Science.gov

Sample records for area carbide-derived carbon

  1. Effect of pore size and surface area of carbide derived carbons on specific capacitance

    NASA Astrophysics Data System (ADS)

    Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y.

    This work presents a systematic study on how pore size and specific surface area (SSA) of carbon effect specific capacitance and frequency response behavior. Carbide derived carbons (CDC) produced by leaching metals from TiC and ZrC at temperatures from 600 to 1200 °C have highly tailorable microstructure and porosity, allowing them to serve as excellent model systems for porous carbons in general. BET SSA and average pore size increased with synthesis temperature and was 600-2000 m 2 g -1 and 0.7-1.85 nm, respectively. Maximum specific capacitance in 1 M H 2SO 4 was found to occur at an intermediate synthesis temperature, 800 °C, for both ZrC and TiC derived carbons and was 190 and 150 F g -1, respectively. Volumetric capacitance for TiC and ZrC derived carbons was maximum at 140 and 110 F cm -3. These results contradict an oft-reported axiom that increasing pore size and SSA, all other things being held constant, increases specific capacitance. A correlation between specific capacitance and SSA of micropores (less than 2 nm in diameter) has been shown. As expected, increasing pore size was found to improve the frequency response. However, CDCs with similar pore size distributions but obtained from different starting materials showed noticeable differences in impedance behavior. This highlights the importance of not only the pore size and specific surface area measured using gas sorption techniques, but also the pore shape or tortuousity, which is non-trivial to characterize, on energy storage.

  2. High capacitance of coarse-grained carbide derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; ...

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films withmore » up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.« less

  3. High capacitance of coarse-grained carbide derived carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  4. High capacitance of coarse-grained carbide derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  5. Silicon Carbide Derived Carbons: Experiments and Modeling

    SciTech Connect

    Kertesz, Miklos

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  6. Carbide Derived Carbon Super Capacitor Application

    NASA Astrophysics Data System (ADS)

    Appelgate, James; Bauer, Dave; Quirin, James; Lofland, S. E.; Hettinger, J. D.; Heon, M.; Gogotsi, Y.

    2010-02-01

    Supercapacitors can be applied into many different fields from nano-robots to high density energy storage. Growing TiC films from a know recipe and removing the transition metal element, Titanium, by chlorination leaves a carbon film that can then be applied as an electrode in a super capacitor. The problem is when the Titanium is removed from the film the stress induced by this process causes the films to fracture into isolated islands. The islands allow electrons to travel across them every easily, but there is no transfer of electrons from island to island. We present results of an investigation of a technique control the location of the fractures and use them to our benefit. Ideally, we want to create them to fracture in parallel lines. To force these fractures into straight lines we will purchase substrates with thermal SiO2 created on the surface of Si. Using an etching process we will removed a channel of SiO2 the same as the thickness of the TiC film we plan on growing. These channels will allow the fractures to form in a correlated way creating a straight line. )

  7. Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide

    SciTech Connect

    Osswald, S.; Portet, C.; Gogotsi, Y.; Laudisio, G.; Singer, J.P.; Fischer, J.E.; Sokolov, V.V.; Kukushkina, J.A.; Kravchik, A.E.

    2009-07-15

    Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy. The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.

  8. In situ electrochemical dilatometry of carbide-derived carbons

    SciTech Connect

    Hantel, M M; Presser, Volker; Gogotsi, Yury

    2011-01-01

    The long life durability and extraordinary stability of supercapacitors are ascribed to the common concept that the charge storage is purely based on double-layer charging. Therefore the ideal supercapacitor electrode should be free of charge induced microscopic structural changes. However, recent in-situ investigations on different carbon materials for supercapacitor electrodes have shown that the charge and discharge is accompanied by dimensional changes of the electrode up to several percent. This work studies the influence of the pore size on the expansion behavior of carbon electrodes derived from titanium carbide-derived carbons with an average pore size between 5 and 8 Using tetraethylammonium tetrafluoroborate in acetonitrile, the swelling of the electrodes was measured by in situ dilatometry. The experiments revealed an increased expansion on the negatively charged electrode for pores below 6 , which could be described with pore swelling.

  9. Nanoporous carbide-derived carbon with tunable pore size

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury; Nikitin, Alexei; Ye, Haihui; Zhou, Wei; Fischer, John E.; Yi, Bo; Foley, Henry C.; Barsoum, Michel W.

    2003-09-01

    Porous solids are of great technological importance due to their ability to interact with gases and liquids not only at the surface, but throughout their bulk. Although large pores can be produced and well controlled in a variety of materials, nanopores in the range of 2 nm and below (micropores, according to IUPAC classification) are usually achieved only in carbons or zeolites. To date, major efforts in the field of porous materials have been directed towards control of the size, shape and uniformity of the pores. Here we demonstrate that porosity of carbide-derived carbons (CDCs) can be tuned with subångström accuracy in a wide range by controlling the chlorination temperature. CDC produced from Ti3SiC2 has a narrower pore-size distribution than single-wall carbon nanotubes or activated carbons; its pore-size distribution is comparable to that of zeolites. CDCs are produced at temperatures from 200-1,200 °C as a powder, a coating, a membrane or parts with near-final shapes, with or without mesopores. They can find applications in molecular sieves, gas storage, catalysts, adsorbents, battery electrodes, supercapacitors, water/air filters and medical devices.

  10. Nanoporous carbide-derived carbon with tunable pore size.

    PubMed

    Gogotsi, Yury; Nikitin, Alexei; Ye, Haihui; Zhou, Wei; Fischer, John E; Yi, Bo; Foley, Henry C; Barsoum, Michel W

    2003-09-01

    Porous solids are of great technological importance due to their ability to interact with gases and liquids not only at the surface, but throughout their bulk. Although large pores can be produced and well controlled in a variety of materials, nanopores in the range of 2 nm and below (micropores, according to IUPAC classification) are usually achieved only in carbons or zeolites. To date, major efforts in the field of porous materials have been directed towards control of the size, shape and uniformity of the pores. Here we demonstrate that porosity of carbide-derived carbons (CDCs) can be tuned with subångström accuracy in a wide range by controlling the chlorination temperature. CDC produced from Ti3SiC2 has a narrower pore-size distribution than single-wall carbon nanotubes or activated carbons; its pore-size distribution is comparable to that of zeolites. CDCs are produced at temperatures from 200-1,200 degrees C as a powder, a coating, a membrane or parts with near-final shapes, with or without mesopores. They can find applications in molecular sieves, gas storage, catalysts, adsorbents, battery electrodes, supercapacitors, water/air filters and medical devices.

  11. Carbide-Derived Carbon Films for Integrated Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Heon, Min

    Active RFID tags, which can communicate over tens or even hundreds of meters, MEMS devices of several microns in size, which are designed for the medical and pharmaceutical purposes, and sensors working in wireless monitoring systems, require microscale power sources that are able to provide enough energy and to satisfy the peak power demands in those applications. Supercapacitors have not been an attractive candidate for micro-scale energy storage, since most nanoporous carbon electrode materials are not compatible with micro-fabrication techniques and have failed to meet the requirements of high volumetric energy density and small form factor for power supplies for integrated circuits or microelectronic devices or sensors. However, supercapacitors can provide high power density, because of fast charging/discharging, which can enable self-sustaining micro-modules when combined with energy-harvesting devices, such as solar cell, piezoelectric or thermoelectric micro-generators. In this study, carbide-derived carbon (CDC) films were synthesized via vacuum decomposition of carbide substrates and gas etching of sputtered carbide thin films. This approach allowed manufacturing of porous carbon films on SiC and silicon substrates. CDC films were studied for micro-supercapacitor electrodes, and showed good double layer capacitance. Since the gas etching technique is compatible with conventional micro-device fabrication processes, it can be implemented to manufacture integrated on-chip supercapacitors on silicon wafers.

  12. Effects of adding ethanol to KOH electrolyte on electrochemical performance of titanium carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhang, Ruijun; Chen, Peng; Ge, Shanhai

    2014-01-01

    Porous carbide-derived carbons (CDCs) are synthesized from TiC at different chlorination temperatures as electrode materials for electrochemical capacitors. It is found that the microstructure of the produced CDCs has significant influence on both the hydrophilicity in aqueous KOH electrolyte and the resultant electrochemical performance. Because the TiC-CDC synthesized at higher temperature (e.g. 1000 °C) contains well-ordered graphite ribbons, it shows lower hydrophilicity and specific capacitance. It is also found that addition of a small amount of ethanol to KOH electrolyte effectively improves the wettability of the CDCs synthesized at higher temperature and the corresponding specific capacitance. Compared with the CDC synthesized at 600 °C, the CDC synthesized at 1000 °C shows fast ion transport and excellent capacitive behavior in KOH electrolyte with addition of ethanol because of the existences of mesopores and high specific surface area.

  13. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage.

    PubMed

    Gogotsi, Yury; Dash, Ranjan K; Yushin, Gleb; Yildirim, Taner; Laudisio, Giovanna; Fischer, John E

    2005-11-23

    The poor performance of hydrogen storage materials continues to hinder development of fuel cell-powered automobiles. Nanoscale carbons, in particular (activated carbon, exfoliated graphite, fullerenes, nanotubes, nanofibers, and nanohorns), have not fulfilled their initial promise. Here we show that carbon materials can be rationally designed for H2 storage. Carbide-derived carbons (CDC), a largely unknown class of porous carbons, are produced by high-temperature chlorination of carbides. Metals and metalloids are removed as chlorides, leaving behind a collapsed noncrystalline carbon with up to 80% open pore volume. The detailed nature of the porosity-average size and size distribution, shape, and total specific surface area (SSA)-can be tuned with high sensitivity by selection of precursor carbide (composition, lattice type) and chlorination temperature. The optimum temperature is bounded from below by thermodynamics and kinetics of chlorination reactions and from above by graphitization, which decreases SSA and introduces H2-sorbing surfaces with binding energies too low to be useful. Intuitively, pores of different size and shape should not contribute equally to hydrogen storage. By correlating pore properties with 77 K H2 isotherms from a wide variety of CDCs, we experimentally confirm that gravimetric hydrogen storage capacity normalized to total pore volume is optimized in materials with primarily micropores ( approximately 1 nm) rather than mesopores. Thus, in agreement with theoretical predictions, a narrow size distribution of small pores is desirable for storing hydrogen, while large pores merely degrade the volumetric storage capacity.

  14. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    SciTech Connect

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  15. Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons

    NASA Astrophysics Data System (ADS)

    Wu, Chun; Gao, Jiao; Zhao, Qinglan; Zhang, Youwei; Bai, Yansong; Wang, Xingyan; Wang, Xianyou

    2014-12-01

    A series of ordered mesoporous/microporous carbon materials derived from chromium carbide-derived carbons (CDCs) are prepared by nanocasting the chromic acetate and furfuryl alcohol precursor into SBA-15 and subsequent chlorination. The structure and morphology of the CDCs are characterized by N2 adsorption/desorption isotherm, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that all of the synthesized CDCs present large specific surface area and pore volume. Especially, the CDCs-2 prepared at the mass ratio of 1/1 (chromic acetate/furfuryl alcohol) exhibits the chain-like morphology with high surface area (1236 m2 g-1), large pore volume (0.76 cm3 g-1), and the good mesopore size centered at 3.43 nm. The electrochemical properties of all the CDCs are studied by cyclic voltammetry, constant current charge/discharge, electrochemical impedance spectroscopy and cycle life measurements in 6 M KOH electrolyte. The results display that the sample CDCs-2 exhibits a high capacitance of 242.7 F g-1 at the current density of 1 A g-1 and good cycling stability with coulombic efficiency of 100% over 10000 cycles.

  16. The advanced carbide-derived carbon based supercapacitor

    NASA Astrophysics Data System (ADS)

    Arulepp, M.; Leis, J.; Lätt, M.; Miller, F.; Rumma, K.; Lust, E.; Burke, A. F.

    The electrical double-layer (EDL) performance of three different TiC-derived nanoporous carbon materials was tested in prismatic capacitor assembly filled with 1.2 M triethylmethylammonium tetrafluoroborate (TEMA) acetonitrile solution. The electrical double-layer characteristics of supercapacitors were studied using the cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS) methods. Energy density versus power density, i.e. Ragone plots were constructed from the constant resistance and constant power (CP) charge/discharge data. The 1450F supercapacitor with novel nanoporous carbon made by halogen treatment of TiC/TiO 2 composite demonstrated the energy density of more than 10 Wh dm -3 at the cell voltage of 2.7 V.

  17. Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

    NASA Astrophysics Data System (ADS)

    Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-04-01

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.

  18. Carbide-derived carbon (CDC) linear actuator properties in combination with conducting polymers

    NASA Astrophysics Data System (ADS)

    Kiefer, Rudolf; Aydemir, Nihan; Torop, Janno; Kilmartin, Paul A.; Tamm, Tarmo; Kaasik, Friedrich; Kesküla, Arko; Travas-Sejdic, Jadranka; Aabloo, Alvo

    2014-03-01

    Carbide-derived Carbon (CDC) material is applied for super capacitors due to their nanoporous structure and their high charging/discharging capability. In this work we report for the first time CDC linear actuators and CDC combined with polypyrrole (CDC-PPy) in ECMD (Electrochemomechanical deformation) under isotonic (constant force) and isometric (constant length) measurements in aqueous electrolyte. CDC-PPy actuators showing nearly double strain under cyclic voltammetric and square wave potential measurements in comparison to CDC linear actuators. The new material is investigated by SEM (scanning electron microscopy) and EDX (energy dispersive X-ray analysis) to reveal how the conducting polymer layer and the CDC layer interfere together.

  19. Enhanced methane storage of chemically and physically activated carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Yeon, Sun-Hwa; Osswald, Sebastian; Gogotsi, Yury; Singer, Jonathan P.; Simmons, Jason M.; Fischer, John E.; Lillo-Ródenas, María A.; Linares-Solano, Ángel

    Carbide-derived carbons (CDCs) produced by chlorination of carbides offer great potential for precise pore size control at the atomic level, making them attractive candidates for energy storage media. CDCs activated with CO 2 or KOH possess distinct improvements in porosity, displaying specific surface areas above 3000 m 2 g -1 and pore volumes above 1.3 cm 3 g -1. These correspond to gravimetric methane uptake of 16 wt% at 35 bar and 25 °C, close to the currently best reported material PCN-14, a metal-organic framework (MOF), at 35 bar and 17 °C or KOH activated anthracite at 35 bar and 25 °C. The best excess gravimetric methane uptake is obtained with a TiC-derived CDC activated with CO 2 at 975 °C for 2 h, namely a very large surface area of 3360 m 2 g -1 resulting in 18.5 wt% at 25 °C and 60 bar. To obtain realistic volumetric methane capacity, the packing density of completely dried CDC was measured, from which we obtain excess capacity of 145 v(STP) v -1 from CDC activated with CO 2 at 875 °C for 8 h, 81% of the DOE target (180 v(STP) v -1) at 35 bar and 25 °C. From small-angle X-ray scattering (SAXS) measurements, pore radii of gyration (R g) between 0.5 nm and 1 nm are determined. Temperature-dependent methane isotherms show that the isosteric heat of adsorption reaches 24 kJ mol -1 at the initial stage of low loading.

  20. Carbide derived carbon from MAX-phases and their separation applications

    NASA Astrophysics Data System (ADS)

    Hoffman, Elizabeth N.

    Improved sorbents with increased selectivity and permeability are needed to meet growing energy and environmental needs. New forms of carbon based sorbents have been discovered recently, including carbons produced by etching metals from metal carbides, known as carbide derived carbons (CDCs). A common method for the synthesis of CDC is by chlorination at elevated temperatures. The goal of this work is to synthesize CDC from ternary carbides and to explore the links between the initial carbide chemistry and structure with the resulting CDCs properties, including porosity. CDC was produced from MAX-phase carbides, in particular Ti3SiC 2, Ti3AlC2, Ti2AlC, and Ta2AlC. Additionally, CDC was produced from Ta-based binary carbides, TaC and Ta 2C, and one carbo-nitride Ti2AlC0.5N0.5. The CDC structure was characterized using XRD, Raman microspectroscopy, and HRTEM. Porosity characterization was performed using sorption analysis with both Ar and N2 as adsorbates. It was determined the microporosity of CDC is related to the density of the initial carbide. The layered structure of the MAX-phase carbides lent toward the formation of larger mesopores within the resulting CDCs, while the amount of mesopores was dependent on the chemistry of the carbide. Furthermore, CDC produced from carbides with extremely high theoretical porosity resulted in small specific surface areas due to a collapse of the carbon structure. To expand the potential applications for CDC beyond powder and bulk forms, CDC membranes were produced from a thin film of TiC deposited by magnetron sputtering onto porous ceramic substrates. The TiC thin film was subsequently chlorinated to produce a bilayer membrane with CDC as the active layer. Both gases and liquids are capable of passing the membrane. The membrane separates based on selective adsorption, rather than a size separation molecular sieving effect. Two applications for CDC produced from MAX-phases were investigated: protein adsorption and gas

  1. Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanfang (John); Maloney, Ryan; Lukatskaya, Maria R.; Beidaghi, Majid; Dyatkin, Boris; Perre, Emilie; Long, Donghui; Qiao, Wenming; Dunn, Bruce; Gogotsi, Yury

    2015-01-01

    Herein we report on the hydrothermal synthesis of niobium pentoxide on carbide-derived carbon (Nb2O5/CDC) with a layered structure. The presence of phenylphosphonic acid guides the deposition during preparation, leading to the formation of amorphous Nb2O5 particles which are 4-10 nm in diameter and homogeneously distributed on the CDC framework. Electrochemical testing of the Nb2O5/CDC electrode indicated that the highest capacitance and Coulombic efficiency occurred using an electrolyte comprised of 1 M lithium perchlorate in ethylene carbonate/dimethyl carbonate. Subsequent heat treatment of Nb2O5/CDC in CO2 environment led to crystallization of the Nb2O5, allowing reversible Li+ intercalation/de-intercalation. For sweep rates corresponding to charging and discharging in under 3 min, a volumetric charge of 180 C cm-3 and Coulombic efficiency of 99.2% were attained.

  2. Identification of carbon allotropes in carbide derived carbon using electron microscopy

    NASA Astrophysics Data System (ADS)

    Welz, Sascha

    Carbide derived carbon (CDC) has been produced by selective etching of metal carbides (SiC and TiC) in halogens at ambient pressure and temperatures between 450 and 1000°C. A systematic electron microscopy study of CDC has been conducted in this work. Carbon phases and all possible carbon structures in CDC have been identified. The CDC treatment enables the formation of virtually any carbon allotrope within one sample. The structure of CDC is tunable through the process parameter time, temperature and gas composition. Depending on experimental conditions, CDC may contain sp3- or sp 2-bonded carbon phases. Amorphous, porous and poorly ordered turbostratic carbon with lattice spacing exceeding d = 0.35 nm was observed in large quantities. sp3-bonded structures nucleate at the metal carbide/CDC interface and consist of mainly 2H (lonsdaleite) and cubic diamond nanocrystals with sizes between 2 to 10 nm. Some reach sizes up to 800 nm. The synthesis of 4H, 8H and n-diamond polytypes is likely. It has been shown that the presence of hydrogen in the environment is not required for diamond synthesis. However, hydrogen can stabilize sp3-hybridization leading to the growth of thick nanocrystalline diamond films. During the annealing process, hexagonal diamond transforms to spherical carbon onions in a "zipper-like" manner where three diamond layers are expected to exfoliate into two graphitic sheets. The onions are either hollow or dense. The latter show a decrease in lattice spacing compared to d/n values for graphite indicating these onions as high-pressure cells. The pressure has been estimated. Graphitic structures include the formation of multiwall nanotubes, polyhedral particles and ribbons. The graphitization process is completed when the maximum permissible diameter of curved lattices is reached and straight graphite is formed. SiC and TiC derived CDC has been analyzed and compared. The basic structure of the substrate has an influence on the formation and structure

  3. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; Gogotsi, Yury

    2015-12-01

    This study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Unlike hydrogenated pores, aminated pores do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.

  4. Role of precursor crystal structure on electrochemical performance of carbide-derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palazzo, Benjamin; Norris, Zach; Taylor, Greg; Yu, Lei; Lofland, Samuel; Hettinger, Jeffrey

    2015-03-01

    Binary carbides with hexagonal and cubic crystal structures have been synthesized by reactive magnetron sputtering of vanadium and other transition metals in acetylene or methane gas mixed with argon. The binary carbides are converted to carbide-derived carbon (CDC) films using chlorine gas in a post-deposition process in an external vacuum reaction furnace. Residual chlorine has been removed using an annealing step in a hydrogen atmosphere. The CDC materials have been characterized by x-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The performance of the CDC materials in electrochemical device applications has been measured with the hexagonal phase precursor demonstrating a significantly higher specific capacitance in comparison to that of the cubic phase. We report these results and pore-size distributions of these and similar materials.

  5. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; ...

    2015-12-24

    Our study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Moreover, quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Aminated pores, unlike hydrogenatedmore » pores, do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.« less

  6. Carbide-derived carbons - From porous networks to nanotubes and graphene

    SciTech Connect

    Presser, V.; Heon, M.; Gogotsi, Y.

    2011-02-09

    Carbide-derived carbons (CDCs) are a large family of carbon materials derived from carbide precursors that are transformed into pure carbon via physical (e.g., thermal decomposition) or chemical (e.g., halogenation) processes. Structurally, CDC ranges from amorphous carbon to graphite, carbon nanotubes or graphene. For halogenated carbides, a high level of control over the resulting amorphous porous carbon structure is possible by changing the synthesis conditions and carbide precursor. The large number of resulting carbon structures and their tunability enables a wide range of applications, from tribological coatings for ceramics, or selective sorbents, to gas and electrical energy storage. In particular, the application of CDC in supercapacitors has recently attracted much attention. This review paper summarizes key aspects of CDC synthesis, properties, and applications. It is shown that the CDC structure and properties are sensitive to changes of the synthesis parameters. Understanding of processing–structure–properties relationships facilitates tuning of the carbon material to the requirements of a certain application.

  7. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    SciTech Connect

    Gogotsi, Yury

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  8. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips

    NASA Astrophysics Data System (ADS)

    Huang, Peihua; Heon, Min; Pech, David; Brunet, Magali; Taberna, Pierre-Louis; Gogotsi, Yury; Lofland, Samuel; Hettinger, Jeffrey D.; Simon, Patrice

    2013-03-01

    Interdigitated on-chip micro-supercapacitors based on Carbide Derived Carbon (CDC) films were fabricated and tested. A titanium carbide (TiC) film was patterned and treated with chlorine to obtain a TiC derived carbon (TiC-CDC) film, followed by the deposition of two types of current collectors (Ti/Au and Al) using standard micro-fabrication processes. CDC based micro-supercapacitors were electrochemically characterized by cyclic voltammetry and impedance spectroscopy using a 1 M tetraethylammonium tetrafluoroborate, NEt4BF4, in propylene carbonate (PC) electrolyte. A capacitance of 0.78 mF for the device and 1.5 mF cm-2 as the specific capacitance for the footprint of the device was measured for a 2 V potential range at 100 mV s-1. A specific energy of 3.0 mJ cm-2 and a specific power of 84 mW cm-2 were calculated for the devices. These devices provide a pathway for fabricating pure carbon-based micro-supercapacitors by micro-fabrication, and can be used for powering micro-electromechanical systems (MEMS) and electronic devices.

  9. Examining the Local Structure of Titanium Carbide Derived Carbons: Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Llobet, Anna; Palmer, Jeremy; Yeon, Sun-Hwa; Fischer, John; Gogotsi, Yury; Gubbins, Keith

    2010-03-01

    Titanium Carbide derived carbons (Ti-CDCs) are amorphous nanoporous materials synthesized by high-temperature chlorination of crystalline TiC [1]. Judicious choice of the synthesis conditions allow for fine control over many of the structural features of Ti-CDCs, enabling them to be optimized for a wide variety of energy-related applications [2]. We have combined both experimental and computational methods to investigate the structural and functional properties of Ti-CDCs. Atomic pair distributions functions obtained from neutron diffraction experiments reveal that the synthesis temperature has a dramatic effect on the local structural ordering in these materials and consequently their functional properties. Atomistic models for Ti-CDCs have also been developed with the aid of molecular dynamics. These models reproduce the observed experimental trends and are used to gain new insight into the complex structure-function relationship. 1. Gogotsi, Y. 2006. Carbon nanomaterials. CRC Press, Boca Raton 2. Dash et al. 2006. Carbon 44:2489-2497

  10. Embedded Carbide-derived Carbon (CDC) particles in polypyrrole (PPy) for linear actuator

    NASA Astrophysics Data System (ADS)

    Zondaka, Zane; Valner, Robert; Aabloo, Alvo; Tamm, Tarmo; Kiefer, Rudolf

    2016-04-01

    Conducting polymer linear actuators, for example sodium dodecylbenzenesulfonate (NaDBS) doped polypyrrole (PPy/DBS), have shown moderate strain and stress. The goal of this work was to increase the obtainable strain and stress by adding additional active material to PPy/DBS. In recent year's carbide-derived carbon (CDC)-based materials have been applied in actuators; however, the obtained displacement and actuation speed has been low comparing to conducting polymer based actuators. In the present work, a CDC-PPy hybrid was synthesized electrochemically and polyoxometalate (POM) - phosphotungstic acid - was used to attach charge to CDC particles. The CDC-POM served in the presence of NaDBS as an additional electrolyte. Cyclic voltammetry and chronopotentiometric electrochemomechanical deformation (ECMD) measurements were performed in Lithium bis(trifluoromethanesulfonyl)- imide (LiTFSI) aqueous electrolyte. The ECMD measurements revealed that the hybrid CDC-PPy material exhibited higher force and strain in comparison to PPy/DBS films. The new material was investigated by scanning electron microscopy (SEM) to evaluate CDC particle embedding in the polymer network.

  11. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Xianyou; Jiang, Lanlan; Wu, Chun; Zhao, Qinglan; Liu, Xue; Hu, Ben'an; Yi, Lanhua

    2013-03-01

    Porous calcium carbide-derived carbon (CCDC) has been prepared by one-step route from CaC2 in a freshly prepared chlorine environment at lower temperature, and following activated by ZnCl2 to get activated CCDC. The performances of the supercapacitors based on activated CCDC as electrode active material in aqueous KOH, K2SO4, KCl and KNO3 electrolytes are studied by cyclic voltammetry, constant current charged/discharged, cyclic life and electrochemical impedance spectroscopy. It has been found that the supercapacitor using 6 M KOH as electrolyte shows an energy density of 8.3 Wh kg-1 and a power density of 1992 W kg-1 based on the total weight of the electrode active materials with a voltage range 0 V-1 V. Meanwhile, the specific capacitance of the supercapacitor in 6 M KOH electrolyte is 68 F g-1 at the scan rate of 1 mV s-1 in the voltage range of 0 V-1 V, the charge-transfer resistance is extremely low and the relaxation time is the least of all. The supercapacitor also exhibits a good cycling performance and keeps 95% of initial capacity over 5000 cycles.

  12. Electrochemical performance of carbide-derived carbon anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yeon, Sun-Hwa; Jung, Kyu-Nam; Yoon, Sukeun; Shin, Kyoung-Hee; Jin, Chang-Soo

    2013-07-01

    Carbide-derived carbons (CDCs), part of a large family of carbon materials derived from carbide, are attractive for energy-related applications, such as batteries, supercapacitors, and fuel cells. Pore textures (micro-, meso-, and macro-pores) and structures (from amorphous to highly ordered graphite) of CDCs can be controlled by changing the synthesis conditions and carbide precursor. Adequate control of the carbon structure, and the porosity in terms of application as an anode can be exploited to maximize the electrochemical capacity in a lithium ion batteries. In this study, the use of CDC as anodes by chlorine treatment of B4C and TiC7N3 in a synthesis temperature range from 600 °C to 1200 °C has been explored. The discharge capacity of TiC7N3-CDC reaches the highest value, 462 mA h g-1, at 100 cycles, which is 25% higher than the theoretical capacity of graphite (375 mA h g-1). B4C-CDC meanwhile affords a value of 453 mA h g-1 at 100 cycles. These results show that B4C-CDC and TiC7N3-CDC have excellent potential as the negative electrode in Li battery applications, and can be exposed to a practical low synthesis temperature range of 600-1200 °C. B4C-CDC and TiC7N3-CDC can also provide 2-3 times better performance than existing graphite or hard carbon for lithium battery systems.

  13. Neutron Scattering Studies of Liquid on or Confined in Nano- and Mesoporous Carbons, Including Carbide-Derived Carbons

    SciTech Connect

    Wesolowski, David J

    2014-07-01

    This project involved the synthesis of microporous graphitic-carbon powders with subnanometer average pore size, and very narrow pore size distributions, and the use of these materials in experimental studies of pore-fluid structure and dynamics. Samples of carbide-derived carbon powder, synthesized by extraction of the metal cations from TiC by a high temperature chlorination process, followed by high temperature vacuum annealing, were prepared by Ranjan Dash and his associates at CRADA partner Y-Carbon, Inc. The resulting material had average pore sizes ranging from 5 to 8 . These powders were used in two experiments conducted by researchers involved in the Energy Frontier Research Center Directed by David J. Wesolowski at ORNL, the Fluid Interface Reactions, Structures and Transport (FIRST) Center. FIRST-funded researchers at Drexel University collaborated with scientists at the Paul Scherrer Institute, Switzerland, to measure the expansion and contraction of the microporous carbon particles during charging and discharging of supercapactor electrodes composed of these particles (Hantell et al., 2011, Electrochemistry Communications, v. 13, pp. 1221-1224.) in an electrolyte composed of tetraethylammonium tetrafluoroborate dissolved in acetonitrile. In the second experiment, researchers at Oak Ridge National Laboratory and Drexel University conducted quasielastic neutron scattering studies of the diffusional dynamics of water imbibed into the micropores of the same material (Chathoth et al., 2011, EuroPhysics Journal, v. 95, pp. 56001/1-6). These studies helped to establish the role of pores approaching the size of the solvent and dissolved ions in altering diffusional dynamics, ion transport and physical response of conducting substrates to ion desolvation and entry into subnamometer pores.

  14. Morphological, structural, and chemical effects in response of novel carbide derived carbon sensor to NH3, N2O, and air.

    PubMed

    Adu, Kofi W; Li, Qixiu; Desai, Sharvil C; Sidorov, Anton N; Sumanasekera, Gamini U; Lueking, Angela D

    2009-01-06

    The response of two carbide derived carbons (CDCs) films to NH(3), N(2)O, and room air is investigated by four probe resistance at room temperature and pressures up to 760 Torr. The two CDC films were synthesized at 600 (CDC-600) and 1000 degrees C (CDC-1000) to vary the carbon morphology from completely amorphous to more ordered, and determine the role of structure, surface area, and porosity on sensor response. Sensor response time followed kinetic diameter and indicated a more ordered carbon structure slowed response due to increased tortuosity caused by the formation of graphitic layers at the particle fringe. Steady state sensor response was greater for the less-ordered material, despite its decreased surface area, decreased micropore volume, and less favorable surface chemistry, suggesting carbon structure is a stronger predictor of sensor response than surface chemistry. The lack of correlation between adsorption of the probe gases and sensor response suggests chemical interaction (charge transfer) drive sensor response within the material; N(2)O response, in particular, did not follow simple adsorption behavior. Based on Raman and FTIR characterization, carbon morphology (disorder) appeared to be the determining factor in overall sensor response, likely due to increased charge transfer between gases and carbon defects of amorphous or disordered regions. The response of the amorphous CDC-600 film to NH(3) was 45% without prior oxidation, showing amorphous CDCs have promise as chemical sensors without additional pretreatment common to other carbon sensors.

  15. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films.

    SciTech Connect

    Erdemir, A.; Kovalchenko, A.; McNallan, M. J.; Welz, S.; Lee, A.; Gogotsi, Y.; Carroll, B.; Energy Technology; Univ. of Illinois; Drexel Univ.

    2004-01-01

    In this study, we investigated the effects of a high-temperature hydrogenation treatment on the sliding friction and wear behavior of nanostructured carbide-derived carbon (CDC) films in dry nitrogen and humid air environments. These films are produced on the surfaces of silicon carbide substrates by reacting the carbide phase with chlorine or chlorine-hydrogen gas mixtures at 1000 to 1100 C in a sealed tube furnace. The typical friction coefficients of CDC films in open air are in the range of 0.2 to 0.25, but in dry nitrogen, the friction coefficients are 0.15. In an effort to achieve lower friction on CDC films, we developed and used a special hydrogenation process that was proven to be very effective in lowering friction of CDC films produced on SiC substrates. Specifically, the films that were post-hydrogen-treated exhibited friction coefficients as low as 0.03 in dry nitrogen, while the friction coefficients in humid air were 0.2. The wear of Si{sub 3}N{sub 4} counterface balls was hard to measure after the tests, while shallow wear tracks had formed on CDC films on SiC disks. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and these findings were correlated with the friction and wear behaviors of as-produced and hydrogen-treated CDC films.

  16. Replacing Chlorine with Hydrogen Chloride as a Possible Reactant for Synthesis of Titanium Carbide Derived Carbon Powders for High-Technology Devices

    NASA Astrophysics Data System (ADS)

    Tallo, Indrek; Thomberg, Thomas; Jänes, Alar; Lust, Enn

    2013-12-01

    Micro- and mesoporous carbide-derived carbons were synthesized from titanium carbide (TiC) powder via gas phase reaction by using different reactants (Cl2 and HCl) within the temperature range from 700 to 1100 °C. Analysis of XRD results show that TiC-derived carbons (TiC-CDC) consist mainly of graphitic crystallites. The first-order Raman spectra showed the graphite-like absorption peaks at ~1577 cm1 and the disorder-induced peaks at ~1338 cm-1. The energy-related properties of supercapacitors based on 1 M (C2H5)3CH3NBF4 in acetonitrile and carbide-derived carbons (TiC-CDC (Cl2) and TiC-CDC (HCl)) as electrode materials were also investigated using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge and constant power methods. The Ragone plots for carbide-derived carbons prepared by using different reactants (Cl2, HCl) are quite similar and at high power loads TiC-CDC (Cl2) material synthesized at 900 °C, i.e. materials with optimal porous structure, deliver higher power at constant energy.

  17. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.

    PubMed

    Rose, Marcus; Korenblit, Yair; Kockrick, Emanuel; Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan; Yushin, Gleb

    2011-04-18

    Ordered mesoporous carbide-derived carbon (OM-CDC) materials produced by nanocasting of ordered mesoporous silica templates are characterized by a bimodal pore size distribution with a high ratio of micropores. The micropores result in outstanding adsorption capacities and the well-defined mesopores facilitate enhanced kinetics in adsorption processes. Here, for the first time, a systematic study is presented, in which the effects of synthesis temperature on the electrochemical performance of these materials in supercapacitors based on a 1 M aqueous solution of sulfuric acid and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid are reported. Cyclic voltammetry shows the specific capacitance of the OM-CDC materials exceeds 200 F g(-1) in the aqueous electrolyte and 185 F g(-1) in the ionic liquid, when measured in a symmetric configuration in voltage ranges of up to 0.6 and 2 V, respectively. The ordered mesoporous channels in the produced OM-CDC materials serve as ion-highways and allow for very fast ionic transport into the bulk of the OM-CDC particles. At room temperature the enhanced ion transport leads to 75% and 90% of the capacitance retention at current densities in excess of ∼10 A g(-1) in ionic liquid and aqueous electrolytes, respectively. The supercapacitors based on 250-300 μm OM-CDC electrodes demonstrate an operating frequency of up to 7 Hz in aqueous electrolyte. The combination of high specific capacitance and outstanding rate capabilities of the OM-CDC materials is unmatched by state-of-the art activated carbons and strictly microporous CDC materials.

  18. Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in Silicon Carbide-Derived Nanoporous Carbon

    PubMed Central

    2015-01-01

    We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2–3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC. PMID:24932319

  19. Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in Silicon Carbide-Derived Nanoporous Carbon.

    PubMed

    Farmahini, Amir H; Shahtalebi, Ali; Jobic, Hervé; Bhatia, Suresh K

    2014-06-05

    We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2-3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC.

  20. TiC-carbide derived carbon electrolyte adsorption study by ways of X-ray scattering analysis.

    PubMed

    Trognko, Lorie; Lecante, Pierre; Ratel-Ramond, Nicolas; Rozier, Patrick; Daffos, Barbara; Taberna, Pierre-Louis; Simon, Patrice

    Understanding ion adsorption in nanoporous carbon electrodes is of great importance for designing the next-generation of high energy density electrical double-layer capacitors. In this work, X-ray scattering is used for investigating the impregnation of nanoporous carbons with electrolytes in the absence of applied potential. We are able to show that interactions between the carbon surface and electrolytes allow adsorption to take place in sub-nanopores, thus confirming experimentally for the first time the results predicted by molecular dynamic simulations.

  1. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene

    NASA Astrophysics Data System (ADS)

    Li, Xingyun; Pan, Xiulian; Yu, Liang; Ren, Pengju; Wu, Xing; Sun, Litao; Jiao, Feng; Bao, Xinhe

    2014-04-01

    Acetylene hydrochlorination is an important coal-based technology for the industrial production of vinyl chloride, however it is plagued by the toxicity of the mercury chloride catalyst. Therefore extensive efforts have been made to explore alternative catalysts with various metals. Here we report that a nanocomposite of nitrogen-doped carbon derived from silicon carbide activates acetylene directly for hydrochlorination in the absence of additional metal species. The catalyst delivers stable performance during a 150 hour test with acetylene conversion reaching 80% and vinyl chloride selectivity over 98% at 200 °C. Experimental studies and theoretical simulations reveal that the carbon atoms bonded with pyrrolic nitrogen atoms are the active sites. This proof-of-concept study demonstrates that such a nanocomposite is a potential substitute for mercury while further work is still necessary to bring this to the industrial stage. Furthermore, the finding also provides guidance for design of carbon-based catalysts for activation of other alkynes.

  2. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Liping; Wang, Ying; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie; Guo, Jia

    Calcium carbide (CaC 2)-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N 2 sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g -1 measured by cyclic voltammetry at 1 mV s -1. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles.

  3. Lithium-ion capacitors using carbide-derived carbon as the positive electrode - A comparison of cells with graphite and Li4Ti5O12 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Rauhala, Taina; Leis, Jaan; Kallio, Tanja; Vuorilehto, Kai

    2016-11-01

    The use of carbide-derived carbon (CDC) as the positive electrode material for lithium-ion capacitors (LICs) is investigated. CDC based LIC cells are studied utilizing two different negative electrode materials: graphite and lithium titanate Li4Ti5O12 (LTO). The graphite electrodes are prelithiated before assembling the LICs, and LTO containing cells are studied with and without prelithiation. The rate capability and cycle life stability during 1000 cycles are evaluated by galvanostatic cycling at current densities of 0.4-4 mA cm-2. The CDC shows a specific capacitance of 120 F g-1 in the organic lithium-containing electrolyte, and the LICs demonstrate a good stability over 1000 charge-discharge cycles. The choice of the negative electrode is found to have an effect on the utilization of the CDC positive electrode during cycling and on the specific energy of the device. The graphite/CDC cell delivers a maximum specific discharge energy of 90 Wh kg-1 based on the total mass of active material in the cell. Both the prelithiated and non-prelithiated LTO/CDC cells show a specific energy of around 30 Wh kg-1.

  4. Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes

    DTIC Science & Technology

    2012-03-01

    carbons , carbon onions and carbon nanotubes , used in lithium-ion battery electrodes can exhibit a much higher specific...SUBJECT TERMS Lithium-Ion Batteries, Amorphous Carbon , Carbide-Derived Carbon , Carbon Onions, Carbon Nanotubes , Multi-Walled Carbon Nanotubes 15. NUMBER...nanomaterials, such as carbide-derived carbons , carbon onions and carbon nanotubes , used in lithium-ion battery electrodes can exhibit a much

  5. Development of Nanoporous Carbide-Derived Carbon Electrodes for High-Performance Lithium-Ion Batteries

    DTIC Science & Technology

    2011-09-01

    electrodes, respectively [4]. Anode and cathode are electrically isolated by an ion-conducting microporous polyethylene (PE) or polypropylene (PP...form especially stable SEI layers that consume only a minimum amount of lithium [2]. Thin microporous polymer films , usually 10 to 30 µm in thickness...electrolyte [2]. Commercial microporous separators are made of polyolefins such as polyethylene, polypropylene , or laminates of both. The pore size of

  6. Organic Carbon Storage in China's Urban Areas

    PubMed Central

    Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy

    2013-01-01

    China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014

  7. High surface area carbon and process for its production

    DOEpatents

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  8. Electrochemical capacitors utilizing low surface area carbon fiber

    SciTech Connect

    Lipka, S.M.

    1997-12-01

    The performance of electrochemical capacitors containing different commercial carbon fibers is reviewed. High specific capacitances (ca. 300 F/g) are obtained with low surface area carbon fiber (<1 m2/g) using a proprietary activation process. Capacitance is primarily achieved through pseudocapacitance resulting from surface functional groups. The performance of these devices is dependent on the type of carbon fiber, its carbon content, aspect ratio and microstructure. These devices can achieve high cycle life (ca. 100k) without significant loss in capacitance.

  9. Implications of urban structure on carbon consumption in metropolitan areas

    NASA Astrophysics Data System (ADS)

    Heinonen, Jukka; Junnila, Seppo

    2011-01-01

    Urban structure influences directly or indirectly the majority of all green house gas (GHG) emissions in cities. The prevailing belief is that dense metropolitan areas produce less carbon emissions on a per capita basis than less dense surrounding rural areas. Consequently, density targets have a major role in low-carbon urban developments. However, based on the results of this study, the connection seems unclear or even nonexistent when comprehensive evaluation is made. In this letter, we propose a hybrid life cycle assessment (LCA) method for calculating the consumption-based carbon footprints in metropolitan areas, i.e. carbon consumption, with the emphasis on urban structures. The method is input-output-based hybrid LCA, which operates with the existing data from the region. The study is conducted by performing an analysis of the carbon consumption in two metropolitan areas in Finland, including 11 cities. Both areas consist of a dense city core and a less dense surrounding suburban area. The paper will illustrate that the influence of urban density on carbon emissions is insignificant in the selected metropolitan areas. In addition, the utilized consumption-based method links the climate effects of city-level development to the global production of emissions.

  10. Carbon benefits from protected areas in the conterminous United States

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2013-01-01

    Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land...

  11. Activated carbon testing for the 200 area effluent treatment facility

    SciTech Connect

    Wagner, R.N.

    1997-01-17

    This report documents pilot and laboratory scale testing of activated carbon for use in the 200 Area Effluent Treatment Facility peroxide decomposer columns. Recommendations are made concerning column operating conditions and hardware design, the optimum type of carbon for use in the plant, and possible further studies.

  12. Military installation sequestered more carbon than surrounding areas

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Liu, S.; Li, Z.; Sohl, T.

    2008-12-01

    Land use activities greatly affect the temporal trends and spatial patterns of regional land-atmospheric exchange of carbon. Military installations generally have drastically different land management strategies from surrounding areas, and the carbon consequences have never been quantified and assessed. Here, we used the General Ensemble Biogeochemical Modeling System (GEMS) to simulate and compare ecosystem carbon dynamics between Fort Benning and surrounding areas from 1992 to 2050. GEMS was driven by unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes (predicted by FOREcasting SCEnarios of land cover change (FORE-SCE)). Our results indicated that the military installation sequestered more carbon than surrounding areas (0.77 vs. 0.16 Mg C ha-1 y-1 averaged from 1992 to 2007). Differences in land use activities were the primary cause behind the difference in carbon sequestration rates. From 1992 to 2007, no urban/residential expansion occurred at the installation, and transitional barren (primarily caused by forest harvesting) slightly increased from 0 to 0.2%. In contrast, urban land increased from 5.6 to 7.6% and transitional barren increased from 0.1 to 0.7% in the surrounding areas. Live biomass accumulation accounted for most of the carbon sink in both Fort Benning and surrounding areas (0.75 vs. 0.15 Mg C ha-1 y-1), while soil organic carbon accumulation was small (0.02 vs. 0.01 Mg C ha- 1 y-1), suggesting biomass removal caused by urbanization and harvesting resulted in much less carbon sequestration in surrounding areas. Fort Benning is likely to sequester more carbon in the future, although the rate of carbon sequestered per year will gradually reduce. The future carbon source/sink strength in the surrounding areas varied greatly, from a small sink to a strong source, depending on the path of land use change (e.g., increase of clear

  13. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  14. Carbon benefits from protected areas in the conterminous United States

    PubMed Central

    2013-01-01

    Background Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 km2/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=1012 g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 km2/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there

  15. Basal area growth, carbon isotope discrimination, and intrinsic ...

    EPA Pesticide Factsheets

    Many hectares of intensively managed Douglas-fir (Pseudotsuga menziesii Mirb. Franco) stands in western North America are fertilized with nitrogen to increase growth rates. Understanding the mechanisms of response facilitates prioritization of stands for treatment. The objective of this study was to test the hypothesis that the short-term basal area growth response to a single application of 224 kg N ha-1 as urea was associated with reduced stable carbon isotope discrimination (∆13C) and increased intrinsic water use efficiency (iWUE) in a 20-yr-old plantation of Douglas-fir in the Oregon Coast Range, USA. Increment cores were measured to estimate earlywood, latewood, and total basal area increment over a time series from 1997 to 2015. Stable carbon isotope discrimination and iWUE were estimated using earlywood and latewood stable carbon isotope concentrations in tree-ring holocellulose starting seven years before fertilization in early 2009 and ending seven years after treatment. A highly significant interaction effect between fertilization treatment and year was found for total basal area growth and earlywood basal area increment. Fertilized trees showed significant total basal area growth and earlywood basal area increment in the first (2009) and second (2010) growing seasons after fertilization in 2009. A marginally significant fertilization effect was found for latewood basal area increment only in the first growing season after treatment. A significant i

  16. Basal area growth, carbon isotope discrimination, and intrinsic ...

    EPA Pesticide Factsheets

    Many hectares of intensively managed Douglas-fir (Pseudotsuga menziesii Mirb. Franco) stands in western North America are fertilized with nitrogen to increase growth rates. Understanding the mechanisms of response facilitates prioritization of stands for treatment. The objective of this study was to test the hypothesis that the short-term basal area growth response to a single application of 224 kg N ha-1 as urea was associated with reduced stable carbon isotope discrimination (∆13C) and increased intrinsic water use efficiency (iWUE) in a 20-yr-old plantation of Douglas-fir in the Oregon Coast Range, USA. Increment cores were measured to estimate earlywood, latewood, and total basal area increment over a time series from 1997 to 2015. Stable carbon isotope discrimination and iWUE were estimated using earlywood and latewood stable carbon isotope concentrations in tree-ring holocellulose starting seven years before fertilization in early 2009 and ending seven years after treatment. A highly significant interaction effect between fertilization treatment and year was found for total basal area growth and earlywood basal area increment. Fertilized trees showed significant total basal area growth and earlywood basal area increment in the first (2009) and second (2010) growing seasons after fertilization in 2009. A marginally significant fertilization effect was found for latewood basal area increment only in the first growing season after treatment. A significant i

  17. Carbon Sequestration in Reforested Areas in China Since 1970

    NASA Astrophysics Data System (ADS)

    Chen, J.; Liu, J.; Wang, S.; Sun, R.; Shi, X.; Tian, Q.; Xue, J.; Pan, J.; Kang, E.; Zhu, Q.; Zhou, Y.; Yang, L.; Liu, G.; Chen, M.; Thomas, S.; Bryan, R.; Yin, Y.; MacLaren, V.; Zhou, S.; Feng, X.; Wang, C.; Pan, J.

    2004-05-01

    Since July 2002, a 3-year Canada-China joint project was funded by the Canadian International Development Agency and the Chinese Academy of Sciences to assess the current status of China's forests and the impacts of forestry activities on carbon sequestration. From 1973 to 2001, China's total forested area increased from 122 Mha to 159 Mha, owing to large-scale reforestations for the main purpose of soil erosion control. In this project, four local forest sites in Changbaishan, Heihe, Liping and Xingguo in various regions are chosen for intensive assessments of forest and soil stocks. Ground-based measurements of leaf area index (LAI), net primary productivity (NPP), soil texture, vegetation and soil carbon stocks are used to calibrate models. High-resolution remote sensing images from ASTER and ETM are used to map LAI and NPP of these sites and for upscaling to the whole China based on MODIS and VEGETATION images. Remote sensing techniques and carbon cycle models (BEPS, InTEC) developed in Canada are being adapted to China's ecosystems. Preliminary results suggest that new reforested areas since 1970 are now actively sequester carbon, making the overall forested area as a carbon sink in the last few decades. Efforts are being made to reduce uncertainties in the estimation through incorporating new nation-wide datasets of forest age, soil texture and organic matter, nitrogen deposition, etc. At Changbaishan, Liping and Heihe, integrated assessments are being conducted to investigate the impacts of reforestation (Grain-to-Green) programs on the social and economic status of farmers as well as the ecological environment and land use options to maximize carbon sequestraton.

  18. A unique carbon with a high specific surface area produced by the carbonization of agar in the presence of graphene.

    PubMed

    Xie, Tingting; Lv, Wei; Wei, Wei; Li, Zhengjie; Li, Baohua; Kang, Feiyu; Yang, Quan-Hong

    2013-11-14

    A unique carbon with a high specific surface area was prepared by carbonization of a polymer-based precursor, agar, in the presence of graphene. Graphene prevents the shrinkage and aggregation of the carbonized particles, resulting in extraordinarily large external surface area (∼1200 m(2) g(-1)) of the carbon, which shows a high rate performance as a supercapacitor electrode.

  19. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC.

  20. Carbon Nanotube (CNT) Honeycomb Cell Area-Dependent Optical Reflectance

    PubMed Central

    Udorn, Junthorn; Hatta, Akimitsu; Furuta, Hiroshi

    2016-01-01

    The relationship between the physical structure of carbon nanotube (CNT) honeycomb structures and their total, diffuse, and specular reflectance is investigated for the first time. It is found that CNT honeycomb structures with average cell areas of smaller than 30 μm2 show a higher total reflectance. Particularly, a thinner, highly packed CNT (buckypaper) film, along with a larger wall height and higher ratio of wall height to cell area, markedly increase the total reflectance for cell areas smaller than 30 μm2, which means that a higher total area of buckypapers in CNT walls and bottom areas increases the total reflectance, including the diffuse reflectance. It is also found that the total reflection of non-absorbed light in CNT honeycomb structures consists primarily of diffuse reflectance. PMID:28335330

  1. Valuing blue carbon: carbon sequestration benefits provided by the marine protected areas in Colombia.

    PubMed

    Zarate-Barrera, Tatiana G; Maldonado, Jorge H

    2015-01-01

    Marine protected areas are aimed to protect and conserve key ecosystems for the provision of a number of ecosystem services that are the basis for numerous economic activities. Among the several services that these areas provide, the capacity of sequestering (capturing and storing) organic carbon is a regulating service, provided mainly by mangroves and seagrasses, that gains importance as alternatives for mitigating global warming become a priority in the international agenda. The objective of this study is to value the services associated with the capture and storage of oceanic carbon, known as Blue Carbon, provided by a new network of marine protected areas in Colombia. We approach the monetary value associated to these services through the simulation of a hypothetical market for oceanic carbon. To do that, we construct a benefit function that considers the capacity of mangroves and seagrasses for capturing and storing blue carbon, and simulate scenarios for the variation of key variables such as the market carbon price, the discount rate, the natural rate of loss of the ecosystems, and the expectations about the post-Kyoto negotiations. The results indicate that the expected benefits associated to carbon capture and storage provided by these ecosystems are substantial but highly dependent on the expectations in terms of the negotiations surrounding the extension of the Kyoto Protocol and the dynamics of the carbon credit's demand and supply. We also find that the natural loss rate of these ecosystems does not seem to have a significant effect on the annual value of the benefits. This approach constitutes one of the first attempts to value blue carbon as one of the services provided by conservation.

  2. Valuing Blue Carbon: Carbon Sequestration Benefits Provided by the Marine Protected Areas in Colombia

    PubMed Central

    2015-01-01

    Marine protected areas are aimed to protect and conserve key ecosystems for the provision of a number of ecosystem services that are the basis for numerous economic activities. Among the several services that these areas provide, the capacity of sequestering (capturing and storing) organic carbon is a regulating service, provided mainly by mangroves and seagrasses, that gains importance as alternatives for mitigating global warming become a priority in the international agenda. The objective of this study is to value the services associated with the capture and storage of oceanic carbon, known as Blue Carbon, provided by a new network of marine protected areas in Colombia. We approach the monetary value associated to these services through the simulation of a hypothetical market for oceanic carbon. To do that, we construct a benefit function that considers the capacity of mangroves and seagrasses for capturing and storing blue carbon, and simulate scenarios for the variation of key variables such as the market carbon price, the discount rate, the natural rate of loss of the ecosystems, and the expectations about the post-Kyoto negotiations. The results indicate that the expected benefits associated to carbon capture and storage provided by these ecosystems are substantial but highly dependent on the expectations in terms of the negotiations surrounding the extension of the Kyoto Protocol and the dynamics of the carbon credit’s demand and supply. We also find that the natural loss rate of these ecosystems does not seem to have a significant effect on the annual value of the benefits. This approach constitutes one of the first attempts to value blue carbon as one of the services provided by conservation. PMID:26018814

  3. Area and Carbon Content of Sphagnum Since Last Glacial Maximum

    DOE Data Explorer

    Gajewski, K. [University of Ottawa, Ottawa, Ontario (Canada); Viau, A. [University of Ottawa, Ottawa, Ontario (Canada); Sawada, M. [University of Ottawa, Ottawa, Ontario (Canada); Atkinson, D. [University of Ottawa, Ottawa, Ontario (Canada); Wilson, S. [University of Ottawa, Ottawa, Ontario (Canada)

    2002-01-01

    The distribution and abundance of Sphagnum spores in North America and Eurasia are mapped for the past 21ka, as described in Gajewski et al. (2002). In summary, spore data were taken from existing pollen data bases, as were radiocarbon chronologies. The abundance of Sphagnum spores was mapped at 2000-year intervals beginning 21000 years BP (before present). The present-day distribution of abundant Sphagnum spores corresponds closely to areas with peatland development, with maximum Sphagnum abundance between 630 and 1300 mm annual precipitation and between -2° and 60°C mean annual air temperature. Carbon content of peatlands was generated from estimated peatland area, calculated values of peat thickness, and specified values of bulk density (112 × 103 g m-3) and fraction of carbon (51.7%).

