Dumitru Salajanu; Dennis M. Jacobs
2006-01-01
Authorsâ objective was to determine at what level biomass and forest area obtained from partial and complete forested plot inventory data compares with forested area and biomass estimates from the national inventory data. A subset of 3819 inventory plots (100% forested, 100% non-forested, mixed-forest/non-forest) was used to classify the land cover and model the...
Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping
NASA Astrophysics Data System (ADS)
Akay, A. E.; Erdoğan, A.
2017-11-01
The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.
Environmental impacts of forest road construction on mountainous terrain.
Caliskan, Erhan
2013-03-15
Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.
Edge fires drive the shape and stability of tropical forests.
Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M
2018-06-01
In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Dumitru Salajanu; Dennis M. Jacobs
2005-01-01
Our objective was to determine at what level biomass and forest area obtained from 2, 3, 4, or 5 panels of forest inventory data compares well with forested area and biomass estimates from the national inventory data. A subset of 2605 inventory plots (100% forested, 100% non-forested) was used to classify the land cover and model the biomass in South Carolina. Mixed...
Tunay, Metin
2006-07-01
Forest road construction by bulldozers in Calabrian Pine (Pinus brutia Ten.) forests on mountainous terrain of Turkey causes considerable damage to the environment and the forest standing alongside the road. This situation obliges a study of environmentally sound road construction in Turkey. This study was carried out in 4 sample sites of Antalya Forest Directorate in steep (34-50% gradient) and very steep terrain (51-70% gradient) conditions with bulldozer and excavator machine and direct damages to forest during road construction was determined, including forest area losses and damages to downhill trees in mountainous areas. It was determined that in steep terrain when excavators were used, less forest area (22.16%) was destroyed compared to bulldozers and 26.54% less area in very steep terrain. The proportion of damage on trees where bulldozer worked was nearly twofold higher than excavator was used. The results of this research show that the environmentally sensitive techniques applied for the road construction projects are considerably superior to the traditional use of bulldozers on steep slopes. The environmentally sound forest road construction by use of excavator must be considered an appropriate and reliable solution for mountainous terrain where areas of sensitive forest ecosystems are to be opened up.
Environmental impacts of forest road construction on mountainous terrain
2013-01-01
Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas. As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities. PMID:23497078
NASA Astrophysics Data System (ADS)
Finley, T.; Griffin, R.
2016-12-01
The United States designates 59 protected areas around the country as national parks, totaling around 51.9 million acres. With the exception of a few, the majority of these parks feature forested areas of biological and/or historical importance. Depending on their location, these forested areas are threatened by climate change in the form of decreasing precipitation and/or increasing temperatures, which can result in significant drying resulting in increased susceptibility to threats and resultant tree mortality. This study aims to survey the forested areas of America's national parks and determine their susceptibility to climate-induced drying. Land cover derived from remotely sensed multispectral data was used to characterize forested areas within national parks. Multiple climate change scenarios to end of century were taken from the NASA Earth Exchange Downscaled Climate Projections (DEX _DCP30) dataset and were compared with the forested areas. Forests projected to experience both an increase in temperature and decrease in precipitation were considered most at risk. A susceptibility analysis was performed to develop an index that would identify these areas most prone to negative effects from climate change in low (B1), medium (A1B), and high (A2) emissions scenarios. With this information, park officials can better focus efforts to monitor and preserve their forested areas.
Effects of plot size on forest-type algorithm accuracy
James A. Westfall
2009-01-01
The Forest Inventory and Analysis (FIA) program utilizes an algorithm to consistently determine the forest type for forested conditions on sample plots. Forest type is determined from tree size and species information. Thus, the accuracy of results is often dependent on the number of trees present, which is highly correlated with plot area. This research examines the...
Ashish Kumar; Bruce G. Marcot; Gautam Talukdar; P.S. Roy
2012-01-01
Herein, we summarize our work, within forest ecosystems of Garo Hills in northeast India, on mapping vegetation and land cover conditions, delineating wildlife habitat corridors among protected areas, evaluating forest conservation values of influence zones bordering protected areas, analyzing dispersion patterns of native forests, and determining potential effects of...
Solid Waste Management in Recreational Forest Areas.
ERIC Educational Resources Information Center
Spooner, Charles S.
The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…
Forest resources of the Susitna Valley, Alaska.
Karl M. Hegg
1970-01-01
This report summarizes the data from the first intensive inventory of the forests in the Susitna Valley, Alaska, conducted during the period 1964-65. The primary purposes of the inventory were to determine the total area of forested lands, the commercial forest area and timber volume, and the condition and growth of this resource, and to report on...
Historical land-use influences the long-term stream turbidity response to a wildfire.
Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris
2014-02-01
Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.
Forest resources of southeast Alabama
A.R. Spillers
1939-01-01
Southeast Alabama (Forest survey Unit Alabam No. 3) has long been one of the principal agricultural areas of the deep South. since its forests, however, are almost as extensive as its fields, a recent study has been made of the forest resources and wood-products industries of this area to determine how important the yare and how their usefulness may be increased. the...
Roadless Wilderness Area Determines Forest Elephant Movements in the Congo Basin
Blake, Stephen; Deem, Sharon L.; Strindberg, Samantha; Maisels, Fiona; Momont, Ludovic; Isia, Inogwabini-Bila; Douglas-Hamilton, Iain; Karesh, William B.; Kock, Michael D.
2008-01-01
A dramatic expansion of road building is underway in the Congo Basin fuelled by private enterprise, international aid, and government aspirations. Among the great wilderness areas on earth, the Congo Basin is outstanding for its high biodiversity, particularly mobile megafauna including forest elephants (Loxodonta africana cyclotis). The abundance of many mammal species in the Basin increases with distance from roads due to hunting pressure, but the impacts of road proliferation on the movements of individuals are unknown. We investigated the ranging behaviour of forest elephants in relation to roads and roadless wilderness by fitting GPS telemetry collars onto a sample of 28 forest elephants living in six priority conservation areas. We show that the size of roadless wilderness is a strong determinant of home range size in this species. Though our study sites included the largest wilderness areas in central African forests, none of 4 home range metrics we calculated, including core area, tended toward an asymptote with increasing wilderness size, suggesting that uninhibited ranging in forest elephants no longer exists. Furthermore we show that roads outside protected areas which are not protected from hunting are a formidable barrier to movement while roads inside protected areas are not. Only 1 elephant from our sample crossed an unprotected road. During crossings her mean speed increased 14-fold compared to normal movements. Forest elephants are increasingly confined and constrained by roads across the Congo Basin which is reducing effective habitat availability and isolating populations, significantly threatening long term conservation efforts. If the current road development trajectory continues, forest wildernesses and the forest elephants they contain will collapse. PMID:18958284
Method of determining forest production from remotely sensed forest parameters
Corey, J.C.; Mackey, H.E. Jr.
1987-08-31
A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.
Urban forests for sustainable urban development
NASA Astrophysics Data System (ADS)
Sundara, Denny M.; Hartono, Djoko M.; Suganda, Emirhadi; Haeruman, S. Herman J.
2017-11-01
This paper explores the development of the urban forest in East Jakarta. By 2030 Jakarta area has a target of 30% green area covering 19,845 hectares, including urban forest covering an area of 4,631 hectares. In 2015, the city forest is only 646 hectares, while the city requires 3,985 hectares of new land Urban forest growth from year to year showed a marked decrease with increasing land area awoke to commercial functions, environmental conditions encourage the development of the city to become unsustainable. This research aims to support sustainable urban development and ecological balance through the revitalization of green areas and urban development. Analytical methods for urban forest area is calculated based on the amount of CO2 that comes from people, vehicles, and industrial. Urban spatial analysis based on satellite image data, using a GIS program is an analysis tool to determine the distribution and growth patterns of green areas. This paper uses a dynamic system model to simulate the conditions of the region against intervention to be performed on potential areas for development of urban forests. The result is a model urban forest area is integrated with a social and economic function to encourage the development of sustainable cities.
NASA Astrophysics Data System (ADS)
Rahayuningsih, M.; Kartijono, N. E.; Arifin, M. S.
2018-03-01
Increasing number of staffs and academicians as a result of UNNES's popularity becoming a favourite university in Indonesia has demanded more facilities to support the learning process, student activities and campus operations. This condition has declined forest covered area in the campus, even though. Optimum extent must be prevented to support ecological function in campus areas. This research is conducted to determine the optimum areas of needed campus's forest based on CO2 emissions in the UNNES area in Sekaran sub-district. The results showed that forest need for campus of UNNES in 2017 is 14.25 ha, but the existing area is only 13.103 ha. Campus forest in western campus area is sufficient to absorb CO2 emissions with forest availability is about 8,147 ha while forest requirement is about 4.47 ha. Campus forest in eastern campus area is not sufficient to absorb CO2 emissions. The need of campus forest in eastern campus area is much bigger that is 9,78 ha from campus forest which available is about 4,956 ha. The results of this study can be used as a reference in the development of green space both on campus and in the city of UNNES Semarang.
Rehabilitation of degraded forests in Asia. World Bank technical paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, A.K.
The degraded forests discussed in this paper are those that have been so badly damaged they have completely lost their protective or productive functions--but still retain their potential revive. The paper focusses on the major areas in Asia fitting this description: swidden agriculture areas in moist forests; human-induced extensive Imperata grasslands; repeatedly hacked, low-profile hardwood forests; and overlogged forests. The areas are defined carefully to determine their extent in Asia; key characteristics are described; their impacts on the local ecology are evaluated; the social and economic pressures that prolong the degradation are analyzed; and technical methods for rehabilitating the damagedmore » areas are proposed.« less
Dumitru Salajanu; Dennis M. Jacobs
2007-01-01
The objective of this study was to determine how well forestfnon-forest and biomass classifications obtained from Landsat-TM and MODIS satellite data modeled with FIA plots, compare to each other and with forested area and biomass estimates from the national inventory data, as well as whether there is an increase in overall accuracy when pixel size (spatial resolution...
NASA Astrophysics Data System (ADS)
Wang, Hong; Lu, Kaiyu; Pu, Ruiliang
2016-10-01
The Robinia pseudoacacia forest in the Yellow River delta of China has been planted since the 1970s, and a large area of dieback of the forest has occurred since the 1990s. To assess the condition of the R. pseudoacacia forest in three forest areas (i.e., Gudao, Machang, and Abandoned Yellow River) in the delta, we combined an estimation of scale parameters tool and geometry/topology assessment criteria to determine the optimal scale parameters, selected optimal predictive variables determined by stepwise discriminant analysis, and compared object-based image analysis (OBIA) and pixel-based approaches using IKONOS data. The experimental results showed that the optimal segmentation scale is 5 for both the Gudao and Machang forest areas, and 12 for the Abandoned Yellow River forest area. The results produced by the OBIA method were much better than those created by the pixel-based method. The overall accuracy of the OBIA method was 93.7% (versus 85.4% by the pixel-based) for Gudao, 89.0% (versus 72.7%) for Abandoned Yellow River, and 91.7% (versus 84.4%) for Machang. Our analysis results demonstrated that the OBIA method was an effective tool for rapidly mapping and assessing the health levels of forest.
Taxation indices of forest stand as the basis for cadastral valuation of forestlands
NASA Astrophysics Data System (ADS)
Kovyazin, V.; Belyaev, V.; Pasko, O.; Romanchikov, A.
2014-08-01
Cadastral valuation of forestlands is one of the problems of the modern economy. Valuation procedures depend either on the profitability of timbering or forest areas are not differentiated according to value. The authors propose the procedure based on taxation indices of strata. The most important factors influencing the valuation are determined. The dependence that allows establishing the relative cost of a certain forest area is defined. Knowing the cadastral value of a model area, it is possible to determine the values of all other sites. The evaluation results correlate with the Faustman procedure with slight difference in the absolute value.
An economic model of international wood supply, forest stock and forest area change
James A. Turner; Joseph Buongiorno; Shushuai Zhu
2006-01-01
Wood supply, the link between roundwood removals and forest resources, is an important component of forest sector models. This paper develops a model of international wood supply within the structure of the spatial equilibrium Global Forest Products Model. The wood supply model determines, for each country, the annual forest harvest, the annual change of forest stock...
Akay, Abdullah E; Sivrikaya, Fatih; Gulci, Sercan
2014-05-01
Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat areas for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest cover changes. This study aims to analyze riparian forest cover changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest cover from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study area. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural areas, and other land use classes. The results also indicated that the areas of degraded forest and forest openings increased, while productive forest and agricultural areas decreased between the years of 1989 and 2010. The amount of agricultural areas decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian areas.
Song, Zitan
2016-01-01
We analyzed the synchronous relationship between forest cover and species distribution to explain the contraction in the distribution range of the brown eared-pheasant (Crossoptilon mantchuricum) in China. Historical resources can provide effective records for reconstructing long-term distribution dynamics. The brown eared-pheasant’s historical distribution from 25 to 1947 CE, which included the three provinces of Shaanxi, Shanxi, and Hebei based on this species’ habitat selection criteria, the history of the forests, ancient climate change records, and fossil data. The current species distribution covers Shaanxi, Shanxi, and Hebei provinces, as well as Beijing city, while Shanxi remains the center of the distribution area. MaxEnt model indicated that the suitable conditions of the brown eared-pheasant had retreated to the western regions of Shanxi and that the historical distribution area had reduced synchronously with the disappearance of local forest cover in Shanxi. We built a correlative relationship between the presence/absence of brown eared-pheasants and forest coverage and found that forest coverage in the north, northeast, central, and southeast areas of the Shanxi province were all less than 10% in 1911. Wild brown eared-pheasants are stable in the Luliang Mountains, where forest coverage reached 13.2% in 2000. Consequently, we concluded that the distribution of this species is primarily determined by vegetation conditions and that forest cover was the most significant determining factor. PMID:27781161
NASA Astrophysics Data System (ADS)
Seker, D. Z.; Unal, A.; Kaya, S.; Alganci, U.
2015-12-01
Migration from rural areas to city centers and their surroundings is an important problem of not only our country but also the countries that under development stage. This uncontrolled and huge amount of migration brings out urbanization and socio - economic problems. The demand on settling the industrial areas and commercial activities nearby the city centers results with a negative change in natural land cover on cities. Negative impacts of human induced activities on natural resources and land cover has been continuously increasing for decades. The main human activities that resulted with destruction and infraction of forest areas can be defined as mining activities, agricultural activities, industrial / commercial activities and urbanization. Temporal monitoring of the changes in spatial distribution of forest areas is significantly important for effective management and planning progress. Changes can occur as spatially large destructions or small infractions. Therefore there is a need for reliable, fast and accurate data sources. At this point, satellite images proved to be a good data source for determination of the land use /cover changes with their capability of monitoring large areas with reasonable temporal resolutions. Spectral information derived from images provides discrimination of land use/cover types from each other. Developments in remote sensing technology in the last decade improved the spatial resolution of satellites and high resolution images were started to be used to detect even small changes in the land surface. As being the megacity of Turkey, Istanbul has been facing a huge migration for the last 20 years and effects of urbanization and other human based activities over forest areas are significant. Main focus of this study is to determine the destructions and infractions in forest areas of Istanbul, Turkey with 2.5m resolution SPOT 5 multi-temporal satellite imagery. Analysis was mainly constructed on threshold based classification of multi-temporal vegetation index data derived from satellite images. Determined changes were exported to GIS environment and spatial overlay and intersection analyses were performed with use of forest type maps and authorized area maps in order to demonstrate the actual situation of destructions and infractions.
75 FR 8036 - Monitor-Hot Creek Rangeland Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...
Temporal trends of forest interior conditions in the United States
Kurt Riitters; James. Wickham
2012-01-01
Nature's benefits derived from forest interior environments cannot be sustained if the natural capital of forest interior area is not sustained. We analyzed the spatial patterns of forest loss and gain for the conterminous United States from 2001 to 2006 to determine whether forest interior environments were maintained at five spatial scales. A 1.1 percent net...
Spatial impact assessment of conifer stands in the Hoosier National Forest
Richard Thurau; Craig Wayson; Dale Weigel; Jeff Ehman
2011-01-01
Forest management decisions on Federal lands must be administered at many spatial and temporal scales. Forest condition, size class, and cover type at the stand level determine how silvicultural practices today will impact management area and overall forest goals in the future. The Hoosier National Forest (HNF) Land Resource Management Plan lists eight goals for...
Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential
NASA Astrophysics Data System (ADS)
İnan, M.; Bilici, E.; Akay, A. E.
2017-11-01
Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.
Steven W. Oak; James R. Steinman; Dale A. Starkey; Edwin K. Yockey
2004-01-01
Forest Inventory and Analysis data for twelve southern states were used to evaluate regional oak decline status. Total host type, vulnerable host type, and affected areas were determined. The attributes used for classification were forest type, predominant stem size class, oak basal area percent, and dieback damage coding. Host type totaled 104.7 million acres in the...
Remote sensing in agriculture. [using Earth Resources Technology Satellite photography
NASA Technical Reports Server (NTRS)
Downs, S. W., Jr.
1974-01-01
Some examples are presented of the use of remote sensing in cultivated crops, forestry, and range management. Areas of concern include: the determination of crop areas and types, prediction of yield, and detection of disease; the determination of forest areas and types, timber volume estimation, detection of insect and disease attack, and forest fires; and the determination of range conditions and inventory, and livestock inventory. Articles in the literature are summarized and specific examples of work being performed at the Marshall Space Flight Center are given. Primarily, aerial photographs and photo-like ERTS images are considered.
Barros, F S M; Arruda, M E; Gurgel, H C; Honório, N A
2011-12-01
Deforestation has been linked to a rise in malaria prevalence. In this paper, we studied longitudinally 20 spots, including forested and deforested portions of a temporary river in a malarigenous frontier zone. Larval habitat parameters influencing distribution of Anopheles darlingi (Diptera: Culicidae) larvae were studied. We observed that larvae were clustered in forested-deforested transitions. For the first time in the literature, it was verified that parameters determining larval distribution varied from deforested to forested areas. The proximity to human dwellings was also a significant factor determining distribution, but larvae was most importantly associated with a previously undescribed parameter, the presence of small obstructions to river flow, such as tree trunks within the river channel, which caused pooling of water during the dry season ('microdams'). In deforested areas, the most important factor determining distribution of larvae was shade (reduced luminance). Larvae were absent in the entire studied area during the wet season and present in most sites during the dry season. During the wet-dry transition, larvae were found sooner in areas with microdams, than in other areas, suggesting that flow obstruction prolongs the breeding season of An. darlingi. Adult mosquito densities and malaria incidence were higher during the dry season. Our data correlate well with the published literature, including the distribution of malaria cases near the forest fringes, and has permitted the creation of a model of An. darlingi breeding, where preference for sites with reduced luminance, human presence and microdams would interact to determine larval distribution.
Small-area estimation of forest attributes within fire boundaries
T. Frescino; G. Moisen; K. Adachi; J. Breidt
2014-01-01
Wildfires are gaining more attention every year as they burn more frequently, more intensely, and across larger landscapes. Generating timely estimates of forest resources within fire perimeters is important for land managers to quickly determine the impact of fi res on U.S. forests. The U.S. Forest Serviceâs Forest Inventory and Analysis (FIA) program needs tools to...
[Utilization suitability of forest resources in typical forest zone of Changbai Mountains].
Hao, Zhanqing; Yu, Deyong; Xiong, Zaiping; Ye, Ji
2004-10-01
Conservation of natural forest does not simply equal to no logging. The Northeast China Forest Region has a logging quota of mature forest as part of natural forest conservation project. How to determine the logging spots rationally and scientifically is very important. Recent scientific theories of forest resources management advocate that the utilization of forest resources should stick to the principle of sustaining use, and pay attention to the ecological function of forest resources. According to the logging standards, RS and GIS techniques can be used to detect the precise location of forest resources and obtain information of forest areas and types, and thus, provide more rational and scientific support for space choice about future utilization of forest resources. In this paper, the Lushuihe Forest Bureau was selected as a typical case in Changbai Mountains Forest Region to assess the utilization conditions of forest resources, and some advices on spatial choice for future management of forest resources in the study area were offered.
Fire Patterns and Drivers of Fires in the West African Tropical Forest
NASA Astrophysics Data System (ADS)
Dwomoh, F. K.; Wimberly, M. C.
2015-12-01
The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.
Modelling deforestation trends in Costa Rica and predicting future forest sustainability
NASA Astrophysics Data System (ADS)
Stan, Kayla; Sanchez, Arturo
2017-04-01
Deforestation in Costa Rica has historically varied between the original degradation of primary forest due to land-based industries, followed by secondary regrowth. The regeneration of forests largely came into effect with incentive based programs such as payments for ecosystem services, creation of large protected areas, and a new industry of ecotourism in the country. Given the changes that have occurred within the last 50 years from heavy deforestation pressures to regeneration patterns, and a correlation between deforestation and policy/economic influences, it is important to understand the historical changes that have occurred and how the forests will change in the future, which provides the objective of this study. Future projections are increasingly important given changes in the global socio-political structure, climatic change, and the ever increasing globalization of capitalistic endeavours. The trajectory of the forest in the country can also serve as a way to track both these global pressures on the natural landscape in Costa Rica, and as a proxy for how to manage deforestation in other similar political and geographic areas of the tropics. To determine the historical deforestation trends and link them to the different biogeophysical and socioeconomic variables, forest maps from 1960-2013 were used in the Dinamica Environment for Geoprocessing Objects (Dinamica EGO) to create deforestation models for Costa Rica. Dinamica EGO is a cellular automata model which utilizes Bayesian statistics and expert opinion to replicate both patterns and quantities of land cover change over time with both static and dynamic variables. Additional legislative variables can be used to track how political pressures shift deforestation both spatially and temporally. The historical model was built and analyzed for changes in landscape metrics such as patch size and distance between 1960 and 2013. After validation of the model's ability to replicate patterns, first between 2005 and 2013, and then back to 1997, a future model was created to determine future country wide changes. There was a significant decrease in patch size between 1960 and 2013 in forests and a non-significant decrease is patch size for non-forests. The historical model validated at 85% accuracy within 600m for both the 2005-2013 and 1997-2005 iterations. Future scenario building determines the point in time and area at which the forest area equilibrates, indicating the approximate maximal forest extent under extreme scenarios. None of the scenarios were sufficiently damaging to decrease the forest area below present day levels. The Puntarenas province is the only region which had deforestation in the most extreme scenario. Using the inclusion and exclusion of protected areas within the model, it was determined which of the parks suffers from high pressure of deforestation should there be policy removing protected area status. These parks are predominantly limited to small areas on coastal regions, while the large central parks suffer relatively little pressure from deforestation. This indicates that even under the most extreme scenarios, the secondary forests are likely to remain permanently and continue to regenerate as time progresses.
A. Kumar; Bruce Marcot; G. Talukdar
2010-01-01
We studied vegetation and land cover characteristics within the existing array of protected areas (PAs) in South Garo Hills of Meghalaya, northeast India and introduce the concept of protected area network (PAN) and methods to determine linkages of forests among existing PAs. We describe and analyze potential elements of a PAN, including PAs, reserved forests,...
Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years
Tng, David Y P; Murphy, Brett P; Weber, Ellen; Sanders, Gregor; Williamson, Grant J; Kemp, Jeanette; Bowman, David M J S
2012-01-01
Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO2 as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire disturbance. PMID:22408724
Population trends and habitat occurrence of forest birds on southern national forests, 1992-2004
Frank A. La Sorte; Frank R., III Thompson; Margaret K. Trani; Timothy J. Mersmann
2007-01-01
We determined population trends and habitat occurrences for bird species in 14 national forests located in the Southern Region from 1992-2004. We estimated population trends for 144 species within: 14 national forests, 10 physiographic areas, and in the Southern Region as a whole. Habitat occurrences were estimated for 114 species based on 13 forest types and four...
NASA Astrophysics Data System (ADS)
Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.
2017-07-01
From the results of experimental studies of the processes of suppressing the thermal decomposition of the typical forest combustibles (birch leaves, fir needles, asp twigs, and a mixture of these three materials) by water aerosol, the minimum volumes of the fire-extinguishing liquid have been determined (by varying the volume of samples of the forest combustibles from 0.00002 m3 to 0.0003 m3 and the area of their open surface from 0.0001 m2 to 0.018 m2). The dependences of the minimum volume of water on the area of the open surface of the forest combustible have been established. Approximation expressions for these dependences have been obtained. Forecast has been made of the minimum volume of water for suppressing the process of thermal decomposition of forest combustibles in areas from 1 cm2 to 1 km2, as well as of the characteristic quenching times by varying the water concentration per unit time. It has been shown that the amount of water needed for effective suppression of the process of thermal decomposition of forest combustibles is several times less than is customarily assumed.
NASA Astrophysics Data System (ADS)
Aricak, Burak; Kucuk, Omer; Enez, Korhan
2014-01-01
Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.
Sara A. Goeking
2012-01-01
The Forest Inventory and Analysis (FIA) prefield workflow involves interpreting aerial imagery to determine whether each plot in a given inventory year may meet FIAâs definition of forest land. The primary purpose of this determination is to minimize inventory costs by avoiding unnecessary ground surveys of plots that are obviously in nonforest areas. Since the...
Breeding bird populations in Missouri Ozark forests with and without clearcutting
Frank R., III Thompson; William D. Dijak; Thomas G. Kulowiec; David A. Hamilton
1992-01-01
Concern has arisen that forest management practices that create edge (such as clearcutting) are contributing to regional declines in neotropical migrant birds that inhabit forest interiors. Consequently, we studied breeding bird populations in an extensively forested region of southern Missouri to determine if the numbers of breeding birds differed between areas (n = 9...
How to estimate forest carbon for large areas from inventory data
James E. Smith; Linda S. Heath; Peter B. Woodbury
2004-01-01
Carbon sequestration through forest growth provides a low-cost approach for meeting state and national goals to reduce net accumulations of atmospheric carbon dioxide. Total forest ecosystem carbon stocks include "pools" in live trees, standing dead trees, understory vegetation, down dead wood, forest floor, and soil. Determining the level of carbon stocks in...
Soil Quality of Bauxite Mining Areas
NASA Astrophysics Data System (ADS)
Terezinha Gonçalves Bizuti, Denise; Dinarowski, Marcela; Casagrande, José Carlos; Silva, Luiz Gabriel; Soares, Marcio Roberto; Henrique Santin Brancalion, Pedro
2015-04-01
The study on soil quality index (SQI) aims to assess the current state of the soil after use and estimating its recovery through sustainable management practices This type of study is being used in this work in order to check the efficiency of forest recovery techniques in areas that have been deeply degraded by bauxite mining process, and compare them with the area of native forest, through the determination of SQI. Treatments were newly mined areas, areas undergoing restoration (topsoil use with planting of native forest species), areas in rehabilitation (employment of the green carpet with topsoil and planting of native forest species) and areas of native forests, with six repetitions, in areas of ALCOA, in the municipality of Poços de Caldas/MG. To this end, we used the additive pondered model, establishing three functions: Fertility, water movement and root development, based on chemical parameters (organic matter, base saturation, aluminum saturation and calcium content); physical (macroporosity, soil density and clay content); and microbiological testing (basal respiration by the emission of CO2 ). The SQIs obtained for each treatment was 41%, 56%, 63% and 71% for newly mined areas, native forest, areas in restoration and rehabilitation, respectively. The recovering technique that most approximates the degraded soil to the soil of reference is the restoration, where there was no statistically significant difference of areas restored with native forest. It was found that for the comparison of the studied areas must take into account the nutrient cycling, that disappear with plant removal in mining areas, once the soil of native forest features low fertility and high saturation by aluminum, also taking in account recovering time.
36 CFR 13.430 - Determination of resident zones.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Determination of resident zones. 13.430 Section 13.430 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF.... (a) A resident zone shall include— (1) The area within a national park or monument; and (2) The...
NASA Technical Reports Server (NTRS)
Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.
2004-01-01
"Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.
Yellow-cedar decline in the North Coast Forest District of British Columbia.
Paul E. Hennon; David V. D' Amore; Stefan Zeglan; Mike Grainger
2005-01-01
The distribution of a forest decline of yellow-cedar (Callitropsis nootkatensis (D. Don) Ãrsted) has been documented in southeast Alaska, but its occurrence in British Columbia was previously unknown. We conducted an aerial survey in the Prince Rupert area in September 2004 to determine if yellow-cedar forests in the North Coast Forest District of...
Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia
NASA Technical Reports Server (NTRS)
Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.
1994-01-01
Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia
NASA Technical Reports Server (NTRS)
Cahoon, Donald R, Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.
1994-01-01
Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
Determining effective riparian buffer width for nonnative plant exclusion and habitat enhancement
Gavin Ferris; Vincent D' Amico; Christopher K. Williams
2012-01-01
Nonnative plants threaten native biodiversity in landscapes where habitats are fragmented. Unfortunately, in developed areas, much of the remaining forested habitat occurs in fragmented riparian corridors. Because forested corridors of sufficient width may allow forest interior specializing native species to retain competitive advantage over edge specialist and...
75 FR 29264 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-25
... Creek Tributary 1 At the downstream side None +341 Unincorporated Areas of of Keighley Forest Wake... Approximately 850 feet +302 +301 Town of Wake Forest. upstream of the confluence with Richland Creek Tributary 2... Approximately 750 feet None +301 Town of Wake Forest. upstream of the confluence with Richland Creek...
NASA Astrophysics Data System (ADS)
Castaneda, Hector
This work studies the changes of forest cover that have happened in the Lempa River Basin of El Salvador during the period 1979-2003. Although historically the trend has been towards the loss of forest cover since colonial times, over the period of study a large increase in forest cover was detected. The main tool of evaluation was the analysis of LANDSAT satellite imagery. Images for the dates 1979, 1990-91, and 2003 were classified into forest and noon-forest land covers. Then the changes in land cover were analyzed to determine what were the social, geophysical and climatic drivers determining why and where these new forest appeared. The results indicate that there has been an overall increase in forest cover from 20% in 1979 to 43% in 2003. Although there has been extensive deforestation, this has happened mostly around the main urban centers within the basin. In the more rural and remote areas, the tendency has been towards a resurgence in forest cover. The increase in forest was found to be significantly related to remittances, inaccessibility to roads and markets, density of urban populations, poverty and the civil war of the 1980s. Among the geospatial factors that determined where deforestation and reforestation happened were distance to roads and urban centers, slope, elevation, land use capability, and irrigation potential. The results indicate that the tendency in the future will be towards further reforestation but at a slower rate. Although reforestation and deforestation happened simultaneously, there are clear differences in the spatial patterns that each of these phenomena follow. In terms of climate, it was found areas subjected to inter-annual rainfall extremes due to El Nino Southern Oscillation, particularly areas with low agricultural potential, were more likely to be abandoned and left to revert to forest than those with more stable rainfall. The results of this study support the hypothesis that El Salvador is undergoing a Forest Transition process, that is a recuperation of forest cover due to urbanization, migration and economic growth.
Katherine A. Thompson; Chad D. Pierskalla; Steven W. Selin
2007-01-01
The Spruce Knob-Seneca Rocks National Recreation Area (NRA) is developing a collaborative management plan. To develop a public involvement strategy, it is necessary to assess the social conditions in the area. The purpose of this study was to determine the relationship local stakeholders in the NRA have with the USDA Forest Service (USFS) with regard to the...
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2017-12-01
Forest fires are among the most important natural disasters with the damage to the natural habitat and human-life. Mapping damaged forest fires is crucial for assessing ecological effects caused by fire, monitoring land cover changes and modeling atmospheric and climatic effects of fire. In this context, satellite data provides a great advantage to users by providing a rapid process of detecting burning areas and determining the severity of fire damage. Especially, Mediterranean ecosystems countries sets the suitable conditions for the forest fires. In this study, the determination of burnt areas of forest fire in Pedrógão Grande region of Portugal occurred in June 2017 was carried out using Landsat 8 OLI and Sentinel-2A satellite images. The Pedrógão Grande fire was one of the largest fires in Portugal, more than 60 people was killed and thousands of hectares were ravaged. In this study, four pairs of pre-fire and post-fire top of atmosphere (TOA) and atmospherically corrected images were utilized. The red and near infrared (NIR) spectral bands of pre-fire and post-fire images were stacked and multiresolution segmentation algorithm was applied. In the segmentation processes, the image objects were generated with estimated optimum homogeneity criteria. Using eCognition software, rule sets have been created to distinguish unburned areas from burned areas. In constructing the rule sets, NDVI threshold values were determined pre- and post-fire and areas where vegetation loss was detected using the NDVI difference image. The results showed that both satellite images yielded successful results for burned area discrimination with a very high degree of consistency in terms of spatial overlap and total burned area (over 93%). Object based image analysis (OBIA) was found highly effective in delineation of burnt areas.
Identification of wood energy resources in central Michigan
NASA Technical Reports Server (NTRS)
Hudson, W. D.; Kittleson, K.
1978-01-01
Existing biomass studies were compiled for determining their applicability in measuring forest biomass in an entirely new way. Over sixty tree-weight tables were prepared from existing tables or formulas. An estimate of forest biomass was made on a defined area by using Landsat Satellite data analysis, existing forest cover type maps and actual weighting of the entire biomass. Control plots were cruised for normal volume data and weight data, harvested and weighed to determine actual tonnage yields.
Analysis of forest and forest clearings in Amazonia with Landsat and Shuttle Imaging Radar-A data
NASA Technical Reports Server (NTRS)
Stone, Thomas A.; Woodwell, George M.
1987-01-01
Landsat and Shuttle Imaging Radar-A L band (23.5 cm wavelength) data from 1981 were used to analyze areas of intact tropical forest and areas recently cleared from forest for agriculture and pasture in Mato Grosso, Brazil. Portions of SIR-A Data Takes #24C and #31 film were digitized using a microdensitometer. Landsat MSS data of July 1981 were also examined. The digital values from SIR-A DT 31 were compared with the normalized difference vegetation index values (NDVI) from the Landsat data for the same sites. Contrary to expectations some cleared areas had brighter radar responses than surrounding forest. The explanation seems to be that a recently cleared forest (cut and burned during the dry season) is texturally very rough as the exposed standing and fallen boles and woody litter may function as effective corner or dihedral reflectors. Combining radar data with NDVI data may help to assess the relative age of forest clearings and determine differences in both woody and green leaf biomass of primary and secondary tropical forests.
Large-scale patterns of turnover and Basal area change in Andean forests.
Báez, Selene; Malizia, Agustina; Carilla, Julieta; Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Duque, Álvaro; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Homeier, Jürgen; Linares-Palomino, Reynaldo; Malizia, Lucio R; Cruz, Omar Melo; Osinaga, Oriana; Phillips, Oliver L; Reynel, Carlos; Silman, Miles R; Feeley, Kenneth J
2015-01-01
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.
Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests
Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Linares-Palomino, Reynaldo; Malizia, Lucio R.; Cruz, Omar Melo; Osinaga, Oriana; Reynel, Carlos; Silman, Miles R.
2015-01-01
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century. PMID:25973977
Luke L. Powell; Gustavo Zurita; Jared D. Wolfe; Erik I. Johnson; Philip C Stouffer
2015-01-01
Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...
Height is more important than light in determining leaf morphology in a tropical forest
Molly A. Cavaleri; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan
2010-01-01
Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number...
Comparing extinction risk and economic cost in wildlife conservation planning
Robert G. Haight
1995-01-01
Planning regulations pursuant to the National Forest Management Act of 1976 require the USDA Forest Service to produce cost-effective, multiple-use forest plans that ensure the viability of native wildlife populations within the planning area. In accordance with these regulations, this paper presents a method for determining cost-effective conservation plans for...
Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana
2011-12-01
The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon's diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds.
Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana
2011-01-01
The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon’s diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds. PMID:24575217
Forests and drugs: coca-driven deforestation in tropical biodiversity hotspots.
