST), and GABA for whole-cell, perforated, and cell-attached recording in 240 neurons. As these neurons have not previously been identifiable in live slices, they have not been the focus of physiological analysis. Hilar NPY neurons showed modest spike frequency adaptation, a large 15.6 ± 1.0 mV afterhyperpolarization, a mean input resistance of 335 ± 26 mΩ, and were capable of fast-firing. Muscimol-mediated excitatory actions were found in a nominally Ca2+-free/high-Mg2+ bath solution using cell-attached recording. GABAA receptor antagonists inhibited half the recorded neurons and blocked burst firing. Gramicidin perforated-patch recording revealed a GABA reversal potential positive to both the resting membrane potential and spike threshold. Together, these data suggest GABA is excitatory to many NPY cells. NPY and SST consistently hyperpolarized and reduced spike frequency in these neurons. No hyperpolarization of NPY on membrane potential was detected in the presence of tetrodotoxin, AP5, CNQX and bicuculline, supporting an indirect effect. Under similar conditions, SST hyperpolarized the cells, suggesting a direct postsynaptic action. Depolarizing actions of GABA and GABA-dependent burst-firing may synchronize a rapid release of GABA, NPY, and SST, leading to pre- and postsynaptic inhibition of excitatory hippocampal circuits. PMID:17204505

  7. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  8. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    PubMed

    Shao, Yu-Feng; Zhao, Peng; Dong, Chao-Yu; Li, Jing; Kong, Xiang-Pan; Wang, Hai-Liang; Dai, Li-Rong; Hou, Yi-Ping

    2013-01-01

    Neuropeptide S (NPS) is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR). High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v.) injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir) neurons that also bear NPSR. NPS (0.1-1 nmol) i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5)]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON), piriform cortex (Pir), ventral tenia tecta (VTT), the anterior cortical amygdaloid nucleus (ACo) and lateral entorhinal cortex (LEnt). The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.

  9. Neuropeptide y and neuropeptide y y5 receptor interaction restores impaired growth potential of aging bone marrow stromal cells.

    PubMed

    Igura, Koichi; Haider, Husnain Kh; Ahmed, Rafeeq P H; Sheriff, Sulaiman; Ashraf, Muhammad

    2011-08-01

    Abstract improved growth characteristics of the aging bone marrow cells subsequent to neuropeptide Y (NPY)/neuropeptide Y Y5 receptor (NPY Y5R) ligand-receptor interaction. Bone marrow cells were isolated from neonatal (2-3 weeks), young (8-12 weeks), and old (24-28 months) rats on the basis of their preferential adherence to plastic surface. After culturing the cells at initial seeding density of 1×10(4) cells/cm(2), we found that the proliferation potential of bone marrow cells declined with age. Real-time polymerase chain reaction (PCR) and Western blotting showed that bone marrow cells in different age groups constitutively expressed NPY and NPY receptor subtypes (Y1R, Y2R, and Y5R). However, NPY and Y5R expression increased by more than 130-fold and decreased by 28-fold, respectively, in old bone marrow cells as compared to young bone marrow cells. NPY (10 nM) stimulated the proliferation of all bone marrow cells age groups, and their proliferation was blocked by Y5R antagonist. However, the pro-proliferative effect of NPY on old bone marrow cells was weaker than other cell groups due to lower Y5R expression. Y5R gene transfection of old bone marrow cells with subsequent NPY(3-36) (10 nM) treatment significantly increased proliferation of old bone marrow cells (>56%) as compared to green fluorescence protein-transfected control old bone marrow cells. Stimulation of old bone marrow cells by NPY treatment rejuvenated the growth characteristics of aging bone marrow cells as a result of Y5R overexpression.

  10. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions

    PubMed Central

    Pintér, Erika; Pozsgai, Gábor; Hajna, Zsófia; Helyes, Zsuzsanna; Szolcsányi, János

    2014-01-01

    Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed. PMID:23432438

  11. Unilateral optic nerve transection alters light response of suprachiasmatic nucleus and intergeniculate leaflet

    NASA Technical Reports Server (NTRS)

    Tang, I-Hsiung; Murakami, Dean M.; Fuller, Charles A.

    2002-01-01

    The suprachiasmatic nucleus (SCN), the circadian pacemaker, receives photic input directly from the retina to synchronize the pacemaker to the environment. Additionally, the intergeniculate leaflet (IGL), which innervates the SCN, is known to modulate the retinal photic input to the SCN. To further understand the role of the IGL in mediating the photic input to the SCN, this study examined the effects of unilateral optic nerve transection (UONx) on the photic response of the SCN and IGL in adult and neonatal hamsters. UONx led to an overall reduction in light-induced c-Fos expression in the SCN and IGL. The c-Fos expression was greater in the SCN ipsilateral to the remaining eye, despite a symmetrically bilateral retinohypothalamic tract projection as revealed by intraocular injection of horseradish peroxidase. In contrast, UONx led to a greater c-Fos expression in the contralateral IGL. The contralateral IGL of UONx animals also revealed more neuropeptide Y-immunoreactive neurons, while the ipsilateral SCN of these animals exhibited a denser neuropeptide Y terminal field. The neonates with UONx showed a similar pattern with a slight compensation of the photic-induced c-Fos in the SCN. This study suggests that the IGL may have an ipsilateral inhibitory effect in mediating retinal photic input to the SCN.

  12. Orexins excite ventrolateral geniculate nucleus neurons predominantly via OX2 receptors.

    PubMed

    Chrobok, Lukasz; Palus, Katarzyna; Lewandowski, Marian Henryk

    2016-04-01

    Orexins/hypocretins are two neuropeptides that influence many behaviours, such as feeding, sleep or arousal. Orexin A/hypocretin-1 (OXA) and orexin B/hypocretin-2 (OXB) bind to two metabotropic receptors, named the OX1 and OX2 receptors. The lateral geniculate complex of the thalamus is one of the many targets of orexinergic fibres derived from the lateral hypothalamus, although the impact of orexins on the ventrolateral geniculate nucleus (VLG) is poorly understood. The VLG, an important relay station of the subcortical visual system, is implicated in visuomotor and/or circadian processes. Therefore, in this study we evaluated the effects of orexins on single VLG neurons using a patch-clamp technique in vitro. Surprisingly, orexins depolarised the majority of the recorded neurons regardless of their localisation in the borders of the VLG. In addition, data presented in this article show that neurons synthesising NO were also affected by OXA. Moreover, immunohistochemical staining of OXB revealed the moderate density of orexinergic fibbers in the VLG. Our study using specific orexin receptor antagonists suggests that the OX2 receptor has a dominant role in the observed effects of OXA. To our knowledge, this article is the first to show orexinergic modulation of the VLG. These findings strengthen the postulated link between orexins and the circadian system, and propose a new role of these neuropeptides in the modulation of visuomotor functions.

  13. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  14. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  15. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  16. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  17. Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens.

    PubMed

    Mayorova, Tatiana D; Tian, Shi; Cai, Weigang; Semmens, Dean C; Odekunle, Esther A; Zandawala, Meet; Badi, Yusef; Rowe, Matthew L; Egertová, Michaela; Elphick, Maurice R

    2016-01-01

    Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s) that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g., the annelid Platynereis dumerilii) and deuterostomian (e.g., the urochordate Ciona intestinalis) invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata-the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1), F-type SALMFamide (S2), vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide) was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with distinctive

  18. Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens

    PubMed Central

    Mayorova, Tatiana D.; Tian, Shi; Cai, Weigang; Semmens, Dean C.; Odekunle, Esther A.; Zandawala, Meet; Badi, Yusef; Rowe, Matthew L.; Egertová, Michaela; Elphick, Maurice R.

    2016-01-01

    Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s) that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g., the annelid Platynereis dumerilii) and deuterostomian (e.g., the urochordate Ciona intestinalis) invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata—the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1), F-type SALMFamide (S2), vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide) was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with distinctive

  19. Identification of the Drosophila and Tribolium receptors for the recently discovered insect RYamide neuropeptides.

    PubMed

    Collin, Caitlin; Hauser, Frank; Krogh-Meyer, Peter; Hansen, Karina K; Gonzalez de Valdivia, Ernesto; Williamson, Michael; Grimmelikhuijzen, Cornelis J P

    2011-09-09

    One year ago, we discovered a new family of insect RYamide neuropeptides, which has the C-terminal consensus sequence FFXXXRYamide, and which is widely occurring in most insects, including the fruitfly Drosophila melanogaster and the red flour beetle Tribolium castaneum (F. Hauser et al., J. Proteome Res. 9 (2010) 5296-5310). Here, we identify a Drosophila G-protein-coupled receptor (GPCR) coded for by gene CG5811 and its Tribolium GPCR ortholog as insect RYamide receptors. The Drosophila RYamide receptor is equally well activated (EC(50), 1×10(-9)M) by the two Drosophila RYamide neuropeptides: RYamide-1 (PVFFVASRYamide) and RYamide-2 (NEHFFLGSRYamide), both contained in a preprohormone coded for by gene CG40733. The Tribolium receptor shows a somewhat higher affinity to Tribolium RYamide-2 (ADAFFLGPRYamide; EC(50), 5×10(-9)M) than to Tribolium RYamide-1 (VQNLATFKTMMRYamide; EC(50), 7×10(-8)M), which might be due to the fact that the last peptide does not completely follow the RYamide consensus sequence rule. There are other neuropeptides in insects that have similar C-terminal sequences (RWamide or RFamide), such as the FMRFamides, sulfakinins, myosuppressins, neuropeptides F, and the various short neuropeptides F. Amazingly, these neuropeptides show no cross-reactivity to the Tribolium RYamide receptor, while the Drosophila RYamide receptor is only very slightly activated by high concentrations (>10(-6)M) of neuropeptide F and short neuropeptide F-1, showing that the two RYamide receptors are quite specific for activation by insect RYamides, and that the sequence FFXXXRYamide is needed for effective insect RYamide receptor activation. Phylogenetic tree analyses and other amino acid sequence comparisons show that the insect RYamide receptors are not closely related to any other known insect or invertebrate/vertebrate receptors, including mammalian neuropeptide Y and insect neuropeptide F and short neuropeptide F receptors. Gene expression data published in

  20. Peripherally injected CCK-8S activates CART positive neurons of the paraventricular nucleus in rats

    PubMed Central

    Noetzel, Steffen; Inhoff, Tobias; Goebel, Miriam; Taché, Yvette; Veh, Rüdiger W.; Bannert, Norbert; Grötzinger, Carsten; Wiedenmann, Bertram; Klapp, Burghard F.; Mönnikes, Hubert; Kobelt, Peter

    2014-01-01

    Cholecystokinin (CCK) plays a role in the short-term inhibition of food intake. Cocaine- and amphetamine-regulated transcript (CART) peptide has been observed in neurons of the paraventricular nucleus (PVN). It has been reported that intracerebroventricular injection of CART peptide inhibits food intake in rodents. The aim of the study was to determine whether intraperitoneally (ip) injected CCK-8S affects neuronal activity of PVN-CART neurons. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n = 4/group). The number of c-Fos-immunoreactive neurons was determined in the PVN, arcuate nucleus (ARC), and the nucleus of the solitary tract (NTS). CCK-8S dose-dependently increased the number of c-Fos-immunoreactive neurons in the PVN (mean ± SEM: 102 ± 6 vs. 150 ± 5 neurons/section, p < 0.05) and compared to vehicle treated rats (18 ± 7, p < 0.05 vs. 6 and 10 μg/kg CCK-8S). CCK-8S at both doses induced an increase in the number of c-Fos-immunoreactive neurons in the NTS (65 ± 13, p < 0.05, and 182 ± 16, p < 0.05). No effect on the number of c-Fos neurons was observed in the ARC. Immunostaining for CART and c-Fos revealed a dose-dependent increase of activated CART neurons (19 ± 3 vs. 29 ± 7; p < 0.05), only few activated CART neuron were observed in the vehicle group (1 ± 0). The present observation shows that CCK-8S injected ip induces an increase in neuronal activity in PVN-CART neurons and suggests that CART neurons in the PVN may play a role in the mediation of peripheral CCK-8S's anorexigenic effects. PMID:20307613

  1. [Control of bone remodeling by nervous system. Regulation of bone metabolism by appetite regulating neuropeptides].

    PubMed

    Fukuda, Toru; Takeda, Shu

    2010-12-01

    The traditional view of bone metabolism as a primarily endocrine activity has been expanded in recent years following the identification of nervous system controlling bone metabolism by leptin studies. Especially, hypothalamic appetite regulating-peptides, such as NPY, CART and NMU have been demonstrated to be bone-regulating neuropeptides. Recently, other neuropeptides, such as serotonin and oxytocin, are reported to be associated with bone metabolism.

  2. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus.

    PubMed

    Albers, H Elliott; Walton, James C; Gamble, Karen L; McNeill, John K; Hummer, Daniel L

    2017-01-01

    Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.

  3. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    PubMed Central

    Takaya, Shigetoshi; Kuperberg, Gina R.; Liu, Hesheng; Greve, Douglas N.; Makris, Nikos; Stufflebeam, Steven M.

    2015-01-01

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. The unique feature of the left AF is discussed in the context of the human capacity for language. PMID:26441551

  4. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain.

    PubMed

    Takaya, Shigetoshi; Kuperberg, Gina R; Liu, Hesheng; Greve, Douglas N; Makris, Nikos; Stufflebeam, Steven M

    2015-01-01

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. The unique feature of the left AF is discussed in the context of the human capacity for language.

  5. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE PAGES

    Takaya, Shigetoshi; Kuperberg, Gina R.; Liu, Hesheng; ...

    2015-09-15

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  6. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    SciTech Connect

    Takaya, Shigetoshi; Kuperberg, Gina R.; Liu, Hesheng; Greve, Douglas N.; Makris, Nikos; Stufflebeam, Steven M.

    2015-09-15

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.

  7. Cell type-dependent trafficking of neuropeptide Y-containing dense core granules in CNS neurons.

    PubMed

    Ramamoorthy, Prabhu; Wang, Qian; Whim, Matthew D

    2011-10-12

    Neuropeptide transmitters are synthesized throughout the CNS and play important modulatory roles. After synthesis in the neuronal cell body, it is generally assumed that peptides are transported to nonspecialized sites of release. However, apart from a few cases, this scenario has not been thoroughly examined. Using wild-type and NPY(GFP) transgenic mice, we have studied the subcellular distribution of neuropeptide Y (NPY), a prototypical and broadly expressed neuropeptide. NPY puncta were found in the dendrites and axons of hippocampal GABAergic interneurons in situ. In contrast in hypothalamic GABAergic interneurons, NPY was restricted to the axon. Surprisingly this differential trafficking was preserved when the neurons were maintained in vitro. When hippocampal and hypothalamic neurons were transfected with NPY-Venus, the distribution of the fluorescent puncta replicated the cell type-specific distribution of endogenous neuropeptide Y. The NPY puncta in the axons of hippocampal and hypothalamic neurons colocalized with the sites of classical transmitter release (identified by staining for synapsin and the vesicular GABAergic transporter, VGAT). In hippocampal neurons, most of the postsynaptic NPY puncta were clustered opposite synapsin-containing varicosities. When neurons were stained for a second neuropeptide, agouti-related protein, immunoreactivity was found in the axon and dendrites of hippocampal neurons but only in the axons of hypothalamic neurons, thus mimicking the polarized distribution of NPY. These results indicate that the trafficking of neuropeptide-containing dense core granules is markedly cell type specific and is not determined entirely by the characteristics of the particular peptide per se.

  8. The endoparasitoid, Cotesia vestalis, regulates host physiology by reprogramming the neuropeptide transcriptional network.