  4. Triassic carbonate rocks in the Phatthalung area, Peninsular Thailand

    NASA Astrophysics Data System (ADS)

    Ampornmaha, Apsorn

    Carbonate rocks in the Phatthalung area and others in Peninsular Thailand have been known as the Permian Rat Buri Limestone. The study area is characterized by several isolated limestone mountains and is located in Phatthalung province. Micropaleontological study of these carbonate rocks indicates that they should be assigned a late Early to Late Triassic age. The Chaiburi Formation is newly proposed and divided into three members: the Phukhaothong Dolomite, Chiak Limestone and Phanomwang Limestone in ascending order. The Phukhaothong Dolomite consists of thickly bedded to massive dolomite and yields Neospathodus kummeli Sweet, N. waageni Sweet, N. cfr. waageni Sweet and other conodonts that indicate Dienerian to Smithian (Early Triassic). The Chiak Limestone Member consists of bedded and laminated limestone with intercalated thin chert layers and nodules. This limestone commonly yields Early Triassic to Middle Triassic conodonts such as Neospathodus timorensis (Nogami) and Neospathodus kockeli (Tatge), both reliable indicators of latest Spathian to early Anisian, and rare occurrences of Neogondolella bulgarica (Budurov and Stefanov), an indicator of the middle Anisian. The Phanomwang Limestone Member is mostly massive limestone with intercalated reef limestone (coral buildups) and yields abundant fossils that indicate Carnian (Late Triassic). Microfacies analysis and stratigraphic sequences of carbonate rocks in this area show the gradual change of depositional environment from low to high energy conditions.

  5. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  6. High surface area silicon carbide-coated carbon aerogel

    DOEpatents

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  7. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE PAGES

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; ...

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy coversmore » various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.« less

  8. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    SciTech Connect

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  9. Diagnosing black carbon trends in large urban areas using carbon monoxide measurements

    NASA Astrophysics Data System (ADS)

    Baumgardner, Darrel; Raga, G.; Peralta, O.; Rosas, I.; Castro, T.; Kuhlbusch, T.; John, A.; Petzold, A.

    2002-11-01

    The relationship between black carbon (BC) and carbon monoxide (CO) has been analyzed using measurements from two sites in Mexico City and five urban areas in Germany. The correlation coefficient between BC and CO is greater than 0.90 for all sites. The average slope of the linear regression line for BC versus CO is 2.2 μg mg-1 for German sites and 1.1 μg mg-1 in Mexico City. The most important factors that affect the BC to CO relationship appear to be the ratio of diesel to gasoline usage and the combustion efficiency of vehicles in a particular area. The results of this analysis suggest that CO measurements in urban areas can be used to estimate BC mass when direct measurements are not available.

  10. Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks.

    PubMed

    Kuchta, Bogdan; Firlej, Lucyna; Mohammadhosseini, Ali; Boulet, Pascal; Beckner, Matthew; Romanos, Jimmy; Pfeifer, Peter

    2012-09-12

    A class of high-surface-area carbon hypothetical structures has been investigated that goes beyond the traditional model of parallel graphene sheets hosting layers of physisorbed hydrogen in slit-shaped pores of variable width. The investigation focuses on structures with locally planar units (unbounded or bounded fragments of graphene sheets), and variable ratios of in-plane to edge atoms. Adsorption of molecular hydrogen on these structures was studied by performing grand canonical Monte Carlo simulations with appropriately chosen adsorbent-adsorbate interaction potentials. The interaction models were tested by comparing simulated adsorption isotherms with experimental isotherms on a high-performance activated carbon with well-defined pore structure (approximately bimodal pore-size distribution), and remarkable agreement between computed and experimental isotherms was obtained, both for gravimetric excess adsorption and for gravimetric storage capacity. From this analysis and the simulations performed on the new structures, a rich spectrum of relationships between structural characteristics of carbons and ensuing hydrogen adsorption (structure-function relationships) emerges: (i) Storage capacities higher than in slit-shaped pores can be obtained by fragmentation/truncation of graphene sheets, which creates surface areas exceeding of 2600 m(2)/g, the maximum surface area for infinite graphene sheets, carried mainly by edge sites; we call the resulting structures open carbon frameworks (OCF). (ii) For OCFs with a ratio of in-plane to edge sites ≈1 and surface areas 3800-6500 m(2)/g, we found record maximum excess adsorption of 75-85 g of H(2)/kg of C at 77 K and record storage capacity of 100-260 g of H(2)/kg of C at 77 K and 100 bar. (iii) The adsorption in structures having large specific surface area built from small polycyclic aromatic hydrocarbons cannot be further increased because their energy of adsorption is low. (iv) Additional increase of hydrogen

  11. Ultra-stiff large-area carpets of carbon nanotubes.

    PubMed

    Meysami, Seyyed Shayan; Dallas, Panagiotis; Britton, Jude; Lozano, Juan G; Murdock, Adrian T; Ferraro, Claudio; Gutierrez, Eduardo Saiz; Rijnveld, Niek; Holdway, Philip; Porfyrakis, Kyriakos; Grobert, Nicole

    2016-06-09

    Herewith, we report the influence of post-synthesis heat treatment (≤2350 °C and plasma temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of free-standing large-area (several cm(2)) carpets of ultra-long (several mm) vertically aligned multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large quantities (20-30 g per batch) using a semi-scaled-up aerosol-assisted chemical vapour deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 2350 °C under inert atmosphere purifies, removes residual catalyst particles, and partially aligns adjacent single crystals (crystallites) in polycrystalline MWCNTs. The purification and improvement in the crystallites alignment within the MWCNTs resulted in reduced dispersibility of the VA-MWCNTs in liquid media. High-resolution microscopy revealed that the crystallinity is improved in scales of few tens of nanometres while the point defects remain largely unaffected. The heat treatment also had a marked benefit on the mechanical properties of the carpets. For the first time, we report compression moduli as high as 120 MPa for VA-MWCNT carpets, i.e. an order of magnitude higher than previously reported figures. The application of higher temperatures (arc-discharge plasma, ≥4000 °C) resulted in the formation of a novel graphite-matrix composite reinforced with CVD and arc-discharge-like carbon nanotubes.

  12. Not just graphene: The wonderful world of carbon and related nanomaterials

    SciTech Connect

    Gogotsi, Yury

    2015-11-27

    Carbon, with its variety of allotropes and forms, is the most versatile material, and virtually any combination of mechanical, optical, electrical, and chemical properties can be achieved with carbon by controlling its structure and surface chemistry. The goal of this article is to help readers appreciate the variety of carbon nanomaterials and to describe some engineering applications of the most important of these. Many different materials are needed to meet a variety of performance requirements, but they can all be built of carbon. Considering the example of supercapacitor electrodes, zero- and one-dimensional nanoparticles, such as carbon onions and nanotubes, respectively, deliver very high power because of fast ion sorption/desorption on their outer surfaces. Two-dimensional (2D) graphene offers higher charge/discharge rates than porous carbons and a high volumetric energy density. Three-dimensional porous activated, carbide-derived, and templated carbon networks, with high surface areas and porosities in the angstrom or nanometer range, can provide high energy densities if the pore size is matched with the electrolyte ion size. Finally, carbon-based nanostructures further expand the range of available nanomaterials: Recently discovered 2D transition-metal carbides (MXenes) have already grown into a family with close to 20 members in about four years and challenge graphene in some applications.

  13. Novel Carbon Films for Next Generation Rotating Equipment Applications

    SciTech Connect

    Michael McNallan; Ali Erdemir; Yury Gogotsi

    2006-02-20

    This report describes the results of research performed on a new generation of low friction, wear resistant carbon coatings for seals and bearings in high speed rotating equipment. The low friction coatings, Near Frictionless Carbon (NFC), a high hydrogen content diamondlike carbon, and Carbide Derived Carbon (CDC), a conversion coating produced on the surfaces of metal carbides by halogenation, can be applied together or separately to improve the performance of seals and bearings, with benefits to energy efficiency and environmental protection. Because hard carbide ceramics, such as silicon carbide, are widely used in the seals industry, this coating is particularly attractive as a low cost method to improve performance. The technology of CDC has been licensed to an Illinois company, Carbide Derivative Technologies, Inc. (CDTI) to implement the commercialization of this material.

  14. Ionic polymer metal composites with nanoporous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2010-04-01

    Ionic Polymer Metal Composites (IPMCs) are soft electroactive polymer materials that bend in response to the voltage stimulus (1 - 4 V). They can be used as actuators or sensors. In this paper, we introduce two new highly-porous carbon materials for assembling high specific area electrodes for IPMC actuators and compare their electromechanical performance with recently reported IPMCs based on RuO2 electrodes. We synthesize ionic liquid (Emi-Tf) actuators with either Carbide-Derived Carbon (CDC) (derived from TiC) or coconut shell based activated carbon electrodes. The carbon electrodes are applied onto ionic liquid-swollen Nafion membranes using the direct assembly process. Our results show that actuators assembled with CDC electrodes have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to >2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also revealed significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.

  15. Ultra-stiff large-area carpets of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Meysami, Seyyed Shayan; Dallas, Panagiotis; Britton, Jude; Lozano, Juan G.; Murdock, Adrian T.; Ferraro, Claudio; Gutierrez, Eduardo Saiz; Rijnveld, Niek; Holdway, Philip; Porfyrakis, Kyriakos; Grobert, Nicole

    2016-06-01

    Herewith, we report the influence of post-synthesis heat treatment (<=2350 °C and plasma temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of free-standing large-area (several cm2) carpets of ultra-long (several mm) vertically aligned multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large quantities (20-30 g per batch) using a semi-scaled-up aerosol-assisted chemical vapour deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 2350 °C under inert atmosphere purifies, removes residual catalyst particles, and partially aligns adjacent single crystals (crystallites) in polycrystalline MWCNTs. The purification and improvement in the crystallites alignment within the MWCNTs resulted in reduced dispersibility of the VA-MWCNTs in liquid media. High-resolution microscopy revealed that the crystallinity is improved in scales of few tens of nanometres while the point defects remain largely unaffected. The heat treatment also had a marked benefit on the mechanical properties of the carpets. For the first time, we report compression moduli as high as 120 MPa for VA-MWCNT carpets, i.e. an order of magnitude higher than previously reported figures. The application of higher temperatures (arc-discharge plasma, >=4000 °C) resulted in the formation of a novel graphite-matrix composite reinforced with CVD and arc-discharge-like carbon nanotubes.Herewith, we report the influence of post-synthesis heat treatment (<=2350 °C and plasma temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of free-standing large-area (several cm2) carpets of ultra-long (several mm) vertically aligned multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large quantities (20-30 g per batch) using a semi-scaled-up aerosol-assisted chemical vapour deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 2350 °C under

  16. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp2-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  17. Carbon savings resulting from the cooling effect of green areas: a case study in Beijing.

    PubMed

    Lin, Wenqi; Wu, Tinghai; Zhang, Chengguo; Yu, Ting

    2011-01-01

    Green areas cool the climate of a city, reduce the energy consumption caused by the urban heat island (UHI) effect, and bring along carbon savings. However, the calculation of carbon savings due to the cooling effect of green areas is still not well understood. We have used a Landsat Enhanced Thematic Mapper Plus (ETM+) image of Beijing, to identify the cooled areas, compute the possible energy used to maintain the temperature differences between cooled areas and their surrounding heated areas, and calculate the carbon savings owing to the avoidance of energy use. Results show that a total amount of 14315.37 tons carbon savings was achieved in the study area and the amount was related to the biomass, the size and the shape of green areas. These results demonstrate the importance of carbon savings resulting from green areas' cooling effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nanoporous carbon-based electrodes for high strain ionomeric bending actuators

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Kruusmaa, Maarja; Aabloo, Alvo

    2009-09-01

    Ionic polymer metal composites (IPMCs) are electroactive material devices that bend at low applied voltage (1-4 V). Inversely, a voltage is generated when the materials are deformed, which makes them useful both as sensors and actuators. In this paper, we propose two new highly porous carbon materials as electrodes for IPMC actuators, generating a high specific area, and compare their electromechanical performance with recently reported RuO2 electrodes and conventional IPMCs. Using a direct assembly process (DAP), we synthesize ionic liquid (Emi-Tf) actuators with either carbide-derived carbon (CDC) or coconut-shell-based activated carbon-based electrodes. The carbon electrodes were applied onto ionic liquid-swollen Nafion membranes using a direct assembly process. The study demonstrates that actuators based on carbon electrodes derived from TiC have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to>2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also exhibit significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.

  19. A critical knowledge pathway to low-carbon, sustainable futures: Integrated understanding of urbanization, urban areas, and carbon

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, Patricia; Gurney, Kevin R.; Seto, Karen C.; Chester, Mikhail; Duren, Riley M.; Hughes, Sara; Hutyra, Lucy R.; Marcotullio, Peter; Baker, Lawrence; Grimm, Nancy B.; Kennedy, Christopher; Larson, Elisabeth; Pincetl, Stephanie; Runfola, Dan; Sanchez, Landy; Shrestha, Gyami; Feddema, Johannes; Sarzynski, Andrea; Sperling, Joshua; Stokes, Eleanor

    2014-10-01

    Independent lines of research on urbanization, urban areas, and carbon have advanced our understanding of some of the processes through which energy and land uses affect carbon. This synthesis integrates some of these diverse viewpoints as a first step toward a coproduced, integrated framework for understanding urbanization, urban areas, and their relationships to carbon. It suggests the need for approaches that complement and combine the plethora of existing insights into interdisciplinary explorations of how different urbanization processes, and socio-ecological and technological components of urban areas, affect the spatial and temporal patterns of carbon emissions, differentially over time and within and across cities. It also calls for a more holistic approach to examining the carbon implications of urbanization and urban areas, based not only on demographics or income but also on other interconnected features of urban development pathways such as urban form, economic function, economic-growth policies, and other governance arrangements. It points to a wide array of uncertainties around the urbanization processes, their interactions with urban socio-institutional and built environment systems, and how these impact the exchange of carbon flows within and outside urban areas. We must also understand in turn how carbon feedbacks, including carbon impacts and potential impacts of climate change, can affect urbanization processes. Finally, the paper explores options, barriers, and limits to transitioning cities to low-carbon trajectories, and suggests the development of an end-to-end, coproduced and integrated scientific understanding that can more effectively inform the navigation of transitional journeys and the avoidance of obstacles along the way.

  20. Effect of high surface area activated carbon on thermal degradation of jet fuel

    SciTech Connect

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H.

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  1. Preparation of high surface area activated carbon from coconut shells using microwave heating.

    PubMed

    Yang, Kunbin; Peng, Jinhui; Srinivasakannan, C; Zhang, Libo; Xia, Hongying; Duan, Xinhui

    2010-08-01

    The present study attempts to utilize coconut shell to prepare activated carbon using agents such as steam, CO(2) and a mixture of steam-CO(2) with microwave heating. Experimental results show that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area in excess of 2000 m(2)/g. The activation time using microwave heating is very much shorter, while the yield of the activated carbon compares well with the conventional heating methods. The activated carbon prepared using CO(2) activation has the largest BET surface area, however the activation time is approximately 2.5 times higher than the activation using steam or mixture of steam-CO(2). The chemical structure of activated carbons examined using Fourier transformed infra-red spectra (FTIR) did not show any variation in the surface functional groups of the activated carbon prepared using different activation agents.

  2. Molecular simulation of electric double-layer capacitors based on carbon nanotube forests.

    PubMed

    Yang, Lu; Fishbine, Brian H; Migliori, Albert; Pratt, Lawrence R

    2009-09-02

    Described here are the first simulations of electric double-layer capacitors based on carbon nanotube forests modeled fully at a molecular level. The computations determine single-electrode capacitances in the neighborhood of 80 F/g, in agreement with experimental capacitances of electric double-layer capacitors utilizing carbon nanotube forests or carbide-derived carbons as electrode material. The capacitance increases modestly with the decrease of the pore size through radii greater than 1 nm, which is consistent with recent experiments on carbide-derived carbon electrodes. Because the various factors included in these simulations are precisely defined, these simulation data will help to disentangle distinct physical chemical factors that contribute to the performance of these materials, e.g., pore geometry, variable filling of the pores, pseudocapacitance, and electronic characteristics of the nanotubes.

  3. Soil Organic Carbon Change Monitored Over Large Areas

    SciTech Connect

    Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; Schumaker, Bonny L.; West, Tristram O.

    2010-11-23

    Soils account for the largest fraction of terrestrial carbon (C) and thus are critically important in determining global cycle dynamics. In North America, conversion of native prairies to agriculture over the past 150 years released 30- 50% of soil organic carbon (SOC) stores [Mann, 1986]. Improved agricultural practices could recover much of this SOC, storing it in biomass and soil and thereby sequestering billions of tons of atmospheric carbon dioxide (CO2). These practices involve increasing C inputs to soil (e.g., through crop rotation, higher biomass crops, and perennial crops) and decreasing losses (e.g., through reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007].

  4. Carbon balance of rewetted peatland forests in low mountain range areas, Germany

    NASA Astrophysics Data System (ADS)

    Krüger, Jan Paul; Dotterweich, Markus; Kopf, Christoph; Schüler, Gebhard; Scherzer, Jörg

    2017-04-01

    Peatland soils store a great proportion of the global soil carbon pool and are an important component of the global carbon cycle. Drainage of peatlands, for agricultural or forestry usage, leads to a loss of carbon from the soil to the atmosphere and the former carbon sink becomes a carbon source. Peatland rewetting has become a well applicable management tool to reduce the greenhouse gas emissions from peatland soils. However, the impact of rewetting on the carbon balance of drained peatland forest in low mountain range is rare. The aim of this project is to quantify the carbon balance of rewetted peatlands in the Hunsrück-Hochwald National Park. Worth protecting peatland's with forest called "Brücher" are characteristic of nature in the Hunsrück. Since the 19th century these peatlands have been drained by ditches for spruce forests. The survey of surface area of the peatlands is the first important part of the project. Furthermore, a peatland land register for the national park and adjacent areas will be developed. Based on peatland area and carbon stocks the carbon pools of different degradation stages of these peatland can be investigated. Furthermore, terrestrial laser scan data and geoelectrical measurements will be applied for estimating the carbon pool of the vegetation and the soil. This approach enables us to quantify the whole ecosystem carbon pool. A space-for-time substitution allows for a first estimation of the carbon balance of the rewetted peatlands in the Hunsrück-Hochwald National Park. The main aim of a comprehensive carbon balancing will be achieved based upon the peatland characteristics and upscaling of carbon stocks from peatlands with different restoration/degradation scenarios. Moreover, the obtained data will be used for a long-term carbon balance monitoring of the rewetted peatlands in this region.

  5. Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes.

    PubMed

    Yao, Yuanyuan; Ma, Cheng; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2015-03-04

    All-carbon-based carbon nanotube (CNT)/microporous carbon core-shell nanocomposites, in which a CNT as the core and high-surface-area microporous carbon as the shell, have been prepared by in situ resorcinol-formaldehyde resin coating of CNTs, followed by carbonization and controlled KOH activation. The obtained nanocomposites have very high Brunauer-Emmett-Teller surface areas (up to 1700 m(2)/g), narrow pore size distribution (<2 nm), and 1D tubular structure within a 3D entangled network. The thickness of the microporous carbon shell can be easily tuned from 20 to 215 nm by changing the carbon precursor/CNT mass ratio. In such a unique core-shell structure, the CNT core could mitigate the key issue related to the low electronic conductivity of microporous carbons. On the other hand, the 1D tubular structure with a short pore-pathway micropore as well as a 3D entangled network could increase the utilization degree of the overall porosity and improve the electrode kinetics. Thus, these CNT/microporous carbon core-shell nanocomposites exhibit a great potential as an electrode material for supercapacitors, which could deliver high specific capacitance of 237 F/g, excellent rate performance with 75% maintenance from 0.1 to 50 A/g, and high cyclability in H2SO4 electrolyte. Moreover, the precisely controlled microporous carbon shells may allow them to serve as excellent model systems for microporous carbons, in general, to illustrate the role of the pore length on the diffusion and kinetics inside the micropores.

  6. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11

    SciTech Connect

    Hao, Fei; Li, Li; Zhang, Xiaohua Chen, Jinhua

    2015-06-15

    Highlights: • Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were prepared from ZIF-11. • The activated N-PCMPs with fused KOH (N-PCMPs-A) have high specific surface area. • N-PCMPs-A exhibits high specific capacitance. • N-PCMPs-A reveals good cycling performance even at a high current density. - Abstract: Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were successfully prepared by direct carbonization of ZIF-11 polyhedra and further activated with fused KOH to obtain N-PCMPs-A. The morphology and microstructure of samples were examined by scanning electron microscopy, X-ray diffraction, and micropore and chemisorption analyzer. Electrochemical properties were characterized by cyclic voltammetry and galvanostatic charge/discharge method in 1.0 M H{sub 2}SO{sub 4} aqueous solution on a standard three-electrode system. Results show that, compared with N-PCMPs, N-PCMPs-A has higher specific surface area (2188 m{sup 2} g{sup −1}) and exhibits improved electrochemical capacitive properties (307 F g{sup −1} at 1.0 A g{sup −1}). The mass specific capacitance of N-PCMPs-A is also higher than that of most MOF-derived carbons, some carbide-derived carbons and carbon aerogel-derived carbons. In addition, the capacitance of the N-PCMPs-A retains 90% after 4000 cycles even at a high current density of 10 A g{sup −1}. These imply that N-PCMPs-A is the promising materials for the construction of a high-performance supercapacitor.

  7. Influence of Structure and Surface Chemistry of Porous Carbon Electrodes on Supercapacitor Performance

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris

    Electrochemical double layer capacitors, which rely on electrosorption of ions in nanostructured carbon electrodes, can supplement or even replace traditional batteries in energy harvesting and storage applications. While supercapacitors offer > 10 kW/kg power densities, their ~5 Wh/kg energy densities are insufficient for many automotive and grid storage applications. Most prior efforts have focused on novel high-performing ionic liquid electrolytes and porous carbons with tunable pore diameters and high specific surface areas. However, existing research lacks fundamental understanding of the influence of surface heterogeneity and disorder, such as graphitic defects and functional groups, on key electrosorption properties at electrode-electrolyte interfaces. These interactions significantly impact charge accumulation densities, ion transport mechanisms, and electrolyte breakdown processes. Subsequently, they must be investigated to optimize ion screening, charge mobilities, and operating voltage windows of the devices. The research in this dissertation examined the influence of surface functional groups and structural ordering on capacitance, electrosorption dynamics, and electrochemical stability of external and internal surface of carbon electrodes. High-temperature vacuum annealing, air oxidation, hydrogenation, and amination were used to tune pore surface compositions and decouple key structural and chemical properties of carbide-derived carbons. The approach combined materials characterization by a variety of techniques, neutron scattering studies of ion dynamics, electrochemical testing, and MD simulations to investigate the fundamental intermolecular interactions and dynamics of ions electrosorption in different pore architectures and on planar graphene surfaces. Contrary to expected results and existing theories, defect removal via defunctionalization and graphitization decreased capacitance. Hydrogenated surfaces benefitted electrosorption, while oxygen

  8. Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China

    PubMed Central

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223

  9. Carbon storages in plantation ecosystems in sand source areas of north Beijing, China.

    PubMed

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0-100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management.

  10. Potential drivers for soil carbon pools in residential areas in Auburn, Alabama

    USDA-ARS?s Scientific Manuscript database

    Metropolitan areas are expanding worldwide and residential zones are a major contributor. The turf ecosystems of residential yards can be highly productive and accumulate soil carbon undisturbed for decades. Because little is known about urban soil carbon (C) pools in the southeast, we performed thi...

  11. Methodology for large-area moderate-resolution monitoring of soil organic carbon change

    USDA-ARS?s Scientific Manuscript database

    Sequestration of carbon dioxide from the atmosphere into the soil helps to reduce global warming by greenhouse gases and helps to sustain the soil. Methods need to be developed to monitor changes in soil organic carbon over large areas such as the central United States. Direct measurements are acc...

  12. Properties that Influence the Specific Surface Areas of Carbon Nanotubes and Nanofibers

    PubMed Central

    BIRCH, M. EILEEN; RUDA-EBERENZ, TONI A.; CHAI, MING; ANDREWS, RONNEE; HATFIELD, RANDAL L.

    2015-01-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer–Emmett–Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed. PMID:24029925

  13. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.

    PubMed

    Birch, M Eileen; Ruda-Eberenz, Toni A; Chai, Ming; Andrews, Ronnee; Hatfield, Randal L

    2013-11-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.

  14. Synthesis of High-Surface-Area Nitrogen-Doped Porous Carbon Microflowers and Their Efficient Carbon Dioxide Capture Performance.

    PubMed

    Li, Yao; Cao, Minhua

    2015-07-01

    Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high-surface-area hierarchically porous N-doped carbon microflowers, which were assembled from porous nanosheets by a three-step route: soft-template-assisted self-assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure-directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N-doped carbon microflowers (A-NCF-4) have a hierarchically porous structure, high specific surface area (2309 m(2)  g(-1)), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm(3)  g(-1)). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g(-1) were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.

  15. Soil Organic Carbon Change Monitored Over Large Areas

    SciTech Connect

    Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; West, Tristram O.; Schumaker, Bonny L.

    2010-08-31

    Soils account for the largest fraction of terrestrial carbon (C); thus, they are critically important in determining global C cycle dynamics. In North America, conversion of native prairies to agricultural land use over 150 years ago released 30-50% of the soil organic carbon (SOC). Improved agricultural practices have the capacity to recover much of this SOC, storing it in biomass and soil and thereby removing billions of tons of atmospheric CO2. These practices involve increasing C inputs to soil (e.g., by crop rotations, increased use of higher biomass crops, perennial crops) and decreased losses (e.g., reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007]. Managing agricultural soils to increase SOC storage is a significant, immediately available, low-cost option for mitigating CO2 emissions, with a technical potential to offset as much as 800 Tg CO2/yr in the US (~13% of US CO2 emissions) [Lal et al., 2003] and 5000 Tg CO2/yr globally (~17% of global CO2 emissions) [Smith et al., 2007].

  16. Multi-factor controls on terrestrial carbon dynamics in urbanized areas

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.

    2014-12-01

    As urban land expands rapidly across the globe, much concern has been raised that urbanization may alter the terrestrial carbon cycle. Urbanization involves complex changes in land structure and multiple environmental factors. Little is known about the relative contribution of these individual factors and their interactions to the terrestrial carbon dynamics, however, which is essential for assessing the effectiveness of carbon sequestration policies focusing on urban development. This study developed a comprehensive analysis framework for quantifying relative contribution of individual factors (and their interactions) to terrestrial carbon dynamics in urbanized areas. We identified 15 factors belonging to five categories, and we applied a newly developed factorial analysis scheme to the southern United States (SUS), a rapidly urbanizing region. In all, 24 numeric experiments were designed to systematically isolate and quantify the relative contribution of individual factors. We found that the impact of land conversion was far larger than other factors. Urban managements and the overall interactive effects among major factors, however, created a carbon sink that compensated for 42% of the carbon loss in land conversion. Our findings provide valuable information for regional carbon management in the SUS: (1) it is preferable to preserve pre-urban carbon pools than to rely on the carbon sinks in urban ecosystems to compensate for the carbon loss in land conversion. (2) In forested areas, it is recommendable to improve landscape design (e.g., by arranging green spaces close to the city center) to maximize the urbanization-induced environmental change effect on carbon sequestration. Urbanization-induced environmental change will be less effective in shrubland regions. (3) Urban carbon sequestration can be significantly improved through changes in management practices, such as increased irrigation and fertilizer and targeted use of vehicles and machinery with least

  17. Particle characteristics in the reactor and pelletizing areas of carbon black production.

    PubMed

    Kuhlbusch, T A J; Fissan, H

    2006-10-01

    Physical and chemical characteristics of airborne particles (ultrafine, PM1, PM2.5, and PM10) in reactor and pelletizing areas during carbon black production were measured to assess process related sources of particles in work areas. Results from bagging areas within the same three facilities have been previously published. Particle number and mass concentration measurements were conducted in these work areas and at ambient comparison sites at each of the three carbon black plants. No elevated ultrafine particle number concentrations (UFP, <100 nm) with respect to ambient were determined in the work areas of Plant 1, intermittently elevated concentrations at Plant 2, and permanently elevated concentrations at Plant 3. The intermittently elevated UFP concentrations in the pelletizer and reactor areas of Plant 2 could be related to nearby traffic emissions. The ultrafine particle number concentrations at Plant 2 are comparable to those determined at urban traffic sites. Both work areas of Plant 3 showed elevated UFP concentrations in the pelletizer reactor and areas. In the case of the reactor, which was the only enclosed reactor area investigated among the three facilities, the source of the elevated UFP number concentration was most likely attributable to grease and oil fumes from maintenance activities, a conclusion supported by carbon fractionation analysis. The elevated UFP number concentrations in the pelletizing area in this same plant are related to leaks in the production line, which allowed particulate matter to escape to the surrounding areas. Absolute PM10 mass concentrations were all within normal ambient concentrations except for the pelletizing area in Plant 3, which showed continuous levels above ambient. One additional source contributing to peak level PM10 mass concentrations at Plant 2 was due to wind dispersion from a carbon black spill incident the day prior to measurements. It is concluded from these measurements that no carbon black is released

  18. High surface area porous carbons prepared from hydrochars by phosphoric acid activation.

    PubMed

    Wang, Lili; Guo, Yupeng; Zou, Bo; Rong, Chunguang; Ma, Xiaoyu; Qu, Yuning; Li, Ying; Wang, Zichen

    2011-01-01

    In the present work, a new route for preparation of high-performance porous carbons under mild conditions was reported. The high surface area (2700 m2/g) and large pore volume (1.98 cm3/g) porous carbons were prepared from hydrochars by conventional phosphoric acid activation method. The hydrochars described here can be obtained from sulfuric acid hydrolysis of rice husk via dehydration, polymerization and carbonization. A specific capacitance of 130 F g(-1) was achieved by using the porous carbon, indicating that the porous carbon prepared by this route has good electrochemical performance. Furthermore, the localized graphitic nature of the porous carbon was proved by X-ray diffraction pattern.

  19. High surface area activated carbon prepared from cassava peel by chemical activation.

    PubMed

    Sudaryanto, Y; Hartono, S B; Irawaty, W; Hindarso, H; Ismadji, S

    2006-03-01

    Cassava is one of the most important commodities in Indonesia, an agricultural country. Cassava is one of the primary foods in our country and usually used for traditional food, cake, etc. Cassava peel is an agricultural waste from the food and starch processing industries. In this study, this solid waste was used as the precursor for activated carbon preparation. The preparation process consisted of potassium hydroxide impregnation at different impregnation ratio followed by carbonization at 450-750 degrees C for 1-3 h. The results revealed that activation time gives no significant effect on the pore structure of activated carbon produced, however, the pore characteristic of carbon changes significantly with impregnation ratio and carbonization temperature. The maximum surface area and pore volume were obtained at impregnation ratio 5:2 and carbonization temperature 750 degrees C.

  20. Study of LiFePO 4 cathode materials coated with high surface area carbon

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Zhang; Fey, George Ting-Kuo; Kao, Hsien-Ming

    LiFePO 4 is a potential cathode material for 4 V lithium-ion batteries. Carbon-coated lithium iron phosphates were prepared using a high surface area carbon to react precursors through a solid-state process, during which LiFePO 4 particles were embedded in amorphous carbon. The carbonaceous materials were synthesized by the pyrolysis of peanut shells under argon, where they were carbonized in a two-step process that occurred between 573 and 873 K. The shells were also treated with a proprietary porogenic agent with the goal of altering the pore structure and surface area of the pyrolysis products. The electrochemical properties of the as-prepared LiFePO 4/C composite cathode materials were systematically characterized by X-ray diffraction, scanning electron microscope, element mapping, energy dispersive spectroscopy, Raman spectroscopy, and total organic carbon (TOC) analysis. In LiFePO 4/C composites, the carbon not only increases rate capability, but also stabilizes capacity. In fact, the capacity of the composites increased with the specific surface area of carbon. The best result was observed with a composite made of 8.0 wt.% with a specific surface area of 2099 m 2 g -1. When high surface area carbon was used as a carbon source to produce LiFePO 4, overall conductivity increased from 10 -8 to 10 -4 S cm -1, because the inhibition of particle growth during the final sintering process led to greater specific capacity, improved cycling properties and better rate capability compared to a pure olivine LiFePO 4 material.

  1. Wellfield strategy and recommendations for the 200 West Area carbon tetrachloride expedited response action

    SciTech Connect

    Rohay, V.J.

    1994-04-01

    On December 20, 1990, the US Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology) requested the US Department of Energy (DOE), Richland Field Office (RL) to proceed with the detailed planning, including nonintrusive field work, required to implement an Expedited Response Action (ERA) for removing carbon tetrachloride contamination in the unsaturated soils in the 200 West Area of the Hanford Site. The request was based on concerns that the carbon tetrachloride residing in the soils was continuing to spread to the groundwater and, if left unchecked, would significantly increase the area of groundwater contamination. The purpose of this ERA is to minimize carbon tetrachloride migration within the unsaturated zone beneath and,away from the carbon tetrachloride disposal sites in the 200 West Area.

  2. A small subset of protected areas are a highly significant source of carbon emissions

    PubMed Central

    Collins, Murray B.; Mitchard, Edward T. A.

    2017-01-01

    Protected areas (PAs) aim to protect multiple ecosystem services. However, not all are well protected. For the first time, using published carbon and forest loss maps, we estimate carbon emissions in large forest PAs in tropical countries (N = 2018). We found 36 ± 16 Pg C stored in PA trees, representing 14.5% of all tropical forest biomass carbon. However the PAs lost forest at a mean rate of 0.18% yr−1 from 2000–2012. Lower protection status areas experienced higher forest losses (e.g. 0.39% yr−1 in IUCN cat III), yet even highest status areas lost 0.13% yr−1 (IUCN Cat I). Emissions were not evenly distributed: 80% of emissions derived from 8.3% of PAs (112 ± 49.5 Tg CO2 yr−1; n = 171). Unsurprisingly the largest emissions derived from PAs that started with the greatest total forest area; accounting for starting forest area and relating that to carbon lost using a linear model (r2 = 0.41), we found 1.1% outlying PAs (residuals >2σ; N = 23), representing 1.3% of the total PA forest area, yet causing 27.3% of all PA emissions. These results suggest PAs have been a successful means of protecting biomass carbon, yet a subset causing a disproportionately high share of emissions should be an urgent priority for management interventions. PMID:28186155

  3. A small subset of protected areas are a highly significant source of carbon emissions

    NASA Astrophysics Data System (ADS)

    Collins, Murray B.; Mitchard, Edward T. A.

    2017-02-01

    Protected areas (PAs) aim to protect multiple ecosystem services. However, not all are well protected. For the first time, using published carbon and forest loss maps, we estimate carbon emissions in large forest PAs in tropical countries (N = 2018). We found 36 ± 16 Pg C stored in PA trees, representing 14.5% of all tropical forest biomass carbon. However the PAs lost forest at a mean rate of 0.18% yr‑1 from 2000–2012. Lower protection status areas experienced higher forest losses (e.g. 0.39% yr‑1 in IUCN cat III), yet even highest status areas lost 0.13% yr‑1 (IUCN Cat I). Emissions were not evenly distributed: 80% of emissions derived from 8.3% of PAs (112 ± 49.5 Tg CO2 yr‑1 n = 171). Unsurprisingly the largest emissions derived from PAs that started with the greatest total forest area; accounting for starting forest area and relating that to carbon lost using a linear model (r2 = 0.41), we found 1.1% outlying PAs (residuals >2σ N = 23), representing 1.3% of the total PA forest area, yet causing 27.3% of all PA emissions. These results suggest PAs have been a successful means of protecting biomass carbon, yet a subset causing a disproportionately high share of emissions should be an urgent priority for management interventions.

  4. A small subset of protected areas are a highly significant source of carbon emissions.

    PubMed

    Collins, Murray B; Mitchard, Edward T A

    2017-02-10

    Protected areas (PAs) aim to protect multiple ecosystem services. However, not all are well protected. For the first time, using published carbon and forest loss maps, we estimate carbon emissions in large forest PAs in tropical countries (N = 2018). We found 36 ± 16 Pg C stored in PA trees, representing 14.5% of all tropical forest biomass carbon. However the PAs lost forest at a mean rate of 0.18% yr(-1) from 2000-2012. Lower protection status areas experienced higher forest losses (e.g. 0.39% yr(-1) in IUCN cat III), yet even highest status areas lost 0.13% yr(-1) (IUCN Cat I). Emissions were not evenly distributed: 80% of emissions derived from 8.3% of PAs (112 ± 49.5 Tg CO2 yr(-1); n = 171). Unsurprisingly the largest emissions derived from PAs that started with the greatest total forest area; accounting for starting forest area and relating that to carbon lost using a linear model (r(2) = 0.41), we found 1.1% outlying PAs (residuals >2σ; N = 23), representing 1.3% of the total PA forest area, yet causing 27.3% of all PA emissions. These results suggest PAs have been a successful means of protecting biomass carbon, yet a subset causing a disproportionately high share of emissions should be an urgent priority for management interventions.

  5. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage

    PubMed Central

    Xu, Fei; Tang, Zhiwei; Huang, Siqi; Chen, Luyi; Liang, Yeru; Mai, Weicong; Zhong, Hui; Fu, Ruowen; Wu, Dingcai

    2015-01-01

    Exceptionally large surface area and well-defined nanostructure are both critical in the field of nanoporous carbons for challenging energy and environmental issues. The pursuit of ultrahigh surface area while maintaining definite nanostructure remains a formidable challenge because extensive creation of pores will undoubtedly give rise to the damage of nanostructures, especially below 100 nm. Here we report that high surface area of up to 3,022 m2 g−1 can be achieved for hollow carbon nanospheres with an outer diameter of 69 nm by a simple carbonization procedure with carefully selected carbon precursors and carbonization conditions. The tailor-made pore structure of hollow carbon nanospheres enables target-oriented applications, as exemplified by their enhanced adsorption capability towards organic vapours, and electrochemical performances as electrodes for supercapacitors and sulphur host materials for lithium–sulphur batteries. The facile approach may open the doors for preparation of highly porous carbons with desired nanostructure for numerous applications. PMID:26072734

  6. 40 CFR 51.241 - Nonattainment areas for carbon monoxide and ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and ozone. 51.241 Section 51.241 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Intergovernmental Consultation Agency Designation § 51.241 Nonattainment areas for carbon monoxide and ozone. (a... ozone will not be attained by July 1, 1979, the Governor (or Governors for interstate areas)...

  7. 40 CFR 51.241 - Nonattainment areas for carbon monoxide and ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and ozone. 51.241 Section 51.241 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Intergovernmental Consultation Agency Designation § 51.241 Nonattainment areas for carbon monoxide and ozone. (a... ozone will not be attained by July 1, 1979, the Governor (or Governors for interstate areas)...

  8. 40 CFR 51.241 - Nonattainment areas for carbon monoxide and ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and ozone. 51.241 Section 51.241 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Intergovernmental Consultation Agency Designation § 51.241 Nonattainment areas for carbon monoxide and ozone. (a... ozone will not be attained by July 1, 1979, the Governor (or Governors for interstate areas)...

  9. 40 CFR 51.241 - Nonattainment areas for carbon monoxide and ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and ozone. 51.241 Section 51.241 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Intergovernmental Consultation Agency Designation § 51.241 Nonattainment areas for carbon monoxide and ozone. (a... ozone will not be attained by July 1, 1979, the Governor (or Governors for interstate areas)...

  10. 40 CFR 51.241 - Nonattainment areas for carbon monoxide and ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and ozone. 51.241 Section 51.241 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Intergovernmental Consultation Agency Designation § 51.241 Nonattainment areas for carbon monoxide and ozone. (a... ozone will not be attained by July 1, 1979, the Governor (or Governors for interstate areas)...

  11. Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection

    EPA Science Inventory

    This study examines using the threshold critical pressure increase and the extent of the carbon dioxide (CO2) plume to delineate the area of potential impact (AoPI) for geologic CO2 storage projects. The combined area covering both the CO2 plume and the region where the pressure ...

  12. Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection

    EPA Science Inventory

    This study examines using the threshold critical pressure increase and the extent of the carbon dioxide (CO2) plume to delineate the area of potential impact (AoPI) for geologic CO2 storage projects. The combined area covering both the CO2 plume and the region where the pressure ...

  13. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    DOE PAGES

    To, John W. F.; Chen, Zheng; Yao, Hongbin; ...

    2015-05-18

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large poremore » volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.« less

  14. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    PubMed Central

    2015-01-01

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large pore volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications. PMID:27162953

  15. [Preparation, characterization and adsorption performance of high surface area biomass-based activated carbons].

    PubMed

    Li, Kun-Quan; Li, Ye; Zheng, Zheng; Sang, Da-Zhi

    2013-01-01

    High surface area activated carbons were prepared with Spartina alterniflora and cotton stalk as raw materials and KOH as activating agent. Effects of materials type, impregnation ratio, activation temperature and heat preservation time on the yield, elemental composition and adsorptive capacity of activated carbon were studied. The properties and pore structure of the carbons were characterized with nitrogen adsorption, powder X-ray diffractometry (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Main pore characteristics of activated carbons were analyzed by BET equation, Horvath-Kawazoe BET method and DFT method. The considerable preparation conditions are obtained as follows: impregnation ratio of 3: 1, an activation temperature of 800 degrees C and an activation time of 1.5 h. The BET surface area of activated carbon prepared from Spartina alterniflora reached 2 825 m2 x g(-1) when its total pore volume, yield, iodine number and methylene blue adsorption were 1.374 cm3 x g(-1), 16.36%, 1797 mg x g(-1) and 495 mg x g(-1) respectively under above conditions. The activated carbon from cotton stalk was prepared with BET surface area of 2 135 m2 x g(-1), total pore volume of 1.038 cm3 x g(-1), yield of 11.22%, methylene blue adsorption of 1 251 mg x g(-1), and iodine number of 478 mg x g(-1), respectively. The methylene blue adsorption and iodine number are much higher than the national first level for activated carbon. The Langmuir maximum adsorption capacities of 2,4-dinitrophenol on the two carbons were 932 mg x g(-1) and 747 mg x g(-1), respectively, which are superior to ordinary activated carbon and activated carbon fiber.

  16. Mineral resources of the Prospect Mountain Wilderness Study Area, Carbon County, Wyoming

    SciTech Connect

    du Bray, E.A.; Bankey, V.; Hill, R.H.; Ryan, G.S.

    1989-01-01

    The Prospect Mountain Wilderness Study Area is about 20 mi east-southeast of Encampment in Carbon County, Wyoming. This study area is underlain by middle Proterozoic gabbro, granite, and hornblende gneiss, which is locally cut by pegmatite dikes. There are no identified resources and no potential for undiscovered energy resources in this study area. Resource potential for all undiscovered metallic commodities and for industrial mineral is low.

  17. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Treesearch

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  18. Challenges for Reducing Emissions of Black Carbon from the Transport Sector in Urban Areas

    NASA Astrophysics Data System (ADS)

    Zavala, M. A.; Molina, L. T.

    2013-05-01

    The transport sector is a large contributor of harmful gaseous and particulate emissions in many urban areas. Black carbon is a component of short-lived particulate matter emitted predominantly by freight, public transport, and heavy- duty trucks. Controlling the emissions of black carbon from the transport sector is important for mitigating its impacts on climate, ecosystems, and human health. However, reducing the emissions of black carbon from mobile sources may be a challenging task in many developing urban areas due to economic, social, and technical constrains. Several emissions control technologies offer a proven approach for reducing emissions of black carbon from diesel-powered mobile sources, but the accurate quantification of associated emissions benefits in developing urban areas is not well documented. We describe recent advances for the estimation of black carbon emissions from the transport sector in real world driving conditions and present examples of the potential benefits of implementing various emission control technologies in Mexico. The results can help in the identification of key factors that hinder the implementation of control emissions for reducing emissions of black carbon elsewhere.

  19. [Aerosol size distribution of organic carbon and elemental carbon on the top of coke oven and in the plant area].

    PubMed

    Liu, Xiao-Feng; Peng, Lin; Bai, Hui-Ling; Mu, Ling; Song, Chong-Fang

    2013-08-01

    In order to investigate the characteristic of organic carbon (OC) and elemental carbon (EC) in particles on the top of coke oven and in the plant area, the particle matter samples of five size fraction including < or = 1.4 microm, 1.4-2.1 microm, 2.1-4.2 microm, 4.2-10.2 microm and > or = 10.2 microm were collected using Staplex234 cascade impactor, and OC and EC were analyzed by Elementar Analysensysteme GmbH vario EL cube. The mass concentrations of OC and EC associated with TSP on the top of coke oven were 291.6 microg x m(-3) and 255.1 microg x m(-3), while those in the plant area were 377.8 microg x m(-3) and 151.7 microg x m(-3). The mass concentration of secondary organic carbon (SOC) in particles with size of < or = 1.4 microm was 147.3 microg x m(-3) in the plant area. The value of OC/EC in particles less than 2.1 microm was 1.3 on the top of coke oven. The mass concentration of EC in TSP in the plant area was lower than that on the top of coke oven, while the mass concentration of OC in the plant area was significantly higher than that on the top of coke oven. The mass concentrations of OC and EC associated with particles less than 10.2 microm in the plant area were far higher than those in the atmosphere of area where the coke plant is located. The OC and EC in particles, which were collected both on the top of coke oven and in the plant area, were mainly enriched in fine particles. The size distribution of OC showed a clear distinction between the coke oven top and the plant area, which revealed that OC in the plant area was more preferably enriched in fine particles than that on the top of coke oven, and the same size distribution of EC was found on the top of coke oven and in the plant area. In the plant area, the mass concentration of SOC and the contribution of SOC to OC increased with the decreasing diameter in particles with diameter of less than 10.2 microm.

  20. Analyzing a relationship between climate change and terrestrial carbon fluxes over Japan area

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Setoyama, Y.; Yamaguchi, Y.

    2011-12-01

    Recently, terrestrial vegetation undergoes dramatic change in climate. Areal difference of climate change has been gradually large, and ecosystem differ in response to climate change, leading that terrestrial carbon exchange between atmosphere and biosphere has also undergone much change for each region. A purpose of this study is to examine a relationship between climate parameter and terrestrial carbon flux over Japan region. The carbon flux data used are GPP, NPP, and NEP at 1km grid resolution, they were estimated by the satellite-driven biosphere model, BEAMS. The climate data are the MODIS land products and NCEP/NCAR re-analysis data set. We calculated annual and seasonal anomalies, and correlation coefficient between climate parameters and carbon fluxes from 2001 to 2010. The study area is Japan region (125°-150°E, 30°-50°N). We found in inter-annual change anomalies that NEP plays a role of sizable carbon sink in 2004 and 2007, and carbon source in 2003 and 2006. In 2004 and 2007, as full-year air temperature is high, an end of plant growing season might be delayed. In 2003 and 2006, low solar radiation due to rainy season front decreases NEP. By analyzing a relationship between climate parameters and carbon fluxes for each region, we could understand a characteristic of climate change and ecosystem, and a mechanism of terrestrial carbon cycle.

  1. Process effects on activated carbon with large specific surface area from corn cob.

    PubMed

    Cao, Qing; Xie, Ke-Chang; Lv, Yong-Kang; Bao, Wei-Ren

    2006-01-01

    The main factors that affect the large specific surface area (SSA) of the activated carbon from agricultural waste corn cobs were studied by chemically activated method with solution of KOH and soap which acted as surfactant. The experiment showed that not only the activation temperature, activation time and the mass ratio of KOH to the carbonized material, but also the activated methods using activator obviously influenced the SSA of activated carbon. The experimental operating conditions were as follows: the carbonized temperature being 450 degrees C and keeping time being 4 h using N2 as protective gas; the activation temperature being 850 degrees C and holding time being 1.2 h; the mass ratio of KOH to carbonized material being 4.0; the time of soaking carbonized material in the solution of KOH and soap being 30 min. Under the optimal conditions, the SSA of activated carbon from corn cobs reached 2700 m2/g. And the addition of the soap as surfactant may shorten the soaking time. The structure of the activated carbon prepared had narrow distribution of pore size and the micro-pores accounted for 78%. The advantages of the method described were easy and feasible.

  2. Transforming hair into heteroatom-doped carbon with high surface area.

    PubMed

    Chaudhari, Kiran N; Song, Min Young; Yu, Jong-Sung

    2014-07-09

    Herein, a unique approach to dispose of human hair by pyrolizing it in a regulated environment is presented, yielding highly porous, conductive hair carbons with heteroatoms and high surface area. α-keratin in the protein network of hair serves as a precursor for the heteroatoms and carbon. The carbon framework is ingrained with heteroatoms such as nitrogen and sulfur, which otherwise are incorporated externally through energy-intensive, hazardous, chemical reactions using proper organic precursors. This judicious transformation of organic-rich waste not only addresses the disposal issue, but also generates valuable functional carbon materials from the discard. This unique synthesis strategy involving moderate activation and further graphitization enhances the electrical conductivity, while still maintaining the precious heteroatoms. The effect of temperature on the structural and functional properties is studied, and all the as-obtained carbons are applied as metal-free catalysts for the oxygen reduction reaction (ORR). Carbon graphitized at 900 °C emerges as a superior ORR electrocatalyst with excellent electrocatalytic performance, high selectivity, and long durability, demonstrating that hair carbon can be a promising alternative for costly Pt-based electrocatalysts in fuel cells. The ORR performance can be discussed in terms of heteroatom doping, surface properties, and electrical conductivity of the resulting porous hair carbon materials.

  3. Variable source areas of runoff generation: influence on soil carbon stocks

    NASA Astrophysics Data System (ADS)

    Salemi, L.; Costa Silva, R. W.; Andrade, T. M.; Fernandes, R. P.; De Moraes, J.; Camargo, P. B.; Martinelli, L.

    2013-12-01

    Variable source areas (VSA) might be considered the main mechanism of runoff generation within humid areas. In this paper we assess the soil carbon stocks within 3 flow convergence zones (FCZs) under high influence of overland-flow (OV). These FCZs had different land-cover (riparian forest and sugarcane plantations) and were subdivided into 3 portions, that is downslope, middleslope and upslope (FCZ-1 and 2: downslope - forest; middleslope and upslope -sugarcane; FCZ-3 downslope and middleslope - forest; upslope -sugarcane). Stocks under riparian forests (FCZ-1) were significantly higher than under sugarcane plantations. More importantly, riparian forests under high OV influence (FCZ-3) presented lower soil carbon stocks compared to riparian forests under lower OV influence. Similarly, sugarcane plantations within high OV areas presented in some cases (FCZ-2) significantly lower carbon stocks compared to sugarcane areas under low OV influence. These results suggest that OV within VSAs is a major driver for particulate carbon fluxes from terrestrial to aquatic ecosystems or for carbon redistribution within riparian ecosystems.

  4. Mapping soil organic carbon stock in the area of Neamtu Catchment, Northeastern Romania

    NASA Astrophysics Data System (ADS)

    Breaban, Ana-Ioana; Bobric, Elena-Diana; Breaban, Iuliana-Gabriela; Rusu, Eugen

    2017-04-01

    The quantification of soil organic carbon stocks and its spatial extent is directly influenced by the land cover. The aim of the study is to quantify both the spatial distribution of soil organic carbon and stocks under different soil types and land uses in an area of 41.808,04 ha in northeastern part of Romania. It has been studied the evolution of carbon stocks over time, taking into account the change of land use between 1990-2012 under 5 classes: forests, pastures, arable land, orchard and built spaces. Common soils are Cambisols, Fluvisols, Phaezems, and Luvisols, forest being the predominant land use. The most important loss of soil organic carbon occurs as a result of changes in the supply of biomass supplying litter and therefore the process of bioaccumulation. The samples were collected from 100 representative soil profiles and analyzed with Analytik Jena multi N/C 2100 with HT 1300 solid module. Based on the soil organic carbon, C/N ratio and texture the values of those parameters varied from high values in Ao and Bv horizons to lower values in C horizon. In order to model soil organic carbon concentration were used different interpolation techniques (regression and ordinary -kriging, IDW) at different sampling densities for each depth to 100 cm, using a Gaussian approach to estimate the uncertainty. It is noticeable that soil organic carbon had a positive correlation with different types of land uses and a negative correlation with the elevation, being a decreasing trend of the carbon stocks sequestered in biomass, litter and soil. In the upper part of the profiles, the soil organic carbon stock considerably varied for forest land between 6.5-7.23 kg C/sqm) and agricultural land (3.67-4.65 kg C/sqm). The kriging regression evidenced a good variability of the calculated root mean square errors of the predicted soil organic carbon stocks.

  5. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  6. Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment.

    PubMed

    Mottier, Antoine; Mouchet, Florence; Laplanche, Christophe; Cadarsi, Stéphanie; Lagier, Laura; Arnault, Jean-Charles; Girard, Hugues A; León, Verónica; Vázquez, Ester; Sarrieu, Cyril; Pinelli, Éric; Gauthier, Laury; Flahaut, Emmanuel

    2016-06-08

    Engineered nanoparticles such as graphenes, nanodiamonds, and carbon nanotubes correspond to different allotropes of carbon and are among the best candidates for applications in fast-growing nanotechnology. It is thus likely that they may get into the environment at each step of their life cycle: production, use, and disposal. The aquatic compartment concentrates pollutants and is expected to be especially impacted. The toxicity of a compound is conventionally evaluated using mass concentration as a quantitative measure of exposure. However, several studies have highlighted that such a metric is not the best descriptor at the nanoscale. Here we compare the inhibition of Xenopus laevis larvae growth after in vivo exposure to different carbon nanoparticles for 12 days using different dose metrics and clearly show that surface area is the most relevant descriptor of toxicity for different types of carbon allotropes.

  7. Spray-gun deposition of catalyst for large area and versatile synthesis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gohier, A.; Kim, K.-H.; Norman, E. D.; Gorintin, L.; Bondavalli, P.; Cojocaru, C. S.

    2012-06-01

    Spray gun deposition technique was investigated for large area deposition of nano-catalysts. In particular, we studied iron chloride salts solutions as catalyst precursor for the synthesis of carbon nanotubes (CNTs). Iron chloride salts are shown to decompose upon thermal annealing into Fe(III) oxide based species that make it suitable for further growth of various carbon nanotube structures. Depending on the spraying process, versatile synthesis of 2-D single-walled carbon nanotube network as well as vertically aligned carbon nanotubes arrays on functional substrates can be achieved. Such simple process for the preparation of CNT-based architecture opens new perspectives in the field of thin-film transistor and nanostructured electrodes.

  8. Methane seepage in the Shenhu area of the northern South China Sea: constraints from carbonate chimneys

    NASA Astrophysics Data System (ADS)

    Guan, Hongxiang; Zhang, Mei; Mao, Shengyi; Wu, Nengyou; Lu, Hongfeng; Chen, Duofu

    2016-06-01

    Two authigenic carbonate chimneys were recovered from the Shenhu area in the northern South China Sea at approximately 400 m water depth. The chimneys' mineralogy, isotopic composition, and lipid biomarkers were studied to examine the biogeochemical process that induced the formation of the chimneys. The two chimneys are composed mostly of dolomite, whereas the internal conduits and semi-consolidated surrounding sediments are dominated by aragonite and calcite. The specific biomarker patterns (distribution of lipids and their depleted δ13C values) indicate the low occurrence of methanotrophic archaea ANME-1 responsible for the chimneys' formation via anaerobic oxidation of methane. A significant input of bacteria/planktonic algae and cyanobacteria to the carbon pool during the precipitation of the carbonate chimneys is suggested by the high contributions of short-chain n-alkanes (69% of total hydrocarbons) and long-chain n-alcohols (on average 56% of total alcohols). The oxygen isotopic compositions of the carbonate mixtures vary from 3.1‰ to 4.4‰ in the dolomite-rich chimneys, and from 2.1‰ to 2.5‰ in the internal conduits, which indicates that they were precipitated from seawater-derived pore waters during a long period covering the last glacial and interglacial cycles. In addition, the mixture of methane and bottom seawater dissolved inorganic carbon could be the carbon sources of the carbonate chimneys.