Dávalos, Liliana M; Bejarano, Adriana C; Hall, Mark A; Correa, H Leonardo; Corthals, Angelique; Espejo, Oscar J
2011-02-15
Identifying drivers of deforestation in tropical biodiversity hotspots is critical to assess threats to particular ecosystems and species and proactively plan for conservation. We analyzed land cover change between 2002 and 2007 in the northern Andes, Chocó, and Amazon forests of Colombia, the largest producer of coca leaf for the global cocaine market, to quantify the impact of this illicit crop on forest dynamics, evaluate the effectiveness of protected areas in this context, and determine the effects of eradication on deforestation. Landscape-level analyses of forest conversion revealed that proximity to new coca plots and a greater proportion of an area planted with coca increased the probability of forest loss in southern Colombia, even after accounting for other covariates and spatial autocorrelation. We also showed that protected areas successfully reduced forest conversion in coca-growing regions. Neither eradication nor coca cultivation predicted deforestation rates across municipalities. Instead, the presence of new coca cultivation was an indicator of municipalities, where increasing population led to higher deforestation rates. We hypothesize that poor rural development underlies the relationship between population density and deforestation in coca-growing areas. Conservation in Colombia's vast forest frontier, which overlaps with its coca frontier, requires a mix of protected areas and strategic rural development to succeed.
Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng
2008-03-01
By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.
Quantifying forest mortality with the remote sensing of snow
NASA Astrophysics Data System (ADS)
Baker, Emily Hewitt
Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and needlefall, showing that needlefall occurred an average of 2.6 +/- 1.2 years after green-stage mortality. We relate observed increases in the VGF with crown mortality, showing that a 1% increase in mortality area produces a 0.33 +/- 0.1 % increase in the VGF.
Teixido, Alberto L; Quintanilla, Luis G; Carreño, Francisco; Gutiérrez, David
2010-01-01
Changes in forested landscapes may have important consequences for ecosystem services and biodiversity conservation. In northern Spain, major changes in land use occurred during the second half of the 20th century, but their impacts on forests have not been quantified. We evaluated the dynamics of landscape and forest distribution patterns between 1957 and 2003 in Fragas do Eume Natural Park (northwestern Spain). We used orthoimages and a set of standard landscape metrics to determine transitions between land cover classes and to examine forest distribution patterns. Eucalypt plantations showed the greatest increase in area (197%) over time. Furthermore, transitions to eucalypt plantations were found in all major land cover classes. Forest showed a net decline of 20% in total area and represented 30% of the landscape area in 2003. Forest losses were mainly due to eucalypt plantations and the building of a water reservoir, while forest gains were due to increases in shrubland, meadows and cultivated fields which had been recolonised. Forest patch size and core area decreased, and edge length increased over time. In turn, increases were obtained in mean distance between forest patches, and in adjacency to eucalypt plantations and to a water reservoir. These results suggest an increase in forest fragmentation from 1957 to 2003, as well as a change in the nature of the habitat surrounding forest patches. This study shows that land use changes, mostly from eucalypt plantation intensification, negatively affected forested habitats, although some regeneration was ongoing through ecological succession from land abandonment. Copyright 2009 Elsevier Ltd. All rights reserved.
Increment-borer methods for determining fire history in coniferous forests
Stephen W. Barrett; Stephen F. Arno
1988-01-01
Describes use of increment borers for interpreting fire history in coniferous forests. These methods are intended for use in wildernesses, parks, and other natural areas where sawing cross-sections from fire-scarred trees is prohibited.
Vulnerability of forest vegetation to anthropogenic climate change in China.
Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang
2018-04-15
China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Area burned in alpine treeline ecotones reflects region-wide trends
C. Alina Cansler; Donald McKenzie; Charles B. Halpern
2016-01-01
The direct effects of climate change on alpine treeline ecotones â the transition zones between subalpine forest and non-forested alpine vegetation â have been studied extensively, but climate-induced changes in disturbance regimes have received less attention. To determine if recent increases in area burned extend to these higher-elevation landscapes, we analysed...
Tree basal area as an index of thermal cover for elk.
J. Edward Dealy
1985-01-01
The relationship of basal area to crown closure was studied in five major forest types of the Blue Mountains of Oregon and Washington. The regressions developed give wildlife and forest managers a tool for estimating the amount of crown closure if data are not available from stand examinations. Information is used in determining quantity and quality of elk thermal...
Andrzej Bobiec
2000-01-01
Variability of external and internal factors entails specific spatial patterns and functional dynamics of communities. The study of the oak-lime-hornbeam (Quercus robur-Tilia cordata-Carpimus) forest in the Bialowieza Primeval Forest supports the concept of silvatic unit, determining the minimal structural area. To find out if the dynamics of a stand...
Mapping Forest Edge Using Aerial Lidar
NASA Astrophysics Data System (ADS)
MacLean, M. G.
2014-12-01
Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.
The Role of Remote Sensing in Assessing Forest Biomass in Appalachian South Carolina
NASA Technical Reports Server (NTRS)
Shain, W.; Nix, L.
1982-01-01
Information is presented on the use of color infrared aerial photographs and ground sampling methods to quantify standing forest biomass in Appalachian South Carolina. Local tree biomass equations are given and subsequent evaluation of stand density and size classes using remote sensing methods is presented. Methods of terrain analysis, environmental hazard rating, and subsequent determination of accessibility of forest biomass are discussed. Computer-based statistical analyses are used to expand individual cover-type specific ground sample data to area-wide cover type inventory figures based on aerial photographic interpretation and area measurement. Forest biomass data are presented for the study area in terms of discriminant size classes, merchantability limits, accessibility (as related to terrain and yield/harvest constraints), and potential environmental impact of harvest.
Jucker, Tommaso; Sanchez, Aida Cuni; Lindsell, Jeremy A; Allen, Harriet D; Amable, Gabriel S; Coomes, David A
2016-06-01
Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) - one of the largest tracts of intact tropical moist forest in West Africa - to explore how (1) stand basal area and tree diversity, (2) past disturbance associated with past logging, and (3) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modeling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modeling to explore the direct and indirect pathways which shape rates of AWP. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers - with stand structure, tree diversity, and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long-lasting impact on a forest's ability to sequester and store carbon, emphasizing the importance of safeguarding old-growth tropical forests.
Historical vegetation change in Oakland and its implications for urban forest management
David J. Nowak
1993-01-01
The history of Oakland, California's urban forest was researched to determine events that could influence future urban forests. Vegetation in Oakland has changed drastically from a preurbanized area with approximately 2% tree cover to a present tree cover of 19%. Species composition of trees was previously dominated by coast live oak (Quercus agrifolia...
Monitoring the Impacts of Forest Management on Snowpack Duration
NASA Astrophysics Data System (ADS)
O'Halloran, T.; Tyler, S.; Gaffney, R.; Pai, H.
2017-12-01
Seasonal snowpack constitutes a significant portion of the hydrologic budget in mountain watersheds and influences dynamic (e.g., runoff magnitude and timing, soil moisture availability) and energetic processes (e.g., surface-atmosphere energy fluxes, ground temperature). Altered forest structure can affect snow accumulation and ablation. As part of a long-term monitoring project, this work examines the impact of forest management practices on snow cover in Lassen National Forest, California. We deployed a fiber optic distributed temperature sensing (DTS) cable and multiple meteorological stations in thinned, clear-cut, and untreated areas of forest. The DTS data was collected at 1 meter spatial intervals every 4 hours from February to May 2017. To determine snow cover, daily temperature variations were examined along locations of the DTS cable associated with our areas of interest. Between the various treatments, snow duration was greater in both clear-cut and untreated forest compared to the thinned area. However, snow duration varied by only six days. We also investigated other meteorological forcings, such as average winter temperature and precipitation, which coupled with forest modifications could explain snow duration in our study.
Mendes Pontes, Antonio Rossano; Beltrão, Antonio Carlos Mariz; Normande, Iran Campello; Malta, Alexandre de Jesus Rodrigues; da Silva Júnior, Antonio Paulo; Santos, André Maurício Melo
2016-01-01
We aimed to determine the conservation status of medium- and large-sized mammals and evaluate the impact of 500 years of forest fragmentation on this group of animals in the Pernambuco Endemism Center, in the biogeographical zone of the Atlantic forest north of the São Francisco River in northeastern Brazil. Line transect surveys were performed in 21 forest fragments, resulting in a checklist of the mammals of the entire Pernambuco Endemism Center area. We ran a generalized linear model (Factorial ANCOVA) to analyze to what extent the vegetation type, fragment area, isolation, sampling effort (as total kilometers walked), or higher-order interactions predicted (a) richness and (b) sighting rates. To determine if the distribution of the species within the forest fragments exhibited a nested pattern, we used the NODF metric. Subsequently, we performed a Binomial Logistic Regression to predict the probability of encountering each species according to fragment size. Out of 38 medium- and large-sized mammal species formerly occurring in the study area, only 53.8% (n = 21) were sighted. No fragment hosted the entire remaining mammal community, and only four species (19%) occurred in very small fragments (73.3% of the remaining forest fragments, with a mean size of 2.8 ha). The mammalian community was highly simplified, with all large mammals being regionally extinct. Neither the species richness nor sighting rate was controlled by the vegetation type, the area of the forest fragments, isolation or any higher-order interaction. Although a highly significant nested subset pattern was detected, it was not related to the ranking of the area of forest fragments or isolation. The probability of the occurrence of a mammal species in a given forest patch varied unpredictably, and the probability of detecting larger species was even observed to decrease with increasing patch size. In an ongoing process of mass extinction, half of the studied mammals have gone extinct. The remaining medium-sized mammal community is highly simplified and homogenized. The persistence of these species in a forest patch is determined by their ability to adapt to a novel simplified diet, the efficient use of the surrounding matrix without being engulfed by the sink effect, and escaping hunting. Our results suggest that the 21st century medium-sized mammalian fauna of this region will comprise only four species unless strict conservation measures are implemented immediately and every forest fragment is effectively protected. PMID:27191719
Mendes Pontes, Antonio Rossano; Beltrão, Antonio Carlos Mariz; Normande, Iran Campello; Malta, Alexandre de Jesus Rodrigues; Silva Júnior, Antonio Paulo da; Santos, André Maurício Melo
2016-01-01
We aimed to determine the conservation status of medium- and large-sized mammals and evaluate the impact of 500 years of forest fragmentation on this group of animals in the Pernambuco Endemism Center, in the biogeographical zone of the Atlantic forest north of the São Francisco River in northeastern Brazil. Line transect surveys were performed in 21 forest fragments, resulting in a checklist of the mammals of the entire Pernambuco Endemism Center area. We ran a generalized linear model (Factorial ANCOVA) to analyze to what extent the vegetation type, fragment area, isolation, sampling effort (as total kilometers walked), or higher-order interactions predicted (a) richness and (b) sighting rates. To determine if the distribution of the species within the forest fragments exhibited a nested pattern, we used the NODF metric. Subsequently, we performed a Binomial Logistic Regression to predict the probability of encountering each species according to fragment size. Out of 38 medium- and large-sized mammal species formerly occurring in the study area, only 53.8% (n = 21) were sighted. No fragment hosted the entire remaining mammal community, and only four species (19%) occurred in very small fragments (73.3% of the remaining forest fragments, with a mean size of 2.8 ha). The mammalian community was highly simplified, with all large mammals being regionally extinct. Neither the species richness nor sighting rate was controlled by the vegetation type, the area of the forest fragments, isolation or any higher-order interaction. Although a highly significant nested subset pattern was detected, it was not related to the ranking of the area of forest fragments or isolation. The probability of the occurrence of a mammal species in a given forest patch varied unpredictably, and the probability of detecting larger species was even observed to decrease with increasing patch size. In an ongoing process of mass extinction, half of the studied mammals have gone extinct. The remaining medium-sized mammal community is highly simplified and homogenized. The persistence of these species in a forest patch is determined by their ability to adapt to a novel simplified diet, the efficient use of the surrounding matrix without being engulfed by the sink effect, and escaping hunting. Our results suggest that the 21st century medium-sized mammalian fauna of this region will comprise only four species unless strict conservation measures are implemented immediately and every forest fragment is effectively protected.
Analysis of forest disturbance using TM and AVHRR data
NASA Technical Reports Server (NTRS)
Spanner, Michael A.; Hlavka, Christine A.; Pierce, Lars L.
1989-01-01
A methodology that will be used to determine the proportions of undisturbed, successional vegetation and recently disturbed land cover within coniferous forests using remotely sensed data from the advanced very high resolution radiometer (AVHRR) is presented. The method uses thematic mapper (TM) data to determine the proportions of the three stages of forest disturbance and regrowth for each AVHRR pixel in the sample areas, and is then applied to interpret all AVHRR imagery. Preliminary results indicate that there are predictable relationships between TM spectral response and the disturbance classes. Analysis of ellipse plots from a TM classification of the disturbed forested landscape indicates that the forest classes are separable in the red (0.63-0.69 micron) and near-infrared (0.76-0.90 micron) bands, providing evidence that the proportion of disturbance classes may be determined from AVHRR data.
NASA Astrophysics Data System (ADS)
Gu, Chengyan; Clevers, Jan G. P. W.; Liu, Xiao; Tian, Xin; Li, Zhouyuan; Li, Zengyuan
2018-03-01
Sloping terrain of forests is an overlooked factor in many models simulating the canopy bidirectional reflectance distribution function, which limits the estimation accuracy of forest vertical structure parameters (e.g., forest height). The primary objective of this study was to predict forest height on sloping terrain over large areas with the Geometric-Optical Model for Sloping Terrains (GOST) using airborne Light Detection and Ranging (LiDAR) data and Landsat 7 imagery in the western Greater Khingan Mountains of China. The Sequential Maximum Angle Convex Cone (SMACC) algorithm was used to generate image endmembers and corresponding abundances in Landsat imagery. Then, LiDAR-derived forest metrics, topographical factors and SMACC abundances were used to calibrate and validate the GOST, which aimed to accurately decompose the SMACC mixed forest pixels into sunlit crown, sunlit background and shade components. Finally, the forest height of the study area was retrieved based on a back-propagation neural network and a look-up table. Results showed good performance for coniferous forests on all slopes and at all aspects, with significant coefficients of determination above 0.70 and root mean square errors (RMSEs) between 0.50 m and 1.00 m based on ground observed validation data. Higher RMSEs were found in areas with forest heights below 5 m and above 17 m. For 90% of the forested area, the average RMSE was 3.58 m. Our study demonstrates the tremendous potential of the GOST for quantitative mapping of forest height on sloping terrains with multispectral and LiDAR inputs.
Francisco Rodríguez y Silva; Juan Ramón Molina Martínez; Miguel Castillo Soto
2013-01-01
Assessing areas affected by forest fires requires comprehensive studies covering a wide range of analyzes. From an economic standpoint, assessing the affected area in monetary terms is crucial. Determining the degree of loss in the value of natural resources, both those of a tangible and intangible nature, enables knowing the residual value remaining after a fire, i.e...
Snags and Down Wood on Upland Oak Sites in the Missouri Ozark Forest Ecosystem Project
Stephen R. Shifley; Brian L. Brookshire; David R. Larsen; Laura A. Herbeck; Randy G. Jensen
1997-01-01
We analyzed volume, surface area, and percent cover of down wood to determine if there were pre-treatment differences among the sites in the Missouri Ozark Forest Ecosystem Project. We also compared pre-treatment values for the number and basal area of snags. We observed no statistically significant differences (P > 0.05) among treatment classes for these...
Forest succession in the Upper Rio Negro of Colombia and Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saldarriaga, J.G.; West, D.C.; Tharp, M.L.
1986-11-01
Woody vegetation from 23 forest stands along the Upper Rio Negro of Venezuela and Colombia was sampled in 1982 to examine the hypothesis that the Amazon forest has been largely undisturbed since the Pleistocene, to quantify vegetation development during different stages of succession following agricultural development, and to determine the time required for a successional stand to become a mature forest. The ubiquitousness of charcoal in the tierra firme forest indicated the presence of fire associated with extreme dry periods and human disturbances. Changes in species composition, vegetation structure, and woody biomass were studied on 19 abandoned farms and fourmore » mature forest stands. Living and dead biomass for the tress and their components was determined by regression equations developed from measurements of harvested trees. The rate of recovery of floristic composition, structure, and biomass following disturbance is relatively slow. Aboveground dead biomass remained high 14 years after the forest was disturbed by the agricultural practices. The lowest dead biomass is reached 20 years after abandonment, and the largest values are found in mature forests. Data analysis of 80-year-old stands showed that the species composition approached that of a mature forest. Approximately 140 to 200 years was required for an abandoned farm to attain the basal area and biomass values comparable to those of a mature forest. The results of this study indicate that recovery is five to seven times longer in the Upper Rio Negro than it is in other tropical areas in South America.« less
NASA Astrophysics Data System (ADS)
Lendzioch, Theodora; Langhammer, Jakub; Jenicek, Michal
2017-04-01
A rapid and robust approach using Unmanned Aerial Vehicle (UAV) digital photogrammetry was performed for evaluating snow accumulation over different small localities (e.g. disturbed forest and open area) and for indirect field measurements of Leaf Area Index (LAI) of coniferous forest within the Šumava National Park, Czech Republic. The approach was used to reveal impacts related to changes in forest and snowpack and to determine winter effective LAI for monitoring the impact of forest canopy metrics on snow accumulation. Due to the advancement of the technique, snow depth and volumetric changes of snow depth over these selected study areas were estimated at high spatial resolution (1 cm) by subtracting a snow-free digital elevation model (DEM) from a snow-covered DEM. Both, downward-looking UAV images and upward-looking digital hemispherical photography (DHP), and additional widely used LAI-2200 canopy analyser measurements were applied to determine the winter LAI, controlling interception and transmitting radiation. For the performance of downward-looking UAV images the snow background instead of the sky fraction was used. The reliability of UAV-based LAI retrieval was tested by taking an independent data set during the snow cover mapping campaigns. The results showed the potential of digital photogrammetry for snow depth mapping and LAI determination by UAV techniques. The average difference obtained between ground-based and UAV-based measurements of snow depth was 7.1 cm with higher values obtained by UAV. The SD of 22 cm for the open area seemed competitive with the typical precision of point measurements. In contrast, the average difference in disturbed forest area was 25 cm with lower values obtained by UAV and a SD of 36 cm, which is in agreement with other studies. The UAV-based LAI measurements revealed the lowest effective LAI values and the plant canopy analyser LAI-2200 the highest effective LAI values. The biggest bias of effective LAI was observed between LAI-2200 and UAV-based analyses. Since the LAI parameter is important for snowpack modelling, this method presents the potential of simplifying LAI retrieval and mapping of snow dynamics while reducing running costs and time.
Paul G. Scowcroft; Howard F. Sakai
1983-01-01
Management of feral and Mouflon sheep and feral goats within the Mauna Kea Forest Reserve/Game Management area has been criticized as inadequate to prevent the adverse environmental impact which these introduced herbivores have on native components of the scrub forest ecosystem. This study determined the intensity of bark stripping of mamane (Sophora...
Silviculture of forests in the Eastern United States
Daniel C. Dey; John C. Brissette; Callie J. Schweitzer; James M. Guldin
2012-01-01
The forests of the Eastern United States are diverse and provide many products and amenities for people living in the area and beyond. Eastern temperate forests play an important role in determining water yield and quality. They have the potential to sequester large quantities of carbon and influence air quality, and thus climate. Our standard of living is very much...
Assessment of forest quality in southwestern Poland with the use of remotely sensed data
Zbigniew Bochenek; Andrzej Ciolkosz; Maria Iracka
1998-01-01
A three-stage approach was applied to assess the quality of forests in southwestern Poland, which are heavily affected with air pollution and insect infestations. In the first stage a ground evaluation of spruce stands was done within the selected test areas. Three main characteristics of forest quality were determined as a result of these works: defoliation,...
Drainage and Agriculture Impacts onf Fire Frequency in a Southern Illinois Forested Bottomland.
John L. Nelson; Charles M. Ruffner; John W. Groninger; Ray A. Souter
2008-01-01
Postsettlement (1909â2003) fire history of a forested bottomland in the Mississippi Embayment of southern Illinois, USA, was determined using fire-scar analysis. The study area is a forested bottomland hardwood site, with remnant pockets of the dominant presettlement bald cypress â tupelo (1919, with agricultural clearing and abandonment varying throughout the...
Analysis of Urban Forest Needs as Anthropogenic (CO2) Gas Absorbent in Semarang City
NASA Astrophysics Data System (ADS)
Febriani, Anisa Putri; Retnaningsih Soeprobowati, Tri; Maryono
2018-02-01
Green open space in cities in significant needs to maintenance environment quality. On of the critical function is to absorb increasing number of gas CO2. Therefore, developing urban forest in cities is very importance. The objective of the study is to determine the area of urban forest as CO2 gas anthropogenic absorb which is formed from fuel, diesel fuel, liquid petroleum gas. The study consists of (1) Analyzing the number of CO2 gas emission by calculating the needs of petroleum and gas based on the number of population, (2) Analyzing the power of gas absorption, (3) Measuring the air concentration of CO2 gas ambient based on daily traffic activities. This study shown that from year 2013 to year 2017, the increasing of urban forest is not so significant. For year 2013 the green open space in Semarang City are 373.67 hectares (7.5 percent from Semarang City area), consists of 239 parks, 11 public cemeteries, production forests, community forests, and urban forests, however the area of urban forest is not increase. The study assess that Antidesmabunius is one of the green species which high absorb capacity planted for Semarang. This trees produce 31,31 ton annually. This study proposed to fostering Antidesmabunius as one principle threes in Semarang urban forest.
Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul
2014-01-01
Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions. PMID:24811079
Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul
2014-05-07
Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.
NASA Astrophysics Data System (ADS)
Liu, Jing; Skidmore, Andrew K.; Heurich, Marco; Wang, Tiejun
2017-10-01
As an important metric for describing vertical forest structure, the plant area index (PAI) profile is used for many applications including biomass estimation and wildlife habitat assessment. PAI profiles can be estimated with the vertically resolved gap fraction from airborne LiDAR data. Most research utilizes a height normalization algorithm to retrieve local or relative height by assuming the terrain to be flat. However, for many forests this assumption is not valid. In this research, the effect of topographic normalization of airborne LiDAR data on the retrieval of PAI profile was studied in a mountainous forest area in Germany. Results show that, although individual tree height may be retained after topographic normalization, the spatial arrangement of trees is changed. Specifically, topographic normalization vertically condenses and distorts the PAI profile, which consequently alters the distribution pattern of plant area density in space. This effect becomes more evident as the slope increases. Furthermore, topographic normalization may also undermine the complexity (i.e., canopy layer number and entropy) of the PAI profile. The decrease in PAI profile complexity is not solely determined by local topography, but is determined by the interaction between local topography and the spatial distribution of each tree. This research demonstrates that when calculating the PAI profile from airborne LiDAR data, local topography needs to be taken into account. We therefore suggest that for ecological applications, such as vertical forest structure analysis and modeling of biodiversity, topographic normalization should not be applied in non-flat areas when using LiDAR data.
Land use in Maine: determinants of past trends and projections of future changes.
Andrew J. Plantinga; Thomas Mauldlin; Ralph J. Alig
1999-01-01
About 90 percent of the land in Maine is in forests. We analyzed past land use trends in Maine and developed projections of future land use. Since the 1950s, the area of forest in Maine has increased by almost 400,000 acres; however, the trends differ among ownerships, as the area of nonindustrial private timberland declined by 800,000 acres since 1950, while private...
Using a terrestrial ecosystem survey to estimate the historical density of ponderosa pine trees
Scott R. Abella; Charles W. Denton; David G. Brewer; Wayne A. Robbie; Rory W. Steinke; W. Wallace Covington
2011-01-01
Maps of historical tree densities for project areas and landscapes may be useful for a variety of management purposes such as determining site capabilities and planning forest thinning treatments. We used the U.S. Forest Service Region 3 terrestrial ecosystem survey in a novel way to determine if the ecosystem classification is a useful a guide for estimating...
Forested wetlands constructed for mitigation of destroyed natural wetlands
Perry, M.C.; Pugh, S.B.; Deller, A.S.
1995-01-01
Forested wetlands constructed for mitigation were evaluated at six sites in Maryland to determine the success of these areas for providing suitable wildlife habitat. Natural forested wetlands were used as reference sites. Initial mortality of planted woody shrubs and trees was high (avg. 55%) and mostly attributed to excessive moisture. The number of woody seedlings from natural regeneration was inversely proportional to the amount of grass cover on the site, which was planted for erosion control. The number of volunteer woody seedlings was also inversely proportional to the distance from adjacent natural forests. Preliminary data indicate that cost does not support use of transplants and that enhancement of soil with organic supplements, followed by widespread and heavy seeding of woody plants would be more efficient and effective. Wildlife use of areas measured by avian surveys and trapping of mammals, reptiles, and amphibians showed that in general wildlife species were more representative of open grassland areas than forested habitats. Natural succession of the sites probably will take at least 20-30 years before typical values and functions of forested wetlands are obtained.
[Structural recovering in Andean successional forests from Porce (Antioquia, Colombia)].
Yepes, Adriana P; del Valle, Jorge I; Jaramillo, Sandra L; Orrego, Sergio A
2010-03-01
Places subjected to natural or human disturbance can recover forest through an ecological process called secondary succession. Tropical succession is affected by factors such as disturbances, distance from original forest, surface configuration and local climate. These factors determine the composition of species and the time trend of the succession itself. We studied succession in soils used for cattle ranching over various decades in the Porce Region of Colombia (Andean Colombian forests). A set of twenty five permanent plots was measured, including nine plots (20 x 50 m) in primary forests and sixteen (20 x 25 m) in secondary forests. All trees with diameter > or =1.0 cm were measured. We analyzed stem density, basal area, above-ground biomass and species richness, in a successional process of ca. 43 years, and in primary forests. The secondary forests' age was estimated in previous studies, using radiocarbon dating, aerial photographs and a high-resolution satellite image analysis (7 to >43 years). In total, 1,143 and 1,766 stems were measured in primary and secondary forests, respectively. Basal area (5.7 to 85.4 m2 ha(-1)), above-ground biomass (19.1 to 1,011.5 t ha(-1)) and species richness (4 to 69) directly increased with site age, while steam density decreased (3,180 to 590). Diametric distributions were "J-inverted" for primary forests and even-aged size-class structures for secondary forests. Three species of palms were abundant and exclusive in old secondary forests and primary forests: Oenocarpus mapora, Euterpe precatoria and Oenocarpus bataua. These palms happened in cohorts after forest disturbances. Secondary forest structure was 40% in more than 43 years of forest succession and indicate that many factors are interacting and affecting the forests succession in the area (e.g. agriculture, cattle ranching, mining, etc.).
Holocene rain-forest wilderness: a neotropical perspective on humans as an exotic, invasive species
Robert L. Sanford; Sally P. Horn
2000-01-01
Large areas of lowland tropical rain-forests in the neotropics have been burned over the past 6,000 years, mostly by pre-Colombian agriculturists. This paper presents additional evidence of fires and other human impacts in neotropical forests, and considers the opportunities and limitations of different approaches to determining past land-use âsignatures.â Knowledge of...
Remote sensing of the seasonal variation of coniferous forest structure and function
NASA Technical Reports Server (NTRS)
Spanner, Michael; Waring, Richard
1991-01-01
One of the objectives of the Oregon Transect Ecosystem Research (OTTER) project is the remotely sensed determination of the seasonal variation of leaf area index (LAI) and absorbed photosynthetically active radiation (APAR). These measurements are required for input into a forest ecosystem model which predicts net primary production evapotranspiration, and photosynthesis of coniferous forests. Details of the study are given.
Correa Ayram, Camilo A; Mendoza, Manuel E; Etter, Andrés; Pérez Salicrup, Diego R
2017-07-01
Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.
Relief influence on the spatial distribution of the Atlantic Forest cover on the Ibiúna Plateau, SP.
Silva, W G; Metzger, J P; Simões, S; Simonetti, C
2007-08-01
Several studies suggest that, on a large scale, relief conditions influence the Atlantic Forest cover. The aim of this work was to explore these relationships on a local scale, in Caucaia do Alto, on the Ibiúna Plateau. Within an area of about 78 km(2), the distribution of forest cover, divided into two successional stages, was associated with relief attribute data (slope, slope orientation and altitude). The mapping of the vegetation was based on the interpretation of stereoscopic pairs of aerial photographs, from April 2000, on a scale of 1:10,000, while the relief attributes were obtained by geoprocessing from digitalized topographic maps on a scale of 1:10,000. Statistical analyses, based on qui-square tests, revealed that there was a more extensive forest cover, irrespective of the successional stage, in steeper areas (>10 degrees) located at higher altitudes (>923 m), but no influence of the slope orientation. There was no sign of direct influence of relief on the forest cover through environmental gradients that might have contributed to the forest regeneration. Likewise, there was no evidence that these results could have been influenced by the distance from roads or urban areas or with respect to permanent preservation areas. Relief seems to influence the forest cover indirectly, since agricultural land use is preferably made in flatter and lower areas. These results suggest a general distribution pattern of the forest remnants, independent of the scale of study, on which relief indirectly has a strong influence, since it determines human occupation.
7 CFR 1.412 - Institution of proceedings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Adjudication of Sourcing Area Applications and Formal Review of Sourcing Areas Pursuant to the Forest Resources...) Sourcing area applications. The proceeding for determining sourcing areas shall be instituted by receipt of a sourcing area application by the Office of Administrative Law Judges, pursuant to 36 CFR 223.190...
Carreiras, João M. B.; Jones, Joshua; Lucas, Richard M.; Gabriel, Cristina
2014-01-01
Throughout the Amazon region, the age of forests regenerating on previously deforested land is determined, in part, by the periods of active land use prior to abandonment and the frequency of reclearance of regrowth, both of which can be quantified by comparing time-series of Landsat sensor data. Using these time-series of near annual data from 1973–2011 for an area north of Manaus (in Amazonas state), from 1984–2010 for south of Santarém (Pará state) and 1984–2011 near Machadinho d’Oeste (Rondônia state), the changes in the area of primary forest, non-forest and secondary forest were documented from which the age of regenerating forests, periods of active land use and the frequency of forest reclearance were derived. At Manaus, and at the end of the time-series, over 50% of regenerating forests were older than 16 years, whilst at Santarém and Machadinho d’Oeste, 57% and 41% of forests respectively were aged 6–15 years, with the remainder being mostly younger forests. These differences were attributed to the time since deforestation commenced but also the greater frequencies of reclearance of forests at the latter two sites with short periods of use in the intervening periods. The majority of clearance for agriculture was also found outside of protected areas. The study suggested that a) the history of clearance and land use should be taken into account when protecting deforested land for the purpose of restoring both tree species diversity and biomass through natural regeneration and b) a greater proportion of the forested landscape should be placed under protection, including areas of regrowth. PMID:25099362
Carreiras, João M B; Jones, Joshua; Lucas, Richard M; Gabriel, Cristina
2014-01-01
Throughout the Amazon region, the age of forests regenerating on previously deforested land is determined, in part, by the periods of active land use prior to abandonment and the frequency of reclearance of regrowth, both of which can be quantified by comparing time-series of Landsat sensor data. Using these time-series of near annual data from 1973-2011 for an area north of Manaus (in Amazonas state), from 1984-2010 for south of Santarém (Pará state) and 1984-2011 near Machadinho d'Oeste (Rondônia state), the changes in the area of primary forest, non-forest and secondary forest were documented from which the age of regenerating forests, periods of active land use and the frequency of forest reclearance were derived. At Manaus, and at the end of the time-series, over 50% of regenerating forests were older than 16 years, whilst at Santarém and Machadinho d'Oeste, 57% and 41% of forests respectively were aged 6-15 years, with the remainder being mostly younger forests. These differences were attributed to the time since deforestation commenced but also the greater frequencies of reclearance of forests at the latter two sites with short periods of use in the intervening periods. The majority of clearance for agriculture was also found outside of protected areas. The study suggested that a) the history of clearance and land use should be taken into account when protecting deforested land for the purpose of restoring both tree species diversity and biomass through natural regeneration and b) a greater proportion of the forested landscape should be placed under protection, including areas of regrowth.
NASA Astrophysics Data System (ADS)
Rasmussen, William O.
1994-01-01
The percentage of the cross-sectional area of two objects (e.g., vehicles, hikers, or animals) that can be seen from each of their locations in a forested area is generally not the same. There is a directionality to the visibility between them. This is due to the relative positions and sizes of the vegetation and other view-blocking features between the objects. An analytical technique has been developed to help understand bidirectional visibility. Its use entails the construction of a visibility diagram containing the basic visibility information between observers in a given setting. An example is presented showing the use of the visibility diagram to determine visibility between two moving observers in a forested environment. The diagram is also used to determine the differences in the percentage each observer has of the other's visible cross-sectional area (bidirectional visibility). A discussion of the application of the technique in the planning or development of new facilities, as well as in forest and wildlife management, is provided.
G. A. Pearson
1913-01-01
The object of the study, the results of which are presented here, was to determine the influence of the forest cover upon climate locally in the Southwest, in so far as this influence might be of importance in the management of timberlands and the possible afforestation of parks and denuded areas. Since the bearing upon forestry rather than upon meteorology is the...
John W. Sinton
1979-01-01
The first purpose of this study was to deter-mine the visual quality of New Jersey Pine Barrens forests according to residents of the area. The goal of the study was to determine how to manage Pine Barrens forests to obtain high visual quality within the framework of residents' preferences, available by the Federal Omnibus Parks Acts of 1978 and proposed New...
What determines tree mortality in dry environments? A multi-perspective approach.
Dorman, Michael; Svoray, Tal; Perevolotsky, Avi; Moshe, Yitzhak; Sarris, Dimitrios
2015-06-01
Forest ecosystems function under increasing pressure due to global climate changes, while factors determining when and where mortality events will take place within the wider landscape are poorly understood. Observational studies are essential for documenting forest decline events, understanding their determinants, and developing sustainable management plans. A central obstacle towards achieving this goal is that mortality is often patchy across a range of spatial scales, and characterized by long-term temporal dynamics. Research must therefore integrate different methods, from several scientific disciplines, to capture as many relevant informative patterns as possible. We performed a landscape-scale assessment of mortality and its determinants in two representative Pinus halepensis planted forests from a dry environment (~300 mm), recently experiencing an unprecedented sequence of two severe drought periods. Three data sources were integrated to analyze the spatiotemporal variation in forest performance: (1) Normalized Difference Vegetation Index (NDVI) time-series, from 18 Landsat satellite images; (2) individual dead trees point-pattern, based on a high-resolution aerial photograph; and (3) Basal Area Increment (BAI) time-series, from dendrochronological sampling in three sites. Mortality risk was higher in older-aged sparse stands, on southern aspects, and on deeper soils. However, mortality was patchy across all spatial scales, and the locations of patches within "high-risk" areas could not be fully explained by the examined environmental factors. Moreover, the analysis of past forest performance based on NDVI and tree rings has indicated that the areas affected by each of the two recent droughts do not coincide. The association of mortality with lower tree densities did not support the notion that thinning semiarid forests will increase survival probability of the remaining trees when facing extreme drought. Unique information was obtained when merging dendrochronological and remotely sensed performance indicators, in contrast to potential bias when using a single approach. For example, dendrochronological data suggested highly resilient tree growth, since it was based only on the "surviving" portion of the population, thus failing to identify past demographic changes evident through remote sensing. We therefore suggest that evaluation of forest resilience should be based on several metrics, each suited for detecting transitions at a different level of organization.