    PubMed

    Shi, Min; Dong, Shuai; Li, Ming-tian; Yang, Yan-yan; Stanley, David; Chen, Xue-xin

    2015-02-02

    Endoparasitoids develop inside another insect by regulating host immunity and development via maternal factors injected into hosts during oviposition. Prior results have provided insights into parasitism-induced immunosuppression, including the neuropeptide accumulation in parasitized insects. Nonetheless, our understanding of neuropeptide influence on host development and behavior is not yet complete. We posed the hypothesis that parasitization alters expression of genes encoding pro-neuropeptides and used larvae of Plutella xylostella and its endoparasitoid, Cotesia vestalis to test our hypothesis. We prepared transcriptomes from the larval P. xylostella brain-CC-CA complex and identified transcripts encoding 19 neuropeptides. All corresponding cDNAs were confirmed by RACE. Our results demonstrate that parasitism significantly down-regulated, or delayed, expression of genes encoding pro-neuropeptides within 48 h post-parasitization. Changing expression of these genes may account for the previously reported decreased feeding behavior, reduced growth rates and aborted development in the host larvae. In effect, parasitization may operate at the molecular level within the CNS to create global changes in larval host biology. The significance of our finding is that, in addition to the known effects on immunity, parasitoids influence host pro-neuropeptide gene transcription. This finding reveals a new mechanism operating in host-parasitoid relationships to the advantage of the parasitoid.

  9. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  10. Checkerboard Theory of the Nucleus.

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2006-04-01

    The Checker Board Model (CBM) is a 2D model of the nucleus that proposes that the synchronization of the 2 outer rotating quarks in the nucleons accounts for magnetic moment of the nucleons and that the magnetic flux from the nucleons couples (weaves) into the 2D checker board array structures and this magnetic coupling in addition to electrostatic forces of the rotating and stationary quarks accounts for the apparent strong nuclear force. The symmetry of the He nucleus helps explain why this 2D structure is so stable. This model explain the mass of the proton and neutron, along with their magnetic moments and their absolute and relative sizes in terms of the above structure and predict the masses of two newly proposed quarks ^(1): the ``up'' and the ``dn'' quarks. Since the masses of the ``up'' and ``dn'' quark determined by the CBM (237.31 MeV and 42.392 MeV respectively) did not fit within the standard model as candidates for u and d, a new model (New Physics) had to be invented. This new particle physics model predicts that nature has 5 generations not 3. (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/

  11. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Altsybeev, Igor; Kovalenko, Vladimir

    2017-03-01

    Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range). In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  12. Neuropeptide Y inhibits interleukin-1 beta-induced microglia motility.

    PubMed

    Ferreira, Raquel; Santos, Tiago; Cortes, Luísa; Cochaud, Stéphanie; Agasse, Fabienne; Silva, Ana Paula; Xapelli, Sara; Malva, João O

    2012-01-01

    Increasing evidences suggest that neuropeptide Y (NPY) may act as a key modulator of the cross-talk between the brain and the immune system in health and disease. In the present study, we dissected the possible inhibitory role of NPY upon inflammation-associated microglial cell motility. NPY, through activation of Y(1) receptors, was found to inhibit lipopolysaccharide (LPS)-induced microglia (N9 cell line) motility. Moreover, stimulation of microglia with LPS was inhibited by IL-1 receptor antagonist (IL-1ra), suggesting the involvement of endogenous interleukin-1 beta (IL-1β) in this process. Direct stimulation with IL-1β promoted downstream p38 mitogen-activated protein kinase mobilization and increased microglia motility. Moreover, consistently, p38 mitogen-activated protein kinase inhibition decreased the extent of actin filament reorganization occurring during plasma membrane ruffling and p38 phosphorylation was inhibited by NPY, involving Y(1) receptors. Significantly, the key inhibitory role of NPY on LPS-induced motility of CD11b-positive cells was further confirmed in mouse brain cortex explants. In summary, we revealed a novel functional role for NPY in the regulation of microglial function that may have important implications in the modulation of CNS injuries/diseases where microglia migration/motility might play a role.

  13. Neuropeptide Y reduces ovarian blood flow in the rabbit

    SciTech Connect

    Jorgensen, J.C.; Sejrsen, P. )

    1990-05-01

    Neuropeptide Y-containing nerve fibers have previously been demonstrated to innervate the mammalian ovary. These nerve fibers innervate primarily the vasculature. In this study we have developed a method for in vivo measurement of the ovary blood flow rate by means of the {sup 133}Xe method. Using this technique we measured the ovary blood flow rate and investigated the dose-response relationship between close intraarterial-injected NPY and the ovary blood flow rate. A monoexponential washout curve for {sup 133}Xe was found for the whole washout process, ensuring that the blood flow rate at any time could be calculated from the curve. We found a mean blood flow rate in the nonpregnant rabbit ovary at 43.6 +/- 4.4 ml.(100 g)-1.min-1 (mean +/- SEM). Injection of NPY (20, 200, 2000 pM) in the aorta close to a. ovarica resulted in a dose-dependent decrease in the ovarian blood flow rate with a maximum reduction to 40.7 +/- 6.3% (mean +/- SEM) of the control blood flow rate. These findings make it likely that receptors able to interact with NPY are present in the vasculature of the rabbit ovary.

  14. Neuropeptide Y system in the retina: From localization to function.

    PubMed

    Santos-Carvalho, Ana; Ambrósio, António Francisco; Cavadas, Cláudia

    2015-07-01

    The retina is a highly complex structure where several types of cells communicate through countless different molecules to codify visual information. Each type of cells plays unique roles in the retina, presenting a singular expression of neurotransmitters. Some neurotransmitter systems in the retina are well understood, while others need to be better explored to unravel the intricate signaling system involved. Neuropeptide Y (NPY), a 36 amino acid peptide, is one of the most common peptide neurotransmitter in the CNS and a highly conserved peptide among species. We review the localization of NPY and NPY receptors (mainly NPY Y1, Y2, Y4 and Y5) in retinal cells. Common features of the expression of NPY and NPY receptors in mammalian and non-mammalian species indicate universal roles of this system in the retina. In the present review, we highlight the putative roles of NPY receptor activation in the retina, discussing, in particular, their involvement in retinal development, neurotransmitter release modulation, neuroprotection, microglia and Muller cells function, retinal pigmented epithelium changes, retinal endothelial physiology and proliferation of retinal progenitor cells. Further studies are needed to confirm that targeting the NPY system might be a potential therapeutic strategy for retinal degenerative diseases.

  15. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  16. The effect of tachykinin neuropeptides on amyloid {beta} aggregation

    SciTech Connect

    Flashner, Efrat; Raviv, Uri; Friedler, Assaf

    2011-04-01

    Research highlights: {yields} Mechanistic explanation of how tachykinin neuropeptides reduce A{beta}-induced neurotoxicity. {yields} Biophysical studies suggest that tachykinins do not modulate the distribution of A{beta} oligomeric states, but rather may incorporate into the fibrils. {yields} A possible strategy to inhibit toxicity of amyloid fibrils. -- Abstract: A hallmark of Alzheimer's disease is production of amyloid {beta} peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid {beta} assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid {beta} neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect A{beta}(1-40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and A{beta}(1-40) that allows them to co-assemble. This effect may explain the reduction of A{beta}(1-40) neurotoxicity in cells treated with tachykinins.

  17. Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms.

    PubMed

    Schwetz, Tara A; Ustione, Alessandro; Piston, David W

    2013-01-15

    Pancreatic β-cells regulate glucose homeostasis by secreting insulin in response to glucose elevation and G protein-coupled receptor (GPCR) activation. Neuropeptide Y (NPY) and somatostatin (SST) attenuate insulin secretion through G(i) activation of Y(1) and SSTR(1&5) receptors, respectively. The downstream pathways altered by NPY and SST are poorly understood. Thus, we investigated these underlying mechanisms. NPY and SST increase cellular redox potential, suggesting that their inhibitory effect may not be mediated through metabolic inhibition. NPY does not affect intracellular calcium ([Ca(2+)](i)) activity upon glucose stimulation, whereas SST alters this response. G(βγ)-subunit inhibition by gallein attenuates insulin secretion but does not alter metabolism or [Ca(2+)](i). mSIRK-induced G(βγ) activation does not modulate glucose metabolism but increases [Ca(2+)](i) activity and potentiates insulin release. Cotreatment with gallein and NPY or SST reduces insulin secretion to levels similar to that of gallein alone. mSIRK and NPY cotreatment potentiates insulin secretion similarly to mSIRK alone, whereas mSIRK and SST treatment decreases insulin release. The data support a model where SST attenuates secretion through G(βγ) inhibition of Ca(2+) activity, while NPY activates a Ca(2+)-independent pathway mediated by G(α). GPCR ligands signal through multiple pathways to inhibit insulin secretion, and determining these mechanisms could lead to novel diabetic therapies.

  18. Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms

    PubMed Central

    Schwetz, Tara A.; Ustione, Alessandro

    2013-01-01

    Pancreatic β-cells regulate glucose homeostasis by secreting insulin in response to glucose elevation and G protein-coupled receptor (GPCR) activation. Neuropeptide Y (NPY) and somatostatin (SST) attenuate insulin secretion through Gi activation of Y1 and SSTR1&5 receptors, respectively. The downstream pathways altered by NPY and SST are poorly understood. Thus, we investigated these underlying mechanisms. NPY and SST increase cellular redox potential, suggesting that their inhibitory effect may not be mediated through metabolic inhibition. NPY does not affect intracellular calcium ([Ca2+]i) activity upon glucose stimulation, whereas SST alters this response. Gβγ-subunit inhibition by gallein attenuates insulin secretion but does not alter metabolism or [Ca2+]i. mSIRK-induced Gβγ activation does not modulate glucose metabolism but increases [Ca2+]i activity and potentiates insulin release. Cotreatment with gallein and NPY or SST reduces insulin secretion to levels similar to that of gallein alone. mSIRK and NPY cotreatment potentiates insulin secretion similarly to mSIRK alone, whereas mSIRK and SST treatment decreases insulin release. The data support a model where SST attenuates secretion through Gβγ inhibition of Ca2+ activity, while NPY activates a Ca2+-independent pathway mediated by Gα. GPCR ligands signal through multiple pathways to inhibit insulin secretion, and determining these mechanisms could lead to novel diabetic therapies. PMID:23211512

  19. Neuropeptides degranulate serous cells of ferret tracheal glands

    SciTech Connect

    Gashi, A.A.; Borson, D.B.; Finkbeiner, W.E.; Nadel, J.A.; Basbaum, C.B.

    1986-08-01

    To determine whether serous or mucous cells in tracheal submucosal glands respond to the neuropeptides substance P (SP) and vasoactive intestinal peptide (VIP). The authors studied the peptide-induced changes in gland cell morphology accompanying release of TVSO4-labeled macromolecules from tracheal explants of ferrets. Explants were labeled for 1 h in medium containing TVSO4 and washed for 3.5 additional hours. Base-line secretion in the absence of drugs declined between 1.5 and 3.5 h after the pulse. Between 2.5 and 3.5 h, the average percent change in counts per minute recovered per sample period was not significantly different from zero. Substance P and VIP added 4 h after labeling each increased greatly the release of TVSO4-labeled macromolecules above base line. Bethanechol, a muscarinic-cholinergic agonist, increased secretion by an average of 142% above base line. Light and electron microscopy of the control tissues showed glands with narrow lumens and numerous secretory granules. Glands treated with SP or VIP had enlarged lumens and the serous cells were markedly degranulated. These phenomena were documented by morphometry and suggest that SP and VIP cause secretion from glands at least partially by stimulating exocytosis from serous cells.

  20. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice

    PubMed Central

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M.; Fröhlich, Esther E.; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for “enviromimetics”, therapeutics which reproduce the beneficial effects of enhanced environmental stimulation. PMID:27305846

  1. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis.

    PubMed

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-06-29

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors.

  2. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis

    PubMed Central

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  3. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    SciTech Connect

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  4. Toward a single-cell-based analysis of neuropeptide expression in Periplaneta americana antennal lobe neurons.

    PubMed

    Neupert, Susanne; Fusca, Debora; Schachtner, Joachim; Kloppenburg, Peter; Predel, Reinhard

    2012-03-01

    A multitude of potential neurotransmitters and neuromodulators, including peptides, have been detected in the antennal lobe (AL), the first synaptic relay of the central olfactory pathway in the insect brain. However, the functional role of neuropeptides in this system has yet to be revealed. An important prerequisite to understanding the role of neuropeptides is to match the functionally different cell types in the AL with their peptide profiles by using electrophysiological recordings combined with immunocytochemical studies and/or single-cell mass spectrometry. The olfactory system of Periplaneta americana is particularly well suited to accomplish this goal because several physiologically distinct neuron types can be unequivocally identified. With the aim to analyze the neuropeptide inventory of the P. americana AL, this study is an essential step in this direction. First, we systematically analyzed different parts of the AL by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry to obtain the complete set of neuropeptides present. Altogether, 56 ion signals could be assigned to products of 10 neuropeptide genes (allatostatins A, B, C, SIFamide, allatotropin, FMRFamide-related peptides [myosuppressin, short neuropeptides F, extended FMRFamides], crustacean cardioactive peptide, tachykinin-related peptides). In a second step, a combination of immunocytochemistry and mass spectrometric profiling of defined AL compartments was used to reveal the spatial distribution of neuropeptide-containing cells. Finally, we demonstrated the feasibility of MALDI-TOF mass spectrometric profiling of single AL neurons, which is an important precondition for combining electrophysiology with peptide profiling at the single-cell level.

  5. Mapping of Neuropeptides in the Crustacean Stomatogastric Nervous System by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Hui, Limei; Kellersberger, Katherine; Li, Lingjun

    2013-01-01

    Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve ( stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.

  6. Differential appetite-related responses to central neuropeptide S in lines of chickens divergently selected for low or high body weight.

    PubMed

    Cline, M A; Prall, B C; Smith, M L; Calchary, W A; Siegel, P B

    2008-07-01

    The anorexigenic 20 amino acid neuropeptide S (NPS) has not been studied in an animal model of hypo- or hyperphagia. The present study aimed to elucidate whether central NPS appetite-related effects are different in lines of chickens that had undergone long-term divergent selection for low (LWS) or high (HWS) body weight and that were hypo- and hyperphagic, respectively. It took a longer time for food intake to be reduced in LWS than HWS chicks administered the lowest dose of NPS tested (0.14 nmol) and, at the highest dose tested (0.56 nmol), they had a greater reduction in food intake than did HWS chicks. HWS chicks responded with a similar magnitude of food intake reduction that was independent of NPS dose. Although water intake was reduced concurrently with food intake after central NPS in both lines, blood glucose concentrations were not affected. Hypothalamic signalling was different between the lines. Although both lines respond to central NPS with decreased c-Fos immunoreactivity in the lateral hypothalamus, the periventricular nucleus had increased c-Fos immunoreactivity in LWS but not HWS chicks. After central NPS treatment, there was increased c-Fos immunoreactivity in the paraventricular nucleus in HWS but not LWS chicks. These data support the notion of differences in the central NPS system between the LWS and HWS lines and infer that central NPS may differentially affect appetite-related processes in other species that contain hypo- and hyperphagic individuals.