  9. Early season mesopelagic carbon remineralization and transfer efficiency in the naturally iron-fertilized Kerguelen area

    NASA Astrophysics Data System (ADS)

    Jacquet, S. H. M.; Dehairs, F.; Cavagna, A. J.; Planchon, F.; Monin, L.; André, L.; Closset, I.; Cardinal, D.

    2014-06-01

    We report on the zonal variability of mesopelagic particulate organic carbon) remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October-November 2011) in an area of the Polar Front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with surface primary and export productions. Results for this early season study are compared with results obtained earlier (2005; KEOPS 1) for the same area during summer. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with less that 30% of carbon exported from the upper 150 m being remineralized in the mesopelagic column (150-400 m). For deeper stations (> 2000 m) located on the margin, inside a Polar Front meander, as well as in the vicinity of the Polar Front, east of Kerguelen, remineralization in the upper 400 m in general represents > 30% of carbon export, but when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. It appears that above the plateau (A3 site) mesopelagic remineralization is not a major barrier to the transfer of organic matter to the sea-floor (close to 500 m). There the efficiency of carbon sequestration into the bottom waters (> 400 m) reached up to 87% of the carbon exported from the upper 150 m. In contrast, at the deeper locations mesopelagic remineralization clearly limits the sequestration of carbon to depths > 400 m. For sites at the margin of the plateau (station E-4W) and the Polar front (station F-L), mesopelagic remineralization even exceeds upper 150 m export, resulting in a null sequestration efficiency to depths > 800 m. In the Polar Front meander, where successive stations form a time series, the capacity of the

  10. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment

    Treesearch

    S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska

    2012-01-01

    Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...

  11. Wildland fire emissions, carbon, and climate: wildland fire detection and burned area in the United States

    Treesearch

    Wei Min Hao; Narasimhan K. Larkin

    2014-01-01

    Biomass burning is a major source of greenhouse gases, aerosols, black carbon, and atmospheric pollutants that affects regional and global climate and air quality. The spatial and temporal extent of fires and the size of burned areas are critical parameters in the estimation of fire emissions. Tremendous efforts have been made in the past 12 years to characterize the...

  12. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Barrow, Alaska, 2012-2016

    SciTech Connect

    Ely, Kim; Lieberman-Cribbin, Wil; Rogers, Alistair; Serbin, Shawn; Lasota, Stefanie

    2016-12-20

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from the Barrow Environmental Observatory, Barrow, Alaska. Species measured; Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica, Saxifraga punctata and Potentilla hyparctica.

  13. Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane.

    PubMed

    Hayashi, J; Yamamoto, N; Horikawa, T; Muroyama, K; Gomes, V G

    2005-01-15

    An activated carbon with high specific surface area was prepared from polyurethane foam by chemical activation with K2CO3 and the influences of carbonization temperature and impregnation ratio on the pore structure of the prepared activated carbon were investigated. It was found that the specific surface area of the activated carbon was at a maximum value (about 2800 m(2)/g) at a carbonization temperature of 1073 K and at an impregnation ratio of 1.0. It was concluded that the polyurethane foam structure was modified during impregnation by K2CO3, K2CO3 promoted charring during carbonization, and then the weight loss behavior was changed below 700 and above 1000 K, carbon in the char was consumed by K2CO3 reduction, and this led to the high specific surface area. The prepared activated carbon had a very sharp micropore size distribution, compared with the commercial activated carbon having high specific surface area. The amounts of three organic vapors (benzene, acetone, and octane) adsorbed on the prepared activated carbons was much larger than those on the traditional coconut shell AC and the same as those on the commercial activated carbon except for octane. We surmised that the high specific surface area was due to the modification of the carbonization behavior of polyurethane foam by K2CO3.

  14. Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Tolosa, Aura; Krüner, Benjamin; Jäckel, Nicolas; Aslan, Mesut; Vakifahmetoglu, Cekdar; Presser, Volker

    2016-05-01

    In this study, carbide-derived carbon fibers from silicon oxycarbide precursor were synthesized by electrospinning of a commercially available silicone resin without adding a carrier polymer for the electrospinning process. The electrospun fibers were pyrolyzed yielding SiOC. Modifying the synthesis procedure, we were also able to obtain electrosprayed SiOC beads instead of fibers. After chlorine treatment, nanoporous carbon with a specific surface area of up to 2394 m2 g-1 was obtained (3089 m2 g-1 BET). Electrochemical characterization of the SiOC-CDC either as free-standing fiber mat electrodes or polymer-bound bead films was performed in 1 M tetraethylammonium tetrafluoroborate in acetonitrile (TEA-BF4 in ACN). The electrospun fibers presented a high gravimetric capacitance of 135 F g-1 at 10 mV s-1 and a very high power handling, maintaining 63% of the capacitance at 100 A g-1. Comparative data of SiOC-CDC beads and fibers show enhanced power handling for fiber mats only when the fiber network is intact, that is, a lowered performance was observed when using crushed mats that employ polymer binder.

  15. The Transportation Energy and Carbon Footprints of the 100 Largest U.S. Metropolitan Areas

    SciTech Connect

    Southworth, Frank; Sonnenberg, Anthon; Brown, Marilyn A

    2008-01-01

    We present estimates of the automobile and truck travel based energy and carbon footprints of the largest 100 U.S. metropolitan areas. The footprints are based on the estimated vehicle miles traveled and the transportation fuels consumed. Results are presented on an annual basis and represent end use emissions only. Total carbon emissions, emissions per capita, and emissions per dollar of gross metropolitan product are reported. Two years of annual data were examined, 2000 and 2005, with most of the in-depth analysis focused on the 2005 results. In section 2 we provide background data on the national picture and derive some carbon and energy consumption figures for the nation as a whole. In section 3 of the paper we examine the metropolitan area-wide results based on the sums and averages across all 100 metro areas, and compare these with the national totals and averages. In section 4 we present metropolitan area specific footprints and examine the considerable variation that is found to exist across individual metro areas. In doing so we pay particular attention to the effects that urban form might have on these differences. Finally, section 5 provides a summary of major findings, and a list of caveats that need to be borne in mind when using the results due to known limitations in the data sources used.

  16. Identification of areas in Brazil that optimize conservation of forest carbon, jaguars, and biodiversity.

    PubMed

    De Barros, Alan E; MacDonald, Ewan A; Matsumoto, Marcelo H; Paula, Rogério C; Nijhawan, Sahil; Malhi, Y; MacDonald, David W

    2014-04-01

    A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co-benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co-benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. ©2013 Society for Conservation Biology.

  17. Mesopore control of high surface area NaOH-activated carbon.

    PubMed

    Tseng, Ru-Ling

    2006-11-15

    Activated carbon with BET surface areas in a narrow range from 2318 to 2474 m2/g was made by soaking the char made from corncob in a concentrated NaOH solution at NaOH/char ratios from 3 to 6; the mesopore volumes of the activated carbon were significantly changed from 21 to 58%. The relationships between pore properties (Sp, Vpore, Vmicro/Vpore, Dp) and NaOH dosage were investigated. Comparisons between the methods of NaOH and KOH activation revealed that NaOH activation can suitably control the mesopore specific volume of the activated carbon. Elemental analysis revealed that the H/C and O/C values of the activated carbons of NaOH/char ratios from 3 to 6 were significantly lower. SEM observation of surface hole variation of the activated carbon ascertained that the reaction process was inner pore etching. Based on the above three measurements and experimental investigations, the assumption made by previous researchers, namely that NaOH and KOH produce similar results, was challenged. Furthermore, the adsorption kinetics was used to investigate the adsorption rate of an Elovich equation to determine the relationships between the adsorption behavior on larger molecules (dyes) and smaller molecules (phenols) and the pore structure of the activated carbon.

  18. [Difference of Karst Carbon Sink Under Different Land Use and Land Cover Areas in Dry Season].

    PubMed

    Zhao, Rui-yi; Liang, Zuo-bing; Wang, Zun-bo; Yu, Zheng-liang; Jiang, Ze-li

    2015-05-01

    In order to identify the distinction of soil CO2 consumed by carbonate rock dissolution, Baishuwan spring, Lanhuagou spring and Hougou spring were selected as objects to monitor the hydrochemistry from November 2013 to May 2014. The results showed that the highest HCO3- concentration was observed in Baishuwan spring which is covered by pine forest, while the lowest HCO3- concentration was observed in Hougou spring which is mainly covered by cultivated land. In Baishuwan spring, HCO3- was mainly derived from carbonic acid dissolving carbonate rock and the molar ratio between Ca(2+) + Mg2+ and HCO3- was close to 0. 5; while the molar ratio between Ca(2+) + Mg2+ and HCO3- exceeded 0.5 because the carbonate rock in Lanhuagou spring and Hougou spring was mainly dissolved by nitric acid and sulfuric acid. Because of the input of litter and the fact that gas-permeability of soil was limited in Baishuwan spring catchment, most of soil CO2 was dissolved in infiltrated water and reacted with bedrock. However, in Lanhuagou spring catchment and Hougou spring catchment, porous soil made soil CO2 easier to return to the atmosphere in the form of soil respiration. Therefore, in order to accurately estimate karst carbon sink, it was required to clarify the distinction of CO2 consumption by carbonate rock dissolution under different land use and land cover areas.

  19. Engineering and characterization of high surface area graphitic carbon nitrides for hydrogen sorption

    NASA Astrophysics Data System (ADS)

    Stalla, David; Seydel, Florian; Gillespie, Andrew; Lam, Thomas; Sweany, Mark; Lee, Mark; Pfeifer, Peter

    Theoretical calculations predict graphitic carbon nitride to produce a binding energy to hydrogen (6.4 kJ/mol) which is greater than that of pure graphene, making it attractive as a storage medium. However, the prohibitively small surface areas characteristic of g-CN materials dramatically limit H2 uptake. We discuss efforts to increase surface areas through physical/chemical exfoliation and templating. N2 sorption directly determines improvements to surface area, EF/TEM maps the thickness of aggregated planes, powder XRD indicates a novel, 2-phase structure, and XPS quantifies in-plane chemistry largely independent of the literature, which fails in a consensus regarding binding energy assignments.

  20. Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Li, Chengfei; Chen, Yue

    2017-02-01

    A new class of hierarchical porous carbon (HPC) with ultrahigh surface area is successfully fabricated by carefully selecting biomass carbon precursors and activation reagent, through which corn leaf (CL) with natural well-defined macropore channels is used as the carbon precursor, and H3PO4 is used as the active agent by virtue of its pore-widening effect. The as-prepared CL-based HPC (CLHPC) with a H3PO4/semi-carbonized CL mass ratio of 2 (CLHPC-2) demonstrates the highest specific surface area of 2507 m2 g-1 donated by 28.3% of micropore and 71.6% of mesopore, while maintaining the channel-like macroporous structure derived from the well-defined natural structure in CL. The combination of the hierarchical porous structure and ultrahigh surface area enables rapid electrolyte diffusion and sufficient active sites for charge accumulation. As a result, CLHPC-2 exhibits excellent electrochemical performance, such as high specific capacitance of 230 F g-1 at the current density of 0.1 A g-1, excellent high-rate capability (retention of 91% from 0.1 to 5 A g-1), and good cycling stability (99% capacitance retention after 10 000 cycles).

  1. Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Padma Alekhya, V. V. L.; Saranya, K. R. L.; Athira, K.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2017-02-01

    Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  2. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, R.R.; Schroeder, J.L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

  3. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, Robert R.; Schroeder, John L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

  4. National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands

    USGS Publications Warehouse

    Buursink, Marc L.; Cahan, Steven M.; Warwick, Peter D.

    2015-01-01

    Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resources is allocated to Federal land management. Assessed areas are allocated to four other general land-ownership categories as follows: State lands about 4.5 percent, Tribal lands about 2.4 percent, private and other lands about 72 percent, and offshore areas about 2.6 percent.

  5. Carbon dynamics after forest harvest in Central Siberia: the ZOTTO footprint area

    NASA Astrophysics Data System (ADS)

    Panov, Alexey; Zrazhevskaya, Galina; Shibistova, Olga; Onuchin, Alexander; Heimann, Martin

    2013-04-01

    Temperate and boreal forests of the Northern Hemisphere have been recognized as important carbon sinks. Accurate calculation of forest carbon budget and estimation of the temporal variations of forest net carbon fluxes are important topics to elucidate the ''missing sink'' question and follow up the changing carbon dynamics in forests. In the frame of the ongoing Russian-German partner project the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a unique international research platform for large-scale climatic observations is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). The data of the ongoing greenhouse gas and aerosol measurements at the tall tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over the whole Northern Eurasia. The tall tower footprint area estimates of carbon stocks and fluxes are highly demanded for bottom-up validation of inversion estimates. The ZOTTO site lies in a vast region of forests and wetlands, still relatively undisturbed by anthropogenic influences, but a moderate human impact on vegetation, represented mainly by logging activities, becomes essential. Therefore, accurate estimates of carbon pools in vegetation and soil following harvesting are essential to inversion studies for ZOTTO and critical to predictions of both local ecosystem sustainability and global C exchange with the atmosphere. We present our investigation of carbon dynamics after forest harvest in the tall tower footprint area (~1000 km2). The changes in C pools and annual sequestration were quantified among several clear-cut lichen pine (Pinus sylvestris Lamb.) stands representing various stages of secondary succession with a "space-for-time substitution" technique. When viewed as a chronosequence, these stands represent snapshots showing how the effects of logging may propagate through time. The study concluded that ecosystems during the first 15 yrs after forest harvest become C

  6. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas.

    PubMed

    Ottelin, Juudit; Heinonen, Jukka; Junnila, Seppo

    2015-08-18

    Avoiding urban sprawl and increasing density are often considered as effective means to mitigate climate change through urban planning. However, there have been rapid technological changes in the fields of housing energy and private driving, and the development is continuing. In this study, we analyze the carbon footprints of the residents living in new housing in different urban forms in Finland. We compare the new housing to existing housing stock. In all areas, the emissions from housing energy were significantly lower in new buildings. However, in the inner urban areas the high level of consumption, mostly due to higher affluence, reverse the gains of energy efficient new housing. The smallest carbon footprints were found in newly built outer and peri-urban areas, also when income level differences were taken into account. Rather than strengthening the juxtaposition of urban and suburban areas, we suggest that it would be smarter to recognize the strengths and weaknesses of both modes of living and develop a more systemic strategy that would result in greater sustainability in both areas. Since such strategy does not exist yet, it should be researched and practically developed. It would be beneficial to focus on area specific mitigation measures.

  7. Prioritising Carbon Sequestration Areas in Southern Queensland using Time Series MODIS Net Primary Productivity (NPP) Imagery

    NASA Astrophysics Data System (ADS)

    Apan, A.; Suarez Cadavid, L. A.; Richardson, L.; Maraseni, T.

    2014-11-01

    The aim of this study was to develop a method that will use satellite imagery to identify areas of high forest growth and productivity, as a primary input in prioritising revegetation sites for carbon sequestration. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, this study analysed the annual net primary production (NPP) values (gC/m2) of images acquired from 2000 to 2013, covering the Condamine Catchment in southeast Queensland, Australia. With the analysis of annual rainfall data during the same period, three transitions of "normal to dry" years were identified to represent the future climate scenario considered in this study. The difference in the corresponding NPP values for each year was calculated, and subsequently averaged to the get the "Mean of Annual NPP Difference" (MAND) map. This layer identified the areas with increased net primary production despite the drought condition in those years. Combined with key thematic maps (i.e. regional ecosystems, land use, and tree canopy cover), the priority areas were mapped. The results have shown that there are over 42 regional ecosystem (RE) types in the study area that exhibited positive vegetation growth and productivity despite the decrease in annual rainfall. However, seven (7) of these RE types represents the majority (79 %) of the total high productivity area. A total of 10,736 ha were mapped as priority revegetation areas. This study demonstrated the use of MODIS-NPP imagery to map vegetation with high carbon sequestration rates necessary in prioritising revegetation sites.

  8. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.

    PubMed

    Hou, Jianhua; Jiang, Kun; Wei, Rui; Tahir, Muhammad; Wu, Xiaoge; Shen, Ming; Wang, Xiaozhi; Cao, Chuanbao

    2017-09-13

    Popcorn-derived porous carbon flakes have been successfully fabricated from the biomass of maize. Utilizing the "puffing effect", the nubby maize grain turned into materials with an interconnected honeycomb-like porous structure composed of carbon flakes. The following chemical activation method enabled the as-prepared products to possess optimized porous structures for electrochemical energy-storage devices, such as multilayer flake-like structures, ultrahigh specific surface area (SBET: 3301 m(2) g(-1)), and a high content of micropores (microporous surface area of 95%, especially the optimized sub-nanopores with the size of 0.69 nm) that can increase the specific capacitance. The as-obtained sample displayed excellent specific capacitance of 286 F g(-1) at 90 A g(-1) for supercapacitors. Moreover, the unique porous structure demonstrated an ideal way to improve the volumetric energy density performance. A high energy density of 103 Wh kg(-1) or 53 Wh L(-1) has been obtained in the case of ionic liquid electrolyte, which is the highest among reported biomass-derived carbon materials and will satisfy the urgent requirements of a primary power source for electric vehicles. This work may prove to be a fast, green, and large-scale synthesis route by using the large nubby granular materials to synthesize applicable porous carbons in energy-storage devices.

  9. Carbon storage and sequestration by trees in urban and community areas of the United States.

    PubMed

    Nowak, David J; Greenfield, Eric J; Hoehn, Robert E; Lapoint, Elizabeth

    2013-07-01

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m(-2) of tree cover and sequestration densities average 0.28 kg C m(-2) of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes). Published by Elsevier Ltd.

  10. Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Dong, Yan; Cui, Liru; Lin, Huiming; Qu, Fengyu

    2014-12-01

    Carbon/silica-nanostructured microfibers were synthesized via electrospinning method using phenol-formaldehyde resin and tetraethyl orthosilicate as carbon and silica precursor with triblock copolymer Pluronic P123 as soft template. The prepared samples show uniform microfiber structure with 1 μm in diameter and dozens of microns in length. Additionally, the mesopores in the material is about 2-6 nm. When the silica component was removed by HF, the porous carbon microfibers (PCMFs) were obtained. In addition, after the carbon/silica composites were calcined in air, the porous silica microfibers (PSiMFs) were obtained, revealing the converse porous nanostructure as PCMFs. It is a simple way to prepare PCMFs and PSiMFs with silica and carbon as the template to each other. Additionally, PCMFs possess an ultrahigh specific surface area (2,092 m2 g-1) and large pore volume. The electrochemical performance of the prepared PCMF material was investigated in 6.0 M KOH electrolyte. The PCMF electrode exhibits a high specific capacitance (252 F g-1 at 0.5 A g-1). Then, superior cycling stability (97 % retention after 4,000 cycles) mainly is due to its unique nanostructure.

  11. Carbon Dioxide Emissions Due to Forest Fires in Bukit Batu Area, Bengkalis Regency, Indonesia

    NASA Astrophysics Data System (ADS)

    Anita, Sofia; Ariful Amri, T.; Abu Hanifah, T.; Furnando, Edo; Lukas, Amos

    2017-05-01

    High concentration of carbon dioxide in the atmosphere is the major cause of global warming. This study focuses on estimation of carbon emissions from forest fires in Indonesia, especially Bukit Batu area, Bengkalis Regency. Peatlands in this area are widely used as an agricultural cultivation and plantations. The aim of this study is to measure the concentration of CO2 emitted based on the relationship of physical and chemical properties of peat soil. Measurements carried out on these peatlands with different vegetation covered, i.e. bush land, palm plantations and secondary forests. Methods used in this research were Infrared Gas Analyzer and Gas Chromatography. The average of CO2 emissions obtained of bush land, palm plantations, and secondary forest were 497.4 ppm; 523. 2 ppm; and 457.2 ppm, respectively.

  12. Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area.

    PubMed

    Decina, Stephen M; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Reinmann, Andrew B; Short Gianotti, Anne G; Templer, Pamela H

    2016-05-01

    Urban areas are the dominant source of U.S. fossil fuel carbon dioxide (FFCO2) emissions. In the absence of binding international treaties or decisive U.S. federal policy for greenhouse gas regulation, cities have also become leaders in greenhouse gas reduction efforts through climate action plans. These plans focus on anthropogenic carbon flows only, however, ignoring a potentially substantial contribution to atmospheric carbon dioxide (CO2) concentrations from biological respiration. Our aim was to measure the contribution of CO2 efflux from soil respiration to atmospheric CO2 fluxes using an automated CO2 efflux system and to use these measurements to model urban soil CO2 efflux across an urban area. We find that growing season soil respiration is dramatically enhanced in urban areas and represents levels of CO2 efflux of up to 72% of FFCO2 within greater Boston's residential areas, and that soils in urban forests, lawns, and landscaped cover types emit 2.62 ± 0.15, 4.49 ± 0.14, and 6.73 ± 0.26 μmolCO2 m(-2) s(-1), respectively, during the growing season. These rates represent up to 2.2 times greater soil respiration than rates found in nearby rural ecosystems in central Massachusetts (MA), a potential consequence of imported carbon amendments, such as mulch, within a general regime of landowner management. As the scientific community moves rapidly towards monitoring, reporting, and verification of CO2 emissions using ground based approaches and remotely-sensed observations to measure CO2 concentrations, our results show that measurement and modeling of biogenic urban CO2 fluxes will be a critical component for verification of urban climate action plans.

  13. Large-area thin self-supporting carbon foils with MgO coatings

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna; Maier-Komor, Peter

    2002-03-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 μg/cm 2, coated with approximately 4 μg/cm 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  14. Early spring mesopelagic carbon remineralization and transfer efficiency in the naturally iron-fertilized Kerguelen area

    NASA Astrophysics Data System (ADS)

    Jacquet, S. H. M.; Dehairs, F.; Lefèvre, D.; Cavagna, A. J.; Planchon, F.; Christaki, U.; Monin, L.; André, L.; Closset, I.; Cardinal, D.

    2015-03-01

    We report on the zonal variability of mesopelagic particulate organic carbon remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October-November 2011) in an area of the polar front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization (MR) was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with bacterial production (BP), surface primary production (PP) and export production (EP). Results for this early season study are compared with the results obtained during a previous study (2005; KEOPS 1) for the same area at a later stage of the phytoplankton bloom. Our results reveal the patchiness of the seasonal advancement and of the establishment of remineralization processes between the plateau (A3) and polar front sites during KEOPS 2. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with low and rather stable remineralization fluxes in the mesopelagic column (150-400 m). The shallow water column (~500 m), the lateral advection, the zooplankton grazing pressure and the pulsed nature of the particulate organic carbon (POC) transfer at A3 seem to drive the extent of MR processes on the plateau. For deeper stations (>2000 m) located on the margin, inside a polar front meander, as well as in the vicinity of the polar front, east of Kerguelen, remineralization in the upper 400 m in general represents a larger part of surface carbon export. However, when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. In the polar front meander, where successive stations form a time series, two successive events of particle transfer were evidenced by remineralization rates: a first mesopelagic and deep transfer from a past bloom before the cruise, and a second

  15. [Characteristics and sources of organic carbon and elemental carbon in PM2.5 in Shanghai urban area].

    PubMed

    Zhang, Yi-hua; Wang, Dong-fang; Zhao, Qian-biao; Cui, Hu-xiong; Li, Juan; Duan, Yu-sen; Fu, Qing-yan

    2014-09-01

    Organic carbon (OC) and elemental carbon (EC) in PM2.5 samples collected in Shanghai urban area during June 2010 to May 2011 were analyzed with IMPROVE-TOR protocol. The results showed that the annual average concentrations of OC and EC in PM2.5 were 8.6 μg.m-3 ± 6.2 μg.m-3 and 2.4 μg.m-3 ± 1.3 μg.m-3 respectively, accounting for 20% of PM2.5 mass concentration. The seasonal average concentrations of OC and EC were highest in winter and lowest in summer. And the percentages of OC and EC in PM2.5 were highest in autumn. The annual average OC/EC ratio was 3. 54 ± 1. 14. The concentrations of secondary organic carbon (SOC) were evaluated by the minimum OC/EC ratio method and the annual average concentration of SOC was 3.9 μg.m(-3) ±4.2 μg.m(-3), accounting for 38.9% of OC. In summer, the concentrations of SOC were relatively low and were correlated well with the maximum hourly concentrations of ozone, which indicated that the photochemical reaction was an important way of SOC formation. In autumn and winter when the west wind direction was predominant, the concentrations of SOC were higher than that in windless condition, which meant the transportation of SOC. The carbonaceous components were associated with source contributions using the principal component analysis (PCA) with eight thermally-derived carbon fractions, OC1, OC2, OC3, OC4, EC1, EC2, EC3 and OPC. Motor vehicle, coal-fired units, biomass burning and road dust were four main sources of OC and EC in PM2.5 in Shanghai urban area, which contributing 69. 8% - 81. 4% of carbonaceous aerosols. The contribution of motor vehicle was high throughout the year. Biomass burning contributed about 15% -20% of OC and EC. The influence of road dust was relatively obvious in spring and autumn. And the contribution of coal-fired units was higher in winter than those in other seasons.

  16. Surface area of vermiculite with nitrogen and carbon dioxide as adsorbates

    USGS Publications Warehouse

    Thomas, J.; Bohor, B.F.

    1969-01-01

    Surface-area studies were made on several homoionic vermiculites with both nitrogen and carbon dioxide as adsorbates. These studies show that only very slight penetration occurs between individual vermiculite platelets. This is in contrast to an earlier investigation of montmorillonite where it was found that the degree of penetration between layers is quite high, particularly for carbon dioxide, and is governed by the size and charge of the interlayer cation. The inability of these adsorbates to penetrate substantially between vermiculite platelets is due primarily to this mineral's high surface-charge density. The extent of penetration of nitrogen and carbon dioxide at the edges of vermiculite platelets, though slight, is influenced by the coordinated water retained within the sample at a given degassing temperature. Forces between layers are weakened with increasing water content, which permits slightly greater penetration by adsorbate gases. Thus, the surface area of vermiculite, as determined by gas adsorption, is larger than the calculated external surface area based upon particle size and shape considerations. In addition, "extra" surface is provided by the lifting and scrolling of terminal platelets. These morphological features are shown in scanning electron micrographs of a naturally occuring vermiculite. ?? 1969.

  17. Density and stability of soil organic carbon beneath impervious surfaces in urban areas.

    PubMed

    Wei, Zongqiang; Wu, Shaohua; Yan, Xiao; Zhou, Shenglu

    2014-01-01

    Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those in open areas in Yixing City, China. The SOC density (0-20 cm) under impervious surfaces was, on average, 68% lower than that in open areas. Furthermore, there was a significantly (P<0.05) positive correlation between the densities of SOC and total nitrogen (N) in the open soils, whereas the correlation was not apparent for the impervious-covered soils, suggesting that the artificial soil sealing in urban areas decoupled the cycle of C and N. Cumulative CO2-C evolved during the 28-d incubation was lower from the impervious-covered soils than from the open soils, and agreed well with a first-order decay model (Ct = C1+C0(1-e-kt)). The model results indicated that the SOC underlying capped surfaces had weaker decomposability and lower turnover rate. Our results confirm the unique character of urban SOC, especially that beneath impervious surface, and suggest that scientific and management views on regional SOC assessment may need to consider the role of urban carbon stocks.

  18. Modeling soil organic carbon change across Australian wheat growing areas, 1960-2010.

    PubMed

    Wang, Guocheng; Huang, Yao; Wang, Enli; Yu, Yongqiang; Zhang, Wen

    2013-01-01

    Soil organic carbon (SOC) dynamics in Australian wheat-growing areas were simulated from 1960 to 2010 using Agro-C, a calibrated and validated biogeophysical model. Previously published data from field measurements were used to parameterize the Agro-C model. Model simulations show a decreasing trend in SOC over the last 50 years, mainly attributable to relatively low organic carbon (C) inputs. The rate of decrease in SOC tended to slow in the last two decades due primarily to an increase in wheat yields, which resulted in an increase in C input. Overall, we estimate that Australian wheat-growing areas, covering an area of 15.09 million hectares (Mha), lost 156 (86-222, 95% confidence interval) Tg C in the topsoil (to 30 cm depth) from 1960 to 2010. Approximately 80% of the SOC loss occurred in the period between the 1960s and the 1980s. Spatially, the SOC loss in areas with relatively high temperature and low precipitation, such as Queensland, the northern part of New South Wales and Western Australia, was more significant than that in other areas. We suggest that the loss of SOC could be halted, or even reversed, with an additional input of organic C into the soil at a minimum rate of 0.4 Mg ha(-1) yr(-1).

  19. Total and size-resolved particle number and black carbon concentrations near an industrial area

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Moerman, M.; Zandveld, P.; Henzing, J. S.

    2015-12-01

    Total and size-resolved particle number and black carbon concentrations were investigated in urban areas of the city of Rotterdam (the Netherlands) situated near an industrial area. Several monitoring campaigns were conducted in the period 2011-2014 at three local locations and at a regional background site. Black carbon levels showed minor elevation due to industrial emissions. In contrast, particle number concentrations (PNC) increased during periods with wind directions from the industrial area, by 1000 to 23,000 particles per cm3 depending on the distance to the area from 1 to 40 km. The size distribution of elevated PNC was characterized by two modes: 10-20 nm (nucleation particles) and 20-100 nm (Aitken particles). Five dominant industrial sources were identified and used as input for dispersion modelling of PN in 2012. The results showed that in Rotterdam about 70,000 addresses were exposed to an additional annual PNC of 5000-10,000 particles per cm3 and about 55,000 addresses to additional PNC of 10,000-20,000 particles per cm3 for 39% of the time. More measurements of PNC up- and downwind of the industrial area are recommended to identify more accurately the PN emission sources and to validate the dispersion modelling.

  20. High Surface Area Electrodes Derived from Polymer Wrapped Carbon Nanotubes for Enhanced Energy Storage Devices.

    PubMed

    Bakhtiary Davijani, Amir A; Liu, H Clive; Gupta, Kishor; Kumar, Satish

    2016-09-21

    Electrical double layer capacitors store energy on two adjacent layers, resulting in fast charging and discharging, but their energy density is limited by the available surface area. In this study, using poly(methyl methacrylate) assisted sonication, carbon nanotube buckypapers with specific surface area as high as 950 m(2)/g have been processed. Performance of these high surface area buckypapers have been evaluated as supercapacitor electrodes. The energy density of these high surface area electrodes at low power density of 0.68 kW/kg was 22.3 Wh/kg, and at high power density of 84 kW/kg was 3.13 Wh/kg using the ionic liquid electrolyte.

  1. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World

    PubMed Central

    Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.; Balmford, Andrew; Burgess, Neil D.; Lovett, Jon C.; Ahrends, Antje; Bayliss, Julian; Doggart, Nike; Doody, Kathryn; Fanning, Eibleis; Green, Jonathan; Hall, Jaclyn; Howell, Kim L.; Marchant, Rob; Marshall, Andrew R.; Mbilinyi, Boniface; Munishi, Pantaleon K. T.; Owen, Nisha; Swetnam, Ruth D.; Topp-Jorgensen, Elmer J.; Lewis, Simon L.

    2012-01-01

    Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as ‘lowland tropical forest’ are often used, termed ‘Tier 1 type’ analyses by the Intergovernmental Panel on Climate Change (IPCC). Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC ‘Tier 2’ reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92–6.74) Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced for

  2. Towards regional, error-bounded landscape carbon storage estimates for data-deficient areas of the world.

    PubMed

    Willcock, Simon; Phillips, Oliver L; Platts, Philip J; Balmford, Andrew; Burgess, Neil D; Lovett, Jon C; Ahrends, Antje; Bayliss, Julian; Doggart, Nike; Doody, Kathryn; Fanning, Eibleis; Green, Jonathan; Hall, Jaclyn; Howell, Kim L; Marchant, Rob; Marshall, Andrew R; Mbilinyi, Boniface; Munishi, Pantaleon K T; Owen, Nisha; Swetnam, Ruth D; Topp-Jorgensen, Elmer J; Lewis, Simon L

    2012-01-01

    Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as 'lowland tropical forest' are often used, termed 'Tier 1 type' analyses by the Intergovernmental Panel on Climate Change (IPCC). Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC 'Tier 2' reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92-6.74) Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced for a relatively

  3. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  4. [Carbon emissions and low-carbon regulation countermeasures of land use change in the city and town concentrated area of central Liaoning Province, China].

    PubMed

    Xi, Feng-ming; Liang, Wen-juan; Niu, Ming-fen; Wang, Jiao-yue

    2016-02-01

    Carbon emissions due to land use change have an important impact on global climate change. Adjustment of regional land use patterns has a great scientific significance to adaptation to a changing climate. Based on carbon emission/absorption parameters suitable for Liaoning Province, this paper estimated the carbon emission of land use change in the city and town concentrated area of central Liaoning Province. The results showed that the carbon emission and absorption were separately 308.51 Tg C and 11.64 Tg C from 1997 to 2010. It meant 3.8% of carbon emission. was offset by carbon absorption. Among the 296.87 Tg C net carbon emission of land use change, carbon emission of remaining land use type was 182.24 Tg C, accounting for 61.4% of the net carbon emission, while the carbon emission of land use transformation was 114.63 Tg C, occupying the rest 38.6% of net carbon emission. Through quantifying the mapping relationship between land use change and carbon emission, it was shown that during 1997-2004 the contributions of remaining construction land (40.9%) and cropland transform ation to construction land (40.6%) to carbon emission were larger, but the greater contributions to carbon absorption came from cropland transformation to forest land (38.6%) and remaining forest land (37.5%). During 2004-2010, the land use types for carbon emission and absorption were the same to the period of 1997-2004, but the contribution of remaining construction land to carbon emission increased to 80.6%, and the contribution of remaining forest land to carbon absorption increased to 71.7%. Based on the carbon emission intensity in different land use types, we put forward the low-carbon regulation countermeasures of land use in two aspects. In carbon emission reduction, we should strict control land transformation to construction land, increase the energy efficiency of construction land, and avoid excessive development of forest land and water. In carbon sink increase, we should

  5. Improved Carbon Flux Observations over Urban Areas Using Carbonyl Sulfide (COS) to Differentiate Contributions from Biosphere

    NASA Astrophysics Data System (ADS)

    Whelan, M.; LaFranchi, B. W.; Bambha, R.; Michelsen, H. A.; Fischer, M. L.; Graven, H. D.; Baker, I. T.; Guilderson, T.; Campbell, J. E.

    2016-12-01

    Direct measurement and attribution of carbon exchange over urban areas is challenging because of the heterogeneity of the landscape and errors introduced by flux source partitioning. One important contribution to uncertainty is the influence of the urban biosphere on the regional carbon budget. Atmospheric observations of carbonyl sulfide (COS) are an emerging tool for estimating gross primary productivity: COS is consumed in plant leaves by parallel pathways to CO2 uptake, without the additional complexity of an analogous respiration term. This study makes use of COS measurements to better understand fluctuations in total CO2 concentrations over an urban region due to the balance of photosynthesis and respiration. In situ ground-based observations of trace gas concentrations were made from a tower in Livermore, CA, USA, and interpreted with WRF-STILT back trajectories and gridded data sets (e.g. VULCAN, a new anthropogenic COS inventory), supplemented with biosphere models (SiB, CASA-GFED3). CO2, 14CO2, and CO observations were used to first parse the contribution of fossil fuel emissions to total CO2. Changes in the remainder CO2 was differentiated as the sum of biosphere components with associated uncertainties. This approach could be used to better validate carbon emissions reduction measures and ecosytem-based carbon capture projects on the regional scale.

  6. Surface area of montmorillonite from the dynamic sorption of nitrogen and carbon dioxide

    USGS Publications Warehouse

    Thomas, J.; Bohor, B.F.

    1968-01-01

    Surface area determinations were made on a montmorillonite with various cations emplaced on the exchangeable sites, utilizing nitrogen and carbon dioxide as adsorbates at 77 ??K and 195 ??K, respectively, in a dynamic system. From the fraction of a Mississippi montmorillonite less than about 1 ?? in size, samples were prepared by replacing the original exchangeable cations with Li+, Na+, K+, Rb+, Cs+, Mg++, Ca++, Ba++, and NH4+, forming a series of homoionic montmorillonite species. Surface areas from 3-point B.E.T. plots (half-hour adsorption points), with nitrogen as the adsorbate, ranged from 61 m2/g for Li-montmorillonite to 138 m2/g for Cs-montmorillonite, thus reflecting a certain degree of nitrogen penetration between layers. Complete penetration should theoretically result in a surface area of over 300 m2/g for this clay with a nitrogen monolayer between each pair of platelets. The experimental data indicate that the extent of penetration is time-dependent and is also a function of the interlayer forces as governed by the size and charge of the replaceable cation. This finding negates the generally accepted concept that nitrogen at 77 ??K does not penetrate the layers and provides a measure only of the external surface of expandable clay minerals. A further measure of the variation of interlayer forces is provided by the adsorption of carbon dioxide at 195 ??K. Surface area values ranged from 99 m2/g for Li-montmorillonite to 315 m2/g for Csmontmorillonite. Although the carbon dioxide molecule is larger than the nitrogen molecule, its greater penetration apparently is a result of its being kinetically more energetic (with a larger diffusion coefficient) at its higher adsorption temperature. Similar differences have been found with both adsorbates in the study of microporous substances, such as coal, where activated diffusion is of considerable significance. ?? 1968.

  7. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    PubMed

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m(2)/g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  8. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    PubMed

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody

  9. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest

    PubMed Central

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard

    2016-01-01

    Research about biodiversity–productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity–productivity relationship and that this translates into increased carbon storage in long-lived woody

  10. Daily burned area and carbon emissions from boreal fires in Alaska

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

    2014-12-01

    Boreal fires burn carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 500 m and a temporal resolution of one day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground consumption occurred later in the season and for mid-elevation regions. Aboveground and belowground consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of consumption. Between 2001 and 2012, the median fuel consumption was 2.48 kg C m-2 and the median pixel-based uncertainty (SD of prediction error) was 0.38 kg C m-2. There were considerable amounts of burning in other cover types than black spruce and consumption in pure black spruce stands was generally higher. Fuel consumption originated primarily from the belowground fraction (median = 2.30 kg C m-2 for all cover types and 2.63 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (67 Tg C), 2005 (44 Tg C), 2009 (25 Tg C), and 2002 (16 Tg C) and a mean of 14 Tg C per year between 2001 and 2012. Our analysis

  11. Comparative Analysis of Carbon Dioxide Emissions across Large Urban Areas in the U.S.

    NASA Astrophysics Data System (ADS)

    Patarasuk, R.; Gurney, K. R.; O'Keeffe, D.; Song, Y.; Rao, P.; Huang, J.; Razlivanov, I. N.

    2014-12-01

    Carbon dioxide (CO2) emissions from fossil fuel combustion represents the single largest net annual flux of carbon into the atmosphere. Even though urban areas cover only 2% of the earth's surface, they contribute about 70% of global carbon emissions. We aim to conduct a comparative analysis of fossil fuel CO2 (FFCO2) emissions in three large urban areas across different regions in the U.S. based on our spatially-explicit Hestia approach, called the 'Hestia Project'. This research effort is the first to use bottom-up methods to quantify all FFCO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. The Hestia method relies on a large swath of input data such as criteria pollutant emissions reporting, stack monitoring, census data, tax assessor parcel data and traffic monitoring. The urban areas quantified with the Hestia approach include Indianapolis, Salt Lake City, and the Los Angeles Basin (encompassing over 80 cities). A comparative analysis will provide a better understanding of how and why FFCO2 emissions differ across time and space. We examine various factors such as heating/cooling degree days, population, GDP, industrial profile and building age. The study seeks to answer the following questions: 1) How and why do FFCO2 differ across the cities/regions? 2) What drives the different temporal profile of urban emissions? and 3) How do these vary across and within the urban landscape? The results from the study will benefit city planners and other stakeholders in managing urban development and greenhouse gas emissions mitigation.

  12. Sediment Properties as Important Predictors of Carbon Storage in Zostera marina Meadows: A Comparison of Four European Areas

    PubMed Central

    Dahl, Martin; Deyanova, Diana; Gütschow, Silvia; Asplund, Maria E.; Lyimo, Liberatus D.; Karamfilov, Ventzislav; Santos, Rui; Björk, Mats; Gullström, Martin

    2016-01-01

    Seagrass ecosystems are important natural carbon sinks but their efficiency varies greatly depending on species composition and environmental conditions. What causes this variation is not fully known and could have important implications for management and protection of the seagrass habitat to continue to act as a natural carbon sink. Here, we assessed sedimentary organic carbon in Zostera marina meadows (and adjacent unvegetated sediment) in four distinct areas of Europe (Gullmar Fjord on the Swedish Skagerrak coast, Askö in the Baltic Sea, Sozopol in the Black Sea and Ria Formosa in southern Portugal) down to ~35 cm depth. We also tested how sedimentary organic carbon in Z. marina meadows relates to different sediment characteristics, a range of seagrass-associated variables and water depth. The seagrass carbon storage varied greatly among areas, with an average organic carbon content ranging from 2.79 ± 0.50% in the Gullmar Fjord to 0.17 ± 0.02% in the area of Sozopol. We found that a high proportion of fine grain size, high porosity and low density of the sediment is strongly related to high carbon content in Z. marina sediment. We suggest that sediment properties should be included as an important factor when evaluating high priority areas in management of Z. marina generated carbon sinks. PMID:27936111

  13. Understanding the growth mechanism of carbon nanotubes via the ``cluster volume to surface area" model

    NASA Astrophysics Data System (ADS)

    Mandati, Sreekanth; Kunstmann, Jens; Boerrnert, Felix; Schoenfelder, Ronny; Ruemmeli, Mark; Kar, Kamal K.; Cuniberti, Gianaurelio

    2010-03-01

    The influence of mixed catalysts for the high yield production of carbon nanotubes (CNTs) has been studied systematically. Based on extensive experimental data a ``Catalyst Volume to Surface Area'' (CVSA) model was developed to understand the influence of the process parameters on the yield and CNT diameter distribution [1]. In our study, we present a refined version of the CVSA model developed by combining experiments and simulations. We discuss our current understanding of the growth mechanism and how the model might be used to increase CNT yields by using mixed catalysts.[4pt] [1] S. Tetali et al., ACS Nano (2009), DOI: 10.1021/nn9012548.

  14. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  15. Carbon content of atmospheric aerosols in a residential area during the wood combustion season in Sweden

    NASA Astrophysics Data System (ADS)

    Krecl, Patricia; Ström, Johan; Johansson, Christer

    Carbonaceous aerosol particles were observed in a residential area with wood combustion during wintertime in Northern Sweden. Filter samples were analyzed for elemental carbon (EC) and organic carbon (OC) content by using a thermo-optical transmittance method. The light-absorbing carbon (LAC) content was determined by employing a commercial Aethalometer and a custom-built particle soot absorption photometer. Filter samples were used to convert the optical signals to LAC mass concentrations. Additional total PM 10 mass concentrations and meteorological parameters were measured. The mean and standard deviation mass concentrations were 4.4±3.6 μg m -3 for OC, and 1.4±1.2 μg m -3 for EC. On average, EC accounted for 10.7% of the total PM 10 and the contribution of OC to the total PM 10 was 35.4%. Aethalometer and custom-built PSAP measurements were highly correlated ( R2=0.92). The hourly mean value of LAC mass concentration was 1.76 μg m -3 (median 0.88 μg m -3) for the winter 2005-2006. This study shows that the custom-built PSAP is a reliable alternative for the commercial Aethalometer with the advantage of being a low-cost instrument.

  16. High-surface-area carbon molecular sieves for selective CO(2) adsorption.

    PubMed

    Wahby, Anass; Ramos-Fernández, José M; Martínez-Escandell, Manuel; Sepúlveda-Escribano, Antonio; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco

    2010-08-23

    A series of carbon molecular sieves (CMSs) has been prepared, either as powders or monoliths, from petroleum pitch using potassium hydroxide as the activating agent. The CMS monoliths are prepared without the use of a binder based on the self-sintering ability of the mesophase pitch. Characterization results show that these CMSs combine a large apparent surface area (up to ca. 3100 m(2) g(-1)) together with a well-developed narrow microporosity (V(n) up to ca. 1.4 cm(3) g(-1)). The materials exhibit high adsorption capacities for CO(2) at 1 bar and 273 K (up to ca. 380 mg CO(2) g sorbent(-1)). To our knowledge, this is the best result obtained for CO(2) adsorption using carbon-based materials. Furthermore, although the CO(2) adsorption capacity for activated carbons has usually been considered lower than that of zeolites, the reported values exceed the total amount adsorbed on traditional 13X and 5A zeolites (ca. 230 mg and 180 mg CO(2) g sorbent(-1), respectively), under identical experimental conditions. Additionally, the narrow pore openings found in the CMS samples (ca. 0.4 nm) allows for the selective adsorption of CO(2) from molecules of similar dimensions (e.g., CH(4) and N(2)).

  17. Energy storage on ultrahigh surface area activated carbon fibers derived from PMIA.

    PubMed

    Castro-Muñiz, Alberto; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M D; Kyotani, Takashi

    2013-08-01

    High-performance carbon materials for energy storage applications have been obtained by using poly(m-phenylene isophthalamide), PMIA, as a precursor through the chemical activation of the carbonized aramid fiber by using KOH. The yield of the process of activation was remarkably high (25-40 wt%), resulting in activated carbon fibers (ACFs) with ultrahigh surface areas, over 3000 m(2) g(-1) , and pore volumes exceeding 1.50 cm(3) g(-1) , keeping intact the fibrous morphology. The porous structure and the surface chemical properties could easily be controlled through the conditions of activation. The PMIA-derived ACFs were tested in two types of energy storage applications. At -196 °C and 1 bar, H2 uptake values of approximately 3 t% were obtained, which, in combination with the textural properties, rendered it a good candidate for H2 adsorption at high pressure and temperature. The performance of the ACFs as electrodes for electrochemical supercapacitors was also investigated. Specific capacitance values between 297 and 531 g(-1) at 50 mA g(-1) were obtained in aqueous electrolyte (1 H2 SO4 ), showing different behaviors depending on the surface chemical properties.

  18. Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt

    NASA Astrophysics Data System (ADS)

    Abdalla, Fathy A.; Scheytt, Traugott

    2012-02-01

    Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.

  19. Surface area control of organic carbon accumulation in continental shelf sediments

    SciTech Connect

    Mayer, L.M. )

    1994-02-01

    The relationship between organic carbon (OC) and grain size found in most continental shelf sediments is here reinterpreted in terms of the surface area of the sediments. Cores from many North American shelf environments show downcore decreases in OC to similar refractory background concentrations if expressed relative to the surface area of the sediments. This consistent concentration is 0.86 mg-OC m[sup [minus]2], which is equivalent in concentration to a monolayer of organic matter coating all mineral surfaces. A more global collection of sediment-water interface samples show that this relationship is even more extensive, with exceptions occurring in areas of very high riverine sediment input, organic pollution, or low-oxygen water columns. Density separations indicate that organic matter is largely adsorbed to mineral grains. The microtopography of surfaces was examined with N[sub 2] sorption and most surface area was found to be inside pores of <10 nm width. These data lead to a hypothesis that organic matter is protected by its location inside pores too small to allow functioning of the hydrolytic enzymes necessary for organic matter decay. Such protection would likely work in concert with other protection mechanisms such as humification. This consistent surface area correlation with OC concentration may explain control of spatial and temporal variations in OC burial rates by sedimentation rates; the pore protection hypothesis provides a causal mechanism for this observed control.

  20. Carbon dioxide fluxes dynamics comparison in Moscow urban forest and adjacent urban areas

    NASA Astrophysics Data System (ADS)

    Yaroslavtsev, Alexis; Meshalkina, Joulia; Mazirov, Ilya; Vasenev, Ivan

    2017-04-01

    In the beginning of the 2014 in northern district of Moscow was installed eddy covariance tower on the edge of Timiryazevskiy urban forest and Timiryazevskiy district of Moscow. Tower 34m high was constructed inside the territory of LOD (Lesnaya Opytnaya Dacha) experimental station in the south-eastern part of the forest. Main tree species of urban forest and neighboring urban areas are Acer Plantanoides, Tilia cordata, Betula pendula, Quercus robur, Pinus sylvestris. Forest itself is mixed with some small plots dominated only by deciduous or coniferous species, whether trees in urban areas was mainly deciduous. Mean canopy height is about 30m. in both forest and urban areas. The soil cover of the studied sections is represented by sod-podzolic soils with different degree of development of the humus horizon. All soils have well-developed profile of sod-podzolic soil with low power litter (only in forest area) and developed humus-accumulative horizon with high humus content (3,24%) Carbon dioxide daily fluxes from investigated area was calculated for six months of 2014 (from April till October) utilizing eddy covariance method. Most (90%) of fluxes footprints was no longer than 500m for all wind directions during the time of monitoring. Forest in 500m radius around tower is a zone of active recreation with several roads and wide path network. On the other hand closest to tower urban area characterized by a low-rise buildings (in most cases no more than 5 floors) which are mainly administration ones and have wide green areas around them very few roads and low traffic. As a result difference in calculated fluxes was not so dramatic, as it was expected. Diurnal carbon dioxide fluxes dynamics was pretty the same for all months except August, due to long period without precipitation and higher soil moisture under the forest canopy. Estimated daily fluxes values was higher in forest areas for the whole period of investigation, except August, and ranged from -2 to 8 g C CO

  1. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    NASA Astrophysics Data System (ADS)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC) Ana Requejo1, Beatriz Lozano-García1, Luis Parras Alcántara1 1 Department of Agricultural Chemistry and Soil Science, Faculty of Science, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, Spain. The carbon content of the atmosphere can be influenced by soils, since they can store carbon or emit large quantities of CO2. C sequestration into soils is one of the most important ecosystems services because of its role in climate regulation (IPPC, 2007). Thereof, agriculture and forestry are the only activities that can contribute to C sequestration through photosynthesis and its carbon incorporation into carbohydrates (Parras Alcántara et al., 2013). Dehesa is a multifunctional agro-sylvo-pastoral system and typical landscape of southern and central Spain and southern Portugal. It is an anthropogenic system dedicated to the combined production of black iberian pigs, a variety of foods, fuel, coal, and cork. Besides, it acts as well in the production of endangered species as wildlife habitat and as sustainable hunting areas. These dehesa areas are defined by a relationship between productivity and conservation of forest oaks, providing environmental benefits such as carbon capture and storage. The area focused in this study is the Cardeña-Montoro Nature Reserve, located within the Sierra Morena (Córdoba, South Spain). The most representative soils in Cardeña-Montoro Nature Reserve are Cambisols, Regosols, Leptosols and Fluvisols according to IUSS Working Group WRB (2006). They are characterized by a low fertility, poor physical conditions and marginal capacity for agricultural use, along with low organic matter content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). Several studies have shown that land use affects the SOC concentration (Lozano-García et al., 2016; Khaledian et al., 2016). Based on this

  2. Spatial Variability of Land-Sea Carbon Exchange at a Coastal Area in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, H.; Oechel, W.; Hastings, S.

    2007-12-01

    Relatively cold and low salinity sea water of the Arctic Ocean was considered to be a sink for atmospheric CO2 (Takahashi et al., 1997) because the solubility of CO2 in seawater increases as temperature decreases, and the arctic sea water transports CO2 to greater depths. However, carbon exchange in the Arctic sea is not well evaluated yet, because available data is very limited (Semiletov et al., 2007). Also, terrestrial inflows, such as thawing permafrost and coastal erosion, also affect oceanic air-sea CO2 exchange especially in the Arctic (ACIA., 2004) creating a variety of regional carbon cycles (Semiletov et al., 2007). Our aim is to quantify an air-sea CO2 exchange of a spatially wide coastal sea area, in Barrow, Alaska and to extrapolate the future carbon cycle in response to climate change. Boat cruises for pCO2 measurements operated from July 29 to August 5, 2007. The surveyed area was mainly divided into three parts: Chukchi Sea, Beaufort Sea, and Elson Lagoon. Conductivity of sea surface (CS) and sea surface temperature (SST) were also measured together with pCO2. The result showed distinct differences in pCO2 among three areas. Average delta pCO2 (dpCO2) (a difference between an atmospheric CO2 and pCO2), CS, and SST were -114.9 ppm, 47.0 mScm-1, and 8.0 C at Chukchi Sea, -53.1 ppm, 43.5 mScm-1, and 8.9 C at Beaufort Sea, and 43.7 ppm, 41.1 mScm-1, and 9.5 C at Elson Lagoon. Relatively high dpCO2 value in the Beaufort Sea implies a large terrestrial input from Elson Lagoon where dpCO2 value is positive. This is supported by lower CS in the Beaufort Sea and Elson Laggon than in the Chukchi Sea. Sea currents from Pacific Ocean, which continuously flow through the Chukchi Sea, are thought to carry warmer water. However, SST was lower in the Chukchi Sea than in the Beaufort Sea. This may be because a prevailing wind from north east creates Ekman transport causing an upwelling along the Chukchi Sea coast and this upwelling carries deep cold water to the

  3. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  4. Preparation of large-area double-walled carbon nanotube films and application as film heater

    NASA Astrophysics Data System (ADS)

    Wu, Zi Ping; Wang, Jian Nong

    2009-11-01

    Large-area (larger than 30×30 cm 2) double-walled carbon nanotube (DWCNT) films are prepared and application as a heating element for film heaters is demonstrated. A high heating efficiency is observed. Measurements indicate that the use of the DWCNT film heater would save energy consumption up to 20-30% when compared with a commercial film-like metal-based heater. Morphological analysis reveals that the special surface structure, appropriate electric and high thermal conductivities of the film formed by the network of entangled nanotube bundles may lead to the high heating performance. Considering large-area, shape flexibility, negligible weight and easy manipulation, the film exhibits promising potential applications as a film heater for thermal control in aircrafts, medical equipment, home appliances and other industrial fields at low temperature (below 400 °C).

  5. Uranium in the Poison Basin area, Carbon County, Wyoming - a preliminary report

    USGS Publications Warehouse

    Vine, James D.; Prichard, George E.

    1953-01-01

    Uranium minerals were found on October 15, 1953, about seven miles west of Baggs in the Browns Park formation of the Poison Basin area, Carbon County, Wyo. The occurrences extend over an area of at least several square miles in secs. 4 and 5, T. 12 N., R. 92 W., and secs. 32 and 33, T. 13 N., R. 92 W. Uranophane-bearing sandstones contain as much as 3.21 percent uranium in select samples. The occurrences cannot be evaluated because their dimensions and average grade have not been determined. The presence of uranium, however, is significant because it indicates that uranium deposits may be present in the Browns Park formation and also in the underlying formations unconformably overlapped by the Browns Park.