Aricak, Burak
2015-07-01
Forest roads are essential for transport in managed forests, yet road construction causes environmental disturbance, both in the surface area the road covers and in erosion and downslope deposition of road fill material. The factors affecting the deposition distance of eroded road fill are the slope gradient and the density of plant cover. Thus, it is important to take these factors into consideration during road planning to minimize their disturbance. The aim of this study was to use remote sensing and field surveying to predict the locations that would be affected by downslope deposition of eroding road fill and to compile the data into a geographic information system (GIS) database. The construction of 99,500 m of forest roads is proposed for the Kastamonu Regional Forest Directorate in Turkey. Using GeoEye satellite images and a digital elevation model (DEM) for the region, the location and extent of downslope deposition of road fill were determined for the roads as planned. It was found that if the proposed roads were constructed by excavators, the fill material would cover 910,621 m(2) and the affected surface area would be 1,302,740 m(2). Application of the method used here can minimize the adverse effects of forest roads.
NASA Astrophysics Data System (ADS)
Jalilzadeh Shadlouei, A.; Delavar, M. R.
2013-09-01
There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI), slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question) were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high), medium hazard (low), low hazard (high), low hazard (low). According to the map, the zoning of most of the areas fall into the low hazard (high) class while the least number of areas have been classified as low hazard (low). Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.
Reisland, Melissa Ann; Lambert, Joanna E.
2016-01-01
In this research, we use a combination of ethnographic observation and GIS analysis to explore the use of space by humans and gibbons (Hylobates moloch) to determine areas of potential space competition in the sacred forest and nature reserve Cagar Alam Leuweung Sancang in West Java, Indonesia. More specifically, we test whether gibbons respond to the presence of humans in a manner consistent with predator-avoidance and predicted that the gibbon study subjects would avoid areas visited by humans (Risk-Disturbance Hypothesis). Data were collected August 2010-June 2011. We collected GPS locations and behavioral data on both the humans (6,652 hours) and the gibbons (1,253 hours) in the forest using 10 minute instantaneous sampling. Results indicate that humans preferentially assemble at the most sacred spot in the forest (Cikajayaan waterfall). Two gibbon groups’ home ranges encompassed most of the sacred areas. Group B avoided areas of high human use, as high human use areas and high gibbon use areas did not overlap. Group C, though, continued to use areas that were heavily visited by humans. We thus found partial support for the Risk-Disturbance Hypothesis, although the variation in gibbon response to human disturbance indicates behavioral flexibility. We suggest that understanding the effects of shared space on wildlife is necessary for informing conservation policy in human-visited forests. PMID:26790025
Kłos, Andrzej; Ziembik, Zbigniew; Rajfur, Małgorzata; Dołhańczuk-Śródka, Agnieszka; Bochenek, Zbigniew; Bjerke, Jarle W; Tømmervik, Hans; Zagajewski, Bogdan; Ziółkowski, Dariusz; Jerz, Dominik; Zielińska, Maria; Krems, Paweł; Godyń, Piotr; Marciniak, Michał; Świsłowski, Paweł
2018-06-15
In the years 2014-2016 biomonitoring studies were conducted in the forest areas of south and north-eastern Poland: the Karkonosze Mountains, the Beskidy Mountains, the Borecka Forest, the Knyszyńska Forest and the Białowieska Forest. This study used epigeic moss Pleurozium schreberi and epiphytic lichens Hypogymnia physodes. Samples were collected in spring, summer and autumn. Approximately 500 samples of moss and lichens were collected for the study. In the samples, Mn, Ni, Cu, Zn, Cd, Hg and Pb concentrations were determined. Based on the obtained results, the studied areas were ranked by extent of heavy-metal deposition: Beskidy > Karkonosze Mountains > forests of north-eastern Poland. Some seasonal changes in concentrations of metals accumulated in moss and lichens were also indicated. There was observed, i.a., an increase in Cd concentration at the beginning of the growing season, which may be related to low emissions during the heating season. Analysis of the surface distribution of deposition of metals in the studied areas showed a significant contribution of nearby territorial emissions and unidentified local emission sources. The contribution of distant emission to Zn, Hg and Pb deposition levels in the Karkonosze and Beskidy region was also indicated. Copyright © 2018 Elsevier B.V. All rights reserved.
Brian Roy Lockhart; James M. Guldin; Thomas Foti
2010-01-01
Tree species composition and structure was determined for an old bottomland hardwood forest located in the Moro Creek Bottoms Natural Area in south-central Arkansas. Diversity for this forest was high with species richness ranging from 33 for the overstory and sapling strata to 26 for the seedling stratum and Shannon-Weiner values of 2.54 to 1.02 for the overstory and...
Dawning S. Lui; Louis R. Iverson; Sandra Brown
1993-01-01
Land-use maps for 1934 and 1988, and a 1941 road map of the Philippines were digitized into a geographic information system. These maps were then analyzed to determine the rates of deforestation and their relationship with factors such as the distance of forests to roads and forest fragmentation (measured by perimeter-to-area ratio (P/A ratio) of forest patches) for...
Robert H. Ruth; A.S. Harris
1975-01-01
The forest manager must balance all the interacting and often conflicting factors influencing residue management and decide on the best course of action. He needs to determine optimum volume, size, and arrangement of residues to leave on an area after logging, then to select the harvesting methods and residue management alternatives that best provide these conditions....
Approach of regionalisation c-stocks in forest soils on a national level
NASA Astrophysics Data System (ADS)
Wellbrock, Nicole; Höhle, Juliane; Dühnelt, Petra; Holzhausen, Marieanna
2010-05-01
Introduction In December 2006, the German government decided to manage forests as carbon sinks to reduce greenhouse gas emissions in accordance with Article 3.4 of the Kyoto Protocol. The National Forest Monitoring data contribute to the fulfilment of these reporting commitments. In Germany, National Forest Monitoring includes the systematical extensive National Soil Condition Survey (BZE) and the detailed case studies (Level-II) which determine the processes within forests. This complex monitoring system is appropriate to Germany's greenhouse gas reporting (THG 2008 to 2012). The representative BZE plots can be used to obtain regional data for the National Carbon Stock Inventory. Here, an approach adopting a combination of geostatistics and regression analysis is preferred. The difficulty of showing the statistical significance of expected small changes while carbon stocks are generally high is one of the major challenges in carbon stock monitoring. However, through intensive preparation and cooperation with the forestry authorities of each federal state, the errors uncured in determining changes in carbon stocks in forest soils, which must be stipulated in greenhouse gas monitoring, could be minimised. In contrast to the detailed soil case studies, in which essentially the sources of error occur repeatedly in carbon stock change calculations, the BZE data can be stratified to form plots with homogenous properties, thereby reducing the standard error of estimate. Subsequently, the results of the stratification are projected across Germany, the reporting unit for greenhouse gas monitoring. National Forest Monitoring The BZE represents a national, systematic sampling inventory of the condition of forest soils. The first BZE inventory (BZE I: 1987 to 1993) was carried out on a systematic 8 x 8 km grid on the same sampling plots adopted in the Forest Condition Survey (WZE). In some areas the network of sampling plots involves 1900 grid points. The first BZE I survey was repeated after 15 years, between 2006 and 2008, by the national and the state authorities in cooperation. Afterwards, extensive laboratory and statistical analyses were conducted. Necessary parameters are listed in table 1. Upscaling approach There are different approaches for presenting extensive carbon stock data (Baritz et al., 2006). The availability of georeference plots means one can merge the point data with map data. In Germany, an approach was tested that used homogenous soil areas und plot-information from the national soil inventory. For every soil area c-stocks were regionalised. Only information form BZE-plots were involved which were characteristic for the soil area. The indicators were soil type and substrate class. For every soil area the forest areas were taken in account to calculate c-stock per forest area. The sum of every c-stock per soil area is the c-stock in forest soils of Germany. Tab.1: List of parameters for the carbon inventory (BZE II) Components Parameters Point level Field sampling Width of depth classes, Fine roots, humus (< 2 cm), dry bulk density, stone content, area of humus layer sampled, height a.s.l., litterfall, deadwood (from 10 cm) Analysis C content, fine soil fraction, weight of humus layer, Carbon stock calculations Carbon stock Regional Level Plot Soil type, parent material, vegetation type or forest Regionalisation Soil and land use maps, statistical models, ecological regions, digital elevation models, climate regions
The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates
NASA Technical Reports Server (NTRS)
Houghton, R. A.; Lawrence, J. L.; Hackler, J. L.; Brown, S.
2001-01-01
The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land-use change. We compared several estimates of forest biomass for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. We asked three questions. First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? Amazonian forests (including dead and below-ground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modeling of forest recovery following observed stand-replacing disturbances (the approach used in this research), and estimation of aboveground biomass from airborne or satellite-based instruments sensitive to the vertical structure plant canopies.
Chemical brush control on central Oregon ponderosa pine lands.
Walter G. Dahms
1955-01-01
Practical brush control appears to be within sight for some of the problem areas in central Oregon as a result of experiments conducted on the Pringle Falls Experimental Forest and Deschutes National Forest. Small-plot trials to determine which chemicals will kill manzanita (Arctostaphylos parryana var. pinetorum (Rollins)...
Future directions in EAB-affected forests
Deborah G. McCullough; Roy Van Driesche; Therese M. Poland
2015-01-01
The ability of natural enemies to slow emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), population growth in a given area will play a major role in determining whether many native ash species can persist as functional components of forest ecosystems. Population growth of EAB, like that of any other organism, is...
Ground-based photographic monitoring.
Frederick C. Hall
2001-01-01
Land management professionals (foresters, wildlife biologists, range managers, and land managers such as ranchers and forest land owners) often have need to evaluate their management activities. Photographic monitoring is a fast, simple, and effective way to determine if changes made to an area have been successful. Ground-based photo monitoring means using photographs...
Basnet, Tej B; Rokaya, Maan B; Bhattarai, Bishnu P; Münzbergová, Zuzana
2016-01-01
Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills of central Nepal, we should maintain diverse local habitats (viz. forest, shrubs, open land, etc.) but also make sure the natural habitats on steeper slopes with large scale heterogeneity are maintained.
Basnet, Tej B.; Rokaya, Maan B.; Bhattarai, Bishnu P.; Münzbergová, Zuzana
2016-01-01
Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills of central Nepal, we should maintain diverse local habitats (viz. forest, shrubs, open land, etc.) but also make sure the natural habitats on steeper slopes with large scale heterogeneity are maintained. PMID:26938616
Case study: Prioritization strategies for reforestation of minelands to benefit Cerulean Warblers
McDermott, Molly E.; Shumar, Matthew B.; Wood, Petra Bohall
2013-01-01
The central Appalachian landscape is being heavily altered by surface coal mining. The practice of Mountaintop Removal/Valley Fill (MTRVF) mining has transformed large areas of mature forest to non-forest and created much forest edge, affecting habitat quality for mature forest wildlife. The Appalachian Regional Reforestation Initiative is working to restore mined areas to native hardwood forest conditions, and strategies are needed to prioritize restoration efforts for wildlife. We present mineland reforestation guidelines for the imperiled Cerulean Warbler, considered a useful umbrella species, in its breeding range. In 2009, we surveyed forest predicted to have Cerulean Warblers near mined areas in the MTRVF region of West Virginia and Kentucky. We visited 36 transect routes and completed songbird surveys on 151 points along these routes. Cerulean Warblers were present at points with fewer large-scale canopy disturbances and more mature oak-hickory forest. We tested the accuracy of a predictive map for this species and demonstrated that it can be useful to guide reforestation efforts. We then developed a map of hot spot locations that can be used to determine potential habitat suitability. Restoration efforts would have greatest benefit for Cerulean Warblers and other mature forest birds if concentrated near a relative-abundance hot spot, on north- and east-facing ridgetops surrounded by mature deciduous forest, and prioritized to reduce edges and connect isolated forest patches. Our multi-scale approach for prioritizing restoration efforts using an umbrella species may be applied to restore habitat impacted by a variety of landscape disturbances.
75 FR 19320 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
... Incorporated Areas Basin 10, Stream 14 At the Franklin/Wake +306 +307 Unincorporated Areas of county boundary... Approximately 250 feet None +344 Unincorporated Areas of upstream of Keighlely Franklin County. Forest Drive.../Wake None +327 Unincorporated Areas of county boundary. Franklin County. Approximately 0.6 mile None...
NASA Astrophysics Data System (ADS)
Mullis, David Stone
The Salmon Creek Watershed in Sonoma County, California, USA, is home to a variety of wildlife, and many of its residents are mindful of their place in its ecology. In the past half century, several of its native and rare species have become threatened, endangered, or extinct, most notably the once common Coho salmon and Chinook salmon. The cause of this decline is believed to be a combination of global climate change, local land use, and land cover change. More specifically, the clearing of forested land to create vineyards, as well as other agricultural and residential uses, has led to a decline in biodiversity and habitat structure. I studied sub-scenes of Landsat data from 1972 to 2013 for the Salmon Creek Watershed area to estimate forest cover over this period. I used a maximum likelihood hard classifier to determine forest area, a Mahalanobis distance soft classifier to show the software's uncertainty in classification, and manually digitized forest cover to test and compare results for the 2013 30 m image. Because the earliest images were lower spatial resolution, I also tested the effects of resolution on these statistics. The images before 1985 are at 60 m spatial resolution while the later images are at 30 m resolution. Each image was processed individually and the training data were based on knowledge of the area and a mosaic of aerial photography. Each sub-scene was classified into five categories: water, forest, pasture, vineyard/orchard, and developed/barren. The research shows a decline in forest area from 1972 to around the mid-1990s, then an increase in forest area from the mid-1990s to present. The forest statistics can be helpful for conservation and restoration purposes, while the study on resolution can be helpful for landscape analysis on many levels.
Assessment of post forest fire reclamation in Algarve, Portugal
NASA Astrophysics Data System (ADS)
Andrade, Rita; Panagopoulos, Thomas; Guerrero, Carlos; Martins, Fernando; Zdruli, Pandi; Ladisa, Gaetano
2014-05-01
Fire is a common phenomenon in Mediterranean landscapes and it plays a crucial role in its transformations, making the determination of its impact on the ecosystem essential for land management. During summer of 2012, a wildfire took place in Algarve, Portugal, on an area mainly covered by sclerophyllous vegetation (39.44%, 10080ha), broad-leaved forest (20.80%, 5300ha), agriculture land with significant areas of natural vegetation (17.40%, 4400ha) and transitional woodlands-shrubs (16.17%, 4100ha). The objective of the study was to determine fire severity in order to plan post-fire treatments and to aid vegetation recovery and land reclamation. Satellite imagery was used to estimate burn severity by detecting physical and ecological changes in the landscape caused by fire. Differenced Normalized Burn Ratio (DNBR) was used to measure burn severity with pre and post fire data of four Landsat images acquired in October 2011, February and August 2012 and April 2013. The initial and extended differenced normalized burn ratio (DiNBR and DeNBR) were calculated. The calculated burned area of 24291 ha was 552ha lower than the map data determined with field reports. The 19.5% of that area was burned with high severity, 45% with moderate severity and 28.3% with low severity. Comparing fire severity and regrowth with land use, it is shown in DiNBR that the most severely burned areas were predominantly sclerophyllous vegetation (37.6%) and broad-leaved forests (31.1%). From the DeNRB it was found that the reestablishment of vegetation was slower in mixed forests and higher in sclerophyllous vegetation and in land with significant areas of natural vegetation. Faster recovery was calculated for the land uses of sclerophyllous vegetation (46.7%) and significant regrowth in areas of natural vegetation and lands occupied by agriculture (25.4%). Next steps of the study are field validation and crossing with erosion risk maps before to take land reclamation decisions.
Effects of national forest-management regimes on unprotected forests of the Himalaya.
Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy
2017-12-01
Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that ensure stable land tenure and integrate local-livelihood benefits with forest conservation result in the best forest outcomes. © 2017 Society for Conservation Biology.
Akay, Abdullah E; Wing, Michael G; Sivrikaya, Fatih; Sakar, Dursun
2012-03-01
The ability of firefighting vehicles and staff to reach a fire area as quickly as possible is critical in fighting against forest fires. In this study, a Geographical Information System-based decision support system was developed to assist fire managers in determining the fastest and the safest or more reliable access routes from firefighting headquarters to fire areas. The decision support system was tested in the Kahramanmaras Forestry Regional Directoratein the Mediterranean region of Turkey. The study area consisted of forested lands which had been classified according to fire sensitivity. The fire response routing simulations considered firefighting teams located in 20 firefighting headquarter locations. The road network, the locations of the firefighting headquarters, and possible fire locations were mapped for simulation analysis. In alternative application simulations, inaccessible roads which might be closed due to fire or other reasons were indicated in the network analysis so that the optimum route was not only the fastest but also the safest and most reliable path. The selection of which firefighting headquarters to use was evaluated by considering critical response time to potential fire areas based on fire sensitivity levels. Results indicated that new firefighting headquarters should be established in the region in order to provide sufficient firefighting response to all forested lands. In addition, building new fire access roads and increasing the design speed on current roads could also increase firefighting response capabilities within the study area.
NASA Technical Reports Server (NTRS)
Aldrich, R. C.; Dana, R. W.; Roberts, E. H. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A stratified random sample using LANDSAT band 5 and 7 panchromatic prints resulted in estimates of water in counties with sampling errors less than + or - 9% (67% probability level). A forest inventory using a four band LANDSAT color composite resulted in estimates of forest area by counties that were within + or - 6.7% and + or - 3.7% respectively (67% probability level). Estimates of forest area for counties by computer assisted techniques were within + or - 21% of operational forest survey figures and for all counties the difference was only one percent. Correlations of airborne terrain reflectance measurements with LANDSAT radiance verified a linear atmospheric model with an additive (path radiance) term and multiplicative (transmittance) term. Coefficients of determination for 28 of the 32 modeling attempts, not adverseley affected by rain shower occurring between the times of LANDSAT passage and aircraft overflights, exceeded 0.83.
The hydrological modeling in terms of determining the potential European beaver effect
NASA Astrophysics Data System (ADS)
Szostak, Marta; Jagodzińska, Jadwiga
2017-06-01
The objective of the paper was the hydrological analysis, in terms of categorizing main watercourses (based on coupled catchments) and marking areas covered by potential impact of the occurrence and activities of the European beaver Castor fiber. At the analysed area - the Forest District Głogów Małopolski there is a population of about 200 beavers in that Forest District. Damage inflicted by beavers was detected on 33.0 ha of the Forest District, while in the area of 13.9 ha the damage was small (below 10%). The monitoring of the beavers' behaviour and the analysis of their influence on hydrology of the area became an important element of using geoinformationtools in the management of forest areas. ArcHydro ArcGIS Esri module was applied, as an integrated set of tools for hydrographical analysis and modelling. Further steps of the procedure are hydrologic analyses such as: marking river networks on the DTM, filling holes, making maps of the flow direction, making the map of the accumulation flow, defining and segmentation of streams, marking elementary basins, marking coupled basins, making dams in the places, where beavers occur and localization of the area with a visible impact of damming. The result of the study includes maps prepared for the Forest District: the map of main rivers and their basins, categories of watercourses and compartments particularly threatened by beaver's foraging.
Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime
2015-01-01
We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.
Quantifying the missing link between forest albedo and productivity in the boreal zone
NASA Astrophysics Data System (ADS)
Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina
2016-11-01
Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest density (i.e., basal area) to increase albedo may be limited compared to the effect of favoring broadleaved species.
Hans T. Schreuder; Jin-Mann S. Lin; John Teply
2000-01-01
The Forest Inventory and Analysis units in the USDA Forest Service have been mandated by Congress to go to an annualized inventory where a certain percentage of plots, say 20 percent, will be measured in each State each year. Although this will result in an annual sample size that will be too small for reliable inference for many areas, it is a sufficiently large...
Trend of Soil Erosion Processes within the Southern Half of the Russian Plain for the Last Decades
NASA Astrophysics Data System (ADS)
Golosov, V. N.; Yermolaev, O. P.; Safina, G. R.; Maltsev, K. A.; Gusarov, A. V.; Rysin, I. I.
2018-01-01
Complex approach is applied for assessment of recent trends of sheet, rill and gully erosion in different landscape zones of study area. Investigation is undertaken in 6 selected sectors (area of each transect is about 6-10 thousand km2), uniformly distributed over the area of the Russian Plain. Changes of the different factors, including some meteorological and hydrological parameters, land use change, USLE C-factor, were determined for the period 1980-2015. A set of field methods was used for quantification of sediment redistribution rates for the key small catchments. It was found that erosion rate decreased in forest and forest-steppe zone. Gully density decreases considerably in all landscape zones. The reduction of surface runoff from cultivated slope during snow-melting is the main reason of decreasing of sheet, rill and gully erosion rates in the forest, forest steppe and the north of steppe landscape zones. Increasing the proportion of perennial grasses in crop-rotation is the other factor of serious reduction of erosion processes in the forest zone.
Ancient human disturbances may be skewing our understanding of Amazonian forests.
McMichael, Crystal N H; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J
2017-01-17
Although the Amazon rainforest houses much of Earth's biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests.
High-resolution forest carbon stocks and emissions in the Amazon.
Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint
2010-09-21
Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.
Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi
Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III
2012-01-01
Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...
Wayne C. Zipperer
2002-01-01
Regenerated and remnant forest patches were inventoried in Syracuse, New York, USA to determine differences in structure, species composition, human disturbances, and landscape context. Patches had similar mean stem diameter, total stem density, and total basal areas, but differed with respect to diameter distribution, disturbance regime, landscape context, and...
Forest tree improvement in California-1970
M. Thompson Conkle
1972-01-01
Foresters in California were surveyed in 1970 to determine the extent of artificial regeneration and tree improvement efforts in the State. Seeding of Douglas-fir was the prevailing practice in the North Coast. Inland areas were being planted with conifers, including ponderosa, Jeffrey, Monterey, and sugar pines, Douglas-fir, and red and white firs. Manpower devoted to...
Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change
Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston
2017-01-01
We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...
Lindsey M. Shartell; Erik A. Lilleskov; Andrew J. Storer; Lynette R. Potvin; Karl J. Romanowicz
2011-01-01
Exotic earthworms are becoming established in previously earthworm-free areas of the Great Lakes region with the potential to alter forest ecosystems. Understanding the factors controlling their distribution and abundance across the landscape will aid in efforts to determine their consequences and potential forest management solutions.
Monitoring forest changes in the southwestern United States using multitemporal Landsat data
Vogelmann, James E.; Tolk, Brian L.; Zhu, Zhiliang
2009-01-01
Landsat time series data sets were acquired for the Santa Fe National Forest in New Mexico. This area includes the San Pedro Parks Wilderness area, which was designated as an official wilderness in 1964. Eight autumnal Landsat Thematic Mapper (TM) scenes acquired from 1988 to 2006 were analyzed to determine whether significant changes have occurred throughout the region during the past 18 years and, if so, to assess whether the changes are long-term and gradual or short-term and abrupt. It was found that, starting in about 1995, many of the conifer stands within the Wilderness area showed consistently gradual and marked increases in the Shortwave Infrared/Near Infrared Index. These trends generally imply decreases in canopy greenness or increases in mortality. Other high-elevation conifer forests located outside of the Wilderness area showed similar spectral trends, indicating that changes are potentially widespread. The spatial patterns of forest damage as inferred from the image analyses were very similar to the general patterns of insect defoliation damage mapped via aerial sketch mapping by the United States Department of Agriculture Forest Service Forest Health Monitoring Program. A field visit indicated that zones of spectral change are associated with high levels of forest damage and mortality, likely caused by a combination of insects and drought. The study demonstrates the effectiveness of using historical Landsat data for providing objective and consistent long-term assessments of the gradual ecosystem changes that are occurring within the western United States.
Determination of mangrove change in Matang Mangrove Forest using multi temporal satellite imageries
NASA Astrophysics Data System (ADS)
Ibrahim, N. A.; Mustapha, M. A.; Lihan, T.; Ghaffar, M. A.
2013-11-01
Mangrove protects shorelines from damaging storm and hurricane winds, waves, and floods. Mangroves also help prevent erosion by stabilizing sediments with their tangled root systems. They maintain water quality and clarity, filtering pollutants and trapping sediments originating from land. However, mangrove has been reported to be threatened by land conversion for other activities. In this study, land use and land cover changes in Matang Mangrove Forest during the past 18 years (1993 to 2011) were determined using multi-temporal satellite imageries by Landsat TM and RapidEye. In this study, classification of land use and land cover approach was performed using the maximum likelihood classifier (MCL) method along with vegetation index differencing (NDVI) technique. Data obtained was evaluated through Kappa coefficient calculation for accuracy and results revealed that the classification accuracy was 81.25% with Kappa Statistics of 0.78. The results indicated changes in mangrove forest area to water body with 2,490.6 ha, aquaculture with 890.7 ha, horticulture with 1,646.1 ha, palm oil areas with 1,959.2 ha, dry land forest with 2,906.7 ha and urban settlement area with 224.1 ha. Combinations of these approaches were useful for change detection and for indication of the nature of these changes.
Deforestation Along the Maya Mountain Massif Belize-Guatemala Border
NASA Astrophysics Data System (ADS)
Chicas, S. D.; Omine, K.; Arevalo, B.; Ford, J. B.; Sugimura, K.
2016-06-01
In recent years trans-boundary incursions from Petén, Guatemala into Belize's Maya Mountain Massif (MMM) have increased. The incursions are rapidly degrading cultural and natural resources in Belize's protected areas. Given the local, regional and global importance of the MMM and the scarcity of deforestation data, our research team conducted a time series analysis 81 km by 12 km along the Belize-Guatemalan border adjacent to the protected areas of the MMM. Analysis drew on Landsat imagery from 1991 to 2014 to determine historic deforestation rates. The results indicate that the highest deforestation rates in the study area were -1.04% and -6.78% loss of forested area per year in 2012-2014 and 1995-1999 respectively. From 1991 to 2014, forested area decreased from 96.9 % to 85.72 % in Belize and 83.15 % to 31.52 % in Guatemala. During the study period, it was clear that deforestation rates fluctuated in Belize's MMM from one time-period to the next. This seems linked to either a decline in deforestation rates in Guatemala, the vertical expansion of deforestation in Guatemalan forested areas and monitoring. The results of this study urge action to reduce incursions and secure protected areas and remaining forest along the Belize-Guatemalan border.
Nakounné, E; Selekon, B; Morvan, J
2000-01-01
An investigation was conducted between 1994 and 1997 in forested areas of the Central African Republic (CAR) to determine the seroprevalence of IgG antibodies against several haemorrhagic fever viruses present in the region. Sera were obtained from 1762 individuals in two groups (Pygmy and Bantu locuted populations) living in 4 forested areas in the south of the country. Sera were tested for IgG antibodies against Ebola, Marburg, Rift Valley fever (RVF), Yellow fever (YF) and Hantaviruses by enzyme immunoassay (EIA), and against Lassa virus by immunofluorescent assay. The prevalence of IgG antibodies was 5.9% for Ebola, 2% for Marburg, 6.9% pour RVF, 6.5% for YF, 2% for Hantaan. No antibodies were detected against Lassa, Seoul, Puumala and Thottapalayam viruses. No IgM antibodies were detected against RVF and YF viruses. The distribution of antibodies appears to be related to tropical rain forest areas. This study indicates that several haemorrhagic fever viruses are endemic in forested areas of the CAR and could emerge due to environmental modification.
The contribution of sediment from forested areas of the Chesapeake Bay Watershed
NASA Astrophysics Data System (ADS)
Gellis, A.; Brakebill, J.
2012-12-01
Fine-grained sediment is a major pollutant in the Chesapeake Bay and its receiving waters. Sediment budget studies have been conducted in small basins draining to the Bay over the last decade to understand the important sources of fine-grained sediment, quantify erosion rates, and determine sediment yields. Sediment budget approaches include modeling (SPARROW), sediment fingerprinting, and quantifying upland rates of erosion (Cesium-137). SPARROW model results indicate that forests deliver between 2 to 8% of the total sediment to the Bay. Sediment-fingerprinting results from small watershed studies indicate that forests contribute between 13 to 29 % of the sediment. The Cesium-137 technique was used to quantify soil redistribution (erosion and deposition) rates for forested areas in the Linganore Creek (146 km2) watershed which drains the Piedmont Physiographic Province. Average forest erosion rates measured in 2009 for Linganore Creek using Cesium-137 were 2.6 t/ha/yr. With 27% of the Linganore Creek watershed in forest, over 10,300 may be eroded off of forested lands which is more than the average annual suspended-sediment load (8,050 Mg/yr) in Linganore Creek, indicating that much of the eroded forest sediment goes in storage. Most of the forested areas in the Chesapeake Bay watershed were cut down for agriculture between the time of European colonization and the early 20th Century. In the late 20th century forested lands show an increase in areal extent. Although studies have not been conducted to understand why these secondary growth forests are eroding, it may involve that these forests have not fully recovered from deforestation. Soil profiles are thin, and runoff and sediment relations may have been altered, leading to high rates of erosion.
NASA Astrophysics Data System (ADS)
Fatma, N. A. H.; Wan Juliana, W. A.; Shaharuddin, M. I.; Wickneswari, R.
2016-11-01
A descriptive study of species composition, community structure and biomass was conducted in compartment 107, which is a rehabilitated area at Kenaboi Forest Reserve, Jelebu, Negeri Sembilan. The objective is to determine the forest structure and species composition in a rehabilitated area of Kenaboi FR since enrichment planting had done. A sample plot of 1 hectare was censused and a total of 395 trees with diameter ≥ 5 cm DBH were recorded. A total of 285 individual trees were identified belonging to 20 families and the commonest family was Dipterocarpaceae with 193 individuals. The highest tree density per ha was Shorea acuminata at 33% followed by S. parvifolia, 10% and S. leprosula, 6%. The biggest tree was Artocarpus elasticus Reinw. ex Blume with a diameter of 101 cm. The total basal area was 34.48 m2/ha, whereby the highest basal area was between 45 - 54.9 cm DBH class that contributed 10.21 m2/ha (30%). The total biomass estimation (above ground and below ground) was 792.57 t/ha. Dipterocarpaceae contributed the highest total biomass at 545.14 t/ha with S. acuminata contributed the highest total biomass of 330.45 t/ha. This study will contribute to the knowledge of regeneration forest especially on how the ecological process restoring the biodiversity and ecosystem functioning in rehabilitated forest by practicing the enrichment planting of native species.
Land use dynamics in favorable and unfavorable areas of southwest Germany
NASA Astrophysics Data System (ADS)
Henkner, Jessica; Ahlrichs, Jan; Knopf, Thomas; Scholten, Thomas; Kühn, Peter
2017-04-01
Since the Neolithic Revolution and the beginning of agriculture in central Europe about 7.500 a ago human influence on the environment is increasing. Human activities created a cultural landscape during the Holocene, which led to quasi-natural relief formation. Colluvial deposits are the correlate sediments of human induced soil erosion on slopes and depict an excellent archive for land use and landscape history. The present study combines pedological, archaeological and palynological knowledge with AMS 14C and luminescence datings to build up a chronostratigraphy of colluvial deposits, thereby allowing the reconstruction of past land use and settlement dynamics in the Baar and the Black Forest (SW Germany). Compared with Black Forest the Baar is a favorable area for agricultural land use, where seven main phases of colluvial deposition could be detected. Increased colluviation, and thus land use intensity, took place during the younger Neolithic ( 3700 BCE), the early to middle Bronze Age ( 1400 BCE), the Iron Age ( 500 BCE), the Roman Empire ( 200 CE) and in three phases from the High Middle Ages onwards ( 1100 CE, 1300 CE, 1600 CE). The Black Forest low mountain range is an unfavorable area characterized by low temperatures, high precipitation and steep slopes. Nevertheless, human influence dates back to the Neolithic in the Black Forest. Minor colluvial deposition phases were detected before the Middle Ages and increased formation of colluvial deposits during the High Middle Ages ( 1100 CE) and the Modern Times (>1500 CE). This colluvial stratigraphy shows an intense land use of the Black Forest area from the Middle Ages onwards. The different land use dynamics in the Baar area compared to the Black Forest will be discussed against the paleoenvironmental conditions reconstructed from different archives. It is to analyze whether climate was the main determining factor for the settlement pattern in time and space or if there were other factors responsible. Such other factors might be: different human motivations to settle the land depending on natural or cultural resources, conflicts in neighboring areas or trading relations. Feedback mechanisms of the anthropogenically altered landscape might also interact and determine settlement and land use dynamics.
Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo
2008-03-01
Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.
Physical modelling of the transport of biogenic emissions in and above a finite forest area
NASA Astrophysics Data System (ADS)
Aubrun, S.; Leitl, B.; Schatzmann, M.
2003-04-01
This study takes part to the project “Emission and CHemical transformation of biogenic volatile Organic compounds: investigations in and above a mixed forest stand” (ECHO) funded by the German atmospheric research program AFO 2000. The contribution of Hamburg University is a better understanding of the transport of biogenic emissions in the atmospheric boundary layer influenced by a very rough environment as a finite forest area. The finite forest area surrounding the Research Centre of Jülich (Germany) was modelled to a scale of 1:300 and studied in the large boundary layer wind tunnel of the Meteorological institute of Hamburg University. The model of the forest must reproduce the resistance to the wind generated by this porous environment. Using rings of metallic mesh to represent some group of trees, some preliminary tests were carried out to find the arrangement of these rings that would provide the appropriate aerodynamic characteristics for a forest. The terrain which precedes the finite forest area, is characteristic of farmlands therefore the approaching flow in the wind tunnel was carefully designed to follow all the aerodynamic properties of a neutral atmospheric boundary layer, developed on a moderately rough surface (cf. VDI guideline 3783). Subsequently, some investigations consisting of dispersion measurements were carried out to reproduce the field tracer-gas experiments processed by the Research Centre of Jülich. The comparison was satisfying and guarantied the quality of the physical model. The constant flow conditions provided by a wind tunnel give the possibility to study the influence of the averaging time on the deduced statistical results. As a consequence, the project was able to directly contribute to quality assurance of field data since one can qualify the reliability and the representativeness of such short-term mean values (averaging time between 10 and 80 minutes). Combined field and laboratory data also provided a data set for model validation purposes. According to the needs of the other project partners, future investigations in wind tunnel will be performed to determine the origin of the emissions received at the specified locations during field campaigns, and to assess their transit time. Some systematic measurements will then be performed to determine the vertical fluxes above the forest area, responsible for the vertical transport of the biogenic emissions.
Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem
Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason
2016-01-01
Drought has long been recognized as a driving mechanism in the forests of western North America and drought-induced mortality has been documented across genera in recent years. Given the frequency of these events are expected to increase in the future, understanding patterns of mortality and plant response to severe drought is important to resource managers. Drought can affect the functional, physiological, structural, and demographic properties of forest ecosystems. Remote sensing studies have documented changes in forest properties due to direct and indirect effects of drought; however, few studies have addressed this at local scales needed to characterize highly heterogeneous ecosystems in the forest-shrubland ecotone. We analyzed a 22-year Landsat time series (1985–2012) to determine changes in forest in an area that experienced a relatively dry decade punctuated by two years of extreme drought. We assessed the relationship between several vegetation indices and field measured characteristics (e.g. plant area index and canopy gap fraction) and applied these indices to trend analysis to uncover the location, direction and timing of change. Finally, we assessed the interaction of climate and topography by forest functional type. The Normalized Difference Moisture Index (NDMI), a measure of canopy water content, had the strongest correlation with short-term field measures of plant area index (R2 = 0.64) and canopy gap fraction (R2 = 0.65). Over the entire time period, 25% of the forested area experienced a significant (p-value < 0.05) negative trend in NDMI, compared to less than 10% in a positive trend. Coniferous forests were more likely to be associated with a negative NDMI trend than deciduous forest. Forests on southern aspects were least likely to exhibit a negative trend while north aspects were most prevalent. Field plots with a negative trend had a lower live density, and higher amounts of standing dead and down trees compared to plots with no trend. Our analysis identifies spatially explicit patterns of long-term trends anchored with ground based evidence to highlight areas of forest that are resistant, persistent or vulnerable to severe drought. The results provide a long-term perspective for the resource management of this area and can be applied to similar ecosystems throughout western North America.