  7. Deformation regime variations in an arcuate transpressional orogen (Ribeira belt, SE Brazil) imaged by anisotropy of magnetic susceptibility in granulites

    NASA Astrophysics Data System (ADS)

    Egydio-Silva, Marcos; Vauchez, Alain; Raposo, Maria Irene B.; Bascou, Jérôme; Uhlein, Alexandre

    2005-10-01

    The Ribeira belt of southeastern Brazil displays an arcuate shape, with a structural trend that varies from ˜NS in the northern domain to ENE-WSW in the southern domain. This curvature is accompanied by a transition from contraction-dominated to transcurrent-dominated tectonics. The transition in deformation regime is accommodated in the central domain of the belt where granulitic rocks dominate and mineral-stretching lineations are commonly concealed by metamorphic recrystallization. We present anisotropy of magnetic susceptibility (AMS) data from 664 samples from 62 sites in high-temperature gneisses, granulites and migmatites of the transitional, central domain of the belt, with the aim of investigating: (1) how well AMS allows one to map the mineral-stretching lineation and foliations in domains displaying a complex kinematic framework and (2) to investigate the kinematic pattern at the transition between the thrusting dominated and a wrench-faulting dominated orogenic segments. The mean magnetic susceptibility is 7.54×10 -3 SI. The degree of anisotropy varies from 1.32 up to 4.31, with an average value of 1.53. The shape parameter T is generally >0 meaning that the AMS ellipsoid is dominantly oblate. Magnetic lineations and foliations form a consistent pattern correlated with the modification of the structural characteristics observed along the Ribeira belt. In the southern wrench-fault-dominated domain, the magnetic lineation is subhorizontal, parallel to the trend of the steeply dipping magnetic foliation. This correlation with the fabric observed in mylonites suggests that the magnetic fabric is a valid proxy of the tectonic fabric in granulites. Results from the northern domain show that it comprises two sub-domains both displaying a ˜NS-trending magnetic foliation. Eastward, over a broad area, the magnetic foliation is consistently steeply dipping and bears a shallowly to moderately plunging magnetic lineation. Westward, the dip of the foliation

  8. Petrology, geochronology and emplacement model of the giant 1.37 Ga arcuate Lake Victoria Dyke Swarm on the margin of a large igneous province in eastern Africa

    NASA Astrophysics Data System (ADS)

    Mäkitie, Hannu; Data, Gabriel; Isabirye, Edward; Mänttäri, Irmeli; Huhma, Hannu; Klausen, Martin B.; Pakkanen, Lassi; Virransalo, Petri

    2014-09-01

    A comprehensive description of the petrography, geochemical composition, Sm-Nd data and intrinsic field relationships of a giant arcuate Mesoproterozoic mafic dyke swarm in SW Uganda is presented for the first time. The swarm is ∼100 km wide and mainly hosted in the Palaeoproterozoic Rwenzori Belt between the Mesoproterozoic Karagwe-Ankole Belt and the Archaean Uganda Block. The dykes trend NW-SE across Uganda, but can be correlated across Lake Victoria to another set of arcuate aeromagnetic anomalies that continue southwards into Tanzania, resulting in a remarkably large semi-circular swarm with an outer diameter of ∼500 km. We propose that this unique giant dyke structure be named the Lake Victoria Dyke Swarm (LVDS). The dykes are tholeiites with Mg numbers between 0.69 and 0.44, and with inherited marked negative Nb and P anomalies in spider diagrams. Two dykes provide Sm-Nd mineral ages of 1368 ± 41 Ma and 1374 ± 42 Ma, with initial εNd values of -2.3 and -3.2, and 87Sr/86Sr ratios of ∼0.706-0.709. Geotectonic discrimination diagrams for the swarm exhibit more arc type than within-plate tectonic signatures, but this is in accordance with systematic enrichments in LREE, U and Th in the dolerites, more likely due to the involvement of the continental lithosphere during their petrogenesis. The LVDS is coeval with a regional ∼1375 Ma bimodal magmatic event across nearby Burundi, Rwanda and NW Tanzania, which can collectively be viewed as a large igneous province (LIP). It also indicates that the nearby Karagwe-Ankole Belt sequences - bracketed between 1.78 and 1.37 Ga and assumed by some to have been deposited within intracratonic basins - were capped by flood basalts that have subsequently been removed by erosion. Different geochemical signatures (e.g. LaN/SmN) suggest that most of the arcuate swarm was derived from an enriched SCLM, whereas related intrusions in the centre of this semi-circular segment have more or less enriched asthenospheric mantle

  9. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  10. Nucleus morphology of Comet Halley

    NASA Technical Reports Server (NTRS)

    Reitsema, H. J.; Delamere, W. A.; Huebner, W. F.; Keller, H. U.; Schmidt, W. K. H.; Wilhelm, K.; Schmidt, H. U.; Whipple, Fred L.

    1986-01-01

    Images obtained by the Halley multicolor camera were used to determine the projected size and shape of the nucleus. The location of the terminator and numerous surface features were determined. There is good correlation between the brightest surface features and the dust jets; however, many bright features are seen which are not associated with jets. Most of the observed features are circular and appear to be related to surface elevation. The angularity of the terminator gives an indication of the three-dimensional structure of the face which was observed.

  11. Select Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster

    PubMed Central

    Bendena, William G.; Campbell, Jason; Zara, Lian; Tobe, Stephen S.; Chin-Sang, Ian D.

    2012-01-01

    The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery. Drosophila melanogaster and Caenorhabditis elegans are genetic model organisms that have proved useful in characterizing neuropeptide GPCRs. The strength of a genetic approach leads to an appreciation of the behavioral plasticity that can result from subtle alterations in GPCRs or regulatory proteins in the pathways that GPCRs control. Many of these invertebrate neuropeptides, GPCRs, and signaling pathway components serve as models for mammalian counterparts as they have conserved sequences and function. This review provides an overview of the methods to match neuropeptides to their cognate receptor and a state of the art account of neuropeptide GPCRs that have been characterized in D. melanogaster and C. elegans and the behaviors that have been uncovered through genetic manipulation. PMID:22908006

  12. Effects of loratadine and cetirizine on serum levels of neuropeptides in patients with chronic urticaria.

    PubMed

    Başak, Pinar Y; Vural, Huseyin; Kazanoglu, Oya O; Erturan, Ijlal; Buyukbayram, Halil I

    2014-12-01

    H1-receptor inhibiting drugs, namely loratadine and cetirizine, were frequently used in treatment of chronic urticaria. Urticarial weal and flare reactions, a neurogenic reflex due to neuropeptides, were reported to be more effectively inhibited by cetirizine than loratadine. The aim of this study was to determine and compare the effects of systemic loratadine and cetirizine treatments on serum levels of selected neuropeptides in chronic urticaria. Treatment groups of either systemic loratadine or cetirizine (10 mg/d), consisting of 16 and 22 patients, respectively, were included. Serum levels of stem cell factor (SCF), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), vasoactive intestinal peptide (VIP), and substance P (SP) were detected before and after one week of treatment with antihistamines. Serum NPY and VIP levels were significantly decreased when compared before and after treatment with antihistamines (P < 0.001 and P < 0.01, respectively). SCF and NGF values were also decreased after antihistamine treatment (P < 0.05). Post-treatment levels of CGRP were significantly higher compared with pretreatment values, while no significant difference was detected between pre and post treatment levels of SP. Cetirizine was significantly more effective than loratadine on lowering serum levels of SCF among the other neuropeptides. Systemic loratadine and cetirizine treatments in patients with chronic urticaria precisely caused variations in serum levels of neuropeptides. The predominant effect of cetirizine compared to loratadine on reducing serum SCF levels might be explained with anti-inflammatory properties of cetirizine.

  13. A novel functionally distinct subtype of striatal neuropeptide Y interneuron.

    PubMed

    Ibáñez-Sandoval, Osvaldo; Tecuapetla, Fatuel; Unal, Bengi; Shah, Fulva; Koós, Tibor; Tepper, James M

    2011-11-16

    We investigated the properties of neostriatal neuropeptide Y (NPY)-expressing interneurons in transgenic GFP (green fluorescent protein)-NPY reporter mice. In vitro whole-cell recordings and biocytin staining demonstrated the existence of a novel class of neostriatal NPY-expressing GABAergic interneurons that exhibit electrophysiological, neurochemical, and morphological properties strikingly different from those of previously described NPY-containing, plateau-depolarization low-threshold spike (NPY-PLTS) interneurons. The novel NPY interneuron type (NPY-neurogliaform) differed from previously described NPY-PLTS interneurons by exhibiting a significantly lower input resistance and hyperpolarized membrane potential, regular, nonaccommodating spiking in response to depolarizing current injections, and an absence of plateau depolarizations or low-threshold spikes. NPY-neurogliaform interneurons were also easily distinguished morphologically by their dense, compact, and highly branched dendritic and local axonal arborizations that contrasted sharply with the sparse and extended axonal and dendritic arborizations of NPY-PLTS interneurons. Furthermore, NPY-neurogliaform interneurons did not express immunofluorescence for somatostatin or nitric oxide synthase that was ubiquitous in NPY-PLTS interneurons. IPSP/Cs could only rarely be elicited in spiny projection neurons (SPNs) in paired recordings with NPY-PLTS interneurons. In contrast, the probability of SPN innervation by NPY-neurogliaform interneurons was extremely high, the synapse very reliable (no failures were observed), and the resulting postsynaptic response was a slow, GABA(A) receptor-mediated IPSC that has not been previously described in striatum but that has been elicited from NPY-GABAergic neurogliaform interneurons in cortex and hippocampus. These properties suggest unique and distinctive roles for NPY-PLTS and NPY-neurogliaform interneurons in the integrative properties of the neostriatum.

  14. Gut Lymphocyte Phenotype Changes after Parenteral Nutrition and Neuropeptide Administration

    PubMed Central

    Jonker, Mark A; Heneghan, Aaron F; Fechner, John H; Pierre, Joseph F; Sano, Yoshifumi; Lan, Jinggang; Kudsk, Kenneth A

    2016-01-01

    STRUCTURED ABSTRACT Objective Define gut associated lymphocyte phenotype (GALT) changes with parenteral nutrition (PN) and PN with bombesin (BBS). Summary Background Data PN reduces respiratory tract (RT) & GALT Peyer’s patch and lamina propria (LP) lymphocytes, lowers gut and RT IgA levels and destroys established RT antiviral & antibacterial immunity. BBS, an enteric nervous system (ENS) neuropeptide, reverses PN-induced IgA and RT immune defects. Methods Exp 1: IV-cannulated ICR mice received Chow, PN or PN + BBS injections for 5 days. LSR-II flow cytometer analyzed PP and LP isolated lymphocytes for homing phenotypes (L-selectin+ & LPAM-1+) and state of activation (CD25+, CD44+) in T (CD3+) cell subsets (CD4+ & CD8+) along with homing phenotype (L-selectin+ & LPAM-1+) in naive B (IgD+) and antigen-activated (IgD− or IgM+) B (CD45R/B220+) cells. Exp 2: Following initial experiment 1 protocol, LP T regulatory (Treg) cell phenotype was evaluated by Foxp3 expression. Results Exp 1: PN significantly reduced LP 1) CD4+CD25+ (activated) and 2) CD4+CD25+LPAM-1+ (activated cells homed to LP) T cells while PN-BBS assimilated Chow levels. PN significantly reduced LP 1) IgD+ (naïve), 2) IgD-LPAM+ (antigen-activated homed to LP) and CD44+ memory B cells while PN-BBS assimilated Chow levels. Exp 2: PN significantly reduced LP CD4+CD25+Foxp3+ Treg cells compared to Chow mice while PN+BBS assimilated Chow levels. Conclusions PN reduces LP activated and regulatory T cells as well as naïve and memory B cells. BBS addition to PN maintains these cell phenotypes, demonstrating the intimate involvement of the ENS in mucosal immunity. PMID:25563877

  15. Development of neuropeptide Y-mediated heart innervation in rats.

    PubMed

    Masliukov, Petr M; Moiseev, Konstantin; Emanuilov, Andrey I; Anikina, Tatyana A; Zverev, Alexey A; Nozdrachev, Alexandr D

    2016-02-01

    Neuropeptide Y (NPY) plays a trophic role in the nervous and vascular systems and in cardiac hypertrophy. However, there is no report concerning the expression of NPY and its receptors in the heart during postnatal development. In the current study, immunohistochemistry and Western blot analysis was used to label NPY, and Y1R, Y2R, and Y5R receptors in the heart tissue and intramural cardiac ganglia from rats of different ages (newborn, 10 days old, 20 days old, 30 days old, 60 days old, 1 year old, and 2 years old).The obtained data suggest age-dependent changes of NPY-mediated heart innervation. The density of NPY-immunoreactive (IR) fibers was the least in newborn animals and increased in the first 20 days of life. In the atria of newborn and 10-day-old rats, NPY-IR fibers were more abundant compared with the ventricles. The vast majority of NPY-IR fibers also contained tyrosine hydroxylase, a key enzyme in catecholamine synthesis.The expression of Y1R increased between 10 and 20 days of life. Faint Y2R immunoreactivity was observed in the atria and ventricles of 20-day-old and older rats. In contrast, the highest level of the expression of Y5R was found in newborn pups comparing with more adult rats. All intramural ganglionic neurons were also Y1R-IR and Y5R-IR and Y2R-negative in all studied animals.Thus, the increasing of density of NPY-containing nerve fibers accompanies changes in relation of different subtypes of NPY receptors in the heart during development.

  16. GABAB receptors role in cell migration and positioning within the ventromedial nucleus of the hypothalamus.

    PubMed

    McClellan, K M; Calver, A R; Tobet, S A

    2008-02-19

    The ventromedial (VMN) and arcuate (ARC) nuclei of the hypothalamus are bilateral nuclear groups at the base of the hypothalamus that are organized through the aggregation of neurons born along the third ventricle that migrate laterally. During development, GABAergic neurons and fibers surround the forming (or primordial) VMN while neurons containing GABA receptors are found within the boundaries of the emerging nucleus. To investigate the role that GABAB receptors play in establishing the VMN, Thy-1 yellow fluorescent protein (YFP) mice were utilized for live video microscopy studies. The Thy-1 promoter drives YFP expression in regions of the hypothalamus during development. Administration of the GABAB receptor antagonist saclofen and the GABAA receptor antagonist bicuculline selectively increased the rate of VMN cell movement in slices placed in vitro at embryonic day 14, when cells that form both the ARC and VMN are migrating away from the proliferative zone surrounding the third ventricle. To further test the role of GABAB receptors in VMN development, GABAB receptor knockout mice were used to examine changes in the positions of phenotypically identified cells within the VMN. Cells containing immunoreactive estrogen receptors (ER) alpha were located in the ventrolateral quadrant of the wild type VMN. In GABABR1 knockout mice, these ERalpha positive neurons were located in more dorsal positions at postnatal day (P) 0 and P4. We conclude that GABA alters cell migration and its effect on final cell positioning may lead to changes in the circuitry and connections within specific nuclei of the developing hypothalamus.

  17. GABAB Receptors Role in Cell Migration and Positioning within the Ventromedial Nucleus of the Hypothalamus

    PubMed Central

    McClellan, Kristy M.; Calver, Andrew R.; Tobet, Stuart A.

    2008-01-01

    The ventromedial (VMN) and arcuate (ARC) nuclei of the hypothalamus are bilateral nuclear groups at the base of the hypothalamus that are organized through the aggregation of neurons born along the third ventricle that migrate laterally. During development, GABAergic neurons and fibers surround the forming (or primordial) VMN while neurons containing GABA receptors are found within the boundaries of the emerging nucleus. To investigate the role that GABAB receptors play in establishing the VMN, Thy-1 YFP mice were utilized for live video microscopy studies. The Thy-1 promoter drives YFP expression in regions of the hypothalamus during development. Administration of the GABAB receptor antagonist saclofen and the GABAA receptor antagonist bicuculline selectively increased the rate of VMN cell movement in slices placed in vitro at embryonic day 14, when cells that form both the ARC and VMN are migrating away from the proliferative zone surrounding the third ventricle. To further test the role of GABAB receptors in VMN development, GABAB receptor knockout mice were used to examine changes in the positions of phenotypically identified cells within the VMN. Cells containing immunoreactive estrogen receptors (ER)α were located in the ventrolateral quadrant of the wild type VMN. In GABABR1 knockout mice, these ERα positive neurons were located in more dorsal positions at postnatal day (P)0 and P4. We conclude that GABA alters cell migration and its effect on final cell positioning may lead to changes in the circuitry and connections within specific nuclei of the developing hypothalamus. PMID:18248902

  18. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine.