  6. Differences on soil organic carbon stock estimation according to sampling type in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2016-04-01

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Consequently, the scientific community is researching the fate of the organic carbon in the ecosystems. In this line, soil organic matter configuration plays an important role in the Soil System (Parras-Alcántara and Lozano García, 2014). Internationally it is known that soil C sequestration is a strategy to mitigate climate change. In this sense, many soil researchers have studied this parameter (SOC). However, many of these studies were carried out arbitrarily using entire soil profiles (ESP) by pedogenetic horizons or soil control sections (SCS) (edaphic controls to different thickness). As a result, the indiscriminate use of both methodologies implies differences with respect to SOC stock (SOCS) quantification. This scenario has been indicated and warned for different researchers (Parras-Alcántara et al., 2015a; Parras-Alcántara et al., 2015b). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in the Cardeña and Montoro Natural Park (Spain). This nature reserve is a forested area with 385 km2 in southern Spain. Thirty-seven sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The results obtained show an overestimation of SOCS when SCS sampling approach is used compared to ESP. This supports that methodology selection is very important to SOCS quantification. This research is an assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Parras-Alcántara, L., Lozano-García, B., 2014

  7. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    PubMed

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  8. High surface area carbon black (BP-2000) as a reinforcing agent for poly[(₋)-lactide

    SciTech Connect

    Delgado, Paula A.; Brutman, Jacob P.; Masica, Kristina; Molde, Joseph; Wood, Brandon; Hillmyer, Marc A.

    2016-10-26

    We report that the brittle nature and low-heat distortion resistance of a promising biorenewable thermoplastics, poly((₋)-lactide) (PLA), motivate the investigation of strengthening additives that can address these deficiencies. Here in our work, a high surface area carbon black (BP-2000) as well as biobased carbon blacks (hydrochars) were examined as reinforcement agents for PLA. When 1–5 wt % BP-2000 was added to PLA, the crystallization of PLA was accelerated, resulting in higher crystallinity, tensile strength, and heat resistance. A thermal creep experiment revealed that the composites exhibited no significant deformation after 30 min with 2 N of uniaxial tensile force at 80°C (above the Tg), whereas neat PLA (with similar thermal history) elongated to 79% after 5 min under the same conditions. PLA–hydrochar composites demonstrated similar brittle behavior to neat PLA. Finally, despite the promising nucleating ability of hydrochars, they displayed low interfacial adhesion with PLA because of their low surface area, resulting in poor energy transfer on stretching

  9. Preliminary study of atmospheric carbon dioxide in a glacial area of the Qilian Mountains, west China

    NASA Astrophysics Data System (ADS)

    Li, Chuanjin; Zhou, Lingxi; Qin, Dahe; Liu, Lixin; Qin, Xiang; Wang, Zebin; Ren, Jiawen

    2014-12-01

    Carbon dioxide represents the most important contribution to increased radiative forcing. The preliminary results of the atmospheric carbon dioxide mole fraction from the glacial region in the Qilian Mountains area, in the northeast of the Qinghai-Xizang (Tibetan) Plateau during July, 2009 to October, 2012 are presented. The annual mean CO2 mole fractions in 2010 and 2011 were 388.4 ± 2.7 ppm and 392.7 ± 2.6 ppm, respectively. These values were consistent with the CO2 mole fractions from the WMO/GAW stations located at high altitudes. However, both the concentration and seasonal variation were significantly lower than stations located adjacent to megacities or economic centers at low latitudes in eastern China. Shorter durations of photosynthesis of the alpine vegetation system that exceeded respiration were detected at the Qilian Mountains glacial area. The annual mean increase during the sampling period was 2.9 ppm yr-1 and this value was higher than the global mean values. Anthropogenic activities in the cities adjacent to the Qilian Mountains may have important influences on the CO2 mole fractions, especially in summer, when north and north-north-west winds are typical.

  10. Self-catalyzed Growth of Large-Area Nanofilms of Two-Dimensional Carbon

    PubMed Central

    Qian, Xuemin; Liu, Huibiao; Huang, Changshui; Chen, Songhua; Zhang, Liang; Li, Yongjun; Wang, Jizheng; Li, Yuliang

    2015-01-01

    The graphdiyne (GD), a carbon allotrope with a 2D structure comprising benzene rings and carbon–carbon triple bonds, can be synthesized through cross-coupling on the surface of copper foil. The key problem is in understanding the dependence of layers number and properties, however, the controlled growth of the layers numbers of GD film have not been demonstrated, its controlled growth into large-area and high ordered films with different numbers of layers is still an important challenge. Here, we show that a new strategy for synthesizing GD films with 2D nanostructures on ZnO nanorod arrays through a combination of reduction and a self-catalyzed vapor–liquid–solid growth process, using GD powder as the vapor source and ZnO nanorod arrays as the substrate. HRTEM shows the distance between pairs of streaks being approximately 0.365 nm by different thicknesses of GD films. The approach enables us to construct large-area ordered semiconductive films with high-quality surfaces showing high conductivity (up to 2800 S cm−1). FETs were fabricated based on the well ordered films; we prepared and measured over 100 devices. Devices incorporating these well-ordered and highly conductive GD films exhibited field-effect mobility as high as 100 cm2 V−1 s−1. PMID:25583680

  11. Topography effect on soil organic carbon pool in Mediterranean natural areas (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozan-García, Beatriz; Galán-Espejo, Arantxa

    2014-05-01

    quantify the relationships between topographical parameters and soil properties. Researchers suggested some promising indicators such as pH, organic matter, exchangeable cations, total exchangeable basis, ratio of primary to secondary minerals, free oxides, carbonates and physical properties such as, particle size distribution, moisture content, color, bulk density and depth to specific horizon. If we considered SOC and TN how indicators of soil quality it is necessary to explain the relationship between the soil properties and topographic position, furthermore, is necessary establish indicator of the soil quality. In this regard, the stratification ratio (SR) is the most used. Soil development in this region is genetically complicated by three important soil forming factors: relief, fragility of this environment and absence of good vegetation (erosion by water) and the use and management (CT). Very little literature is published on soil variability and its relationship with topographic positions within such fragile environment. There are few reports on stratification of the SOC, TN and C:N ratio as affected by topography in natural areas. In this context, the objectives of this study were; assess the SOC in the soils, its vertical distribution in the profile and analyze the accumulation and SR of SOC along a topographic gradient and their relationship to soil depth in arid Mediterranean climate in Spain.

  12. Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent.

    PubMed

    Luo, Wei; Bommier, Clement; Jian, Zelang; Li, Xin; Carter, Rich; Vail, Sean; Lu, Yuhao; Lee, Jong-Jan; Ji, Xiulei

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m(2)/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burnoff of sucrose caramel over a wider temperature range. The obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

  13. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    DOE PAGES

    Luo, Wei; Bommier, Clement; Jian, Zelang; ...

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-offmore » of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.« less

  14. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    SciTech Connect

    Luo, Wei; Bommier, Clement; Jian, Zelang; Li, Xin; Carter, Rich; Vail, Sean; Lu, Yuhao; Lee, Jong -Jan; Ji, Xiulei

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-off of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

  15. Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent

    SciTech Connect

    Luo, W; Bommier, C; Jian, ZL; Li, X; Carter, R; Vail, S; Lu, YH; Lee, JJ; Ji, XL

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m(2)/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burnoff of sucrose caramel over a wider temperature range. The obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

  16. Effect of Microwave Heating Conditions on the Preparation of High Surface Area Activated Carbon from Waste Bamboo

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Hongying Xia; Zhang, Libo; Xia, Yi; Peng, Jinhui; Wang, Shixing; Zheng, Zhaoqiang; Zhang, Shengzhou

    2015-11-01

    The present study reports the effect of microwave power and microwave heating time on activated carbon adsorption ability. The waste bamboo was used to preparing high surface area activated carbon via microwave heating. The bamboo was carbonized for 2 h at 600°C to be used as the raw material. According to the results, microwave power and microwave heating time had a significant impact on the activating effect. The optimal KOH/C ratio of 4 was identified when microwave power and microwave heating time were 700 W and 15 min, respectively. Under the optimal conditions, surface area was estimated to be 3441 m2/g with pore volume of 2.093 ml/g and the significant proportion of activated carbon was microporous (62.3%). The results of Fourier transform infrared spectroscopy (FTIR) were illustrated that activated carbon surface had abundant functional groups. Additionally the pore structure is characterized using Scanning Electron Microscope (SEM).

  17. Water and Carbon Dioxide Ices-Rich Areas on Comet 67P/CG Nucleus Surface

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Raponi, A.; De Sanctis, M. C.; Ciarniello, M.; Barucci, M. A.; Tosi, F.; Migliorini, A.; Capria, M. T.; Erard, S.; Bockelée-Morvan, D.; Leyrat, C.; Arnold, G.; Kappel, D.; McCord, T. B.

    2017-01-01

    So far, only two ice species have been identified by Rosetta/VIRTIS-M [1] on the surface of 67P/Churyumov-Gerasimenko during the pre-perihelion time: crystalline water and carbon dioxide ice. Water ice has been spectroscopically identified in three distinct modalities: 1) On the active areas of Hapi region where water ice changes its abundance with local time and illumination conditions, condensing during the night hours and sublimating during daytime [2]; 2) On recent debris fields collapsed from two elevated structures in the Imhotep region where more fresh and pristine material is exposed [3]; 3) On eight bright areas located in Khonsu, Imhotep, Anhur, Atum and Khepry regions [4] where single or multiple grouped icy patches with sizes ranging between few meters to about 60 m are observed. Carbon dioxide ice has been detected only in a 60-80 m area in Anhur region while it was exiting from a four year-long winter-night season [5]. This ice deposit underwent a rapid sublimation, disappearing in about one month after its initial detection. While water and carbon dioxide ice appear always mixed with the ubiquitous dark material [6,7], there are no evidences of the presence of water and carbon dioxide ices mixed together in the same area. If observed, ices always account for very small fraction (few percent) with respect to the dark material. Moreover, the surface ice deposits are preferentially located on the large lobe and the neck while they are absent on the small lobe. Apart from these differences in the spatial distribution of ices on the surface, a large variability is observed the mixing modalities and in the grain size distributions, as retrieved from spectral modeling [8]: 1) very small μm-sized water ice grains in intimate mixing with the dark terrain are detected on Hapi active regions [2]; 2) two monodispersed distributions with maxima at 56 μm and at 2 mm, corresponding to the intimate and areal mixing classes, are observedon the Imhotep debris

  18. Lipid biomarker patterns of methane-derived carbonates from Dongsha area, the northern of South China Sea

    NASA Astrophysics Data System (ADS)

    Yu, X.; Lei, J.; Yang, K.; Fang, Y.

    2012-12-01

    Carbonate and sediment samples collected from the Dongsha area the South China by TV-grab. The δ13C values of the carbonate indicate that the carbonate carbon is mainly derived from the oxidation of methane. According to the δ13C value of two groups carbonates could be divided: Group1 (G1) is 13C-depleted as reported previously, the δ13C value lighter than -50‰ PDB; group2 (G2) is enriched in 13C relatively, the δ13C value is around -30‰PDB. The δ13C value of sediments associated with carbonate varying from -19.2 to -30.4‰PDB. G1 and G2 have similar n-alkanes distribution and with 13C-depleted PMI, but glycerol dialkyl glycerol tetraethers (GDGTs) patterns obviously different. The G1 with the higher GDGTs concentration, up to 0.37 ug/g (dry weight), and the isoprenoid GDGTs is dominantly, with a acyclic > monocyclic > bicyclic > tricyclic > tetracyclic biphytane distribution, the branch GDGTs is less than 2%. The G2 with the quite lower GDGTs concentration, varying from 0.025~0.063ug/g (dry weight), the isoprenoid GDGTs content is less than 70%, with a acyclic > tetracyclic > bicyclic > monocyclic > tricyclic biphytane distribution, the branch GDGT is more than 30%. The sediment associated with carbonate has the similar GDGTs pattern with the G2, but the GDGTs concentration is between G1 and G2. The molecular structure and their carbon isotopic composition suggest that the organism mainly derived from methane oxidizing archaea and more carbonate precipitation by AOM within the G1 carbonates. Meanwhile, partly organism derived from crenachaeol and terrestrial, some carbonate precipitation originated from water column within the G2 carbonates. The G2 carbonates contain the similar biomarkers as found in nearby sediments, suggesting that the organisms associated with carbonate precipitation are the similar

  19. Airborne radioactivity survey of the Miller Hill area, Carbon county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 65 square miles northwest of Miller Hill, Carbon county, Wyoming. The survey was made by the U.S. Geological Survey as part of a cooperative program with the U.S. Atomic Energy Commission. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomalies shown on the accompanying map cannot be interpreted in terms of either the radioactive content or the extent of the source materials. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to uranium, or to thorium, or to a combination of uranium and thorium. The radioactivity that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the surrounding area. Any particular anomaly

  20. Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index

    SciTech Connect

    Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; Li, Hongyi; Leung, Lai-Yung R.

    2014-12-02

    Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of the CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely

  1. Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index

    DOE PAGES

    Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; ...

    2014-12-02

    Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of themore » CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely

  2. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  3. CO2-rich geothermal areas in Iceland as natural analogues for geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Maher, K.; Bird, D. K.; Brown, G. E.; Arnorsson, S.

    2013-12-01

    Geologic CO2 sequestration into mafic rocks via silicate mineral dissolution and carbonate precipitation has been suggested as a way to mitigate industrial CO2 emissions by storing CO2 in a stable form. Experimental observations of irreversible reaction of basalt with supercritical or gaseous and aqueous CO2 have resulted in carbonate precipitation, but there are no universal trends linking the extent of mineralization and type of reaction products to the bulk rock composition, glass percentage or mineralogy of the starting material. Additionally, concern exists that CO2 leakage from injection sites and migration through the subsurface may induce mineral dissolution and desorption of trace elements, potentially contaminating groundwater. This study investigates low-temperature (≤180°C) basaltic geothermal areas in Iceland with an anomalously high input of magmatic CO2 as natural analogues of the geochemical processes associated with the injection of CO2 into mafic rocks and possible leakage. Fluids that contain >4 mmol/kg total CO2 are common along the divergent Snæfellsnes Volcanic Zone in western Iceland and within the South Iceland Seismic Zone in southwest Iceland. The meteorically derived waters contain up to 80 mmol/kg dissolved inorganic carbonate (DIC). The aqueous concentration of major cations and trace elements is greater than that in Icelandic surface and groundwater and increases with DIC and decreasing pH. Concentrations of As and Ni in some samples are several times the World Health Organization (WHO) guidelines for safe drinking water. Thermodynamic modeling indicates that waters approach saturation with respect to calcite and/or aragonite, kaolinite and amorphous silica, and are undersaturated with respect to plagioclase feldspar, clinozoisite and Ca-zeolites. Petrographic study of drill cuttings from wells that intersect the CO2-rich areas indicates that the sites have undergone at least two stages of hydrothermal alteration: initial high

  4. How do soil properties and soil carbon stocks change after land abandonment in Mediterranean mountain areas?

    NASA Astrophysics Data System (ADS)

    Nadal Romero, Estela; Cammeraat, Erik; Pérez Cardiel, Estela; Lasanta, Teodoro

    2016-04-01

    Land abandonment and subsequent revegetation processes (due to secondary succession and afforestation practices) are global issues with important implications in Mediterranean mountain areas. Moreover, the effects of land use changes on soil carbon stocks are a matter of concern stated in international policy agendas on the mitigation of greenhouse emissions, and afforestation practices are increasingly viewed as an environmental restorative land use change prescription and are considered one of the most efficient carbon sequestration strategies currently available. The MED-AFFOREST project aims to gain more insight into the discussion by exploring the following central research questions: (i) what is the impact of land abandonment on soil properties? and (ii) how do soil organic carbon change after land abandonment? The main objective of this study is to assess the effects of land abandonment, land use change and afforestation practices on soil properties and soil organic carbon (SOC) dynamics. For this aim, five different land covers (bare soil, meadows, secondary succession, Pinus sylvestris (PS) and Pinus nigra (PN) afforestation), in the Central Spanish Pyrenees were analysed. Results showed that changes in soil properties after land abandonment were limited, even if afforestation practices were carried out and no differences were observed between natural succession and afforestation. The results on SOC dynamics showed that: (i) SOC contents were higher in the PN sites in the topsoil (10 cm), (ii) when all the profile was considered no significant differences were observed between meadows and PN, (iii) SOC accumulation under secondary succession is a slow process, and (iv) meadows should also be considered due to the relative importance in SOC stocks. The first step of SOC stabilization after afforestation is the formation of macro-aggregates promoted by large inputs of SOC, with a high contribution of labile organic matter. However, our respiration

  5. Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta

    2015-04-01

    Soils play a key role in the carbon geochemical cycle because they can either emit large quantities of CO2 or on the contrary they can act as a store for carbon. Agriculture and forestry are the only activities that can achieve this effect through photosynthesis and the carbon incorporation into carbohydrates (Parras-Alcántara et al., 2013). The Mediterranean evergreen oak Woodland (MEOW - dehesa) is a type of pasture with scattered evergreen and deciduous oak stands in which cereals are often grown under the tree cover. It is a system dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork as well as to hunting. These semi-natural areas still preserve some of the primitive vegetation of the Mediterranean oak forests. The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. These Iberian open woodland rangelands (dehesas) have been studied from different points of view: hydrologically, with respect to soil organic matter content, as well as in relation to gully erosion, topographical thresholds, soil erosion and runoff production, soil degradation and management practices…etc, among others. The soil organic carbon stock capacity depends not only on abiotic factors such as the mineralogical composition and the climate, but also on soil use and management (Parras et al., 2014 and 2015). In Spanish soils, climate, use and management strongly affect the carbon variability, mainly in soils in dry Mediterranean climates characterized by low organic carbon content, weak structure and readily degradable soils. Hontoria et al. (2004) emphasized that the climate and soil use are two factors that greatly influence carbon content in the Mediterranean climate. This research sought to analyze the SOC stock (SOCS) variability in MEOW - dehesa with cereals, olive grove and Mediterranean oak forest

  6. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    PubMed Central

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p = 0.021), but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time. PMID:27239377

  7. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas.

    PubMed

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p = 0.021), but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  8. Why is the South Orkney Island shelf (the world's first high seas marine protected area) a carbon immobilization hotspot?

    PubMed

    Barnes, David K A; Ireland, Louise; Hogg, Oliver T; Morley, Simon; Enderlein, Peter; Sands, Chester J

    2016-03-01

    The Southern Ocean archipelago, the South Orkney Islands (SOI), became the world's first entirely high seas marine protected area (MPA) in 2010. The SOI continental shelf (~44 000 km(2) ), was less than half covered by grounded ice sheet during glaciations, is biologically rich and a key area of both sea surface warming and sea-ice losses. Little was known of the carbon cycle there, but recent work showed it was a very important site of carbon immobilization (net annual carbon accumulation) by benthos, one of the few demonstrable negative feedbacks to climate change. Carbon immobilization by SOI bryozoans was higher, per species, unit area and ice-free day, than anywhere-else polar. Here, we investigate why carbon immobilization has been so high at SOI, and whether this is due to high density, longevity or high annual production in six study species of bryozoans (benthic suspension feeders). We compared benthic carbon immobilization across major regions around West Antarctica with sea-ice and primary production, from remotely sensed and directly sampled sources. Lowest carbon immobilization was at the northernmost study regions (South Georgia) and southernmost Amundsen Sea. However, data standardized for age and density showed that only SOI was anomalous (high). High immobilization at SOI was due to very high annual production of bryozoans (rather than high densities or longevity), which were 2x, 3x and 5x higher than on the Bellingshausen, South Georgia and Amundsen shelves, respectively. We found that carbon immobilization correlated to the duration (but not peak or integrated biomass) of phytoplankton blooms, both in directly sampled, local scale data and across regions using remote-sensed data. The long bloom at SOI seems to drive considerable carbon immobilization, but sea-ice losses across West Antarctica mean that significant carbon sinks and negative feedbacks to climate change could also develop in the Bellingshausen and Amundsen seas.

  9. Spatiotemporal variability of light-absorbing carbon concentration in a residential area impacted by woodsmoke.

    PubMed

    Krecl, Patricia; Johansson, Christer; Ström, Johan

    2010-03-01

    Residential wood combustion (RWC) is responsible for 33% of the total carbon mass emitted in Europe. With the new European targets to increase the use of renewable energy, there is a growing concern that the population exposure to woodsmoke will also increase. This study investigates observed and simulated light-absorbing carbon mass (MLAC) concentrations in a residential neighborhood (Lycksele, Sweden) where RWC is a major air pollution source during winter. The measurement analysis included descriptive statistics, correlation coefficient, coefficient of divergence, linear regression, concentration roses, diurnal pattern, and weekend versus weekday concentration ratios. Hourly RWC and road traffic contributions to MLAC were simulated with a Gaussian dispersion model to assess whether the model was able to mimic the observations. Hourly mean and standard deviation concentrations measured at six sites ranged from 0.58 to 0.74 microg m(-3) and from 0.59 to 0.79 microg m(-3), respectively. The temporal and spatial variability decreased with increasing averaging time. Low-wind periods with relatively high MLAC concentrations correlated more strongly than high-wind periods with low concentrations. On average, the model overestimated the observations by 3- to 5-fold and explained less than 10% of the measured hourly variability at all sites. Large residual concentrations were associated with weak winds and relatively high MLAC loadings. The explanation of the observed variability increased to 31-45% when daily mean concentrations were compared. When the contribution from the boilers within the neighborhood was excluded from the simulations, the model overestimation decreased to 16-71%. When assessing the exposure to light-absorbing carbon particles using this type of model, the authors suggest using a longer averaging period (i.e., daily concentrations) in a larger area with an updated and very detailed emission inventory.

  10. [Difference between carbon storage of burned area under different restorations in Greater Xing' an Mountains, Northeast China].

    PubMed

    Xin, Ying; Zou, Meng-ling; Zhao, Yu-sen

    2015-11-01

    In order to explore forest restoration approach effect on carbon storage of severely burned area in Greater Xing'an Mountains, the carbon contents of tree, shrub, herb and litter from two plantations (Larix gmelinii and Pinus sylvestris var. mongolica) and natural secondary forest were determined, respectively, by using dry combustion method. The biomass of each component was obtained to estimate the distribution characterization of forest vegetation carbon storage by combing whole harvest method with average standard wood method. The results showed that, for both plantations and secondary forest, the average carbon content of shrub was higher than that of arbor and herb. In the L. gmelinii plantation, the average carbon contents of shrub, litter, arbor and herb were 45.8%, 45.3%, 44.4% and 33.6%, respectively. The average carbon content of shrub and arbor was more than 50% in P. sylvestris var. mongolica plantation, while that of arbor, shrub and litter was about 42% for the secondary forest. The biomass of arbor was higher than shrub and herb. In L. gmelinii plantation, the total biomass of vegetation and litter was 123.90 t · hm(-2), which was significantly higher than that of P. sylvestris var. mongolica plantation and secondary forest. The carbon storage of vegetation in L. gmelinii plantation was 50.97 t · hm(-2), among which the arbor was 49.87 t · hm(-2), accounting for 97.8% of the total carbon storage in forest vegetation, while the proportion of herb carbon storage only occupied 0.02%. The total carbon storage of plantations was higher than that of the secondary forest, suggesting a stronger capacity of carbon sink through artificial restoration on severely burned area in Greater Xing' an Mountains during this period.

  11. Co-assessment of biomass and soil organic carbon stocks in a future reservoir area located in Southeast Asia.

    PubMed

    Descloux, Stéphane; Chanudet, Vincent; Poilvé, Hervé; Grégoire, Alain

    2011-02-01

    An assessment of the organic carbon stock present in living or dead vegetation and in the soil on the 450 km2 of the future Nam Theun 2 hydroelectric reservoir in Lao People's Democratic Republic was made. Nine land cover types were defined on the studied area: dense, medium, light, degraded, and riparian forests; agricultural soil; swamps; water; and others (roads, construction sites, and so on). Their geographical distribution was assessed by remote sensing using two 2008 SPOT 5 images. The area is mainly covered by dense and light forests (59%), while agricultural soil and swamps account for 11% and 2%, respectively. For each of these cover types, except water, organic carbon density was measured in the five pools defined by the Intergovernmental Panel on Climate Change: aboveground biomass, litter, deadwood, belowground biomass, and soil organic carbon. The area-weighted mean carbon densities for these pools were estimated at 45.4, 2.0, 2.2, 3.4, and 62.2 tC/ha, respectively, i.e., a total of about 115±15 tC/ha for a soil thickness of 30 cm, corresponding to a total flooded organic carbon stock of 5.1±0.7 MtC. This value is much lower than the carbon density for some South American reservoirs for example where total organic carbon stocks range from 251 to 326 tC/ha. It can be mainly explained by (1) the higher biomass density of South American tropical primary rainforest than of forests in this study and (2) the high proportion of areas with low carbon density, such as agricultural or slash-and-burn zones, in the studied area.

  12. Study of Microstructure of High-Surface-Area Polyacrylonitrile Activated Carbon Fibers.

    PubMed

    Lu, An-Hui; Zheng, Jing-Tang

    2001-04-15

    High-surface-area polyacrylonitrile (PAN) activated carbon fibers having different pore size distribution activated by KOH were investigated. Nitrogen adsorption, XRD, SEM, and TEM were used to characterize the microstructure of PAN-ACFs. The specific surface area of samples was calculated from the standard BET method, and micropore surface area and volume were obtained from the Horvath-Kawazoe equations. The average pore size and characteristic energy were calculated by the Dubinin-Radushkevich equation according to the multistage adsorption mechanism. The whole pore size distribution was calculated by employing the regularization method according to the density functional theory, which is based on a molecular model for the adsorption of nitrogen in porous solids. It was shown that the isotherms were type I, the pore size was around 0.4-0.8 nm, and the mesorpore size was around 2-4 nm. The XRD pattern showed that PAN-ACFs activated by KOH are of amorphous material composed of very small crystallites. The SEM and TEM results showed that the monograph differs with differing activation degree, and the network is uniform or disordered. That all of these methods are in good agreement with one another. Copyright 2001 Academic Press.

  13. Land management effects on soil carbon in olive groves of Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Fernández-Romero, Maria Luisa; Parras-Alcántara, Luis; Lozano-García, Beatriz; Clark, Joanna; Collins, Chris

    2015-04-01

    The study analysed soil organic carbon (SOC) and hot-water extractable carbon (HWC) in an agricultural Mediterranean area of Southern Spain under different land management: Conventional tillage (CT); Conventional tillage with the addition of oil mill waste, also known as alperujo (A); Conventional tillage with the addition of oil mill waste olive leaves (L); No tillage with chipped pruned branches (NT1); and No tillage with chipped pruned branches and weeds (NT2). SOC values in CT, A, NT1 and NT2 decreased with depth. In L, SOC also decreased with depth, although there was an increase of 89% from the first (0-10 cm) to the second horizon (10-16 cm). Total SOC stock (considering the entire soil profile) was very similar under A (101.9 Mg ha-1), CT (101.7 Mg ha-1), NT1 (105.8 Mg ha-1) and NT2 (111.3 Mg ha-1). However, SOC under L was significantly higher (p

  14. Characterization of black carbon in an urban-rural fringe area of Beijing.

    PubMed

    Ji, Dongsheng; Li, Liang; Pang, Bo; Xue, Peng; Wang, Lili; Wu, Yunfei; Zhang, Hongliang; Wang, Yuesi

    2017-04-01

    Measuring black carbon (BC) is critical to understand the impact of combustion aerosols on air quality and climate change. In this study, BC was measured in 2014 at a unique community formed with rapid economic development and urbanization in an urban-rural fringe area of Beijing. Hourly BC concentrations were 0.1-33.5 μg/m(3) with the annual average of 4.4 ± 3.7 μg/m(3). BC concentrations had clear diurnal, weekly, and seasonal variations, and were closely related with atmospheric visibility. The absorption coefficient of aerosols increased while its contribution to extinction coefficient decreased with the enhancement of PM2.5 concentration. The high mass absorption efficiency (MAE) of EC was attributed to a combination of coal combustion, vehicular emission and rapidly coating by water-soluble ions and organic carbon (OC). BC concentrations followed a typical lognormal pattern, with over 88% samples in 0.1-10.0 μg/m(3). Low BC levels were mostly bounded up with winds from north and northwest. Coal combustion and biomass burning were closely associated with severe haze pollution events. Firework discharge had significant UV absorption contribution. During the Asia-Pacific Economic Cooperation (APEC) forum in November 2014, air quality obviously improved due to various control strategies.

  15. Fault-related carbonate breccia dykes in the La Chilca area, Eastern Precordillera, San Juan, Argentina

    NASA Astrophysics Data System (ADS)

    Castro de Machuca, Brígida; Perucca, Laura P.

    2015-03-01

    Carbonate fault breccia dykes in the Cerro La Chilca area, Eastern Precordillera, west-central Argentina, provide clues on the probable mechanism of both fault movement and dyke injection. Breccia dykes intrude Upper Carboniferous sedimentary rocks and Triassic La Flecha Trachyte Formation. The timing of breccia dyke emplacement is constrained by cross cutting relationships with the uppermost Triassic unit and conformable contacts with the Early Miocene sedimentary rocks. This study supports a tectonic-hydrothermal origin for these breccia dykes; fragmentation and subsequent hydraulic injection of fluidized breccia are the more important processes in the breccia dyke development. Brecciation can be triggered by seismic activity which acts as a catalyst. The escape of fluidized material can be attributed to hydrostatic pressure and the direction of movement of the material establishes the direction of least pressure. Previous studies have shown that cross-strike structures have had an important role in the evolution of this Andean segment since at least Triassic times. These structures represent pre-existing crustal fabrics that could have controlled the emplacement of the dykes. The dykes, which are composed mostly of carbonate fault breccia, were injected upward along WNW fractures.

  16. How to estimate forest carbon for large areas from inventory data

    Treesearch

    James E. Smith; Linda S. Heath; Peter B. Woodbury

    2004-01-01

    Carbon sequestration through forest growth provides a low-cost approach for meeting state and national goals to reduce net accumulations of atmospheric carbon dioxide. Total forest ecosystem carbon stocks include "pools" in live trees, standing dead trees, understory vegetation, down dead wood, forest floor, and soil. Determining the level of carbon stocks in...

  17. Microwave permittivity and dielectric relaxation of a high surface area activated carbon

    NASA Astrophysics Data System (ADS)

    Atwater, J. E.; Wheeler, R. R., Jr.

    Carbonaceous materials are amenable to microwave heating to varying degrees. The primary indicator of susceptibility is the complex permittivity (ɛ*), of which, the real component correlates with polarization, and the imaginary term represents dielectric loss. For a given material, the complex permittivity is dependent upon both frequency and temperature. Here we report the complex permittivity of a high surface area coconut shell activated carbon which is commonly used in analytical chemistry and a wide variety of industrial separations. Associated polarization-relaxation phenomena are also characterized. Broadband measurements were made using a high temperature compatible open-ended coaxial dielectric probe at frequencies between 0.2 and 26 GHz, and across the temperature region between 24 °C and 191 °C.

  18. Val Verde Basin: Thrusted Strawn (Pennsylvanian) carbonate reservoirs, Pakenham Field area

    SciTech Connect

    Montgomery, S.L.

    1996-07-01

    An important target of recent exploration in the Val Verde basin of southwestern Texas has been thrusted Pennsylvanian (Desmoinesian) carbonates along the leading edge of the Ouachita front. These reservoirs produce gas and condensate at significant rates from fractured limestones, which were deposited in a variety of environments and later complexly juxtaposed during thrusting. Improvements in seismic imaging capabilities, particularly associated with the introduction of two-dimension (2-D) swath and three-dimensional (3-D) surveys, have allowed accurate mapping of the thrust front and have resulted in revised interpretations of basin structure and history. These data highlight the existence of multiple reservoirs at separate structural levels. Strawn reservoirs are discussed in relation to the Pakenham field area, northwestern Terrell County.

  19. Adsorption of neon and tetrafluoromethane on carbon nanohorn aggregates: differences in specific surface area values

    NASA Astrophysics Data System (ADS)

    Krungleviciute, Vaiva; Yudasaka, Masako; Iijima, Sumio; Migone, Aldo

    2008-03-01

    We have measured adsorption isotherms for two different adsorbates, neon and tetrafluoromethane, on dahlia-like carbon nanohorn aggregates. The experiments were performed at similar relative temperatures for both gases. The measurements were conducted to explore the effect of adsorbate diameter on the behavior of the resulting adsorbed systems. We measured the effective specific surface area value of the nanohorn sample using both gases, and we found that this quantity was about 22% smaller when we determined this quantity using tetrafluoromethane, the larger molecule. Isosteric heat and binding energy values were also determined from our measurements. We will compare our experimental results with those from a computer simulation study performed by Prof. M. Calbi. The simulations help us understand the source of the observed differences in the measured specific surface values, as well as the coverage dependence of the isosteric heat of adsorption for both gases.

  20. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    PubMed

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P < 0.01). The unprotected soil organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P < 0.05) after 7-11 years' restoration but stabilized after 27 and 30 years of restoration. It suggested that soil organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  1. Geology and ground-water resources of the Rawlins area, Carbon County, Wyoming

    USGS Publications Warehouse

    Berry, Delmar W.

    1960-01-01

    The Rawlins area in west-central Carbon County, south-central Wyoming includes approximately 634 square miles of plains and valleys grading into relatively rugged uplifts. The climate is characterized by low precipitation, rapid evaporation, and a wide range of temperature. Railroading and ranching are the principal occupations in the area. The exposed rocks in the area range in age from Precambrian through Recent. The older formations are exposed in the uplifted parts, the oldest being exposed along the apex of the Rawlins uplift. The formations dip sharply away from the anticlines and other uplifts and occur in the subsurface throughout the remainder of the area. The Cambrian rocks (undifferentiated), Madison limestone, Tensleep sandstone, Sun dance formation, Cloverly formation, Frontier formation, and Miocene and Pliocene rocks (undifferentiated) yield water to domestic and stock wells in the area. In the vicinity of the Rawlins uplift, the rocks of Cambrian age, Madison limestone, and Tensleep sandstone yield water to a few public-supply wells. The Cloverly formation yields water to public-supply wells in the Miller Hill and Sage Creek basin area. Wells that tap the Madison limestone, Tensleep sandstone, and Cloverly formation yield water under sufficient artesian pressure to flow at the land surface. The Browns Park formation yields water to springs that supply most of the Rawlins city water and supply water for domestic and stock use. Included on the geologic map are location of wells and test wells, depths to water below land surface, and location of springs. Depths to water range from zero in the unconsolidated deposits along the valley of Sugar Creek at the southern end of the Rawlins uplift to as much as 129 feet below the land surface in the Tertiary sedimentary rocks along the Continental Divide in the southern part of the area. The aquifers are recharged principally by precipitation that falls upon the area, by percolation from streams and ponds, and

  2. Effect of Activating Agent on the Preparation of Bamboo-Based High Surface Area Activated Carbon by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Xia, Hongying; Wu, Jian; Srinivasakannan, Chandrasekar; Peng, Jinhui; Zhang, Libo

    2016-06-01

    The present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.

  3. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mohan Jena, Hara

    2015-11-01

    High surface area microporous activated carbon has been prepared from Fox nutshell (Euryale ferox) by chemical activation with ZnCl2 as an activator. The process has been conducted at different impregnation (ZnCl2/Fox nutshell) ratios (1-2.5) and carbonization temperatures (500-700 °C). The thermal decomposition behavior of Fox nutshell and impregnated Fox nutshell has been carried out by thermogravimetric analysis. The pore properties including the BET surface area, micropore surface area, micropore volume, and pore size distribution of the activated carbons have been determined by nitrogen adsorption-desorption isotherms at -196 °C using the BET, t-plot method, DR, and BJH methods. The BET surface area, the microporous surface area, total pore volume, and micropore volume have been obtained as 2869 m2/g, 2124 m2/g, 1.96 cm3/g, and 1.68 cm3/g, respectively, and the microporosity percentage of the prepared activated carbon is 85.71%. The prepared activated carbons have been also characterized with instrumental methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM).

  4. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    DOEpatents

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  5. Preparation and Evaluation of Carbon Coated Alumina as a High Surface Area Packing Material for High Performance Liquid Chromatography

    PubMed Central

    Paek, Changyub; McCormick, Alon V.; Carr, Peter W.

    2010-01-01

    The retention of polar compounds, the separation of structural isomers and thermal stability make carbonaceous materials very attractive stationary phases for Liquid Chromatography (LC). Carbon clad zirconia (C/ZrO2), one of the most interesting, exhibits unparalleled chemical and thermal stability, but its characteristically low surface area (20 – 30 m2/g) limits broader application as a second dimension separation in two-dimensional liquid chromatography (2DLC) where high retentivity and therefore high stationary phase surface area are required. In this work, we used a high surface area commercial HPLC alumina (153 m2/g) as a support material to develop a carbon phase by chemical vapor deposition (CVD) at elevated temperature using hexane vapor as the carbon source. The loading of carbon was varied by changing the CVD time and temperature, and the carbon coated alumina (C/Al2O3) was characterized both physically and chromatographically. The resulting carbon phases behaved as a reversed phase similar to C/ZrO2. At all carbon loadings, C/Al2O3 closely matched the unique chromatographic selectivity of carbon phases, and as expected the retentivity was increased over C/ZrO2. Excess carbon – the amount equivalent to 5 monolayers - was required to fully cover the oxide support in C/Al2O3, but this was less excess than needed with C/ZrO2. Plate counts were 60,000 – 76,000/meter for 5 μm particles. Spectroscopic studies (XPS and FT-IR) were also conducted; they showed that the two materials were chemically very similar. PMID:20850126

  6. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    NASA Astrophysics Data System (ADS)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  7. Soil organic carbon accumulation during post-agricultural succession in a karst area, southwest China

    PubMed Central

    Yang, Liqiong; Luo, Pan; Wen, Li; Li, Dejun

    2016-01-01

    This study was aimed to investigate the direction and magnitude of soil organic carbon (SOC) dynamics and the underlying mechanisms following agricultural abandonment in a subtropical karst area, southwest China. Two post-agriculture succession sequences including grassland (~10 years), shrubland (~29 years), secondary forest (~59 years) and primary forest with cropland as reference were selected. SOC and other soil physicochemical variables in the soil depth of 0–15 cm (representing the average soil depth of the slope in the studied area) were measured. SOC content in the grassland was not significantly elevated relative to the cropland (42.0 ± 7.3 Mg C ha−1). SOC content in the shrubland reached the level of the primary forest. On average, SOC content for the forest was 92.6 ± 4.2 Mg C ha−1, representing an increase of 120.4 ± 10.0% or 50.6 ± 4.2 Mg ha−1 relative to the cropland. Following agricultural abandonment, SOC recovered to the primary forest level in about 40 years with a rate of 1.38 Mg C ha−1 yr−1. Exchangeable Ca and Mg were found to be the strongest predictors of SOC dynamics. Our results suggest that SOC content may recover rapidly following agricultural abandonment in the karst region of southwest China. PMID:27876827

  8. Internal wave deposits in Jurassic Kermanshah pelagic carbonates and radiolarites (Kermanshah area, West Iran)

    NASA Astrophysics Data System (ADS)

    Abdi, Asad; Gharaie, Mohamad Hosein Mahmudy; Bádenas, Beatriz

    2014-12-01

    We report eventites generated by turbulence events triggered by breaking internal waves in Jurassic pelagic muds deposited in a graben area located between the Arabian and Bisotoun carbonate platforms, at the Kermanshah basin (West Iran). The 43 m-thick studied Pliensbachian-Aalenian succession at Kermanshah includes sponge spicule-radiolarian limestones and cherts with cm- to dm-thick intercalations of pyroclastic beds and coarse-grained deposits formed by neritic-derived grains and reworked pelagic material. Breaking of internal waves in localized areas reworked the available sediment on sea floor, including the erosion of cohesive pelagic muds and the resuspension of neritic-derived grains, which were resedimented from the Bisotoun platform most probably by storms or turbidity currents. The generated internal wave deposits include: flat- and round pebble limestone conglomerates, formed by deposition of pelagic clasts and neritic-derived grains near the breaker zone; laminated packstone-grainstones deposited by high-energy, upslope (swash) and downslope (backswash) flows; cm-thick packstone-grainstones with asymmetrical starved ripples and hummocy crossstratification, generated downdip by waning of backwash flows and internal wave oscillatory flows. These internal wave deposits predominate in the Pliensbachian-early Toarcian, and were related to internal waves developed along a thermocline linked to climate warming and excited by submarine volcanic eruptions, storms or tectonic shaking.

  9. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area

    PubMed Central

    2016-01-01

    Carbon isotope analysis of four baobab (Adansonia digitata L.) trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa. PMID:27427912

  10. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area.

    PubMed

    Woodborne, Stephan; Gandiwa, Patience; Hall, Grant; Patrut, Adrian; Finch, Jemma

    2016-01-01

    Carbon isotope analysis of four baobab (Adansonia digitata L.) trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa.

  11. Soil organic carbon accumulation during post-agricultural succession in a karst area, southwest China.

    PubMed

    Yang, Liqiong; Luo, Pan; Wen, Li; Li, Dejun

    2016-11-23

    This study was aimed to investigate the direction and magnitude of soil organic carbon (SOC) dynamics and the underlying mechanisms following agricultural abandonment in a subtropical karst area, southwest China. Two post-agriculture succession sequences including grassland (~10 years), shrubland (~29 years), secondary forest (~59 years) and primary forest with cropland as reference were selected. SOC and other soil physicochemical variables in the soil depth of 0-15 cm (representing the average soil depth of the slope in the studied area) were measured. SOC content in the grassland was not significantly elevated relative to the cropland (42.0 ± 7.3 Mg C ha(-1)). SOC content in the shrubland reached the level of the primary forest. On average, SOC content for the forest was 92.6 ± 4.2 Mg C ha(-1), representing an increase of 120.4 ± 10.0% or 50.6 ± 4.2 Mg ha(-1) relative to the cropland. Following agricultural abandonment, SOC recovered to the primary forest level in about 40 years with a rate of 1.38 Mg C ha(-1) yr(-1). Exchangeable Ca and Mg were found to be the strongest predictors of SOC dynamics. Our results suggest that SOC content may recover rapidly following agricultural abandonment in the karst region of southwest China.

  12. Large Area Applications and Current Transport Considerations in Carbon Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Carey, David; Connolly, Thomas; Smith, Richard; Luke, Matt

    2010-03-01

    Carbon nanotube (CNT) electronics can be broadly split into to single or few CNT-based architectures, such as that found in a transistor, or multiple nanotube based architectures such as in films or composites. Potential large area applications of the later include transparent electronics, nanocomposites for displays or lighting or in sensor technology. Crucial to the development of these applications is an understanding of the factors that control the current transport. In particular a key question to be asked is `what is the rate limiting step for electron transport?' We have studied the field induced electron emission with low volume fractions of CNTs in PVA. We find that excellent emission can be found with as low as 1 vol. % CNTs - one of the lowest values reported for a nanocomposite cathode [1]. Below this concentration we find the rate limiting step for emission to be controlled by transport through the composite. We generalize our conclusions for other large area CNT based applications such as transparent electronics and next generation technologies. [1] Thomas Connolly, Richard C. Smith, Yenny Hernandez, Yurii Gun'ko, Jonathan N. Coleman and J. David Carey, Small 5, 826 (2009).

  13. Soil organic carbon accumulation during post-agricultural succession in a karst area, southwest China

    NASA Astrophysics Data System (ADS)

    Yang, Liqiong; Luo, Pan; Wen, Li; Li, Dejun

    2016-11-01

    This study was aimed to investigate the direction and magnitude of soil organic carbon (SOC) dynamics and the underlying mechanisms following agricultural abandonment in a subtropical karst area, southwest China. Two post-agriculture succession sequences including grassland (~10 years), shrubland (~29 years), secondary forest (~59 years) and primary forest with cropland as reference were selected. SOC and other soil physicochemical variables in the soil depth of 0–15 cm (representing the average soil depth of the slope in the studied area) were measured. SOC content in the grassland was not significantly elevated relative to the cropland (42.0 ± 7.3 Mg C ha‑1). SOC content in the shrubland reached the level of the primary forest. On average, SOC content for the forest was 92.6 ± 4.2 Mg C ha‑1, representing an increase of 120.4 ± 10.0% or 50.6 ± 4.2 Mg ha‑1 relative to the cropland. Following agricultural abandonment, SOC recovered to the primary forest level in about 40 years with a rate of 1.38 Mg C ha‑1 yr‑1. Exchangeable Ca and Mg were found to be the strongest predictors of SOC dynamics. Our results suggest that SOC content may recover rapidly following agricultural abandonment in the karst region of southwest China.

  14. Monitoring of Potential Seepage Through Surface Sediments in the Sleipner Carbon Capture and Storage Area

    NASA Astrophysics Data System (ADS)

    James, R. H.; Lichtschlag, A.; Cevatoglu, M.; Reigstad, L.; Connelly, D.; Bull, J. M.

    2013-12-01

    Subseafloor Carbon Capture and Storage (CCS) has been recognized as critical technology for reducing the release of anthropogenic CO2 emissions to the atmosphere. However, the potential pathways of CO2 movement in the sedimentary overburden as well as the impact of any CO2 seepage from a storage site on the marine environment are poorly understood. As part of the ECO2 project, we have conducted a multidisciplinary survey of the area around Sleipner, which is one of the longest operated subseafloor CCS sites. Our aims were to: (1) Search for tracers of leakage of formation fluids or any other potential precursors of CO2 seepage, in the vicinity of the subseafloor CO2 plume. (2) Assess the potential for mobilization of toxic metals by CO2. (3) Characterize the environment in the vicinity of the Sleipner storage site. Potential pathways of seepage from the storage site were determined by the AUV AUTOSUB, that was equipped with a variety of instrumentation including sidescan sonar and an EM2000 multibeam systems, as well as a CHIRP profiler capable of inspecting the architecture of the sedimentary overburden. To detect geochemical indicators of leakage and their potential impact on the seafloor environment, the composition of fluids and gases were determined in the upper part of the sediment overburden (up to 3.8 m below seafloor), which was recovered by vibrocoring. The microbial activity in these sediments was also determined, by measuring the RNA content of selected cores. In this presentation we will compare the results that we have obtained from the area above the CO2 plume with results from an area ~20 km the north of the Sleipner platform (Hugin fracture). The Hugin fracture is several km long, and pore fluids from sediments recovered from the fracture have a distinctively different composition, with depletion of sulphate and chloride and increase of sulphide, dissolved inorganic carbon and total alkalinity. Assessing the natural variation in the sedimentary

  15. [Distribution of organic carbon and carbon fixed strength of phytoplankton in Enteromorpha prolifera outbreak area of the Western South Yellow Sea, 2008].

    PubMed

    Xia, Bin; Ma, Shao-Sai; Chen, Ju-Fa; Zhao, Jun; Chen, Bi-Juan; Wang, Fang

    2010-06-01

    Based on the analysis of dissolved organic carbon (DOC), particulate organic carbon (POC) and particulate nitrogen (PN) of the samples collected from stations in Enteromorpha prolifera outbreak area of the Western South Yellow Sea during the period August 9-13 of 2008, combining with the data of environmental hydrology, the horizontal distribution, source and influential factors of organic carbon and carbon fixed strength of phytoplankton were discussed. The results showed that the concentrations of DOC and POC ranged from 1.55 mg/L to 3.22 mg/L, 0.11 mg/L to 0.68 mg/L, with average values of 2.44 mg/L and 0.27 mg/L. The horizontal distributions of DOC and POC were similar in study area. The concentrations of DOC and POC in coastal area were higher than that in the outer sea and the concentrations of DOC and POC at surface water layer were higher than those at the bottom water layer. There were a positive correlation between POC and TSS, indicating that the concentrations and source of TSS were main factors for the POC. According to the univariate linear regression model between POC and PN, the concentrations of particulate inorganic nitrogen (PIN) were evaluated. Removing the content of PIN in the samples, the average POC/PON values in most coastal waters were less than 8, combining with the values of POC/chlorophyll a, suggesting that the marine primary production were the important source of POC in most coastal waters, and the presence of degraded organic matter which derived from degraded Enteromorph prolifera was in the latter period of green tide outbreak. The results of evaluated carbon fixed strength based on primary productivity showed that carbon fixed strength of phytoplankton in Enteromorpha prolifera outbreak area of the Western South Yellow Sea ranged from 167 mg/(m2 x d) to 2017 mg/(m2 x d), with the average of 730 mg/(m2 x d). The daily carbon fixed quantities of the study area were up to 2.95 x 10(4) t. Then the daily carbon fixed quantities of the

  16. Carbon storage potential in Pleistocene volcanic rocks of the Magnesia area (Central Greece)

    NASA Astrophysics Data System (ADS)

    Koutsovitis, Petros; Koukouzas, Nikolaos; Magganas, Andreas

    2017-04-01

    The Porfyrio and Mikrothives volcanoes in the Magnesia area (SE Thessaly, Central Greece) are located a few km (˜8 and 12 km respectively) south-southwest of the industrial area of Volos city and are relatively small in size (˜3 and 10 km2 respectively). They are closely associated with other scattered volcanic centers of Late-Pleistocene-Quaternary age, appearing at the western shores of Pagasitikos gulf and at the Northern Euboikos gulf (e.g. Achilleion, Lichades, Agios Ioannis). This volcanic activity is attributed to back-arc extensional volcanism and may be further associated with propagation tectonics of the North Anatolian fault [1,2,3]. Volcanic rocks from the Porfyrio and Mikrothives mostly consist of basaltic and trachyandesitic lavas and pyroclastic tuffs. Porous basaltic lavas (10-15% porosity) exhibit porphyritic textures with a holocrystalline trachytic groundmass. The groundmass consists of lath-shaped plagioclase crystals, alkali feldspar, clinopyroxene, olivine, oxide minerals (ilmenite, titanomagnetite and magnetite), along with other accessory minerals such as quartz, calcite, apatite and pyrite. Phenocrysts are mostly subhedral and anhedral clinopyroxene crystals (mostly augite and less often diopside), olivine and less often plagioclase and quartz. Cr-spinel crystals have been identified within olivine phenocrysts. Pyroclastic tuffs exhibit vesicular textures, with their porosity varying between 20 and 40%. Their groundmass is hypocrystalline vesicular being either trachytic or aphanitic, often enriched in oxide minerals. Phenocrysts are less frequent compared to the lava samples, most often being feldspars. In some samples, pores are partially filled with secondary calcite. From recent literature it is well known that CO2 can be injected, trapped and retained within the pore spaces of volcanic rocks, forming chemically stable carbonate minerals [4,5,6,7]. The Porfyrio and Mikrothives volcanics can be considered as potential sites for

  17. [Fine root biomass and carbon storage in surface soil of Cinnamomum camphora plantation in rainy area of West China].

    PubMed

    Wei, Peng; Li, Xian-Wei; Fan, Chuan; Zhang, Teng-Fei; Liu, Yun-Ke; Su, Yu; Yang, Zheng-Ju

    2013-10-01

    Fine root in forest ecosystems plays an important role in global C cycle. In this study, a measurement was made on the fine root biomass and carbon storage in the surface soil (0-30 cm) of a 31 year-old Cinnamomum camphora plantation in the Rainy Area of West China in November, 2010-December, 2011. The total biomass and carbon storage of the fine roots (living and dead) in the surface soil were 1592.29 kg x hm(-2) and 660.68 kg C x hm(-2), in which, living fine roots accounted for 91.1% and 91.8% respectively. The total biomass and carbon storage of the first five order living roots and dead roots decreased significantly with increasing soil depth, and the living root biomass and carbon storage increased significantly with root order. The sum of the biomass and carbon storage of living and dead fine roots was the largest in autumn and the smallest in winter, but the biomass and carbon storage of the dead fine roots were the largest in winter and the smallest in summer. The biomass and carbon storage of the first two order roots were the largest in summer and the smallest in winter, while those of the last three order roots were the largest in autumn and the smallest in winter. The spatial heterogeneity of soil moisture and nutrients was the main factor affecting the fine root biomass and carbon storage.

  18. Effects of increasing forest plantation area and management practices on carbon storage and water use in the United States

    NASA Astrophysics Data System (ADS)

    Chen, G.; Hayes, D. J.; Tian, H.

    2013-12-01

    Planted forest area in the United States gradually increased during the last half century, and by 2007 accounted for about 20% of the total forest area in the southern United States and about 13% in the entire country. Intensive plantation management activities - such as slash burning, thinning, weed control, fertilization and the use of genetically improved seedlings - are routinely applied during the forest rotation. However, no comprehensive assessments have been made to examine the impacts of this increased forest plantation area and associated management practices on ecosystem function. In this study, we integrated field measurement data and process-based modeling to quantitatively estimate the changes in carbon storage, nitrogen cycling and water use as influenced by forest plantations in the United States from 1925 to 2007. The results indicated that forest plantations and management practices greatly increased forest productivity, vegetation carbon, and wood product carbon storage in the United States, but slightly reduce soil carbon storage at some areas; however, the carbon sink induced by forest plantations was at the expense of more water use as represented by higher evapotranspiration. Stronger nitrogen and water limitations were found for forest plantations as compared to natural or naturally-regenerated forests.

  19. Carbon storage in Swedish bedrock - current status regarding potential storage areas and geophysical information

    NASA Astrophysics Data System (ADS)

    Bergman, B.; Juhojuntti, N. G.

    2010-12-01

    Carbon Capture and Storage (CCS) is increasingly considered as an option to reduce the release of CO2 to the atmosphere. There is today a significant interest from Swedish heavy industry in CCS-technology. Large point sources are found within process industry related to e.g. production of paper and steel (operating under European Union regulations). There is also significant emission of CO2 from burning of biomass for energy production. However, this process is considered to be climate neutral and thus the emissions are not included in the carbon trading schemes. Based on recent work at the Geological Survey of Sweden and by other organizations we discuss the possibilities for geological storage of CO2 in Sweden, including the locations of the potential storage sites and the main CO2 emitters. In this context, we also review the relevant geophysical data available at the Geological Survey, focusing on the seismic data but also including gravity and magnetic data. Deep saline aquifers are presently considered as the most realistic storage alternative in Sweden. Sedimentary bedrock containing such layers and which could be suitable for CO2 storage is mainly found within the southern Baltic Sea and around southernmost Sweden, close to Denmark. The knowledge about the sedimentary bedrock in these areas is mainly based on seismic measurements and drilling in connection with hydrocarbon prospecting during the 70’s and the 80’s. Approximately 40.000 km’s of seismic reflection profiles were acquired, mostly in the potential CO2 storage areas mentioned above. Data from these profiles are now archived at the Geological Survey, and currently the magnetic tapes (8000-9000 reels) are being transcribed to modern storage media, a work that will likely be finished during 2011. Despite the hydrocarbon prospecting in these areas there are remaining uncertainties regarding the suitability of the sedimentary bedrock for CO2 storage, in particular related to the porosity and

  20. Analysis of black carbon, particulate matter, and gaseous pollutants in an industrial area in Korea

    NASA Astrophysics Data System (ADS)

    Yoo, Hee-Jong; Kim, Jungkon; Yi, Seung-Muk; Zoh, Kyung-Duk

    2011-12-01

    Continuous mass concentrations of black carbon (BC), particulate matter (PM 10 and PM 2.5), CO, NO 2, SO 2, benzene, toluene, and xylene were measured in an industrial area in Incheon City, Korea. Principal component analysis (PCA) results revealed that PC1 had high contributions from PM 10, PM 2.5, CO, and benzene (31.225%), and was strongly associated with vehicular emissions and industrial sources, the major contributors to air pollution in Incheon. PC2 was heavily enriched with NO 2 and BC (24.555%), and was attributed to emissions from vehicles such as buses, vans, taxis, cars, motorcycles, and trucks. PC3 was highly enriched with toluene and xylene (20.884%), and thus represented solvent usage. PC4 was enriched with SO 2 (12.884%), which could be attributed to the high S content in diesel fuel used in trucks, which may contribute to the high ambient levels of SO 2 in the city. Cluster analysis (CA) revealed four subgroups: Cluster 1 (SO 2), Cluster 2 (toluene and xylene), Cluster 3 (NO 2 and BC), and Cluster 4 (PM 10, PM 2.5, CO, and benzene), which agree with the PCA results. This study showed that benzene had a higher correlation with PM 2.5, PM 10, and CO than toluene and xylene, providing insights into source contributions that, together with a source-species atmospheric dispersion model, can be used to devise new control strategies for industrial urban areas. Our results suggest that appropriate vehicle emission management coupled with industrial air pollution control should be applied to fine particulate (PM 2.5) and gaseous pollutants including benzene, toluene, ethylbenzene, and xylenes in the study area.