Lin, Chinsu; Thomson, Gavin; Hung, Shih-Hsiang; Lin, Yu-Dung
2012-12-30
This study introduces a GIS-based protocol for the simulation and evaluation of thinning treatments in recreational forest management. The protocol was implemented in a research study based on an area of recreational forest in Alishan National Scenic Area, Taiwan. Ground survey data were mapped to a GIS database, to create a precise, yet flexible, GIS-based digital forest. The digital forest model was used to generate 18 different thinning scenario images and one image of the existing unthinned forest. A questionnaire was completed by 456 participants while simultaneously viewing the scenario images. The questionnaire was used to determine the scenic beauty preferences of the respondents. Statistical analysis of the data revealed that the respondents preferred low density, upper-storey thinning treatments and a dispersed retention pattern of the remaining trees. High density upper-storey treatments evoked a strongly negative reaction in the observers. The experiment demonstrated that the proposed protocol is suitable for selecting an appropriate thinning strategy for recreational forest and that the protocol has practical value in recreational forest management. Copyright © 2012 Elsevier Ltd. All rights reserved.
Factors affecting the remotely sensed response of coniferous forest plantations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danson, F.M.; Curran, P.J.
1993-01-01
Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response ofmore » a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.« less
Yang Yang; Ruth D. Yanai; Charles T. Driscoll; Mario Montesdeoca; Kevin T. Smith
2018-01-01
Mercury (Hg) is deposited from the atmosphere to remote areas such as forests, but the amount of Hg in trees is not well known. To determine the importance of Hg in trees, we analyzed foliage, bark and bole wood of eight tree species at four sites in the northeastern USA (Huntington Forest, NY; Sleepers River, VT; Hubbard Brook, NH; Bear Brook, ME). Foliar...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, D.H.
The recovery of lowland rainforest vegetation on the Island of Hawaii was evaluated 2 years after clearcutting. Rainforest quality was assessed with regeneration success associated with the environmental changes. Sixty-three percent of the 57 vascular species in the forest were native to the Hawaiian rainforest. Phanerophytes were the most important life form. The presence of Psidium cattleianum and other alien species demonstrated disturbances had occurred in selected areas prior to the clearcutting. Two years after clearcutting (1987), only 24% of the 101 species coming into the clearcut area were native. The shrubs, micro- and nano-phanerophyte, were the dominant life forms,more » represented by Pipturus albidus, a native rainforest shrub or tree, and four non-native shrub species. Metrosideros polymorpha, the dominant tree in the native forest, was successfully regenerating from seed across the clear-cut area. The forest seedbank analysis also demonstrated that Metrosideros, along with the seeds of important exotic species colonizing the clearcut area were presented in the forest soils. The forest and clearcut species had a high rate of correlation with the elevation gradient. The underlying lava flows strong influenced past and present vegetation associations. In the clearcut area, the degree of compaction and distance from the forest were critical factors determining the composition of recovering vegetation. The microclimate variables of soils, significantly altered due to the effects of clearcutting, and competition from weeds probably lead to poor germination and growth of native rainforest species. This native forest is not pristine, but unique in stature, in complex of cohort stands, and in position on the landscape. It is extremely prone to species composition shift following perturbation, due to the presence of the weed seedbank in the forest seedbank as demonstrated in the dominance of these species across the clearcut area.« less
NASA Astrophysics Data System (ADS)
Scaranello, M. A., Sr.; Keller, M. M.; dos-Santos, M. N.; Longo, M.; Pinagé, E. R.; Leitold, V.
2016-12-01
Coarse woody debris is an important but infrequently quantified carbon pool in tropical forests. Based on studies at 12 sites spread across the Brazilian Amazon, we quantified coarse woody debris stocks in intact forests and forests affected by different intensities of degradation by logging and/or fire. Measurement were made in-situ and for the first time field measurements of coarse woody debris were related to structural metrics derived from airborne lidar. Using the line-intercept method we established 84 transects for sampling fallen coarse woody debris and associated inventory plots for sampling standing dead wood in intact, conventional logging, reduced impact logging, burned and burned after logging forests. Overall mean and standard deviation of total coarse woody debris were 50.0 Mg ha-1 and 26.4 Mg ha-1 respectively. Forest degradation increased coarse woody debris stocks compared to intact forests by a factor of 1.7 in reduced impact logging forests and up to 3-fold in burned forests, in a side-by-side comparison of nearby areas. The ratio between coarse woody debris and biomass increased linearly with number of degradation events (R²: 0.67, p<0.01). Individual lidar-derived structural variables strongly correlated with coarse woody debris in intact and reduced impact logging forests: the 5th percentile of last returns for in intact forests (R²: 0.78, p<0.01) and forest gap area, mapped using lidar-derived canopy height model, for reduced impact logging forests (R²: 0.63, p<0.01). Individual gap area also played a weak but significant role in determining coarse woody debris in burned forests (R2: 0.21, p<0.05), but with contrasting trend. Both degradation-specific and general multiple models using lidar-derived variables were good predictor of coarse woody debris stocks in different degradation levels in the Brazilian Amazon. The strong relation of coarse woody debris with lidar derived structural variables suggests an approach for quantifying infrequently measured coarse woody debris over large areas.
Planting aspen to rehabilitate riparian areas: a pilot study
Wayne D. Shepperd; Stephen A. Mata
2005-01-01
We planted 742 greenhouse-grown containerized aspen seedlings in the riparian area of Hurd Creek on the Arapaho National Forest east of Tabernash, Colorado. Objectives were to (1) determine whether aspen seedlings can be planted in an operational setting and survive in sufficient numbers to successfully establish a mature aspen stand and (2) determine the effectiveness...
Ecological-niche modeling and prioritization of conservation-area networks for Mexican herpetofauna.
Urbina-Cardona, J Nicolás; Flores-Villela, Oscar
2010-08-01
One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. We used maximum-entropy niche modeling to run distribution models for 222 amphibian and 371 reptile species (49% endemics and 27% threatened) for which we had 34,619 single geographic records. The planning region is in southeastern Mexico, is 20% of the country's area, includes 80% of the country's herpetofauna, and lacks an adequate protected-area system. We used probabilistic data to build distribution models of herpetofauna for use in prioritizing conservation areas for three target groups (all species and threatened and endemic species). The accuracy of species-distribution models was better for endemic and threatened species than it was for all species. Forty-seven percent of the region has been deforested and additional conservation areas with 13.7% to 88.6% more native vegetation (76% to 96% of the areas are outside the current protected-area system) are needed. There was overlap in 26 of the main selected areas in the conservation-area network prioritized to preserve the target groups, and for all three target groups the proportion of vegetation types needed for their conservation was constant: 30% pine and oak forests, 22% tropical evergreen forest, 17% low deciduous forest, and 8% montane cloud forests. The fact that different groups of species require the same proportion of habitat types suggests that the pine and oak forests support the highest proportion of endemic and threatened species and should therefore be given priority over other types of vegetation for inclusion in the protected areas of southeastern Mexico.
Estimation of carbon emissions from wildfires in Alaskan boreal forests using AVHRR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasischke, E.S.; French, N.H.F.; Bourgeau-Chavez, L.L
1993-06-01
The objectives of this research study were to evaluate the utility of using AVHRR data for locating and measuring the areal extent of wildfires in the boreal forests of Alaska and to estimate the amount of carbon being released during these fires. Techniques were developed to using the normalized difference vegetation signature derived from AVHRR data to detect and measure the area of fires in Alaska. A model was developed to estimate the amount of biomass/carbon being stored in Alaskan boreal forests, and the amount of carbon released during fires. The AVHRR analysis resulted in detection of > 83% ofmore » all forest fires greater than 2,000 ha in size in the years 1990 and 1991. The areal estimate derived from AVHRR data were 75% of the area mapped by the Alaska Fire Service for these years. Using fire areas and locations for 1954 through 1992, it was determined that on average, 13.0 gm-C-m-2 of boreal forest area is released during fires every year. This estimate is two to six times greater than previous reported estimates. Our conclusions are that the analysis of AVHRR data represents a viable means for detecting and mapping fires in boreal regions on a global basis.« less
Weather Observation Systems and Efficiency of Fighting Forest Fires
NASA Astrophysics Data System (ADS)
Khabarov, N.; Moltchanova, E.; Obersteiner, M.
2007-12-01
Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.
Edward A. Johnson
1980-01-01
As coal production increases, forestry will become an increasingly important land use both before and after mining activity. New studies are needed to determine the long-range effect of mining in forested areas and to maximize the production of wood products on reclaimed areas.
Doyle, T.W.; Krauss, K.W.; Conner, W.H.; From, A.S.
2010-01-01
Tidal freshwater forests in coastal regions of the southeastern United States are undergoing dieback and retreat from increasing tidal inundation and saltwater intrusion attributed to climate variability and sea-level rise. In many areas, tidal saltwater forests (mangroves) contrastingly are expanding landward in subtropical coastal reaches succeeding freshwater marsh and forest zones. Hydrological characteristics of these low-relief coastal forests in intertidal settings are dictated by the influence of tidal and freshwater forcing. In this paper, we describe the application of the Sea Level Over Proportional Elevation (SLOPE) model to predict coastal forest retreat and migration from projected sea-level rise based on a proxy relationship of saltmarsh/mangrove area and tidal range. The SLOPE model assumes that the sum area of saltmarsh/mangrove habitat along any given coastal reach is determined by the slope of the landform and vertical tide forcing. Model results indicated that saltmarsh and mangrove migration from sea-level rise will vary by county and watershed but greater in western Gulf States than in the eastern Gulf States where millions of hectares of coastal forest will be displaced over the next century with a near meter rise in relative sea level alone. Substantial losses of coastal forests will also occur in the eastern Gulf but mangrove forests in subtropical zones of Florida are expected to replace retreating freshwater forest and affect regional biodiversity. Accelerated global eustacy from climate change will compound the degree of predicted retreat and migration of coastal forests with expected implications for ecosystem management of State and Federal lands in the absence of adaptive coastal management.
NASA Astrophysics Data System (ADS)
Bholanath, P.; Cort, K.
2015-04-01
Monitoring deforestation and forest degradation at national scale has been identified as a national priority under Guyana's REDD+ Programme. Based on Guyana's MRV (Monitoring Reporting and Verification) System Roadmap developed in 2009, Guyana sought to establish a comprehensive, national system to monitor, report and verify forest carbon emissions resulting from deforestation and forest degradation in Guyana. To date, four national annual assessments have been conducted: 2010, 2011, 2012 and 2013. Monitoring of forest change in 2010 was completed with medium resolution imagery, mainly Landsat 5. In 2011, assessment was conducted using a combination of Landsat (5 and 7) and for the first time, 5m high resolution imagery, with RapidEye coverage for approximately half of Guyana where majority of land use changes were taking place. Forest change in 2013 was determined using high resolution imagery for the whole of Guyana. The current method is an automated-assisted process of careful systematic manual interpretation of satellite imagery to identify deforestation based on different drivers of change. The minimum mapping unit (MMU) for deforestation is 1 ha (Guyana's forest definition) and a country-specific definition of 0.25 ha for degradation. The total forested area of Guyana is estimated as 18.39 million hectares (ha). In 2012 as planned, Guyana's forest area was reevaluated using RapidEye 5 m imagery. Deforestation in 2013 is estimated at 12 733 ha which equates to a total deforestation rate of 0.068%. Significant progress was made in 2012 and 2013, in mapping forest degradation. The area of forest degradation as measured by interpretation of 5 m RapidEye satellite imagery in 2013 was 4 352 ha. All results are subject to accuracy assessment and independent third party verification.
Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu
2016-02-01
In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA).
Hacisalihoglu, Sezgin
2007-04-01
Inappropriate land use is one of the main reasons for soil erosion and land degradation. Vine growing plays an important role in many semiarid regions all over the world as a permanent plant cover in terms of preventing erosion, sustainable use of land and water resources, defense against desertification and settling population in rural areas. In this paper, in a steep hill slope of the village Mertesdorf (Ruwertal/Germany), Algemeine boden abtrags gleichung (ABAG) have been applied to determine and compare the soil erosion amounts between the different land use types such as vine growing, forest lands, grasslands, shrubs and new forestations. The results show that the soil erosion amounts differs in a high ratio between the land use types. Soil erosion amounts in the vine growing areas are the highest (6.47 t/ha/year), then comes with 1.19 t/ha/year the over grazed grasslands and the lowest erosion amounts have been determined, as expected, in the forest lands (0.66 t/ha/year).
Oner, Nuri; Dogan, Hasan Huseyin; Ozturk, Celaleddin; Gurer, Meral
2009-07-01
Fungal diseases, site and stand characteristics were investigated in Yenice forest sub-district headquarters belonging to Ilgaz forest enterprise. Diseases and wood decaying fungi on fallen and cut tree stumps were determined on scots pine (Pinus sylvestris), crimean pine (P. nigra subsp. nigra varcaramanica), and uludag fir (Abies nordmanniana subsp. bommulleriana). Altitude (m), exposure, slope (%), relief, rate of mixture (%) and anthropogenic effects were noted for 56 sample plots which have various stand compositions. Age, breast height diameter (cm), top height (m), crown and bole quality regeneration quality and development of representative tree species were also recorded into vegetation forms. Yellow witches' broom (Melampsorella caryophyllacearum), which caused drying of uludag fir trees, was determined. Besides, 53 macrofungi species belonging to 3 divisions, 10 orders, 25 families and 36 genera were determined. Some of them cause white and brown decay on living and core wood. The most common parasitic and saprobe fungi are Galerina Ganoderma, Gloeophyllum, Gymnopilus, Hypholoma, Lentinus, Phellinus, Pleurotus, Polyporus and Stereum species in the research area. Trichaptum abietinum is also typical wood decay fungi for living or cut fir trees and it is very common in the research area.
Chapter 10: Marbled Murrelet Inland Patterns of Activity: Defining Detections and Behavior
Peter W.C. Paton
1995-01-01
This chapter summarizes terminology and methodology used by Marbled Murrelet (Brachyramphus marmoratus) biologists when surveying inland forests. Information is included on the types of behaviors used to determine if murrelets may be nesting in an area, and the various types of detections used to quantify murrelet use of forest stands. Problems with...
Jared D. Wolfe; Philip C. Stouffer; Karl Mokross; Luke L. Powell; Marina M. Anciães
2015-01-01
Avian diversity in fragmented Amazonian landscapes depends on a balance between extinction and colonization in cleared and disturbed areas. Regenerating forest facilitates bird dispersal within degraded Amazonian landscapes and may tip the balance in favor of persistence in habitat patches. Determining the response of Amazonian birds to fragmentation may be...
Suggested stocking levels for forest stands in northeastern Oregon and southeastern Washington.
P.H. Cochran; J.M. Geist; D.L. Clemens; Rodrick R. Clausnitzer; David C. Powell
1993-01-01
Catastrophes and manipulation of stocking levels are important determinants of stand development and the appearance of future forest landscapes. Managers need stocking level guides, particularly for sites incapable of supporting stocking levels presented in normal yield tables. Growth basal area (GBA) has been used by some managers in attempts to assess inherent...
Estimating historical snag density in dry forests east of the Cascade Range
Richy J. Harrod; William L. Gaines; William E. Hartl; Ann. Camp
1998-01-01
Estimating snag densities in pre-European settlement landscapes (i.e., historical conditions) provides land managers with baseline information for comparing current snag densities. We propose a method for determining historical snag densities in the dry forests east of the Cascade Range. Basal area increase was calculated from tree ring measurements of old ponderosa...
Implementing a land cover stratification on-the-fly
Ronald E. McRoberts; Daniel G. Wendt
2002-01-01
Stratified estimation is used by the Forest Inventory and Analysis program of the USDA Forest Service to increase the precision of county-level inventory estimates. Stratified estimation requires that plots be assigned to strata and that proportions of land area in each strata be determined. Classified satellite imagery has been found to be an efficient and effective...
Stand dynamics of relict red spruce in the Alarka Creek headwaters, North Carolina
Beverly Collins; Thomas M. Schuler; W. Mark Ford; Danielle. Hawkins
2010-01-01
Disjunct red spruce (Picea rubens Sarg.) forests in the southern Appalachians can serve as models for understanding past and future impacts of climate change and other perturbations for larger areas of high-elevation forests throughout the Appalachians. We conducted a vegetation and dendrochronological survey to determine the age, size class, and...
Five years of monitoring infection and mortality in redwood tanoak forests
Richard C. Cobb; Shannon C. Lynch; Ross K. Meentemeyer; David M. Rizzo
2008-01-01
Rates of disease incidence and tree mortality in redwood-tanoak forests were determined by repeated sampling across a system of 120 plots at five long-term research sites from 2001 through 2006. Plots were located within the known geographic area of Phytophthora ramorum in California, ranging from Monterey to Sonoma counties. All overstory species...
Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils
Mark Kimsey; Brian Gardner; Alan Busacca
2007-01-01
Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...
Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment
John B. Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan
2009-01-01
Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass,...
Effects of repeated burning on snag abundance in shortleaf pine woodlands
Roger W. Perry; Phillip N. Jordan; Virginia L. McDaniel
2017-01-01
Forest managers are restoring and maintaining forest woodlands across substantial areas of the United States, and these efforts typically require the use of frequent prescribed fire. The effects of frequent prescribed fire on important habitat components such as snags remain unknown. We conducted a study to determine how snag densities are affected by repeated...
Ancient human disturbances may be skewing our understanding of Amazonian forests
McMichael, Crystal N. H.; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J.
2017-01-01
Although the Amazon rainforest houses much of Earth’s biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests. PMID:28049821
Atmospheric deposition in coniferous and deciduous tree stands in Poland
NASA Astrophysics Data System (ADS)
Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta
2016-05-01
The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and beech stands.
NASA Technical Reports Server (NTRS)
Isaacson, D. L.; Smith, H. G.; Alexander, C. J. (Principal Investigator)
1980-01-01
The depth, texture, and water holding capacity of the soil before the fire in the Bridge Creek area of Deschutes National Forest (1979) were determined from available aerial photography and LANDSAT MSS digital data. Three days after the fire was out, complete coverage of the burned area was acquired on 35 mm color infrared film from a near vertical or low oblique perspective. These photographs were used in assessing the condition of vegetation, and in predicting the likelihood of survival. Negatives from vertical natural photography obtained during the same flight were used to produce 3R prints from which large scale mosaics of the entire burned area were obtained. LANDSAT MSS data obtained on the day the fire was under control were used to evaluate vegetative vigor (by calculating a band 7/band 5 ratio value for each spectral class) and to determine the boundary between altered and unaltered land.
Ecosystem Carbon Emissions from 2015 Forest Fires in Interior Alaska
NASA Technical Reports Server (NTRS)
Potter, Christopher S.
2018-01-01
In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high). Results: Field measurements indicated that the loss of surface organic layers in boreal ecosystem fires is a major factor determining post-fire soil temperature changes, depth of thawing, and carbon losses from the mineral topsoil layer. Measurements in forest sites showed that soil temperature profiles to 30 cm depth at burned forest sites increased by an average of 8o - 10o C compared to unburned forest sites. Sampling and laboratory analysis indicated a 65% reduction in soil carbon content and a 58% reduction in soil nitrogen content in severely burned sample sites compared to soil mineral samples from nearby unburned spruce forests. Conclusions: Combined with nearly unprecedented forest areas severely burned in the Interior region of Alaska in 2015, total ecosystem fire emission of carbon to the atmosphere exceeded most previous estimates for the state.
Seasonal variations in rainfall-induced soil erosion from forest roads in a Mediterranean area
NASA Astrophysics Data System (ADS)
Jordán, Antonio; Zavala, Lorena M.; Gil, Juan
2014-05-01
1. INTRODUCTION Land use change and the development of rural and eco-tourist activities have contributed to a strong development of forest roads in Spain during recent decades. Most of forest roads cause significant hydrological and geomorphological impacts at different scales, altering the runoff-runon patterns, the direction and properties of runoff water, and subsurface water flow. Some of these effects are caused by the removal of native vegetation from backslopes (Martínez-Zavala et al., 2008), which contributes to increased soil erosion and sediment yield in areas where natural soil erosion risk is usually low (Jordán and Martínez-Zavala, 2008; Jordán-López et al., 2009). Rainfall intensity, soil moisture, slope and vegetation cover are key factors for erosion risk in forest roads (Jordán and Martínez-Zavala, 2008; Cao et al., 2013). 2. METHODS Sixty backslopes with plant cover varying between dense shrubs and bare soil were selected. Rainfall simulations (90 mm/h during 20 minutes) were performed in winter (December 2012 - January 2013) and summer (August - September 2013) to study the effect of rainstorms at the end and beginning of the rainy season. Surface runoff was collected to determine runoff rates and sediment yields. Plant cover, rock fragment cover and the area covered by biological crusts were determined at each plot. Slope was determined with a portable clinometer (all selected plots were in the range 41-76%). 3. RESULTS Although soil loss was increased in winter, when soil moisture is higher, small differences were observed at vegetation cover above 75%. Plant cover above 40% considerably reduced sediment yield and runoff flow. In contrast, differences triggered between different plots with decreasing vegetation cover. In bare areas, rock fragments and biological crusts (mosses, lichens, liverworts and fungi) caused great differences between bare areas both during summer and winter periods. REFERENCES Cao, L., Zhang, K., Dai, H., Liang, Y. 2013. Modeling interrill erosion on unpaved roads in the Loess Plateau of China, Land Degradation & Development. DOI: 10.1002/ldr.2253 Jordán, A., Martínez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management 255, 913-919. DOI: 10.1016/j.foreco.2007.10.002. Jordán-López, A., Martínez-Zavala, L., Bellinfante, N. 2009. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Science of the Total Environment 407, 937-944. DOI: 10.1016/j.scitotenv.2008.09.047. Martínez-Zavala, L., Jordán López, A., Bellinfante, N. 2008. Seasonal variability of runoff and soil loss on forest road backslopes under simulated rainfall. Catena 74, 73-79. DOI: 10.1016/j.catena.2008.03.006.
Halofsky, Joshua S; Halofsky, Jessica E; Burcsu, Theresa; Hemstrom, Miles A
Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate-informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active management scenario characterized by light to moderate thinning from below and some prescribed fire, planting, and salvage logging. Without climate change, area in dry province forest types remained constant. With climate change, dry mixed-conifer forests increased in area (by an average of 21–26% by 2100), and moist mixed-conifer forests decreased in area (by an average of 36–60% by 2100), under both management scenarios. Average area in dry mixed-conifer forests varied little by management scenario, but potential decreases in the moist mixed-conifer forest were lower with active management. With changing climate in the dry province of central Oregon, our results suggest the likelihood of sustaining current levels of dense, moist mixed-conifer forests with large-diameter, old trees is low (less than a 10% chance) irrespective of management scenario; an opposite trend was observed under no climate change simulations. However, results also suggest active management within the dry and moist mixed-conifer forests that creates less dense forest conditions can increase the persistence of larger-diameter, older trees across the landscape. Owing to projected increases in wildfire, our results also suggest future distributions of tree structures will differ from the present. Overall, our projections indicate proactive management can increase forest resilience and sustain some societal values, particularly in drier forest types. However, opportunities to create more disturbance-adapted systems are finite, all values likely cannot be sustained at current levels, and levels of resilience success will likely vary by dry province forest type. Land managers planning for a future without climate change may be assuming a future that is unlikely to exist.
Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes
Talbot, J. J.; Pettinger, Lawrence R.
1981-01-01
Factors limiting the application of Landsat data—including relatively low spatial resolution, persistent cloud cover in tropical regions, inadequate coverage of certain areas due to data-acquisition restraints and lack of local Landsat data receiving stations for real-time data recording—must be considered in any proposed study. Future improvements in Landsat capabilities might extend present applications beyond distinction of forest vs. non-forest cover, determination of gross vegetation or forest type, and generalized land use mapping.
Domingues, Tomas Ferreira; Ishida, F Yoko; Feldpausch, Ted R; Grace, John; Meir, Patrick; Saiz, Gustavo; Sene, Olivier; Schrodt, Franziska; Sonké, Bonaventure; Taedoumg, Herman; Veenendaal, Elmar M; Lewis, Simon; Lloyd, Jon
2015-07-01
Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were-on average-slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.
Assessment of vegetation change in a fire-altered forest landscape
NASA Technical Reports Server (NTRS)
Jakubauskas, Mark E.; Lulla, Kamlesh P.; Mausel, Paul W.
1990-01-01
This research focused on determining the degree to which differences in burn severity relate to postfire vegetative cover within a Michigan pine forest. Landsat MSS data from June 1973 and TM data from October 1982 were classified using an unsupervised approach to create prefire and postfire cover maps of the study area. Using a raster-based geographic information system (GIS), the maps were compared, and a map of vegetation change was created. An IR/red band ratio from a June 1980 Landsat scene was classified to create a map of three degres of burn severity, which was then compared with the vegetation change map using a GIS. Classification comparisons of pine and deciduous forest classes (1973 to 1982) revealed that the most change in vegetation occurred in areas subjected to the most intense burn. Two classes of regenerating forest comprised the majority of the change, while the remaining change was associated with shrub vegetation or another forest class.
Liu, Chang-Fu; He, Xing-Yuan; Chen, Wei; Zhao, Gui-Ling; Xue, Wen-Duo
2008-06-01
Based on the fractal theory of forest growth, stepwise regression was employed to pursue a convenient and efficient method of measuring the three-dimensional green biomass (TGB) of urban forests in small area. A total of thirteen simulation equations of TGB of urban forests in Shenyang City were derived, with the factors affecting the TGB analyzed. The results showed that the coefficients of determination (R2) of the 13 simulation equations ranged from 0.612 to 0.842. No evident pattern was shown in residual analysis, and the precisions were all higher than 87% (alpha = 0.05) and 83% (alpha = 0.01). The most convenient simulation equation was ln Y = 7.468 + 0.926 lnx1, where Y was the simulated TGB and x1 was basal area at breast height per hectare (SDB). The correlations between the standard regression coefficients of the simulation equations and 16 tree characteristics suggested that SDB was the main factor affecting the TGB of urban forests in Shenyang.
Black bear habitat use in relation to food availability in the Interior Highlands of Arkansas
Clark, Joseph D.; Clapp, Daniel L.; Smith, Kimberly G.; Ederington, Belinda
1994-01-01
A black bear (Ursus americanus) food value index (FVI) was developed and calculated for forest cover type classifications on Ozark Mountain (White Rock) and Ouachita Mountain (Dry Creek) study areas in western Arkansas. FVIs are estimates of bear food production capabilities of the major forest cover types and were calculated using percent cover, mean fruit production scorings, and the dietary percentage of each major plant food species as variables. Goodness-of-fit analyses were used to determine use of forest cover types by 23 radio-collared female bears. Habitat selection by forest cover type was not detected on White Rock but was detected on Dry Creek. Use of habitats on Dry Creek appeared to be related to food production with the exception of regeneration areas, which were used less than expected but had a high FVI ranking. In general, pine cover types had low FVI rankings and were used less than expected by bears. Forest management implications are discussed.
Fast changes in seasonal forest communities due to soil moisture increase after damming.
do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio
2013-12-01
Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil moisture in the dry season, making plant growth easier. We concluded that several changes occurred in the T0-T2 period and at 0-30 m to the impoundment, mainly for the deciduous forests, where this community turned into a "riparian-deciduous forest" with large basal area in these patches. However, unlike other transitory disturbances, damming is a permanent alteration and transforms the landscape to a different scenario, probably with major long-term consequences for the environment.
NASA Astrophysics Data System (ADS)
Hasimoto Fengler, Felipe; Leite de Moraes, Jener Fernando; Irio Ribeiro, Admilson; Peche Filho, Afonso; Araujo de Medeiros, Gerson; Baldin Damame, Desirée; Márcia Longo, Regina
2015-04-01
In Brazil is common practice the concurrency of large urban centers water catchment in distant sites. There's no policy to preserve strategic springs in the urban territory. Thus, rural areas, located in the surrounds of municipals, usually provide water and others environment services to the population that reside on cities. The Jundiaí-Mirim river basin, located in the most urbanized state in Brazil, São Paulo, composes an interesting example of this situation. It is located in a rural area near large urban centers, with large industrial parks, near the capital of state. As result of expansion of the cities on its surrounds their lands have had a historic of monetary valorization, making its territories attractive to the housing market. Consequently, the region has an intense process of urbanization that resulted in an increasing environmental disturbance in the areas of natural vegetation. In the other hand, the watershed is the principal water supplier of Jundiaí city, and houses forest remaining of an important Biome in Brazil, the Atlantic Rain Forest. Given the need to preserve its water production capacity and the forest remnants there, this study modeled the environmental quality of forest fragments through indicators of disturbance and evaluated the changes that occur between 1972 and 2013 using the Markov Chain model. The environment quality was determined by nine indicators of environmental disturbance (distance of urban areas, roads, edge land use, size, distance of others forest fragments, land capacity of use, watershed forest cover, number of forest fragments in the watersheds, shape of the forest fragment), obtained by techniques of Geoprocessing, and integrated by Multicriteria Analysis. The Markov Chain model showed a constant tendency of deteriorating in natural vegetation environmental quality, attributed to the intense process of occupation of the river basin. The results showed a historical trend of transformation in forest fragments with very low environmental quality to others uses and a static behavior of forest fragments with high environmental quality. It was explained by the tendency of occupation in forest fragments near urban areas, roads, with small size and high perturbation, and difficulties in occupation of forest fragments with high size, isolated from urban areas end roads. It was concluded that: (a) urbanization and deforestation of natural vegetation were primarily responsible for changes in environmental quality; (b) there is a need to create public policies to preserve the natural vegetation in the Jundiaí-Mirim river basin.
Ayanu, Yohannes; Conrad, Christopher; Jentsch, Anke; Koellner, Thomas
2015-01-01
The worldwide demand for food has been increasing due to the rapidly growing global population, and agricultural lands have increased in extent to produce more food crops. The pattern of cropland varies among different regions depending on the traditional knowledge of farmers and availability of uncultivated land. Satellite images can be used to map cropland in open areas but have limitations for detecting undergrowth inside forests. Classification results are often biased and need to be supplemented with field observations. Undercover cropland inside forests in the Bale Mountains of Ethiopia was assessed using field observed percentage cover of land use/land cover classes, and topographic and location parameters. The most influential factors were identified using Boosted Regression Trees and used to map undercover cropland area. Elevation, slope, easterly aspect, distance to settlements, and distance to national park were found to be the most influential factors determining undercover cropland area. When there is very high demand for growing food crops, constrained under restricted rights for clearing forest, cultivation could take place within forests as an undercover. Further research on the impact of undercover cropland on ecosystem services and challenges in sustainable management is thus essential. PMID:26098107
Ayanu, Yohannes; Conrad, Christopher; Jentsch, Anke; Koellner, Thomas
2015-01-01
The worldwide demand for food has been increasing due to the rapidly growing global population, and agricultural lands have increased in extent to produce more food crops. The pattern of cropland varies among different regions depending on the traditional knowledge of farmers and availability of uncultivated land. Satellite images can be used to map cropland in open areas but have limitations for detecting undergrowth inside forests. Classification results are often biased and need to be supplemented with field observations. Undercover cropland inside forests in the Bale Mountains of Ethiopia was assessed using field observed percentage cover of land use/land cover classes, and topographic and location parameters. The most influential factors were identified using Boosted Regression Trees and used to map undercover cropland area. Elevation, slope, easterly aspect, distance to settlements, and distance to national park were found to be the most influential factors determining undercover cropland area. When there is very high demand for growing food crops, constrained under restricted rights for clearing forest, cultivation could take place within forests as an undercover. Further research on the impact of undercover cropland on ecosystem services and challenges in sustainable management is thus essential.
NASA Astrophysics Data System (ADS)
Dąbek, Paweł; Żmuda, Romuald; Szczepański, Jakub; Ćmielewski, Bartłomiej; Patrzałek, Ciechosław
2013-04-01
The paper presents the results of the analysis of the water erosion processes of soil occurring in forestry mountain catchment area in the region of West Sudetes Mountain in Poland. The research was carried out within the experimental area of skid trails (operational trails), which were used to the end of 2010 in obtaining wood and its mechanical transport to the place of storage. As a consequence of forestry works that were carried out it was changing the natural structure of ground and its surface on the wooded slopes, which, combined with the favorable hydro-meteorological conditions contributed to the intensification of the water erosion processes of soil on surface of trails. For the implementation of the research project of the analysis of water erosion processes in the forestry catchment area innovative was used terrestrial laser scanning. Using terrestrial laser scanning has enabled the analysis of the dynamics of erosion processes both in time, as well as in spatial and quantitative terms. Scanning was performed at a resolution of 4 mm, resulting in 62 500 points per 1 square meter. After filtering the data were interpolated to other resolution of 1 cm, which can identify even the smallest linear and surface effects of erosion. While installed on the experimental area, along the skid trails, anti-erosion barriers in order to reduce transport eroded material and allow its accumulation. Allowed to precisely determine the location of areas of accumulation, the rate and amount of accumulated material. The result of the analyses that was carried out is identification areas of denudation of the eroded material, and also determine the intensity of the erosion processes and their quantitative analysis. The long-term researches on hydrological conditions and forest complexes functioning show that forest effectively stores water, limits linear and surface flow and delays water outflow from a catchment. Carried out a research project using the terrestrial laser scanning shows that anthropogenic activities in the form of forest management and their effects in the form of dense network of forest roads and skid trails and obtaining wood diminish correct functioning of a forest or even increase the phenomenon of erosion. Submit the results of the analysis consider the problem of dynamics and intensity of erosion processes in mountain areas, and show the effectiveness of the methodology of research.
NASA Astrophysics Data System (ADS)
Febrina, W. K.; Marjenah; Sumaryono
2018-04-01
The reforestation activities of mangrove forest carried out in various regions have not been well known as the success and influence of landscape in rehabilitation area. Utilization of existing land along the coastal Babulu Laut Village has reduced the area of mangrove forest from day to day. Due to the use of land by the community without considering the conservation aspect causes the loss of mangrove forest. This study aims to determine the final condition of the success rate of forest and land rehabilitation, land cover and the benefits of mangrove forest restoration for the surrounding people. The research method used is the preparation and orientation of research location, data input, codefication, data processing, the field verification and analysis of data. The results of the execution of the inventory mangrove in 22 research location in the Babulu Laut Village, Babulu Subdistrict, Penajam Paser Utara District of 125 ha of plant a whole is kind of Rhizophora sp, where the intensity of sampling 2% with the growing plants of 65.92 %or 2,175 stem/ha then success rate of Mangrove Forest Rehabilitation at Babulu Laut Village Babulu Subdistrict is medium level (55-75%).
NASA Astrophysics Data System (ADS)
Magnani, Federico; Dewar, Roderick C.; Borghetti, Marco
2009-04-01
Leakage (spillover) refers to the unintended negative (positive) consequences of forest carbon (C) management in one area on C storage elsewhere. For example, the local C storage benefit of less intensive harvesting in one area may be offset, partly or completely, by intensified harvesting elsewhere in order to meet global timber demand. We present the results of a theoretical study aimed at identifying the key factors determining leakage and spillover, as a prerequisite for more realistic numerical studies. We use a simple model of C storage in managed forest ecosystems and their wood products to derive approximate analytical expressions for the leakage induced by decreasing the harvesting frequency of existing forest, and the spillover induced by establishing new plantations, assuming a fixed total wood production from local and remote (non-local) forests combined. We find that leakage and spillover depend crucially on the growth rates, wood product lifetimes and woody litter decomposition rates of local and remote forests. In particular, our results reveal critical thresholds for leakage and spillover, beyond which effects of forest management on remote C storage exceed local effects. Order of magnitude estimates of leakage indicate its potential importance at global scales.