    PubMed

    Meyer-Lindenberg, Andreas; Domes, Gregor; Kirsch, Peter; Heinrichs, Markus

    2011-08-19

    The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) are evolutionarily highly conserved mediators in the regulation of complex social cognition and behaviour. Recent studies have investigated the effects of OXT and AVP on human social interaction, the genetic mechanisms of inter-individual variation in social neuropeptide signalling and the actions of OXT and AVP in the human brain as revealed by neuroimaging. These data have advanced our understanding of the mechanisms by which these neuropeptides contribute to human social behaviour. OXT and AVP are emerging as targets for novel treatment approaches--particularly in synergistic combination with psychotherapy--for mental disorders characterized by social dysfunction, such as autism, social anxiety disorder, borderline personality disorder and schizophrenia.

  19. The interpersonal dimension of borderline personality disorder: toward a neuropeptide model.

    PubMed

    Stanley, Barbara; Siever, Larry J

    2010-01-01

    Borderline personality disorder is characterized by affective instability, impulsivity, identity diffusion, and interpersonal dysfunction. Perceived rejection and loss often serve as triggers to impulsive, suicidal, and self-injurious behavior, affective reactivity, and angry outbursts, suggesting that the attachment and affiliative system may be implicated in the disorder. Neuropeptides, including the opioids, oxytocin, and vasopressin, serve a crucial role in the regulation of affiliative behaviors and thus may be altered in borderline personality disorder. While clinical data are limited, the authors propose alternative neuropeptide models of borderline personality disorder and review relevant preclinical research supporting the role of altered neuropeptide function in this disorder in the hope of stimulating more basic research and the development of new treatment approaches.

  20. The Interpersonal Dimension of Borderline Personality Disorder: Toward a Neuropeptide Model

    PubMed Central

    Stanley, Barbara; Siever, Larry J.

    2014-01-01

    Borderline personality disorder is characterized by affective instability, impulsivity, identity diffusion, and interpersonal dysfunction. Perceived rejection and loss often serve as triggers to impulsive, suicidal, and self-injurious behavior, affective reactivity, and angry outbursts, suggesting that the attachment and affiliative system may be implicated in the disorder. Neuropeptides, including the opioids, oxytocin, and vasopressin, serve a crucial role in the regulation of affiliative behaviors and thus may be altered in borderline personality disorder. While clinical data are limited, the authors propose alternative neuropeptide models of borderline personality disorder and review relevant preclinical research supporting the role of altered neuropeptide function in this disorder in the hope of stimulating more basic research and the development of new treatment approaches. PMID:19952075

  1. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    ERIC Educational Resources Information Center

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  2. Oxytocin in Brattleboro rats: increased synthesis is contrasted by blunted intrahypothalamic release from supraoptic nucleus neurones.

    PubMed

    Zelena, D; Pintér, O; Langnaese, K; Richter, K; Landgraf, R; Makara, G B; Engelmann, M

    2013-08-01

    Adult male Brattleboro rats were used to investigate the impact of the congenital absence of vasopressin on the release pattern of oxytocin (OXT) within the hypothalamic supraoptic nucleus (SON) in response to a 10-min forced swimming session and osmotic stimulation. Both immunohistochemical and in situ hybridisation data suggest that vasopressin-deficient animals have more oxytocin-synthesising neurones in the SON than homozygous wild-type controls. Unexpectedly, both forced swimming and peripheral osmotic stimulation resulted in a blunted release profile of oxytocin within the SON of vasopressin-deficient rats compared to controls. A similar intranuclear OXT response to direct osmotic stimulation of the SON by retrodialysis with hypertonic Ringer's solution in both genotypes confirmed the capability of SON neurones to locally release oxytocin in vasopressin-deficient rats, indicating an altered processing of information originating from multisynaptic inputs rather than a deficit in release capacity. Taken together with data obtained in previous studies, the present findings provide evidence suggesting that autocrine and paracrine signalling of magnocellular neurones differs within the paraventricular nucleus and the SON. Thus, significant alterations in intra-SON oxytocin mRNA levels cannot easily be extrapolated to intranuclear release profiles and the local signal intensity of this neuropeptide after physiological stimulation.

  3. Retinal projections and neurochemical characterization of the pregeniculate nucleus of the common marmoset (Callithrix jacchus).

    PubMed

    Lima, Ruthnaldo R M; Pinato, Luciana; Nascimento, Rayane B S; Engelberth, Rovena Clara G J; Nascimento, Expedito S Junior; Cavalcante, Judney C; Britto, Luiz R G; Costa, Miriam S M O; Cavalcante, Jeferson S

    2012-05-01

    In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN is the site of the endogenous biological clock that generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity and is responsible for the transmission of non-photic information to the SCN, thus participating in the integration between photic and non-photic stimuli. Both the SCN and IGL receive projections of retinal ganglion cells and the IGL is connected to the SCN through the geniculohypothalamic tract. Little is known about these structures in the primate brain and the pregeniculate nucleus (PGN) has been suggested to be the primate equivalent of the rodent IGL. The aim of this study was to characterize the PGN of a primate, the common marmoset (Callithrix jacchus), and to analyze its retinal afferents. Here, the marmoset PGN was found to be organized into three subsectors based on neuronal size, pattern of retinal projections, and the distribution of neuropeptide Y-, GAD-, serotonin-, enkephalin- and substance P-labeled terminals. This pattern indicates that the marmoset PGN is equivalent to the IGL. This detailed description contributes to the understanding of the circadian timing system in this primate species considering the importance of the IGL within the context of circadian regulation.

  4. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms

    PubMed Central

    da Silva, M.P.; Cedraz-Mercez, P.L.; Varanda, W.A.

    2014-01-01

    Physiological evidence indicates that the supraoptic nucleus (SON) is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs) responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane properties of the MNCs themselves and 2) synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO) may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON. PMID:24519124

  5. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    PubMed

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  6. Accurate Assignment of Significance to Neuropeptide Identifications Using Monte Carlo K-Permuted Decoy Databases

    PubMed Central

    Andrén, Per E.; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.

    2014-01-01

    In support of accurate neuropeptide identification in mass spectrometry experiments, novel Monte Carlo permutation testing was used to compute significance values. Testing was based on k-permuted decoy databases, where k denotes the number of permutations. These databases were integrated with a range of peptide identification indicators from three popular open-source database search software (OMSSA, Crux, and X! Tandem) to assess the statistical significance of neuropeptide spectra matches. Significance p-values were computed as the fraction of the sequences in the database with match indicator value better than or equal to the true target spectra. When applied to a test-bed of all known manually annotated mouse neuropeptides, permutation tests with k-permuted decoy databases identified up to 100% of the neuropeptides at p-value < 10−5. The permutation test p-values using hyperscore (X! Tandem), E-value (OMSSA) and Sp score (Crux) match indicators outperformed all other match indicators. The robust performance to detect peptides of the intuitive indicator “number of matched ions between the experimental and theoretical spectra” highlights the importance of considering this indicator when the p-value was borderline significant. Our findings suggest permutation decoy databases of size 1×105 are adequate to accurately detect neuropeptides and this can be exploited to increase the speed of the search. The straightforward Monte Carlo permutation testing (comparable to a zero order Markov model) can be easily combined with existing peptide identification software to enable accurate and effective neuropeptide detection. The source code is available at http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting. PMID:25329667

  7. Dexmedetomidine ameliorates muscle wasting and attenuates the alteration of hypothalamic neuropeptides and inflammation in endotoxemic rats

    PubMed Central

    Cheng, Minhua; Gao, Tao; Xi, Fengchan; Cao, Chun; Chen, Yan; Zhao, Chenyan; Li, Qiurong

    2017-01-01

    Dexmedetomidine is generally used for sedaton in critically ill, it could shorten duration of mechanical ventilation, ICU stay and lower basic metabolism. However, the exact mechanism of these positive effects remains unkown. Here we investigated the hypothesis that dexmedetomidine could ameliorate muscle wasting in endotoxemic rats and whether it was related to hypothalamic neuropeptides alteration and inflammation. Fourty-eight adult male Sprague–Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) (5 mg/kg) or saline, followed by 50 μg/kg dexmedetomidine or saline administration via the femoral vein catheter (infusion at 5 μg·kg-1·hr-1). Twenty-four hours after injection, hypothalamus tissues and skeletal muscle were obtained. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle atrophy F-box (MAFbx) and muscle ring finger 1 (MuRF-1) as well as 3-methylhistidine (3-MH) and tyrosine release. Hypothalamic inflammatory markers and neuropeptides expression were also detected in all four groups. Results showed that LPS administration led to significant increase in hypothalamic inflammation together with muscle wasting. Increased hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine and amphetamine-related transcript (CART) and neuropeptides Y (NPY) and decreased agouti-related protein (AgRP) were also observed. Meanwhile dexmedetomidine administration ameliorated muscle wasting, hypothalamic inflammation and modulated the alteration of neuropeptides, POMC, CART and AgRP, in endotoxemic rats. In conclusion, dexmedetomidine could alleviate muscle wasting in endotoxemic rats, and it could also attenuate the alteration of hypothalamic neuropeptides and reduce hypothalamic inflammation. PMID:28358856

  8. Expression of Neuropeptides and Cytokines in a Rabbit Model of Diabetic Neuroischemic Wound-Healing

    PubMed Central

    Nabzdyk, Leena Pradhan; Kuchibhotla, Sarada; Guthrie, Patrick; Chun, Maggie; Auster, Michael E; Nabzdyk, Christoph; Deso, Steven; Andersen, Nicholas; LoGerfo, Frank W.; Veves, Aristidis

    2013-01-01

    Objective The present study is designed to understand the contribution of peripheral vascular disease and peripheral neuropathy to the wound-healing impairment associated with diabetes. Using a rabbit model of diabetic neuroischemic wound-healing we investigated rate of healing, leukocyte infiltration and expression of cytokines, Interleukin (IL)-8 and IL-6, and, neuropeptides, Substance P (SP) and Neuropeptide Y (NPY). Design of study Diabetes was induced in White New Zealand rabbits by administering alloxan while control rabbits received saline. Ten days later animals in both groups underwent surgery. One ear served as a sham and the other was made ischemic (ligation of central+rostral arteries), or neuroischemic (ischemia+ resection of central+rostral nerves). Four, 6mm punch biopsy wounds were created in both ears and wound-healing was followed for ten days using computerized planimetry. Results Non-diabetic sham and ischemic wounds healed significantly more rapidly than diabetic sham and ischemic wounds. Healing was slowest in neuroischemic wounds, irrespective of diabetic status. A high M1/M2 macrophage ratio and a high pro-inflammatory cytokine expression, both indicators of chronic-proinflammatory state, and low neuropeptide expression were seen in pre-injury diabetic skin. Post-injury, in diabetic wounds M1/M2 ratio remained high, the reactive increase in cytokine expression was low and neuropeptide expression was further decreased in neuroischemic wounds. Conclusion This rabbit model illustrates how a combination of a high M1/M2 ratio, a failure to mount post-injury cytokine response as well as a diminished neuropeptide expression contribute to wound-healing impairment in diabetes. The addition of neuropathy to ischemia leads to equivalently severe impaired wound-healing irrespective of diabetes status, suggesting that in the presence of ischemia, loss of neuropeptide function contributes to the impaired healing associated with diabetes. PMID:23755976

  9. Identification of Neuropeptide Receptors Expressed by Melanin-Concentrating Hormone Neurons

    PubMed Central

    Parks, Gregory S.; Wang, Lien; Wang, Zhiwei; Civelli, Olivier

    2014-01-01

    Melanin-concentrating Hormone (MCH) is a 19 amino acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI) but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of neuropeptides are poorly understood. In order to gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons using double in situ hybridization. In all, twenty receptors, selected based upon either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, eleven neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: Nociceptin / Orphanin FQ Opioid receptor (NOP), MCHR1, both Orexin receptors (ORX), Somatostatin receptor 1 and 2 (SSTR1, SSTR2), the Kisspeptin receotor (KissR1), Neurotensin receptor 1 (NTSR1), Neuropeptide S receptor (NPSR), Cholecystokinin receptor A (CCKAR) and the κ-opioid receptor (KOR). Of these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system. PMID:24978951

  10. Nitric oxide synthase interneurons in the monkey cerebral cortex are subsets of the somatostatin, neuropeptide Y, and calbindin cells.

    PubMed

    Smiley, J F; McGinnis, J P; Javitt, D C

    2000-04-28

    99%) immunoreactive for somatostatin and neuropeptide Y, but did not express calbindin. The LNOS cells comprised about 30% of the somatostatin cells and about 60% of the neuropeptide Y cells. The SNOS cells were nearly always (87-98%) calbindin-immunoreactive, and were rarely or never labeled with antibodies to somatostatin or neuropeptide Y. The SNOS cells accounted for about 20% of all of the calbindin cells. The findings demonstrate that the two types of nNOS cells can be distinguished by antibodies to calbindin, somatostatin and neuropeptide Y, but none of these markers is found exclusively in nNOS cells. Nevertheless, neuropeptide Y-immunoreactivity provides a useful marker for LNOS cells, because it is very dense in these cells and only light in the interneurons that lack nNOS.

  11. Pharmacological evidence for common mechanisms underlying the effects of neurotensin and neuroleptics on in vivo dopamine efflux in the rat nucleus accumbens.

    PubMed

    Blaha, C D; Phillips, A G

    1992-08-01

    The effects of the neuropeptide neurotensin and the typical neuroleptic haloperidol on dopamine efflux were compared in the posteromedial nucleus accumbens of the chloral hydrate-anesthetized rat using in vivo chronoamperometry. Both neurotensin and haloperidol administration elicited an immediate increase in dopamine efflux in the nucleus accumbens. Gamma-hydroxybutyric acid lactone, an agent known to block impulse flow in dopamine neurons, either prevented when given before neurotensin or reversed neurotensin-induced increases in accumbens dopamine efflux. Haloperidol-induced increases in accumbens dopamine efflux were similarly affected by gamma-hydroxybutyric acid lactone. The dopamine receptor agonist apomorphine reversed neurotensin- and haloperidol-induced increases in dopamine efflux. Amphetamine, administered during the peak dopamine stimulatory effects induced by neurotensin or haloperidol, resulted in increases above baseline which were significantly greater than the effects of amphetamine alone. These combined drug treatment effects on baseline dopamine efflux were additive, indicating that the effects of amphetamine were not potentiated by neurotensin or haloperidol pretreatments. These in vivo results suggest that neurotensin and haloperidol may augment dopamine efflux in the nucleus accumbens via common mechanisms of action which may involve activation of mesotelencephalic dopamine neuronal firing. The inability of neurotensin to block amphetamine-induced efflux in the nucleus accumbens further suggests that neurotensin blockade of amphetamine-elicited locomotor activity is mediated by an action of neurotensin postsynaptic to dopamine nerve terminals in the nucleus accumbens.

  12. Lumbar cerebrospinal fluid concentrations of somatostatin and neuropeptide Y in multiple sclerosis

    SciTech Connect

    Vecsei, L.; Csala, B.; Widerloev, E.E.; Ekman, R.; Czopf, J.; Palffy, G. )

    1990-09-01

    The cerebrospinal fluid (CSF) concentrations of somatostatin and neuropeptide Y were investigated by use of radioimmunoassay in patients suffering from chronic progressive multiple sclerosis. The somatostatin level was significantly decreased in the CSF of patients with multiple sclerosis compared to the control group. The magnitude of this change was more pronounced in patients with severe clinical symptoms of the illness. The CSF neuropeptide Y concentration did not differ from the control values. These findings suggest a selective involvement of somatostatin neurotransmission in multiple sclerosis.