  1. LIFE CLIMATREE project: A novel approach for accounting and monitoring carbon sequestration of tree crops and their potential as carbon sink areas

    NASA Astrophysics Data System (ADS)

    Stergiou, John; Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella

    2016-04-01

    Climate Change Mitigation is one of the most important objectives of the Kyoto Convention, and is mostly oriented towards reducing GHG emissions. However, carbon sink is retained only in the calculation of the forests capacity since agricultural land and farmers practices for securing carbon stored in soils have not been recognized in GHG accounting, possibly resulting in incorrect estimations of the carbon dioxide balance in the atmosphere. The agricultural sector, which is a key sector in the EU, presents a consistent strategic framework since 1954, in the form of Common Agricultural Policy (CAP). In its latest reform of 2013 (reg. (EU) 1305/13) CAP recognized the significance of Agriculture as a key player in Climate Change policy. In order to fill this gap the "LIFE ClimaTree" project has recently founded by the European Commission aiming to provide a novel method for including tree crop cultivations in the LULUCF's accounting rules for GHG emissions and removal. In the framework of "LIFE ClimaTree" project estimation of carbon sink within EU through the inclusion of the calculated tree crop capacity will be assessed for both current and future climatic conditions by 2050s using the GISS-WRF modeling system in a very fine scale (i.e., 9km x 9km) using RCP8.5 and RCP4.5 climate scenarios. Acknowledgement: LIFE CLIMATREE project "A novel approach for accounting and monitoring carbon sequestration of tree crops and their potential as carbon sink areas" (LIFE14 CCM/GR/000635).

  2. Development of Rudist lithosome on the Cretaceous carbonate platform in Bajestan area, east of Iran

    NASA Astrophysics Data System (ADS)

    Rezaei Soolgani, Yasaman; Khazaei, Ahmadreza; Mirab Shabestari, Gholamreza; Cestari, Riccardo

    2015-04-01

    This study assesses the forming and development of an informal rudist-bearing stratigraphic unit through the platform which has formed a thick succession of carbonate rocks in eastern part of Central Zone of Iran during the Touronian - Santonian (?). To achieve this goal, rudist rich layers in a stratigraphic section around the Bajestan area have been investigated from systematic and paleoenvironmental points of view. In this thick carbonate sequence, a unit composed by congregation of Hippuritid rudists that is completely differs from adjacent carbonate rocks by their thickness (up to two meters) and structure has been observed. This is characterized by very dense paucispecific assemblages of Hippuritids. Vaccinites, the main constituent genus accompanying with the other bioclastic particles derived from them, and rare radiolitid, have been formed this lithosome. The basal boundary of this unit is more or less gradual, in some parts can be either sharp. At the top it is obviously flat which seems to be an erosive surface. In general view, its morphology is lenticular shape, with raised topography at the middle part; laterally extended up to ten meters. Most of specimens preserved in their growth position and preferably oriented from base to top of lithosome. Rudist specimens of this lithosome have been also analyzed from morphological aspect. According to the measured indices, they are belonging to elevator morphotype which have been shaped in low energy environments with high rate of sedimentation. Rudist assemblages are as dense clusters and bouquets. The matrix (if present), involved them, is a wackestone/floatstone rock type with bioeroded rudist fragments. On the basis of rudist lithosome category which has been offered by Stossel & Bernoulli (2000), it can be recognized as type E (dense hippuritid) of this classification, with regards to the faunal composition, structure and internal geometry of this lithosome. This type of lithosome mostly interpreted as

  3. [Hydrochemistry and Dissolved Inorganic Carbon Stable Isotope of Shibing Dolomite Karst Area in Guizhou Province].

    PubMed

    Xiao, Shi-zhen; Lan, Jia-cheng; Yuan, Dao-xian; Wang, Yun; Yang, Long; Ao, Xiang-hong

    2015-06-01

    Totally 49 water samples were collected in Shibing Dolomite Karst World Natural Heritage Site in Guizhou Province to analyze the characteristics and controlling factors of both the surface and underground waters, as well as the features and their origins of the dissolved inorganic carbon isotope. It was found that the pH of the study area was neutral to alkaline with low concentrations of total dissolved solids. The cations were dominated by Ca2+, Mg2 and anions by HCO3-, featured by HCO3-Ca x Mg type water. The ratios of Cl-, NO3- and SO4(2-) in the allogenic water from the shale area in the northern catchment were higher than those in autogenic water from the dolomite karst area, so did the concentration of Si. The SIc and SId of the allogenic waters in the shale area were negative. After the waters entered into and flew by the dolomite karst area, both the SIc and SId increased to over 0. It could be told by the water chemistry that the hydrochemistry was little impacted by the rainfall and human activities. The Gibbs plot revealed that the chemical composition of the waters was mainly controlled by rock weathering. The δ(13)C(DIC) of the surface waters ranged from -8.27% to -11.55% per hundred, averaging -9.45% per hundredo, while that of the underground waters ranged from -10.57% per hundred to -15.59% per hundred, averaging -12.04% per hundred, which was lighter than that of surface water. For the distribution features, it was found the δ(13)C(DIC), of the upper reaches of branches of Shangmuhe River was lighter than that of the lower reach, while that of the main river Shangmuhe River was relatively complex. Based on the mass balance of stable isotopes and the δ(13)C(DIC), the ratio of the origin of DIC of the ground water was calculated. It was found that 51.2% was from soil CO2, and 48.8% was from the rock itself.

  4. Soil organic carbon and biological fertility in a Mediterranean forest area (Italy)

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Benedetti, Anna

    2015-04-01

    The study was performed at Castelporziano Estate, a natural ecosystem with high environmental value, and not concerned with any direct sources of pollution. However, it is situated near the city of Rome, some industrial plants, the international airport of Fiumicino, and some highways that can represent an external source of pollutants. Castelporziano lies in Central Italy at the western outskirts of Rome, about 20 km from the city centre and in front of the Tyrrhenian Sea. Soil morphology is mainly plain (30 m mean elevation) with sandy materials of alluvial nature, and only the inner part is formed of volcanic and alluvial materials with a slight elevation above the sea level (85 m). The total area is about 6000 ha, the climate is Mediterranean, total rainfall is 700 mm, and mean temperatures range from 4 ° C in winter and 30 ° C in summer. The vegetation is typically Mediterranean, mainly oaks, mixed broadleaf groves, and Mediterranean maquis along the seacoast. Areas with reforestation of pines, as well as corkwoods, pastures, and small agricultural fields are also present. Soils were sampled at five different sites: QI, forest of Quercus ilex L.; MM, Mediterranean maquis; PP, Pinus pinea L. reforestation (60 years old); MF, mixed hygrophilous back-dune forest; AR, arable land. Five soil samples from each site were collected (0-20 cm of depth), about 2 m far from each other. Soil organic carbon (SOC), total N (Ntot), microbial biomass carbon (Cmic), basal and cumulative respiration (Cbas and Ccum), the metabolic quotient (qCO2), and the mineralisation quotient (qM) were determined. The index of biological fertility (IBF), a comprehensive indicator considering SOM, Cbas, Ccum, Cmic, qCO2 and qM was also calculated for the different land uses. Five intervals of values have been set for each parameter, and a score increasing from 1 to 5 has been assigned to each interval; the algebraic sum of the score for each parameter gives the classes of biological fertility.

  5. Continuous measurement of carbon black in a densely populated area of Mexico City

    NASA Astrophysics Data System (ADS)

    Peralta, O.; Ortinez, A.; Castro, T.; Espinoza, M. D. L. L.; Saavedra, I.; Carabali-Sandoval, G. A., Sr.; Páramo, V. H.; Gavilán, A.; Martínez-Arroyo, A.

    2014-12-01

    The black carbon (BC) is a byproduct of burning fossil fuels and is an important short-lived climate forcer because it absorbs solar radiation altering the Earth's radiative budget and climate. It is also an atmospheric pollutant that promotes reactions of other compounds in the atmosphere. Despite its importance for health and climate, in Mexico there are very few studies on ambient concentrations of BC in urban areas and virtually no information of continuous measurements over long periods (more than a month of measurements). So, in order to develop more efficient local and regional mitigation strategies and policies that allow reducing ambient concentrations of BC, it is necessary to know BC seasonal evolution, contribution to radiative budget and impacts on health. This study shows continuous measurements (from July 2013 to July 2014) of BC to perform an analysis of seasonal variations. The selected monitoring site is located at Iztapalapa, a densely populated area with high traffic on the southeastern part of Mexico City. BC concentrations were obtained by two aethalometers (Magee Scientific Company, models AET31 and AET42) placed 15 meters above the ground. The aethalometers operate in the wavelength range of 370-950 nm and use a standard value of mass absorption coefficient MAC = 10.8 m2/g to calculate BC environmental concentration. To correct the aethalometers readings to the conditions of Mexico City, it was employed MAC = to 6.7 m2/g, which was determined for PM2.5 with a carbon analyzer (UIC, Inc.) and represents the mass absorption coefficient of soot emitted in Mexico City. The average value of the corrected concentration of BC in Mexico City during the period from July 2013 to July 2014 was 5.39 ± 1.89 μg/m3 (1.6 higher than readings recorded by aethalometers), which is greater than that measured in Shanghai in 2014 (annual average 2.33 μg/m3) and those reported for some U.S. cities; the value implies a potential danger to the health of

  6. Continuous measurement of carbon black in a densely populated area of Mexico City

    NASA Astrophysics Data System (ADS)

    Peralta, Oscar; Ortinez, Abraham; Castro, Telma; Espinosa, Maria; Saavedra, Isabel; Alvarez, Harry; Basaldud, Roberto; Paramo, Víctor; Martínez, Amparo

    2015-04-01

    The black carbon (BC) is a byproduct of burning fossil fuels and is an important short-lived climate forcer because it absorbs solar radiation altering the Earth's radiative budget and climate. It is also an atmospheric pollutant that promotes reactions of other compounds in the atmosphere. Despite its importance for health and climate, in Mexico there are very few studies on ambient concentrations of BC in urban areas and virtually no information of continuous measurements over long periods (more than a month of measurements). So, in order to develop more efficient local and regional mitigation strategies and policies that allow reducing ambient concentrations of BC, it is necessary to know BC seasonal evolution, contribution to radiative budget and impacts on health. This study shows continuous measurements (from July 2013 to July 2014) of BC to perform an analysis of seasonal variations. The selected monitoring site is located at Iztapalapa, a densely populated area with high traffic on the southeastern part of Mexico City. BC concentrations were obtained by two aethalometers (Magee Scientific Company, models AET31 and AET42) placed 15 meters above the ground. The aethalometers operate in the wavelength range of 370-950 nm and use a standard value of mass absorption coefficient MAC = 10.8 m2/g to calculate BC environmental concentration. To correct the aethalometers readings to the conditions of Mexico City, it was employed MAC = to 6.7 m2/g, which was determined for PM2.5 with a carbon analyzer (UIC, Inc.) and represents the mass absorption coefficient of soot emitted in Mexico City. The average value of the corrected concentration of BC in Mexico City during the period from July 2013 to July 2014 was 5.39 ± 1.89 μg/m3 (1.6 higher than readings recorded by aethalometers), which is greater than that measured in Shanghai in 2014 (annual average 2.33 μg/m3) and those reported for some U.S. cities; the value implies a potential danger to the health of

  7. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong

    2017-08-01

    Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.

  8. Evaluating of simulated carbon flux phenology over a cropland ecosystem in a semiarid area of China with SiBcrop.

    PubMed

    Du, Qun; Liu, Huizhi; Xu, Lujun

    2017-02-01

    The cropland ecosystem in semiarid areas is sensitive to climate change. The accurate representation of crop phenology is important for predicting the carbon and water exchange process. The performance of a newly developed phenological model (SiBcrop) for simulations of carbon flux phenology in a semiarid area ecosystem was evaluated. The results showed that the SiBcrop improved the prediction for daily maximum gross primary production (GPP), and the days GPP reached the maximum value were closer to the observation, compared to SiB3. SiBcrop had a better prediction for both monthly total net ecosystem exchange (NEE) in the growing season than in the dormant season in semiarid areas. The day when the cumulative NEE predicted with SiBcrop became positive was closer to the observation. The observed start date of carbon uptake (CUstart) had a larger annual variation than did the end date of carbon uptake (CUend). SiBcrop had a better prediction for CUstart but poor for CUend, compared to SiB3. There was a longer carbon uptake period (CUP) predicted with SiBcrop than the observed results.

  9. Evaluating of simulated carbon flux phenology over a cropland ecosystem in a semiarid area of China with SiBcrop

    NASA Astrophysics Data System (ADS)

    Du, Qun; Liu, Huizhi; Xu, Lujun

    2017-02-01

    The cropland ecosystem in semiarid areas is sensitive to climate change. The accurate representation of crop phenology is important for predicting the carbon and water exchange process. The performance of a newly developed phenological model (SiBcrop) for simulations of carbon flux phenology in a semiarid area ecosystem was evaluated. The results showed that the SiBcrop improved the prediction for daily maximum gross primary production (GPP), and the days GPP reached the maximum value were closer to the observation, compared to SiB3. SiBcrop had a better prediction for both monthly total net ecosystem exchange (NEE) in the growing season than in the dormant season in semiarid areas. The day when the cumulative NEE predicted with SiBcrop became positive was closer to the observation. The observed start date of carbon uptake (CUstart) had a larger annual variation than did the end date of carbon uptake (CUend). SiBcrop had a better prediction for CUstart but poor for CUend, compared to SiB3. There was a longer carbon uptake period (CUP) predicted with SiBcrop than the observed results.

  10. Continuous carbon dioxide measurements in a rural area in the upper Spanish plateau.

    PubMed

    García, M Angeles; Sánchez, M Luisa; Pérez, Isidro A; de Torre, Beatriz

    2008-07-01

    Continuous carbon dioxide (CO2) measurements over the period 2004-2005 for a rural area in the upper Spanish plateau were examined to characterize the influence of sources and sinks. The diurnal pattern and the annual cycle are presented. The baseline CO2 levels over the time frames researched are determined so as to achieve a more accurate verification of the ambient conditions when uptake is deployed at the site. The results reveal a mean concentration of 384.2 ppm, with 9.8-ppm variability. The mean maximum concentration levels at night, 4:00 a.m. Greenwich Mean Time (GMT), are 390.7 ppm, mainly when atmospheric stability increased. Moreover, mean CO2 levels increase in spring, peaking in May at 388.5 ppm. Concentrations then decline in summer and again increase in autumn, reaching a similar mean value in December. The results also show consistency with vegetation and crop growth, as well as the influence of meteorological conditions, soil features, and human activity in the area. Minimum and maximum CO2 concentrations present a similar but opposite variation, 4.4 ppm x yr(-1), with values decreasing in the latter. Diurnal variation is more pronounced during the growing season and higher in 2004, partly because of abundant rainfall. The lower daily amplitudes in the remaining months are attributed to the reduction in plant and soil respiration processes. The influence of wind on CO2 concentrations has enabled us to identify the contribution of emissions from the cities of Valladolid and Palencia. An increase in mean CO2 concentrations was observed in the, east-southeast, southeast, south-southeast, and south sectors for the former city, and north and east for the latter. The ratio of CO2 increase in the wind sectors influenced by these sources yielded a factor of 1.2 with respect to the relationship between the populations of the two cities.

  11. Preparation and Characteristics of SiOx Coated Carbon Nanotubes with High Surface Area

    PubMed Central

    Kim, Aeran; Lim, Seongyop; Peck, Dong-Hyun; Kim, Sang-Kyung; Lee, Byungrok; Jung, Doohwan

    2012-01-01

    An easy method to synthesize SiOx coated carbon nanotubes (SiOx-CNT) through thermal decomposition of polycarbomethylsilane adsorbed on the surface of CNTs is reported. Physical properties of SiOx-CNT samples depending on various Si contents and synthesis conditions are examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen isotherm, scanning electron microscope (SEM), and transmission electron microscope (TEM). Morphology of the SiOx-CNT appears to be perfectly identical to that of the pristine CNT. It is confirmed that SiOx is formed in a thin layer of approximately 1 nm thickness over the surface of CNTs. The specific surface area is significantly increased by the coating, because thin layer of SiOx is highly porous. The surface properties such as porosity and thickness of SiOx layers are found to be controlled by SiOx contents and heat treatment conditions. The preparation method in this study is to provide useful nano-hybrid composite materials with multi-functional surface properties.

  12. Palaeomagnetism of Middle Ordovician Carbonate Sequence, Vaivara Sinimäed Area, Northeast Estonia, Baltica

    NASA Astrophysics Data System (ADS)

    Plado, Jüri; Preeden, Ulla; JÕeleht, Argo; Pesonen, Lauri J.; Mertanen, Satu

    2016-10-01

    The hill range of Vaivara Sinimäed in northeast Estonia consists of several narrow east- to northeast-trending glaciotectonic fold structures. The folds include tilted (dips 4-75°) Middle Ordovician (early Darriwilian) layered carbonate strata that were studied by mineralogical, palaeomagnetic, and rock magnetic methods in order to specify the postsedimentational history of the area and to obtain a better control over the palaeogeographic position of Baltica during the Ordovician. Mineralogical studies revealed that (titano)magnetite, hematite, and goethite are carriers of magnetization. Based on data from 5 sites that positively passed a DC tilt test, a south-easterly downward directed component A ( D ref = 154.6°± 15.3°, I ref = 60.9°± 9.7°) was identified. The component is carried by (titano)magnetite, dates to the Middle Ordovician ( Plat = 17.9°, Plon = 47.3°, K = 46.7, A95 = 11.3°), and places Baltica at mid-southerly latitudes. Observations suggest that in sites that do not pass the tilt test, the glaciotectonic event has caused some rotation of blocks around their vertical axis.

  13. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.

  14. [Variation of soil organic carbon under different vegetation types in Karst Mountain areas of Guizhou Province, southwest China].

    PubMed

    Liao, Hong-kai; Long, Jian

    2011-09-01

    This paper studied the variation characteristics of soil organic carbon (SOC) and different particle sizes soil particulate organic carbon (POC) in normal soil and in micro-habitats under different vegetation types in typical Karst mountain areas of southwest Guizhou. Under different vegetation types, the SOC content in normal soil and in micro-habitats was all in the order of bare land < grass < shrub < forest, with the variation range being 7.18-43.42 g x kg(-1) in normal soil and being 6.62-46.47 g x kg(-1) and 9.01-52.07 g x kg(-1) in earth surface and stone pit, respectively. The POC/MOC (mineral-associated organic carbon) ratio under different vegetation types was in the order of bare land < grass < forest < shrub. Under the same vegetation types, the POC/MOC in stone pit was the highest, as compared to that in normal soil and in earth surface. In the process of bare land-grass-shrub-forest, the contents of different particle sizes soil POC increased, while the SOC mainly existed in the forms of sand- and silt organic carbon, indicating that in Karst region, soil carbon sequestration and SOC stability were weak, soil was easily subjected to outside interference and led to organic carbon running off, and thus, soil quality had the risk of decline or degradation.

  15. [Adsorption behavior and influence factors of p-nitroaniline on high surface area activated carbons prepared from plant stems].

    PubMed

    Li, Kun-quan; Zheng, Zheng; Luo, Xing-zhang

    2010-08-01

    Low-cost and high surface area microporous activated carbons were prepared from Spartina alternilora and cotton stalk with KOH activation under the conditions of impregnation ratio of 3.0, activation temperature at 800 degrees C and activation time of 1.5 h. The adsorption behavior of p-nitroaniline on the activated carbons was investigated by batch sorption experiments. The influences of solution pH value, adsorbent dose and temperature were investigated. The adsorption isotherm and thermodynamic characteristics were also discussed. The Spartina alterniflora activated carbon (SA-AC) has a high surface area of 2825 m2 x g(-1) and a micropore volume of 1.192 cm3 x g(-1). The BET surface area and micropore volume of the cotton stalk activated carbon (CS-AC) are 2135 m2 x g(-1) and 1.011 cm3 x g(-1), respectively. The sorption experiments show that both the activated carbons have high sorption capacity for p-nitroaniline. The Langmuir maximum sorption amount was found to be 719 mg x g(-1) for SA-AC and 716 mg x g(-1) for CS-AC, respectively. The sorption was found to depend on solution pH, adsorbent dose, and temperature. The optimum pH for the removal of p-nitroaniline was found to be 7.0. The Freundlich model and Redlich-Peterson model can describe the experimental data effectively. The negative changes in free energy (delta G0) and enthalpy (delta H0) indicate that the sorption is a spontaneous and exothermic procedure. The negative values of the adsorption entropy delta S0 indicate that the mobility of p-nitroaniline on the carbon surface becomes more restricted as compared with that of those in solution.

  16. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.

    PubMed

    Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang

    2016-11-09

    Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO3), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m(2)g(-1) was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg(-1) in 1.0 M KOH at a scan rate of 5 mV s(-1). Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg(-1) using Nafion binder is obtained under a current density of 1 Ag(-1) by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.

  17. Satellite-derived leaf-area-index and vegetation maps as input to global carbon cycle models - A hierarchical approach

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Macdonald, R. B.; Mehta, N. C.

    1986-01-01

    A hierarchical procedure for developing a leaf area index (LAI) map of deciduous boreal forests is studied. The collection of spectral reflectance data from the Boundary Waters Canoe area in Minnesota using helicopter-, high-altitude aircraft-, and Landsat-mounted spectral sensors is described. The relationship between LAI and biomass and the reflectance ratio is analyzed. The sensitivity of canopy reflectance in the visible and infrared to the LAI of the canopy for various boreal forest species is evaluated. The data reveal that Landsat data are useful for producing LAI maps of deciduous forest areas and the maps provide data which clarifies the function of vegetation in the global carbon cycle models.

  18. Effects of Temperature and Pore Structure on High Surface Area-Activated Carbon Obtained from Peanut Shells.

    PubMed

    Kalpana, D; Lee, Y S

    2016-03-01

    Activated carbon was synthesized from peanut shells by treating with H3PO4 with an intention to enhance the surface area and to find its electrochemical performance in EDLC as electrode material. The powdered peanut shells were pyrolyzed at three different temperatures namely 300 degrees C, 600 degrees C and 800 degrees C respectively. The structural and surface properties of the pyrolyzed carbon materials were studied using N2 adsorption/desorption, Raman, TEM and SEM analysis. There has been remarkable increase in the surface area of the carbon pyrolyzed at 600 degrees C due to the effect of pore generations. The surface area of the 600 degrees C pyrolyzed sample was found to be 1629 m2/g. The electrochemical properties of all the samples were evaluated by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge tests. The system showed excellent cycleability and a maximum specific capacitance of 291 Fg(-1) was obtained in a 0.1 M H2SO4 electrolyte solution. The effects of the various properties of the activated carbon on the EDLC performance are discussed.

  19. Carbon storage and sequestration by trees in urban and community areas of the United States

    Treesearch

    David J. Nowak; Eric J. Greenfield; Robert E. Hoehn; Elizabeth. Lapoint

    2013-01-01

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine...

  20. Study on the Preparation Process and Influential Factors of Large Area Environment-friendly Molten Carbonate Fuel Cell Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang

    2017-07-01

    Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.

  1. Identifying potential sources of variability between vegetation carbon storage estimates for urban areas.

    PubMed

    Davies, Zoe G; Dallimer, Martin; Edmondson, Jill L; Leake, Jonathan R; Gaston, Kevin J

    2013-12-01

    Although urbanisation is a major cause of land-use change worldwide, towns and cities remain relatively understudied ecosystems. Research into urban ecosystem service provision is still an emerging field, yet evidence is accumulating rapidly to suggest that the biological carbon stores in cities are more substantial than previously assumed. However, as more vegetation carbon densities are derived, substantial variability between these estimates is becoming apparent. Here, we review procedural differences evident in the literature, which may be drivers of variation in carbon storage assessments. Additionally, we quantify the impact that some of these different approaches may have when extrapolating carbon figures derived from surveys up to a city-wide scale. To understand how/why carbon stocks vary within and between cities, researchers need to use more uniform methods to estimate stores and relate this quantitatively to standardised 'urbanisation' metrics, in order to facilitate comparisons.

  2. Multi-factor controls on terrestrial carbon dynamics in urbanised areas

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.

    2013-11-01

    As urban land cover and populations continue rapidly increasing across the globe, much concern has been raised that urbanization may significantly alter terrestrial carbon dynamics that affects atmospheric CO2 concentration and climate. Urbanization involves complex changes in land structure and multiple environmental factors. Relative contribution of these and their interactive effects need be quantified to better understand urbanization effects on regional C dynamics as well as assess the effectiveness of C sequestration policies focusing on urban green space development. In this study, we analyzed the factors that may control the urbanization effect on ecosystem C dynamics, and proposed a numeric experimental scheme, i.e. scenarios design, to conduct factorial analysis on the effects of different factors. Then as a case study, a dynamic land ecosystem model (DLEM) was applied to quantify the urbanization effect on the C dynamics of the Southern US (SUS) from 1945-2007, and to analyze the relative contributions from each environmental factor and their interactive effects. We found the effect of urban land conversion dominated the C dynamics in the SUS, resulting in about 0.37 Pg C lost from 1945-2007. However, urban ecosystem management and urban-induced environmental changes enhanced C sequestration by 0.12 Pg and 0.03 Pg, respectively. Their C sequestration effects, which amounted to 40% of the magnitude of land conversion effect, partially compensated for the C loss during urbanization. Numeric experiments and factorial analyses indicated complex interactive effects among different factors and between various land covers and environmental controls, findings need to be further confirmed by field studies. The proposed numeric experimental scheme provides a quantitative approach for understanding the complex mechanisms controlling C dynamics, and defining best development practices in urbanised areas.

  3. Quasielastic neutron scattering study of water confined in carbon nanopores

    SciTech Connect

    Chathoth, S. M.; Mamontov, E.; Kolesnikov, A. I.; Gogotsi, Y.; Wesolowski, D. J.

    2011-07-26

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, ‹τ›, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, ‹τ› follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 Å ordered mesoporous carbon (CMK) and 16 Å double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.

  4. Quasielastic neutron scattering study of water confined in carbon nanopores

    SciTech Connect

    Mavila Chathoth, Suresh; Mamontov, Eugene; Kolesnikov, Alexander I; Gogotsi, Yury G.; Wesolowski, David J

    2011-01-01

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, {tau}, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, {tau} follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 {angstrom} ordered mesoporous carbon (CMK) and 16 {angstrom} double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.

  5. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta.

    PubMed

    Galvis, Boris; Bergin, Mike; Russell, Armistead

    2013-06-01

    Railyards have the potential to influence localfine particulate matter (aerodynamic diameter < or = 2.5 microm; PM2.5) concentrations through emissions from diesel locomotives and supporting activities. This is of concern in urban regions where railyards are in proximity to residential areas. Northwest of Atlanta, Georgia, Inman and Tilford railyards are located beside residential neighborhoods, industries, and schools. The PM2.5 concentrations near the railyards is the highest measured amongst the state-run monitoring sites (Georgia Environmental Protection Division, 2012; http://www.georgiaair.org/amp/report.php). The authors estimated fuel-based black carbon (BC) and PM2.5 emission factors for these railyards in order to help determine the impact of railyard activities on PM2.5 concentrations, and for assessing the potential benefits of replacing current locomotive engines with cleaner technologies. High-time-resolution measurements of BC, PM2.5, CO2, and wind speed and direction were made at two locations, north and south of the railyards. Emissions factors (i.e., the mass of BC or PM2.5 per gallon of fuel burned) were estimated by using the downwind/upwind difference in concentrations, wavelet analysis, and an event-based approach. By the authors' estimates, diesel-electric engines used in the railyards have average emission factors of 2.8 +/- 0.2 g of BC and 6.0 +/- 0.5 g of PM2.5 per gallon of diesel fuel burned. A broader mix of railyard supporting activities appear to lead to average emission factors of 0.7 +/- 0.03 g of BC and 1.5 +/- 0.1 g of PM2.5 per gallon of diesel fuel burned. Railyard emissions appear to lead to average enhancements of approximately 1.7 +/- 0.1 microg/m3 of PM2.5 and approximately 0.8 +/- 0.01 microg/m3 of BC in neighboring areas on an annual average basis. Uncertainty not quantified in these results could arise mainly from variability in downwind/upwind differences, differences in emissions of the diverse zones within the

  6. Implications of biocrust removal on soil organic carbon losses by water erosion in a badlands area

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Raúl Román, José; Miralles, Isabel; Rodríguez-Caballero, Emilio; Cantón, Yolanda

    2015-04-01

    In arid and semiarid ecosystems, soils are characterized by having low organic carbon (OC) content and low fertility. In these systems, runoff, often generated in interplant soils, plays a crucial role in OC redistribution from source (interplant) areas to sink (vegetation) patches. Far from being bare, interplant soils in most arid and semiarid ecosystems are commonly covered by communities of cyanobacteria, algae, lichens and mosses, known as biocrusts, which may reach up to 80% of soil cover. Biocrusts fix atmospheric C and increase the soil OC pool by several folds respect bare soils. In addition, biocrusts form a film on the surface that strongly protects soils against water erosion and prevents from OC losses. However, the role of BSCs in reducing OC losses associated to runoff and erosion may depend on the type and development of biocrust. On the other hand, loss of BSCs provoked by frequent disturbances in arid and semiarid areas leads to an increase in runoff and erosion, which may have important effects on OC losses and nutrient impoverishment in interplant areas. Despite their recognized role, very few studies have explicitly evaluated OC losses from runoff and erosion in soils covered by different types of biocrusts and, more importantly, the effects of biocrust disturbance on OC losses. The aim of this study was to analyse the influence of two biocrust types (cyanobacteria and lichens) as well as of biocrust removal on dissolved and sediment OC losses, in a badlands site of southeastern Spain. Runoff and erosion after rain were measured in small field plots (1 m2) during one hydrological year and water samples collected for determination of dissolved OC and OC bonded to sediments. Our results showed that total OC losses decreased with biocrust development and that biocrust removal caused a dramatic increase in OC losses. The first rain after biocrust removal contributed the most to OC losses as runoff and, more noticeable, erosion greatly increased

  7. The stable carbon isotope composition of PM 2.5 and PM 10 in Mexico City Metropolitan Area air

    NASA Astrophysics Data System (ADS)

    López-Veneroni, D.

    The sources and distribution of carbon in ambient suspended particles (PM 2.5 and PM 10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes ( 13C/ 12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (-27 to -29‰ vs. PDB), while street dust (PM 10) represented the isotopically heaviest endmember (-17‰). The δ13C values of rural soils from four geographically separated sites were similar (-20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between -23 and -26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around -25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM 10 fraction and 54% for PM 2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (-29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope

  8. River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China.

    PubMed

    Zhang, Tao; Li, Jianhong; Pu, Junbing; Martin, Jonathan B; Khadka, Mitra B; Wu, Feihong; Li, Li; Jiang, Feng; Huang, Siyu; Yuan, Daoxian

    2017-12-31

    CO2 fluxes across water-air interfaces of river systems play important roles in regulating the regional and global carbon cycle. However, great uncertainty remains as to the contribution of these inland water bodies to the global carbon budget. Part of the uncertainty stems from limited understanding of the CO2 fluxes at diurnal and seasonal frequencies caused by aquatic metabolism. Here, we measured surface water characteristics (temperature, pH, and DO, DIC, Ca(2+) concentrations) and CO2 fluxes across the air-water interface at two transects of Guijiang River, southwest China to assess the seasonal and diurnal dynamics of fluvial carbon cycling and its potential role in regional and global carbon budgets. The two transects had differing bedrock; DM transect is underlain by carbonate and detrital rock and PY is underlain by pure carbonate. Our results show that the river water both degasses CO2 to and absorbs CO2 from the atmosphere in both summer and winter, but the degassing and absorption varied between the two transects. Further, CO2 fluxes evolve through diurnal cycles. At DM, the river evaded CO2 from early morning through noon and absorbed CO2 from afternoon through early morning. At PY in summer, the CO2 evasion decreased during the daytime and increased at night while in winter at night, CO2 uptake increased in the morning and decreased in the afternoon but remained relatively stable at night. Although the river is a net source of carbon to the atmosphere (~15mMm(-2)day(-1)), the evasion rate is the smallest of all reported world's inland water bodies reflecting sequestration of atmospheric carbon through the carbonate dissolution and high primary productivity. These results emphasize the need of seasonal and diurnal monitoring of CO2 fluxes across water-air interface, particularly in highly productive rivers, to reduce uncertainty in current estimates of global riverine CO2 emission. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Soil Carbon and Carbon/Nitrogen Ratio Change under Tree Canopy, Tall Grass, and Turf Grass Areas of Urban Green Space.

    PubMed

    Livesley, S J; Ossola, A; Threlfall, C G; Hahs, A K; Williams, N S G

    2016-01-01

    Soils in urban green spaces are an important carbon (C) store, but urban soils with a high carbon to nitrogen (C/N) ratio can also buffer N eutrophication from fertilizer use or atmospheric deposition. The influence of vegetation management practices on soil C cycling and C/N ratios in urban green spaces is largely unknown. In 2013, we collected replicate ( = 3) soil samples from tree canopy, tall grass, and short turf grass areas ( = 3) at four random plot locations ( = 4) established in 13 golf courses ( = 13). At each sample point, soil was separated into 0- to 0.1-, 0.1- to 0.2-, and 0.2- to 0.3-m depths (total = 1404). Linear mixed models investigated the relationships between soil properties, vegetation attributes, and green space age. Tree canopy soil was less compacted (1.07 g cm) than grassy areas (1.32 g cm). Similarly, tree canopy soil had mean C/N ratios of 17.2, as compared with between 14.2 and 15.3 in grassy areas. Soil properties in tree canopy areas were best explained by tree basal area and understory vegetation volume. Soil C/N increased with increasing understory vegetation, and the difference in soil C/N between tree canopy and short turf grass areas increased over time. The soil properties in tree canopy areas of urban green space mean they can increasingly buffer the localized use of N fertilizers and atmospheric N deposition. Managers of urban green spaces concerned about N pollution of groundwater and waterways could consider planting trees in suitable topographic locations and promoting understory vegetation and surface litter accumulation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination of biomolecules.

    PubMed

    Zhou, Shenghai; Shi, Hongyan; Feng, Xun; Xue, Kaiwen; Song, Wenbo

    2013-04-15

    Nanoporous carbon materials have attracted significant interests in the design of electrodes for electrocatalysis and biosensors. Here, three templated nanoporous carbons (TNCs) materials with substantial different specific surface area were designed and synthesized by a nanocasting method, in which mesoporous silicates and acid were used as template and catalyst, respectively. The TNCs were then used as electrode materials for simultaneous detection of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at physiological pH. The correlations between specific surface area, edge-plane defect sites in TNCs and their distinguishing ability towards AA, DA, and UA were investigated. For TNCs with substantial larger specific surface area and more defect sites, the oxidation peaks of AA, DA and UA were separated well and their oxidation currents increased remarkably. A highly sensitive electrochemical sensor for simultaneous detection of those biomolecules was achieved by designing TNCs1 with the largest specific surface area and the most defect sites as the electrode material. The sensitivity of AA, DA and UA at the sensor is 0.012, 4.031, 0.605 μA/μM respectively. Results suggest that TNCs1 is promising in biomolecules simultaneous detection. This work may also be valuable for scientists who search for excellent carbon materials for biosensing and electrocatalysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    NASA Astrophysics Data System (ADS)

    Giuntini, L.; Massi, M.; Calusi, S.; Castelli, L.; Carraresi, L.; Fedi, M. E.; Gelli, N.; Liccioli, L.; Mandò, P. A.; Mazzinghi, A.; Palla, L.; Romano, F. P.; Ruberto, C.; Taccetti, F.

    2015-04-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm2), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported.

  12. Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; Paddubskaya, A.; Plyushch, A.; Volynets, N.; Maksimenko, S.; Macutkevic, J.; Kranauskaite, I.; Banys, J.; Ivanov, E.; Kotsilkova, R.; Celzard, A.; Fierro, V.; Zicans, J.; Ivanova, T.; Merijs Meri, R.; Bochkov, I.; Cataldo, A.; Micciulla, F.; Bellucci, S.; Lambin, Ph.

    2013-10-01

    A comprehensive analysis of electrical, electromagnetic (EM), mechanical, and thermal properties of epoxy resin composites filled with 0.25-2.0 wt. % of carbon additives characterized by high surface area, both nano-sized, like carbon nanotubes (CNTs) and carbon black (CBH), and micro-sized exfoliated graphite (EG), was performed. We found that the physical properties of both CNTs- and CBH-based epoxy resin composites increased all together with filler content and even more clearly for CBH than for CNTs. In the case of EG-based composites, good correlation between properties and filler amount was observed for concentrations below 1.5 wt. %. We conclude that CBH and, to a lower extent, EG could replace expensive CNTs for producing effective EM materials in microwave and low-frequency ranges, which are, in addition, mechanically and thermally stable.

  13. Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area.

    PubMed

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2017-02-01

    A thorough knowledge of the effects of climate and land use changes on the soil carbon pool is critical to planning effective strategies for adaptation and mitigation in future scenarios of global climate and land use change. In this study, we used CarboSOIL model to predict changes in soil organic carbon stocks in a semi-natural area of Southern Spain in three different time horizons (2040, 2070, 2100), considering two general circulation models (BCM2 and ECHAM5) and three IPCC scenarios (A1b, A2, B2). The effects of potential land use changes from natural vegetation (Mediterranean evergreen oak woodland) to agricultural land (olive grove and cereal) on soil organic carbon stocks were also evaluated. Predicted values of SOC contents correlated well those measured (R2 ranging from 0.71 at 0-25cm to 0.97 at 50-75cm) showing the efficiency of the model. Results showed substantial differences among time horizons, climate and land use scenarios and soil depth with larger decreases of soil organic carbon stocks in the long term (2100 time horizon) and particularly in olive groves. The combination of climate and land use scenarios (in particular conversion from current 'dehesa' to olive groves) resulted in yet higher losses of soil organic carbon stocks, e.g. -30, -15 and -33% in the 0-25, 25-50 and 50-75cm sections respectively. This study shows the importance of soil organic carbon stocks assessment under both climate and land use scenarios at different soil sections and point towards possible directions for appropriate land use management in Mediterranean semi natural areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Black carbon aerosols and gaseous pollutants in an urban area in North India during a fog period

    NASA Astrophysics Data System (ADS)

    Badarinath, K. V. S.; Latha, K. Madhavi; Chand, T. R. Kiran; Reddy, R. R.; Gopal, K. Rama; Reddy, L. Siva Sankara; Narasimhulu, K.; Kumar, K. Raghavendra

    2007-08-01

    Northern regions of India experience severe fog conditions during the winter period (December-January) each year. In the present study, concurrent measurements of black carbon aerosols (BC), Carbon monoxide (CO), Surface Ozone (O 3) and oxides of Nitrgen (NO x) have been carried out in Allahabad, located in northern India in order to understand the impact on pollutant concentrations during fog periods. The results of the present study show higher concentrations of BC, NO x and CO during morning and late night hours in the study area. Diurnal variations of ozone concentrations varied from 14 ppbv to 35 ppbv and were observed to increase gradually after sunrise attaining a maximum value by evening time and to decrease gradually thereafter. Concentrations of BC, NO x, O 3 and CO were found to be very low during fog periods over the study area. BC showed a positive correlation with CO and a negative correlation with surface ozone concentrations. The slope between black carbon aerosols and ground level ozone suggests that every 1 μg m - 3 increase in black carbon aerosol mass concentration causes a reduction of 0.7 μg m - 3 surface ozone.

  15. Measurement of organic and elemental carbon in downtown Rome and background area: physical behavior and chemical speciation.

    PubMed

    Avino, Pasquale; Manigrasso, Maurizio; Rosada, Alberto; Dodaro, Alessandro

    2015-02-01

    A significant portion of the particulate matter is the total carbonaceous fraction (or total carbon, TC), composed of two main fractions, elemental carbon (EC) and organic carbon (OC), which shows a large variety of organic compounds, e.g. aliphatic, aromatic compounds, alcohols, acids, etc. In this paper, TC, EC and OC concentrations determined in a downtown Rome urban area are discussed considering the influence of meteorological conditions on the temporal-spatial aerosol distribution. Similar measurements were performed at ENEA Casaccia, an area outside Rome, which is considered as the ome background. Since 2000, TC, EC and OC measurements have been performed by means of an Ambient Carbon Particulate Monitor equipped with a NDIR detector. The EC and OC concentrations trends are compared with benzene and CO trends, which are specific indicators of autovehicular traffic, for identifying the primary EC and OC contributions and the secondary OC fraction origin. Further, a chemical investigation is reported for investigating how the main organic (i.e., n-alkanes, n-alkanoic acids, polyaromatic hydrocarbons and nitro-polyaromatic hydrocarbons) and inorganic (i.e., metals, ions) fractions vary their levels during the investigated period in relationship to new regulations and/or technological innovations.

  16. [Characteristics of carbon storage and sequestration in different age beech (Castanopsis hystrix) plantations in south subtropical area of China].

    PubMed

    Liu, En; Wang, Hui; Liu, Shi-Rong

    2012-02-01

    To transform large area pure conifer plantations by planting indigenous and valuable broad-leaved tree species has been advocated as an effective close-to-nature forest management in sub-tropical China. Taking the 10-, 20- and 27-year-old Castanopsis hystrix plantations in Guangxi of South China as test objects and by the methods of plot investigation and biomass measurement, this paper studied the carbon content in different plant organs, litter layers, and soil layers and the carbon storage and its allocation in tree layer, litter layer and soil layer. For the test plantations, the carbon content in different C. hystrix organs ranged from 49.7% to 57.9%, and that in litter layer was 40.8%-50.5%, being higher in fresh litter layer than in semi-decomposed litter layer. The carbon storage in the soil profiles (0-60 cm) increased with plantation age but decreased with soil depth. The total carbon storage in the 10-, 20- and 27-year-old plantations was 182. 42, 234.75 and 269. 75 t x hm(-2), respectively, among which, tree layer, litter layer and soil layer occupied 19.8%, 32.0% and 32.8%, 1.5%, 1.6% and 1.3%, and 78.7%, 66.4% and 65.9%, respectively. The annual net carbon sequestration of the 10-, 20- and 27-year-old plantations was 4.70, 5.64 and 5.18 t x hm(-2), respectively. It was considered that C. hystrix had a high capability in carbon sequestration, being able to be an ideal tree species for multi-purpose forest management with large and valuable timber production.

  17. 1994 conceptual model of the carbon tetrachloride contamination in the 200 West Area at the Hanford Site

    SciTech Connect

    Rohay, V.J.

    1994-08-01

    Between 1955 and 1973, a total of 363,000 to 580,000 L (577,000 to kg) of liquid carbon tetrachloride, in mixtures with other organic and aqueous, actinide-bearing fluids, were discharged to the soil column at three disposal facilities -- the 216-Z-9 Trench, the 216-Z-lA TiTe Field, and the 216-Z-18 Crib -- in the 200 West Area at the Hanford Site. In the mid-1980`s, dissolved carbon tetrachloride was found in the uppermost aquifer beneath the disposal facilities, and in late 1990, the US Environmental Protection Agency and the Washington State Department of Ecology requested that the US Department of Energy proceed with planning and implementation of an expedited response action (ERA) to minimize additional carbon tetrachloride contamination of the groundwater. In February 1992, soil vapor extraction was initiated to remove carbon tetrachloride from the unsaturated zone beneath these disposal facilities. By May 1994, a total of 10,560 L (16,790 kg) of carbon tetrachloride had been removed, amounting to an estimated 2% of the discharged inventory. In the spring of 1991, the Volatile Organic Compounds -- Arid Integrated Demonstration (VOC-Arid ID) program selected the carbon tetrachloride-contaminated site for demonstration and deployment of new technologies for evaluation and cleanup of volatile organic compounds and associated contaminants in soils and groundwater at arid sites. Site investigations conducted in support of both the ERA and the VOC-Arid ID have been integrated because of their shared objective to refine the conceptual model of the site and to promote efficiency. Site characterization data collected in fiscal year 1993 have supported and led to refinement of the conceptual model of the carbon tetrachloride site.

  18. A CONTINUOUSLY RECORDING ATMOSPHERIC CARBON MONOXIDE MONITORING SYSTEM WITH FULLY AUTOMATIC ALARMS IN A BLAST FURNACE AREA

    PubMed Central

    Davies, G. M.; Jones, J. Graham; Warner, C. G.

    1965-01-01

    A continuously recording carbon monoxide monitoring system with fully automatic alarms is described for use in blast furnace areas. The equipment comprised the Mines Safety Appliances Model 200 infra-red analyser, pumping system, recorder, extension meter, and alarm unit. Use of the apparatus showed that concentrations of carbon monoxide in the blast furnace area studied were mostly in the range of 0 to 49 p.p.m. Readings of 200 p.p.m. and over generally indicated that some abnormal and potentially dangerous incident had occurred. Examples of such incidents are given. A visual alarm was set at 200 p.p.m., a level at which work could safely continue for a limited period, and an auditory alarm at 500 p.p.m., at which level immediate action was necessary. The theoretical reasons for selecting these levels are discussed, and practical results are quoted to confirm their suitability. Images PMID:5836566

  19. Source Apportionment of Elemental Carbon Across the San Francisco Bay Area Using Combined Radiocarbon and Chemical Mass Balances

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Fairley, D.; Sheesley, R. J.

    2014-12-01

    The San Francisco Bay Area is impacted by ambient particulate matter (PM) from a variety of sources including motor vehicles, biomass burning, off-road vehicles, industry, and meat cooking. Ambient PM, especially fine PM (diameter less than 2.5μm, PM2.5), is known to negatively impact health. Elemental Carbon (EC) is one of the major constituents of PM2.5. It not only negatively affects health but is also a powerful short-lived climate forcer. The State of California and Bay Area Air Quality Management District (BAAQMD) have made efforts in regulating contribution of EC from diesel trucks and wood burning, respectively. These and other efforts have assisted in significantly reducing the annual average PM2.5 concentrations approximately 30% since 2005 and 70% since 1990. Despite these improvements, to better determine the relative contribution of contemporary vs. fossil carbon, radiocarbon source apportionment of EC was conducted on PM2.5 collected in the Bay Area. Measurements of the abundance of 14C in the EC fractions are used to quantify the relative contributions of fossil carbon (fossil fuel combustion, including motor vehicle exhaust) and contemporary carbon (biomass combustion and meat cooking). This comprehensive study included seven sites in the Bay Area and 12 months of sampling starting November 2011 through October 2012. The samples were composited to represent winter (November-February) and non-winter (March-October). In addition to radiocarbon analysis, Chemical Mass Balance (CMB) analysis using bulk PM2.5 composition and selected trace gases was used to understand the split among gasoline, natural gas, and diesel exhaust. Preliminary apportionment of the seven sites shows roughly equal contributions of fossil fuel and biomass burning/cooking for both winter and non-winter samples. There is evidence that the diesel contribution to EC, in particular, has decreased substantially over the last decade.

  20. Co₃O₄ nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting.

    PubMed

    Du, Shichao; Ren, Zhiyu; Zhang, Jun; Wu, Jun; Xi, Wang; Zhu, Jiaqing; Fu, Honggang

    2015-05-11

    A large-area, self-supported Co3O4 nanocrystal/carbon fiber electrode for oxygen and hydrogen evolution reaction was fabricated via thermal decomposition of the [Co(NH3)n](2+)-oleic acid complex and subsequent spray deposition. Due to the exposed active sites and good electrical conductivity, its operate voltage for overall water splitting is nearly the same as commercial Pt/C.

  1. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    PubMed

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (P<0.00 1). Significant positive relationship was detected between mean annual precipitation and soil organic carbon concentration (r=0.838, P<0.001) in the of pooled data. From south to north (start from northernmost Ordos), i.e. along the 368-591 mm precipitation gradient, the soil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.

  2. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    PubMed

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution.

  3. Enhancing the available specific surface area of carbon supports to boost the electroactivity of nanostructured Pt catalysts.

    PubMed

    Holade, Yaovi; Morais, Claudia; Servat, Karine; Napporn, Teko W; Kokoh, K Boniface

    2014-12-14

    We report increasing improvements in the available specific surface area of the commonly used Vulcan XC 72R and Ketjenblack EC-600JD carbons by simple thermal pre-treatment. The treated Vulcan and Ketjenblack substrates have a specific surface area of 322 and 1631 m(2) g(-1), respectively, instead of 262 and 1102 m(2) g(-1) for the as-received materials, which is a 23 and 48% improvement. Subsequently, when used as platinum nanoparticle (3 nm) supports, the electrochemical active surface area is enhanced by factors of 2.2 and 1.2 for treated Vulcan and Ketjenblack carbons, respectively. Furthermore, electrochemical investigations have highlighted a surprisingly improved catalytic activity for the pre-treated Vulcan XC 72R and Ketjenblack EC-600JD supported Pt nanoparticles. In fact, the synthesized nanostructures from the so-called "Bromide Anion Exchange" method exhibit good catalytic activity toward glucose electrooxidation, both in the alkaline medium and the phosphate buffered solution at pH 7.4. More importantly, the present catalysts are four times more active than those in the literature prepared under similar conditions for glucose dehydrogenation at low potential (0.27 V vs. Reversible Hydrogen Electrode). Consequently, these remarkable trends uncovered herein provide ample new strategic routes for the pre-treatment of Vulcan XC 72R and Ketjenblack carbons for widespread uses.

  4. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    PubMed

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to

  5. Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage

    DOE PAGES

    Pokrzywinski, Jesse; Keum, Jong K.; Ruther, Rose E.; ...

    2017-05-23

    Here, we created Immense Surface Area Carbons (ISACs) by a novel heat treatment that stabilized the micelle structure in a biological based precursor prior to high temperature combined activation – pyrolysis. While displaying a morphology akin to that of commercial activated carbon, ISACs contain an unparalleled combination of electrochemically active surface area and pore volume (up to 4051 m2 g–1, total pore volume 2.60 cm3 g–1, 76% small mesopores). The carbons also possess the benefit of being quite pure (combined O and N: 2.6–4.1 at%), thus allowing for a capacitive response that is primarily EDLC. Tested at commercial mass loadingsmore » (~10 mg cm–2) ISACs demonstrate exceptional specific capacitance values throughout the entire relevant current density regime, with superior rate capability primarily due to the large fraction of mesopores. In the optimized ISAC, the specific capacitance (Cg) is 540 F g–1 at 0.2 A g–1, 409 F g–1 at 1 A g–1 and 226 F g–1 at a very high current density of 300 A g–1 (~0.15 second charge time). At intermediate and high currents, such capacitance values have not been previously reported for any carbon. Tested with a stable 1.8 V window in a 1 M Li2SO4 electrolyte, a symmetric supercapacitor cell yields a flat energy–power profile that is fully competitive with those of organic electrolyte systems: 29 W h kg–1 at 442 W kg–1 and 17 W h kg–1 at 3940 W kg–1. The cyclability of symmetric ISAC cells is also exceptional due to the minimization of faradaic reactions on the carbon surface, with 80% capacitance retention over 100 000 cycles in 1 M Li2SO4 and 75 000 cycles in 6 M KOH.« less

  6. Calculating Soil Wetness, Evapotranspiration and Carbon Cycle Processes Over Large Grid Areas Using a New Scaling Technique

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Soil wetness typically shows great spatial variability over the length scales of general circulation model (GCM) grid areas (approx 100 km ), and the functions relating evapotranspiration and photosynthetic rate to local-scale (approx 1 m) soil wetness are highly non-linear. Soil respiration is also highly dependent on very small-scale variations in soil wetness. We therefore expect significant inaccuracies whenever we insert a single grid area-average soil wetness value into a function to calculate any of these rates for the grid area. For the particular case of evapotranspiration., this method - use of a grid-averaged soil wetness value - can also provoke severe oscillations in the evapotranspiration rate and soil wetness under some conditions. A method is presented whereby the probability distribution timction(pdf) for soil wetness within a grid area is represented by binning. and numerical integration of the binned pdf is performed to provide a spatially-integrated wetness stress term for the whole grid area, which then permits calculation of grid area fluxes in a single operation. The method is very accurate when 10 or more bins are used, can deal realistically with spatially variable precipitation, conserves moisture exactly and allows for precise modification of the soil wetness pdf after every time step. The method could also be applied to other ecological problems where small-scale processes must be area-integrated, or upscaled, to estimate fluxes over large areas, for example in treatments of the terrestrial carbon budget or trace gas generation.

  7. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    SciTech Connect

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  8. Radiocarbon-based source apportionment of black carbon (BC) in PM 10 aerosols from residential area of suburban Tokyo

    NASA Astrophysics Data System (ADS)

    Uchida, Masao; Kumata, Hidetoshi; Koike, Yasuyo; Tsuzuki, Mikio; Uchida, Tatsuya; Fujiwara, Kitao; Shibata, Yasuyuki

    2010-04-01

    The AMS technique was applied to analyse black carbon (BC), total organic carbon (TOC), and previously reported polycyclic aromatic hydrocarbons (PAHs) in PM 10 aerosols from a residential area, suburban Tokyo, to determine natural abundance of radiocarbon ( 14C), an ideal tracer to distinguish fossil fuel ( 14C-free) from modern biomass combustion sources of pyrolytic products. The 14C concentrations in BC, isolated using the CTO-375 method, were 42% and 30% pMC (in terms of percent Modern Carbon: pMC) in summer and winter, respectively. The 14C concentrations in BC were also compared with those of compound-class specific 14C content of PAHs previously reported for the same samples: they were 45% and 33% pMC in summer and winter, respectively. The 14C signals of BC were identical to those of high molecular weight (MW ⩾ 226, 5-6 rings) PAHs. The resemblance between 14C signals of BC and PAHs can be referred as a 'certificate' for the validity of the BC isolation method employed in this study. Also, it suggests that 14C-BC approach can be a surrogate for PAHs specific 14C analyses to monitor seasonal source variation of combustion-derived pyrolytic products. On the other hand, 14C contents of total organic carbon in 2004 were 61% and 42% pMC in summer and winter, respectively. This is likely attributed to higher contribution of plant activity in summer.