López-García, José; Manzo-Delgado, Lilia L; Alcántara-Ayala, Irasema
2014-06-01
Forest conservation plays a significant role in environmental sustainability. In Mexico only 8.48 million ha of forest are used for conservation of biodiversity. Payment for Environmental Services in the Monarch Butterfly Biosphere Reserve, one of the most important national protected areas, contributes to the conservation of these forests. In the Reserve, production of rainbow trout has been important for the rural communities who need to conserve the forest cover in order to maintain the hibernation cycle of the butterfly. Aquaculture is a highly productive activity for these protected areas, since it harnesses the existing water resources. In this study, changes from 1999 to 2012 in vegetation and land-use cover in the El Lindero basin within the Reserve were evaluated in order to determine the conservation status and to consider the feasibility of aquaculture as a means of sustainable development at community level. Evaluation involved stereoscopic interpretation of digital aerial photographs from 1999 to 2012 at 1:10,000 scale, comparative analysis by orthocorrected mosaics and restitution on the mosaics. Between 1999 and 2012, forested land recovered by 28.57 ha (2.70%) at the expense of non-forested areas, although forest degradation was 3.59%. Forest density increased by 16.87%. In the 46 ha outside the Reserve, deforestation spread by 0.26%, and land use change was 0.11%. The trend towards change in forest cover is closely related to conservation programmes, particularly payment for not extracting timber, reforestation campaigns and surveillance, whose effects have been exploited for the development of rural aquaculture; this is a new way to improve the socio-economic status of the population, to avoid logging and to achieve environmental sustainability in the Reserve. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pisano, L; Zumpano, V; Malek, Ž; Rosskopf, C M; Parise, M
2017-12-01
Land cover is one of the most important conditioning factors in landslide susceptibility analysis. Usually it is considered as a static factor, but it has proven to be dynamic, with changes occurring even in few decades. In this work the influence of land cover changes on landslide susceptibility are analyzed for the past and for future scenarios. For the application, an area representative of the hilly-low mountain sectors of the Italian Southern Apennines was chosen (Rivo basin, in Molise Region). With this purpose landslide inventories and land cover maps were produced for the years 1954, 1981 and 2007. Two alternative future scenarios were created for 2050, one which follows the past trend (2050-trend), and another one more extreme, foreseeing a decrease of forested and cultivated areas (2050-alternative). The landslide susceptibility analysis was performed using the Spatial Multi-Criteria Evaluation method for different time steps, investigating changes to susceptibility over time. The results show that environmental dynamics, such as land cover change, affect slope stability in time. In fact there is a decrease of susceptibility in the past and in the future 2050-trend scenario. This is due to the increase of forest or cultivated areas, that is probably determined by a better land management, water and soil control respect to other land cover types such as shrubland, pasture or bareland. Conversely the results revealed by the alternative scenario (2050-alternative), show how the decrease in forest and cultivated areas leads to an increase in landslide susceptibility. This can be related to the assumed worst climatic condition leading to a minor agricultural activity and lower extension of forested areas, possibly associated also to the effects of forest fires. The results suggest that conscious landscape management might contribute to determine a significant reduction in landslide susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.
Peh, Kelvin S.-H.; Sonké, Bonaventure; Séné, Olivier; Djuikouo, Marie-Noël K.; Nguembou, Charlemagne K.; Taedoumg, Hermann; Begne, Serge K.; Lewis, Simon L.
2014-01-01
Background Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. Methodology/Principal Findings We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450–800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement–revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. Conclusions/Significance Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species. PMID:24844914
Adams, Amy L; Dickinson, Katharine J M; Robertson, Bruce C; van Heezik, Yolanda
2013-01-01
Invasive species are often favoured in fragmented, highly-modified, human-dominated landscapes such as urban areas. Because successful invasive urban adapters can occupy habitat that is quite different from that in their original range, effective management programmes for invasive species in urban areas require an understanding of distribution, habitat and resource requirements at a local scale that is tailored to the fine-scale heterogeneity typical of urban landscapes. The common brushtail possum (Trichosurus vulpecula) is one of New Zealand's most destructive invasive pest species. As brushtail possums traditionally occupy forest habitat, control in New Zealand has focussed on rural and forest habitats, and forest fragments in cities. However, as successful urban adapters, possums may be occupying a wider range of habitats. Here we use site occupancy methods to determine the distribution of brushtail possums across five distinguishable urban habitat types during summer, which is when possums have the greatest impacts on breeding birds. We collected data on possum presence/absence and habitat characteristics, including possible sources of supplementary food (fruit trees, vegetable gardens, compost heaps), and the availability of forest fragments from 150 survey locations. Predictive distribution models constructed using the programme PRESENCE revealed that while occupancy rates were highest in forest fragments, possums were still present across a large proportion of residential habitat with occupancy decreasing as housing density increased and green cover decreased. The presence of supplementary food sources was important in predicting possum occupancy, which may reflect the high nutritional value of these food types. Additionally, occupancy decreased as the proportion of forest fragment decreased, indicating the importance of forest fragments in determining possum distribution. Control operations to protect native birds from possum predation in cities should include well-vegetated residential areas; these modified habitats not only support possums but provide a source for reinvasion of fragments.
Wang, Xiaoming; Zhou, Guofa; Zhong, Daibin; Wang, Xiaoling; Wang, Ying; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun
2016-06-06
Many developing countries are experiencing rapid ecological changes such as deforestation and shifting agricultural practices. These environmental changes may have an important consequence on malaria due to their impact on vector survival and reproduction. Despite intensive deforestation and malaria transmission in the China-Myanmar border area, the impact of deforestation on malaria vectors in the border area is unknown. We conducted life table studies on Anopheles minimus larvae to determine the pupation rate and development time in microcosms under deforested, banana plantation, and forested environments. The pupation rate of An. minimus was 3.8 % in the forested environment. It was significantly increased to 12.5 % in banana plantations and to 52.5 % in the deforested area. Deforestation reduced larval-to-pupal development time by 1.9-3.3 days. Food supplementation to aquatic habitats in forested environments and banana plantations significantly increased larval survival rate to a similar level as in the deforested environment. Deforestation enhanced the survival and development of An. minimus larvae, a major malaria vector in the China-Myanmar border area. Experimental determination of the life table parameters on mosquito larvae under a variety of environmental conditions is valuable to model malaria transmission dynamics and impact by climate and environmental changes.
Tree cover changes in mamane (Sophora chrysophylla) forests grazed by sheep and cattle
Paul G. Scowcroft
1983-01-01
Using aerial photographs taken in 1954, 1965, and 1975, percentage of tree cover was determined for three sections of the sheep- and cattle-grazed mamane (Sophora chrysophylla) forest of Mauna Kea, Hawaii. In one section, the Ka 'ohe Game Management Area, where grazing by sheep was judged light, tree cover increased slightly during the 21-yr...
Time as a dimension of the sample design in national-scale forest inventories
Francis Roesch; Paul Van Deusen
2013-01-01
Historically, the goal of forest inventories has been to determine the extent of the timber resource. Predictions of how the resource was changing were made by comparing differences between successive inventories. The general view of the associated sample design was with selection probabilities based on land area observed at a discrete point in time. Time was not...
Manuel Colunga-Garcia; Robert A. Haack; Adesoji O. Adelaja
2009-01-01
Freight transportation is an important pathway for the introduction and dissemination of exotic forest insects (EFI). Identifying the final destination of imports is critical in determining the likelihood of EFI establishment. We analyzed the use of regional freight transport information to characterize risk of urban and periurban areas to EFI introductions. Specifc...
Housing growth, forests, and public lands in Northern Wisconsin form 1940 to 2000
Roger B. Hammer; Susan I. Stewart; Todd J. Hawbaker; Volker C. Radeloff
2009-01-01
Rural, forested areas throughout the United States are experiencing strong housing growth with potentially detrimental impacts on the environment. In this paper, we quantify housing growth in Northern Wisconsin over the last sixty years to determine if growth rates were higher near public lands, which may represent an important recreational amenity. We used data from...
Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration
NASA Astrophysics Data System (ADS)
Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.
2009-04-01
The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation. Considering the regeneration medium time, it was necessary approximately 15 years more to reach high forest them to low forest. As the Restinga forest have similar soil fertility parameters, independently of the forest stage development; the time of natural regeneration was determinant to differentiate low and high Restinga forest.
Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ya'akobovitz, A.; Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva; Bedewy, M.
2015-02-02
Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we findmore » that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.« less
Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests
NASA Astrophysics Data System (ADS)
Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.
2015-02-01
Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.
The Biomass mission: a step forward in quantifying forest biomass and structure
NASA Astrophysics Data System (ADS)
LE Toan, T.
2015-12-01
The primary aim of the ESA BIOMASS mission is to determine, for the first time and in a consistent manner, the global distribution of above-ground forest biomass (AGB) in order to provide greatly improved quantification of the size and distribution of the terrestrial carbon pool, and improved estimates of terrestrial carbon fluxes. Specifically, BIOMASS will measure forest carbon stock, as well as forest height, from data provided by a single satellite giving a biomass map covering tropical, temperate and boreal forests at a resolution of around 200 m every 6 months throughout the five years of the mission. BIOMASS will use a long wavelength SAR (P-band) providing three mutually supporting measurement techniques, namely polarimetric SAR (PolSAR), polarimetric interferometric SAR (PolInSAR) and tomographic SAR (TomoSAR). The combination of these techniques will significantly reduce the uncertainties in biomass retrievals by yielding complementary information on biomass properties. Horizontal mapping: For a forest canopy, the P-band radar waves penetrate deep into the canopy, and their interaction with the structure of the forest will be exploited to map above ground biomass (AGB), as demonstrated from airborne data for temperate, boreal forests and tropical forest. Height mapping: By repeat revisits to the same location, the PolInSAR measurements will be used to estimate the height of scattering in the forest canopy. The long wavelength used by BIOMASS is crucial for the temporal coherence to be preserved over much longer timescales than at L-band, for example. 3D mapping: The P-band frequency used by BIOMASS is low enough to ensure penetration through the entire canopy, even in dense tropical forests. As a consequence, resolution of the vertical structure of the forest will be possible using tomographic methods from the multi-baseline acquisitions. This is the concept of SAR tomography, which will be implemented in the BIOMASS mission. The improvement in the quantification of the vegetation structure, will have an important impact in many aspects of ecosystem function, such as carbon cycling and biodiversity. For example, areas of forest loss or degradation and areas of growth or recovery, can be determined by the vegetation structure and its temporal change.
Examining shifts in Carabidae assemblages across a forest-agriculture ecotone.
Leslie, T W; Biddinger, D J; Rohr, J R; Hulting, A G; Mortensen, D A; Fleischer, S J
2014-02-01
Northeastern U.S. farms are often situated adjacent to forestland due to the heterogeneous nature of the landscape. We investigated how forested areas influence Carabidae diversity within nearby crop fields by establishing transects of pitfall traps. Trapping extended across a forest-agriculture ecotone consisting of maize, an intermediate mowed grass margin, and a forest edge. Carabidae diversity was compared among the three habitats, and community and population dynamics were assessed along the transect. We used a principal response curve to examine and visualize community change across a spatial gradient. The highest levels of richness and evenness were observed in the forest community, and carabid assemblages shifted significantly across the ecotone, especially at the forest-grass interface. Despite strong ecotone effects, population distributions showed that some species were found in all three habitats and seemed to thrive at the ecotone. Based on similarity indices, carabid assemblages collected in maize adjacent to forest differed from carabid assemblages in maize not adjacent to forest. We conclude that forest carabid assemblages exhibit high degrees of dissimilarity with those found in agricultural fields and forested areas should thus be retained in agricultural landscapes to increase biodiversity at the landscape scale. However, ecotone species found at forest edges can still noticeably influence carabid community composition within neighboring agricultural fields. Further studies should determine how these shifts in carabid assemblages influence agroecosystem services in relation to ecosystem services observed in fields embedded in an agricultural matrix.
Changes in vegetation cover and composition in the Swedish mountain region.
Hedenås, Henrik; Christensen, Pernilla; Svensson, Johan
2016-08-01
Climate change, higher levels of natural resource demands, and changing land use will likely lead to changes in vegetation configuration in the mountain regions. The aim of this study was to determine if the vegetation cover and composition have changed in the Swedish region of the Scandinavian Mountain Range, based on data from the long-term landscape biodiversity monitoring program NILS (National Inventory of Landscapes in Sweden). Habitat type and vegetation cover were assessed in 1740 systematically distributed permanent field plots grouped into 145 sample units across the mountain range. Horvitz-Thompson estimations were used to estimate the present areal extension of the alpine and the mountain birch forest areas of the mountain range, the cover of trees, shrubs, and plants, and the composition of the bottom layer vegetation. We employed the data from two subsequent 5-year monitoring periods, 2003-2007 and 2008-2012, to determine if there have been any changes in these characteristics. We found that the extension of the alpine and the mountain birch forest areas has not changed between the inventory phases. However, the total tree canopy cover increased in the alpine area, the cover of graminoids and dwarf shrubs and the total cover of field vegetation increased in both the alpine area and the mountain birch forest, the bryophytes decreased in the alpine area, and the foliose lichens decreased in the mountain birch forest. The observed changes in vegetation cover and composition, as assessed by systematic data in a national and regional monitoring scheme, can validate the results of local studies, experimental studies, and models. Through benchmark assessments, monitoring data also contributes to governmental policies and land-management strategies as well as to directed cause and effect analyses.
A study of the dry forest communities in the Dominican Republic.
García-Fuentes, Antonio; Torres-Cordero, Juan A; Ruiz-Valenzuela, Luis; Lendínez-Barriga, María Lucía; Quesada-Rincón, Juan; Valle-Tendero, Francisco; Veloz, Alberto; León, Yolanda M; Salazar-Mendías, Carlos
2015-03-01
This paper is a floristic and phytosociological study of the dry forest communities of the Dominican Republic. A total of 69 relevés in dry forest biotopes were carried out. The samples were subsequently subjected to Detrended Correspondence Analysis for the determination and study of possible groupings. The study does not cover tree formations growing on serpentines, nor the so-called semideciduous forests, peculiar to areas with higher rainfall. A total of nine phytocoenoses were identified. The most significant results led to the description of six new phytosociological associations: Simaroubetum berteroani (thorny dry forest on coastal dunes), Phyllostylo rhamnoidis-Prosopidetum juliflorae (southern Dominican disturbed dry forest), Consoleo moniliformis-Camerarietum linearifoliae (dry forest on hard limestones), Lemaireocereo hystricis-Prosopidetum juliflorae (northern Dominican disturbed dry forest), Lycio americani-Prosopidetum juliflorae (disturbed dry forest on saline soils) and Guettardo ellipticae-Guapiretum discoloris (dry forest on flat-topped hillocks in Montecristi). This is an important step forward in the phytosociological and floristic studies of the Caribbean territories.
Forest cover change and fragmentation using Landsat data in Maçka State Forest Enterprise in Turkey.
Cakir, Günay; Sivrikaya, Fatih; Keleş, Sedat
2008-02-01
Monitoring forest cover change and understanding the dynamic of forest cover is increasingly important in sustainable development and management of forest ecosystems. This paper uses remote sensing (RS) techniques to monitor forest cover change in Maçka State Forest Enterprise (MSFE) located in NE of Turkey through 1975 to 2000 and then analyses spatial and temporal changes in forest cover by Geographical Information Systems (GIS) and FRAGSTATStrade mark. Forest cover changes were detected from a time series of satellite images of Landsat MSS in 1975, Landsat TM in 1987, and Landsat ETM+ in 2000 using RS and GIS. The results showed that total forest area, productive forest area and degraded forest area increased while broadleaf forest area and non forest area decreased. Mixed forest and degraded forest increased during the first (1975-1987) period, but decreased during the second (1987-2000) period. During the whole study period, the annual forestation rate was 152 ha year(-1), equivalent to 0.27% year(-1) using the compound-interest-rate formula. The total number of patches increased from 36,204 to 48,092 (33%), and mean size of forest patch (MPS) decreased from 2.8 ha to 2.1 ha during a 25 year period. Number of smaller patches (patches in 0-100 ha size class) increased, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. While total population increased from 1975 to 2000 (3.7%), rural population constantly decreased. The increase of forest areas may well be explained by the fact that demographic movement of rural areas concentrated into Maçka City Center. These figures also indicated that decrease in the rural population might likely lead to the release of human pressure to forest areas, probably resulting in a positive development of forest areas.
Depauperate Avifauna in Plantations Compared to Forests and Exurban Areas
Haskell, David G.; Evans, Jonathan P.; Pelkey, Neil W.
2006-01-01
Native forests are shrinking worldwide, causing a loss of biological diversity. Our ability to prioritize forest conservation actions is hampered by a lack of information about the relative impacts of different types of forest loss on biodiversity. In particular, we lack rigorous comparisons of the effects of clearing forests for tree plantations and for human settlements, two leading causes of deforestation worldwide. We compared avian diversity in forests, plantations and exurban areas on the Cumberland Plateau, USA, an area of global importance for biodiversity. By combining field surveys with digital habitat databases, and then analyzing diversity at multiple scales, we found that plantations had lower diversity and fewer conservation priority species than did other habitats. Exurban areas had higher diversity than did native forests, but native forests outscored exurban areas for some measures of conservation priority. Overall therefore, pine plantations had impoverished avian communities relative to both native forests and to exurban areas. Thus, reports on the status of forests give misleading signals about biological diversity when they include plantations in their estimates of forest cover but exclude forested areas in which humans live. Likewise, forest conservation programs should downgrade incentives for plantations and should include settled areas within their purview. PMID:17183694
[Contents of tannins and oxalic acid in the selected forest fruits depending on the harvest site].
Sembratowicz, Iwona; Ognik, Katarzyna; Rusinek, Elzbieta; Truchliński, Jerzy
2008-01-01
Contents of anti-nutritional components (tannins and oxalic acid) were determined in samples of forest fruits: blueberry, raspberry and wild strawberry harvested in Lublin region from areas considered as potentially not exposed to pollution (Skierbieszów Landscape Park) and potentially polluted areas (Cement Factory Rejowiec S.A.). Study revealed that blueberry and raspberry fruits collected on potentially polluted area were characterized by higher tannins contents than those harvested on potentially not polluted area. Oxalic acid level in studied material indicated its significantly higher concentration in wild strawberry fruits collected both from not exposed and polluted areas as compared to raspberry and blueberry. Tannins and oxalic acid contents in analyzed berries may be accepted as low and safe for human's health.
Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen
2018-01-01
It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content (NA), maximum CO2 assimilation rate (Pmax), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation (NC), and to bioenergetics (NB). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, NA, but higher Pmax, SLA, PNUE, NC, and NB, in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between Pmax and leaf CC strengthened, whereas the relationships between NB, NC, PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization. PMID:29472939
Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen
2018-01-01
It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.
Effects of Stream and Elevation Resolution on Riparian Metrics and Restoration Identification
Even though riparian areas attenuate nutrients and sediments from agricultural runoff at the field scale, best management practices and locations for restoring riparian areas should be determined at watershed scales. Riparian metrics (e.g., percent forest within 100m of stream)...
NASA Astrophysics Data System (ADS)
Juhari, Mohd Afiq Aizat; Adam, Jumaat Haji; Ishak, Siti Amirah
2016-11-01
A study was conducted to determine the floristic composition of the Sungai Kenau, Raub, Pahang. The study area was located in the lowland dipterocarp forest where logging and forest opening were common in Malaysia and the area have a population of Rafflesia. The method used was plotting with size of 100 m ×10 m for each plot. Each plot was then divided into 10 subplots measuring 10 m ×10 m. All trees with diameter at breast height (DBH) of 5 cm and above was measured and recorded. Results showed that there were 623 individual trees in an area of 0.5 hectares which includes 50 families, 98 genera and 140 species. Annonaceae was the most dominant family in the study area, while the dominant species in the entire study area was Saraca cauliflora (Leguminosae). The contribution of this study were the presence of tree species from Macaranga which can be used as biological indicator to detect the presence of an open area in the forest while Saraca cauliflora can also be a biological indicator that indicated the present of riparian areas.
Automated Burned Area Delineation Using IRS AWiFS satellite data
NASA Astrophysics Data System (ADS)
Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.
2014-12-01
India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.
Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David
2016-01-01
Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.
Memiaghe, Hervé R.; Lutz, James A.; Korte, Lisa; Alonso, Alfonso; Kenfack, David
2016-01-01
Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658
Perceptions of prescribed burning in a local forest community in Victoria, Australia.
Bell, Tina; Oliveras, Immaculada
2006-11-01
The general perceptions of prescribed burning were elicited from forest users for an area that has been subject to this form of land management for at least 20 years. The largest group consisted of local residents living in and around the Wombat State Forest with two smaller groups of students from a nearby university campus and local professional land managers. A questionnaire was given to each participant in order to explore how the forest was used, to determine the level of knowledge of burning in the targeted forest and Victoria and the perception of the appearance, effectiveness of protection, and accessibility to the forest after prescribed burning. Generally all groups had similar responses with community members having stronger views on the effectiveness and practicalities of prescribed burning, whereas students were more neutral in their opinions. All participants claimed knowledge of prescribed burning activities within Victoria, but fewer had experience of planned fires in the Wombat State Forest. All groups agreed that areas that had not been recently burned had a better appearance than those that had, but this result may have included a range of value judgments. Land managers had a greater understanding of the ecological importance of season and timing of burning; however, some students and community members were equally knowledgeable. Prescribed burning did not impede access to the forest, nor did smoke from prescribed burns pose any great problem. The majority of the participants felt that the amount of prescribed burning done in the forest was adequate for engendering a feeling of protection to life and property, yet many were still suspicious of this management practice. These initial findings indicate several areas in which further research would be useful including the efficacy of education programs for community members and improved communication of burn plans by land managers.
Kennedy, Peter G; Schouboe, Jesse L; Rogers, Rachel H; Weber, Marjorie G; Nadkarni, Nalini M
2010-02-01
The ecological importance of microbial symbioses in terrestrial soils is widely recognized, but their role in soils that accumulate in forest canopies is almost entirely unknown. To address this gap, this study investigated the Frankia-Alnus rubra symbiosis in canopy and forest floor roots at Olympic National Park, WA, USA. Sixteen mature A. rubra trees were surveyed and Frankia genetic diversity in canopy and forest floor nodules was assessed with sequence-based nifH analyses. A seedling bioassay experiment was conducted to determine Frankia propagule availability in canopy and forest floor soils. Total soil nitrogen from both environments was also quantified. Nodules were present in the canopies of nine of the 16 trees sampled. Across the study area, Frankia canopy and forest floor assemblages were similar, with both habitats containing the same two genotypes. The composition of forest floor and canopy genotypes on the same tree was not always identical, however, suggesting that dispersal was not a strictly local phenomenon. Frankia seedling colonization was similar in canopy soils regardless of the presence of nodules as well as in forest floor soils, indicating that dispersal was not likely to be a major limiting factor. The total soil nitrogen of canopy soils was higher than that of forest floor soils, but the presence of Frankia nodules in canopy soils did not significantly alter soil nitrogen levels. Overall, this study indicates that the Frankia-A. rubra symbiosis is similar in canopy and forest floor environments. Because canopy roots are exposed to different environmental conditions within very small spatial areas and because those areas can be easily manipulated (e.g., fertilizer or watering treatments), they present microbial ecologists with a unique arena to examine root-microbe interactions.
Mapping burned areas and burn severity patterns across the Mediterranean region
NASA Astrophysics Data System (ADS)
Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea
2010-05-01
The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.
Smiraglia, D; Ceccarelli, T; Bajocco, S; Perini, L; Salvati, L
2015-10-01
This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.
Predicting live and dead basal area in bark beetle-affected forests from discrete-return LiDAR
Andrew T. Hudak; Ben Bright; Jose Negron; Robert McGaughey; Hans-Erik Andersen; Jeffrey A. Hicke
2012-01-01
Recent bark beetle outbreaks in western North America have been widespread and severe. High tree mortality due to bark beetles affects the fundamental ecosystem processes of primary production and decomposition that largely determine carbon balance (Kurz et al. 2008, Pfeifer et al. 2011, Hicke et al. 2012). Forest managers need accurate data on beetle-induced tree...
Effects of forest disturbance and soil depth on digestible energy for moose and white-tailed deer
Hewlette S. Crawford; R. A. Lautenschlager; Martin R. Stokes; Timothy L. Stone
1993-01-01
Spruce budworm defoliation, clearcutting for salvage, and prescribed burning of clearcut areas on deep and shallow soils influenced deer and moose foraging in eastern Maine spruce-fir forests from 1980 to 1984. Plant standing crop biomass, seasonal plant selection by tractable moose and white-tailed deer, and digestible energy for deer and moose were determined for...
Model Optimization Planting Pattern Agroforestry Forest Land Based on Pine Tree
ERIC Educational Resources Information Center
Rajati, Tati
2015-01-01
This study aims to determine cropping patterns in class slopes 0 - <15% and the grade slope slopes 15% - <30% and the slopes> 30%. The method used in this study is a description of the dynamic system approach using a software power sim. Forest areas where the research, which is a type of plant that is cultivated by the people in the study…
Temporal Patterns of Oak Mortality in a Southern Appalachian Forest (1991-2006).
Cathryn Greenberg; Tara L. Keyser; James Speer
2011-01-01
The sustainability of eastern oak-dominated forests is threatened by high oak mortality rates and widespread oak regeneration failure, and presents a challenge to natural area managers. We tracked the rate and cause of mortality of 287 mature oak trees of five species for 15 years to determine the temporal patterns and sources of mortality. We observed a 15.3% total...
Truffle abundance in riparian and upland mixed-conifer forest of California's southern Sierra Nevada
Marc D. Meyer; Malcolm P. North
2005-01-01
We compared the abundance, diversity, and composition of truffles in riparian and upland areas within a mixed-conifer forest of the Sierra Nevada of California. We sampled for truffles in a single watershed over two seasons (spring and summer) and 4 years to determine whether truffles were more abundant and diverse in riparian than upland sites in old-growth, mixed-...
[Measurement model of carbon emission from forest fire: a review].
Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long
2012-05-01
Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.
NASA Astrophysics Data System (ADS)
Yi, K.; Park, C.; Ryu, S.; Lee, K.; Yi, M.; Kim, C.; Park, G.; Kim, R.; Son, Y.
2011-12-01
Soil carbon (C) stocks of Pinus densiflora forests in Korea were estimated using a generic forest soil C dynamics model based on the process of dead organic matter input and decomposition. Annual input of dead organic matter to the soil was determined by stand biomass and turnover rates of tree components (stem, branch, twig, foliage, coarse root, and fine root). The model was designed to have a simplified structure consisting of three dead organic matter C (DOC) pools (aboveground woody debris (AWD), belowground woody debris (BWD), and litter (LTR) pool) and one soil organic C (SOC) pool. C flows in the model were regulated by six turnover rates of stem, branch, twig, foliage, coarse root, and fine root, and four decay rates of AWD, BWD, LTR, and SOC. To simulate the soil C stocks of P. densiflora forests, statistical data of forest land area (1,339,791 ha) and growing stock (191,896,089 m3) sorted by region (nine provinces and seven metropolitan cities) and stand age class (11 to 20- (II), 21 to 30- (III), 31 to 40- (IV), 41 to 50- (V), and 51 to 60-year-old (VI)) were used. The growing stock of each stand age class was calculated for every region and representable site index was also determined by consulting the yield table. Other model parameters related to the stand biomass, annual input of dead organic matter and decomposition were estimated from previous studies conducted on P. densiflora forests in Korea, which were also applied for model validation. As a result of simulation, total soil C stock of P. densiflora forests were estimated as 53.9 MtC and soil C stocks per unit area ranged from 28.71 to 47.81 tC ha-1 within the soil depth of 30 cm. Also, soil C stocks in the P. densiflora forests of age class II, III, IV, V, and VI were 16,780,818, 21,450,812, 12,677,872, 2,366,939, and 578,623 tC, respectively, and highly related to the distribution of age classes. Soil C stocks per unit area initially decreased with stand age class and started to increase after the stand age class of V. Regional soil C stocks ranged from 9,805 to 15,595,802 tC, and were generally proportional to the forest land area. Our results suggest an approach to estimate soil C stock on a national scale by using a computer model and manipulating the existing statistical data.
Accuracy and efficiency of area classifications based on tree tally
Michael S. Williams; Hans T. Schreuder; Raymond L. Czaplewski
2001-01-01
Inventory data are often used to estimate the area of the land base that is classified as a specific condition class. Examples include areas classified as old-growth forest, private ownership, or suitable habitat for a given species. Many inventory programs rely on classification algorithms of varying complexity to determine condition class. These algorithms can be...
Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...
36 CFR 261.21 - National Forest primitive areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false National Forest primitive areas. 261.21 Section 261.21 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS General Prohibitions § 261.21 National Forest primitive areas. The following are...
Annual measurements of gain and loss in aboveground carbon density
NASA Astrophysics Data System (ADS)
Baccini, A.; Walker, W. S.; Carvalho, L.; Farina, M.; Sulla-menashe, D. J.; Houghton, R. A.
2017-12-01
Tropical forests hold large stores of carbon, but their net carbon balance is uncertain. Land use and land-cover change (LULCC) are believed to release between 0.81 and 1.14 PgC yr-1, while intact native forests are thought to be a net carbon sink of approximately the same magnitude. Reducing the uncertainty of these estimates is not only fundamental to the advancement of carbon cycle science but is also of increasing relevance to national and international policies designed to reduce emissions from deforestation and forest degradation (e.g., REDD+). Contemporary approaches to estimating the net carbon balance of tropical forests rely on changes in forest area between two periods, typically derived from satellite data, together with information on average biomass density. These approaches tend to capture losses in biomass due to deforestation (i.e., wholesale stand removals) but are limited in their sensitivity to forest degradation (e.g., selective logging or single-tree removals), which can account for additional biomass losses on the order of 47-75% of deforestation. Furthermore, while satellite-based estimates of forest area loss have been used successfully to estimate associated carbon losses, few such analyses have endeavored to determine the rate of carbon sequestration in growing forests. Here we use 12 years (2003-2014) of pantropical satellite data to quantify net annual changes in the aboveground carbon density of woody vegetation (MgC ha-1yr-1), providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 Tg C yr-1. This net release of carbon consists of losses of 861.7 ± 80.2 Tg C yr-1 and gains of -436.5 ± 31.0 Tg C yr-1 . Gains result from forest growth; losses result from reductions in forest area due to deforestation and from reductions in biomass density within standing forests (degradation), with the latter accounting for 68.9% of overall losses. Our findings advance previous research by providing novel, annual measurements of carbon losses and gains, from forest loss, degradation, and growth, with reduced uncertainty that stems from an unconventional shift in emphasis away from classifications of land area change toward direct estimation of carbon density dynamics.
South Carolina, 2012 - forest inventory and analysis factsheet
Richard A. Harper; Byron Rominger
2013-01-01
South Carolina contains about 19.3 million acres of land area, less census water. The forest land area makes up 68 percent of the land area with 13.1 million acres. Commercial timberland area (land available for production of forest products) comprised >99 percent of the forest land area, or 13.0 million acres. The remaining 88,000 acres are reserved forest land...
Georgia, 2011 - forest inventory and analysis factsheet
Richard A. Harper
2012-01-01
Georgia contains the largest area of forest cover in the South with 24.8 million acres, accounting for 67 percent of the Stateâs land area (table 1). The forest area has remained relatively stable over the last 50 years. Commercial timberland area (land available for production of forest products) comprises >98 percent of the total forest land area. The remaining...
Esmaily, Habibollah; Tayefi, Maryam; Doosti, Hassan; Ghayour-Mobarhan, Majid; Nezami, Hossein; Amirabadizadeh, Alireza
2018-04-24
We aimed to identify the associated risk factors of type 2 diabetes mellitus (T2DM) using data mining approach, decision tree and random forest techniques using the Mashhad Stroke and Heart Atherosclerotic Disorders (MASHAD) Study program. A cross-sectional study. The MASHAD study started in 2010 and will continue until 2020. Two data mining tools, namely decision trees, and random forests, are used for predicting T2DM when some other characteristics are observed on 9528 subjects recruited from MASHAD database. This paper makes a comparison between these two models in terms of accuracy, sensitivity, specificity and the area under ROC curve. The prevalence rate of T2DM was 14% among these subjects. The decision tree model has 64.9% accuracy, 64.5% sensitivity, 66.8% specificity, and area under the ROC curve measuring 68.6%, while the random forest model has 71.1% accuracy, 71.3% sensitivity, 69.9% specificity, and area under the ROC curve measuring 77.3% respectively. The random forest model, when used with demographic, clinical, and anthropometric and biochemical measurements, can provide a simple tool to identify associated risk factors for type 2 diabetes. Such identification can substantially use for managing the health policy to reduce the number of subjects with T2DM .
Barros, Fábio S. M.; Honório, Nildimar A.
2015-01-01
We performed bimonthly mosquito larval collections during 1 year, in an agricultural settlement in the Brazilian Amazon, as well as an analysis of malaria incidence in neighboring houses. Water collections located at forest fringes were more commonly positive for Anopheles darlingi larvae and Kulldorff spatial analysis pinpointed significant larval clusters at sites directly beneath forest fringes, which were called larval “hotspots.” Remote sensing identified 43 “potential” hotspots. Sampling of these areas revealed an 85.7% positivity rate for A. darlingi larvae. Malaria was correlated with shorter distances to potential hotpots and settlers living within 400 m of potential hotspots had a 2.60 higher risk of malaria. Recently arrived settlers, usually located closer to the tip of the triangularly shaped deforestation imprints of side roads, may be more exposed to malaria due to their proximity to the forest fringe. As deforestation progresses, transmission decreases. However, forest remnants inside deforested areas conferred an increased risk of malaria. We propose a model for explaining frontier malaria in the Amazon: because of adaptation of A. darlingi to the forest fringe ecotone, humans are exposed to an increased transmission risk when in proximity to these areas, especially when small dams are created on naturally running water collections. PMID:26416110
Forest/non-forest mapping using inventory data and satellite imagery
Ronald E. McRoberts
2002-01-01
For two study areas in Minnesota, USA, one heavily forested and one sparsely forested, maps of predicted proportion forest area were created using Landsat Thematic Mapper imagery, forest inventory plot data, and two prediction techniques, logistic regression and a k-Nearest Neighbours technique. The maps were used to increase the precision of forest area estimates by...
Interannual Variation in Stand Transpiration is Dependent Upon Tree Species
NASA Astrophysics Data System (ADS)
Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.
2003-12-01
In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.