  13. Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse.

    PubMed

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2015-01-01

    The mouse precuneiform nucleus has been proposed as the midbrain locomotion center, a function ascribed to its caudal neighbor, cuneiform nucleus, in the rat, cat and other species. The present study investigated the projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse using retrograde tracer injections (fluoro-gold) into the precuneiform nucleus and anterograde tracer injections (biotinylated dextran amine) into the central amygdaloid nucleus. The entire central amygdaloid nucleus except the rostral pole had retrogradely labeled neurons, especially in the middle portion where labeled neurons were densely packed. Anterogradely labeled amygdaloid fibers approached the precuneiform nucleus from the area ventrolateral to it and terminated in the entire precuneiform nucleus. Labeled fibers were also found in laminae 5 and 6 in the upper cervical cord on the ipsilateral side. The present study is the first demonstration of projections from the central amygdaloid nucleus to the precuneiform nucleus. This projection may underpin the role of the precuneiform nucleus in the modulation of the cardiovascular activity.

  14. A remote and highly conserved enhancer supports amygdala specific expression of the gene encoding the anxiogenic neuropeptide substance-P.

    PubMed

    Davidson, S; Miller, K A; Dowell, A; Gildea, A; Mackenzie, A

    2006-04-01

    The neuropeptide substance P (SP), encoded by the preprotachykinin-A (PPTA) gene, is expressed in the central and medial amygdaloid nucleus, where it plays a critical role in modulating fear and anxiety related behaviour. Determining the regulatory systems that support PPTA expression in the amygdala may provide important insights into the causes of depression and anxiety related disorders and will provide avenues for the development of novel therapies. In order to identify the tissue specific regulatory element responsible for supporting expression of the PPTA gene in the amygdala, we used long-range comparative genomics in combination with transgenic analysis and immunohistochemistry. By comparing human and chicken genomes, it was possible to detect and characterise a highly conserved long-range enhancer that supported tissue specific expression in SP expressing cells of the medial and central amygdaloid bodies (ECR1; 158.5 kb 5' of human PPTA ORF). Further bioinformatic analysis using the TRANSFAC database indicated that the ECR1 element contained multiple and highly conserved consensus binding sequences of transcription factors (TFs) such as MEIS1. The results of immunohistochemical analysis of transgenic lines were consistent with the hypothesis that the MEIS1 TF interacts with and maintains ECR1 activity in the central amygdala in vivo. The discovery of ECR1 and the in vivo functional relationship with MEIS1 inferred by our studies suggests a mechanism to the regulatory systems that control PPTA expression in the amygdala. Uncovering these mechanisms may play an important role in the future development of tissue specific therapies for the treatment of anxiety and depression.

  15. Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide

    PubMed Central

    Barde, Swapnali; Rüegg, Joelle; Prud’homme, Josée; Ekström, Tomas J.; Palkovits, Miklos; Turecki, Gustavo; Bagdy, Gyorgy; Ihnatko, Robert; Theodorsson, Elvar; Juhasz, Gabriella; Diaz-Heijtz, Rochellys; Mechawar, Naguib; Hökfelt, Tomas G. M.

    2016-01-01

    Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL1–3, are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region- and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL3 antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation. PMID:27940914

  16. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  17. The Dorsomedial Suprachiasmatic Nucleus Times Circadian Expression of Kiss1 and the Luteinizing Hormone Surge

    PubMed Central

    Smarr, Benjamin L.; Morris, Emma

    2012-01-01

    Ovulation in mammals is gated by a master circadian clock in the suprachiasmatic nucleus (SCN). GnRH neurons represent the converging pathway through which the brain triggers ovulation, but precisely how the SCN times GnRH neurons is unknown. We tested the hypothesis that neurons expressing kisspeptin, a neuropeptide coded by the Kiss1 gene and necessary for the activation of GnRH cells during ovulation, represent a relay station for circadian information that times ovulation. We first show that the circadian increase of Kiss1 expression, as well as the activation of GnRH cells, relies on intact ipsilateral neural input from the SCN. Second, by desynchronizing the dorsomedial (dm) and ventrolateral (vl) subregions of the SCN, we show that a clock residing in the dmSCN acts independently of the light-dark cycle, and the vlSCN, to time Kiss1 expression in the anteroventral periventricular nucleus of the hypothalamus and that this rhythm is always in phase with the LH surge. In addition, we show that although the timing of the LH surge is governed by the dmSCN, its amplitude likely depends on the phase coherence between the vlSCN and dmSCN. Our results suggest that whereas dmSCN neuronal oscillators are sufficient to time the LH surge through input to kisspeptin cells in the anteroventral periventricular nucleus of the hypothalamus, the phase coherence among dmSCN, vlSCN, and extra-SCN oscillators is critical for shaping it. They also suggest that female reproductive disorders associated with nocturnal shift work could emerge from the desynchronization between subregional oscillators within the master circadian clock. PMID:22454148

  18. The dorsomedial suprachiasmatic nucleus times circadian expression of Kiss1 and the luteinizing hormone surge.

    PubMed

    Smarr, Benjamin L; Morris, Emma; de la Iglesia, Horacio O

    2012-06-01

    Ovulation in mammals is gated by a master circadian clock in the suprachiasmatic nucleus (SCN). GnRH neurons represent the converging pathway through which the brain triggers ovulation, but precisely how the SCN times GnRH neurons is unknown. We tested the hypothesis that neurons expressing kisspeptin, a neuropeptide coded by the Kiss1 gene and necessary for the activation of GnRH cells during ovulation, represent a relay station for circadian information that times ovulation. We first show that the circadian increase of Kiss1 expression, as well as the activation of GnRH cells, relies on intact ipsilateral neural input from the SCN. Second, by desynchronizing the dorsomedial (dm) and ventrolateral (vl) subregions of the SCN, we show that a clock residing in the dmSCN acts independently of the light-dark cycle, and the vlSCN, to time Kiss1 expression in the anteroventral periventricular nucleus of the hypothalamus and that this rhythm is always in phase with the LH surge. In addition, we show that although the timing of the LH surge is governed by the dmSCN, its amplitude likely depends on the phase coherence between the vlSCN and dmSCN. Our results suggest that whereas dmSCN neuronal oscillators are sufficient to time the LH surge through input to kisspeptin cells in the anteroventral periventricular nucleus of the hypothalamus, the phase coherence among dmSCN, vlSCN, and extra-SCN oscillators is critical for shaping it. They also suggest that female reproductive disorders associated with nocturnal shift work could emerge from the desynchronization between subregional oscillators within the master circadian clock.

  19. Microglia-Induced Maladaptive Plasticity Can Be Modulated by Neuropeptides In Vivo

    PubMed Central

    Morara, Stefano; Colangelo, Anna Maria; Provini, Luciano

    2015-01-01

    Microglia-induced maladaptive plasticity is being recognized as a major cause of deleterious self-sustaining pathological processes that occur in neurodegenerative and neuroinflammatory diseases. Microglia, the primary homeostatic guardian of the central nervous system, exert critical functions both during development, in neural circuit reshaping, and during adult life, in the brain physiological and pathological surveillance. This delicate critical role can be disrupted by neural, but also peripheral, noxious stimuli that can prime microglia to become overreactive to a second noxious stimulus or worsen underlying pathological processes. Among regulators of microglia, neuropeptides can play a major role. Their receptors are widely expressed in microglial cells and neuropeptide challenge can potently influence microglial activity in vitro. More relevantly, this regulator activity has been assessed also in vivo, in experimental models of brain diseases. Neuropeptide action in the central nervous system has been associated with beneficial effects in neurodegenerative and neuroinflammatory pathological experimental models. This review describes some of the mechanisms of the microglia maladaptive plasticity in vivo and how neuropeptide activity can represent a useful therapeutical target in a variety of human brain pathologies. PMID:26273481

  20. Feed intake of gilts following intracerebroventicular injection of the novel hypothalamic RFamide (RFa) neuropeptide, 26RFa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RFamide (RFa) peptides have been implicated in a broad spectrum of biological processes including energy expenditure and feed intake. 26RFa is a recently discovered hypothalamic neuropeptide that altered the release of pituitary hormones and stimulated feed intake via a NPY-specific mechanism in rat...

  1. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus.

    PubMed

    Ma, Shuangshuang; Ge, Yinlin; Gai, Xiaoying; Xue, Meilan; Li, Ning; Kang, Jingxuan; Wan, Jianbo; Zhang, Jinyu

    2016-01-12

    Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice.

  2. Development of mimetic analogs of pyrokinin-like neuropeptides to disrupt pest insect physiology/behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...

  3. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control

    PubMed Central

    Blasiak, Anna; Gundlach, Andrew L.; Hess, Grzegorz; Lewandowski, Marian H.

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements. PMID:28373831

  4. Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia.

    PubMed

    Cruise, Bethany A; Xu, Pin; Hall, Alison K

    2004-07-01

    Successful healing of skin wounds requires sensory innervation and the release of vasoactive neuropeptides that dilate blood vessels and deliver serum proteins to the wound, and that cause pain that protects from further injury. Activin has been proposed as a target-derived regulator of sensory neuropeptides during development, but its role in the mature nervous system is unknown. While adult skin contains a low level of activin, protein levels in skin adjacent to a wound increase rapidly after an excision. Neurons containing the neuropeptide calcitonin gene-related peptide (CGRP) increased in sensory ganglia that projected to the wounded skin, but not in ganglia that projected to unwounded skin, suggesting that neurons respond to a local skin signal. Indeed, many adult sensory neurons respond with increased CGRP expression to the application of activin in vitro and utilize a smad-mediated signal transduction pathway in this response. A second skin-derived factor nerve growth factor (NGF) also increased in wounded skin and increased CGRP in cultured adult dorsal root ganglia (DRG) neurons but with lower efficacy. Together, these data support the hypothesis that activin made by skin cells regulates changes in sensory neuropeptides following skin injury, thereby promoting vasodilation and wound healing.

  5. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.

    PubMed

    Lavezzo, A; Melillo, G; Clavenna, G; Omini, C

    1992-06-01

    The mechanism of action of levodropropizine has been investigated in different models of experimentally-induced cough in guinea-pigs. In particular it has been demonstrated that the antitussive drug has a peripheral site of action by injecting the drug intracerebroventricularly (i.c.v.). In these experiments levodropropizine (40 micrograms/50 microliters i.c.v.) did not prevent electrically-induced cough. On the other hand, codeine (5 micrograms/50 microliters i.c.v.) markedly prevented coughing. A difference in the potency ratio of levodropropizine and codeine has been demonstrated in capsaicin-induced cough; after oral administration, codeine was about two to three times more potent than levodropropizine. However, after aerosol administration the two compounds were equipotent. These data might suggest a peripheral site of action for levodropropizine which is related to sensory neuropeptides. Further support for the role of sensory neuropeptides in the mechanism of action of levodropropizine comes from the results obtained in capsaicin-desensitized animals. In this experimental model levodropropizine failed to prevent the vagally elicited cough in neuropeptide-depleted animals, whereas codeine did not differentiate between control and capsaicin-treated animals. In conclusion, our results support the suggestion that levodropropizine has a peripheral site of action. In addition, the interference with the sensory neuropeptide system may explain, at least in part, its activity in experimentally-induced cough.

  6. Neuropeptides Exert Direct Effects on Rat Thymic Epithelial Cells in Culture

    PubMed Central

    Head, Gail M.; Mentlein, R.; Patay, Birte Von; Downing, J. E.G.

    1998-01-01

    To determine if major thymic neuropeptides and neurotransmitters can directly influence the functional activity of cultured rat thymic epithelium, neuropeptides and neurotransmitters were applied, and intercellular communication, proliferation, and thymulin secretion assessed. After injections of a mixture of lucifer yellow dextran (too large to pass gap junctions) and cascade blue (which does) into single cells, some neuropeptides decrease dye coupling: 0.1 mM GABA (P < 0.0001), 100 nM NPY (P < 0.0001), 100 nM VIP (P < 0.001), 100 nM CGRP (P < 0.001), 100 nM SP (P < 0.01), and 0.1 mM histamine (P < 0.01), whereas 0.1 mM 5-HT, mM acetylcholine, and 1 μM isoproterenol (β-adrenergic agonist) had no effect. Proliferation (incorporation of tritiated thymidine) was increased by CGRP (P = 0.004) and histamine (P < 0.02), but decreased by isoproterenol (P = 0.002), 5-HT (P = 0.003), and acetylcholine (P < 0.05). The percentage of multinucleate cells was decreased after isoproterenol (2.5%), and increased after 5-HT (21.3%), GABA (15%), and histamine (15.1%). Compared to controls, thymulin in the supernatant was decreased after challenge with acetylcholine (52%), isoproterenol (71%), 5-HT (73%), and histamine (84%). This study demonstrates direct effects of neuropeptides and neurotransmitters on functional aspects of cultured thymic epithelial cells. PMID:9716910

  7. Neuropeptides as possible targets in sleep disorders: special emphasis on hypocretin-deficient narcolepsy.

    PubMed

    Fujiki, Nobuhiro; Nishino, Seiji

    2007-02-01

    Sleep disorders are disturbances of usual sleep patterns or behaviors caused by deregulation of neuronal synchronicity and of the balance of the neurotransmitter system involved in sleep regulation. Insomnia and hypersomnia are frequent sleep disorders, and these are most often treated pharmacologically with hypnotics and wake-promoting compounds. These compounds act on classical neurotransmitter systems, such as benzodiazepines on gamma amino butyric acid (GABA)(A) receptors, and amphetamine-like stimulants on monoaminergic terminals to modulate neurotransmission. In addition, acetylcholine, amino acids, lipids and proteins (cytokines) and peptides, are known to significantly modulate sleep, and thus, are possibly involved in the pathophysiology of some sleep disorders. Due to recent developments in molecular biological techniques, many neuropeptides have been newly identified, and some are found to significantly modulate sleep. Recent discoveries also include the finding that the impairment of hypocretin/orexin neurotransmission (a recently isolated hypothalamic neuropeptide and receptor system), is the major pathophysiology of narcolepsy with cataplexy. A hypocretin replacement therapy is anticipated to reverse the disease symptoms in humans. In this article, we will review the history of neuropeptide research, sleep modulatory effects of various neuropeptides, and the general strategies for the pharmacological therapeutics targeting the peptidergic systems by referring to hypocretin-deficient narcolepsy as an immediate example.

  8. Neuropeptide-like precursor 4 is uniquely expressed during pupal diapause in the flesh fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suppression subtractive hybridization comparing brains from diapausing and nondiapausing pupae of the flesh fly, Sarcophaga crassipalpis, suggested that the gene encoding neuropeptide-like precursor 4 (Nplp4) was uniquely expressed during diapause. We have sequenced the full-length cDNA encoding Npl...

  9. Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily.

    PubMed

    Yun, Seongsik; Furlong, Michael; Sim, Mikang; Cho, Minah; Park, Sumi; Cho, Eun Bee; Reyes-Alcaraz, Arfaxad; Hwang, Jong-Ik; Kim, Jaebum; Seong, Jae Young

    2015-11-01

    In humans, numerous genes encode neuropeptides that comprise a superfamily of more than 70 genes in approximately 30 families and act mainly through rhodopsin-like G protein-coupled receptors (GPCRs). Two rounds of whole-genome duplication (2R WGD) during early vertebrate evolution greatly contributed to proliferation within gene families; however, the mechanisms underlying the initial emergence and diversification of these gene families before 2R WGD are largely unknown. In this study, we analyzed 25 vertebrate rhodopsin-like neuropeptide GPCR families and their cognate peptides using phylogeny, synteny, and localization of these genes on reconstructed vertebrate ancestral chromosomes (VACs). Based on phylogeny, these GPCR families can be divided into five distinct clades, and members of each clade tend to be located on the same VACs. Similarly, their neuropeptide gene families also tend to reside on distinct VACs. Comparison of these GPCR genes with those of invertebrates including Drosophila melanogaster, Caenorhabditis elegans, Branchiostoma floridae, and Ciona intestinalis indicates that these GPCR families emerged through tandem local duplication during metazoan evolution prior to 2R WGD. Our study describes a presumptive evolutionary mechanism and development pathway of the vertebrate rhodopsin-like GPCR and cognate neuropeptide families from the urbilaterian ancestor to modern vertebrates.