  9. Large‐Area Carbon Nanosheets Doped with Phosphorus: A High‐Performance Anode Material for Sodium‐Ion Batteries

    PubMed Central

    Hou, Hongshuai; Shao, Lidong; Zhang, Yan; Zou, Guoqiang; Chen, Jun

    2016-01-01

    Large‐area phosphorus‐doped carbon nanosheets (P‐CNSs) are first obtained from carbon dots (CDs) through self‐assembly driving from thermal treatment with Na catalysis. This is the first time to realize the conversion from 0D CDs to 2D nanosheets doped with phosphorus. The sodium storage behavior of phosphorus‐doped carbon material is also investigated for the first time. As anode material for sodium‐ion batteries (SIBs), P‐CNSs exhibit superb performances for electrochemical storage of sodium. When cycled at 0.1 A g−1, the P‐CNSs electrode delivers a high reversible capacity of 328 mAh g−1, even at a high current density of 20 A g−1, a considerable capacity of 108 mAh g−1 can still be maintained. Besides, this material also shows excellent cycling stability, at a current density of 5 A g−1, the reversible capacity can still reach 149 mAh g−1 after 5000 cycles. This work will provide significant value for the development of both carbon materials and SIBs anode materials. PMID:28105399

  10. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    PubMed

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  11. Deployment of Low-Cost, Carbon Dioxide Sensors throughout the Washington Metropolitan Area - The Capital Climate Initiative

    NASA Astrophysics Data System (ADS)

    Caine, Kristen M.; Bailey, D. Michelle; Houston Miller, J.

    2016-04-01

    According to the IPCC from 1995 to 2005, atmospheric carbon dioxide (CO2) concentrations increased by 19 ppm, the highest average growth rate recorded for any decade since measurements began in the 1950s. Due to its ability to influence global climate change, it is imperative to continually monitor carbon dioxide emission levels, particularly in urban areas where some estimate in excess of 75% of total greenhouse gas emissions occur. Although high-precision sensors are commercially available, these are not cost effective for mapping a large spatial area. A goal of this research is to build out a network of sensors that are accurate and precise enough to provide a valuable data tool for accessing carbon emissions from a large, urban area. This publically available greenhouse gas dataset can be used in numerous environmental assessments and as validation for remote sensing products. It will also be a valuable teaching tool for classes at our university and will promote further engagement of K-12 students and their teachers through education and outreach activities. Each of our sensors (referred to as "PiOxides") utilizes a non-dispersive infrared (NDIR) sensor for the detection of carbon dioxide along with a combination pressure/temperature/humidity sensor. The collection of pressure and temperature increases the accuracy and precision of the CO2 measurement. The sensors communicate using a serial interfaces with a Raspberry Pi microcontroller. Each PiOxide is connected to a website that leverages recent developments in open source GIS tools. In this way, data from individual sensors can be followed individually or aggregated to provide real-time, spatially-resolved data of CO2 trends across a broad area. Our goal for the network is to expand across the entire DC/Maryland/Virginia Region through partnerships with private and public schools. We are also designing GHG Bluetooth beacons that may be accessed by mobile phone users in their vicinity. In two additional

  12. Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Jena, Hara Mohan

    Activated carbons were prepared from Fox nutshell by chemical activation with H3PO4 in N2 atmosphere and their characteristics were studied. The effects of activation temperature and impregnation ratio were examined. N2 adsorption isotherms characterized the surface area, total pore volume, micropore volume and pore size distribution of activated carbons. Activated carbon was produced at 700 °C with a 1.5 impregnation ratio and one hour of activation time has found 2636 m2/g and 1.53 cm3/g of highest BET surface area and total pore volume, respectively. The result of Fourier-infrared spectroscopy analysis of the prepared activated carbon confirmed that the carbon has abundant functional groups on the surface. Field emission scanning electron micrographs of the prepared activated carbon showed that a porous structure formed during activation.

  13. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning

    NASA Astrophysics Data System (ADS)

    Coelho, C. H.; Francisco, J. G.; Nogueira, R. F. P.; Campos, M. L. A. M.

    This work reports on rainwater dissolved organic carbon (DOC) from Ribeirão Preto (RP) and Araraquara over a period of 3 years. The economies of these two cities, located in São Paulo state (Brazil), are based on agriculture and related industries, and the region is strongly impacted by the burning of sugar cane foliage before harvesting. Highest DOC concentrations were obtained when air masses traversed sugar cane fields burned on the same day as the rain event. Significant increases in the DOC volume weighted means (VWM) during the harvest period, for both sites, and a good linear correlation ( r = 0.83) between DOC and K (a biomass burning marker) suggest that regional scale organic carbon emissions prevail over long-range transport. The DOC VWMs and standard deviations were 272 ± 22 μmol L -1 ( n = 193) and 338 ± 40 μmol L -1 ( n = 80) for RP and Araraquara, respectively, values which are at least two times higher than those reported for other regions influenced by biomass burning, such as the Amazon. These high DOC levels are discussed in terms of agricultural activities, particularly the large usage of biogenic fuels in Brazil, as well as the analytical method used in this work, which includes volatile organic carbon when reporting DOC values. Taking into account rainfall volume, estimated annual rainwater DOC fluxes for RP (4.8 g C m -2 yr -1) and Araraquara (5.4 g C m -2 yr -1) were close to that previously found for the Amazon region (4.8 g C m -2 yr -1). This work also discusses whether previous calculations of the global rainwater carbon flux may have been underestimated, since they did not consider large inputs from biomass combustion sources, and suffered from a possible analytical bias.

  14. How do soil organic carbon stocks change after cropland abandonment in Mediterranean humid mountain areas?

    PubMed

    Nadal-Romero, E; Cammeraat, E; Pérez-Cardiel, E; Lasanta, T

    2016-10-01

    The effects of land use changes on soil carbon stocks are a matter of concern stated in international policy agendas on the mitigation of greenhouse emissions. Afforestation is increasingly viewed as an environmental restorative land use change prescription and is considered one of the most efficient carbon sequestration strategies currently available. Given the large quantity of CO2 that soils release annually, it is important to understand disturbances in vegetation and soil resulting from land use changes. The main objective of this study is to assess the effects of land abandonment, land use change and afforestation practices on soil organic carbon (SOC) dynamics. For this aim, five different land covers (bare soil, permanent pastureland, secondary succession, Pinus sylvestris (PS) and Pinus nigra (PN) afforestation), in the Central Spanish Pyrenees, were analysed. SOC dynamics have been studied in the bulk soil, and in the fractions separated according to two methodologies: (i) aggregate size distribution, and (ii) density fractionation, and rates of carbon mineralization have been determined by measuring CO2 evolution using an automated respirometer. The results showed that: (i) SOC contents were higher in the PN sites in the topsoil (10cm), (ii) when all the profiles were considered no significant differences were observed between pastureland and PN, (iii) SOC accumulation under secondary succession is a slow process, and (iv) pastureland should also be considered due to the relative importance in SOC stocks. The first step of SOC stabilization after afforestation is the formation of macro-aggregates promoted by large inputs of SOC, with a high contribution of labile organic matter. However, our respiration experiments did not show evidence of SOC stabilization. SOC mineralization was higher in the top layers and values decreased with depth. These results gain insights into which type of land management is most appropriate after land abandonment for SOC.

  15. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  16. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas.

    PubMed

    Lozano-García, Beatriz; Parras-Alcántara, Luis; Brevik, Eric C

    2016-02-15

    Soil organic carbon (SOC) plays a critical role in the global carbon (C) cycle, and C sequestration in forest soils can represent a C sink. A relevant question is how does SOC changes in space and time; consequently, the study of the influence of topographic aspect on SOC stocks (SOCS) is very important to build a complete understanding of the soil system. In this line, four topographic aspects, north (N), south (S), east (E) and west (W) were studied under two different plant communities; native forests (NF) and reforested areas (RF) in the Despeñaperros Natural Park (S Spain). Five soil profiles were sampled at each of six different sites, 2 sites for NF (N and E) and 4 sites for RF (N, S, E and W). Soil properties were studied at different depths using soil control sections (S1: 0-25 cm; S2: 25-50 cm; S3: 50-75 cm). The results indicate that RF (N: 147.1 Mg ha(-1); E: 137.3 Mg ha(-1); W: 124.9 Mg ha(-1) and S: 87.0 Mg ha(-1)) had increased total SOCS compared to NF (N: 110.4 Mg ha(-1) and E: 80.9 Mg ha(-1)), and that SOCS in the N position were higher than in the other topographic aspects. Therefore, the results suggest that topographic aspect should be included in SOCS models and estimations at local and regional scales.

  17. Synthesis of high surface area carbon adsorbents prepared from pine sawdust-Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption.

    PubMed

    Álvarez-Torrellas, S; Muñoz, M; Zazo, J A; Casas, J A; García, J

    2016-12-01

    Chemically activated carbon materials prepared from pine sawdust-Onopordum acanthium L. were studied for the removal of diclofenac and naproxen from aqueous solution. Several carbons, using different proportions of precursors were obtained (carbon C1 to carbon C5) and the chemical modification by liquid acid and basic treatments of C1 were carried out. The textural properties of the carbons, evaluated by N2 adsorption-desorption isotherms, revealed that the treatments with nitric acid and potassium hydroxide dramatically reduced the specific surface area and the pore volume of the carbon samples. The surface chemistry characterization, made by thermal programmed decomposition studies, determination of isoelectric point and Boehm's titration, showed the major presence of lactone and phenol groups on the activated carbons surface, being higher the content when the acidic strength of the carbon increased. Diclofenac and naproxen kinetic data onto C1 carbon followed pseudo-second order model. The adsorption equilibrium isotherms of C1 and the modified carbons were well described by both Sips and GAB isotherm equations. The highest adsorption capacity was found for naproxen onto C1 activated carbon, 325 mg g(-1), since the liquid acid and basic functionalization of the carbon led to a severe decreasing in the adsorption removal of the target compounds.

  18. Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.

    Treesearch

    Ralph J. Alig; Brett J. Butler

    2004-01-01

    One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest...

  19. Foramol carbonate shelves as depositional site and source area: Recent and ancient examples from the Mediterranean region

    SciTech Connect

    Carannante, G.; Simone, L.

    1988-08-01

    In recent environments, only limited carbonate depositional areas are dominated by coral reefs. Such platforms frequently develop rimmed margins and are characterized by chlorozoan facies with large contributions of nonskeletal grains. They are practically limited to warm tropical seas. In temperate seas as well as anomalous tropical zones, large areas of the middle-outer shelf are covered by skeletal debris with variable amounts of mollusks, foraminifers, coralline algae, bryozoans, etc (foramol facies). Apart from the skeletal fragments derived from the shallow inner shelf and the contribution from local endobiota and epibiota, the source of the bioclastic sediments may be found in limited and scattered areas supporting active carbonate-producing assemblages. Fossil counterparts of similar deposits are present in the Mediterranean region (e.g., Spain, Italy, Malta, Libya), locally showing good reservoir properties. Examples are described from the Miocene of the Southern Apennines (Italy) where a variety rich in encrusting coralline algae is present, as well as from the Upper Cretaceous of the Southern Apennines and northwest Sardinia (Italy) where scattered rudistid buildups are associated with bioclastic sediments rich in coralline algae and bryozoans.

  20. Leguminous species sequester more carbon than gramineous species in cultivated grasslands of a semi-arid area

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Tian, Fuping; Jia, Pengyan; Zhang, Jingge; Hou, Fujiang; Wu, Gaolin

    2017-01-01

    The establishment of grasslands on abandoned cropland has been proposed as an effective method to mitigate climate change. In this study, five cultivated grasslands (three leguminous species and two gramineous species), one abandoned cropland, and one natural grassland were studied to examine how soil organic carbon (SOC) sequestration rate and sequestration efficiency change in a semi-arid area in China. Our results showed that leguminous grasslands had greater total biomass (above- and belowground biomass), SOC storage, SOC sequestration rate, and efficiency than gramineous grasslands, abandoned cropland, and natural grassland during the experimental period. The largest soil carbon (C) accumulation in leguminous grassland was mainly attributed to the capacity to incorporate C and the higher biomass production. Leguminous grasslands accumulated more SOC than gramineous grasslands by 0.64 Mg C ha-1 yr-1. The average SOC sequestration efficiency in leguminous grassland (1.00) was about 2 times greater than gramineous grassland (0.34). The results indicate that cultivated leguminous grassland sequestered more SOC with higher SOC sequestration efficiency than cultivated gramineous grassland in arid and semi-arid areas. Our results provide a reference for ecological management in arid and semi-arid areas.

  1. From ionic-liquid@metal-organic framework composites to heteroatom-decorated large-surface area carbons: superior CO2 and H2 uptake.

    PubMed

    Aijaz, Arshad; Akita, Tomoki; Yang, Hui; Xu, Qiang

    2014-06-21

    For the first time, high surface area uniformly nitrogen (N)- and boron-nitrogen (BN)-decorated nanoporous carbons have been successfully fabricated by impregnation of ionic liquids (ILs) within a metal-organic framework (MOF), MIL-100(Al), followed by carbonization, which exhibit remarkable CO2 and H2 adsorption capacities.

  2. The Contributions To The Study Of Carbon Monoxide Pollution Due To Car Traffic In A Densely Populated Area

    NASA Astrophysics Data System (ADS)

    Sorin, Borza

    2015-07-01

    Air quality monitoring is the most important environmental factor to be considered because it is the fastest way that helps pollutant transport into the environment. The development of human society has led to a negative anthropogenic and technogenic impact on air quality, resulting into a significant series of adverse effects on human health, flora, fauna and ecosystems in general. In this paper it is presentd the research work performed to monitor carbon monoxide emissions from motor vehicles in traffic, in a densely populated area in Sibiu. Also, in the paper it is described, the research findings conducted in accordance with national and European legislation. In our research we used GIS software, Geomedia Professional.

  3. Isotope anomalies of carbon, hydrogen and nitrogen in peat from the area of the tunguska cosmic body explosion (1908).

    PubMed

    Kolesnikov, E M; Böttger, T; Hiller, A; Junge, F W; Kolesnikova, N V

    1996-12-01

    Abstract Peat profiles from the area of the Tunguska explosion epicentre indicate significant carbon and hydrogen isotopic effects which are clearly associated with the zone of the 1908 "catastrophe", and which cannot be attributed to any known terrestrial processes. We explain them with the presence of extraterrestrial matter similar to carbonaceous chondrites or, more probably, to cometary matter. Initial data on nitrogen content and its isotope composition are consistent with the assumption of acid rainfall following the passage and explosion of the Tunguska cosmic body, as is known to have occurred during the Cretaceous-Tertiary boundary.

  4. Helium and Carbon Isotope Systematics of Springs in the Separation Creek Drainage System, Three Sisters area, Central Oregon Cascades.

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Kennedy, B.; Evans, W. C.; Mariner, R. H.; Schmidt, M. E.

    2002-12-01

    In response to recent and on-going uplift in the Separation Creek drainage system, 5 km west of South Sister volcano in the central Oregon Cascades (e.g. Wicks et al., 2001), a hydrogeochemical monitoring project was initiated by the U.S. Geological Survey in the summer of 2001. When compared to existing literature data, we found no significant changes in the helium isotope composition of hot springs located in the vicinity of South Sister volcano, but outside the area of uplift. Nor were there significant changes in fluid chemistry or conductivity of cold springs within the area of uplift. For the latter group, there are no pre-uplift helium or carbon isotope data. Therefore, the implications of the strong magmatic helium and carbon isotope signals measured in two of these samples and their possible relationship to the recent uplift could not be evaluated (Van Soest et al., 2001; Evans et al., 2002). Within the scope of the hydrogeochemical monitoring project, a detailed survey of cold springs in the Separation Creek drainage area was planned for the spring, summer and fall of 2002. Preliminary results for spring 2002 samples suggest a relationship between helium isotope composition and distance from South Sister volcano, but not the center of uplift: 8.6RA at 3 km (from a sample nearest the youngest erupted volcanics), 7.4RA at 5 km (near the center of uplift), 7.0RA at 10 km, 6.8RA at 18 km, and 5.2RA at 25 km from South Sister volcano. The last value is from the hot spring closest to the area of uplift for which there is pre-uplift data and it suggests a constant helium isotope ratio over time (1982-present). The new carbon isotope results confirm the existence of a mixing relationship between deep abiogenic (magmatic) carbon and shallow biogenic carbon that was apparent in the 2001 samples. The carbon isotope results appear to correlate with the Cl and conductivity anomalies in the springs. At this time, whether a similar correlation exists for the helium

  5. Application of carbon dioxide (CO{sub 2}) for controlling subsurface fire area: Indian context

    SciTech Connect

    Mohalik, N.K.; Singh, V.K.; Singh, R.V.K.

    2009-07-15

    In bord and pillar method of mining, the panels are sealed off after depillaring. Depending upon the site specific condition, 40 to 45 % coal are left in depillared panel as stook, loose coal left in goaf, hard coal on floor and roof of the panel. The left out coals in goaf area start oxidation, and this leads to spontaneous heating in side sealed off area. For assessment of fire in underground coal mines, thermo-compositional monitoring plays an important role. This paper presents scientific relevance and selective criteria for use of inert gas for control of subsurface fire. Finally the paper discusses spontaneous heating problem in sealed off area and application of inertisation technology by using CO, to prevent and control sealed off fire at Haripur Colliery, Kenda Area, ECL, India.

  6. Identifying grain-size dependent errors on global forest area estimates and carbon studies

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    Satellite-derived coarse-resolution data are typically used for conducting global analyses. But the forest areas estimated from coarse-resolution maps (e.g., 1 km) inevitably differ from a corresponding fine-resolution map (such as a 30-m map) that would be closer to ground truth. A better understanding of changes in grain size on area estimation will improve our...

  7. New Synthesis of Mo 2C 14 nm in Average Size Supported on a High Specific Surface Area Carbon Material

    NASA Astrophysics Data System (ADS)

    Mordenti, Delphine; Brodzki, Dominique; Djéga-Mariadassou, Gérald

    1998-11-01

    A molybdenum carbide supported on active carbon for catalytic hydrotreating was prepared by temperature-programmed reaction (TPR) in flowing H2of an active carbon impregnated by an heptamolybdate. TPR led at 973 K to the formation of supported Mo2C. This new method of preparation avoids the use of methane as carburizing reactant and allowsin situpreparation of supported molybdenum carbide without any contact of this pyrrophoric material with air between preparation and catalytic run. The various steps of the carburization process were studied by trapping the solid intermediates at different temperatures during TPR. Two successive reactions were evidenced: the partial reduction by H2of the initial molybdenum precursor to MoO2, and its subsequent carburization to Mo2C. This last step is mainly due to the reduction of MoO2and carburization with native methane evolved from the reaction of the carbon support with dihydrogen. Solid materials were characterized by elemental analysis, X-Ray diffraction, transmission electron microscopy and specific surface area measurements.

  8. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    PubMed

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  9. Carbon release from Sphagnum peat during thawing in a montane area in China

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Song, Changchun; Wang, Jiaoyue; Miao, Yuqing; Mao, Rong; Song, Yanyu

    2013-08-01

    Soil thawing may affect the turnover of soil organic carbon (C) and the release of C to the atmosphere. Little is known about C release during thawing in the Great Hing'an Mountains, China. Through the incubations, we studied the emissions of CO2 and CH4 during thawing from the Sphagnum moss layer to the permafrost layer under aerobic and anaerobic conditions. Carbon was released quickly during thawing under different conditions. The Sphagnum moss layer produced more CO2 than the other layers. However, there was little CH4 release during thawing in the Sphagnum moss layer and burst of CH4 emissions in the peat and permafrost soils. These bursts include stored CH4 in the frozen samples and productions from microbial activity. The temperature sensitivity during thawing decreased across the freezing point in the Sphagnum moss layer, did not change greatly in the root layer, and increased greatly in the peat and permafrost layers. Changes in soil substrates and enzyme activities may affect C release during thawing.

  10. Soybeans Grown in the Chernobyl Area Produce Fertile Seeds that Have Increased Heavy Metal Resistance and Modified Carbon Metabolism

    PubMed Central

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204

  11. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    PubMed

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V; Uvackova, Lubica; Rashydov, Namik M; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  12. Land use and land management effects on soil organic carbon stock in Mediterranean agricultural areas (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    INTRODUCTION Soils play a key role in the carbon geochemical cycle. Agriculture contributes to carbon sequestration through photosynthesis and the incorporation of carbon into carbohydrates. Soil management is one of the best tools for climate change mitigation. Small increases or decreases in soil carbon content due to changes in land use or management practices, may result in a significant net exchange of carbon between the soil carbon pool and the atmosphere. In the last decades arable crops (AC) have been transformed into olive grove cultivations (OG) or vineyards (V) in Mediterranean areas. A field study was conducted to determine long-term effects of land use change (LUC) (AC by OG and V) on soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification in Calcic-Chromic Luvisols (LVcc/cr) in Mediterranean conditions. MATERIAL AND METHODS An unirrigated farm in Montilla-Moriles (Córdoba, Spain) cultivated under conventional tillage (animal power with lightweight reversible plows and non-mineral fertilization or pesticides) was selected for study in 1965. In 1966, the farm was divided into three plots with three different uses (AC, OG and V). The preliminary analyses were realized in 1965 for AC (AC1), and the second analyses were realized in 2011 for AC (AC2 - winter crop rotation with annual wheat and barley, receiving mineral fertilization or pesticides), OG (annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer receiving mineral fertilization and weed control with residual herbicides), and V (with three or five chisel passes a year from early spring to early autumn with mineral fertilization or pesticides.). In all cases (AC1, AC2, OG and V) were collected soil entire profiles. Soil properties determined were: soil particle size, bulk density, SOC, TN, C:N ratio, stocks and SRs. The statistical significance of the differences in the variables between land use practices was tested using the

  13. [Spatial distribution, mechanism and management strategies of carbon source and sink of urban residential area: a case in Guanzhong Region, China].

    PubMed

    Wei, Shu-Wei; Wei, Shu-Jing; Wang, Ya-Mei; Wen, Zheng-Min

    2014-03-01

    Urban residential area is an important component of urban ecosystem. Its carbon process will have an important impact on carbon cycle and carbon balance of urban ecosystem. In this paper, the data of CO2 emission and absorption in Guanzhong area were collected by case ana-lysis, literature consulting and questionnaires and surveys to analyze its sources and the spatial distribution characteristics. The results showed that building materials production and renovation of residential area had the most CO2 emission, and building materials had much larger CO2 emission compared with everyday means of subsistence. Only 40% -52% of total carbon emission occurred within the residential area, while the rest was in the peripheral area. The spatial distance variation of carbon source, the spatial differences of carbon component and the spatial distribution by spheres and zoning were observed. As for CO2 absorption, only 9%-17% CO2 emission could be absorbed in the residential area, and the others had to be imposed to the outer space, showing hierarchical grading rules and spatial variation. Some space management techniques and intervention measures were put forward.

  14. [Impact of Rocky Desertification Treatment on Underground Water Chemistry and Dissolved Inorganic Carbon Isotope in Karst Areas].

    PubMed

    Xiao, Shi-zhen; Xiong, Kang-ning; Lan, Jia-cheng; Zhang, Hui; Yang, Long

    2015-05-01

    Five springs representing different land-use types and different karst rocky desertification treatment models were chosen at the Huajiang Karst Rocky Desertification Treatment Demonstration Site in Guanling-Zhenfeng Counties in Guizhou, to analyze the features of underground water chemistry and dissolved inorganic carbon isotopes (δ13C(DIC)) and reveal the effect of rocky desertification treatment on karstification and water quality. It was found that, the underground water type of the research area was HCO3-Ca; the water quality of the springs which were relatively less affected by human activities including Shuijingwan Spring (SJW) , Gebei Spring (GB), and Maojiawan Spring (MJW) was better than those relatively more affected by human activities including Diaojing Spring (DJ) and Tanjiazhai Spring (TJZ) , the main ion concentrations and electrical conductivity of which were higher; pH, SIc and pCO2 were sensitive to land-use types and rocky desertification treatment, which could be shown by the higher pH and SIc and lower pCO2 in MJW than those in the other four springs; (Ca(2+) + Mg2+)/HCO(3-) of SJW, MJW and GB were nearly 1:1, dominated by carbonate rock weathering by carbon acid, while the (Ca(2+) + Mg2+) of DJ and TJZ was much higher than HCO3-, suggesting that sulfate and nitrate might also dissolve carbonate rock because of the agricultural activities; δ13C(DIC) was lighter in wet season because of the higher biological activities; the average δ13C(DIC) was in the order of DJ (-12.79 per thousand) < SJW (-12.48 per thousand) < GB (-10.76 per thousand)) < MJW (-10.30 per thousand) < TJZ (-6.70 per thousand), which demonstrated that δ13C(DIC) would be heavier after rocky desertification and lighter after the rocky desertification are treated and controlled.

  15. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    PubMed

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  16. Impacts of land use change in soil carbon and nitrogen in a Mediterranean agricultural area (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, L.; Martín-Carrillo, M.; Lozano-García, B.

    2013-05-01

    The agricultural Mediterranean areas are dedicated to arable crops (AC), but in the last decades, a significant number of AC has led to a land use change (LUC) to olive grove (OG) and vineyards (V). A field study was conducted to determine the long-term effects (46 years) of LUC (AC by OG and V) and to determine soil organic carbon (SOC), total nitrogen (TN), C : N ratio and their stratification across the soil entire profile, in Montilla-Moriles denomination of origin (D.O.), in Calcic-Chromic Luvisols (LVcc/cr), an area under semiarid Mediterranean conditions. The experimental design consisted of studying the LUC on one farm between 1965 and 2011. Originally, only AC was farmed in 1965, but OG and V were farmed up to now (2011). This LUC principally affected the horizon thickness, texture, bulk density, pH, organic matter, organic carbon, total nitrogen and C : N ratio. The LUC had a negative impact in the soil, affecting the SOC and TN stocks. The conversion from AC to V and OG involved the loss of the SOC stock (52.7% and 64.9% to V and OG respectively) and the loss of the TN stock (42.6% and 38.1% to V and OG respectively). With respect to the stratification ratios (SRs), the effects were opposite; 46 years after LUC increased the SRs (in V and OG) of SOC, TN and C : N ratio.

  17. Soil organic carbon distribution in Mediterranean areas under a climate change scenario via multiple linear regression analysis.

    PubMed

    Olaya-Abril, Alfonso; Parras-Alcántara, Luis; Lozano-García, Beatriz; Obregón-Romero, Rafael

    2017-08-15

    Over time, the interest on soil studies has increased due to its role in carbon sequestration in terrestrial ecosystems, which could contribute to decreasing atmospheric CO2 rates. In many studies, independent variables were related to soil organic carbon (SOC) alone, however, the contribution degree of each variable with the experimentally determined SOC content were not considered. In this study, samples from 612 soil profiles were obtained in a natural protected (Red Natura 2000) of Sierra Morena (Mediterranean area, South Spain), considering only the topsoil 0-25cm, for better comparison between results. 24 independent variables were used to define it relationship with SOC content. Subsequently, using a multiple linear regression analysis, the effects of these variables on the SOC correlation was considered. Finally, the best parameters determined with the regression analysis were used in a climatic change scenario. The model indicated that SOC in a future scenario of climate change depends on average temperature of coldest quarter (41.9%), average temperature of warmest quarter (34.5%), annual precipitation (22.2%) and annual average temperature (1.3%). When the current and future situations were compared, the SOC content in the study area was reduced a 35.4%, and a trend towards migration to higher latitude and altitude was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK

    NASA Astrophysics Data System (ADS)

    Ward, H. C.; Evans, J. G.; Grimmond, C. S. B.

    2012-11-01

    Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide flux for twelve months (2011-2012) are reported for the first time for a suburban area in the UK. The results from Swindon are compatible with suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4-1.6) and latent heat in winter (0.05-0.7), a significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5-0.9 MJ m-2 day-1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the vegetated nature of the site (44%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. Surface conductance follows a smooth, asymmetrical diurnal course peaking at around 7-10 mm s-1 but values are larger and highly variable for wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.87 g C m-2 day-1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.

  19. Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK

    NASA Astrophysics Data System (ADS)

    Ward, H. C.; Evans, J. G.; Grimmond, C. S. B.

    2013-05-01

    Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide fluxes for 12 months (2011-2012) are reported for the first time for a suburban area in the UK. The results from Swindon are comparable to suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4-1.6) and latent heat in winter (0.05-0.7). A significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5-0.9 MJ m-2 day-1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the suburban nature of the site (44% vegetation) and relatively low built fraction (16%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. On average, surface conductance follows a smooth, asymmetrical diurnal course peaking at around 6-9 mm s-1, but values are larger and highly variable in wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.5 g C m-2 day-1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.

  20. [Effects of vegetation restoration on soil microbial biomass carbon and nitrogen in hilly areas of Loess Plateau].

    PubMed

    Hu, Chan-juan; Fu, Bo-jie; Jin, Tian-tian; Liu, Guo-hua

    2009-01-01

    Aimed to explore the effects of different vegetations and of the years of vegetation restoration on soil microbial biomass carbon and nitrogen, a comparative study was conducted, with the 5 year old Robinia pseudoacacia, Hippophae reamnoide and Prunus armeniaca plantations and the 5, 15 and 25 years old R. pseudoacacia plantation in the Yangjuangou catchment of Yanan City of Shaanxi Province, a typical hilly area of the Loess Plateau, as test objects. The results showed that among the three 5-year old plantations, H. reamnoides plantation had the highest soil organic carbon (SOC) and total nitrogen (TN) contents, while R. pseudoacacia plantation had the highest soil microbial biomass carbon (MBC) (99.56 mg x kg(-1)) and nitrogen (MBN) (28.81 mg x kg(-1)). The MBC was in the order of R. pseudoacacia > H. reamnoides > P. armeniaca, and that of MBN was of R. pseudoacacia > P. armeniaca > H. reamnoides. The MBC/SOC was in the order of R. pseudoacacia > H. reamnoides > P. armeniaca, and that of MBN/TN was of R. pseudoacacia > P. armeniaca > H. reamnoides, with the differences being significant (P < 0.05). With the increasing years of vegetation restoration, the soil pH in R. pseudoacacia plantation decreased, while the SOC, TN, electricity conductance (EC), MBC, and MBN all had an increasing trend, which illustrated that in the hilly area of Loess Plateau, planting R. pseudoacacia was more beneficial to the increase of soil MBC and MBN, and, with the increasing years of this planting, soil MBC, MBN, SOC and TN tended to be increasing.

  1. Surface area dependence of calcium isotopic reequilibration in carbonates: Implications for isotopic signatures in the weathering zone

    NASA Astrophysics Data System (ADS)

    Fernandez, N. M.; Druhan, J. L.; Potrel, A.; Jacobson, A. D.

    2016-12-01

    The concept of dynamic equilibrium carries the implicit assumption of continued isotopic exchange between a mineral and the surrounding fluid. While this effect has received much attention in the marine paleoproxy literature, it has been relatively overlooked in application to the terrestrial environment. In weathering systems, a potential consequence is that rapid reequilibration may alter or erase isotopic signatures generated during secondary mineral formation. The extent and timescale over which isotopic signatures are reset in these hydrologic systems is unknown. Using reactive transport modeling, we show isotopic reequilibration under conditions reflecting terrestrial hydrologic settings to be significant and dependent on the reactive surface area of the solid. In particular, we suggest that the non-traditional stable isotopes commonly used in application to carbonates (e.g., Ca, Mg, Sr) are sensitive to these effects due to their rapid reaction rates. We aim to characterize the dependence of Ca isotopic reequilibration on surface area during calcite precipitation via batch experiments conducted at ambient temperature over 48-hour time periods. Calcite precipitation was performed in a closed batch reactor utilizing a controlled free-drift method. The batch reactors contained mixed supersaturated solutions of CaCl2 and NaHCO3 at an initial pH of 8.54. Precipitation was initiated by seed inoculation of calcite crystals with two distinct, pre-constrained surface areas. All experiments achieved the same final state of chemical equilibrium, but as expected, the fastest approach to equilibrium occurred for experiments employing calcite seeds with the highest surface area. This implies that differences in equilibrated Ca isotope ratios (δ44/40Ca) should reflect differences in surface area. This prediction is upheld by models of the experiments, indicating a measureable difference in δ44Ca during calcite precipitation where the higher surface area corresponds to

  2. Contribution of Microbial Activities To Carbon Cycle In A Deep Sea Ionian Area

    NASA Astrophysics Data System (ADS)

    Zaccone, R.; Caruso, G.; Azzaro, F.; Azzaro, M.; Decembrini, F.; La Ferla, R.; Leonardi, M.

    Main biological process which sustain life in deep environments is the microbial uti- lization of particulated matter. Despite the well known importance of bacterial role in biogeochemical cycles, the rates of microbial processes on organic matter in the Mediterranean Sea, and in particular in the Ionian Sea, are still poorly understood. During winter 1999, water samples were collected at different depths (0-3300m) from six stations along a costal-offshore transect located at 60 miles off Cape Passero (SE Sicily) in the Ionian Sea. Measurements of chlorophyll a, bacterial abundance, ATP and POC enabled the estimation of autotrophic and bacterial contribution to the pool of particulate organic matter. Estimates of microbial leucine-aminopeptidase (LAP) and respiration rates (ETSa) were compared with different water masses identified ac- cording to temperature, salinity and nutrients. Results showed that bacterial biomass contributed to particulated carbon in percentage ranging from 4.57% in surface waters (ISW) to 1.29% in EMDW. Microbial hydrolysis of POC showed higher percentage also in ISW reaching 1.81% and potentially liberating 0.73µg C/l/h (mean values), bioavailable for bacterial growth. The lowest rates of LAP mean values (0.06µg C/l/h) were observed in EMDW with 0.16% of POC potentially hydrolysed. These hydroly- sis rates confirm that during sinking a greater amount of organic matter can not be uti- lized by bacteria and may become refractory. Respiratory rates ranged from 0.118µg C/l/h in MAW to 0.003 µg C/l/h in CDW, with a decreasing trend with depth, indicat- ing low respiration rates with respect to precedent data recorded in deep Mediterranean zones. This research tried of evaluating the carbon flux through the microbial commu- nity and contributed to study some steps of degradative process of organic matter and mineralization to CO2 in relation to the different hydrological characteristics in the Mediterranean changing environment.

  3. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs.

    PubMed

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-03-31

    In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants' carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other "megacities" with marked seasonal drought.

  4. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs

    PubMed Central

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-01-01

    INTRODUCTION: In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. METHODS: Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants’ carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. RESULTS: The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. DISCUSSION: The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and

  5. Preliminary report on uranium deposits in the Miller Hill area, Carbon County, Wyoming

    USGS Publications Warehouse

    Love, J.D.

    1953-01-01

    A sequence of radioactive rocks of Miocene (?) age, the Browns Park formation, in the Miller Hill area of southern Wyoming is more than 1,000 feet thick. The formation crops out in an area of approximately 600 square miles, and consists of a basal conglomerate, tuffs, tuffaceous limy sandstones, and thin persistent radioactive algal limestones. Uranium is concentrated in both algal limestones and in tuffaceous limy sandstones. The uranium is believed to have been deposited. at least in part with the sediments, rather than to have come in at a later date. The highest uranium values were found in a widespread algal limestone bed, which contains as much as 0. 15 percent uranium. Values of 0.01 percent uranium or more were obtained from 8 samples taken from approximately 220 feet of stratigraphic section in the Browns Park formation. This is the first reported occurrence of limestone source rock from Wyoming that has been found to contain a commercial grade of uranium. The economic possibilities of the area have not been determined adequately and no estimates of tonnage are warranted at the present time. An airborne radiometric survey was made by the Geophysics Branch of the Geological Survey, of the west half of the area, recommended by the writer for investigation. Ground check of all anomalies reported at that time showed that they were in localities where the background radiation was much higher than average. Additional localities with high background radiation were found on the ground in the area east of that which was flown.

  6. Effect of multiwalled carbon nanotubes with different specific surface areas on the stability of supported Pt catalysts

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Zhen-Bo; Sui, Xu-Lei; Yin, Ge-Ping

    2014-01-01

    Pt/MCNTs catalysts have been synthesized by the microwave-assisted polyol process (MAPP). Effect of multiwalled carbon nanotubes (MCNTs) with different specific surface areas on the stability of supported Pt catalysts has been investigated. The obtained Pt/MCNTs catalysts are characterized by X-ray diffraction (XRD), Energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and accelerated potential cycling tests (APCT) to present the stability of the catalysts. The experimental results indicate that the original electrochemically active specific surface areas (ESA) and the activity for methanol electrooxidation of the catalysts decrease with the decreasing of the specific surface areas of MCNTs, and the Pt/MCNTs-250 (MCNTs with pristine specific surface of 250 m2 g-1, below the same) catalysts show the best initial electrochemical activity. However, the activity of the Pt/MCNTs-250 is very close to that of the Pt/MCNTs-120 and the stability of the Pt/MCNTs-60 catalyst is the best after 1000 cycles APCT. Considering the factors of the activity and stability comprehensively, the optimized specific surface area of MCNTs in the Pt/MCNTs catalysts is 120 m2 g-1.

  7. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau-Cornec, E. C.; Van Der Merwe, P.; Dehairs, F.

    2015-06-01

    This study examined upper-ocean particulate organic carbon (POC) export using the 234Th approach as part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2). Our aim was to characterize the spatial and the temporal variability of POC export during austral spring (October-November 2011) in the Fe-fertilized area of the Kerguelen Plateau region. POC export fluxes were estimated at high productivity sites over and downstream of the plateau and compared to a high-nutrient low-chlorophyll (HNLC) area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities were observed at all stations in surface waters, indicating early scavenging by particles in austral spring. 234Th export was lowest at the reference station R-2 and highest in the recirculation region (E stations) where a pseudo-Lagrangian survey was conducted. In comparison 234Th export over the central plateau and north of the polar front (PF) was relatively limited throughout the survey. However, the 234Th results support that Fe fertilization increased particle export in all iron-fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth, relative to the reference station), but more moderate over the central Kerguelen Plateau and in the northern plume of the Kerguelen bloom (~2-fold at 200 m depth). The C : Th ratio of large (>53 μm) potentially sinking particles collected via sequential filtration using in situ pumping (ISP) systems was used to convert the 234Th flux into a POC export flux. The C : Th ratios of sinking particles were highly variable (3.1 ± 0.1 to 10.5 ± 0.2 μmol dpm-1) with no clear site-related trend, despite the variety of ecosystem responses in the fertilized regions. C : Th ratios showed a decreasing trend between 100 and 200 m depth suggesting preferential carbon loss relative to 234Th possibly due to heterotrophic degradation and

  8. [Characteristics and Coupling Relationship of Soil Carbon and Nitrogen Transformation During In-situ Mineralization Cultivation in Forestlands in the Mountain Area of Southern Ningxia].

    PubMed

    Ni, Yin-xia; Huang, Yi-mei; Niu, Dan; Zhao, Tong; Yan, Hao; Jiang, Yue-li

    2015-09-01

    The study aimed to investigate the characteristics and relationship between soil carbon and nitrogen transformation of artificial forestlands, which is one type of vegetation restoration in the mountain area of Southern Ningxia. Soil samples were collected every two months in a year from three forestlands, and the characteristics of soil organic carbon, dissolved carbon, microbial biomass carbon, organic nitrogen, inorganic nitrogen, soil ammonification, nitrification and mineralization rates, microbial immobilization rates and coupling of soil carbon and nitrogen were studied by the in-situ closed-top PVC tube incubation methods. The results showed that: in the process of in-situ incubation, the most obvious changes of carbon and nitrogen were in 61-120 days which was mainly affected by soil moisture; There were significantly positive correlations between the soil organic carbon and the total nitrogen, microbial biomass carbon and microbial biomass nitrogen, dissolved carbon and dissolved nitrogen; Transformation rates of soil organic carbon had significant effects on the soil ammonification, nitrification and microbial immobilization rates. It can be well simulated by model of linear regression equation; Microbial quotient, MBN/SON were significantly increased in soil of Caragana korshinskii land. Net nitrification rates, net mineralization rates in Caragana korshinskii land were significantly higher than that in Prunus davidiana and Prunus mandshurica lands.

  9. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  10. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  11. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China

    NASA Astrophysics Data System (ADS)

    Yang, Pingheng; Cheng, Qun; Xie, Shiyou; Wang, Jianli; Chang, Longran; Yu, Qin; Zhan, Zhaojun; Chen, Feng

    2017-06-01

    Many geothermal reservoirs in Chongqing in southwestern China are located in carbonate rock aquifers and exploited through drilling. Water samples from 36 geothermal wells have been collected in the main urban area of Chongqing. Chemical types of the thermal water samples are Ca·Mg-SO4 and Ca-SO4. High contents of Ca2+ and SO42- in the thermal water samples are derived from the dissolution of evaporates. Furthermore, the HCO3- concentration is constrained by the common ion effect. Drilling depth has no effect on the physical and chemical characteristics according to the results of a t-test. The geothermal reservoir's temperature can be estimated to be 64.8-93.4 °C (average 82 °C) using quartz and improved SiO2 geothermometers. Values of δD and δ18O for the thermal water samples indicate that the thermal water resources originate from local precipitation with a recharge elevation between 838 and 1130 m and an annual air temperature between 10.4 and 13.9 °C. A conceptual model of regional scale groundwater flow for the thermal water is proposed. The thermal water mainly originates from the meteoric water recharged in the elevated areas of northeastern Tongluoshan and Huayingshan by means of percolation through exposed carbonate before becoming groundwater. The groundwater is heated at depth and moves southwest along the fault and the anticlinal core in a gravity-driven regime. The thermal water is exposed in the form of artesian hot springs in river cutting and low-elevation areas or in wells.

  12. [The effect of smoking on environmental exposure to carbon of inhabitants in highly and little industrially developed areas].

    PubMed

    Czogała, J

    1998-01-01

    The aim of the work was an estimation of the effect of smoking on environmental exposure to CO people living in industrial area of Sosnowiec (a city situated in Upper Silesia) and Tomaszów Lubelski (not much industrially town situated at the border of Roztocze National Park). The investigated material was vein blood of 102 blood donors from Sosnowiec and 103 blood donors from Tomaszów Lubelski both smokers and non-smokers. The level of CO exposure was estimated by determination of carbon monoxide haemoglobin (HbCO) concentration in blood by Wolf's method in Antczak's adaptation. It was stated that average HbCO concentration at non-smokers from Sosnowiec (2.09%) was about 0.9% higher than the one at non-smokers from Tomaszów Lubelski (1.17%). An increase of HbCO concentration in blood of non-smokers from Sosnowiec as compared with non-smokers from Tomaszów Lubelski included also 50 and 90 percentile. In relation to 50 percentile it was 2.05 and 1.0% and in relation to 90 percentile 2.4 and 3.7% respectively. The influence of external environment on CO exposure at smokers was estimated on the base of HbCO determination in blood before starting smoking. It was 2.77 at smokers from Sosnowiec and 1.41% at smokers from Tomaszów Lubelski. Analysing the effect of smoking on smokers exposure to CO it was stated that HbCO concentration in blood in both groups increased linearly with the increase of the number of smoked cigarettes, and average increase per one cigarette was 0.43% for smokers from Sosnowiec and 0.57% for smokers from Tomaszów Lubelski. On the base of the obtained results the following conclusions were drawn: 1. industrial and communal environment contamination with carbon monoxide influences considerably the exposure of both smokers and non-smokers. 2. smoking effects significantly more the exposure of people (smokers) to carbon monoxide than environmental pollution in the investigated industrial area. 3. the exposure to carbon monoxide at smokers up

  13. Pressure perturbations from geologic carbon sequestration: Area-of-review boundaries and borehole leakage driving forces

    SciTech Connect

    Nicot, J.-P.; Oldenburg, C.M.; Bryant, S.L.; Hovorka, S.D.

    2009-07-01

    We investigate the possibility that brine could be displaced upward into potable water through wells. Because of the large volumes of CO2 to be injected, the influence of the zone of elevated pressure on potential conduits such as well boreholes could extend many kilometers from the injection site-farther than the CO2 plume itself. The traditional approach to address potential brine leakage related to fluid injection is to set an area of fixed radius around the injection well/zone and to examine wells and other potentially open pathways located in the ''Area-of-Review'' (AoR). This suggests that the AoR eeds to be defined in terms of the potential for a given pressure perturbation to drive upward fluid flow in any given system rather than on some arbitrary pressure rise. We present an analysis that focuses on the changes in density/salinity of the fluids in the potentially leaking wellbore.

  14. Carbon dioxide in the urban area of Naples: Contribution and effects of the volcanic source

    NASA Astrophysics Data System (ADS)

    Granieri, Domenico; Costa, Antonio; Macedonio, Giovanni; Bisson, Marina; Chiodini, Giovanni

    2013-06-01

    Naples is a large city located between two active volcanic areas: Campi Flegrei to the W and Vesuvius to the SE. The Solfatara crater, inside the caldera of the Campi Flegrei and nearest to the western quarters of the city, is a prodigious source of natural CO2 with a mean emission rate of 1067 ton/d, i.e. seven times higher than that of Vesuvius (151 ton/d). This study shows that the area around the Solfatara and part of the urban area of Naples are affected by the volcanic plume when atmospheric circulatory patterns are dominated by the locally frequent sea breezes. Under these conditions the CO2 content in the air increases above normal values, reaching more than 1000 ppm in proximity to the Solfatara crater to a few tens of ppm several kilometres from the source. Although these values do not indicate a health risk even under the most unfavourable atmospheric conditions, the volcanic source contributes to the total CO2 burden from all urban emissions and hence to overall air quality. An emission rate ten times higher than the present one would lead to an air CO2 concentration in excess of recommended health protection thresholds.

  15. Progress in the reduction of carbon monoxide levels in major urban areas in Korea.

    PubMed

    Kim, Ki-Hyun; Sul, Kyung-Hwa; Szulejko, Jan E; Chambers, Scott D; Feng, Xinbin; Lee, Min-Hee

    2015-12-01

    Long-term trends in observed carbon monoxide (CO) concentrations were analyzed in seven major South Korean cities from 1989 to 2013. Temporal trends were evident on seasonal and annual timescales, as were spatial gradients between the cities. As CO levels in the most polluted cities decreased significantly until the early 2000s, the data were arbitrarily divided into two time periods (I: 1989-2000 and II: 2001-2013) for analysis. The mean CO concentration of period II was about 50% lower than that of period I. Long-term trends of annual mean CO concentrations, examined using the Mann-Kendall (MK) method, confirm a consistent reduction in CO levels from 1989 to 2000 (period I). The abrupt reduction in CO levels was attributed to a combination of technological improvements and government administrative/regulatory initiatives (e.g., emission mitigation strategies and a gradual shift in the fuel/energy consumption mix away from coal and oil to natural gas and nuclear power).

  16. Effect of purity, edge length, and growth area on field emission of multi-walled carbon nanotube emitter arrays

    SciTech Connect

    Shahi, Monika; Gautam, S.; Shah, P. V.; Jha, P.; Kumar, P.; Rawat, J. S.; Chaudhury, P. K.; Harsh; Tandon, R. P.

    2013-05-28

    Present report aims to study the effect of purity, edge length, and growth area on field emission of patterned carbon nanotube (CNT) emitter arrays. For development of four CNT emitter arrays (CEAs), low resistively silicon substrates were coated with thin film of iron catalyst using photolithography, sputtering, and lift off process. Four CEAs were synthesized on these substrates using thermal chemical vapor deposition with minor changes in pretreatment duration. Out of these, two CEAs have 10 {mu}m Multiplication-Sign 10 {mu}m and 40 {mu}m Multiplication-Sign 40 {mu}m solid square dots of CNTs with constant 20 {mu}m inter-dot separation. Other two CEAs have ring square bundles of CNTs and these CEAs are envisioned as 10 {mu}m Multiplication-Sign 10 {mu}m square dots with 4 {mu}m Multiplication-Sign 4 {mu}m scooped out area and 15 {mu}m Multiplication-Sign 15 {mu}m square dots with 5 {mu}m Multiplication-Sign 5 {mu}m lift out area with constant 20 {mu}m inter-dot spacing. Solid square dot structures have exactly constant edge length per unit area with more than four-fold difference in CNT growth area however ring square dot patterns have minor difference in edge length per unit area with approximately two times difference in CNT growth area. Quality and morphology of synthesized CEAs were assessed by scanning electron microscope and Raman characterization which confirm major differences. Field emission of all CEAs was carried out under same vacuum condition and constant inter-electrode separation. Field emission of solid square dot CEAs show approximately identical current density-electric field curves and Fowler-Nordheim plots with little difference in emission current density at same electric field. Similar results were observed for ring square structure CEAs when compared separately. Maximum emission current density observed from these four CEAs reduces from 14.53, 12.23, 11.01, to 8.66 mA/cm{sup 2} at a constant electric field of 5 V/{mu}m, according to edge

  17. Effect of purity, edge length, and growth area on field emission of multi-walled carbon nanotube emitter arrays

    NASA Astrophysics Data System (ADS)

    Shahi, Monika; Gautam, S.; Shah, P. V.; Jha, P.; Kumar, P.; Rawat, J. S.; Chaudhury, P. K.; HASH0x9890f80, Harsh; Tandon, R. P.

    2013-05-01

    Present report aims to study the effect of purity, edge length, and growth area on field emission of patterned carbon nanotube (CNT) emitter arrays. For development of four CNT emitter arrays (CEAs), low resistively silicon substrates were coated with thin film of iron catalyst using photolithography, sputtering, and lift off process. Four CEAs were synthesized on these substrates using thermal chemical vapor deposition with minor changes in pretreatment duration. Out of these, two CEAs have 10 μm × 10 μm and 40 μm × 40 μm solid square dots of CNTs with constant 20 μm inter-dot separation. Other two CEAs have ring square bundles of CNTs and these CEAs are envisioned as 10 μm × 10 μm square dots with 4 μm × 4 μm scooped out area and 15 μm × 15 μm square dots with 5 μm × 5 μm lift out area with constant 20 μm inter-dot spacing. Solid square dot structures have exactly constant edge length per unit area with more than four-fold difference in CNT growth area however ring square dot patterns have minor difference in edge length per unit area with approximately two times difference in CNT growth area. Quality and morphology of synthesized CEAs were assessed by scanning electron microscope and Raman characterization which confirm major differences. Field emission of all CEAs was carried out under same vacuum condition and constant inter-electrode separation. Field emission of solid square dot CEAs show approximately identical current density-electric field curves and Fowler-Nordheim plots with little difference in emission current density at same electric field. Similar results were observed for ring square structure CEAs when compared separately. Maximum emission current density observed from these four CEAs reduces from 14.53, 12.23, 11.01, to 8.66 mA/cm2 at a constant electric field of 5 V/μm, according to edge length of 1361.7, 1221.08, 872.20, to 872.16 mm rather than growth area and purity. Although, the 40 μm × 40 μm CEAs possessed highest

  18. Land use change and management effects on soil organic carbon stock and soil quality in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2016-04-01

    INTRODUCTION Both land use and management affects to soil properties and soil quality. On the one hand, land use change from natural vegetation to agricultural land often is a key factor that influences to soil. On the other hand, under semiarid climatic conditions, intensive tillage increases soil organic matter losses, reduces soil quality, and contributes to climate change due to increased CO2 emissions. MATERIAL AND METHODS A field study was conducted to determine the land use change [Mediterranean evergreen oak woodland (MEOW-dehesa) to olive grove (OG) and cereal (C), all of them managed under conventional tillage and under conservationist practices] effects on soil organic carbon (SOC) stocks and the soil quality [through Stratification Ratios (SR)] in Los Pedroches valley, southern Spain. RESULTS Results for the present study indicate that in MEOW-dehesa management practices had little effect on SOC storage. The stratification ratio was >2 in both management systems, so, soils under MEOW-dehesa had high quality. Nevertheless, in OG and C conservationist practices increased SOC stocks. Therefore, conservationist practices contributed to a better soil quality and to increased carbon sequestration and, consequently, this management is an excellent alternative to conventional tillage. A change in land use from MEOW-dehesa to OG or C under conservationist practices appeared to increase the SOC. When calculated for the total soil profile these differences were equivalent to 20-25 Mg ha-1 of SOC. This is potentially very important for many agricultural soils in the Mediterranean area which are typically very poor in organic matter. These differences in the SOC stock were not apparent when the change in land use occurred under conventional tillage; even in the land use change from MEOW-dehesa to C the SOC stock was reduced. This suggests that management in addition to change in land use is an important consideration and particularly the degree of soil disturbance

  19. Soil temperature and water content drive microbial carbon fixation in grassland of permafrost area on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Kong, W.; Guo, G.; Liu, J.

    2014-12-01

    Soil microbial communities underpin terrestrial biogeochemical cycles and are greatly influenced by global warming and global-warming-induced dryness. However, the response of soil microbial community function to global change remains largely uncertain, particularly in the ecologically vulnerable Tibetan plateau permafrost area with large carbon storage. With the concept of space for time substitution, we investigated the responses of soil CO2-fixing microbial community and its enzyme activity to climate change along an elevation gradient (4400-5100 m) of alpine grassland on the central Tibetan plateau. The elevation gradient in a south-facing hill slope leads to variation in climate and soil physicochemical parameters. The autotrophic microbial communities were characterized by quantitative PCR (qPCR), terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning/sequencing targeting the CO2-fixing gene (RubisCO). The results demonstrated that the autotrophic microbial community abundance, structure and its enzyme activity were mainly driven by soil temperature and water content. Soil temperature increase and water decrease dramatically reduced the abundance of the outnumbered form IC RubisCO-containing microbes, and significantly changed the structure of form IC, IAB and ID RubisCO-containing microbial community. Structural equation model revealed that the RubisCO enzyme was directly derived from RubisCO-containing microbes and its activity was significantly reduced by soil temperature increase and water content decrease. Thus our results provide a novel positive feedback loop of climate warming and warming-induced dryness by that soil microbial carbon fixing potential will reduce by 3.77%-8.86% with the soil temperature increase of 1.94oC and water content decrease of 60%-70%. This positive feedback could be capable of amplifying the climate change given the significant contribution of soil microbial CO2-fixing up to 4.9% of total soil organic

  20. Diagenetic history and hydrocarbon potential of Upper Permian carbonate buildups, Wegener Halvoe area, Jameson Land basin, east Greenland

    SciTech Connect

    Scholle, P.A.; Ulmer, D.S. ); Stemmerik, L. )

    1991-04-01

    The Upper Permian of Jameson Land includes two carbonate sequences, the Karstryggen and Wegener Halvoe formations. The Karstryggen Formation contains hypersaline carbonates and localized evaporites that were heavily weathered and dissected prior to deposition of the overlying strata. The overlying Wegener Halvoe Formation represents an abrupt and extensive marine inundation over the underlying karstified Karstryggen surface. Bryozoan-brachiopod-algal-cement buildups of the Wegener Halvoe Formation are localized on karstic highs, and show up to 150 m of depositional relief. The diagenetic histories of the core and flank facies are very different. Core facies porosity was initially obliterated by marine cements, but repeated meteoric exposure altered unstable core facies constituents. This alteration produced extensive secondary porosity through grain and cement leaching with local collapse brecciation. Flank strata, however, underwent little sea-floor diagenesis, and low permeability and mineralogically stable grain composition protected these strata from meteoric alteration. Subsequent fracturing and hydrothermal fluid flow, however, flushed hydrocarbons and filled pores with ferroan calcite, barite, fluorite, galena, and baroque dolomite. This heating and flushing is thought to have been especially intense in the Wegener Halvoe region; thus, more basinal areas may still have reservoirs containing significant oil in equivalent Upper Permian limestones. If, as is likely, the sea level changes affecting the Greenland Permian were eustatic, then this study may provide significant clues to porosity development throughout the largely unexplored northern Zechstein basin and the Arctic basin of the Barent Sea. This study also provides some important connections to the probably time-equivalent Guadalupian carbonate reservoir rocks of west Texas-New Mexico and Wyoming.