Lira-Torres, Iván; Briones-Salas, Miguel; Sánchez-Rojas, Gerardo
2014-12-01
Baird's tapir (Tapirus bairdii) is endangered primarily because of habitat loss and fragmentation, and overhunting throughout its distribution range. One of the priority land areas for the conservation of this species is the Northern part of its range in the Chimalapas forest, Oaxaca. The aim of this research was to determine the relative abundance, population struc- ture, habitat preferences and activity patterns of Baird's tapir (Tapirus bairdii) in the Chimalapas forest, Oaxaca, Mexico, through the non-invasive technique of camera-trap sampling. A total of five sampling sessions were undertaken among 2009-2013, and used a total of 30 camera-traps in each period. The determinant factor of the sampling design was the hunting between two study areas. A total sampling effort of 9000 trap-days allowed to estimate an index of relative abundance (IRA) of 6.77 tapir photographs/1,000 trap-days (n = 61). IRA varied significantly between sampling stations (Mann-Whitney, p < 0.01). The frequency of Baird's tapir photos was higher in the dry season in tropical rain forest without hunting (χ2, p < 0.5). In the rainy season, the tropical rain forest and secondary vegetation habitats showed higher photo frequency than expected from random (χ2, p < 0.5). Considering population structure, a 95.08% of adult animals was obtained in photographic records (n = 58). Three types of activity pattern were observed, with more nocturnal records (88.33%; Kruskal-Wallis, p < 0.05). The Chimalapas forest appears to be the second most important terrestrial priority ecoregion, just after the Mayan Forest (Campeche, Chiapas, Quintana Roo), for the conservation of tapir populations, not only for Mexico but also for Central America.
Agetsuma, Naoki; Koda, Ryosuke; Tsujino, Riyou; Agetsuma-Yanagihara, Yoshimi
2015-02-01
Population densities of wildlife species tend to be correlated with resource productivity of habitats. However, wildlife density has been greatly modified by increasing human influences. For effective conservation, we must first identify the significant factors that affect wildlife density, and then determine the extent of the areas in which the factors should be managed. Here, we propose a protocol that accomplishes these two tasks. The main threats to wildlife are thought to be habitat alteration and hunting, with increases in alien carnivores being a concern that has arisen recently. Here, we examined the effect of these anthropogenic disturbances, as well as natural factors, on the local density of Yakushima macaques (Macaca fuscata yakui). We surveyed macaque densities at 30 sites across their habitat using data from 403 automatic cameras. We quantified the effect of natural vegetation (broad-leaved forest, mixed coniferous/broad-leaved forest, etc.), altered vegetation (forestry area and agricultural land), hunting pressure, and density of feral domestic dogs (Canis familiaris). The effect of each vegetation type was analyzed at numerous spatial scales (between 150 and 3,600-m radii from the camera locations) to determine the best scale for explaining macaque density (effective spatial scale). A model-selection procedure (generalized linear mixed model) was used to detect significant factors affecting macaque density. We detected that the most effective spatial scale was 400 m in radius, a scale that corresponded to group range size of the macaques. At this scale, the amount of broad-leaved forest was selected as a positive factor, whereas mixed forest and forestry area were selected as negative factors for macaque density. This study demonstrated the importance of the simultaneous evaluation of all possible factors of wildlife population density at the appropriate spatial scale. © 2014 Wiley Periodicals, Inc.
Bravo, Susana Patricia; Cueto, Victor Rodolfo; Gorosito, Cristian Andrés
2017-01-01
Migratory animals often play key ecological roles within the communities they visit throughout their annual journeys. As a consequence of the links between biomes mediated by migrants, changes in one biome could affect remote areas in unpredictable ways. Migratory routes and timing of most Neotropical austral migrants, which breed at south temperate latitudes of South America and overwinter closer to or within tropical latitudes of South America, have yet to be described in detail. As a result, our understanding about how these birds provide links between South American biomes is almost non-existent. White-crested Elaenia (Elaenia albiceps chilensis) is a long-distance austral migrant that breeds in the Patagonian Forest biome and overwinters in tropical South America. Because this small flycatcher plays a key role in the regeneration of this ecosystem, our objective was to describe the annual cycle of White-crested elaenias to evaluate the degree of migratory connectivity between breeding and wintering areas and therefore to determine if there are specific biomes of northern South America linked by elaenias to Patagonian forests. Fifteen individuals were successfully tracked throughout a complete migration cycle using miniature light-level geolocators. All individuals resided and moved through the same general regions. During fall (March-April-May), elaenias were located in the Caatinga and the Atlantic Forest biomes, from Rio de Janeiro to the region near Salvador da Bahia, Brazil. During winter (June-July-Aug.), birds were located further inland, within the Cerrado biome. Birds used three different routes during fall migration. Our results indicate that some individuals use a direct route, flying between 500–600 km/day, crossing desert and grasslands, while others took a detour, flying 100–200 km/day through forested areas with refueling opportunities. All birds used the Yunga forest during spring migration, with ten out of 15 individuals showing a clear counterclockwise loop trajectories throughout their annual cycle. None of the elaenias passed through Amazonia, traveled to western South America or crossed the Equator. Eleanias exhibited a high migratory connectivity between breeding area in Patagonian Forests and winter areas, Atlantic Forest and Cerrado. Our results suggest that Patagonian Forests could be strongly impacted by changes in those biomes or in the Yungas. PMID:28182628
The Price of Precision: Large-Scale Mapping of Forest Structure and Biomass Using Airborne Lidar
NASA Astrophysics Data System (ADS)
Dubayah, R.
2015-12-01
Lidar remote sensing provides one of the best means for acquiring detailed information on forest structure. However, its application over large areas has been limited largely because of its expense. Nonetheless, extant data exist over many states in the U.S., funded largely by state and federal consortia and mainly for infrastructure, emergency response, flood plain and coastal mapping. These lidar data are almost always acquired in leaf-off seasons, and until recently, usually with low point count densities. Even with these limitations, they provide unprecedented wall-to-wall mappings that enable development of appropriate methodologies for large-scale deployment of lidar. In this talk we summarize our research and lessons learned in deriving forest structure over regional areas as part of NASA's Carbon Monitoring System (CMS). We focus on two areas: the entire state of Maryland and Sonoma County, California. The Maryland effort used low density, leaf-off data acquired by each county in varying epochs, while the on-going Sonoma work employs state-of-the-art, high density, wall-to-wall, leaf-on lidar data. In each area we combine these lidar coverages with high-resolution multispectral imagery from the National Agricultural Imagery Program (NAIP) and in situ plot data to produce maps of canopy height, tree cover and biomass, and compare our results against FIA plot data and national biomass maps. Our work demonstrates that large-scale mapping of forest structure at high spatial resolution is achievable but products may be complex to produce and validate over large areas. Furthermore, fundamental issues involving statistical approaches, plot types and sizes, geolocation, modeling scales, allometry, and even the definitions of "forest" and "non-forest" must be approached carefully. Ultimately, determining the "price of precision", that is, does the value of wall-to-wall forest structure data justify their expense, should consider not only carbon market applications, but the other ways the underlying lidar data may be used.
Lemur species-specific metapopulation responses to habitat loss and fragmentation
Lehman, Shawn M.
2018-01-01
Determining what factors affect species occurrence is vital to the study of primate biogeography. We investigated the metapopulation dynamics of a lemur community consisting of eight species (Avahi occidentalis, Propithecus coquereli, Microcebus murinus, Microcebus ravelobensis, Lepilemur edwardsi, Cheirogaleus medius, Eulemur mongoz, and Eulemur fulvus) within fragmented tropical dry deciduous forest habitat in Ankarafantsika National Park, Madagascar. We measured fragment size and isolation of 42 fragments of forest ranging in size from 0.23 to 117.7 ha adjacent to continuous forest. Between June and November 2011, we conducted 1218 surveys and observed six of eight lemur species (M. murinus, M. ravelobensis, C. medius, E. fulvus, P. coquereli, and L. edwardsi) in the 42 fragments. We applied among patch incidence function models (IFMs) with various measures of dispersal and a mainland-island IFM to lemur species occurrence, with the aim of answering the following questions: 1) Do lemur species in dry deciduous forest fragments form metapopulations? 2) What are the separate effects of area (extinction risk) and connectivity/isolation (colonization potential) within a lemur metapopulation? 3) Within simulated metapopulations over time, how do area and connectivity/isolation affect occurrence? and 4) What are the conservation implications of our findings? We found that M. murinus formed either a mainland-island or an among patch metapopulation, M. ravelobensis formed a mainland-island metapopulation, C. medius and E. fulvus formed among patch metapopulations, and neither P. coquereli or L. edwardsi formed a metapopulation. Metapopulation dynamics and simulations suggest that area was a more consistent positive factor determining lemur species occurrence than fragment isolation and is crucial to the maintenance of lemur populations within this fragmented landscape. Using a metapopulation approach to lemur biogeography is critical for understanding how lemur species respond to forest loss and fragmentation. PMID:29742108
Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey
NASA Astrophysics Data System (ADS)
Bektas Balcik, F.
2012-12-01
Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.
Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M.; Stevenson, Pablo R.; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C.; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M.
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage. PMID:28301482
Which insect species numerically respond to allochthonous inputs?
NASA Astrophysics Data System (ADS)
Sugiura, Shinji; Ikeda, Hiroshi
2013-08-01
Herons (Ardeidae) frequently breed in inland forests and provide organic material in the form of carcasses of prey (that they drop) and chicks (that die) to the forest floor. Such allochthonous inputs of organic materials are known to increase arthropod populations in forests. However, the exact species that show numerical responses to allochthonous inputs in heron breeding colonies remains unclear. Very few studies have clarified which factors determine numerical responses in individual species. We used pitfall and baited traps to compare the densities of arthropods between forest patches in heron breeding colonies (five sites) and areas outside of colonies (five sites) in central Japan. The density of all arthropods was not significantly different between colonies and non-colony areas. However, significant differences between colonies and non-colony areas were found in four arthropod groups. Earwigs (Dermaptera: Anisolabididae), hister beetles (Coleoptera: Histeridae), and carrion beetles (Coleoptera: Silphidae) were more abundant in colonies, while ants (Hymenoptera: Formicidae) were less abundant in colonies. We detected numerical responses to heron breeding in two earwig, one histerid, five silphid, and one ant species. Chick and prey carcasses from herons may have directly led to increases in consumer populations such as earwigs, histerids, and silphids in colonies, while microenvironmental changes caused by heron breeding may have reduced ant abundance. In the Silphidae, five species showed numerical responses to allochthonous inputs, and the other two species did not. Numerical responses in individual species may have been determined by life history traits such as reproductive behaviour.
Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.
NASA Astrophysics Data System (ADS)
Prado, Vitor H. M.; Rossa-Feres, Denise de C.
2014-04-01
In agricultural landscapes, studies that identify factors driving species richness and occupancy are important because they can guide farmers to use conservation practices that minimize species loss. In this context, anurans are threatened by habitat loss because they depend on the characteristics of both local water bodies and adjacent landscapes. We used a model selection approach to evaluate the influence of local and landscape variables in determining anuran species richness and occurrence in 40 freshwater bodies in a heavily deforested region of semideciduous Atlantic Forest in southeastern Brazil. Our aim was to develop recommendations for conservation of anuran communities in rural areas. Pond hydroperiod and area were the most important variables for explaining anuran species richness and occupancy, with greatest species richness being found in water bodies with intermediate hydroperiod and area. Other important variables that reflected individual species occupancies were the number of vegetation types and pond isolation. In addition, recent studies evidenced that water bodies near forest fragments have higher anuran abundance or diversity. In conclusion, we suggest the maintenance of semi-permanent ponds, isolated from large rivers or reservoirs and near forest fragments, as an effective strategy to conserve anuran fauna in agricultural landscapes of southeastern Brazil. Brazilian government requires the maintenance of forests as legal reserve in each farm, and farmers need to maintain ponds as drinking water for cattle or crop irrigation. For this reason, the guidelines suggested in the present study can be easily adopted, without additional costs to rural productivity.
KINGSTON, N.; WALDREN, S.
2003-01-01
Quantitative surveys of the vegetation of south‐east Polynesian Islands are rarely undertaken owing to time and logistical restrictions; however they are fundamental in determining the conservation status of fragile island ecosystems. The aim of the research was to document quantitatively the vegetation of Pitcairn Island by investigating whether clearly definable plant communities existed on the island, and the underlying environmental gradients influencing these communities. Initially, 10 × 10 m quadrats were taken from all areas of the island, with environmental parameters recorded for each quadrat. The vegetation was then mapped from high altitude vantage points. Two‐way indicator species analysis was used to identify distinct plant communities, and canonical correspondence analysis was used to determine the underlying environmental gradients. The vegetation consists of 14 plant communities: four coastal, six forest, two fernland and two scrub communities. Large areas are covered by non‐native scrub vegetation, and by monospecific Syzygium jambos (rose‐apple) plantations. Less than 30 % of the island is covered by native forest, and these areas are limited to remote valleys. Fernlands also cover large areas, including both eroding areas and ridge tops. Coastal vegetation comprises rock and cliff communities with limited strand vegetation. The major environmental gradient affecting the composition of the plant communities is altitude, but anthropogenic influences also have a large effect, owing to forest clearance and introduced species. The light environment is affected by the canopy species, and determines what ground flora can develop. Identification of distinct plant communities has allowed for a system of nature reserves to be suggested, which conserve all of these plant communities and a significant proportion of the threatened plant species. PMID:12824069
NASA Astrophysics Data System (ADS)
Starrs, C.; Stewart, W.; Potts, M. D.
2016-12-01
As California experiences increasing rates of disturbance events such as wildfire, drought, and insect outbreaks, understanding how different management strategies affect long-term forest carbon stock changes in the forest and in harvested wood products used by society will be key to determining strategies to best maximize forest-related carbon sequestration in the future. California's forest area is roughly evenly split across three ownership types: private timberlands, National Forest timberlands, and reserved forests. Forest management strategies in California generally vary by these ownerships; management in reserved lands sequesters carbon within the forest (i.e. leaves wood in the forest), while on private and National Forest timberlands a significant amount of wood is removed from the forest and converted to harvested wood products. The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) is an IPCC-compliant full forest carbon accounting model developed for use in Canada that has been adapted for use in other countries. Changes in natural disturbances in the forest and technological innovation in the use of harvested wood products could substantially alter future carbon trajectories of forests under different management regimes. A key advantage of the CBM-CFS3 model is that in addition to tracking live tree, dead tree, and dead organic matter (DOM) carbon pools in the forest, it also tracks carbon stock changes in harvested wood products. We calibrated the CBM-CFS3 model with US Forest Service Forest Inventory and Analysis (FIA) data for seven forest types across three ownership types to predict carbon stock changes under different natural disturbance and harvested wood product utilization futures. Our results illustrate the importance of using a tractable model that can integrate future changes in forest carbon cycling to keep pace with our changing climate and usage of wood products.
Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy
Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Ray, David
2004-01-01
Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing approaches are not well suited to tropical forest studies, because (i) biophysical mechanisms determining drought effects on canopy water and carbon dynamics are poorly known, and (ii) remote-sensing metrics of canopy greenness may be insensitive to small changes in leaf area accompanying drought. New spaceborne imaging spectroscopy may detect drought stress in tropical forests, helping to monitor forest physiology and constrain carbon models. We combined a forest drought experiment in Amazônia with spaceborne imaging spectrometer measurements of this area. With field data on rainfall, soil water, and leaf and canopy responses, we tested whether spaceborne hyperspectral observations quantify differences in canopy water and NPP resulting from drought stress. We found that hyperspectral metrics of canopy water content and light-use efficiency are highly sensitive to drought. Using these observations, forest NPP was estimated with greater sensitivity to drought conditions than with traditional combinations of modeling, remote-sensing, and field measurements. Spaceborne imaging spectroscopy will increase the accuracy of ecological studies in humid tropical forests. PMID:15071182
NASA Astrophysics Data System (ADS)
Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein
2017-04-01
Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.
NASA Astrophysics Data System (ADS)
Nyman, P.; Duff, T. J.; Sheridan, G. J.
2016-12-01
Moisture content in litter on the forest floor can control ignition and spread of forest fires. The micrometeorological factors driving variation in litter moisture at the landscape scale are poorly understood, particularly in areas with heterogeneous vegetation and complex terrain. In this research we seek to quantify how climate, vegetation and eco-hydrological feedbacks contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 12 locations in southeast Australia with variable precipitation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. We measured solar radiation, air temperature, relative humidity, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos and LIDAR. Using these data on microclimate and vegetation structure we parameterise a model of daily potential evaporation at the forest floor. Results show that variation in evaporation rates from litter is driven by net radiation and the role of vapour pressure deficit is almost negligible due to high aerodynamic resistance. In open woodlands the net radiation is directly related to short-wave radiation and evaporation remains high despite low temperatures. In the tall wet forests, commonly found along drainage lines and on slopes with polar-facing aspects, the long-wave radiation was just as important as the shortwave radiation. Air temperature is therefore important in determining the flammability of these more productive forests. By implication, in complex terrain with heterogeneous forests, the temperature in the wet parts of the landscape is important in controlling connectivity of fuels and large-scale fire activity.
NASA Astrophysics Data System (ADS)
Zhuravleva, I.; Turubanova, S.; Potapov, P.; Hansen, M.; Tyukavina, A.; Minnemeyer, S.; Laporte, N.; Goetz, S.; Verbelen, F.; Thies, C.
2013-06-01
Primary forest extent, loss and degradation within the Democratic Republic of the Congo (DRC) were quantified from 2000 to 2010 by combining directly mapped forest cover extent and loss data (CARPE) with indirectly mapped forest degradation data (intact forest landscapes, IFL). Landsat data were used to derive both map inputs, and data from the GLAS (Geoscience Laser Altimetry System) sensor were employed to validate the discrimination of primary intact and primary degraded forests. In the year 2000, primary humid tropical forests occupied 104 455 kha of the country, with 61% of these forests classified as intact. From 2000 to 2010, 1.02% of primary forest cover was lost due to clearing, and almost 2% of intact primary forests were degraded due to alteration and fragmentation. While primary forest clearing increased by a factor of two between 2000-2005 and 2005-2010, the degradation of intact forests slightly decreased. Fragmentation and selective logging were the leading causes of intact forest degradation, accounting for 91% of IFL area change. The 10 year forest degradation rate within designated logging permit areas was 3.8 times higher compared to other primary forest areas. Within protected areas the forest degradation rate was 3.7 times lower than in other primary forest areas. Forest degradation rates were high in the vicinity of major urban areas. Given the observed forest degradation rates, we infer that the degradation of intact forests could increase up to two-fold over the next decade.
Ssali, Fredrick; Moe, Stein R; Sheil, Douglas
2018-04-01
Considerable areas dominated by bracken Pteridium aquilinum (L.) Kuhn occur worldwide and are associated with arrested forest recovery. How forest recovery is impeded in these areas remains poorly understood, especially in the African highlands. The component processes that can lead to recruitment limitation-including low seed arrival, availability and persistence-are important determinants of plant communities and offer a potential explanation for bracken persistence. We investigated key processes that can contribute to recruitment limitation in bracken-dominated clearings in the Bwindi Impenetrable National Park, Uganda. We examined if differences in seed rain (dispersal limitation), soil seed bank, or seed removal (seed viability and persistence) can, individually or in combination, explain the differences in tree regeneration found between bracken-dominated areas and the neighboring forest. These processes were assessed along ten 50-m transects crossing the forest-bracken boundary. When compared to the neighboring forest, bracken clearings had fewer seedlings (bracken 11,557 ± 5482 vs. forest 34,515 ± 6066 seedlings/ha), lower seed rain (949 ± 582 vs. 1605 ± 335 tree seeds m -2 year -1 ), comparable but sparse soil seed bank (304 ± 236 vs. 264 ± 99 viable tree seeds/m 2 ), higher seed removal (70.1% ± 2.4% vs. 40.6% ± 2.4% over a 3-day interval), and markedly higher rodent densities (25.7 ± 5.4 vs. 5.0 ± 1.6 rodents per 100 trapping sessions). Camera traps revealed that rodents were the dominant animals visiting the seeds in our seed removal study. Synthesis : Recruitment limitation contributes to both the slow recovery of forest in bracken-dominated areas, and to the composition of the tree species that occur. Low seed arrival and low persistence of unburied seeds can both explain the reduced density of seedlings found in bracken versus neighboring forest. Seed removal, likely due to rodents, in particular appears sufficient to constrain forest recovery and impacts some species more severely than others.
Forest structure analysis combining laser scanning with digital airborne photogrammetry
NASA Astrophysics Data System (ADS)
Lissak, Candide; Onda, Yuichi; Kato, Hiroaki
2017-04-01
The interest of Light Detection and Ranging (LiDAR) for vegetation structure analysis has been demonstrated in several research context. Indeed, airborne or ground Lidar surveys can provide detailed three-dimensional data of the forest structure from understorey forest to the canopy. To characterize at different timescale the vegetation components in dense cedar forests we can combine several sources point clouds from Lidar survey and photogrammetry data. For our study, Terrestrial Laser Scanning (TLS-Leica ScanStation C10 processed with Cyclone software) have been lead in three forest areas (≈ 200m2 each zone) mainly composed of japanese cedar (Japonica cryptomeria), in the region of Fukushima (Japan). The study areas are characterized by various vegetation densities. For the 3 areas, Terrestrial laser scanning has been performed from several location points and several heights. Various floors shootings (ground, 4m, 6m and 18m high) were able with the use of a several meters high tower implanted to study the canopy evolution following the Fukushima Daiishi nuclear power plant accident. The combination of all scanners provides a very dense 3D point cloud of ground and canopy structure (average 300 000 000 points). For the Tochigi forest area, a first test of a low-cost Unmanned Aerial Vehicle (UAV) photogrammetry has been lead and calibrated by ground GPS measurements to determine the coordinates of points. TLS combined to UAV photogrammetry make it possible to obtain information on vertical and horizontal structure of the Tochigi forest. This combination of technologies will allow the forest structure mapping, morphometry analysis and the assessment of biomass volume evolution from multi-temporal point clouds. In our research, we used a low-cost UAV 3 Advanced (200 m2 cover, 1300 pictures...). Data processing were performed using PotoScan Pro software to obtain a very dense point clouds to combine to TLS data set. This low-cost UAV photogrammetry data has been successfully used to derive information on the canopy cover. The purpose of this poster is to present the usability of combined remote sensing methods for forest structure analysis and 3D model reconstitution for a trend analysis of the forest changes.
NASA Astrophysics Data System (ADS)
Molinario, G.
2015-12-01
Conflict in the Democratic Republic of Congo (DRC) and neighboring countries has caused the displacement of people internally and internationally sometimes leading to drastic changes in the impact that traditional slash and burn shifting cultivation has on the forest ecosystem. In other areas, the lack of infrastructure and governance has isolated and protected areas of core forest from large scale exploitation. Observing specific patterns of forest fragmentation caused either by the expansion of existing rural complex areas or of isolated forest perforations has allowed us to track the differential growth of the human footprint throughout forested area of the country during the period 2000-2010. Our methodological approach involved the development of a model of shifting cultivation and forest fragmentation in which spatial rules applied morphological image processing to the Forets d'Afrique Central Evaluee par Teledetection (FACET) product. The result is a disaggregated classification of the primary forest into patch, edge, perforated, fragmented and core forest subtypes which we subsequently re-aggregated into homogenous anthropogenic macro-areas of rural complex and isolated forest perforations. We tracked how subsequent forest loss observed in 2005 and 2010 grew or shrunk these areas, presumably with differential impacts on the forest ecosystem. Using this approach we were able to map forest degradation by contextualizing the contribution of forest loss to change in different types of areas, highlighting how it can be greatly underestimated by a non contextualized per-pixel assessment of forest cover loss.
The potential for species conservation in tropical secondary forests.
Chazdon, Robin L; Peres, Carlos A; Dent, Daisy; Sheil, Douglas; Lugo, Ariel E; Lamb, David; Stork, Nigel E; Miller, Scott E
2009-12-01
In the wake of widespread loss of old-growth forests throughout the tropics, secondary forests will likely play a growing role in the conservation of forest biodiversity. We considered a complex hierarchy of factors that interact in space and time to determine the conservation potential of tropical secondary forests. Beyond the characteristics of local forest patches, spatial and temporal landscape dynamics influence the establishment, species composition, and persistence of secondary forests. Prospects for conservation of old-growth species in secondary forests are maximized in regions where the ratio of secondary to old-growth forest area is relatively low, older secondary forests have persisted, anthropogenic disturbance after abandonment is relatively low, seed-dispersing fauna are present, and old-growth forests are close to abandoned sites. The conservation value of a secondary forest is expected to increase over time, as species arriving from remaining old-growth forest patches accumulate. Many studies are poorly replicated, which limits robust assessments of the number and abundance of old-growth species present in secondary forests. Older secondary forests are not often studied and few long-term studies are conducted in secondary forests. Available data indicate that both old-growth and second-growth forests are important to the persistence of forest species in tropical, human-modified landscapes.
NASA Astrophysics Data System (ADS)
Fricke, A. T.; Nittrouer, C. A.; Ogston, A. S.; Vo-Luong, H. P.
2017-09-01
Mangrove forests are an important means of coastal protection along many shorelines in the tropics, and are often associated with large rivers there. Isolating the contribution of any one factor to the progradation or retreat of a coastal mangrove forest is often hindered by the physical separation between sites that are subject to vastly different combinations of marine and fluvial influence. The mangrove forest at the seaward end of Cù Lao Dung, an island in the Mekong Delta, includes areas with progradation rates of 10 s m y-1, and areas that have experienced little to no progradation in recent decades. The physical proximity (<12 km) of these two environments allows detailed hydrodynamic and sediment-dynamic measurements to be related directly to morphologic change and century-scale stratigraphy. Contrary to conventional understanding, the region of mangrove forest prograding most rapidly is subject to the greatest wave attack, while progradation is slowest in the most quiescent area. Limited progradation here is the product of a reduction in the supply of sediment to certain parts of the mangrove forest due to nearby estuarine dynamics operating on spring-neap timescales. Measurements of sediment flux show net transport into the rapidly prograding part of the forest, and transport out from the part of the forest with minimal progradation. Century-scale rates of sediment accumulation determined using 210Pb geochronology are consistent with in-situ dynamical measurements and geomorphic evolution of the mangrove forest. Where progradation is most rapid, sediment accumulation rates (3.0-5.1 cm y-1) exceed the rate of local sea-level rise (∼1.5 cm y-1). In contrast, sediment-accumulation rates in the area of minimal progradation (0.8-2.8 cm y-1) only somewhat exceed the rate of local sea-level rise, if at all. Physical stratification is well preserved in cores from areas of rapid progradation, consistent with energetic transport processes and an ample sediment supply. Greater impact from bioturbation and episodic sediment delivery produce more variable bedding where progradation is less rapid. The presence of a supply-limited mangrove forest adjacent to a major sediment source highlights the complexity of sediment-supply pathways in coastal mangrove environments.
Sourcebook on Criteria and Indicators of Forest Sustainability in the Northeastern Area
USDA Forest Service, Northeastern Area State and Private Forestry; Northeastern Forest Resource Planners Association; Northeastern Area Association of State Foresters
2002-01-01
This sourcebook represents a collaborative effort between the USDA Forest Service, Northeastern Area, State and Private Forestry; the Northeastern Area Association of State Foresters; and the Northeastern Forest Resource Planners Association to address the issue of measuring forest sustainability. Forest Service and State resource professionals work to facilitate the...
Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah
2016-12-01
Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this paper can be useful for better understanding erosion processes at the micro-scale and macro-scale in any region having similar vegetation attributes to the forests of northern Iran.
Seidl, Rupert; Rammer, Werner
2017-07-01
Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.
Light Diffusion in the Tropical Dry Forest of Costa Rica
NASA Astrophysics Data System (ADS)
Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.
2016-06-01
Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.
Ewa Roo-Zielinska; Jerzy Solon
1998-01-01
The influences of a geographical location on floristic composition, horizontal structure, and biomass of the herb layer in pine and mixed pine forest communities along climatic and pollution gradients in East Germany, Poland, and Belarus were determined. Phytosociological records were collected in permanent plots in May 1995. Each record covered an area of 400 m
Flood Frequenices and Bridge and Culvert Sizes for Forested Mountains of North Carolina
James E. Douglass
1974-01-01
A method is presented for predicting flood discharge from the forested Blue Ridge Mountains of North Carolina for storms at recurrence intervals of 2.33, 5, 10, 20, 30, 40, and 50 years. These predictions are based on area and maximum elevation of the drainage. Once storm discharge has been estimated, the proper size of culvert can be determined from tables which list...
Biogeography of the Shimba Hills ecosystem herpetofauna in Kenya
Malonza, Patrick K.; Mulwa, David M.; Nyamache, Joash O.; Jones, Georgina
2018-01-01
The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot. Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots. The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys, literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection, Nairobi. The Makadara, Mwele, and Longo-Mwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forest-associated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN (Red List) Endangered-EN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests (13 endemic species) and the Eastern Arc Mountains (seven endemic species). Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This ‘hybrid’ species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean. This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 38 reptile and amphibian species, respectively. Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment. PMID:29515091
Biogeography of the Shimba Hills ecosystem herpetofauna in Kenya.
Malonza, Patrick K; Mulwa, David M; Nyamache, Joash O; Jones, Georgina
2018-03-18
The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot. Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots. The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys, literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection, Nairobi. The Makadara, Mwele, and Longo-Mwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forest-associated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN (Red List) Endangered-EN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests (13 endemic species) and the Eastern Arc Mountains (seven endemic species). Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This 'hybrid' species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean. This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 36 reptile and amphibian species, respectively. Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment.
Ecological determinants of mean family age of angiosperm trees in forest communities in China
NASA Astrophysics Data System (ADS)
Qian, Hong; Chen, Shengbin
2016-06-01
Species assemblage in a local community is determined by the interplay of evolutionary and ecological processes. The Tropical Niche Conservatism hypothesis proposes mechanisms underlying patterns of biodiversity in biological communities along environmental gradients. This hypothesis predicts that, among other things, clades in areas with warm or wet environments are, on average, older than those in areas with cold or dry environments. Focusing on angiosperm trees in forests, this study tested the age-related prediction of the Tropical Niche Conservatism hypothesis. We related the mean family age of angiosperm trees in 57 local forests from across China with 23 current and paleo-environmental variables, which included all major temperature- and precipitation-related variables. Our study shows that the mean family age of angiosperm trees in local forests was positively correlated with temperature and precipitation. This finding is consistent with the age-related prediction of the Tropical Niche Conservatism hypothesis. Approximately 85% of the variance in the mean family age of angiosperm trees was explained by temperature-related variables, and 81% of the variance in the mean family age of angiosperm trees was explained by precipitation-related variables. Climatic conditions at the Last Glacial Maximum did not explain additional variation in mean family age after accounting for current environmental conditions.
Large forest patches promote breeding success of a terrestrial mammal in urban landscapes.
Soga, Masashi; Koike, Shinsuke
2013-01-01
Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches) and landscape (amount of suitable habitat surrounding of focal patches) factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides) in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3-797.8 ha) as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans.
Kidane, Leul; Nemomissa, Sileshi; Bekele, Tamrat
2018-02-23
Traditional management regimes and knowledge systems of forest resources have shaped forests throughout the world where materials from individual species are harvested in a sustainable manner. To comprehend this, the vegetation of Hugumburda-Gratkhassu Forest was described and related to anthropogenic factors. Three ethnobotanical research methods were used to collect indigenous knowledge of the local inhabitants related to conservation and utilization of forest resources. Direct matrix ranking was conducted to discover local attitudes on species preference for multiple use. During this work, the 46 most important tree and shrub species were selected based on recommendations of local guides and key informants to determine the range of uses obtained from each species. Through paired comparison, activities supposed to be the major cause of degradation of the forest were adopted. Pairs of activities were then established from the relation n (n-1)/2. Each respondent was then asked to select an activity that he considered being a major problem to management of the forest. Semi-structured interviews were used to obtain information from sixty local informants to address community attitudes towards forest management and utilization. The result obtained from direct matrix ranking showed; that 20 out of 46 plant species compared had the highest scores and rank, indicating that these species are the most important and are exploited by the local communities for multiple purposes. The paired comparison exercise revealed logging for construction materials to be the major threat to the forest due to cutting of large volume of wood for construction of churches, health centers, schools and new houses. Juniperus procera, Olea europaea ssp. cuspidata, Rhus glutinosa, Ficus sur, Hagenia abyssinica, Cassipourea malosana and Acacia etbaica were the most selected and exploited plant species for these purposes. Survival of protected areas depends on the support of local communities, rather than on fences, fines, or even force. The local communities in the study area have a rich indigenous ecological knowledge to suggest appropriate solutions for improvement of the forest resources. Thus the old tradition of isolating forests from the community has to be avoided and the basic needs and traditional rights of the communities over the uses of forest resources should be recognized.
Quantifying the effect of forests on frequency and intensity of rockfalls
NASA Astrophysics Data System (ADS)
Moos, Christine; Dorren, Luuk; Stoffel, Markus
2017-02-01
Forests serve as a natural means of protection against small rockfalls. Due to their barrier effect, they reduce the intensity and the propagation probability of falling rocks and thus reduce the occurrence frequency of a rockfall event for a given element at risk. However, despite established knowledge on the protective effect of forests, they are generally neglected in quantitative rockfall risk analyses. Their inclusion in quantitative rockfall risk assessment would, however, be necessary to express their efficiency in monetary terms and to allow comparison of forests with other protective measures, such as nets and dams. The goal of this study is to quantify the effect of forests on the occurrence frequency and intensity of rockfalls. We therefore defined an onset frequency of blocks based on a power-law magnitude-frequency distribution and determined their propagation probabilities on a virtual slope based on rockfall simulations. Simulations were run for different forest and non-forest scenarios under varying forest stand and terrain conditions. We analysed rockfall frequencies and intensities at five different distances from the release area. Based on two multivariate statistical prediction models, we investigated which of the terrain and forest characteristics predominantly drive the role of forest in reducing rockfall occurrence frequency and intensity and whether they are able to predict the effect of forest on rockfall risk. The rockfall occurrence frequency below forested slopes is reduced between approximately 10 and 90 % compared to non-forested slope conditions; whereas rockfall intensity is reduced by 10 to 70 %. This reduction increases with increasing slope length and decreases with decreasing tree density, tree diameter and increasing rock volume, as well as in cases of clustered or gappy forest structures. The statistical prediction models reveal that the cumulative basal area of trees, block volume and horizontal forest structure represent key variables for the prediction of the protective effect of forests. In order to validate these results, models have to be tested on real slopes with a wide variation of terrain and forest conditions.
Patch occupancy and dispersal of spruce grouse on the edge of its range in Maine
Whitcomb, S.A.; Servello, F.A.; O'Connell, A.F.
1996-01-01
We surveyed 18 habitat patches (black spruce (Picea marinana) - tamarack (Larix larcina) wetlands) for spruce grouse (Dendragapus canadensis canadensis) on Mount Desert Island, Maine, during April-May in 1992 and 1993 to determine patch occupancy relative to patch area. We also equipped nine juvenile grouse with radio transmitters to determine movement and habitat use outside of patches during autumn dispersal. The 2 large patches (77 and 269 ha), 5 of 6 medium-sized (11-26 ha) patches, and 1 of 10 small (4-8 ha) patches were occupied. Spruce grouse occupied smaller habitat patches than previously reported, and occupied patches were closer (P < 0.05) to the nearest occupied patch (x = 1.2 km) than were unoccupied patches (x = 2.5 km). Eight of nine juvenile grouse left their natal habitat patch during autumn dispersal, and net dispersal distance (x = 2.3 km) was greater than that reported for grouse in areas with more contiguous habitat. Dispersing juveniles used all major forest types and 33 % of relocations were in deciduous forest. Thus, deciduous forest was not an absolute dispersal barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Daniel; Malta, Patrick
1990-06-01
Project goals are to rehabilitate 1120 acres of big game (elk and mule deer, Odocoileus hemionus) winter range on the Hungry Horse and Spotted Bear Districts of Flathead National Forest lands adjacent to Hungry Horse Reservoir. This project represents the initial phase of implementation toward the mitigation goal. A minimum of 547 acres Trust-funded enhancements are called for in this plan. The remainder are part of the typical Forest Service management activities for the project area. Monitor and evaluate the effects of project implementation on the big game forage base and elk and mule deer populations in the project area.more » Monitor enhancement success to determine effective acreage to be credited against mitigation goal. Additional enhancement acreage will be selected elsewhere in the Flathead Forest or other lands adjacent'' to the reservoir based on progress toward the mitigation goal as determined through monitoring. The Wildlife Mitigation Trust Fund Advisory Committee will serve to guide decisions regarding future enhancement efforts. 7 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barringer, J.L.; Szabo, Z.; Barringer, T.H.