  10. Discovery and characterization of a conserved pigment dispersing factor-like neuropeptide pathway in Caenorhabditis elegans.

    PubMed

    Janssen, Tom; Husson, Steven J; Meelkop, Ellen; Temmerman, Liesbet; Lindemans, Marleen; Verstraelen, Karen; Rademakers, Suzanne; Mertens, Inge; Nitabach, Michael; Jansen, Gert; Schoofs, Liliane

    2009-10-01

    The neuropeptides pigment dispersing factor (PDF) and vasoactive intestinal peptide (VIP) are known as key players in the circadian clock system of insects and mammals, respectively. In this study, we report the discovery and characterization of a widely conserved PDF-like neuropeptide precursor pathway in nematodes. Using a combinatorial approach of biochemistry and peptidomics, we have biochemically isolated, identified and characterized three PDF-like neuropeptides in the free-living nematode Caenorhabditis elegans. The two PDF encoding genes, which were designated pdf-1 and pdf-2, display a very strong conservation within the phylum of nematodes. Many of the PDF expressing cells in C. elegans play a role in the control of locomotion and the integration of environmental stimuli, among which light. Our real-time PCR analysis indicates that both PDF genes are consistently expressed during the day and do not affect each other's expression. The transcription of both PDF genes seems to be regulated by atf-2 and ces-2, which encode bZIP transcription factors homologous to Drosophila vrille and par domain protein 1 (Pdp1epsilon), respectively. Together, our data suggest that the PDF neuropeptide pathway, which seems to be conserved throughout the protostomian evolutionary lineage, might be more complex than previously assumed.

  11. A neuromedin-pyrokinin-like neuropeptide signaling system in Caenorhabditis elegans.

    PubMed

    Lindemans, Marleen; Janssen, Tom; Husson, Steven J; Meelkop, Ellen; Temmerman, Liesbet; Clynen, Elke; Mertens, Inge; Schoofs, Liliane

    2009-02-13

    Neuromedin U (NMU) in vertebrates is a structurally highly conserved neuropeptide of which highest levels are found in the pituitary and gastrointestinal tract. In Drosophila, two neuropeptide genes encoding pyrokinins (PKs), capability (capa) and hugin, are possible insect homologs of vertebrate NMU. Here, the ligand for an orphan G protein-coupled receptor in the nematode Caenorhabditis elegans (Ce-PK-R) was found using a bioinformatics approach. After cloning and expressing Ce-PK-R in HEK293T cells, we found that it was activated by a neuropeptide from the C. elegans NLP-44 precursor (EC(50)=18nM). This neuropeptide precursor is reminiscent of insect CAPA precursors since it encodes a PK-like peptide and two periviscerokinin-like peptides (PVKs). Analogous to CAPA peptides in insects and NMUs in vertebrates, whole mount immunostaining in C. elegans revealed that the CAPA precursor is expressed in the nervous system. The present data also suggest that the ancestral CAPA precursor was already present in the common ancestor of Protostomians and Deuterostomians and that it might have been duplicated into CAPA and HUGIN in insects. In vertebrates, NMU is the putative homolog of a protostomian CAPA-PK.

  12. Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus.

    PubMed

    Segal, Jeremy P; Stallings, Nancy R; Lee, Charlotte E; Zhao, Liping; Socci, Nicholas; Viale, Agnes; Harris, Thomas M; Soares, Marcelo B; Childs, Geoffrey; Elmquist, Joel K; Parker, Keith L; Friedman, Jeffrey M

    2005-04-20

    The ventromedial hypothalamic nucleus (VMH) plays an important role in the control of feeding and energy homeostasis. In contrast to other hypothalamic nuclei that are also known to regulate energy balance, there is a paucity of nucleus-specific marker genes for the VMH, limiting the application of molecular approaches for analyzing VMH information processing, function, and circuitry. Here, we report the use of laser-capture microdissection to isolate a set of cDNAs that are enriched in the VMH relative to two adjacent hypothalamic nuclei, the arcuate and dorsomedial hypothalamus. The relative expression levels of nine of the 12 most robustly expressed VMH-enriched genes were confirmed by real-time PCR analysis using separate RNAs from these three nuclei. Three of these VMH-enriched genes were further characterized by in situ hybridization histochemistry, including pituitary adenylate cyclase activating polypeptide, cerebellin 1, and an expressed sequence tag named LBH2. Finally, to test whether some of these genes were coordinately regulated, we monitored their expression in steroidogenic factor 1 (SF-1) knock-out mice. SF-1 is a transcription factor that controls the development of the VMH. The RNA levels for four of these genes were reduced in these knock-out animals, further suggesting that they are direct or indirect targets of this orphan nuclear receptor. The VMH-enriched genes identified here provide a basis for a functional analysis of VMH neuronal subpopulations via the use of bacterial artificial chromosome transgenics and related technologies. These results also demonstrate the utility of laser-capture microdissection coupled with microarray technology to identify nucleus-specific transcriptional networks.

  13. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  14. Neuropeptides encoded within a neural transcriptome of the giant triton snail Charonia tritonis, a Crown-of-Thorns Starfish predator.

    PubMed

    Bose, U; Suwansa-Ard, S; Maikaeo, L; Motti, C A; Hall, M R; Cummins, S F

    2017-01-10

    Neuropeptides represent a diverse class of signaling molecules originating from neural tissues. These chemical modulators orchestrate complex physiological events including those associated with growth and reproduction. De novo transcriptome sequencing of a cerebral ganglion library of the endangered giant triton snail (Charonia tritonis) was undertaken in an effort to identify key neuropeptides that control or influence its physiology. The giant triton snail is considered a primary predator of the corallivore Acanthaster planci (Crown-of-Thorns Starfish) that is responsible for a significant loss in coral cover on reefs in the Indo-Pacific. The transcriptome library was assembled into contigs, and then bioinformatic analysis was used to identify a repertoire of 38 giant triton snail neuropeptide precursor genes, and various isoforms, that encode conserved molluscan neuropeptides. C. tritonis neuropeptides show overall precursor organisation consistent with those of other molluscs. These include those neuropeptides associated with mollusc reproduction such as the APGWamide, buccalin, conopressin, gonadotropin-releasing hormone (GnRH), NKY and egg-laying hormone. These data provide a foundation for further studies targeted towards the functional characterisation of neuropeptides to further understand aspects of the biology of the giant triton snail, such as elucidating its reproductive neuroendocrine pathway to allow the development of knowledge based captive breeding programs.

  15. Role of neuropeptides in appetite regulation and obesity--a review.

    PubMed

    Arora, Sarika; Anubhuti

    2006-12-01

    Obesity represents the most prevalent nutritional problem worldwide which in the long run predisposes to development of diabetes mellitus, hypertension, endometrial carcinoma, osteoarthritis, gall stones and cardiovascular diseases. Despite significant reductions in dietary fat consumption, the prevalence of obesity is on a rise and is taking on pandemic proportions. Obesity develops when energy intake exceeds energy expenditure over time. Recently, a close evolutionary relationship between the peripheral and hypothalamic neuropeptides has become apparent. The hypothalamus being the central feeding organ mediates regulation of short-term and long-term dietary intake via synthesis of various orexigenic and anorectic neuropeptides. The structure and function of many hypothalamic peptides (neuropeptide Y (NPY), melanocortins, agouti-related peptide (AGRP), cocaine and amphetamine regulated transcript (CART), melanin concentrating hormone (MCH), orexins have been characterized in rodent models The peripheral neuropeptides such as cholecystokinin (CCK), ghrelin, peptide YY (PYY3-36), amylin, bombesin regulate important gastrointestinal functions such as motility, secretion, absorption, provide feedback to the central nervous system on availability of nutrients and may play a part in regulating food intake. The pharmacological potential of several endogenous peripheral peptides released prior to, during and/or after feeding are being explored. Long-term regulation is provided by the main circulating hormones leptin and insulin. These systems implicated in hypothalamic appetite regulation provide potential targets for treatment of obesity which could potentially pass into clinical development in the next 5 years. This review summarizes various effects and interrelationship of these central and peripheral neuropeptides in metabolism, obesity and their potential role as targets for treatment of obesity.

  16. High-definition De Novo Sequencing of Crustacean Hyperglycemic Hormone (CHH)-family Neuropeptides*

    PubMed Central

    Jia, Chenxi; Hui, Limei; Cao, Weifeng; Lietz, Christopher B.; Jiang, Xiaoyue; Chen, Ruibing; Catherman, Adam D.; Thomas, Paul M.; Ge, Ying; Kelleher, Neil L.; Li, Lingjun

    2012-01-01

    A complete understanding of the biological functions of large signaling peptides (>4 kDa) requires comprehensive characterization of their amino acid sequences and post-translational modifications, which presents significant analytical challenges. In the past decade, there has been great success with mass spectrometry-based de novo sequencing of small neuropeptides. However, these approaches are less applicable to larger neuropeptides because of the inefficient fragmentation of peptides larger than 4 kDa and their lower endogenous abundance. The conventional proteomics approach focuses on large-scale determination of protein identities via database searching, lacking the ability for in-depth elucidation of individual amino acid residues. Here, we present a multifaceted MS approach for identification and characterization of large crustacean hyperglycemic hormone (CHH)-family neuropeptides, a class of peptide hormones that play central roles in the regulation of many important physiological processes of crustaceans. Six crustacean CHH-family neuropeptides (8–9.5 kDa), including two novel peptides with extensive disulfide linkages and PTMs, were fully sequenced without reference to genomic databases. High-definition de novo sequencing was achieved by a combination of bottom-up, off-line top-down, and on-line top-down tandem MS methods. Statistical evaluation indicated that these methods provided complementary information for sequence interpretation and increased the local identification confidence of each amino acid. Further investigations by MALDI imaging MS mapped the spatial distribution and colocalization patterns of various CHH-family neuropeptides in the neuroendocrine organs, revealing that two CHH-subfamilies are involved in distinct signaling pathways. PMID:23028060

  17. Neuropeptide release from airways of young and fully-grown rabbits.

    PubMed

    Larsen, Gary L; Fratelli, Cori; Loader, Joan; Kang, June-Ku Brian; Dakhama, Azzeddine

    2006-12-01

    Nerve growth factor (NGF), a neurotrophin that regulates neuronal development, enhances production of neuropeptides that control airway caliber including substance P (SP). Little is known about the developmental interplay between neurotrophins and neuropeptides. Our goal was to assess release of NGF, SP, and vasoactive intestinal peptide (VIP) from tracheal segments of young (2-week-old) and fully-grown (13-week-old) rabbits, and ascertain location of neuropeptides in airways with mechanical denudation of epithelium and immunohistochemistry. After electrical field stimulation of nerves, bath solutions were collected and immunoassays performed to quantify NGF, SP, and VIP release. There were significant decreases in NGF, SP, and VIP release from airways in 13- versus 2-week-old rabbits. There were also significant decreases in SP and VIP release from denuded versus normal tissues at 2 weeks of age. A similar pattern for SP was seen in 13-week-old rabbits. Immunohistochemistry demonstrated increased neuropeptides in airways from younger rabbits. Although SP was seen in the epithelium and submucosal nerves in the younger group, it was localized to the latter location in fully-grown rabbits. VIP was seen in only submucosal nerves at both ages. Thus, release of NGF, SP, and VIP with neural stimulation decreases in rabbit tracheal segments with age. Decreases in SP with maturation and epithelial denudation appear related in part to decreases in epithelial SP with growth. However, decreases in VIP that occur normally and with epithelial denudation are not explained by location of VIP within the epithelium. The epithelium may be a source of factors that inhibit release of neuropeptides.

  18. Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus.

    PubMed

    Blume, Annegret; Bosch, Oliver J; Miklos, Sandra; Torner, Luz; Wales, Lynn; Waldherr, Martin; Neumann, Inga D

    2008-04-01

    The neuropeptide oxytocin (OT) modulates social behaviours and is an important anxiolytic substance of the brain. However, sites of action and the intracellular signalling pathways downstream of OT receptors (OTR) within the brain remain largely unknown. In the present studies, we localized the anxiolytic effect of OT by bilateral microinfusion of OT (0.01 nmol/0.5 microL) into the hypothalamic paraventricular nucleus (PVN) in male rats using both the elevated plus-maze and the light-dark box. Moreover, intracerebroventricular administration of OT, but not of the related neuropeptide vasopressin (VP), dose-dependently activated the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Specifically, OT induced the phosphorylation of Raf-1, MEK1/2 and ERK1/2 in the hypothalamus in vivo and in hypothalamic H32 neurons via EGF receptors. OT-induced ERK1/2 phosphorylation was immunohistochemically localized within VP neurons of the PVN and the supraoptic nucleus. Importantly, the anxiolytic effect of OT within the PVN was prevented by local inhibition of the MAP kinase cascade with a MEK1/2 inhibitor (U0126, 0.5 nmol/0.5 microL) locally infused prior to OT, indicating the causal involvement of this intracellular signalling cascade in the behavioural effect of OT. OT effects within the hypothalamus may have far-reaching implications for the regulation of emotionality and social behaviours and, consequently, for the development of possible therapeutic strategies to treat affective disorders. Thus, OTR agonism or activation of the ERK1/2 cascade, specifically within the hypothalamus, may provide therapeutically relevant mechanisms.

  19. Sulfated cholecystokinin-8 activates phospho-mTOR immunoreactive neurons of the paraventricular nucleus in rats

    PubMed Central

    Frommelt, Lisa; Inhoff, Tobias; Lommel, Reinhardt; Stengel, Andreas; Taché, Yvette; Grötzinger, Carsten; Bannert, Norbert; Wiedenmann, Bertram; Klapp, Burghard F.; Kobelt, Peter

    2014-01-01

    The serin/threonin-kinase, mammalian target of rapamycin (mTOR) was detected in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) and suggested to play a role in the integration of satiety signals. Since cholecystokinin (CCK) plays a role in the short-term inhibition of food intake and induces c-Fos in PVN neurons, the aim was to determine whether intraperitoneally injected CCK-8S affects the neuronal activity in cells immunoreactive for phospho-mTOR in the PVN. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n=4/group). The number of c-Fosimmunoreactive (ir) neurons was assessed in the PVN, ARC and in the nucleus of the solitary tract (NTS). CCK-8S increased the number of c-Fos-ir neurons in the PVN (6 μg: 103 ± 13 vs. 10 μg: 165 ± 14 neurons/section; p<0.05) compared to vehicle treated rats (4 ± 1, p<0.05), but not in the ARC. CCK-8S also dose-dependently increased the number of c-Fos neurons in the NTS. Staining for phospho-mTOR and c-Fos in the PVN showed a dose-dependent increase of activated phospho-mTOR neurons (17 ± 3 vs. 38 ± 2 neurons/section; p<0.05), while no activated phospho-mTOR neurons were observed in the vehicle group. Triple staining in the PVN showed activation of phospho-mTOR neurons co-localized with oxytocin, corresponding to 9.8 ± 3.6% and 19.5 ± 3.3% of oxytocin neurons respectively. Our observations indicate that peripheral CCK-8S activates phospho-mTOR neurons in the PVN and suggest that phospho-mTOR plays a role in the mediation of CCK-8S's anorexigenic effects. PMID:20933028

  20. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established.