  1. [Effects of land use change on soil readily oxidizable carbon in a coastal area of northern Jiangsu Province, East China].

    PubMed

    Wang, Guo-Bing; Zhao, Xiao-Long; Wang, Ming-Hui; Ruan, Hong-Hua; Xu, Chang-Bai; Xu, Ya-ming

    2013-04-01

    Soil readily oxidizable carbon (ROC) is a sensitive index to indicate the early changes of soil organic carbon (SOC), and has important value to research the stability and dynamics of SOC pool under the backgrounds of human disturbance and global climate change. To further understand the effects of land use change on soil ROC, an investigation was conducted on the soil ROC content and related factors in four different land use types (grassland, farmland, poplar-agriculture system and pure poplar plantation) in a coastal area of northern Jiangsu Province, East China. The soil ROC content was in the order of grassland < farmland carbon (WSOC), total nitrogen (TN), C/N ratio, and Mg, but less correlated with soil moisture and soil total phosphorus (TP). The results indicated that land use change had significant effects on the spatial distribution characteristics of soil ROC, and soil bulk density, pH value, TN, and SOC were the main factors inducing the differences of soil ROC content between different land use types.

  2. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area.

    PubMed

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua

    2015-11-15

    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze

  3. High Power Electric Double-Layer Capacitors based on Room-Temperature Ionic Liquids and Nanostructured Carbons

    NASA Astrophysics Data System (ADS)

    Perez, Carlos R.

    The efficient storage of electrical energy constitutes both a fundamental challenge for 21st century science and an urgent requirement for the sustainability of our technological civilization. The push for cleaner renewable forms of energy production, such as solar and wind power, strongly depends on a concomitant development of suitable storage methods to pair with these intermittent sources, as well as for mobile applications, such as vehicles and personal electronics. In this regard, Electrochemical Double-Layer Capacitors (supercapacitors) represent a vibrant area of research due to their environmental friendliness, long lifetimes, high power capability, and relative underdevelopment when compared to electrochemical batteries. Currently supercapacitors have gravimetric energies one order of magnitude lower than similarly advanced batteries, while conversly enjoying a similar advantage over them in terms of power. The challenge is to increase the gravimentric energies and conserve the high power. On the material side, research focuses on highly porous supports and electrolytes, the critical components of supercapacitors. Through the use of electrolyte systems with a wider electrochemical stability window, as well as properly tailored carbon nanomaterials as electrodes, significant improvements in performance are possible. Room Temperature Ionic Liquids and Carbide-Derived Carbons are promising electrolytes and electrodes, respectively. RTILs have been shown to be stable at up to twice the voltage of organic solvent-salt systems currently employed in supercapacitors, and CDCs are tunable in pore structure, show good electrical conductivity, and superior demonstrated capability as electrode material. This work aims to better understand the interplay of electrode and electrolyte parameters, such as pore structure and ion size, in the ultimate performance of RTIL-based supercapacitors in terms of power, energy, and temperature of operation. For this purpose, carbon

  4. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  5. Mixed carbonate and volcaniclastic slope facies in a middle to upper Miocene archipelago, Las Negras and Rodalquilar areas, southeastern Spain

    SciTech Connect

    Franseen, E.K. )

    1990-05-01

    The Las Negras and Rodalquilar areas contain excellent exposures of middle to upper Miocene carbonate and volcaniclastic deposits that fringe earlier formed Neogene volcanic substrates in an archipelago setting. The Miocene sedimentary sequence consists of three depositional sequences composed of reworked volcanic rocks and reef crest to distal slope strata that display 100-200 m of relief over 0.5-2.0 km. The entire sequence is truncated by a regional subaerial unconformity. The lower two depositional sequences are composed predominantly of shallow-dipping, normal marine, distal to proximal slope wackestones and packstones. The two sequences are separated by a megabreccia composed of Tarbellastreaea and Porites blocks and volcaniclastic sandstones and conglomerates. The reef blocks likely developed as upslope patch reefs, and, with the volcaniclastics, were eroded and transported via mass movements and tractive currents to a distal slope position. The upper (third) depositional sequence consists predominantly of foreslope strata of a Porites-dominated fringing reef complex. The base of this sequence is characterized by a megabreccia of Porites reef blocks, shallow-marine packstones, or volcaniclastic conglomerates. Five volcaniclastic wedges, interpreted as fan delta deposits, alternate with prograding carbonate foreslope deposits likely as a response to high frequency relative sea level fluctuations during a new sea level fall. The apparent correlatability of similar deposition sequences throughout the region indicates the importance of sequence development from allogenic processes, including glacio-eustatic sea level fluctuations and tectonism associated with the isolation of the Mediterranean Sea during the latest Miocene.

  6. Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Hu, Jiangtao; Zhu, Min; Zhao, Yan; Chen, Haibiao; Pan, Feng

    2017-10-01

    A new hierarchically porous carbon has been synthesized with self-template of silica phase from a commercial silicone resin by pyrolysis and subsequent NaOH activation. The obtained carbon materials achieve an ultrahigh specific surface area (2896 m2 g-1) with abundant mesopores. The C800 sample demonstrates excellent performance in supercapacitors, with a high capacitance of 322 F g-1 at 0.5 A g-1 and outstanding rate capability (182 F g-1 at 100 A g-1) in a three-electrode system using 6.0 mol L-1 KOH electrolyte. The energy density is improved by widening the voltage window using 1.0 mol L-1 alkali metal nitrate solutions (LiNO3, NaNO3, KNO3) in which the strong solvation of alkali metal cations and nitrate anions effectively reduce the activity of water. In a symmetric supercapacitor, the maximum operating voltage is essentially restricted by the potential of positive electrode and the total capacitance is dominated by the capacitance of the anion at the positive electrode. The symmetric supercapacitors based on C800 deliver a high energy density of 22.4 Wh kg-1 at a power density of 0.23 kW kg-1 in 1.0 mol L-1 LiNO3 with a voltage of 1.8 V and long-term stability with a retention of 89.87% after 10000 cycles.

  7. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    SciTech Connect

    Ummethala, Raghunandan; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Wenger, Daniela; Tedde, Sandro F.; Eckert, Jürgen

    2016-01-28

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  8. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ummethala, Raghunandan; Wenger, Daniela; Tedde, Sandro F.; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Eckert, Jürgen

    2016-01-01

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  9. Annual hydrogen, carbon monoxide and carbon dioxide concentrations and surface to air exchanges in a rural area (Québec, Canada)

    NASA Astrophysics Data System (ADS)

    Constant, Philippe; Poissant, Laurier; Villemur, Richard

    The industrialization and the demographic expansion have both influenced the biogeochemical cycle of hydrogen (H 2), carbon monoxide (CO) and carbon dioxide (CO 2). In the actual context, knowledge about the spatial distribution of the natural sources and sinks of these trace gases is then crucial to infer possible effects of climate and land use changes on their global budget. This article reports the H 2, CO and CO 2 concentrations and micrometeorological fluxes measured during 1 year in a rural area of the mixed wood ecozone of Canada. Land use represents a critical issue in the control of trace gas natural sources or sinks of that region, which is the most densely habited in Canada. On average, the site emitted CO 2 at a rate of 7.7 g m -2 d -1 and consumed H 2 and CO at 0.34 and 5.1 mg m -2 d -1, respectively. Temperature was the most important factor affecting the H 2 and CO surface to air exchanges. The strength of the soil sink was maximal at the end of the summer, while H 2 and CO emissions were observed at the snow-melting period. In winter, H 2 and CO depositions were attributed to their oxidation by photochemically active compounds within the snow cover. When soil temperature was above 10 °C, trace gas fluxes followed a well-defined diurnal cycle. H 2 and CO 2 deposition rates were positively correlated with H 2O fluxes, while CO followed the inverse trend. CO 2 diurnal variations resulted from a balance between photosynthesis and soil respiration, while some biotic and abiotic factors were proposed to explain the trend observed for H 2. In the case of CO, emissions originating from heat- and photo-induced reactions were involved in the attenuation in the strength of the soil sink during daytime. Measured fluxes were compared with the literature to show the relative importance of the rural areas in the studied trace gases budget.

  10. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    PubMed Central

    2011-01-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma. PMID:27502662

  11. Ground water in carbonate rocks and regolith in the Fairview area, Tennessee

    USGS Publications Warehouse

    Burchett, C.R.; Zurawski, Ann; Sparkes, A.K.; Hollyday, E.F.

    1983-01-01

    Fourteen test wells drilled in the Fairview area, Tennessee, produce from 3 to 100 gallons per minute and have an average yield of 32 gallons per minute, measured while blowing water from the wells with compressed air. In comparison, the average yield of supply wells reported by drillers is 13 gallons per minute. Specific capacities for three of the test wells ranged from 0.3 to 0.6 gallons per minute per foot of drawdown after 8 hours of pumping at 20 to 47 gallons per minute. Two test wells had specific capacities of 1.1 and 0.4 gallons per foot of drawdown after 72 hours of pumping at 55 and 43 gallons per minute. The mineral content of ground water increases greatly below a gypsum horizon approximately 100 feet below the top of the Fort Payne Formation. Ground water above the gypsum horizon, however, meets the standards for finished drinking water. (USGS)

  12. Pelagic nitrogen dynamics in the Vietnamese upwelling area according to stable nitrogen and carbon isotope data

    NASA Astrophysics Data System (ADS)

    Loick, Natalie; Dippner, Joachim; Doan, Hai Nhu; Liskow, Iris; Voss, Maren

    2007-04-01

    Upwelling and nitrogen (N) fixation provide new N for primary production off southern central Vietnam. Here we evaluate the roles of both N sources for zooplankton nutrition by comparing δ15N and δ13C values in nitrate, particulate organic matter (POM), and six net-plankton size fractions from monsoon and intermonsoon seasons. The δ13C values in POM and the net-plankton size fractions differed by 2-4‰ at any time. We assume that plankton from the POM filters was dominated by nano-and picoplankton as opposed to micro- and mesoplankton in the net-samples. The implications of this are discussed in terms of size differential pathways of C and N in the planktonic food web. We used δ15N to estimate the differences in N nutrition between the actual upwelling region and the oligotrophic area further offshore. The δ15N values of the net-plankton size fractions were depleted in δ15N by ca. 2‰ outside compared to inside the upwelling area during the monsoon season. We attribute these patterns to the additional utilization of N derived from N fixation. The concomitant findings of high N fixation rates reported earlier and low subthermocline nitrate (nitrate sub) values of 2.9-3.6‰ support this conclusion. Net-plankton δ15N values increased with size, pointing to the dominance of higher trophic levels in the larger size fractions. According to a two source mixing model N fixation may have provided up to 13% of the N demand in higher trophic levels.

  13. Application of a new leaf area index algorithm to China's landmass using MODIS data for carbon cycle research.

    PubMed

    Liu, R; Chen, J M; Liu, J; Deng, F; Sun, R

    2007-11-01

    An operational system was developed for mapping the leaf area index (LAI) for carbon cycle models from the moderate resolution imaging spectroradiometer (MODIS) data. The LAI retrieval algorithm is based on Deng et al. [2006. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 44, 2219-2229], which uses the 4-scale radiative transfer model [Chen, J.M., Leblancs, 1997. A 4-scale bidirectional reflection model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35, 1316-1337] to simulate the relationship of LAI with vegetated surface reflectance measured from space for various spectral bands and solar and view angles. This algorithm has been integrated to the MODISoft platform, a software system designed for processing MODIS data, to generate 250 m, 500 m and 1 km resolution LAI products covering all of China from MODIS MOD02 or MOD09 products. The multi-temporal interpolation method was implemented to remove the residual cloud and other noise in the final LAI product so that it can be directly used in carbon models without further processing. The retrieval uncertainties from land cover data were evaluated using five different data sets available in China. The results showed that mean LAI discrepancies can reach 27%. The current product was also compared with the NASA MODIS MOD15 LAI product to determine the agreement and disagreement of two different product series. LAI values in the MODIS product were found to be 21% larger than those in the new product. These LAI products were compared against ground TRAC measurements in forests in Qilian Mountain and Changbaishan. On average, the new LAI product agrees with the field measurement in Changbaishan within 2%, but the MODIS product is positively biased by about 20%. In Qilian Mountain, where forests are sparse, the new product is lower than field measurements by about 38%, while the MODIS product is larger by about 65%.

  14. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China

    PubMed Central

    Ye, Siyuan; Krauss, Ken W.; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F.

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling. PMID:27501148

  15. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China.

    PubMed

    Ye, Siyuan; Krauss, Ken W; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.

  16. Inter-annual variability of area-scaled gaseous carbon emissions from wetland soils in the Liaohe Delta, China

    USGS Publications Warehouse

    Ye, Siyuan; Krauss, Ken W.; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Yueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.

  17. Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China

    PubMed Central

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  18. Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Ling, Zheng; Wang, Gang; Zhang, Mengdi; Fan, Xiaoming; Yu, Chang; Yang, Juan; Xiao, Nan; Qiu, Jieshan

    2015-03-01

    This work reports an efficient strategy to synthesize B,N-codoped porous carbons with a high specific surface area using chitosan as the carbon precursor with the help of boric acid, featuring a high specific capacitance, large operation voltage and excellent cycle stability for supercapacitors.This work reports an efficient strategy to synthesize B,N-codoped porous carbons with a high specific surface area using chitosan as the carbon precursor with the help of boric acid, featuring a high specific capacitance, large operation voltage and excellent cycle stability for supercapacitors. Electronic supplementary information (ESI) available: Experimental details, additional figures and tables see DOI: 10.1039/c5nr00081e

  19. Geohydrology, ground-water availability, and ground-water quality of Berkeley County, West Virginia, with emphasis on the carbonate-rock area

    USGS Publications Warehouse

    Shultz, R.A.; Hobba, W.A.; Kozar, M.D.

    1995-01-01

    Berkeley County is underlain by carbonate rocks, upon which karst topography has developed, and by noncarbonate rocks. Ground-water levels tend to follow seasonal trends, and fluctuate more in carbonate areas than in noncarbonate areas. Well yields of greater than 100 gallons per minute are possible from the carbonate rocks, but are unlikely from the noncarbonate rocks. The largest springs, which yield more than 2,000 gallons per minute, are located in the carbonate rocks and are typically on or near faults or the limestone-shale contacts. Ground-water-flow velocities in the carbonate rocks ranged from 32 to 1,879 feet per day. Recharge was estimated to be about 10 inches per year for a 60-square-mile area of carbonate rocks. Specific yield for carbonate rocks ranged from 0.044 to 0.049. Estimated transmissivity values for carbonate rocks ranged from 730 to 9,140 feet squared per day. Concentrations of the following constituents exceeded the maximum and secondary maximum contaminant levels set by the U.S. Environmental Protection Agency in ground water from at least one site: iron, manganese, nitrate, fecal coliform and fecal streptococcal bacteria, pH, total dissolved solids, and chloride. Analyses of the ground water indicated that the following organochlorine and organophosphate insecticides were present in detectable concentrations: chlordane, DDE, DDT, diazinon, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, and malathion. Triazine herbicides that were present in detectable concentrations were atrazine, cyanazine, and simazine. Radon concentrations ranged from 92 to 1,600 picocuries per liter. Ground water from four springs in the carbonate rocks was analyzed for 36 volatile organic compounds. None of the compounds were present in detectable concentrations.

  20. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    NASA Astrophysics Data System (ADS)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    harvesting of trees is not possible within KNP, this was a unique opportunity to fell trees already scheduled to be cleared for mining operations. The area was first flown by the Carnegie Airborne Observatory in early May, prior to harvest, to enable correlation of LiDAR-measured tree height and crown diameter to harvested tree mass. Results include over 4,000 harvested stems and 13 species-specific biomass equations, including seven Kruger woody species previously without allometry. We found existing biomass stem allometry over-estimates ACD in the field, whereas airborne estimates based on harvest data avoid this bias while maintaining similar precision to field-based estimates. Lastly, a new airborne algorithm estimating biomass at the tree-level reduced error from tree canopies "leaning" into field plots but whose stems are outside plot boundaries. These advances pave the way to better understanding of savanna and forest carbon density at landscape and regional scales.

  1. Monitoring of carbon-dioxide production in the seismoactive area of West Bohemia

    NASA Astrophysics Data System (ADS)

    Fischer, Tomáš; Vlček, Josef; Woith, Heiko; Heinicke, Jens

    2017-04-01

    Geodynamically active area of West Bohemia is interesting not only due to its earthquake swarms occurrence but also due to the massive degassing of CO2 of magmatic origin occurring in dry mofettes and mineral springs. A continuous monitoring of CO2 amount has started in 2009 and a well pronounced increase of gas flow was observed in relation to the 2014 seismic sequence, which has been attributed to the fault-valve behavior. At present six monitoring stations with online data transfer are in operation, which combine various methods of gas flow monitoring in order to assure robust and reliable data series. In this paper we show the decreasing trend of gas flow since the 2014 aftershock sequences observed at different stations and compare various approached for quantification of gas flow. The reliability of chamber-type and venturi-type gas flow meters depends on ambient temperature conditions, namely during freezing periods, which makes the measurement unstable in time. Accordingly we designed alternative methods to measure CO2 amount by quantifying the fraction of gas bubbles in water column in stable temperature conditions of borehole or mofette. This is carried our by two different approaches - the first is based on measuring the density of two-phase fluid (water with bubbles) in the well by differential pressure gauge. The second measures electric conductivity of the two-phase fluid. We analyse the obtained time series in terms of their dependence on ambient conditions (namely the air pressure and temperature), mutual relations of the gas-related quantities (flow, wellhead pressure, bubble fraction in water) relations and interpret the present trend of gas production and its possible relation to seismic activity.

  2. Carbon-dioxide flow measurement in geodynamically active area of West Bohemia

    NASA Astrophysics Data System (ADS)

    Vlcek, Josef; Fischer, Tomas; Heinicke, Jens

    2016-04-01

    Geodynamically active area of West Bohemia is interesting not only due to its earthquake swarms occurrence but also due to degassing flux of magmatic origin occurring in natural moffettes and mineral springs. While monitoring of earthquakes is done by a standard local seismic network, monitoring of amount of CO2 is at its initial stage. Despite lack of data, the 2014 earthquake swarm showed also very interesting increase in CO2 flow. This correlation with seismicity motivated us to develop robust and reliable methods of CO2 flow measurement, which would be sufficient to create denser monitoring network. Standard usage of gas-flowmeter for the purpose of gas flow measurement is dependent on the weather and device conditions, which makes the measurement instable in time and unreliable. Although gas-flowmeter is also accompanied with measurement of the gas pressure in the well to check flow rate value, reliability of this method is still low. This problematic behavior of the flow measurement was the reason to test new methods to measure CO2 amount - the first is based on measuring the density water with bubbles in the well by differential pressure gauge. The second one utilizes electric conductivity measurement to determine the density of bubbles in the water-gas mixture. Advantage of these methods is that their probes are directly in the well or moffette, where the concentration is measured. This approach is free of the influence of moving parts and assures the independence of measurements of environmental conditions. In this paper we show examples of obtained data series from selected sites and compare the trend of the curves, the mutual relations of the measured quantities and the influence of environmental conditions.

  3. Carboniferous and older carbonate rocks: Lithofacies, extent, and reservoir quality: Chapter CC in The oil and gas resource potential of the Arctic National Wildlife Refuge 1002 area, Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.

    1999-01-01

    Carboniferous and older carbonate rocks are potential hydrocarbon reservoir facies for four plays in the 1002 area of the Arctic National Wildlife Refuge. These rocks include several units in the pre-Carboniferous basement and the Carboniferous Lisburne Group. Data from exploratory wells west of the 1002 area, outcrops south of the 1002 area, seismic lines, and well logs are synthesized herein to infer carbonate lithofacies, extent, and reservoir character beneath the northeastern Arctic coastal plain.A chiefly shallow-water basement carbonate succession of Late Proterozoic through Early Devonian age (Katakturuk Dolomite, Nanook Limestone, and Mount Copleston Limestone) is interpreted to be present beneath much of the south-central 1002 area; it reaches 3,700 m thick in outcrop and is the primary reservoir for the Deformed Franklinian Play. A more heterogeneous lithologic assemblage of uncertain age forms basement in the northwestern part of the 1002 area; well data define three subunits that contain carbonate intervals 5- 50 m thick. These strata are prospective reservoirs for the Undeformed Franklinian Play and could also be reservoirs for the Niguanak- Aurora Play. Regional lithologic correlations suggest a Cambrian-Late Proterozoic(?) age for subunits one and two, and a slightly younger, later Cambrian-Silurian age for subunit three. Seismic and well data indicate that subunit one overlies subunit two and is overlain by subunit three. The Mississippian and Pennsylvanian Lisburne Group, a predominantly carbonate platform succession as much as 1 km thick, is projected beneath the southernmost part of the 1002 area and is a potential reservoir for the Ellesmerian Thrust-belt and Niguanak-Aurora Plays.Carbonate rocks in the 1002 area probably retain little primary porosity but may have locally well developed secondary porosity. Measured reservoir parameters in basement carbonate strata are low (porosity generally ≤ 5%; permeability ≤ 0.2 md) but drill

  4. High porosity and surface area self-doped carbon derived from polyacrylonitrile as efficient electrocatalyst towards oxygen reduction

    NASA Astrophysics Data System (ADS)

    You, Chenghang; Zheng, Ruiping; Shu, Ting; Liu, Lina; Liao, Shijun

    2016-08-01

    A highly porous N self-doped carbon catalyst, with three dimensional morphology/structures and high surface area (810.8 m2 g-1), is prepared through a pyrolysis procedure with polyacrylonitrile as the precursor, and zinc oxide (ZnO) as the templates/pore former. The catalyst exhibits excellent activity and stability towards oxygen reduction reaction (ORR) in alkaline medium, as well as outstanding methanol tolerance and stability. For our optimal catalyst PAC/ZnO-900, its half-wave potential is 26 mV more positive (0.859 V, vs. RHE) than that of commercial Pt/C catalyst (0.833 V, vs. RHE), and its current density at 0.88 V (vs. RHE) is almost twice as high as that of Pt/C catalyst (-1.922 and -0.957 mA cm-2, respectively). It is found that the addition of ZnO plays a crucial role for the formation of catalysts' 3D porous structures and high ORR performance. With the addition of ZnO in precursor, the surface area of the catalyst is enhanced by 13 times, and the ORR activity is enhanced by 10 times. Also, pyrolyzing temperature seems to be another important factor significantly affected the structure and performance of the catalyst.

  5. Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaochang; Peng, Hongliang; You, Chenghang; Liu, Fangfang; Zheng, Ruiping; Xu, Dongwei; Li, Xiuhua; Liao, Shijun

    2015-08-01

    Nitrogen, phosphorus and Fe doped carbon nanospheres have been synthesized by a facile method in which polyacrylonitrile nanospheres are pyrolyzed in the presence of diammonium phosphate and iron trichloride hexahydrate. The specific surface area of the catalyst is high up to 771.3 m2 g-1, and it has a hierarchical micro-meso-macroporous structure. In an alkaline medium, the catalyst exhibits high electrocatalytic activity towards the oxygen reduction reaction (ORR) as well as excellent stability and methanol tolerance-superior in each case to commercial Pt/C catalyst. The effects that adding Fe salt and phosphorus on the structure and performance of the catalyst are also investigated. We suggest that the catalyst's excellent electrocatalytic performance may be attributed to: (1) the synergistic effect, which provides more catalytic sites for the ORR, due to the nitrogen and phosphorus co-doping; (2) the strong promotion by trace Fe residues; and (3) the high surface area and excellent mass transport rate arising from the hierarchical porous structure.

  6. Investigation of sources of volatile organic carbon in the Baltimore area using highly time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Choi, Yu-Jin; Ehrman, Sheryl H.

    A multivariate receptor model, UNMIX, was applied to hourly volatile organic hydrocarbon concentrations measured at a Photochemical Assessment Monitoring Station, located in the Baltimore, MD area, during the summer months from 1996 to 1999. Six possible volatile organic carbon source categories were identified, and gasoline-related sources such as vehicle exhaust, gasoline vapor, and liquid gasoline contributed more than half of the total VOC concentration. Natural gas, surface coatings, and biogenic source categories accounted for 13%, 12% and 11% of the total VOC, respectively, when all hourly measurements are considered. In order to investigate possible relationships between each source category and episodes of elevated ozone concentrations, NO x, meteorological variables such as surface wind speed, and temperature as well as the hourly contribution of each source category, obtained from UNMIX, were split into high ozone days and low ozone days. Results of a comparison of diurnal patterns observed on high-ozone days with those of low-ozone days for each source category suggested that biogenic emissions may have contributed significantly to local ozone production during episodes in which the 8 h ozone standard was violated in this area.

  7. Particle Count and Black Carbon Measurements at Schools in Las Vegas and in the Greater Salt Lake City Area.

    PubMed

    Brown, Steven G; Vaughn, David L; Roberts, Paul T

    2016-12-23

    As part of two separate studies aimed to characterize ambient pollutant concentrations at schools in urban areas, we compare black carbon and particle count measurements at Adcock Elementary in Las Vegas, Nevada (April-June 2013), and Hunter High School in the West Valley City area of Greater Salt Lake City, Utah (February 2012). Both schools are in urban environments, but Adcock Elementary is next to the U.S. 95 freeway. Black Carbon (BC) concentrations were 13% higher at Adcock compared to Hunter, while particle count concentrations were 60% higher. When wind speeds were low-less than 2 m/sec-both BC and particle count concentrations were significantly higher at Adcock, while concentrations at Hunter did not have as strong a variation with wind speed. When wind speeds were less than 2 m/s, emissions from the adjacent freeway greatly affected concentrations at Adcock, regardless of wind direction. At both sites, BC and particle count concentrations peaked in the morning during commute hours. At Adcock, particle count also peaked during midday or early afternoon, when BC was low and conditions were conducive to new particle formation. While this midday peak occurred at Adcock on roughly 45% of the measured days, it occurred on only about 25% of the days at Hunter, since conditions for particle formation (higher solar radiation, lower wind speeds, lower relative humidity) were more conducive at Adcock. Thus, children attending these schools are likely to be exposed to pollution peaks during school drop-off in the morning, when BC and particle count concentrations peak, and often again during lunchtime recess when particle count peaks again. Particle count concentrations at two schools were shown to typically be independent of BC or other pollutants. At a school in close proximity to a major freeway, particle count concentrations were high during the midday and when wind speeds were low, regardless of wind direction, showing a large area of effect from roadway

  8. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area

    USGS Publications Warehouse

    Trumbore, S.E.; Harden, J.W.

    1997-01-01

    Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ???3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic

  9. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area

    NASA Astrophysics Data System (ADS)

    Trumbore, S. E.; Harden, J. W.

    1997-12-01

    Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ˜3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic

  10. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    PubMed

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-02-22

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions <20μm one year after the application of biochar. Biochar-C stored in clay-size fractions (0.2-2μm, 0.05-0.2μm, <0.05μm) was only 14%. Even so, we observed that biochar-C increased with decreasing particle-size in clay-size fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction <0.05μm onto biochar particles. The results suggested that interactions between biochar, minerals and pre-existing organic matter already occurred in the first year.

  11. On-chip and freestanding elastic carbon films for micro-supercapacitors.

    PubMed

    Huang, P; Lethien, C; Pinaud, S; Brousse, K; Laloo, R; Turq, V; Respaud, M; Demortière, A; Daffos, B; Taberna, P L; Chaudret, B; Gogotsi, Y; Simon, P

    2016-02-12

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young's modulus of 14.5 gigapascals, with the possibility of further transfer onto flexible substrates. These materials are interesting for applications in structural energy storage, tribology, and gas separation. Copyright © 2016, American Association for the Advancement of Science.

  12. Electrical Model of a Carbon-Polymer Composite (CPC) Collision Detector

    PubMed Central

    Kruusamäe, Karl; Punning, Andres; Aabloo, Alvo

    2012-01-01

    We present a study of an electrical model of electromechanically active carbon-polymer composite (CPC) with carbide-derived carbon (CDC) electrodes. The major focus is on investigation of surface electrode behavior upon external bending of the material. We show that electrical impedance measured from the surface of the CDC-based CPC can be used to determine the curvature of the material and, hence, the tip displacement of a CPC laminate in a cantilever configuration. It is also shown that by measuring surface signals in the process of an actuator’s work-cycle, we obtain a self-sensing collision-detecting CPC actuator that can be considered as a counterpart of biomimetic vibrissae. PMID:22438747

  13. On-chip and freestanding elastic carbon films for micro-supercapacitors

    SciTech Connect

    Huang, Peihua; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortiere, A.; Daffos, B.; Taberna, Pierre -Louis; Chaudret, B.; Gogotsi, Yury G.; Simon, Patrice

    2016-02-11

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility of further transfer onto flexible substrates. Lastly, these materials are interesting for applications in structural energy storage, tribology, and gas separation.

  14. On-chip and freestanding elastic carbon films for micro-supercapacitors

    DOE PAGES

    Huang, Peihua; Lethien, C.; Pinaud, S.; ...

    2016-02-11

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility ofmore » further transfer onto flexible substrates. Lastly, these materials are interesting for applications in structural energy storage, tribology, and gas separation.« less

  15. On-chip and freestanding elastic carbon films for micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P. L.; Chaudret, B.; Gogotsi, Y.; Simon, P.

    2016-02-01

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility of further transfer onto flexible substrates. These materials are interesting for applications in structural energy storage, tribology, and gas separation.

  16. The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States.

    PubMed

    Lu, Xiaoliang; Zhou, Yuyu; Liu, Yaling; Le Page, Yannick

    2017-07-16

    Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km(2) of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experienced little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700-2005, or 13.4% of carbon losses in non-PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001-2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large-scale disturbances that would release large amounts of carbon in PAs. © 2017 John Wiley & Sons Ltd.

  17. Nanoporous carbons derived from binary carbides and their optimization for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Dash, Ranjan Kumar

    On-board hydrogen storage is one of the major hurdles for success of hydrogen economy. Hydrogen storage using physisorption technique demands highly porous materials. Carbide derived carbons (CDC), a new class of porous carbons produced by thermo chemical etching of metal atoms from carbides were selected as a method for producing highly porous material for hydrogen storage. In order to synthesize tunable nanoporous carbon and to establish a structure-property relation between initial metal carbide and resultant nanoporous carbon, CDCs were synthesized from four metal carbides, two that have uniform carbon to carbon distance in the lattice structure (ZrC, TiC and SiC) and one that has a non-uniform carbon distribution in the lattice (B4C). It was shown that a uniform distribution of carbon atoms in the carbide is important for obtaining a narrow pore size distribution (PSD). CDC derived from B 4C had a relatively broad PSD and contained mesopores even at the lowest synthesis temperature, while the CDC produced from SiC maintained a narrow PSD even at the synthesis temperature of 1200°C. CDC produced from ZrC and TiC has a narrow PSD at low synthesis temperature and pores gets wider at higher temperatures. Comparison of CDCs produced from ZrC, TiC and B 4C shows that CDCs produced from ZrC and TiC show a lower degree of ordering than that from B4C at high temperatures. Unlike CDCs produced from ZrC and TiC, the PSD of CDCs from B4C does not change appreciably in the 600-1200°C range. CDCs produced from ZrC and TiC can have both narrowly distributed micropores (pores smaller than 2 nm) and mesopores (pores larger than 2 nm), depending on synthesis temperature. In this work, it is demonstrated that porosity of CDC can be fine tuned with a high accuracy by using different starting carbides and varying the synthesis temperatures. This is very important in many applications of porous carbon, especially for gas storage. CDC from ZrC, TiC, B4C and SiC resulted in a

  18. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content.

  19. Respiration of bivalves from three different deep-sea areas: Cold seeps, hydrothermal vents and organic carbon-rich sediments

    NASA Astrophysics Data System (ADS)

    Khripounoff, A.; Caprais, J. C.; Decker, C.; Le Bruchec, J.; Noel, P.; Husson, B.

    2017-08-01

    We studied bivalves (vesicomyids and mytilids) inhabiting four different areas of high sulfide and methane production: (1) in the Gulf of Guinea, two pockmarks (650 m and 3150 m depth) and one site rich in organic sediments in the deepest zone (4950 m average depth), (2) at the Azores Triple Junction on the Mid-Atlantic Ridge, one hydrothermal site (Lucky Strike vent field, 1700 m depth). Two types of Calmar benthic chambers were deployed, either directly set into the sediment (standard Calmar chamber) or fitted with a tank to isolate organisms from the sediment (modified Calmar chamber), to assess gas and solute exchanges in relation to bivalve bed metabolism. Fluxes of oxygen, total carbon dioxide, ammonium and methane were measured. At the site with organic-rich sediments, oxygen consumption by clams measured in situ with the standard benthic chamber was variable (1.3-6.7 mmol m-2 h-1) as was total carbon dioxide production (1-9.6 mmol m-2 h-1). The observed gas and solute fluxes were attributed primarily to bivalve respiration (vesicomyids or mytilids), but microbial and geochemical processes in the sediment may be also responsible for some of variations in the deepest stations. The respiration rate of isolated vesicomyids (16.1-0.25.7 μmol g-1 dry weight h-1) was always lower than that of mytilids (33 μmol g-1 dry weight h-1). This difference was attributed to the presence of a commensal scaleworm in the mytilids. The respiratory coefficient (QR) ≥1 indicated high levels of anaerobic metabolism. The O:N index ranged from 5 to 25, confirming that vesicomyids and mytilids, living in symbiosis with bacteria, have a protein-based food diet.

  20. Spatial distribution of microbial populations and carbon cycle in the subsurface environment of the Horonobe area, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Amano, Y.; Ise, K.; Terashima, M.; Sasaki, Y.; Amamiya, H.; Yoshikawa, H.

    2014-12-01

    Microorganisms are widely distributed in the subsurface environments. However, the distribution, role and rate of metabolisms, and the source of their activity are not well known. In this study, we investigated deep groundwater samples from sedimentary rocks, containing saturated methane and CO2, using boreholes at the Horonobe Underground Research Laboratory (URL), northern Hokkaido, Japan. The hydrochemical conditions of groundwaters, such as in-situ water pressure, temperature, electric conductivity, pH, redox potential, were monitored without degassing at multiple intervals along the borehole. Groundwater samples were taken periodically and chemical composition was analyzed using ICP-MS, etc. Cell counts were in the range of 103 to 105 cells ml-1. Molecular analyses revealed the spatial distribution and heterogeneity of the microbial population. Abundant methanogens were detected in the groundwater, and 80% of them were related to either Methanoregula boonei or Methanobacterium flexile that can utilize H2/CO2 by methanogenesis. Phylotypes clustered within the phylum Firmicutes, beta-Proteobacteria, delta-Proteobacteria and candidate division TM7 were dominant in the groundwater samples. Laboratory experiments using a culture technique showed that humic substances purified from the groundwater at Horonobe area appear to be degraded by microorganisms. Our results suggest that microbial spatial distributions in the subsurface environment were correlated closely with geochemical conditions, such as redox condition and carbon sources. In addition, it is inferred that humic substances are one of the important carbon sources for the subsurface microbial redox processes in the environment. This study was partly funded by the Ministry of Economy, Trade and Industry of Japan.

  1. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Moerman, M.; Zandveld, P.; Henzing, J. S.; Hoek, G.

    2015-03-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014 at Adamse Bos, located 7 km from Schiphol, and in 2012 at Cabauw, a regional background site 40 km south of Schiphol. No significantly elevated black carbon levels were found near Schiphol. However, PNC increased during periods in which the wind direction was from Schiphol: at Cabauw by 20% and at Adamse Bos by a factor of three, from 14,100 (other wind directions) to 42,000 # cm-3 between 06.00 and 23.00. The size distribution of Schiphol-related PNC was dominated by ultrafine particles, ranging from 10 to 20 nm. Four relevant particle number (PN) emission sources at Schiphol were identified as being responsible for the elevated PNC levels at Adamse Bos: take-off and climb-out on the Kaagbaan and Aalsmeerbaan runways, planes waiting at the gates, and landing on the Buitenveldertbaan runway. PN emissions from road traffic at and near the airport were less important than air traffic. The exposure to Schiphol-related PNC in urban areas northeast of Schiphol in Amsterdam and Amstelveen was estimated for 2012 using a Gaussian Plume model. The results showed that a considerable number of the 555,000 addresses in the modelling domain were exposed to elevated PNC. For example: 45,000 addresses suffered long-term exposure to an additional annual background PNC of 5-10,000 # cm-3 originating from Schiphol and 60,000 addresses suffered short-term exposure (14% of the time) of additional 10-15,000 # cm-3 originating from Schiphol. Further research on emission sources and the dispersion of PN is recommended and may support future studies on eventual health effects.

  2. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections.

    PubMed

    Parras-Alcántara, L; Lozano-García, B; Brevik, E C; Cerdá, A

    2015-05-15

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Over time, some researches have analyzed entire soil profile (ESP) by pedogenetic horizons and other researches have analyzed soil control sections (SCS) to different thickness. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km(2) forested area in southern Spain. Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The soils investigated in this study included Phaeozems, Cambisols, Regosols and Leptosols. Total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C (10,604.2 Mg km(-2)) to 0.6353 Tg C (8272.1 Mg km(-2)) respectively (1 Tg = 10(12) g). However, when the topsoil (surface horizon and superficial section control) was analyzed, this difference increased to 59.8% in SCS compared to ESP. The comparison between ESP and SCS showed the effect of mixing pedogenetic horizons when depth increments were analyzed. This indicates an overestimate of T-SOCS when sampling by SCS.

  3. Perfluoroalkyl carboxylic acids with up to 22 carbon atoms in snow and soil samples from a ski area.

    PubMed

    Plassmann, Merle M; Berger, Urs

    2013-05-01

    The use of fluorinated ski waxes as a direct input route of perfluoroalkyl carboxylic acids (PFCAs) to the environment was investigated. PFCA homologues with 6-22 carbon atoms (C6-22 PFCAs) were detected in fluorinated ski waxes and their raw materials by liquid chromatography coupled to tandem mass spectrometry. Snow and soil samples from a ski area in Sweden were taken after a skiing competition and after snowmelt, respectively. In both snow and soil samples C6-22 PFCAs were detected, representing the first report of PFCAs with up to 22 carbon atoms in environmental samples. Single analyte concentrations in snow (analyzed as melt water) and soil ranged up to 0.8μgL(-1) and 5ngg(-1) dry weight, respectively. ∑PFCA concentrations in snow and soil decreased from the start to the finish of the ski trail. Distinct differences in PFCA patterns between snow (prevalence of C14-20 PFCAs) and soil samples (C6-14 PFCAs dominating) were observed. Additionally, a PFCA pattern change from the start to about two third of the distance of the ski trail was found both for snow and soil, with a larger fraction of longer chain homologues present in samples from the start. These observations are probably a result of differences in PFCA homologue patterns present in different types of waxes. The calculated PFCA input from snow affected by the skiing competition was smaller than the PFCA inventory in soil for all chain lengths and markedly smaller for C6-15 PFCAs, presenting evidence for long-term accumulation in soil.

  4. Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency.

    PubMed

    Mermillod-Blondin, Florian; Simon, Laurent; Maazouzi, Chafik; Foulquier, Arnaud; Delolme, Cécile; Marmonier, Pierre

    2015-09-15

    Managed aquifer recharge (MAR) has been developed in many countries to limit the risk of urban flooding and compensate for reduced groundwater recharge in urban areas. The environmental performances of MAR systems like infiltration basins depend on the efficiency of soil and vadose zone to retain stormwater-derived contaminants. However, these performances need to be finely evaluated for stormwater-derived dissolved organic matter (DOM) that can affect groundwater quality. Therefore, this study examined the performance of MAR systems to process DOM during its transfer from infiltration basins to an urban aquifer. DOM characteristics (fluorescent spectroscopic properties, biodegradable and refractory fractions of dissolved organic carbon -DOC-, consumption by micro-organisms during incubation in slow filtration sediment columns) were measured in stormwater during its transfer through three infiltration basins during a stormwater event. DOC concentrations sharply decreased from surface to the aquifer for the three MAR sites. This pattern was largely due to the retention of biodegradable DOC which was more than 75% for the three MAR sites, whereas the retention of refractory DOC was more variable and globally less important (from 18% to 61% depending on MAR site). Slow filtration column experiments also showed that DOC retention during stormwater infiltration through soil and vadose zone was mainly due to aerobic microbial consumption of the biodegradable fraction of DOC. In parallel, measurements of DOM characteristics from groundwaters influenced or not by MAR demonstrated that stormwater infiltration increased DOC quantity without affecting its quality (% of biodegradable DOC and relative aromatic carbon content -estimated by SUVA254-). The present study demonstrated that processes occurring in soil and vadose zone of MAR sites were enough efficient to limit DOC fluxes to the aquifer. Nevertheless, the enrichments of DOC concentrations measured in groundwater below

  5. [Effects of different aspects on soil microbial biomass and dissolved organic carbon of the loess hilly area].

    PubMed

    Zhao, Tong; Jiang, Yue-Li; Yan, Hao; Huang, Yi-Mei; An, Shao-Shan

    2013-08-01

    Soil samples from different aspects (southern slope and northern slope) under the same vegetation in two typical vegetation zones (forest vegetation zone and steppe vegetation zone) of Yanhe basin in the loess hilly area were chosen and analyzed, in order to investigate the content and correlation of soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil microbial biomass phosphorus (SMBP) and dissolved organic carbon (DOC). The results show that, in 0-10 cm soil layer of forest vegetation zone, SMBC in southern slope and northern slope are 532.1-792.5 mg x kg(-1) and 333.6-469.8 mg x kg(-1), SMBN are 53.66-87.31 mg x kg(-1) and 47.58-61.38 mg x kg(-1) respectively, both of them are higher in southern slope than those in northern slope, but in steppe vegetation zone, SMBC and SMBN in southern slope are lower than those in northern slope, with SMBC of southern slope and northern slope are 68.90-75.34 mg x kg(-1) and 65.29-128.67 mg x kg(-1), SMBN are 13.94-18.61 mg x kg(-1) and 13.00-20.10 mg x kg(-1) respectively, SMBP in both vegetation zones have a different variation trend compared with SMBC and SMBN; the ratio of SMBC to the sum of SMBC plus DOC (SMBC + DOC) in southern slope of forest vegetation zone reaches the maximum value in two vegetation zones, which is 77.74%. In steppe vegetation zone, this ratio both decreases from northern slope to southern slope and 0-10 cm soil layer to 10-30 cm soil layer. The difference of soil moisture and temperature between different aspects under the same vegetation have a significant effect on soil microbial biomass, it also makes the ratio of SMBC to SMBC + DOC different, SMBC + DOC can reflect soil carbon availability better than SMBC, there might be an obvious change in soil microbial communities in 0-10 cm soil layer of different aspects in forest vegetation zone.

  6. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    SciTech Connect

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection

  7. Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production.

    PubMed

    Kuhlbusch, T A J; Neumann, S; Fissan, H

    2004-10-01

    Number size characteristics and PM10 mass concentrations of particles emitted during the packaging of various kinds of carbon blacks were measured continuously in the bag filling areas of three carbon black plants and concurrently at ambient comparison sites. PM10, PM2.5, and PM1 dust fractions were also determined in the bag filling areas. The filter samples were then analyzed for elemental and organic carbon. Comparisons of the measured number size distributions and mass concentrations during bag filling activities with those measured parallel at the ambient site and with those determined during nonworking periods in the work area enabled the characterization of emitted particles. PM10 mass concentrations were consistently elevated (up to a factor of 20 compared to ambient concentrations) during working periods in the bag filling area. Detailed analysis revealed that the carbon black particles released by bag filling activities had a size distribution starting at approximately 400 nm aerodynamic diameter (dae) with modes around 1 microm dae and > 8 microm dae. Ultrafine particles (< 100 nm dae), detected in the bag filling areas, were most likely attributed to noncarbon black sources such as forklift and gas heater emissions.

  8. Carbon, oxygen, and strontium isotopic composition of methane-derived authigenic carbonates in methane seep areas, eastern margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Kakizaki, Y.; Ishikawa, T.; Hiruta, A.; Matsumoto, R.

    2016-12-01

    We report the occurrence, mineralogy, and isotopic composition (δ13C; δ18O) of methane-derived authigenic carbonates (MDACs) from three methane seep areas with shallow gas hydrate (Umitaka Spur, Joetsu Knoll, and off-Tobishima Island), in the southeastern margin of Japan Sea. Furthermore, we present strontium isotopic ratios (87Sr/86Sr) of MDACs, pore waters, and seawater from Umitaka Spur. MDACs range from a few mm to several tens of cm in diameter. Their shape is quite varied, e.g. nodular, platy, and indetermine form. Most MDACs are composed of high-Mg calcite. The δ13C values of MDACs from Umitaka Spur range from -30 to -4 permil. These isotopic values are higher than those of Joetsu Knoll and off-Tobishima Island. This difference is dependent upon the formation depth of MDACs in the sediment column. It probably indicates a difference in the formation environment of MDACs (e.g. methane flux). Meanwhile, range of the δ18O values of MDACs from those three areas is mostly equal. The 87Sr/86Sr ratios in MDACs from shallow sediment depth of Umitaka Spur are equal to those of modern surface seawater just above Umitaka Spur. The 87Sr/86Sr ratios of MDACs from deeper sediment depth are lower, and the Sr-isotopic trend indicates an upward increase. This trend can be correlated to the global Sr-isotopic trend of the seawater from late Pleistocene to present. It means that 87Sr/86Sr ratios of MDACs reflect the 87Sr/86Sr ratio of seawater at the formation age. However, the 87Sr/86Sr ratios in pore water are lower than those of MDACs, yet follow a parallel trend. This would suggest that the pore water includes a source of light Sr, presumably released from tuff and volcaniclastics during diagenetic processes. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  9. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale.

    PubMed

    Kerry, Ruth; Goovaerts, Pierre; Rawlins, Barry G; Marchant, Ben P

    2012-01-15

    Legacy data in the form of soil maps, which often have typical property measurements associated with each polygon, can be an important source of information for digital soil mapping (DSM). Methods of disaggregating such information and using it for quantitative estimation of soil properties by methods such as regression kriging (RK) are needed. Several disaggregation processes have been investigated; preferred methods include those which include consideration of scorpan factors and those which are mass preserving (pycnophylactic) making transitions between different scales of investigation more theoretically sound. Area to point kriging (AtoP kriging) is pycnophylactic and here we investigate its merits for disaggregating legacy data from soil polygon maps. Area to point regression kriging (AtoP RK) which incorporates ancillary data into the disaggre-gation process was also applied. The AtoP kriging and AtoP RK approaches do not involve collection of new soil measurements and are compared with disaggregation by simple rasterization. Of the disaggregation methods investigated, AtoP RK gave the most accurate predictions of soil organic carbon (SOC) concentrations (smaller mean absolute errors (MAEs) of cross-validation) for disaggregation of soil polygon data across the whole of Northern Ireland. Legacy soil polygon data disaggregated by AtoP kriging and simple rasterization were used in a RK framework for estimating soil organic carbon (SOC) concentrations across the whole of Northern Ireland, using soil sample data from the Tellus survey of Northern Ireland and with other covariates (altitude and airborne radiometric potassium). This allowed direct comparison with previous analysis of the Tellus survey data. Incorporating the legacy data, whether from simple rasterization of the polygons or AtoP kriging, substantially reduced the MAEs of RK compared with previous analyses of the Tellus data. However, using legacy data disaggregated by AtoP kriging in RK resulted in

  10. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale

    PubMed Central

    Kerry, Ruth; Goovaerts, Pierre; Rawlins, Barry G.; Marchant, Ben P.

    2015-01-01

    Legacy data in the form of soil maps, which often have typical property measurements associated with each polygon, can be an important source of information for digital soil mapping (DSM). Methods of disaggregating such information and using it for quantitative estimation of soil properties by methods such as regression kriging (RK) are needed. Several disaggregation processes have been investigated; preferred methods include those which include consideration of scorpan factors and those which are mass preserving (pycnophylactic) making transitions between different scales of investigation more theoretically sound. Area to point kriging (AtoP kriging) is pycnophylactic and here we investigate its merits for disaggregating legacy data from soil polygon maps. Area to point regression kriging (AtoP RK) which incorporates ancillary data into the disaggre-gation process was also applied. The AtoP kriging and AtoP RK approaches do not involve collection of new soil measurements and are compared with disaggregation by simple rasterization. Of the disaggregation methods investigated, AtoP RK gave the most accurate predictions of soil organic carbon (SOC) concentrations (smaller mean absolute errors (MAEs) of cross-validation) for disaggregation of soil polygon data across the whole of Northern Ireland. Legacy soil polygon data disaggregated by AtoP kriging and simple rasterization were used in a RK framework for estimating soil organic carbon (SOC) concentrations across the whole of Northern Ireland, using soil sample data from the Tellus survey of Northern Ireland and with other covariates (altitude and airborne radiometric potassium). This allowed direct comparison with previous analysis of the Tellus survey data. Incorporating the legacy data, whether from simple rasterization of the polygons or AtoP kriging, substantially reduced the MAEs of RK compared with previous analyses of the Tellus data. However, using legacy data disaggregated by AtoP kriging in RK resulted in

  11. Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area

    NASA Astrophysics Data System (ADS)

    Järveoja, Järvi; Peichl, Matthias; Maddison, Martin; Soosaar, Kaido; Vellak, Kai; Karofeld, Edgar; Teemusk, Alar; Mander, Ülo

    2016-05-01

    Peatland restoration may provide a potential after-use option to mitigate the negative climate impact of abandoned peat extraction areas; currently, however, knowledge about restoration effects on the annual balances of carbon (C) and greenhouse gas (GHG) exchanges is still limited. The aim of this study was to investigate the impact of contrasting mean water table levels (WTLs) on the annual C and GHG balances of restoration treatments with high (ResH) and low (ResL) WTL relative to an unrestored bare peat (BP) site. Measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes were conducted over a full year using the closed chamber method and complemented by measurements of abiotic controls and vegetation cover. Three years following restoration, the difference in the mean WTL resulted in higher bryophyte and lower vascular plant cover in ResH relative to ResL. Consequently, greater gross primary production and autotrophic respiration associated with greater vascular plant cover were observed in ResL compared to ResH. However, the means of the measured net ecosystem CO2 exchanges (NEE) were not significantly different between ResH and ResL. Similarly, no significant differences were observed in the respective means of CH4 and N2O exchanges. In comparison to the two restored sites, greater net CO2, similar CH4 and greater N2O emissions occurred in BP. On the annual scale, ResH, ResL and BP were C sources of 111, 103 and 268 g C m-2 yr-1 and had positive GHG balances of 4.1, 3.8 and 10.2 t CO2 eq ha-1 yr-1, respectively. Thus, the different WTLs had a limited impact on the C and GHG balances in the two restored treatments 3 years following restoration. However, the C and GHG balances in ResH and ResL were considerably lower than in BP due to the large reduction in CO2 emissions. This study therefore suggests that restoration may serve as an effective method to mitigate the negative climate impacts of abandoned peat extraction areas.

  12. Above and below ground carbon stocks in northeast Siberia tundra ecosystems: a comparison between disturbed and undisturbed areas

    NASA Astrophysics Data System (ADS)

    Weber, L. R.; Pena, H., III; Curasi, S. R.; Ramos, E.; Loranty, M. M.; Alexander, H. D.; Natali, S.

    2014-12-01

    Changes in arctic tundra vegetation have the potential to alter the regional carbon (C) budget, with feedback implications for global climate. A number of studies have documented both widespread increases in productivity as well as shifts in the dominant vegetation. In particular, shrubs have been replacing other vegetation, such as graminoids, in response to changes in their environment. Shrub expansion is thought to be facilitated by exposure of mineral soil and increased nutrient availability, which are often associated with disturbance. Such disturbances can be naturally occurring, typically associated with permafrost degradation or with direct anthropogenic causes such as infrastructure development. Mechanical disturbance associated with human development is not uncommon in tundra and will likely become more frequent as warming makes the Arctic more hospitable for resource extraction and other human activities. As such, this type of disturbance will become an increasingly important component of tundra C balance. Both increased productivity and shrub expansion have clear impacts on ecosystem C cycling through increased C uptake and aboveground (AG) storage. What is less clear, however, are the concurrent changes in belowground (BG) C storage. Here we inventoried AG and BG C stocks in disturbed and undisturbed tundra ecosystems to determine the effects of disturbance on tundra C balance. We measured differences in plant functional type, AG and BG biomass, soil C, and specific leaf area (SLA) for the dominant shrub (Salix) in 2 tundra ecosystems in northern Siberia—an undisturbed moist acidic tundra and an adjacent ecosystem that was used as a road ~50 years ago. Deciduous shrubs and grasses dominated both ecosystems, but biomass for both functional types was higher in the disturbed area. SLA was also higher inside the disturbance. Conversely, nonvascular plants and evergreen shrubs were less abundant in the disturbed area. BG plant biomass was substantially

  13. Calculation of the Carbon Footprint to Determine Sustainability Status: A Comparative Analysis of Some Selected Planned and Unplanned Areas of Dhaka Megacity

    NASA Astrophysics Data System (ADS)

    Iqbal, S. M. S.