1998-09-01
Concentrations of arsenic exceed the New Jersey State Cleanup Criterion of 20 parts per million in sandy and clay-rich soils of two residential areas in the vicinity of the Imperial Oil Company Superfund site in Marlboro Township, Monmouth County, New Jersey. In order to determine the source of the arsenic and metals in soils in the two residential areas, soil samples were collected from (1) long-term forested areas, to determine background geologic and regional atmospheric inputs of arsenic and metals; (2) former and current orchards, to assess the range of concentrations of arsenic and metals that could be contributed bymore » past use of pesticides; (3) the Imperial Oil Company Superfund site, to characterize the chemical composition of contamination from activities at the site; (4) a wooded area adjacent to the Superfund site, to determine whether arsenic and metals from the Superfund site were evident; and (5) the two residential areas, to compare soil chemistry in these areas with the chemistry of soils from forests, orchards, and the Superfund site. The soil samples were divided by soil horizon and were analyzed for 23 metals and metalloids, total organic carbon, and total sulfur. Additionally, air-flow models were used to determine whether roasting of arsenic at the Imperial Oil Company Superfund site was a possible source of arsenic in the soils.« less
W. Keith Moser; Mark H. Hansen; Robert L. Atchison; Brett J. Butler; Susan J. Crocker; Grant Domke; Cassandra M. Kurtz; Andrew Lister; Patrick D. Miles; Mark D. Nelson; Ronald J. Piva; Christopher W. Woodall
2013-01-01
The second completed annual inventory of Kansas' forests reports 2.4 million acres of forest land, roughly 5 percent of the total land area in the State. Softwood forests account for 4.4 percent of the total timberland area. Oak/hickory forest types make up 55 percent of the total hardwood forest land area. Elm/ash/cottonwood accounts for more than 32 percent of...
NASA Technical Reports Server (NTRS)
Mcmanus, M. L.
1979-01-01
Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.
Instream wood loads in montane forest streams of the Colorado Front Range, USA
NASA Astrophysics Data System (ADS)
Jackson, Karen J.; Wohl, Ellen
2015-04-01
Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle infestation, although this may reflect the relatively recent nature (< 10 years) of the infestation.
NASA Astrophysics Data System (ADS)
Rossita, A.; Witono, A.; Darusman, T.; Lestari, D. P.; Risdiyanto, I.
2018-03-01
As it is the main role to maintain hydrological function, peatland has been a limelight since drainage construction for agriculture evolved. Drainage construction will decrease water table depth (WTD) and result in CO2 emission release to the atmosphere. Regardless of human intervention, WTD fluctuations can be affected by seasonal climate and climate variability, foremost El Niño Southern Oscillation (ENSO). This study aims to determine the correlation between rainfall in Katingan and ENSO index, analyze the pattern of WTD fluctuation of open area and forest area in 2015 (during very strong El Niño) and 2016 (during weak La Niña), calculate the WTD trendline slope during the dry season, and rainfall and WTD correlation. The result showed that open area has a sharper slope of decreasing or increasing WTD when entering the dry, compared to the forest area. Also, it is found that very strong El Niño in 2015 generated a pattern of more extreme decreasing WTD during the dry season than weak La Niña in 2016.
A spatially explicit decision support model for restoration of forest bird habitat
Twedt, D.J.; Uihlein, W.B.; Elliott, A.B.
2006-01-01
The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from 'hostile' edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve >60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.
The forest resources of Puerto Rico
Richard A. Birdsey; Peter L. Weaver
1982-01-01
A forest survey conducted in 1980 found 130 thousand hectares of potential commercial timberland and 148 thousand hectares of other forest land. Most of the forest area has regrown on abandoned pasture and cropland including coffee production areas. The timberland areas are composed of numerous species and forest conditions.
Land Use Change, Fuel Use and Respiratory Health in Uganda
Jagger, Pamela; Shively, Gerald
2014-01-01
This paper examines how biomass supply and consumption are affected by land use change in Uganda. We find that between 2007 and 2012 there was a 22% reduction in fuelwood sourced from proximate forests, and an 18% increase in fuelwood sourced from fallows and other areas with lower biomass availability and quality. We estimate a series of panel regression models and find that deforestation has a negative effect on total fuel consumed. We also find that access to forests, whether through ownership or proximity, plays a large role in determining fuel use. We then explore whether patterns of biomass fuel consumption are related to the incidence of acute respiratory infection using a cross-sectional data set of 1209 women and 598 children. We find a positive and significant relationship between ARI and the quantity of fuelwood from non-forest areas; a 100 kilogram increase in fuelwood sourced from a non-forest area results in a 2.4% increase in the incidence of ARI for children. We find the inverse effect of increased reliance on crop residues. As deforestation reduces the availability of high quality fuelwood, rural households may experience higher incidence of health problems associated with exposure to biomass burning. PMID:24535892
Use of ecoacoustics to determine biodiversity patterns across ecological gradients.
Grant, Paul B C; Samways, Michael J
2016-12-01
The variety of local animal sounds characterizes a landscape. We used ecoacoustics to noninvasively assess the species richness of various biotopes typical of an ecofriendly forest plantation with diverse ecological gradients and both nonnative and indigenous vegetation. The reference area was an adjacent large World Heritage Site protected area (PA). All sites were in a global biodiversity hotspot. Our results showed how taxa segregated into various biotopes. We identified 65 singing species, including birds, frogs, crickets, and katydids. Large, natural, protected grassland sites in the PA had the highest mean acoustic diversity (14.1 species/site). Areas covered in nonnative timber or grass species were devoid of acoustic species. Sites grazed by native and domestic megaherbivores were fairly rich (5.1) in acoustic species but none were unique to this habitat type, where acoustic diversity was greater than in intensively managed grassland sites (0.04). Natural vegetation patches inside the plantation mosaic supported high mean acoustic diversity (indigenous forests 7.6, grasslands 8.0, wetlands 9.1), which increased as plant heterogeneity and patch size increased. Indigenous forest patches within the plantation mosaic contained a highly characteristic acoustic species assemblage, emphasizing their complementary contribution to local biodiversity. Overall, acoustic signals determined spatial biodiversity patterns and can be a useful tool for guiding conservation. © 2016 Society for Conservation Biology.
Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.
Saglam, Bülent; Bilgili, Ertugrul; Dincdurmaz, Bahar; Kadiogulari, Ali Ihsan; Kücük, Ömer
2008-06-20
Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.
Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F
2018-04-01
Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.
Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narolski, Steven W.
The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.
Twedt, D.J.; Loesch, C.R.
1999-01-01
Knowing the current forest distribution and patch size characteristics is integral to the development of geographically defined, habitat-based conservation objectives for breeding birds. Towards this end, we classified 2.6 million ha of forest cover within the Mississippi Alluvial Valley using 1992 thematic mapper satellite imagery. Although historically this area, from southern Illinois to southern Louisiana, was dominated by forested wetlands, forest cover remains on less than 25% of the floodplain. Remaining forest cover is comprised of > 38,000 discrete forest patches > 2 ha. Mean patch area (64.1?5.2 ha; 0 ?SE) was highly skewed towards small fragment size. Larger patches had a higher proportion of more hydric forest cover classes than did smaller patches which had a higher proportion of less hydric forest cover classes. Public lands accounted for 16% of remaining forested wetlands. Fewer than 100 forest patches exceeded our hypothesized habitat objective (4000 ha minimum contiguous forest area) intended to support self-sustaining populations of forest breeding birds. To increase the number of forest patches exceeding 4000 ha contiguous area, and thereby increase the likelihood of successful forest bird conservation, we recommend afforestation adjoining existing forest fragments ?1012 ha and focused within designated Forest Bird Conservation Regions.
Targeted habitat restoration can reduce extinction rates in fragmented forests.
Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John M
2017-09-05
The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.
Targeted habitat restoration can reduce extinction rates in fragmented forests
Newmark, William D.; Pimm, Stuart L.; McNeally, Phoebe B.; Halley, John M.
2017-01-01
The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species–area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21–$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide. PMID:28827340
NASA Astrophysics Data System (ADS)
Tarigan, Suria; Wiegand, Kerstin; Sunarti; Slamet, Bejo
2018-01-01
In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT) model and observed several watersheds to derive the direct runoff coefficient (C) and baseflow index (BFI). The model had a strong performance, with Nash-Sutcliffe efficiency values of 0.80-0.88 (calibration) and 0.80-0.85 (validation) and percent bias values of -2.9-1.2 (calibration) and 7.0-11.9 (validation). We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a watershed can provide adequate ecosystem services.
CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia
NASA Astrophysics Data System (ADS)
Carvalho, J. A., Jr.; Amaral, S. S.; Costa, M. A. M.; Soares Neto, T. G.; Veras, C. A. G.; Costa, F. S.; van Leeuwen, T. T.; Krieger Filho, G. C.; Tourigny, E.; Forti, M. C.; Fostier, A. H.; Siqueira, M. B.; Santos, J. C.; Lima, B. A.; Cascão, P.; Ortega, G.; Frade, E. F., Jr.
2016-06-01
Forests represent an important role in the control of atmospheric emissions through carbon capture. However, in forest fires, the carbon stored during photosynthesis is released into the atmosphere. The carbon quantification, in forest burning, is important for the development of measures for its control. The aim of this study was to quantify CO2 and CO emissions of forest fires in Western Amazonia. In this paper, results are described of forest fire experiments conducted in Cruzeiro do Sul and Rio Branco, state of Acre, and Candeias do Jamari, state of Rondônia, Brazil. These cities are located in the Western portion of the Brazilian Amazon region. The biomass content per hectare, in the virgin forest, was measured by indirect methods using formulas with parameters of forest inventories in the central hectare of the test site. The combustion completeness was estimated by randomly selecting 10% of the total logs and twelve 2 × 2 m2 areas along three transects and examining their consumption rates by the fire. The logs were used to determine the combustion completeness of the larger materials (characteristic diameters larger than 10 cm) and the 2 × 2 m2 areas to determine the combustion completeness of small-size materials (those with characteristic diameters lower than 10 cm) and the. The overall biomass consumption by fire was estimated to be 40.0%, 41.2% and 26.2%, in Cruzeiro do Sul, Rio Branco and Candeias do Jamari, respectively. Considering that the combustion gases of carbon in open fires contain approximately 90.0% of CO2 and 10.0% of CO in volumetric basis, the average emission rates of these gases by the burning process, in the three sites, were estimated as 191 ± 46.7 t ha-1 and 13.5 ± 3.3 t ha-1, respectively.
W. Keith Moser; Mark H. Hansen; Robert L. Atchison; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Dacia M. Meneguzzo; Mark D. Nelson; Charles H. Perry; William H. IV Reading; Barry T. Wilson; Christopher W. Woodall
2008-01-01
The first completed annual inventory of Kansas forests reports 2.1 million acres of forest land, roughly 4 percent of the total land area in the State. Softwood forests account for nearly 5 percent of the total timberland area. Oak/hickory forest types make up 56 percent of the total hardwood forest land area. Elm/ash/cottonwood accounts for more than 30 percent of the...
Forest Area in North Dakota, 1980
Ronald L. Hackett
1982-01-01
In 1980 North Dakota's forest resources covered 518,100 acres of land, a slight decline from 572,400 acres reported in 1954. The area of commercial forest land also dropped from 398,400 acres to 343,200 acres. The aspen forest type makes up 41 percent of the commercial forest area.
Climate and anthropogenic impacts on forest vegetation derived from satellite data
NASA Astrophysics Data System (ADS)
Zoran, M.; Savastru, R.; Savastru, D.; Tautan, M.; Miclos, S.; Baschir, L.
2010-09-01
Vegetation and climate interact through a series of complex feedbacks, which are not very well understood. The patterns of forest vegetation are largely determined by temperature, precipitation, solar irradiance, soil conditions and CO2 concentration. Vegetation impacts climate directly through moisture, energy, and momentum exchanges with the atmosphere and indirectly through biogeochemical processes that alter atmospheric CO2 concentration. Changes in forest vegetation land cover/use alter the surface albedo and radiation fluxes, leading to a local temperature change and eventually a vegetation response. This albedo (energy) feedback is particularly important when forests mask snow cover. Forest vegetation-climate feedback regimes are designated based on the temporal correlations between the vegetation and the surface temperature and precipitation. The different feedback regimes are linked to the relative importance of vegetation and soil moisture in determining land-atmosphere interactions. Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modeling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal forest vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images over 1989 - 2009 period for a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, from IKONOS and LANDSAT TM and ETM satellite images and meteorological data. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. For investigated test area, considerable NDVI decline was observed for drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation .
78 FR 21343 - New Ski Area Water Rights Clause
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... DEPARTMENT OF AGRICULTURE Forest Service New Ski Area Water Rights Clause AGENCY: Forest Service... initial public input on a new water rights clause for ski area permits issued by the Forest Service. There... comments and suggestions that the Forest Service will consider in developing a new ski area water rights...
Charles C. Grier; Katherine J. Elliott; Deborah G. McCullough
1992-01-01
Above-ground biomass distribution, leaf area, above-ground net primary productivity and foliage characteristics were determined for 90- and 350-year-old Pinus edulis-Juniperus monosperma ecosystems on the Colorado Plateau of northern Arizona. These ecosystems have low biomass, leaf area and primary productivity compared with forests in wetter...
NASA Technical Reports Server (NTRS)
Owe, M.
1981-01-01
Using aerial photographs dating back to 1937, the historical trends of five land use classes (crop, forest, open field, urban and suburban) are determined. The relationships between these and various flow regime parameters are investigated. Annual runoff is found to be 7.5 inches greater now than in the year 1932. It is also found that growing season runoff increased by 3.5 inches during the same period. This increase is approximately equivalent to 160 area inches of excess runoff during the 45-year period of observation. The increase in runoff is found to be positively correlated with the percent basin area in the urban, suburban and open field land use classes. A negative correlation is established with forest and crop land. Although poor correlations are found with high flow, low flow, flow interval and flow date data, it is thought that a more precise quantification of land use or a smaller basin area may possibly have yielded more positive results for streamflow timing data.
da Silva, Cleyton Martins; Souza, Elaine Cesar C A; da Silva, Luane Lima; Oliveira, Rafael Lopes; Corrêa, Sergio Machado; Arbilla, Graciela
2016-11-01
Volatile organic compounds (VOCs) play a central role in atmospheric chemistry. In this work, VOCs in the Botanical Garden of Rio de Janeiro were determined using the TO-15 Method. The park occupies 1,370,000 m 2 in the southern area of the city and is next to the Tijuca Forest, which is considered the largest secondary urban forest in the world. The total VOC concentrations ranged from 43.52 to 168.75 µg m -3 , depending on the sampling site and dates. In terms of concentration isoprene represented 4 %-14 % of the total VOC masses. The results suggested that the differences in biomass, distance from the street and activities within the park affected the concentrations of VOCs. The ratios of isoprene/aromatic compounds were higher than those determined in other areas of the city, confirming that the atmosphere of this green area has the contribution of other sources. Kinetic and mechanistic reactivities were also evaluated.
Comparison of interferometric and stereo-radargrammetric 3D metrics in mapping of forest resources
NASA Astrophysics Data System (ADS)
Karila, K.; Karjalainen, M.; Yu, X.; Vastaranta, M.; Holopainen, M.; Hyyppa, J.
2015-04-01
Accurate forest resources maps are needed in diverse applications ranging from the local forest management to the global climate change research. In particular, it is important to have tools to map changes in forest resources, which helps us to understand the significance of the forest biomass changes in the global carbon cycle. In the task of mapping changes in forest resources for wide areas, Earth Observing satellites could play the key role. In 2013, an EU/FP7-Space funded project "Advanced_SAR" was started with the main objective to develop novel forest resources mapping methods based on the fusion of satellite based 3D measurements and in-situ field measurements of forests. During the summer 2014, an extensive field surveying campaign was carried out in the Evo test site, Southern Finland. Forest inventory attributes of mean tree height, basal area, mean stem diameter, stem volume, and biomass, were determined for 91 test plots having the size of 32 by 32 meters (1024 m2). Simultaneously, a comprehensive set of satellite and airborne data was collected. Satellite data also included a set of TanDEM-X (TDX) and TerraSAR-X (TSX) X-band synthetic aperture radar (SAR) images, suitable for interferometric and stereo-radargrammetric processing to extract 3D elevation data representing the forest canopy. In the present study, we compared the accuracy of TDX InSAR and TSX stereo-radargrammetric derived 3D metrics in forest inventory attribute prediction. First, 3D data were extracted from TDX and TSX images. Then, 3D data were processed as elevations above the ground surface (forest canopy height values) using an accurate Digital Terrain Model (DTM) based on airborne laser scanning survey. Finally, 3D metrics were calculated from the canopy height values for each test plot and the 3D metrics were compared with the field reference data. The Random Forest method was used in the forest inventory attributes prediction. Based on the results InSAR showed slightly better performance in forest attribute (i.e. mean tree height, basal area, mean stem diameter, stem volume, and biomass) prediction than stereo-radargrammetry. The results were 20.1% and 28.6% in relative root mean square error (RMSE) for biomass prediction, for TDX and TSX respectively.
Ruba C. Bilal; John R. Seiler; Brian D. Strahm; John A. Peterson
2016-01-01
We are investigating biogeochemical cycling in a mixed hardwood forest in the Ridge and Valley physiographic province in Montgomery County, Virginia. The broad aim of the study is to understand how carbon, water and nutrient cycles vary among diverse stand types in a relatively small spatial area. The specific objectives here are to determine patterns in soil CO2...
Lobo, Elena; Dalling, James W
2014-03-07
Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.
ERTS-1 data applications to Minnesota forest land use classification
NASA Technical Reports Server (NTRS)
Sizer, J. E. (Principal Investigator); Eller, R. G.; Meyer, M. P.; Ulliman, J. J.
1973-01-01
The author has identified the following significant results. Color-combined ERTS-1 MSS spectral slices were analyzed to determine the maximum (repeatable) level of meaningful forest resource classification data visually attainable by skilled forest photointerpreters for the following purposes: (1) periodic updating of the Minnesota Land Management Information System (MLMIS) statewide computerized land use data bank, and (2) to provide first-stage forest resources survey data for large area forest land management planning. Controlled tests were made of two forest classification schemes by experienced professional foresters with special photointerpretation training and experience. The test results indicate it is possible to discriminate the MLMIS forest class from the MLMIS nonforest classes, but that it is not possible, under average circumstances, to further stratify the forest classification into species components with any degree of reliability with ERTS-1 imagery. An ongoing test of the resulting classification scheme involves the interpretation, and mapping, of the south half of Itasca County, Minnesota, with ERTS-1 imagery. This map is undergoing field checking by on the ground field cooperators, whose evaluation will be completed in the fall of 1973.
Forest Area Trends in Puerto Rico
Richard A. Birdsey; Peter L. Weaver
1987-01-01
Forest area trends in Puerto Rico from 1980 to 1985 are included in this update of earlier studies. Total forest area has increased from 279,000 ha in 1980 to 300,000 ha in 1985. Most of the new forest is growing on abandoned pasture. Secondary forest and abandoned coffee shade account for 78 percent of all forest land. Xeric scrub and active coffee shade account for...
NASA Astrophysics Data System (ADS)
Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi
2014-01-01
The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Stoiber, R. E. (Principal Investigator)
1983-01-01
Computer classification of LANDSAT data was used for forest type mapping in New England. The ability to classify areas of hardwood, softwood, and mixed tree types was assessed along with determining clearcut regions and gypsy moth defoliation. Applications of the information to forest management and locating potential deer yards were investigated. The principal activities concerned with remote sensing of volcanic emissions centered around the development of remote sensors for SO2 and HCl gas, and their use at appropriate volcanic sites. Two major areas were investigated (Masaya, Nicaragua, and St. Helens, Washington) along with several minor ones.
Yang, Wenjuan; Wang, Yanhui; Wang, Shunli; Webb, Ashley A; Yu, Pengtao; Liu, Xiande; Zhang, Xuelong
2017-07-17
Forest restoration in dryland mountainous areas is extremely difficult due to dry climate, complex topography and accelerating climate change. Thus, exact identification of suitable sites is required. This study at a small watershed of Qilian Mountains, Northwest China, aimed to determine the important factors and their thresholds limiting the spatial distribution of forests of Qinghai spruce (Picea crassifolia), a locally dominant tree species. The watershed was divided into 342 spatial units. Their location, terrain and vegetation characteristics were recorded. Statistical analysis showed that the potential distribution area of Qinghai spruce forests is within an ellipse with the axes of elevation (from 2673.6 to 3202.2 m a.s.l.) and slope aspect (from -162.1° to 75.1° deviated from North). Within this ellipse, the forested sites have a soil thickness ≥40 cm, and slope positions of lower-slope, lower- or middle-slope, anywhere if the elevation is <2800, 2800-2900, >2900 m a.s.l, respectively. The corresponding mean annual air temperature at upper elevation boundary is -2.69 °C, while the mean annual precipitation at lower elevation boundary is 374 (331) mm within the small watershed (study area). The high prediction accuracy using these 4 factors can help to identify suitable sites and increase the success of afforestation.
Selection of forest canopy gaps by male Cerulean Warblers in West Virginia
Perkins, Kelly A.; Wood, Petra Bohall
2014-01-01
Forest openings, or canopy gaps, are an important resource for many forest songbirds, such as Cerulean Warblers (Setophaga cerulea). We examined canopy gap selection by this declining species to determine if male Cerulean Warblers selected particular sizes, vegetative heights, or types of gaps. We tested whether these parameters differed among territories, territory core areas, and randomly-placed sample plots. We used enhanced territory mapping techniques (burst sampling) to define habitat use within the territory. Canopy gap densities were higher within core areas of territories than within territories or random plots, indicating that Cerulean Warblers selected habitat within their territories with the highest gap densities. Selection of regenerating gaps with woody vegetation >12 m within the gap, and canopy heights >24 m surrounding the gap, occurred within territory core areas. These findings differed between two sites indicating that gap selection may vary based on forest structure. Differences were also found regarding the placement of territories with respect to gaps. Larger gaps, such as wildlife food plots, were located on the periphery of territories more often than other types and sizes of gaps, while smaller gaps, such as treefalls, were located within territory boundaries more often than expected. The creations of smaller canopy gaps, <100 m2, within dense stands are likely compatible with forest management for this species.
Leithead, Mark D; Anand, Madhur; Silva, Lucas C R
2010-12-01
Climate change is expected to promote migration of species. In ecotones, areas of ecological tension, disturbances may provide opportunities for some migrating species to establish in otherwise competitive environments. The size of and time since disturbance may determine the establishment ability of these species. We investigated gap dynamics of an old-growth red pine (Pinus resinosa Sol. ex Aiton) forest in the Great Lakes-St. Lawrence forest in northern Ontario, Canada, a transition zone between temperate and boreal forest. We investigated the effects of gaps of different sizes and ages on tree species abundance and basal area. Our results show that tree species from the temperate forest further south, such as red maple (Acer rubrum L.), red oak (Quercus rubra L.), and white pine (Pinus strobus L.), establish more often in large, old gaps; however, tree species that have more northern distributions, such as black spruce (Picea mariana Mill.), paper birch (Betula papyrifera Marsh.), and red pine show no difference in establishment ability with gap size or age. These differences in composition could not be attributed to autogenic succession. We conclude that treefall gaps in this forest facilitate the establishment of northward migrating species, potentially providing a pathway for future forest migration in response to recent changes in climate.
A comparison of soil-moisture loss from forested and clearcut areas in West Virginia
Charles A. Troendle
1970-01-01
Soil-moisture losses from forested and clearcut areas were compared on the Fernow Experimental Forest. As expected, hardwood forest soils lost most moisture while revegetated clearcuttings, clearcuttings, and barren areas lost less, in that order. Soil-moisture losses from forested soils also correlated well with evapotranspiration and streamflow.
Forest Area in Eastern South Dakota, 1980
Thomas L. Castonguay
1982-01-01
In 1980 eastern South Dakota's forest resources covered 266,300 acres of land, a slight decline from the 296,600 acres reported in 1965. The area of commercial forest land also dropped from 165,400 acres to 113,600 acres. The elm-ash-locust forest type covers 40 percent of the commercial forest area.
Tennessee's forest land area was stable 1999-2005 but early successional forest area declined
Christopher M. Oswalt
2008-01-01
A new analysis of the most recent (2005) annualized moving average data for Tennessee indicates that the area of forest land in the State remained stable between 1999 and 2005. Although trends in forest land area vary from region to region within the State, Tennessee neither lost nor gained forest land between 1999 and 2005. However, Tennessee had more than 2.5 times...
Forest edge disturbance increases rattan abundance in tropical rain forest fragments.
Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F
2017-07-20
Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.
Modeled distributions of 12 tree species in New York
Rachel I. Riemann; Barry T. Wilson; Andrew J. Lister; Oren Cook; Sierra Crane-Murdoch
2014-01-01
These maps depict the distribution of 12 tree species across the state of New York. The maps show where these trees do not occur (gray), occasionally occur (pale green), are a minor component (medium green), are a major component (dark green), or are the dominant species (black) in the forest, as determined by that species' total basal area. Basal area is the area...
Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna
NASA Astrophysics Data System (ADS)
Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel
2014-05-01
The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will be the largest refinery of Brazil and, consequently, with less anthropogenic influences for the moment. Ecological risk assessments are conducted together with ecotoxicological tests in natural and artificial tropical soils, using exotic and native species of the soil fauna, naturally present in the area of study, in order to determine the risk of mercury in soil and litter in tropical forest. Previous results confirm higher concentrations of mercury in litter and soil of the forest area closest to the operating refinery. The presence of Hg seems to select the size of the organisms as well as the abundance and diversity of the soil fauna that remain in tropical forest.
NASA Technical Reports Server (NTRS)
Clark, C. A. (Principal Investigator)
1981-01-01
Existing vegetation on a site in Sumter National Forest, South Carolina was classified using high altitude aerial optical bar color infrared photography in an effort to determine if the National Site Classification (NSC) system could be used in the heterogeneously forested southeastern United States where it had not previously been used. Results show that the revised UNESCO international classification and mapping of vegetation system, as incorporated into the NSCS, is general enough at the higher levels and specific enough at the lower levels to adequately accommodate densely forested, heterogeneous areas as well as the larger, more homogeneous regions of the Pacific Northwest. The major problem is of existing vegetation versus natural vegetation.
Estimating forest productivity with Thematic Mapper and biogeographical data
NASA Technical Reports Server (NTRS)
Cook, Elizabeth A.; Iverson, Louis R.; Graham, Robin L.
1989-01-01
Spectral data from the Landsat Thematic Mapper (TM) on three forest exosystems (the southern Illinois, the Great Smoky Mountains regions in Tennessee and North Carolina, and the central Adirondack Mountains in New York) were used in conjunction with ground-collected measures of forest productivity and such information as the area's slope, aspect, elevation, and soil and vegetation types, to develop models of regional forest productivity. It is shown that the models developed may be used to estimate the productivity of a region with a high degree of confidence, but that the reliability of single-pixel estimates is poor. The characteristics of a given ecosystem determine which spectral values are most closely related to forest productivity. Thus, mid-IR, NIR, and visible bands are most significant in Illinois and New York, while the thermal band is relatively more important in the Smokies.
Missouri's forest resources in 2000
Earl C. Leatherberry; Thomas B. Treiman
2002-01-01
Results of the fifth annual inventory of Missouri show that since 1989 forest land area has increased slightly. The forest is composed predominantly of hardwoods--the oak-hickory forest type alone occupies 71 percent of the timberland area. Softwood occupies 4 percent of timberland area, and the area of eastern redcedar is expanding. Between 1989 and 2000, total...
Fierro, Pablo; Bertrán, Carlos; Tapia, Jaime; Hauenstein, Enrique; Peña-Cortés, Fernando; Vergara, Carolina; Cerna, Cindy; Vargas-Chacoff, Luis
2017-12-31
Land-use change is a principal factor affecting riparian vegetation and river biodiversity. In Chile, land-use change has drastically intensified over the last decade, with native forests converted to exotic forest plantations and agricultural land. However, the effects thereof on aquatic ecosystems are not well understood. Closing this knowledge gap first requires understanding how human perturbations affect riparian and stream biota. Identified biological indicators could then be applied to determine the health of fluvial ecosystems. Therefore, this study investigated the effects of land-use change on the health of riparian and aquatic ecosystems by assessing riparian vegetation, water quality, benthic macroinvertebrate assemblages, and functional feeding groups. Twenty-one sites in catchment areas with different land-uses (i.e. pristine forests, native forests, exotic forest plantations, and agricultural land) were selected and sampled during the 2010 to 2012 dry seasons. Riparian vegetation quality was highest in pristine forests. Per the modified Macroinvertebrate Family Biotic Index for Chilean species, the best conditions existed in native forests and the worst in agricultural catchments. Water quality and macroinvertebrate assemblages significantly varied across land-use areas, with forest plantations and agricultural land having high nutrient concentrations, conductivity, suspended solids, and apparent color. Macroinvertebrate assemblage diversity was lowest for agricultural and exotic forest plantation catchments, with notable non-insect representation. Collector-gatherers were the most abundant functional feeding group, suggesting importance independent of land-use. Land-use areas showed no significant differences in functional feeding groups. In conclusion, anthropogenic land-use changes were detectable through riparian quality, water quality, and macroinvertebrate assemblages, but not through functional feeding groups. These data, particularly the riparian vegetation and macroinvertebrate assemblage parameters, could be applied towards the conservation and management of riparian ecosystems through land-use change studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients
Andrew, Margaret E.; Ruthrof, Katinka X.; Matusick, George; Hardy, Giles E. St. J.
2016-01-01
Climate change is increasing the risk of drought to forested ecosystems. Although drought impacts are often anecdotally noted to occur in discrete patches of high canopy mortality, the landscape effects of drought disturbances have received virtually no study. This study characterized the landscape configuration of drought impact patches and investigated the relationships between patch characteristics, as indicators of drought impact intensity, and environmental gradients related to water availability to determine factors influencing drought vulnerability. Drought impact patches were delineated from aerial surveys following an extreme drought in 2011 in southwestern Australia, which led to patchy canopy dieback of the Northern Jarrah Forest, a Mediterranean forest ecosystem. On average, forest gaps produced by drought-induced dieback were moderate in size (6.6 ± 9.7 ha, max = 85.7 ha), compact in shape, and relatively isolated from each other at the scale of several kilometers. However, there was considerable spatial variation in the size, shape, and clustering of forest gaps. Drought impact patches were larger and more densely clustered in xeric areas, with significant relationships observed with topographic wetness index, meteorological variables, and stand height. Drought impact patch clustering was more strongly associated with the environmental factors assessed (R2 = 0.32) than was patch size (R2 = 0.21); variation in patch shape remained largely unexplained (R2 = 0.02). There is evidence that the xeric areas with more intense drought impacts are ‘chronic disturbance patches’ susceptible to recurrent drought disturbance. The spatial configuration of drought disturbances is likely to influence ecological processes including forest recovery and interacting disturbances such as fire. Regime shifts to an alternate, non-forested ecosystem may occur preferentially in areas with large or clustered drought impact patches. Improved understanding of drought impacts and their patterning in space and time will expand our knowledge of forest ecosystems and landscape processes, informing management of these dynamic systems in an uncertain future. PMID:27275744
NASA Astrophysics Data System (ADS)
Huang, Huabing; Liu, Caixia; Wang, Xiaoyi; Biging, Gregory S.; Chen, Yanlei; Yang, Jun; Gong, Peng
2017-07-01
Vegetation height is an important parameter for biomass assessment and vegetation classification. However, vegetation height data over large areas are difficult to obtain. The existing vegetation height data derived from the Ice, Cloud and land Elevation Satellite (ICESat) data only include laser footprints in relatively flat forest regions (<5°). Thus, a large portion of ICESat data over sloping areas has not been used. In this study, we used a new slope correction method to improve the accuracy of estimates of vegetation heights for regions where slopes fall between 5° and 15°. The new method enabled us to use more than 20% additional laser data compared with the existing vegetation height data which only uses ICESat data in relatively flat areas (slope < 5°) in China. With the vegetation height data extracted from ICESat footprints and ancillary data including Moderate Resolution Imaging Spectroradiometer (MODIS) derived data (canopy cover, reflectances and leaf area index), climate data, and topographic data, we developed a wall to wall vegetation height map of China using the Random Forest algorithm. We used the data from 416 field measurements to validate the new vegetation height product. The coefficient of determination (R2) and RMSE of the new vegetation height product were 0.89 and 4.73 m respectively. The accuracy of the product is significantly better than that of the two existing global forest height products produced by Lefsky (2010) and Simard et al. (2011), when compared with the data from 227 field measurements in our study area. The new vegetation height data demonstrated clear distinctions among forest, shrub and grassland, which is promising for improving the classification of vegetation and above-ground forest biomass assessment in China.
Missouri's forests 1999-2003 (Part A)
W. Keith Moser; Mark H. Hansen; Thomas B. Treiman; Earl C. Leatherberry; Ed Jepsen; Cassandra L. Olson; Charles H. Perry; Ronald J. Piva; Christopher W. Woodall; Gary J. Brand
2007-01-01
The first completed annual inventory of Missouri's forests reports more than 14.6 million acres of forest land. Softwood forests make up 4 percent of the total forest land area; oak/hickory forest types make up about three-fourths of the total hardwood forest land area. Missouri's forests have continued to increase in volume, with all-live tree volume on...
NASA Astrophysics Data System (ADS)
Wojciechowski, Adam
2017-04-01
In order to assess ecodiversity understood as a comprehensive natural landscape factor (Jedicke 2001), it is necessary to apply research methods which recognize the environment in a holistic way. Principal component analysis may be considered as one of such methods as it allows to distinguish the main factors determining landscape diversity on the one hand, and enables to discover regularities shaping the relationships between various elements of the environment under study on the other hand. The procedure adopted to assess ecodiversity with the use of principal component analysis involves: a) determining and selecting appropriate factors of the assessed environment qualities (hypsometric, geological, hydrographic, plant, and others); b) calculating the absolute value of individual qualities for the basic areas under analysis (e.g. river length, forest area, altitude differences, etc.); c) principal components analysis and obtaining factor maps (maps of selected components); d) generating a resultant, detailed map and isolating several classes of ecodiversity. An assessment of ecodiversity with the use of principal component analysis was conducted in the test area of 299,67 km2 in Debnica Kaszubska commune. The whole commune is situated in the Weichselian glaciation area of high hypsometric and morphological diversity as well as high geo- and biodiversity. The analysis was based on topographical maps of the commune area in scale 1:25000 and maps of forest habitats. Consequently, nine factors reflecting basic environment elements were calculated: maximum height (m), minimum height (m), average height (m), the length of watercourses (km), the area of water reservoirs (m2), total forest area (ha), coniferous forests habitats area (ha), deciduous forest habitats area (ha), alder habitats area (ha). The values for individual factors were analysed for 358 grid cells of 1 km2. Based on the principal components analysis, four major factors affecting commune ecodiversity were distinguished: hypsometric component (PC1), deciduous forest habitats component (PC2), river valleys and alder habitats component (PC3), and lakes component (PC4). The distinguished factors characterise natural qualities of postglacial area and reflect well the role of the four most important groups of environment components in shaping ecodiversity of the area under study. The map of ecodiversity of Debnica Kaszubska commune was created on the basis of the first four principal component scores and then five classes of diversity were isolated: very low, low, average, high and very high. As a result of the assessment, five commune regions of very high ecodiversity were separated. These regions are also very attractive for tourists and valuable in terms of their rich nature which include protected areas such as Slupia Valley Landscape Park. The suggested method of ecodiversity assessment with the use of principal component analysis may constitute an alternative methodological proposition to other research methods used so far. Literature Jedicke E., 2001. Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der Landschaftsstruktur - ein konzeptioneller Diskussionsbeitrag. Naturschutz und Landschaftsplanung, 33(2/3), 59-68.