  1. Microtubules move the nucleus to quiescence.

    PubMed

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  2. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  3. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  4. Hypothalamic expression of NPY mRNA, vasopressin mRNA and CRF mRNA in response to food restriction and central administration of the orexigenic peptide GHRP-6.

    PubMed

    Johnstone, Louise E; Srisawat, Rungrudee; Kumarnsit, Ekkasit; Leng, Gareth

    2005-03-01

    In this study, we examined the effects of restricted feeding and of central administration of an orexigenic ghrelin agonist GHRP-6 on peptide mRNA expression in the hypothalamus. We compared rats fed ad libitum with rats that were allowed food for only 2?h every day, and treated with a continuous chronic i.c.v. infusion of GHRP-6 or vehicle. Ad libitum fed rats exposed to GHRP-6 increased their food intake and body weight over 6 days, but, at the end of this period, neuropeptide Y mRNA expression in the arcuate nucleus was not different to that in control rats. By contrast, expression of neuropeptide Y mRNA in the arcuate nucleus was elevated in food-restricted rats, consistent with the interpretation that increased expression reflects increased hunger. However, neuropeptide Y mRNA expression was no greater in food-restricted rats infused with GHRP-6 than in food-restricted rats infused with vehicle; thus if the drive to eat was stronger in rats infused with GHRP-6, this was not reflected by higher levels of neuropeptide Y mRNA expression. Expression of vasopressin mRNA and corticotrophin releasing factor (CRF) mRNA in the paraventricular nucleus (PVN) was not changed by food restriction. GHRP-6 infusion increased CRF mRNA expression in ad libitum rats only.

  5. BFKL Pomeron calculus: solution to equations for nucleus-nucleus scattering in the saturation domain

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Levin, Eugene; Meneses, Rodrigo

    2013-04-01

    In this paper we solve the equation for nucleus-nucleus scattering in the BFKL Pomeron calculus, suggested by Braun [1-3]. We find these solutions analytically at high energies as well as numerically in the entire region of energies inside the saturation region. The semi-classical approximation is used to select out the infinite set of the parasite solutions. The nucleus-nucleus cross sections at high energy are estimated and compared with the Glauber-Gribov approach. It turns out that the exact formula gives the estimates that are very close to the ones based on Glauber-Gribov formula which is important for the practical applications.

  6. Differential regulation of GABA release and neuronal excitability mediated by neuropeptide Y1 and Y2 receptors in rat thalamic neurons

    PubMed Central

    Sun, Qian-Quan; Akk, Gustav; Huguenard, John R; Prince, David A

    2001-01-01

    Neuropeptide Y (NPY) produced inhibitory effects on neurons of the thalamic reticular nucleus (RT; n= 18) and adjacent ventral basal complex (VB; n= 22), which included hyperpolarization (∼4 mV), a reduction in rebound and regular spikes and an increased membrane conductance. These effects were mediated predominantly via NPY1 receptor activation of G-protein-activated, inwardly rectifying K+ (GIRK) channels. NPY reduced the frequency of spontaneous GABAA receptor-mediated inhibitory postsynaptic currents (sIPSCs) in RT (by 60 ± 7 %, n= 14) and VB neurons (by 25 ± 11 %, n= 16), but had no effect on the kinetic properties of sIPSCs. After removal of the RT nucleus, the inhibitory effects of NPY on sIPSCs in VB neurons remained (29 ± 7 %, n= 5). The synaptic effects were mediated via NPY2 receptors. NPY inhibited the frequency of miniature IPSCs (mIPSCs) in RT and VB neurons (by 63 ± 7 %, n= 5, and 37 ± 8 %, n= 10, respectively) in the presence of tetrodotoxin (TTX) (1 μM) but not TTX (1 μM) and Cd2+ (200 μM). NPY inhibited evoked IPSCs in both RT (by 18 ± 3 %, n= 6) and VB (by 5 ± 4 %, n= 6) neurons without change in short-term synaptic plasticity. We conclude that NPY1 and NPY2 receptors are functionally segregated in the thalamus: NPY1 receptors are predominantly expressed at the somata and dendrites and directly reduce the excitability of neurons in both the RT and VB nuclei by activating GIRK channels. NPY2 receptors are located at recurrent (RT) and feed-forward GABAergic terminals (VB) and downregulate GABA release via inhibition of Ca2+ influx from voltage-gated Ca2+ channels. PMID:11179393

  7. Neuropeptide imaging on an LTQ with vMALDI source: The complete `all-in-one' peptidome analysis

    NASA Astrophysics Data System (ADS)

    Verhaert, Peter D.; Conaway, Maria C. Prieto; Pekar, Tonya M.; Miller, Ken

    2007-02-01

    Direct tissue imaging was performed on dissected insect tissue using a MALDI ion trap to visualize endogenous neuropeptides. Coupling tissue imaging to tandem MSn allows for the identification of previously known species and the ability to identify new ones by de novo sequencing, as searchable databases for insects are sparse. Direct tissue imaging is an attractive technique for the study of neuropeptides as minimal sample preparation is required prior to mass spectrometry. We successfully identified neuropeptides present in the corpora cardiaca and allata of Acheta domesticus (the house cricket). Diagnostic fragments at low m/z were used to distinguish between lipids and neuropeptides. The distribution of peptides appears to be more differentially localized than that of phospholipids, which seem to be more evenly distributed within the tissue.

  8. Neuropeptides in Heteroptera: Identification of allatotropin-related peptide and tachykinin-related peptides using MALDI-TOF mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the peptidomic analysis of neuropeptides from the retrocerebral complex and abdominal perisympathetic organs of polyphagous stinkbugs (Pentatomidae) revealed the group-specific sequences of pyrokinins, CAPA peptides (CAPA-periviscerokinins/PVKs and CAPA-pyrokinin), myosuppressin, corazonin...

  9. Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs.

    PubMed

    Werner, Felix-Martin; Coveñas, R

    2013-01-01

    We summarize the alterations of classical neurotransmitters and neuropeptides and the corresponding subreceptors involved in major depression. Neuronal circuits in the brainstem, hippocampus and hypothalamus are developed, since they can be used to derive a multimodal pharmacotherapy. In this sense, serotonin hypoactivity could occur through a strong presynaptic inhibition of glutaminergic neurons via the subtype 5 of metabotropic glutaminergic receptors, and noradrenaline hypoactivity could be due to an enhanced presynaptic inhibition of GABAergic neurons via GABAB receptors. In the hippocampus, dopamine hypoactivity leads to a decreased positive effect. In clinical trials, the antidepressant effect of drugs interfering with the mentioned subreceptors, for example the triple reuptake inhibitor amitifadine, is being investigated. Moreover, the alterations of neuropeptides, such as corticotropin-releasing hormone, neuropeptide Y and galanin are pointed out. The additional antidepressant effect of analogs, agonists and antagonists of the mentioned neuropeptides should be examined.

  10. The venom of Conus pennaceus inhibits the binding of [3H]neuropeptide Y by direct interaction with the radioligand.

    PubMed

    Diallo, B; Vanderheyden, P M; De Backer, J P; Vauquelin, G

    1998-01-01

    The venom from the marine snail Conus pennaceus inhibits the binding of [3H]neuropeptide Y to calf brain membranes (Czerwiec et al., 1996a) and, in the present study, also to rat forebrain membranes. These membranes contain about 80% Y1- and 20% Y2-receptors. The inhibition by the venom was concentration-dependent with an IC50 value of 3.4 micrograms ml-1. However, the venom also inhibited the binding of [3H]neuropeptide Y to the glass fibre filters and to the previously discovered ANPY toxin from the venom of Conus anemone (Czerwiec et al., 1996b). This inhibition was related to the ability of one or more of the venom components to bind directly to the radioligand instead of the initially assumed interaction with the neuropeptide Y receptors present in membrane preparations. The complex with Conus pennaceus venom was not retained by the glass fibre filter during the separation of the bound from the unbound [3H]neuropeptide Y. Gel filtration chromatography and denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the active [3H]neuropeptide Y-binding component is likely a approximately 30 kDa polypeptide. Binding of [3H]neuropeptide Y to the venom component(s) was not displaced by 20 microM of the (1-24) N-terminal and the (25-36) C-terminal neuropeptide Y fragments. It is therefore likely that the recognition of the venom component(s) requires both the C- and the N-terminal segments of the neuropeptide Y molecule.

  11. Transcriptome and Peptidome Characterisation of the Main Neuropeptides and Peptidic Hormones of a Euphausiid: The Ice Krill, Euphausia crystallorophias

    PubMed Central

    Toullec, Jean-Yves; Corre, Erwan; Bernay, Benoît; Thorne, Michael A. S.; Cascella, Kévin; Ollivaux, Céline; Henry, Joël; Clark, Melody S.

    2013-01-01

    Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides

  12. Towards understanding the free and receptor bound conformation of neuropeptide Y by fluorescence resonance energy transfer studies.

    PubMed

    Haack, Michael; Beck-Sickinger, Annette G

    2009-06-01

    Despite a considerable sequence identity of the three mammalian hormones of the neuropeptide Y family, namely neuropeptide Y, peptide YY and pancreatic polypeptide, their structure in solution is described to be different. A so-called pancreatic polypeptide-fold has been identified for pancreatic polypeptide, whereas the structure of the N-terminal segment of neuropeptide Y is unknown. This element is important for the binding of neuropeptide Y to two of its relevant receptors, Y(1) and Y(5), but not to the Y(2) receptor subtype. In this study now, three doubly fluorescent-labeled analogs of neuropeptide Y have been synthesized that still bind to the Y(5) receptor with high affinity to investigate the conformation in solution and, for the first time, to probe the conformational changes upon binding of the ligand to its receptor in cell membrane preparations. The results obtained from the fluorescence resonance energy transfer investigations clearly show considerable differences in transfer efficiency that depend both on the solvent as well as on the peptide concentration. However, the studies do not support a pancreatic polypeptide-like folding of neuropeptide Y in the presence of membranes that express the human Y(5) receptor subtype.

  13. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis

    PubMed Central

    Bao, Chenchang; Yang, Yanan; Huang, Huiyang; Ye, Haihui

    2015-01-01

    Neuropeptides play a critical role in regulating animal reproduction. In vertebrates, GnRH, GnIH and kisspeptin are the key neuropeptide hormones of the reproductive axis, however, the reproductive axis for invertebrates is vague. Knowledge on ovarian development of the mud crab, Scylla paramamosain, is critical for aquaculture and resources management of the commercially important species. This study employed Illumina sequencing, reverse transcription-polymerase chain reaction and quantitative real-time PCR techniques to identify neuropeptides that may be involved in ovarian development of S. paramamosain. A total of 32 neuropeptide transcripts from two dozen neuropeptide families, 100 distinct mature peptides were predicted from the transcriptome data of female S. paramamosain cerebral ganglia. Among them, two families, i.e. GSEFLamide and WXXXRamide, were first identified from the cerebral ganglia of crustaceans. Of these neuropeptides, 21 transcripts of interest were selected for further confirmation and all of them were detected in the cerebral ganglia, as well as in other nervous tissues and the ovary. Most of them also had differential expression in the cerebral ganglia during various vitellogenic stages, suggesting their likely involvement in regulating vitellogenesis and ovarian maturation. Overall, these findings provide an important basis for subsequent studies on peptide function in reproduction of S. paramamosain. PMID:26592767

  14. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2001-11-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically using dynamical systems theory. We develop a general theory for the averaged evolution of a comet nucleus rotation state assuming that the nucleus is a spheroid (either prolate or oblate) and that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the comet outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. Specifically, we find that a comet nucleus with a uniformly active surface will tend towards a rotation state with a nutation angle of ~ 55 degrees and an angular momentum perpendicular to the sun-perihelion direction. Conversely, a comet nucleus with an isolated active region will tend towards a zero nutation angle with its symmetry axis and angular momentum aligned parallel to the sun-perihelion direction. For active surface regions between these extremes we find 4 qualitatively different dynamical outcomes. In all cases, the theory predicts that the comet nucleus angular momentum will have a secular increase, a phenomenon that could contribute to nucleus splitting of active comets. These results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5-8715. AIN, AAV and VVS acknowledge support from Russian Foundation for Basic research via Grants 00-01-00538 and 00-01-0174 respectively. DJS acknowledges support from the PG&G program via Grant NAG5-9017.

  15. Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain

    PubMed Central

    Baram, Tallie Z.; Hatalski, Carolyn G.

    2012-01-01

    Most human seizures occur early in life, consistent with established excitability-promoting features of the developing brain. Surprisingly, the majority of developmental seizures are not spontaneous but are provoked by injurious or stressful stimuli. What mechanisms mediate ‘triggering’ of seizures and limit such reactive seizures to early postnatal life? Recent evidence implicates the excitatory neuropeptide, corticotropin-releasing hormone (CRH). Stress activates expression of the CRH gene in several limbic regions, and CRH-expressing neurons are strategically localized in the immature rat hippocampus, in which this neuropeptide increases the excitability of pyramidal cells in vitro. Indeed, in vivo, activation of CRH receptors – maximally expressed in hippocampus and amygdala during the developmental period which is characterized by peak susceptibility to ‘provoked’ convulsions – induces severe, age-dependent seizures. Thus, converging data indicate that activation of expression of CRH constitutes an important mechanism for generating developmentally regulated, triggered seizures, with considerable clinical relevance. PMID:9829688

  16. Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release

    PubMed Central

    Chatzigeorgiou, Marios; Hu, Zhitao; Schafer, William R.; Kaplan, Joshua M.

    2015-01-01

    C. elegans undergoes periods of behavioral quiescence during larval molts (termed lethargus) and as adults. Little is known about the circuit mechanisms that establish these quiescent states. Lethargus and adult locomotion quiescence is dramatically reduced in mutants lacking the neuropeptide receptor NPR-1. Here, we show that the aroused locomotion of npr-1 mutants results from the exaggerated activity in multiple classes of sensory neurons, including nociceptive (ASH), touch sensitive (ALM and PLM), and stretch sensing (DVA) neurons. These sensory neurons accelerate locomotion via both neuropeptide and glutamate release. The relative contribution of these sensory neurons to arousal differs between larval molts and adults. Our results suggest that a broad network of sensory neurons dictates transitions between aroused and quiescent behavioral states. PMID:26154367

  17. [Membrane-bound proteases involved in neuropeptide degradation in the brain].

    PubMed

    Yokosawa, H

    1993-07-01

    The action of neuropeptides at the synapse is terminated through enzymatic degradation by membrane-bound proteases. We defined and purified membrane-bound proteases functioning at the initial stage of degradation of four neuropeptides. 1. Substance P-degrading endopeptidases isolated from the rat brain and pig striatum showed similar properties to those of endopeptidase-24.16 (neurolysin) except for cleavage sites of substance P. 2. LHRH fragment (1-5)-generating endopeptidases isolated from the neuroblastoma cells and rat brain showed similar properties to those of endopeptidase-24.15 (thimet oligopeptidase). 3. One of two dynorphin-degrading cysteine proteases isolated from neuroblastoma cells showed strict specificity toward the Arg-Arg residues. 4. Endopeptidase-24.11 (neprilysin) isolated from the rat brain was identified as a somatostatin-degrading enzyme.

  18. [Neuropeptides, Cytokines and Thymus Peptides as Effectors of Interactions Between Thymus and Neuroendocrine System].