    2015-12-01

    Resource scarcity is considered to be one of the most serious issues plaguing Dhaka city. Because of the massive pressure of increasing population (15.931 million), a very unsustainable situation is waiting for this city in the upcoming future. It is inevitable to know how far this city is from being sustainable. This paper embodies the comparative analysis of the carbon footprint of four different areas in Dhaka city. It is considered as one of the most important key indicators of sustainability. It calculates the amount of biologically productive land in order to produce all the resources consumed by an individual or a particular community. This research has been conducted in both the planned and unplanned areas of this city. Among compound, component and direct method, component method was used to calculate the carbon footprint. Primary data were collected from door to door questionnaire survey. Total 371 samples were drawn from all the study areas at 95 % confidence level and 5% confidence interval. After finishing data analysis it was clear that the per capita carbon footprint of the selected study areas exceeds the per capita biocapacity of Dhaka city. And there exists a huge variation between the planned and unplanned areas of Old Dhaka and New Dhaka. Per capita carbon footprint of Gulshan & Jhigatola (part of New Dhaka) is higher than the per capita carbon footprint of Gandaria & Wari (part of Old Dhaka) that means resource stress is higher in Gulshan & Jhigatola in comparison with Gandaria & Wari because of the difference of daily consumption pattern. One of the most important findings of this study is that the per capita carbon footprint is the highest in Gulshan (1.2407 gha) among all the study areas and it is 85.56 times greater than the per capita biocapacity of Dhaka city (0.0145 gha) that means a single resident of this area needs 1.2407 gha land in order to support his/her demand on nature but only 0.0145 gha land (in an average) is available for

  14. Capacitive energy storage in nanostructured carbon-electrolyte systems.

    PubMed

    Simon, P; Gogotsi, Y

    2013-05-21

    Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of renewable energy sources will require a drastically increased ability to store electrical energy. In the move toward an electrical economy, chemical (batteries) and capacitive energy storage (electrochemical capacitors or supercapacitors) devices are expected to play an important role. This Account summarizes research in the field of electrochemical capacitors conducted over the past decade. Overall, the combination of the right electrode materials with a proper electrolyte can successfully increase both the energy stored by the device and its power, but no perfect active material exists and no electrolyte suits every material and every performance goal. However, today, many materials are available, including porous activated, carbide-derived, and templated carbons with high surface areas and porosities that range from subnanometer to just a few nanometers. If the pore size is matched with the electrolyte ion size, those materials can provide high energy density. Exohedral nanoparticles, such as carbon nanotubes and onion-like carbon, can provide high power due to fast ion sorption/desorption on their outer surfaces. Because of its higher charge-discharge rates compared with activated carbons, graphene has attracted increasing attention, but graphene had not yet shown a higher volumetric capacitance than porous carbons. Although aqueous electrolytes, such as sodium sulfate, are the safest and least expensive, they have a limited voltage window. Organic electrolytes, such as solutions of [N(C2H5)4]BF4 in acetonitrile or propylene carbonate, are the most common in commercial devices. Researchers are increasingly interested in nonflammable ionic liquids. These liquids have low vapor pressures, which allow them to be used safely over a temperature range from -50 °C to at least 100 °C and over a larger voltage window

  15. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau, E.; Van Der Merwe, P.; Dehairs, F.

    2014-11-01

    The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2) in austral spring (October-November 2011), we examined upper-ocean Particulate Organic Carbon (POC) export using the 234Th approach. We aimed at characterizing the spatial and the temporal variability of POC export production at high productivity sites over and downstream the Kerguelen plateau. Export production is compared to a High Nutrient Low Chlorophyll area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities relative to its parent nuclide 238U were observed at all stations in surface waters, indicating that scavenging by particles occurred during the early stages of the phytoplankton bloom. 234Th export was lowest at reference station R-2 (412 ± 134 dpm m-2 d-1) and highest inside a~permanent meander of the Polar Front (PF) at stations E (1995 ± 176 dpm m-2 d-1, second visit E-3) where a detailed time series was obtained as part of a~pseudo-lagrangian study. 234Th export over the central plateau was relatively limited at station A3 early (776 ± 171 dpm m-2 d-1, first visit A3-1) and late in the survey (993 ± 223 dpm m-2 d-1, second visit A3-2), but it was higher at high biomass stations TNS-8 (1372 ± 255 dpm m-2 d-1) and E-4W (1068 ± 208 dpm m-2 d-1) in waters which could be considered as derived from plateau. Limited 234Th export of 973 ± 207 dpm m-2 d-1 was also found in the northern branch of the Kerguelen bloom located downstream of the island, north of the PF (station F-L). The 234Th results support that Fe fertilization increased particle export in all iron fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth), but more moderate over the central Kerguelen plateau

  16. Cropping practices, soil properties, pedotransfer functions and organic carbon storage at Kuanria canal command area in India.

    PubMed

    Mandal, Krishna Gopal; Kundu, Dilip Kumar; Singh, Ravender; Kumar, Ashwani; Rout, Rajalaxmi; Padhi, Jyotiprakash; Majhi, Pradipta; Sahoo, Dillip Kumar

    2013-01-01

    Effects of cropping practices on soil properties viz. particle size distribution, pH, bulk density (BD), field capacity (FC, -33 kPa), permanent wilting point (PWP, -1500 kPa), available water capacity (AWC) and soil organic carbon (SOC) were assessed. The pedotransfer functions (PTFs) were developed for saturated hydraulic conductivity (Ks), water retention at FC and PWP of soils for different sites under major cropping system in a canal irrigated area. The results revealed that the soils are mainly composed of sand and clay with the clay contents ranging from 29.6 to 48.8%, BD of 1.44-1.72 Mg m(-3), and 0.34 to 0.95% SOC. The Ks decreased, and water retention at FC, PWP and AWC increased significantly with soil depth due to greater clay contents in lower soil depths. The PTFs were best represented as the power functions for prediction of Ks with clay content as predictor variable; whereas the PTFs for water retention at FC and PWP were better represented as the exponential functions. SOC content was higher under rice-sugarcane crop rotation compared to other systems. SOC storage in the surface layer was higher in rice-sugarcane rotation (18.90-20.53 Mg ha(-1)) than other sites. The developed PTFs would be very useful in soil and water management strategies for the study area or elsewhere having similar soil and cropping practices. The information on SOC storage in the Kuanria region would help for better soil and crop planning in future.

  17. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    NASA Astrophysics Data System (ADS)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  18. Carbon monoxide poisonings from small, gasoline-powered, internal combustion engines: just what is a "well-ventilated area"?

    PubMed

    Earnest, G S; Mickelsen, R L; McCammon, J B; O'Brien, D M

    1997-11-01

    This study modeled the time required for a gasoline-powered, 5 horsepower (hp), 4-cycle engine to generate carbon monoxide (CO) concentrations exceeding the National Institute for Occupational Safety and Health 200-ppm ceiling and 1200-ppm immediately dangerous to life and health concentration for various room sizes and ventilation rates. The model permitted the ambiguous term "well-ventilated area" to be defined. The model was compared with field data collected at a site where two workers were poisoned while operating a 5-hp concrete saw in a bathroom having open doors and an operating ventilation system. There is agreement between both the modeled and field-generated data, indicating that hazardous CO concentrations can develop within minutes. Comparison of field and modeling data showed the measured CO generation rate at approximately one-half of the value used in the model, which may be partially because the engine used in the field was not under load during data collection. The generation rate and room size from the actual poisoning was then used in the model. The model determined that ventilation rates of nearly 5000 ft3/min (120 air changes per hour) would be required to prevent the CO concentration from exceeding the 200-ppm ceiling for short periods. Results suggest that small gasoline-powered engines should not be operated inside of buildings or in semienclosed spaces and that manufacturers of such tools should improve their warnings and develop engineering control options for better user protection.

  19. Network Level Carbon Dioxide Emissions From On-road Sources in the Portland OR, (USA) Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Powell, J.; Butenhoff, C. L.; Rice, A. L.

    2014-12-01

    To mitigate climate change, governments at multiple levels are developing policies to decrease anthropogenic carbon dioxide (CO2) emissions. The City of Portland (Oregon) and Multnomah County have adopted a Climate Action Plan with a stated goal of reducing emissions to 80% below 1990 levels by 2050. The transportation sector alone accounts for about 40% of total emissions in the Portland metropolitan area. Here we show a new street-level model of on-road mobile CO2 emissions for the Portland, OR metropolitan region. The model uses hourly traffic counter recordings made by the Portland Bureau of Transportation at 9,352 sites over 21 years (1986-2006), augmented with freeway loop detector data from the Portland Regional Transportation Archive Listing (PORTAL) transportation data archive. We constructed a land use regression model to fill in traffic network gaps with traffic counts as the dependent variable using GIS data such as road class (32 categories) and population density. The Environmental Protection Agency (EPA) MOtor Vehicle Emission Simulator (MOVES) model was used to estimate transportation CO2 emissions. The street-level emissions can be aggregated and gridded and used as input to atmospheric transport models for comparison with atmospheric measurements. This model also provides an independent assessment of top-down inventories that determine emissions from fuel sales, while being an important component of our ongoing effort to assess the effectiveness of emission mitigation strategies at the urban scale.

  20. Marine carbonate embayment system in an Eolian dune terrain, Permian Upper Minnelusa Formation, Rozet Area, Powder River Basin, Wyoming

    SciTech Connect

    Achauer, C.W.

    1987-05-01

    The eolian origin for Minnelusa sandstones has been stressed in numerous published articles. However, the dolomites that are interbedded with the eolian sandstones have received little attention. Isopach mapping of one of the dolomite units (Dolomite I) reflects a marine embayment system whose individual embayments range from 1/2 to 1 mi in width and trend primarily in a northwest direction. Consistently the embayment dolomites pinch out against the flanks of reworked, low relief, broad, eolian dune ridges. So far, 108 mi/sup 2/ of the Dolomite I marine embayment system have been mapped, but the overall extent of the system is undoubtedly much greater. Dolomite I is rarely cored, but cores from stratigraphically higher embayment dolomites in the upper Minnelusa show that these dolomites display the following, shoaling-upward sequence: (1) subtidal, sparingly fossiliferous dolomite; (2) intertidal, algal-laminated or brecciated or mud-cracked dolomite; and (3) very thin, supratidal, nodular anhydrite. The embayments, therefore, became the sites of marine sabkhas located between eolian dunes. Two main conclusions emerge from this study: (1) the juxtaposition of eolian sandstones and marine dolomites in a tectonically stable area suggests that eustatic sea level changes and a very arid climate were responsible for the marked environmental and lithologic changes observed in the upper Minnelusa, and (2) arid, coastal, evaporitic sabkhas bordered by eolian dunes are known from a number of modern and ancient cases, but marine carbonate embayments and associated evaporitic sabkhas that penetrate deeply into eolian sandstone terrains are rare.

  1. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.

    PubMed

    Meisner, Gregory P; Hu, Qingyuan

    2009-05-20

    High surface area microporous carbon materials were synthesized using new, simple, and innovative approaches based on traditional template and chemical activation methods. The resulting surface area and porosity were characterized using Brunauer-Emmett-Teller (BET)-type measurements and analysis, and the hydrogen storage capacity was determined using excess hydrogen adsorption measurements at 77 K and up to 40 bar hydrogen pressure. For our direct one-step aerosol-assisted template-based synthesis method of mixing the template precursor and carbon precursor solutions, a specific surface area value of up to nearly 2000 m(2) g(-1) and an excess hydrogen storage capacity of 4.2 wt% was observed. For our chemical activation-based synthesis method of homogeneously mixing the chemical activation reagent into the carbon precursor solution, a specific surface area value of nearly 3000 m(2) g(-1) and an excess hydrogen adsorption capacity of nearly 5.8 wt% were observed. The surface area and hydrogen uptake results varied systematically with the synthesis parameters, and we observed a strong correlation between the BET values of the specific surface area and the excess hydrogen adsorption capacity.

  2. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    NASA Astrophysics Data System (ADS)

    Li, Yue; Bai, Xiao Yong; Jie Wang, Shi; Qin, Luo Yi; Chao Tian, Yi; Jie Luo, Guang

    2017-05-01

    Soil loss tolerance (T value) is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a), and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD) is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL) and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  3. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface.

    PubMed

    Mosch, Heike L K S; Akintola, Oluseun; Plass, Winfried; Höppener, Stephanie; Schubert, Ulrich S; Ignaszak, Anna

    2016-05-10

    Carbon/polypyrrole (PPy) composites are promising electrode materials for energy storage applications such as lightweight capacitors. Although these materials are composed of relatively inexpensive components, there is a gap of knowledge regarding the correlation between surface, porosity, ion exchange dynamics, and the interplay of the double layer capacitance and pseudocapacitance. In this work we evaluate the specific surface area analyzed by the BET method and the area accessible for ions using electrochemical quartz-crystal microbalance (EQCM) for SWCNT/PPy and carbon black Vulcan XC72-R/PPy composites. The study revealed that the polymer has significant influence on the pore size of the composites. Although the BET surface is low for the polypyrrole, the electrode mass change and thus the electrochemical area are large for the polymer-containing electrodes. This indicates that multiple redox active centers in the charged polymer chain are good ion scavengers. Also, for the composite electrodes, the effective charge storage occurs at the polypyrrole-carbon junctions, which are easy to design/multiply by a proper carbon-to-polymer weight ratio. The specific BET surface and electrochemically accessible surface area are both important parameters in calculation of the electrode capacitance. SWCNTs/PPy showed the highest capacitances normalized to the BET and electrochemical surface as compared to the polymer-carbon black. TEM imaging revealed very homogeneous distribution of the nanosized polymer particles onto the CNTs, which facilitates the synergistic effect of the double layer capacitance (CNTs) and pseudocapacitance (polymer). The trend in the electrode mass change in correlation with the capacitance suggest additional effects such as a solvent co-insertion into the polymer and the contribution of the charge associated with the redox activity of oxygen-containing functional groups on the carbon surface.

  4. Spatial Variation of Soil Organic Carbon and Total Nitrogen in the Coastal Area of Mid-Eastern China.

    PubMed

    Xu, Yan; Pu, Lijie; Liao, Qilin; Zhu, Ming; Yu, Xue; Mao, Tianying; Xu, Chenxing

    2017-07-14

    Soils play an important role in sequestrating atmospheric CO₂. Coastal tidal flats have been intensively reclaimed for food security and living spaces worldwide. We aimed to identify the changes of soil organic carbon (SOC) and total nitrogen (TN) following coastal reclamation and their spatial variation in the coastal area of mid-Eastern China to provide information for coastal cropland management. We measured SOC and TN of 463 soil samples in the coastal plain of mid-Eastern China. The results showed that SOC and TN increased highly from the uncultivated coastal tidal flat (2.49 g·kg(-1) and 0.21 g·kg(-1), respectively) to the cropland (10.73 g·kg(-1) and 1.3 g·kg(-1), respectively). After long-term cultivation, SOC and TN in the old farmland (12.98 g·kg(-1) and 1.49 g·kg(-1), respectively) were greater than those in the young farmland (5.76 g·kg(-1) and 0.86 g·kg(-1), respectively). The density of SOC in the uncultivated coastal tidal flat, young farmland, and old farmland were 0.68 kg·C·m(-2), 1.52 kg·C·m(-2), and 3.31 kg·C·m(-2), respectively. The density of TN in the uncultivated coastal tidal flat, young farmland and old farmland were 0.05 kg·N·m(-2), 0.23 kg·N·m(-2), and 0.38 kg·N·m(-2), respectively. The C/N (11.17) in the uncultivated coastal tidal flat was highest comparing to that in the young and old farmland due to lower nitrogen. The C/N increased from 6.78 to 8.71 following cultivation. Reclaimed coastal tidal flats had high carbon and nitrogen sequestration potential that not only mitigated the threat of global warming, but also improved soil fertility for crop production. Coastal management of cropland should consider the spatial distribution of SOC and TN to improve ecosystem services of coastal soils.

  5. Particulate Matter 2.5 and Black Carbon concentrations in underground San Francisco Bay Area Rapid Transit stations

    NASA Astrophysics Data System (ADS)

    Gray, A.; Williams, N.; Quartey, R.; Quintana, M.; Bell, B.; Biswas, N.; Hunter, S.; Marks-Block, T.; Yu, X.

    2013-12-01

    A previous Particulate Matter (PM) 2.5 study within Bay Area Rapid Transit (BART) train stations found that concentrations of PM 2.5 at San Francisco's (SF) Embarcadero station were significantly high relative to within the rail system. To follow up on that study, PM 2.5 data was collected within other underground BART stations and the streets surrounding them using the DustTrak Aerosol monitor that measures concentrations every second. In addition, black carbon (BC) data was collected using a microAeth aerosol monitor that also measures concentrations every minute. During each day that measurements were made along three different train routes originating from West Oakland BART station: 1) toward the San Francisco Civic Center station: en route to the Lake Merritt station in Oakland; and toward the Downtown Berkeley station. All of these stations are located underground, and at each one the DustTrak instrument was taken from the train to the ticket level, and on each route data was collected outside of the stations. Black carbon (BC) concentrations were recorded only on the San Francisco route. The highest PM 2.5 concentrations were recorded at SF underground stations, particularly at Embarcadero where concentrations exceeded 100 μg/m3 at train level. These values were much greater than those obtained outside the station, which ranged between 10-20 μg/m3. Other stations along the route to Civic Center had values ranging from 30-64 μg/m3, higher than stations along the route to the Downtown Berkeley station (17-42 μg/m3 ) and the Lake Merritt station (10-38 μg/m3). PM concentrations outside of stations were lower, ranging from 14-33 μg/m3 and 8-27 μg/m3 outside 12th Street Oakland City Center and Lake Merritt stations respectively. Additionally, PM concentration was directly related to depth at all stations. For example, one day at Embarcadero the highest concentrations from train to middle to top level were 119, 84, and 59 μg/m3 respectively. We believe the

  6. Spatial Variation of Soil Organic Carbon and Total Nitrogen in the Coastal Area of Mid-Eastern China

    PubMed Central

    Pu, Lijie; Liao, Qilin; Zhu, Ming; Yu, Xue; Mao, Tianying; Xu, Chenxing

    2017-01-01

    Soils play an important role in sequestrating atmospheric CO2. Coastal tidal flats have been intensively reclaimed for food security and living spaces worldwide. We aimed to identify the changes of soil organic carbon (SOC) and total nitrogen (TN) following coastal reclamation and their spatial variation in the coastal area of mid-Eastern China to provide information for coastal cropland management. We measured SOC and TN of 463 soil samples in the coastal plain of mid-Eastern China. The results showed that SOC and TN increased highly from the uncultivated coastal tidal flat (2.49 g·kg−1 and 0.21 g·kg−1, respectively) to the cropland (10.73 g·kg−1 and 1.3 g·kg−1, respectively). After long-term cultivation, SOC and TN in the old farmland (12.98 g·kg−1 and 1.49 g·kg−1, respectively) were greater than those in the young farmland (5.76 g·kg−1 and 0.86 g·kg−1, respectively). The density of SOC in the uncultivated coastal tidal flat, young farmland, and old farmland were 0.68 kg·C·m−2, 1.52 kg·C·m−2, and 3.31 kg·C·m−2, respectively. The density of TN in the uncultivated coastal tidal flat, young farmland and old farmland were 0.05 kg·N·m−2, 0.23 kg·N·m−2, and 0.38 kg·N·m−2, respectively. The C/N (11.17) in the uncultivated coastal tidal flat was highest comparing to that in the young and old farmland due to lower nitrogen. The C/N increased from 6.78 to 8.71 following cultivation. Reclaimed coastal tidal flats had high carbon and nitrogen sequestration potential that not only mitigated the threat of global warming, but also improved soil fertility for crop production. Coastal management of cropland should consider the spatial distribution of SOC and TN to improve ecosystem services of coastal soils. PMID:28708078

  7. Effects of grazing intensity on soil labile organic carbon fractions in a desert steppe area in Inner Mongolia.

    PubMed

    Cao, Jixin; Wang, Xiaoping; Sun, Xiangyang; Zhang, Lin; Tian, Yun

    2013-01-01

    Grazing can cause changes in soil carbon (C) level. This study aimed to elucidate the response of soil labile organic carbon (SLOC) under four different grazing intensities: non grazing (NG), 0 sheep·ha(-1); light grazing (LG), 0.91 sheep·ha(-1); moderate grazing (MG), 1.82 sheep·ha(-1), and heavy grazing (HG), 2.73 sheep·ha(-1). Results showed that there was no significant difference in total soil organic carbon (TOC) and soil inorganic carbon (SIC) content from three soil depths (0-15 cm, 15-30 cm, and 30-45 cm) under different grazing intensities. However, the SLOC including particulate organic carbon (POC), light fraction organic carbon (LFOC), and readily oxidizable carbon (ROC) content at a depth of 0-15 cm decreased with the increasing grazing intensity among LG, MG and HG. The SLOC content at depths of 15-30 cm under the NG and LG were significantly higher than that under the MG and the HG. The TOC and SLOC content decreased with increasing depths of soil horizons, but SIC content increased. The variation trend of the density of different soil carbon fractions and the ratio of individual SLOC fractions to TOC were similar to that of the soil carbon content of corresponding fractions. These results indicated that MG and HG treatments caused C loss at 0-30 cm; and SLOC was more sensitive than TOC in response to different grazing intensities.

  8. Geostatistical Analyses of the Persistence and Inventory of Carbon Tetrachloride in the 200 West Area of the Hanford Site

    SciTech Connect

    Murray, Christopher J.; Bott, Yi-Ju; Truex, Michael J.

    2007-04-30

    This report documents two separate geostatistical studies performed by researchers from Pacific Northwest National Laboratory to evaluate the carbon tetrachloride plume in the groundwater on the Hanford Site.

  9. Dry and wet atmospheric deposition of organic carbon in coastal and water areas of the northeastern part of the Sea of Azov

    NASA Astrophysics Data System (ADS)

    Sorokina, V. V.; Soier, V. G.

    2016-09-01

    The paper reports on new data focusing on organic carbon contained in aeolian material and precipitation falling on coastal and water areas of the northeastern part of the Sea of Azov. Atmospheric deposition was sampled in 2006-2014. The particulate organic carbon content varied from 4 to 27% in aeolian dust samples. The concentration of the organic carbon dissolved in rainwater was from 1.6 to 4.3 mg C/L, and from 0.9 to 16.6 mg C/L in snow. The particulate organic carbon content varied from 2 to 43% in snow. Intensity of aeolian dust settling decreased from 178 to 33 mg/m2 per day with distance from a source of dust; in contrast, the relative content of organic matter increased. In a spring-summer season the aeolian organic carbon fluxes varied from 12 to 18 mg C/m2 per day in Rostov-on-Don, from 28 to 48 mg C/m2 per day on the Gulf of Taganrog coast, and from 20 to 80 mg C/m2 per day in the water area of the Gulf of Taganrog.

  10. The contribution of vehicular emission to the atmospheric concentrations of carbon compounds in the Metropolitan Area of Sao Paulo

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Fornaro, A.; Miranda, R.; Ynoue, R. Y.; Freitas, E. D.; LAPAt-Laboratorio de Analise dos Processos Atmosfericos

    2013-05-01

    It is recognized that megacities have regional and global effects on climate, and that aerosols and Green House Gases (GHG) constitute the principal tracer of those effects. Such is the case in the Metropolitan Area of Sao Paulo (MASP), one of the largest mega-cities in the world. MASP has a population of almost 20 million inhabitants. The main source of air pollution is the transport sector. In this region, there are approximately 6.5 million passenger cars and commercial vehicles: 85% light duty, 3% heavy-duty diesel vehicles (diesel + 3% bio-diesel) and 12% motorcycles. Of the light duty vehicle, approximately 55% burn a mixture (v/v) of 78% gasoline with 22% ethanol (referred to as gasohol), 4% use hydrated ethanol (95% ethanol + 5% water), 38% flexible fuel vehicles capable of burning both gasohol as hydrated ethanol, and 2% use diesel. In average 50% of the fuel used in MASP is ethanol what brings the necessity of more studies to understand the formation of photochemical oxidants and secondary particles. According to the São Paulo State Environmental Protection Agency, 97% of carbon monoxide (CO), 85% of hydrocarbons (HC), 82% of nitrogen oxides (NOx), 36% of sulfur dioxide emitted, and 36% of all inhalable particulate matter (PM10) are emitted by the vehicular fleet. Concerning particles, 75% of the Fine Particle Concentration is related to the burning of fuel, mainly diesel. The fine particles are composed of Organic Carbon (40%), Black Carbon (30%), ions (15%) and metals. It is known that the soot is warming the climate and is important to the radiative balance. Another important driver to the radiative balance, the CO2 is mainly emitted by the transport sector, which is responsible for 57% of its emission. A comprehensive project under development has the objective of determine the role of MASP as the source of gaseous and particle compounds to the atmosphere of the region and in a mesoscale perspective. The project with funding from the São Paulo

  11. Comparison of wheat and safflower cultivation areas in terms of total carbon and some soil properties under semi-arid climate conditions

    NASA Astrophysics Data System (ADS)

    Turgut, B.

    2015-03-01

    The aim of this study was to compare the soils of the wheat cultivation area (WCA) and the safflower cultivation area (SCA) within semi-arid climate zones in terms of their total carbon, nitrogen, sulphur contents, particle size distribution, aggregate stability, organic matter content, and pH values. This study presents the results from the analyses of 140 soil samples taken at two soil layers (0-10 and 10-20 cm) in the cultivation areas. At the end of the study, it has been established that there were significant differences between the cultivation areas in terms of soil physical properties such as total carbon (TC), total nitrogen (TN), total sulphur (TS) contents and pH, while only the TN content resulted in significantly different between the two soil layers. Moreover significant differences were identified in the cultivation areas in terms of soil physical properties including clay and sand contents, aggregate stability and organic matter content, whereas the only significant difference found among the soil layers was that of their silt content. Since safflower contains higher amounts of biomass than wheat, we found higher amounts of organic matter content and, therefore, higher amounts of TN and TS content in the soils of the SCA. In addition, due to the fact that wheat contains more cellulose - which takes longer to decompose - the TC content of the soil in the WCA were found to be higher than that of the SCA. The results also revealed that the WCA had a higher carbon storage capacity.

  12. Comparison of wheat and safflower cultivation areas in terms of total carbon and some soil properties under semi-arid climate conditions

    NASA Astrophysics Data System (ADS)

    Turgut, B.

    2015-06-01

    The aim of this study was to compare the soils of the wheat cultivation area (WCA) and the safflower cultivation area (SCA) within semi-arid climate zones in terms of their total carbon, nitrogen, and sulphur contents, particle size distribution, aggregate stability, organic matter content, and pH values. This study presents the results from the analyses of 140 soil samples taken at two soil layers (0-10 and 10-20 cm) in the cultivation areas. At the end of the study, it was established that there were significant differences between the cultivation areas in terms of soil physical properties such as total carbon (TC), total nitrogen (TN), total sulphur (TS) contents and pH, while only the TN content was significantly different between the two soil layers. Moreover, significant differences were identified between the cultivation areas in terms of soil physical properties including clay and sand contents, aggregate stability, and organic matter content, whereas the only significant difference found among the soil layers was that of their silt content. Since safflower contains higher amounts of biomass than wheat, we found higher amounts of organic matter content and, therefore, higher amounts of TN and TS content in the soils of the SCA. In addition, due to the fact that wheat contains more cellulose - which takes longer to decompose - the TC content of the soil in the WCA was found to be higher than that in the SCA. The results also revealed that the WCA had a higher carbon storage capacity.

  13. The Development and Application of a Harmonized Burned Area Data Set for North America to Assess the Effects of Fire Disturbance on the Continental Carbon Budget

    NASA Astrophysics Data System (ADS)

    Chen, G.; Hayes, D. J.

    2014-12-01

    Fires burn an annual average of about 40,000 km2 in Canada and the U.S., making it an important feature of North American ecosystems through renewing ecosystem conditions and vegetation dynamics. Fire disturbances substantially modify ecosystem carbon dynamics both temporally and spatially. Ecosystems generally lose carbon for several years to decades following fire disturbance, but our understanding of the duration and dynamics of post-disturbance carbon fluxes remains limited. Owing to the prevailing collection of inventory data for fire burn area, intensity, distribution, and associated carbon-related parameters in North America, we are able to more accurately estimate carbon dynamics following fire disturbances. In our study, we integrated four major fire datasets (i.e., U.S. Monitoring Trends in Burn Severity dataset, Bureau of Land Management Alaska Fire Service dataset, and Canadian National Fire Database, and GFEDv3.1 fire dataset) and other auxiliary data to generate a comprehensive and continuous burned area history dataset, which covers the 1920 to 2012 time period and is gridded at quarter-degree resolution for the North American continent. Driven by this new dataset, we used the Terrestrial Ecosystem Model (TEM6.0) to simulate the impacts of fire disturbance on carbon dynamics across North American ecosystems. The results indicate that large amount of carbon was emitted due to fire disturbances during the study period, especially for the boreal ecosystems with slow recovery. The modeling results were also evaluated with the field measurements along a fire chronosequence and compared to estimates from other approaches.

  14. Carbon Storage Patterns of Caragana korshinskii in Areas of Reduced Environmental Moisture on the Loess Plateau, China

    PubMed Central

    Gong, Chunmei; Bai, Juan; Wang, Junhui; Zhou, Yulu; Kang, Tai; Wang, Jiajia; Hu, Congxia; Guo, Hongbo; Chen, Peilei; Xie, Pei; Li, Yuanfeng

    2016-01-01

    Precipitation patterns are influenced by climate change and profoundly alter the carbon sequestration potential of ecosystems. Carbon uptake by shrubbery alone accounts for approximately one-third of the total carbon sink; however, whether such uptake is altered by reduced precipitation is unclear. In this study, five experimental sites characterised by gradual reductions in precipitation from south to north across the Loess Plateau were used to evaluate the Caragana korshinskii’s functional and physiological features, particularly its carbon fixation capacity, as well as the relationships among these features. We found the improved net CO2 assimilation rates and inhibited transpiration at the north leaf were caused by lower canopy stomatal conductance, which enhanced the instantaneous water use efficiency and promoted plant biomass as well as carbon accumulation. Regional-scale precipitation reductions over a certain range triggered a distinct increase in the shrub’s organic carbon storage with an inevitable decrease in the soil’s organic carbon storage. Our results confirm C. korshinskii is the optimal dominant species for the reconstruction of fragile dryland ecosystems. The patterns of organic carbon storage associated with this shrub occurred mostly in the soil at wetter sites, and in the branches and leaves at drier sites across the arid and semi-arid region. PMID:27412432

  15. Carbon Storage Patterns of Caragana korshinskii in Areas of Reduced Environmental Moisture on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Gong, Chunmei; Bai, Juan; Wang, Junhui; Zhou, Yulu; Kang, Tai; Wang, Jiajia; Hu, Congxia; Guo, Hongbo; Chen, Peilei; Xie, Pei; Li, Yuanfeng

    2016-07-01

    Precipitation patterns are influenced by climate change and profoundly alter the carbon sequestration potential of ecosystems. Carbon uptake by shrubbery alone accounts for approximately one-third of the total carbon sink; however, whether such uptake is altered by reduced precipitation is unclear. In this study, five experimental sites characterised by gradual reductions in precipitation from south to north across the Loess Plateau were used to evaluate the Caragana korshinskii’s functional and physiological features, particularly its carbon fixation capacity, as well as the relationships among these features. We found the improved net CO2 assimilation rates and inhibited transpiration at the north leaf were caused by lower canopy stomatal conductance, which enhanced the instantaneous water use efficiency and promoted plant biomass as well as carbon accumulation. Regional-scale precipitation reductions over a certain range triggered a distinct increase in the shrub’s organic carbon storage with an inevitable decrease in the soil’s organic carbon storage. Our results confirm C. korshinskii is the optimal dominant species for the reconstruction of fragile dryland ecosystems. The patterns of organic carbon storage associated with this shrub occurred mostly in the soil at wetter sites, and in the branches and leaves at drier sites across the arid and semi-arid region.

  16. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    USGS Publications Warehouse

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  17. Impact of different fertilizers on carbonate weathering in a typical karst area, Southwest China: a field column experiment

    NASA Astrophysics Data System (ADS)

    Song, Chao; Liu, Changli; Han, Guilin; Liu, Congqiang

    2017-09-01

    Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, is strongly influenced by agricultural fertilization, since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH. Different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as yet not well-known. In this study, a field column experiment was conducted to explore the response of carbonate weathering to the addition of different fertilizers. We compared 11 different treatments, including a control treatment, using three replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of soil-filled columns. The results show that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased carbonate weathering, which was attributed to the nitrification of NH4+. The addition of Ca3(PO4)2, Ca-Mg-P and K2CO3 induced carbonate precipitation due to the common ion effect. The addition of (NH4)3PO4 and NaNO3 had a relatively small impact on carbonate weathering in comparison to those five NH4-based fertilizers above. The results of NaNO3 treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in an overestimation of the impact of N fertilizer on CO2 consumption by carbonate weathering on the regional/global scale if the effects of NO3 and NH4 are not distinguished.

  18. The modern reef complex, Jeddah area, Red Sea: a facies model for carbonate sedimentation on embryonic passive margins

    NASA Astrophysics Data System (ADS)

    Montaggioni, L. F.; Behairy, A. K. A.; El-Sayed, M. K.; Yusuf, N.

    1986-12-01

    The modern reef complex north of Jeddah comprises an offshore knoll platform and a fringing reef, subdivised into several depositional zones: tops and upper flanks of offshore reefs; lower flanks of offshore reefs and nearby inter-reef areas; fringing forereef, reef flat and backreef zones, and beach. Sixty-seven sediment samples were collected from the different zones and have been analysed in order to define relationships between the distribution of sedimentary facies and the depositional environments, and to furnish a reliable facies model by using multivariate analysis. Six types and subtypes have been objectively differentiated on the basis of total biogenic component and foraminiferal associations. Grain size data allowed us to discriminate three textural types, whereas five chemotypes have been recognized according to trace element concentration. Regarding the offshore reef platform, poorly sorted, medium sands of molluscan-coralline algal- Amphistegina and Cd types are restricted to the lower flanks of buildups and to the adjacent inter-reef deposits, whereas the tops and upper flanks of theses buildups are characterized by moderately sorted, coarse sands of coralline algal- Tubipora-Amphistegina-encrusting foraminiferal-bryozoan types, with a Mn chemotype. Concerning the fringing reef system, backreef areas exhibit poorly sorted, fine sands of molluscan- Ammonia-Peneroplis and Fe-Cu types. Moderately sorted, coarse sands of coralgal- Calcarina-Spiroloculina and Fe-Zn types are found on the reef flat. The forereef zone is characterized by poorly sorted, fine sand of Triloculina-encrusting foraminiferal-bryozoan and Zn-Mn types. The lateral limits of the various biotypes roughly coincide with the distribution of the relevant living organic communities. Trace elements appear to be either bound to the reef-associated silicate fractions or incorporated into the carbonate skeletons. On the basis of prevailing water conditions, physiography, biological and

  19. Linking Carbon Fluxes with Remotely-Sensed Vegetation Indices for Leaf Area and Aboveground Biomass Through Footprint Climatology

    NASA Astrophysics Data System (ADS)

    Wayson, C.; Clark, K.; Hollinger, D. Y.; Skowronski, N.; Schmid, H. E.

    2010-12-01

    A major challenge of bottom-up scaling is that in-situ flux observations are spatially limited. Thus, to achieve valid regional exchange rates, models are used to interpolate and extrapolate to the vegetational/spatial domain covered by these observations. To parameterize these models from flux data, efforts must be made to select data that best represents the region being modeled as well as linking the fluxes to remotely-sensed data products that can be produced from site to regional scales. Because most long-term flux stations are not in spatially extensive, homogeneous locations, this requirement is often a challenge. However, this requirement can be met by selecting observation periods whose flux footprints are statistically representative of the type of ecosystem identified in the model. The flux footprint function indicates the time-varying surface “field-of-view” (or spatial sampling window) of an eddy-flux sensor, oriented mostly in upwind direction. For each observation period, the modeled flux footprint window is overlain with a high-resolution vegetation index map to determine a footprint-weighted vegetation index for which the observation is representative. Using flux-footprint analysis to link fluxes to models using just an enhanced vegetation index (EVI) map shows a positive trend between EVI and eddy covariance measured fluxes, but the link is not strong. Leaf area is linked with carbon (C) uptake, but forests tend to maximize leaf area, as determined through remote sensing, early on with forests having similar leaf areas across a wide range of ages. Adding another remotely-sensed dataset, aboveground biomass map (AGB), helps capture the processes of lower productivity rates (as biomass increases per unit of leaf area there is a decline, due to the forest ageing) and the C losses due to respiration, both heterotrophic and autotrophic (linked to live and detrital biomass pools). Adding biomass from LIDAR and a combined EVI-biomass layer to examine

  20. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  1. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; ...

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces andmore » enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.« less

  2. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; Kolesnikov, Alexander I.; Cheng, Yongqiang; Meyer, III, Harry M.; Cummings, Peter T.; Gogotsi, Yury G.

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.

  3. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  4. Mass-transport-controlled, large-area, uniform deposition of carbon nanofibers and their application in gas diffusion layers of fuel cells.

    PubMed

    Tang, Xian; Xie, Zhiyong; Huang, Qizhong; Chen, Guofen; Hou, Ming; Yi, Baolian

    2015-05-07

    The effect of mass transport on the growth characteristics of large-area vapor-grown carbon nanofibers (CNFs) was investigated by adjusting the substrate deposition angle (α). The catalyst precursor solution was coated onto one side of a 2D porous carbon paper substrate via a decal printing method. The results showed that the CNFs were grown on only one side of the substrate and α was found to significantly affect the growth uniformity. At α = 0°, the growth thickness, the density, the microstructure and the yield of the CNF film were uniform across the substrate surface, whereas the growth uniformity decreased with increasing α, suggesting that the large-area CNF deposition processes were mass-transport-controlled. Computational fluid dynamics simulations of the gas diffusion processes revealed the homogeneous distributions of the carbon-source-gas concentration, pressure, and velocity near the substrate surface at α = 0°, which were the important factors in achieving the mass-transport-limited uniform CNF growth. The homogeneity of the field distributions decreased with increasing α, in accordance with the variation in the growth uniformity with α. When used as a micro-porous layer, the uniform CNF film enabled higher proton exchange membrane fuel cell performance in comparison with commercial carbon black by virtue of its improved electronic and mass-transport properties confirmed by the electrochemical impedance spectroscopy results.

  5. Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gopiraman, Mayakrishnan; Deng, Dian; Kim, Byoung-Suhk; Chung, Ill-Min; Kim, Ick Soo

    2017-07-01

    Highly porous carbon nanoarchitectures (HPCNs) were derived from biomass materials, namely, corn fibers (CF), corn leafs (CL), and corn cobs (CC). We surprisingly found that by a very simple activation process the CF, CL, and CC materials can be transformed into exciting two-dimensional (2D) and three-dimensional (3D) carbon nanoarchitectures with excellent physicochemical properties. FESEM and HRTEM results confirmed a three different carbon forms (such as foams-like carbon, carbon sheets with several holes and cheese-like carbon morphology) of HPCNs. Huge surface area (2394-3475 m2/g) with excellent pore properties of HPCNs was determined by BET analysis. Well condensed graphitic plans of HPCNs were confirmed by XRD, XPS and Raman analyses. As an electrode material, HPCNs demonstrated a maximum specific capacitance (Cs) of 575 F/g in 1.0 M H2SO4 with good stability over 20,000 cycles. The CC-700 °C showed a tremendous Cs of 375 F/g even at 20000th cycles. To the best of our knowledge, this is the highest Cs by the biomass derived activated carbons in aqueous electrolytes. The CC-700 °C exhibited excellent charge-discharge behavior at various current densities (0.5-10 A g-1). Notably, CC-700 °C demonstrated an excellent Cs of 207 F/g at current density of 10 A g-1. An extraordinary change-discharge behavior was noticed at low current density of 0.5 A g-1.

  6. The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination.

    PubMed

    Xu, Meng; Wang, Guoan; Li, Xiaoliang; Cai, Xiaobu; Li, Xiaolin; Christie, Peter; Zhang, Junling

    2015-01-01

    Many environmental factors affect carbon isotope discrimination in plants, yet the predominant factor influencing this process is generally assumed to be the key growth-limiting factor. However, to our knowledge this hypothesis has not been confirmed. We therefore determined the carbon isotope composition (δ(13)C) of plants growing in two cold and humid mountain regions where temperature is considered to be the key growth-limiting factor. Mean annual temperature (MAT) showed a significant impact on variation in carbon isotope discrimination value (Δ) irrespective of study area or plant functional type with either partial correlation or regression analysis, but the correlation between Δ and soil water content (SWC) was usually not significant. In multiple stepwise regression analysis, MAT was either the first or the only variable selected into the prediction model of Δ against MAT and SWC, indicating that the effect of temperature on carbon isotope discrimination was predominant. The results therefore provide evidence that the key growth-limiting factor is also crucial for plant carbon isotope discrimination. Changes in leaf morphology, water viscosity and carboxylation efficiency with temperature may be responsible for the observed positive correlation between Δ and temperature.

  7. Seasonal variation of ozone and black carbon observed at Paknajol, an urban area in the Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Putero, Davide; Cristofanelli, Paolo; Marinoni, Angela; Adhikary, Bhupesh; Duchi, Rocco; Das Shrestha, Sunil; Pietro Verza, Gian; Landi, Tony Christian; Calzolari, Francescopiero; Busetto, Maurizio; Agrillo, Giacomo; Biancofiore, Fabio; Di Carlo, Piero; Panday, Arnico; Rupakheti, Maheswar; Bonasoni, Paolo

    2016-04-01

    The Kathmandu Valley in the Himalayan foothills, considered as one of the global "hot spots" for what concerns air pollution, is currently facing severe air quality problems due to rapid urbanization processes, dramatic land use changes, socioeconomic transformation and high population growth. In this work, we present the first full year (February 2013 - February 2014) analysis of simultaneous measurements of two short-lived climate forcers/pollutants (SLCF/P), i.e. ozone (O3) and equivalent black carbon (BC), and aerosol number concentration at Paknajol (27°43'4'' N, 85°18'32'' E, 1380 m a.s.l.), in the city center of Kathmandu. These observations were carried out in the framework of the SusKat-ABC (A Sustainable Atmosphere for the Kathmandu Valley - Atmospheric Brown Cloud) campaign in Nepal. The diurnal behavior of BC and aerosol number concentration indicated that local pollution sources represent the major contribution to air pollution in this city. In addition to photochemistry, the planetary boundary layer (PBL) dynamic plays an important role in determining O3 variability, as suggested by the analysis of seasonal changes of the diurnal cycles and the correlation with meteorological parameters and aerosol properties. Especially during pre-monsoon, high values of O3 were observed during the afternoon/evening. This could be related to mixing and entrainment processes between upper residual layers and the PBL. During this season, the high O3 appeared well related to the impact of major open vegetation fires occurring in Nepal. On a synoptic-scale perspective, westerly and regional atmospheric circulations appeared to be especially conducive for the occurrence of the high BC and O3 values. The very high values of the SLCF/P, detected during the whole measurement period, indicated persisting adverse air quality conditions, dangerous for the health of over 3 million residents of the Kathmandu Valley, and the environment. Consequently, all of this information may

  8. U-isotopes and (226)Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas.

    PubMed

    Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro

    2016-07-01

    Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ((238)U, (235)U and (234)U) and (226)Ra by alpha spectrometry were determined. The activity concentration of (238)U presented a large variation from around 1.1 to 65 mBq L(-1). Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The (234)U/(238)U activity ratios were higher than unity for all samples (1.1-3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. (226)Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10(2) mBq L(-1)); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed (226)Ra/(234)U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). (226)Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest (234)U/(238)U activity ratios, probably due to fast uniform bulk mineral dissolution

  9. Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate

    PubMed Central

    Xue, Wei; Sun, Lijun; Yang, Fang; Wang, Zhimiao; Li, Fang

    2016-01-01

    A carbon solid acid with large surface area (CSALA) was prepared by partial carbonization of H3PO4 pre-treated peanut shells followed by sulfonation with concentrated H2SO4. The structure and acidity of CSALA were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), 13C cross polarization (CP)/magic angle spinning (MAS) nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared spectroscopy (FT-IR), titration, and elemental analysis. The results demonstrated that the CSALA was an amorphous carbon material with a surface area of 387.4 m2/g. SO3H groups formed on the surface with a density of 0.46 mmol/g, with 1.11 mmol/g of COOH and 0.39 mmol/g of phenolic OH. Densities of the latter two groups were notably greater than those observed on a carbon solid acid (CSA) with a surface area of 10.1 m2/g. The CSALA catalyst showed better performance than the CSA for the hydrolysis of cyclohexyl acetate to cyclohexanol. Under optimal reaction conditions, cyclohexyl acetate conversion was 86.6% with 97.3% selectivity for cyclohexanol, while the results were 25.0% and 99.4%, respectively, catalyzed by CSA. The high activity of the CSALA could be attributed to its high density of COOH and large surface area. Moreover, the CSALA showed good reusability. Its catalytic activity decreased slightly during the first two cycles due to the leaching of polycyclic aromatic hydrocarbon-containing SO3H groups, and then remained constant during following uses. PMID:28773954

  10. Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate.

    PubMed

    Xue, Wei; Sun, Lijun; Yang, Fang; Wang, Zhimiao; Li, Fang

    2016-10-15

    A carbon solid acid with large surface area (CSALA) was prepared by partial carbonization of H₃PO₄ pre-treated peanut shells followed by sulfonation with concentrated H₂SO₄. The structure and acidity of CSALA were characterized by N₂ adsorption-desorption, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), (13)C cross polarization (CP)/magic angle spinning (MAS) nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared spectroscopy (FT-IR), titration, and elemental analysis. The results demonstrated that the CSALA was an amorphous carbon material with a surface area of 387.4 m²/g. SO₃H groups formed on the surface with a density of 0.46 mmol/g, with 1.11 mmol/g of COOH and 0.39 mmol/g of phenolic OH. Densities of the latter two groups were notably greater than those observed on a carbon solid acid (CSA) with a surface area of 10.1 m²/g. The CSALA catalyst showed better performance than the CSA for the hydrolysis of cyclohexyl acetate to cyclohexanol. Under optimal reaction conditions, cyclohexyl acetate conversion was 86.6% with 97.3% selectivity for cyclohexanol, while the results were 25.0% and 99.4%, respectively, catalyzed by CSA. The high activity of the CSALA could be attributed to its high density of COOH and large surface area. Moreover, the CSALA showed good reusability. Its catalytic activity decreased slightly during the first two cycles due to the leaching of polycyclic aromatic hydrocarbon-containing SO₃H groups, and then remained constant during following uses.

  11. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  12. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  13. Carbon and nitrogen dynamics in a soil profile: Model insights and application to a restored Swiss riparian area

    NASA Astrophysics Data System (ADS)

    Brovelli, Alessandro; Batlle-Aguilar, Jordi; Luster, Jörg; Shrestha, Juna; Huber, Benjamin; Niklaus, Pascal; Barry, D. Andrew

    2010-05-01

    The key environmental importance of natural, healthy ecosystems has been progressively recognized and restoration of degraded lands towards their former natural state has become an area of active research worldwide. During restoration, environmental conditions (such as vegetation type and water availability) are manipulated to create ecological conditions suitable for the successful establishment of a target composition of species. Often, ecological restoration induces changes to adjacent ecosystems. This is the case of riparian ecosystems, and their restoration to their original undisturbed situation is likely to cause changes in nutrient cycles. For example, following the restoration of a riparian zone, microbial communities adapted to one set of environmental conditions have to acclimatize to another, and the subsequent changes in the composition of the biomass populations might induce changes in soil organic matter mineralization and soil respiration rates. Since the biogeochemical cycles are tightly interconnected, these changes can trigger nutrient storing or release, therefore inducing changes in nutrient cycles of adjacent ecosystems. Overall, the effects of the restoration activities on the hydrologic regime, soil properties and vegetation are still largely unknown and poorly understood. Within the RECORD project (http://www.cces.ethz.ch/projects/nature/Record), a large collaborative research effort undertaken to monitor and understand the changes in ecosystem functioning in riparian areas undergoing restoration, a numerical model has been developed to simulate the vertical transport of the mobile C and N components in a soil profile (model development discussed in the companion submitted abstract Batlle-Aguilar et al.). In the model, microbial decomposition of the soil organic matter drives biogeochemical transformations of C and N, while the activity of the soil biota is primarily controlled by the soil moisture content. The temporal evolution of the

  14. Changes in depositional environments from Ordovician to tertiary of carbonate rocks in Tak-Mae Sod area, Northwest Thailand

    NASA Astrophysics Data System (ADS)

    Ratanasthien, Benjavun

    Carbonate rocks ranging in age from Ordovician to Tertiary along the Tak-Mae Sod and Mae Sod-Umphang highways were analysed mineralogically, petrographically, and geochemically. The study revealed the depositional environment of the mainly chemical precipitated Ordovician carbonate rocks to be in shallow (lagoonal?) waters of a warm climate. The Carboniferous carbonates were chemically deposited in moderately deep to deep water as indicated by siliceous limestone composed mainly of calcite and radiolarian chert and/or interbedded chert bands. The environment changed to shallower water during the Permo-Carboniferous as seen in the Pra Woh Limestone. The carbonates are characterized by pale colour dolomite, dolomitic limestone and calcareous sandstone. They are sometimes, fossiliferous, mainly bryozoa, foraminifera, corals, gastropods and bivalves. During Triassic to Jurassic, the carbonates were deposited in comparatively shallow and/or closed basins as indicated by alternating sequences of dark to black limestone, calcareous shale and calcareous sandstone. The rocks are composed of high carbonaceous material and clays with few fossils associated. The environment changed to brackish and eventually to fresh water during the Tertiary indicated by fossiliferous limestone (pelycypods and gastropods) and dolomitic limestone which are chemically precipitated in fresh water.

  15. Vascular response to carbon dioxide in areas with and without diaschisis in patients with small, deep hemispheric infarction

    SciTech Connect

    Takano, T.; Nagatsuka, K.; Ohnishi, Y.; Takamitsu, Y.; Matsuo, H.; Matsumoto, M.; Kimura, K.; Kamada, T.

    1988-07-01

    The reactivity of cerebral blood vessels to changes in PaCO/sub 2/ in areas of the cerebral cortex with or without diaschisis was investigated in 13 patients in a subacute or chronic stage after a small capsular infarct. A focal area of hypoperfusion (area of diaschisis) was detected in the ipsilateral sensorimotor cortex in each patient. Hyperventilation caused a significant reduction of regional cerebral blood flow in the area without diaschisis and only a tendency for regional cerebral blood flow to decrease in the area with diaschisis; CO/sub 2/ inhalation induced a slight increase in regional cerebral blood flow in the area without diaschisis and a significant increase in regional cerebral blood flow in the area with diaschisis. Regional cerebral blood flow reactivity to hypocapnia was significantly less in the area with diaschisis than in the area without, whereas the hypercapnic response was more marked in the area with diaschisis than in the area without. Our results suggest that in the area with diaschisis, the arterioles may be abnormally vasoconstricted at rest such that they cannot constrict further in response to hypocapnia but can dilate more during hypercapnia than in the area without diaschisis. This excessive resting vasoconstriction may result from decreased tissue elaboration of CO/sub 2/ due to local decrease of metabolic function.

  16. Soil organic carbon and total nitrogen as affected by land use types in karst and non-karst areas of northwest Guangxi, China.

    PubMed

    Chen, Hongsong; Zhang, Wei; Wang, Kelin; Hou, Ya

    2012-03-30

    Human migration from the karst area to the non-karst area is an important approach for the restoration of degraded karst ecosystems. However, the effects of human-induced land-use change on soil properties are still unclear. The objective of this study was to investigate the effects of land use and parent material on soil organic carbon (SOC) and total nitrogen (TN) at a depth of 0-15 cm in karst and non-karst areas in southwest China. In the karst area, SOC and TN under different land uses decreased significantly in the order of secondary forestland > scrubland and abandoned farmland > farmland, commercial forestland and forage grassland. In the non-karst area, SOC and TN were the highest in scrubland and grassland, and were significantly higher than those in farmland and commercial forestland. Because of differences in parent material, SOC and TN were significantly higher in the karst area than those in the non-karst area. Abandoned farmland had the potential to increase SOC and TN significantly but land reclamation and cultivation had the opposite effect. SOC and TN were higher but cultivation-induced losses occurred more rapidly in calcareous soils than in red soils, indicating that more attention is needed for soil productivity and land use management in the karst area. Copyright © 2011 Society of Chemical Industry.

  17. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Treesearch

    E. Berryman; Michael Ryan; J. B. Bradford; T. J. Hawbaker; R. Birdsey

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with...

  18. Soil Organic Carbon Sequestration Simulated by EPIC in Cotton Rotations from Three Major Land Resource Areas in the Southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Sequestration of soil organic carbon (SOC) in the southeastern USA is perceived as occurring at a relatively low rate, because of the inherent low SOC content of most agricultural soils. However, recent field estimates of SOC sequestration in conservation management systems suggest that the sequest...

  19. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Shirokova, L. S.; Krivtzov, I. A.; Pokrovsky, B. G.; Kolesnichenko, L. G.; Kopysov, S. G.; Zemtzov, V. A.; Kulizhsky, S. P.; Vorobiev, S. N.; Kirpotin, S. N.

    2015-07-01

    Analysis of dissolved organic and inorganic carbon (DOC and DIC, respectively), pH, Na, K, Ca, Mg, Cl, SO4 and Si in ~ 100 large and small rivers (< 100 to ≤ 150 000 km2) of western Siberia sampled in winter, spring, summer and autumn over a more than 1500 km latitudinal gradient allowed for establishing the main environmental factors controlling the transport of dissolved river components in this environmentally important region, comprising continuous, discontinuous, sporadic and permafrost-free zones. There was significant latitudinal trend consisting in general decrease of DOC, DIC, SO4, and major cation (Ca, Mg, Na, K) concentrations northward, reflecting the interplay between groundwater feeding (detectable mostly in the permafrost-free zone, south of 60° N) and surface flux (in the permafrost-bearing zone). The trend of inorganic components was mostly pronounced in winter and less visible in spring, whereas for DOC, the trend of concentration decrease with latitude was absent in winter, and less pronounced in the spring flood than in the summer baseflow. The latitudinal trends persisted over all river watershed sizes, from < 100 to > 10 000 km2. This suggested that in addition to groundwater feeding of the river, there was a significant role of surface and shallow subsurface flow linked to plant litter degradation and peat leaching. Environmental factors are ranked by their increasing effect on DOC, DIC, δ13CDIC, and major elements in western Siberian rivers as the following: watershed area < season < latitude. Seasonal fluxes of dissolved components did not significantly depend on the river size and as such could be calculated as a~function of watershed latitude. Unexpectedly, the DOC flux remained stable around 3 t km-2 yr-1 until 61° N, decreased two-fold in the discontinuous permafrost zone (62-66° N), and increased again to 3 t km-2 yr-1 in the continuous permafrost zone (67° N). The DIC, Mg, K and Ca followed this pattern. The total dissolved

  20. Lateral and vertical distribution of soil organic carbon in recently deglaciated areas of Elephant Point (Livingstone island, Maritime Antarctica)

    NASA Astrophysics Data System (ADS)

    Navas, Ana; Oliva, Marc; Ruiz-Fernández, Jesús; Quijano, Laura; Gaspar, Leticia; Lizaga, Iván

    2017-04-01

    In Maritime Antarctica important environmental changes are affecting ice-free environments of the South Shetland Islands and the northern Antarctica Peninsula. In the Elephant Point Peninsula (Livingstone Island) a rapid glacier retreat during the last decades has exposed already around 20% of its 1.16 km2 surface. Despite soil development is taken place in these new created lands little is known on the characteristics and properties of soils on different parent materials and landforms. One of the main soil properties is the organic carbon but the SOC pool dynamics in Antarctica environments is still poorly understood. This work aims to gain knowledge on the lateral and vertical variations of soil organic carbon (SOC) and organic carbon fractions in surface profiles that have been exposed succe