    PubMed

    Torkhovskaya, T I; Belova, O V; Zimina, I V; Kryuchkova, A V; Moskvina, S N; Bystrova, O V; Arion, V Ya; Sergienko, V I

    2015-01-01

    The review presents data on mutual influence of nervous system and thymus, realized through the neuroendocrine-immune interactions. The pres- ence of adrenergic and peptidergic nerves in thymus creates conditions for implementation of the effect of neuropeptides secreted by them. These neuropeptides induce activation of thymus cells receptors and influence on the main processes in thymus, including T-lymphocyte maturation, cytokine and hormones production. In turn, thymuspeptides and/or cytokines, controlled by them, enter the brain and exert influence on neuro- nalfunction, which creates the basis for changes of behavior and homeostasis maintenance in response to infection. Ageing and some infectious, autoimmune, neurodegenerative and cancer diseases are accompanied by distortion of interactions between thymus and central nervous system. Mechanisms of signaling pathways, which determine these interactions, are not revealed yet, and their understanding will promote the development of effective therapeutic strategies.

  19. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow.

    PubMed

    Park, Min Hee; Jin, Hee Kyung; Min, Woo-Kie; Lee, Won Woo; Lee, Jeong Eun; Akiyama, Haruhiko; Herzog, Herbert; Enikolopov, Grigori N; Schuchman, Edward H; Bae, Jae-sung

    2015-06-12

    Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.

  20. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    NASA Astrophysics Data System (ADS)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  1. Studies on the possible central effects in man of a neuropeptide (ACTH 4-9 analogue).

    PubMed

    Nicholson, A N; Stone, B M; Jones, S J

    1984-01-01

    The central effects of a neuropeptide, ACTH 4-9 analogue (Organon 2766), were studied in man using digit symbol substitution (DSS), symbol copying, digit span, electroencephalography and auditory evoked potentials, critical flicker fusion (CFF) and pupillary response to light. Performance was measured overnight, and each of 6 subjects ingested 300 mg caffeine, 40 mg ACTH 4-9 analogue and matching placebo. With placebo there was a marked deterioration in performance overnight. The number of substitutions on DSS and the numbers of symbols copied fell, and the threshold for CFF and number of errors on the vigilance task increased. These effects were not seen after ingestion of caffeine (300 mg), though caffeine may have led to some deterioration in the ability to remember digits. The neuropeptide did not attenuate the decrements in performance overnight.

  2. Stress-related neuropeptides and addictive behaviors: beyond the usual suspects.

    PubMed

    Schank, Jesse R; Ryabinin, Andrey E; Giardino, William J; Ciccocioppo, Roberto; Heilig, Markus

    2012-10-04

    Addictive disorders are chronic, relapsing conditions that cause extensive disease burden. Genetic factors partly account for susceptibility to addiction, but environmental factors such as stressful experiences and prolonged exposure of the brain to addictive drugs promote its development. Progression to addiction involves neuroadaptations within neurocircuitry that mediates stress responses and is influenced by several peptidergic neuromodulators. While corticotrophin releasing factor is the prototypic member of this class, recent work has identified several additional stress-related neuropeptides that play an important role in regulation of drug intake and relapse, including the urocortins, nociceptin, substance P, and neuropeptide S. Here, we review this emerging literature, discussing to what extent the properties of these neuromodulators are shared or distinct and considering their potential as drug targets.

  3. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow

    PubMed Central

    Park, Min Hee; Jin, Hee Kyung; Min, Woo-Kie; Lee, Won Woo; Lee, Jeong Eun; Akiyama, Haruhiko; Herzog, Herbert; Enikolopov, Grigori N; Schuchman, Edward H; Bae, Jae-sung

    2015-01-01

    Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide. PMID:25916827

  4. Lipid-Conjugation of Endogenous Neuropeptides: Improved Biotherapy against Human Pancreatic Cancer

    PubMed Central

    Gopalakrishnan, Gopakumar; Lepetre, Sinda; Maksimenko, Andrei; Mura, Simona; Desmaële, Didier; Couvreur, Patrick

    2015-01-01

    Neuropeptides are small neuronal signaling molecules that act as neuromodulators for a variety of neural functions including analgesia, reproduction, social behavior, learning, and memory. One of the endogenous neuropeptides—Met-Enkephalin (Met-Enk), has been shown to display an inhibitory effect on cell proliferation and differentiation. Here, a novel lipid-modification approach is shown to create a small library of neuropeptides that will allow increased bioavailability and plasma stability after systemic administration. It is demonstrated, on an experimental model of human pancreatic adenocarcinoma, that lipid conjugation of Met-Enk enhances its tumor suppression efficacy compared to its nonlipidated counterparts, both in vitro and in vivo. More strikingly, the in vivo studies show that a combination therapy with a reduced concentration of Gemcitabine has suppressed the tumor growth considerably even three weeks after the last treatment. PMID:25694262

  5. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2.

    PubMed

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael; Hauser, Frank; Grimmelikhuijzen, Cornelis J P

    2002-12-13

    The Drosophila Genome Project website contains an annotated gene (CG14575) for a G protein-coupled receptor. We cloned this receptor and found that the cloned cDNA did not correspond to the annotated gene; it partly contained different exons and additional exons located at the 5(')-end of the annotated gene. We expressed the coding part of the cloned cDNA in Chinese hamster ovary cells and found that the receptor was activated by two neuropeptides, capa-1 and -2, encoded by the Drosophila capability gene. Database searches led to the identification of a similar receptor in the genome from the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification of this first insect capa receptor will advance our knowledge on insect renal function.

  6. Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission

    PubMed Central

    Mosqueiro, Thiago; de Lecea, Luis; Huerta, Ramon

    2014-01-01

    The Locus Coeruleus (LC) modulates cortical, subcortical, cerebellar, brainstem and spinal cord circuits and it expresses receptors for neuromodulators that operate in a time scale of several seconds. Evidences from anatomical, electrophysiological and optogenetic experiments have shown that LC neurons receive input from a group of neurons called Hypocretins (HCRTs) that release a neuropeptide called hypocretin. It is less known how these two groups of neurons can be coregulated using GABAergic neurons. Since the time scales of GABAA inhibition is several orders of magnitude faster than the hypocretin neuropeptide effect, we investigate the limits of circuit activity regulation using a realistic model of neurons. Our investigation shows that GABAA inhibition is insufficient to control the activity levels of the LCs. Despite slower forms of GABAA can in principle work, there is not much plausibility due to the low probability of the presence of slow GABAA and lack of robust stability at the maximum firing frequencies. The best possible control mechanism predicted by our modeling analysis is the presence of inhibitory neuropeptides that exert effects in a similar time scale as the hypocretin/orexin. Although the nature of these inhibitory neuropeptides has not been identified yet, it provides the most efficient mechanism in the modeling analysis. Finally, we present a reduced mean-field model that perfectly captures the dynamics and the phenomena generated by this circuit. This investigation shows that brain communication involving multiple time scales can be better controlled by employing orthogonal mechanisms of neural transmission to decrease interference between cognitive processes and hypothalamic functions. PMID:25598695

  7. Trafficking and fusion of neuropeptide Y-containing dense-core granules in astrocytes.

    PubMed

    Ramamoorthy, Prabhu; Whim, Matthew D

    2008-12-17

    It is becoming clear that astrocytes are active participants in synaptic functioning and exhibit properties, such as the secretion of classical transmitters, previously thought to be exclusively neuronal. Whether these similarities extend to the release of neuropeptides, the other major class of transmitters, is less clear. Here we show that cortical astrocytes can synthesize both native and foreign neuropeptides and can secrete them in a stimulation-dependent manner. Reverse transcription-PCR and mass spectrometry indicate that cortical astrocytes contain neuropeptide Y (NPY), a widespread neuronal transmitter. Immunocytochemical studies reveal NPY-immunoreactive (IR) puncta that colocalize with markers of the regulated secretory pathway. These NPY-IR puncta are distinct from the synaptic-like vesicles that contain classical transmitters, and the two types of organelles are differentially distributed. After activation of metabotropic glutamate receptors and the release of calcium from intracellular stores, the NPY-IR puncta fuse with the cell membrane, and the peptide-containing dense cores are displayed. To determine whether peptide secretion subsequently occurred, exocytosis was monitored from astrocytes expressing NPY-red fluorescent protein (RFP). In live cells, after activation of glutamate receptors, the intensity of the NPY-RFP-labeled puncta declined in a step-like manner indicating a regulated release of the granular contents. Because NPY is a widespread and potent regulator of synaptic transmission, these results suggest that astrocytes could play a role in the peptidergic modulation of synaptic signaling in the CNS.

  8. Unique accumulation of neuropeptides in an insect: FMRFamide-related peptides in the cockroach, Periplaneta americana.

    PubMed

    Predel, R; Neupert, S; Wicher, D; Gundel, M; Roth, S; Derst, C

    2004-09-01

    FMRFamides belong to the most extensively studied neuropeptides in invertebrates and exhibit diverse physiological effects on different target organs, such as muscles, intestine and the nervous system. This study on the American cockroach confirms for the first time that extended FMRFamides occur in non-dipteran insects. By means of tandem mass spectrometry, these neuropeptides were structurally elucidated, and sequence information was used for subsequent cloning of the cockroach FMRFamide gene. This precursor gene encodes for 24 putative peptides and shows sufficient similarity with the Drosophila FMRFamide gene. Of the 24 peptides, 23 were detected by mass spectrometric methods; it is the highest number of neuropeptide forms shown to be expressed from a single precursor in any insect. The expression was traced back to single neurons in the thoracic ganglia. The unique accumulation of these FMRFamide-related peptides in thoracic perisympathetic organs provides the definite evidence for a tagma-specific distribution of peptidergic neurohormones in neurohaemal release sites of the insect CNS. Excitatory effects of the cockroach FMRFamides were observed on antenna-heart preparations. In addition, the newly described FMRFamides reduce the spike frequency of dorsal-unpaired median neurons and reduce the intracellular calcium concentration, which may affect the peripheral release of the biogenic amine octopamine.

  9. Radiosynthesis and in Vivo Evaluation of Neuropeptide Y5 Receptor (NPY5R) PET Tracers.

    PubMed

    Kumar, J S Dileep; Walker, Mary; Packiarajan, Mathivanan; Jubian, Vrej; Prabhakaran, Jaya; Chandrasena, Gamini; Pratap, Mali; Parsey, Ramin V; Mann, J John

    2016-05-18

    Neuropeptide Y receptor type 5 (NPY5R) is a G-protein coupled receptor (GPCR) that belongs to the subfamily of neuropeptide receptors (NPYR) that mediate the action of endogenous neuropeptide Y (NPY). Animal models and preclinical studies indicate a role for NPY5R in the pathophysiology of depression, anxiety, and obesity and as a target of potential therapeutic drugs. To better understand the pathophysiological involvement of NPY5R, and to measure target occupancy by potential therapeutic drugs, it would be advantageous to measure NPY5R binding in vivo by positron emission tomography (PET). Four potent and selective NPY5R antagonists were radiolabeled via nucleophilic aromatic substitution reactions with [(18)F]fluoride. Of the four radioligands investigated, PET studies in anesthetized baboons showed that [(18)F]LuAE00654 ([(18)F]N-[trans-4-({[4-(2-fluoropyridin-3-yl)thiazol-2-yl]amino}methyl)cyclohexyl]propane-2-sulfonamide) penetrates blood brain barrier (BBB) and a small amount is retained in the brain. Slow metabolism of [(18)F]LuAE00654 was observed in baboon plasma. Blocking studies with a specific NPY5R antagonist demonstrated up to 60% displacement of radioactivity in striatum, the brain region with highest NPY5R binding. Our studies suggest that [(18)F]LuAE00654 can be a potential PET radiotracer for the quantification and occupancy studies of NPY5R drug candidates.

  10. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits

    PubMed Central

    Baribeau, Danielle A.; Anagnostou, Evdokia

    2015-01-01

    Oxytocin and vasopressin are pituitary neuropeptides that have been shown to affect social processes in mammals. There is growing interest in these molecules and their receptors as potential precipitants of, and/or treatments for, social deficits in neurodevelopmental disorders, including autism spectrum disorder. Numerous behavioral-genetic studies suggest that there is an association between these peptides and individual social abilities; however, an explanatory model that links hormonal activity at the receptor level to complex human behavior remains elusive. The following review summarizes the known associations between the oxytocin and vasopressin neuropeptide systems and social neurocircuits in the brain. Following a micro- to macro- level trajectory, current literature on the synthesis and secretion of these peptides, and the structure, function and distribution of their respective receptors is first surveyed. Next, current models regarding the mechanism of action of these peptides on microcircuitry and other neurotransmitter systems are discussed. Functional neuroimaging evidence on the acute effects of exogenous administration of these peptides on brain activity is then reviewed. Overall, a model in which the local neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain regions strengthen signaling within social neurocircuits proves appealing. However, these findings are derived from animal models; more research is needed to clarify the relevance of these mechanisms to human behavior and treatment of social deficits in neuropsychiatric disorders. PMID:26441508

  11. NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?

    PubMed

    Aveleira, Célia A; Botelho, Mariana; Cavadas, Cláudia

    2015-01-01

    Aging was recently described as a life event programmed by the hypothalamus, a key brain region that is crucial for the neuroendocrine interaction between the central nervous system and the periphery. Autophagy impairment is a hallmark of aging, contributing to the aging phenotype and to the aggravation of age-related diseases. Since hypothalamic autophagy decreases with age, strategies to promote autophagy in the hypothalamus may be relevant for control of the aging process. NPY (neuropeptide Y) is an endogenous neuropeptide mainly produced by the hypothalamus. We recently reported, for the first time, that NPY stimulates autophagy in rodent hypothalamus and mediates caloric restriction-induced autophagy in hypothalamic neurons. Moreover, we observed that NPY acts through NPY1R (neuropeptide Y receptor Y1) or NPY5R activation involving a concerted action of different signaling pathways. Since both hypothalamic autophagy and NPY levels decrease with age, modulation of NPY levels could provide new putative therapeutic tools to ameliorate age-related deteriorations and extend longevity.

  12. Mitogenic effects of vasoactive neuropeptides on cultured smooth muscle cell lines

    SciTech Connect

    Mitsuhashi, M.; Payan, D.G.

    1987-03-02

    In order to investigate the relationship between the biochemical pathways that characterize contraction and cell growth, the authors have studied both contraction, mitogenesis and protein synthesis induced by the vasoactive neuropeptides, substance P (SP), calcitonin gene related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) on four different established vascular and non-vascular smooth muscle cell lines. Contraction in vitro was evaluated by light microscopy and recorded photographically. Mitogenesis and protein synthesis were evaluated by (/sup 3/H)-thymidine incorporation into cells and (/sup 3/H)-amino acid incorporation into trichloroacetic acid precipitated materials, respectively. SP stimulated mitogenesis of A7r5 cells (embryonic rat aorta), but failed to induce significant contraction of these cells, whereas, SP induced contraction of cultured adult rat vascular smooth muscle cells (VSMC), but failed to stimulate mitogenesis. CGRP and VIP stimulated mitogenesis and protein synthesis, respectively, of DDT/sub 1/MF-2 cells (hamster vas deferens), but neither induced contraction of this cell line. All three neuropeptides showed no effect on BC/sub 3/H1 (mouse smooth muscle-like) cells. These results suggest that neuropeptides with vasoactive properties modulate different stages of cellular mitogenic responses which may be regulated by the degree of maturation of smooth muscle cell. 22 references, 5 figures.

  13. Postprandial effects on appetite-related neuropeptide expression in the brain of Atlantic salmon, Salmo salar.

    PubMed

    Valen, R; Jordal, A-E O; Murashita, K; Rønnestad, I

    2011-05-01

    Following feeding of a single meal to Atlantic salmon, the temporal changes in the brain mRNA expression of neuropeptide y (npy), cocaine-amphetamine regulated transcript (cart), peptide yy (pyy), two isoforms of agouti-related protein (agrp), two isoforms of cholecystokinin (cck), and four isoforms of proopiomelanocortin (pomc) were assessed by q-PCR. In the course of 24h post-feeding (hpf), several of the brain neuropeptides displayed changes in mRNA expression compared to an unfed control group, indicating that food intake and processing affect the regulation of expression of these genes in Atlantic salm