Historical harvests reduce neighboring old-growth basal area across a forest landscape.
Bell, David M; Spies, Thomas A; Pabst, Robert
2017-07-01
While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests. © 2017 by the Ecological Society of America.
Operational applications of satellite snowcover observations in Rio Grande drainage of Colorado
NASA Technical Reports Server (NTRS)
Washicheck, J. N.; Mikesell, T.
1975-01-01
Various mapping techniques were tried and evaluated. There were many problems encountered such as distinquishing clouds from snow and snow under trees. A partial solution to some of the problems involves ground reconnaissance and low air flights. Snow areas, cloud cover, and total areas were planimetered after transferring imagery by use of zoom transfer scope. These determinations were then compared to areas determined by use of a density slicer. Considerable adjustment is required for these two values to compare. NOAA pictures were also utilized in the evaluation. Forest cover is one of the parameters used in the modeling process. The determination of this percentage is being explored.
Spatial dynamics of deforestation and forest fragmentation (1930-2013) in Eastern Ghats, India
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, C.; Jha, C. S.; Dadhwal, V. K.
2014-11-01
The tropical forests are the most unique ecosystems for their potential economic value. Eastern Ghats, a phytogeographical region of India has rugged hilly terrain distributed in parts of five states, viz. Odisha, Andhra Pradesh, Telangana, Karnataka and Tamil Nadu. The present study is mainly aimed to analyse the trends in deforestation and its role in forest fragmentation of Eastern Ghats. The long term changes in forest cover with its spatial pattern over time has been assessed by analyzing a set of topographical maps and satellite remote sensing datasets. The multi-source and multi-date mapping has been carried out using survey of India topographical maps (1930's), Landsat MSS (1975 and 1985), IRS 1B LISS-I (1995), IRS P6 AWiFS (2005) and Resourcesat-2 AWiFS (2013) satellite images. The classified spatial data for 1930, 1975, 1985, 1995, 2005 and 2013 showed that the forest cover for the mentioned years are 102213 km2 (45.6 %), 76630 (34.2 %), 73416 km2 (32.7 %), 71730 km2 (32 %), 71305 km2 (31.8 %) and 71186 km2 (31.7 %) of the geographical area of Eastern Ghats respectively. A spatial statistical analysis of the deforestation rates and forest cover change were carried out based on distinctive time phases, i.e. 1930-1975, 1975-1985, 1985-1995, 1995-2005 and 2005-2013. The spatial analysis was carried out first by segmenting the study area into grid cells of 5 km x 5 km for time series assessment and determining spatial changes in forests. The distribution of loss and gain of forest was calculated across six classes i.e. <1 km2, 1-5 km2, 5-10 km2, 10-15 km2, 15-20 km2 and >20 km2. Landscape metrics were used to quantify spatial variability of landscape structure and composition. The results of study on net rate of deforestation was found to be 0.64 during 1935 to 1975, 0.43 during 1975-1985, 0.23 during 1985-1995, 0.06 during 1995-2005 and 0.02 during 2005-2013. The number of forest patches increased from 2688 (1930) to 13009 (2013). The largest forest patch in 1930 represents area of 41669 km2 that has reduced to 27800 km2 by 2013. Thus, it is evident that there is a substantial reduction in the size of the very large forest patches due to deforestation. According to spatial analysis, among the different land use change drivers, agriculture occupies highest area, followed by degradation to scrub and conversion to orchards. The dominant forest type was dry deciduous which comprises 37192 km2 (52.2 %) of the total forest area of Eastern Ghats, followed by moist deciduous forest (39.2 %) and semievergreen forest (4.8 %) in 2013. The change analysis showed that the large scale negative changes occurred in deciduous forests and semi-evergreen forests compared to wet evergreen forests due to high economic potential and accessibility. This study has quantified the deforestation that has taken place over the last eight decades in the Eastern Ghats. The decline in overall rate of deforestation in recent years indicates increased measures of conservation. The change analysis of deforestation and forest fragmentation provides a decisive component for conservation and helpful in long term management of forests of Eastern Ghats.
Souza-Filho, Pedro Walfir M; de Souza, Everaldo B; Silva Júnior, Renato O; Nascimento, Wilson R; Versiani de Mendonça, Breno R; Guimarães, José Tasso F; Dall'Agnol, Roberto; Siqueira, José Oswaldo
2016-02-01
Long-term human-induced impacts have significantly changed the Amazonian landscape. The most dramatic land cover and land use (LCLU) changes began in the early 1970s with the establishment of the Trans-Amazon Highway and large government projects associated with the expansion of agricultural settlement and cattle ranching, which cleared significant tropical forest cover in the areas of new and accelerated human development. Taking the changes in the LCLU over the past four decades as a basis, this study aims to determine the consequences of land cover (forest and savanna) and land use (pasturelands, mining and urban) changes on the hydroclimatology of the Itacaiúnas River watershed area of the located in the southeastern Amazon region. We analyzed a multi-decadal Landsat dataset from 1973, 1984, 1994, 2004 and 2013 and a 40-yr time series of water discharge from the Itacaiúnas River, as well as air temperature and relative humidity data over this drainage area for the same period. We employed standard Landsat image processing techniques in conjunction with a geographic object-based image analysis and multi-resolution classification approach. With the goal of detecting possible long-term trends, non-parametric Mann-Kendall test was applied, based on a Sen slope estimator on a 40-yr annual PREC, TMED and RH time series, considering the spatial average of the entire watershed. In the 1970s, the region was entirely covered by forest (99%) and savanna (∼0.3%). Four decades later, only ∼48% of the tropical forest remains, while pasturelands occupy approximately 50% of the watershed area. Moreover, in protected areas, nearly 97% of the tropical forest remains conserved, while the forest cover of non-protected areas is quite fragmented and, consequently, unevenly distributed, covering an area of only 30%. Based on observational data analysis, there is evidence that the conversion of forest cover to extensive and homogeneous pasturelands was accompanied by systematic modifications to the hydroclimatology cycle of the Itacaiúnas watershed, thus highlighting drier environmental conditions due to a rise in the region's air temperature, a decrease in the relative humidity, and an increase in river discharge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of satellite image spatial aggregation and resolution on estimates of forest land area
M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer
2009-01-01
Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...
A model-based approach to estimating forest area
Ronald E. McRoberts
2006-01-01
A logistic regression model based on forest inventory plot data and transformations of Landsat Thematic Mapper satellite imagery was used to predict the probability of forest for 15 study areas in Indiana, USA, and 15 in Minnesota, USA. Within each study area, model-based estimates of forest area were obtained for circular areas with radii of 5 km, 10 km, and 15 km and...
Deforestation: risk of sex ratio distortion in hawksbill sea turtles.
Kamel, Stephanie Jill; Mrosovsky, N
2006-06-01
Phenotypic sex in sea turtles is determined by nest incubation temperatures, with warmer temperatures producing females and cooler temperatures producing males. The common finding of highly skewed female-biased hatchling sex ratios in sea turtle populations could have serious repercussions for the long-term survival of these species and prompted us to examine the thermal profile of a relatively pristine hawksbill nesting beach in Guadeloupe, French West Indies. Data loggers placed at nest depth revealed that temperatures in the forested areas were significantly cooler than temperatures in the more open, deforested areas. Using these temperatures as a predictor of sex ratio, we were able to assess the relative contributions of the different beach zones to the primary sex ratio: significantly more males were likely to be produced in the forested areas. Coastal forests are therefore important male-producing areas for the hawksbill sea turtle, and this has urgent conservation implications. On Guadeloupe, as on many Caribbean islands, deforestation rates are high and show few signs of slowing, as there is continual pressure to develop beachfront areas. The destruction of coastal forest could have serious consequences both in terms of local nesting behavior and of regional demography through the effects on population sex ratios. Human alterations to nesting habitat in other reptile taxa have been shown to modify the thermal properties of nest sites in ways that can disrupt their ecology by allowing parasite transmission, increasing vulnerability to climate change, or rendering existing habitat unsuitable.
Ferronato, M C F; Giangarelli, D C; Mazzaro, D; Uemura, N; Sofia, S H
2018-06-01
In this study, we compare orchid bee communities surveyed in four forest remnants of the Atlantic Forest and four reforested areas characterized by seasonal semi-deciduous forest vegetation in different successional stages (mature and secondary vegetation), located in southern Brazil. The sizes of forest remnants and reforested areas varied from 32.1 to 583.9 ha and from 11.3 to 33.3 ha, respectively. All reforested areas were located near one forest remnant. During samplings, totaling nine per study area, euglossine males were attracted to eight scent baits and captured with bait trap and entomological nets. Each forest remnant and its respective reforested area were sampled simultaneously by two collectors. We collected 435 males belonging to nine species of orchid bees distributed in four genera. The number of individuals and species did not differ significantly between different areas, except for a reforested area (size 33.3 ha), which was located far from its respective forest remnant. Our findings also revealed an apparent association between an orchid bee species (Euglossa annectans Dressler 1982) and the most preserved area surveyed in our study, suggesting that this bee is a potential indicator of good habitat quality in recuperating or preserved areas. Our results suggest that reforested habitats located near forest remnants have a higher probability of having reinstated their euglossine communities.
Nath, Dilip C; Mwchahary, Dimacha Dwibrang
2012-11-11
A favorable climatic condition for transmission of malaria prevails in Kokrajhar district throughout the year. A sizeable part of the district is covered by forest due to which dissimilar dynamics of malaria transmission emerge in forest and non-forest areas. Observed malaria incidence rates of forest area, non-forest area and the whole district over the period 2001-2010 were considered for analyzing temporal correlation between malaria incidence and climatic variables. Associations between the two were examined by Pearson correlation analysis. Cross-correlation tests were performed between pre-whitened series of climatic variable and malaria series. Linear regressions were used to obtain linear relationships between climatic factors and malaria incidence, while weighted least squares regression was used to construct models for explaining and estimating malaria incidence rates. Annual concentration of malaria incidence was analyzed by Markham technique by obtaining seasonal index. Forest area and non-forest area have distinguishable malaria seasons. Relative humidity was positively correlated with forest malaria incidence, while temperature series were negatively correlated with non-forest malaria incidence. There was higher seasonality of concentration of malaria in the forest area than non-forest area. Significant correlation between annual changes in malaria cases in forest area and temperature was observed (coeff=0.689, p=0.040). Separate reliable models constructed for forecasting malaria incidence rates based on the combined influence of climatic variables on malaria incidence in different areas of the district were able to explain substantial percentage of observed variability in the incidence rates (R2adj=45.4%, 50.6%, 47.2%; p< .001 for all). There is an intricate association between climatic variables and malaria incidence of the district. Climatic variables influence malaria incidence in forest area and non-forest area in different ways. Rainfall plays a primary role in characterizing malaria incidences in the district. Malaria parasites in the district had adapted to a relative humidity condition higher than the normal range for transmission in India. Instead of individual influence of the climatic variables, their combined influence was utilizable for construction of models.
Habitat area requirements of breeding forest birds of the middle Atlantic states
Robbins, Chandler S.; Dawson, Deanna K.; Dowell, Barbara A.
1989-01-01
Conservation of birds requires an understanding of their nesting requirements, including area as well as structural characteristics of the habitat. Previous studies have shown that many neotropical migrant bird species seem to depend on extensive forested areas, but the specific area requirements of individual species have not been clarified sufficiently to aid in design and management of effective preserves. For this 5-year study, bird and vegetation data were obtained at 469 points in forests ranging in area from 0.1 ha to more than 3,000 ha in Maryland and adjacent states. Data were analyzed first by stepwise regression to identify habitat factors that had the greatest influence on relative abundance of each bird species. In the relatively undisturbed mature forests studied, degree of isolation and area were significant predictors of relative abundance for more bird species than were any habitat variables. For species for which forest area was a significant predictor of abundance, we used logistic regression to examine the relationship between forest area and the probability of detecting the species. In managing forest lands for wildlife, top priority should go toward providing for the needs of area-sensitive or rare species rather than increasing species diversity per se. Avian species that occur in small and disturbed forests are generalists that are adapted to survival under edge conditions and need no special assistance from man. Forest reserves with thousands of hectares are required to have the highest probability of providing for the least common species of forest birds in a region. However, if preservation of large contiguous forest tracts is not a realistic option, results of this study suggest 2 alternative approaches. First, if other habitat attributes also are considered, smaller forests may provide suitable breeding sites for relatively rare species. Second, smaller tracts in close proximity to other forests may serve to attract or retain area-sensitive species.
Research Natural Areas of the Northern Region: Status and Needs Assessment
Steve W. Chadde; Shannon F. Kimball; Angela G. Evenden
1996-01-01
A major objective of the Forest Service Research Natural Area (RNA) program is to maintain a representative array of all significant natural ecosystems as baseline areas for research and monitoring (Forest Service Manual 4063, USDA Forest Service 1991). The National Forest Management Act of 1976 directs the agency to establish research natural areas typifying important...
NASA Astrophysics Data System (ADS)
Vo, T. T.; Poulain, C.; Dijon, J.; Fournier, A.; Chevalier, N.; Mariolle, D.
2012-08-01
High density vertically aligned carbon nanotube (VACNT) forests are considered as a promising conductive material for many applications (interconnects in microelectronics or contact material layer in sliding contact applications). It is thus crucial to characterize the electrical resistance of these forests, especially in contact with the inherent top/bottom conductive substrates. This paper aims to develop an original method to determine the contribution of the different terms in this electrical resistance, which is measured with a tipless atomic force microscope used in high accuracy "force mode." VACNT stacks with different heights on AlCu substrate with or without Au/Pd top coating are studied. The electrical contact area between the probe tip and the forest is considered to be equivalent to the classical electrical contact area between a tip and a rough surface. With this assumption, the scattering resistance of a mono-wall CNT is 14.6 kΩ μm-1, the top/bottom contact resistance is, respectively, 265 kΩ/385 kΩ. The bottom resistance divided in half is obtained by an interface substrate/CNT catalyst treatment. The same assumption leads to an effective compressive modulus of 175 MPa. These results are consistent with the values published by other authors. The proposed method is effective to optimise the CNT interface contact resistance before integration in a more complex functional structure.
Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind
2015-01-01
The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the range of study mosaics, indicating that the same pattern of grass and forest seems to be generated by different sets of mechanisms across the region, depending on spatial scale and elevation. PMID:26121353
Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind
2015-01-01
The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the range of study mosaics, indicating that the same pattern of grass and forest seems to be generated by different sets of mechanisms across the region, depending on spatial scale and elevation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iijima, K.; Funaki, H.; Tokizawa, T.
In decontamination pilot projects conducted by Japan Atomic Energy Agency (JAEA), many different techniques were tested to determine their applicability to remediate areas evacuated after the Fukushima Daiichi nuclear accident following the Great Tohoku earthquake and tsunami of March 11, 2011. In addition to buildings, roads and farmland, the forest adjacent to living areas was one of the main decontamination targets. The projects evaluated the radioactive contamination of trees and the effectiveness of decontaminating a highly contaminated evergreen forest. This forest was located 1.3 km southwest of the Fukushima Daiichi Nuclear Power Plant and is dominated by Japanese cedar treesmore » and fir trees. As the first step, three Japanese cedar trees and three fir trees were cut down and the distributions of radioactive cesium (Cs) were measured in each. The total concentrations of {sup 134}Cs and {sup 137}Cs in the leaves and branches were about 1 MBq/kg for both cedar and fir trees, and were appreciably higher than in the bark for cedar. The concentrations in the outer part of the trunks (under the bark) were lower, on the order of 10 kBq/kg, and those in the core of the trunks were lower than 1 kBq/kg for both kinds of trees. The observation that the Cs concentrations are higher in the outer part of trees, is compatible with the assumption that radio-Cs was mostly adsorbed on the surface of trees and partly penetrated into the trunks through the bark. Evolution of air dose rates in a 100 x 60 m pasture adjacent to the forest was monitored during decontamination of the forest and of the pasture itself. The dose rates in the pasture decreased drastically after stripping contaminated topsoil from the pasture and decreased slightly more after stripping contaminated topsoil of the forest floor and pruning the trees. Cutting down and removing 84 trees in the outermost area (10- m width) of the forest also slightly decreased these dose rates. After decontamination, the residual dose rates around the highly contaminated forest were mostly attributed to radioactive Cs existing in or on trees and topsoil in the untouched forest beyond the decontaminated area. (authors)« less
Guiterman, Christopher H.; Margolis, Ellis; Allen, Craig D.; Falk, Donald A.; Swetnam, Thomas W.
2017-01-01
Extensive high-severity fires are creating large shrubfields in many dry conifer forests of the interior western USA, raising concerns about forest-to-shrub conversion. This study evaluates the role of disturbance in shrubfield formation, maintenance and succession in the Jemez Mountains, New Mexico. We compared the environmental conditions of extant Gambel oak (Quercus gambelii) shrubfields with adjoining dry conifer forests and used dendroecological methods to determine the multi-century fire history and successional dynamics of five of the largest shrubfields (76–340 ha). Across the study area, 349 shrubfields (5–368 ha) occur in similar topographic and climate settings as dry conifer forests. This suggests disturbance, rather than other biophysical factors, may explain their origins and persistence. Gambel oak ages and tree-ring fire scars in our sampled shrubfields indicate they historically (1664–1899) burned concurrently with adjoining conifer forests and have persisted for over 115 years in the absence of fire. Aerial imagery from 1935 confirmed almost no change in sampled shrubfield patch sizes or boundaries over the twentieth century. The largest shrubfield we identified is less than 4% the size of the largest conifer-depleted and substantially shrub-dominated area recently formed in the Jemez following extensive high-severity wildfires, indicating considerable departure from historical patterns and processes. Projected hotter droughts and increasingly large high-severity fires could trigger more forest-to-shrub transitions and maintain existing shrubfields, inhibiting conifer forest recovery. Restoration of surface fire regimes and associated historical forest structures likely could reduce the rate and patch size of dry conifer forests being converted to shrubfields.
A Conceptual Model of Riparian Forest Response to Channel Abandonment on Meandering Rivers
NASA Astrophysics Data System (ADS)
Stella, J. C.; Hayden, M. K.; Battles, J. J.; Piegay, H.; Dufour, S.; Fremier, A. K.
2008-12-01
On alluvial rivers, hydrogeomorphic regimes exert a primary control on the regeneration of pioneer riparian forest stands and thus their composition and age structure. Seasonal flow patterns provide the necessary conditions for recruitment, and channel migration drives patterns of forest stand dynamics. To date, studies of pioneer riparian forest structure have focused primarily on point bar habitats, where woody vegetation typically recruits with decadal frequency in even-aged bands parallel to the river margin. However, there are indications that other recruitment pathways exist and can be important from a population and conservation perspective. On floodplains where channel migration occurs as infrequent cutoff or avulsion events, the geometry and position of the old channel relative to the new one determines rates and patterns of sedimentation and flood frequency. These conditions provide a brief opportunity for forest recruitment, and geomorphic evolution of the former channel habitat in turn influences forest dynamics. The population implications of this alternative forest regeneration pathway depend on the temporal dynamics of channel abandonment versus the rate of lateral channel migration. Preliminary analysis indicates that the geographic scope of this ecogeomorphological process is sizable. Along the Sacramento River (CA) and Ain River (France), for example, cottonwood-dominated stands associated with abandoned channels tend to be less frequent in number (38% of all stands) but larger in area (accounting for 53% of all forest area) relative to forest stands associated with laterally migrating point bars. Dendrochronological analysis confirms that tree ages in floodplain stands corresponds to the first decade after channel abandonment. These data indicate that changes to the rate and scale of channel abandonment due to human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics.
Distribution of Aboveground Live Biomass in the Amazon Basin
NASA Technical Reports Server (NTRS)
Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.
2007-01-01
The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.
Sengupta, R.; Middleton, B.; Yan, C.; Zuro, M.; Hartman, H.
2005-01-01
Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. ?? Springer 2005.
NASA Astrophysics Data System (ADS)
Gilani, H.; Jain, A. K.
2016-12-01
This study assembles information from three sources - remote sensing, terrestrial photography and ground-based inventory data, to understand the dynamics of Nepal's tropical and sub-tropical forests and plantation sites for the period 1990-2015. Our study focuses on following three specific district areas, which have conserved forests through social and agroforestry management practices: 1. Dolakha district: This site has been selected to study the impact of community-based forest management on land cover change using repeat photography and satellite imagery, in combination with interviews with community members. The study time period is during the period 1990-2010. We determined that satellite data with ground photographs can provide transparency for long term monitoring. The initial results also suggests that community-based forest management program in the mid-hills of Nepal was successful. 2. Chitwan district: Here we use high resolution remote sensing data and optimized community field inventories to evaluate potential application and operational feasibility of community level REDD+ measuring, reporting and verification (MRV) systems. The study uses temporal dynamics of land cover transitions, tree canopy size classes and biomass over a Kayar khola watershed REDD+ study area with community forest to evaluate satellite Image segmentation for land cover, linear regression model for above ground biomass (AGB), and estimation and monitoring field data for tree crowns and AGB. We study three specific years 2002, 2009, 2012. Using integration of WorldView-2 and airborne LiDAR data for tree species level. 3. Nuwakot district: This district was selected to study the impact of establishment of tree plantation on total barren/fallow. Over the last 40 year, this area has went through a drastic changes, from barren land to forest area with tree species consisting of Dalbergia sissoo, Leucaena leucocephala, Michelia champaca, etc. In 1994, this district area was registered and established to grow and process high quality trees shaded of Arabica coffee beans. Here we use temporal satellite images and repeat terrestrial and aerial photographs, along with plot level biomass to show impact of this positive transformation of the landscape on above and below ground carbon masses. The study time period is 1990-2015.
Valois-Cuesta, Hamleth; Martínez-Ruiz, Carolina; Urrutia-Rivas, Yorley
2017-03-01
Mining is one of the main economic activities in many tropical regions and is the cause of devastation of large areas of natural tropical forests. The knowledge of the regenerative potential of mining disturbed areas provides valuable information for their ecological restoration. The aim of this study was to evaluate the effect of age of abandonment of mines and their distance from the adjacent forest, on the formation of soil seed bank in abandoned mines in the San Juan, Chocó, Colombia. To do this, we determined the abundance and species composition of the soil seed bank, and the dynamics of seed rain in mines of different cessation period of mining activity (6 and 15 years), and at different distances from the adjacent forest matrix (50 and 100 m). Seed rain was composed by five species of plants with anemocorous dispersion, and was more abundant in the mine of 6 years than in the mine of 15 years. There were no significant differences in the number of seeds collected at 50 m and 100 m from the adjacent forest. The soil seed bank was represented by eight species: two with anemocorous dispersion (common among the seed rain species) and the rest with zoochorous dispersion. The abundance of seeds in the soil did not vary with the age of the mine, but was higher at close distances to the forest edge than far away. During the early revegetation, the formation of the soil seed bank in the mines seems to be related to their proximity to other disturbed areas, rather than their proximity to the adjacent forest or the cessation activity period of mines. Therefore, the establishment of artificial perches or the maintenance of isolated trees in the abandoned mines could favour the arrival of bird-dispersed seeds at mines. However, since the soil seed bank can be significantly affected by the high rainfall in the study area, more studies are needed to evaluate management actions to encourage soil seed bank formation in mines of high-rainfall environments in the Chocó region.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... redesignated area must determine by an analysis whether their emissions will have an adverse impact on those... of the MOA allows for restricting the requirements normally associated with Class I areas as these... demonstration that the emissions from the proposed new major source or major modification would have an adverse...
John G. King
1989-01-01
lncreases in annual streamflow and peak streamflows were determined on four small watersheds following timber harvesting and road building. The measured hydrologic changes are compared to those predicted by a methodology commonly used in the Forest Service's Northern Region, the equivalent clearcut area procedure. lncreases in peak streamflows are discussed with...
36 CFR 223.111 - Administration of contracts in designated disaster areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... construction work by the purchaser in connection with such a road or facility, the United States shall bear... feet. (b) Where the Chief, Forest Service, determines that damages are so great that restoration...
36 CFR 223.111 - Administration of contracts in designated disaster areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... construction work by the purchaser in connection with such a road or facility, the United States shall bear... feet. (b) Where the Chief, Forest Service, determines that damages are so great that restoration...
36 CFR 223.111 - Administration of contracts in designated disaster areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... construction work by the purchaser in connection with such a road or facility, the United States shall bear... feet. (b) Where the Chief, Forest Service, determines that damages are so great that restoration...
36 CFR 223.111 - Administration of contracts in designated disaster areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... construction work by the purchaser in connection with such a road or facility, the United States shall bear... feet. (b) Where the Chief, Forest Service, determines that damages are so great that restoration...
Annual Dynamics of Forest Areas in South America during 2007-2010 at 50-m Spatial Resolution
NASA Astrophysics Data System (ADS)
Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Wang, J.; Doughty, R.; Chen, Y.; Zou, Z.; Moore, B., III
2017-12-01
The user community has an urgent need for high accuracy tropical forest distribution and spatio-temporal changes since tropical forests are facing defragmentation and persistent clouds. In this study, we selected South America as a hotspot and presented a robust approach to map annual forests during 2007-2010 based on the coupled greenness-relevant MOD13Q1 NDVI and structure/biomass-relevant ALOS PALSAR time series data. We analyzed the consistency and uncertainty among eight major forest maps at continental, country, and pixel scales. The 50-m PALSAR/MODIS forest area in South America was about 8.63×106 km2 in 2010. Large differences in total forest area (8.2×106 km2-12.7×106 km2) existed among these forest products. Forest products generated under a similar forest definition had similar or even larger variation than those generated under differing forest definitions. One needs to consider leaf area index as an adjusting factor and use much higher threshold values in the VCF datasets to estimate forest cover. Analyses of PALSAR/MODIS forest maps showed a relatively small and equivalent rate of loss (3.2×104 km2 year-1) in net forest cover to that of FAO FRA (3.3×104 km2 year-1). PALSAR/MODIS forest maps showed that more and more deforestation occurred in the intact forest areas. The rate of forest loss (1.95×105 km2 year-1) was higher than that of Global Forest Watch (0.81×105 km2 year-1). Caution should be used when using the different forest maps to analyze forest loss and make policies regarding forest ecosystem services and biodiversity conservation.
Estimating Forest Species Composition Using a Multi-Sensor Approach
NASA Astrophysics Data System (ADS)
Wolter, P. T.
2009-12-01
The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar has increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered the increase in dominance of host tree species. Modeling approaches are currently being used to understand and forecast potential management effects in changing insect disturbance trends. However, detailed forest composition data needed for these efforts is often lacking. Here, we used partial least squares (PLS) regression to integrate satellite sensor data from Landsat, Radarsat-1, and PALSAR, as well as pixel-wise forest structure information derived from SPOT-5 sensor data (Wolter et al. 2009), to estimate species-level forest composition of 12 species required for modeling efforts. C-band Radarsat-1 data and L-band PALSAR data were frequently among the strongest predictors of forest composition. Pixel-level forest structure data were more important for estimating conifer rather than hardwood forest composition. The coefficients of determination for species relative basal area (RBA) ranged from 0.57 (white cedar) to 0.94 (maple) with RMSE of 8.88 to 6.44 % RBA, respectively. Receiver operating characteristic (ROC) curves were used to determine the effective lower limits of usefulness of species RBA estimates which ranged from 5.94 % (jack pine) to 39.41 % (black ash). These estimates were then used to produce a dominant forest species map for the study region with an overall accuracy of 78 %. Most notably, this approach facilitated discrimination of aspen from birch as well as spruce and fir from other conifer species which is crucial for the study of forest tent caterpillar and spruce budworm dynamics, respectively, in the Upper Midwest. Thus, use of PLS regression as a data fusion strategy has proven to be an effective tool for regional characterization of forest composition within spatially heterogeneous forests using large-format satellite sensor data.
Richard A. Harper; Nathan D. McClure; Tony G. Johnson; J. Frank Green; James K. Johnson; David B. Dickinson; James L. Chamerlain; KaDonna C. Randolph; Sonja N. Oswalt
2009-01-01
Between 1997 and 2004, the Forest Service, Forest Inventory and Analysis Program conducted the eighth inventory of Georgia forests. Forest land area remained stable at 24.8 million acres, and covered about two-thirds of the land area in Georgia. About 24.2 million acres of forest land was considered timberland and 92 percent of that was privately owned. Family forest...
The effects of forest fragmentation on forest stand attributes
Ronald E. McRoberts; Greg C. Liknes
2002-01-01
For two study areas in Minnesota, USA, one heavily forested and one sparsely forested, maps of predicted proportion forest area were created using Landsat Thematic Mapper imagery, forest inventory plot data, and a logistic regression model. The maps were used to estimate quantitative indices of forest fragmentation. Correlations between the values of the indices and...
NASA Astrophysics Data System (ADS)
Giri, Anjana; Katzensteiner, Klaus
2010-05-01
Crop production, animal husbandry and forestry are three closely interlinked components of land use systems in the mountains of Nepal. Forests are the major source of fuel wood, construction materials, fodder and litter. The latter is used as a bedding material for livestock and forms an important component of farmyard manure. In addition forest grazing by cattle is a common practice. Excessive extraction of biomass from the forest leads to a decline of soil organic matter and nutrient contents. On the landscape scale these negative effects will partly be compensated by positive effects on soil organic matter and nutrient stocks of arable soils. The experimental data base for a quantification of such effects at the scale of communities is however poor, in particular for Nepal. Understanding the impact of subsistence farming on ecosystems is imperative in order to recommend successful and sustainable land management practices. The aim of our study is to quantify effects of land use on carbon and nitrogen pools and fluxes for mountain communities in Nepal. Results of a case study in the buffer zone area of the Sagarmatha National Park are presented. The potential vegetation comprises mixed forests of Quercus semicarpifolia, Rhododendron arboreum and Tsuga dumosa. Carbon and nitrogen stocks in soil and vegetation were quantified for three different land use types, namely: forest with low human impact, forests with high human impact and agricultural land. The scale of disturbance of the forests has been classified by visual estimation considering the percentage of litter raked, number of lopped trees, and grazing intensity assessed by signs of trampling and the number of trails. After stratification of the community area, 20 plots of 10 m radius were established (17 forest plots, 3 plots for arable land) where biometric data of the vegetation were determined and sub-samples were taken for chemical analyses. Organic layers (litter remaining after litter raking) and soil samples were collected (volumetric sampling of geometric horizons down to 1 m depth). Fluxes of carbon and nitrogen from the forests were accounted by combining results of sub samples of biomass extracted by local people during the field survey and information on amounts and source areas provided by the farmers. Also the amount of carbon and nutrients applied with farmyard manure and the extraction by harvest was determined for the arable land. First estimates of carbon and nitrogen cycling at the community level and on impacts on soil status will be presented.
Thomas L. Castonguay
1984-01-01
The 1982 forest inventory of Nebraska showed that 1.5 percent of the total land area is forested. Commercial forest land accounted for 75 percent or 537,837 acres of the forest land and ponderosa pine is the major forest type. An important Nebraska resouce is the 262,230 acres of natural wooded strips.
Liu, Liangyun; Peng, Dailiang; Wang, Zhihui; Hu, Yong
2014-11-01
China maintains the largest artificial forest area in the world. Studying the dynamic variation of forest biomass and carbon stock is important to the sustainable use of forest resources and understanding of the artificial forest carbon budget in China. In this study, we investigated the potential of Landsat time series stacks for aboveground biomass (AGB) estimation in Yulin District, a key region of the Three-North Shelter region of China. Firstly, the afforestation age was successfully retrieved from the Landsat time series stacks in the last 40 years (from 1974 to 2013) and shown to be consistent with the surveyed tree ages, with a root-mean-square error (RMSE) value of 4.32 years and a determination coefficient (R (2)) of 0.824. Then, the AGB regression models were successfully developed by integrating vegetation indices and tree age. The simple ratio vegetation index (SR) is the best candidate of the commonly used vegetation indices for estimating forest AGB, and the forest AGB model was significantly improved using the combination of SR and tree age, with R (2) values from 0.50 to 0.727. Finally, the forest AGB images were mapped at eight epochs from 1985 to 2013 using SR and afforestation age. The total forest AGB in seven counties of Yulin District increased by 20.8 G kg, from 5.8 G kg in 1986 to 26.6 G kg in 2013, a total increase of 360 %. For the persistent forest area since 1974, the forest AGB density increased from 15.72 t/ha in 1986 to 44.53 t/ha in 2013, with an annual rate of about 0.98 t/ha. For the artificial forest planted after 1974, the AGB density increased about 1.03 t/ha a year from 1974 to 2013. The results present a noticeable carbon increment for the planted artificial forest in Yulin District over the last four decades.
An individual-based growth and competition model for coastal redwood forest restoration
van Mantgem, Phillip J.; Das, Adrian J.
2014-01-01
Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.
Spatial analysis of Northern Goshawk Territories in the Black Hills, South Dakota
Klaver, Robert W.; Backlund, Douglas; Bartelt, Paul E.; Erickson, Michael G.; Knowles, Craig J.; Knowles, Pamela R.; Wimberly, Michael
2012-01-01
The Northern Goshawk (Accipiter gentilis) is the largest of the three North American species ofAccipiter and is more closely associated with older forests than are the other species. Its reliance on older forests has resulted in concerns about its status, extensive research into its habitat relationships, and litigation. Our objective was to model the spatial patterns of goshawk territories in the Black Hills, South Dakota, to make inferences about the underlying processes. We used a modification of Ripley's K function that accounts for inhomogeneous intensity to determine whether territoriality or habitat determined the spacing of goshawks in the Black Hills, finding that habitat conditions rather than territoriality were the determining factor. A spatial model incorporating basal area of trees in a stand of forest, canopy cover, age of trees >23 cm in diameter, number of trees per hectare, and geographic coordinates provided good fit to the spatial patterns of territories. There was no indication of repulsion at close distances that would imply spacing was determined by territoriality. These findings contrast with those for the Kaibab Plateau, Arizona, where territoriality is an important limiting factor. Forest stands where the goshawk nested historically are now younger and have trees of smaller diameter, probably having been modified by logging, fire, and insects. These results have important implications for the goshawk's ecology in the Black Hills with respect to mortality, competition, forest fragmentation, and nest-territory protection.
Pioneer Mothers' Memorial Forest revisited
R.C. Schlesinger; D.T. Funk; P.L. Roth; C.C. Myers
1991-01-01
The area now known as Pioneer Mothers' Memorial Forest was acquired by Joseph Cox in 1816 from the public domain. In 1944, a portion of that property, including the area referred to as Cox Woods, was established as a National Forest Research Natural Area. This beech-maple forest, located in the Knobs area of southern Indiana, is considered to be one of the few...
A comparison of tools for remotely estimating leaf area index in loblolly pine plantations
Janet C. Dewey; Scott D. Roberts; Isobel Hartley
2006-01-01
Light interception is critical to forest growth and is largely determined by foliage area per unit ground, the measure of which is leaf area index (LAI). Summer and winter LAI estimates were obtained in a 17-year-old loblolly pine (Pinus taeda L.) spacing trial in Mississippi, using three replications with initial spacings of 1.5, 2.4, and 3.0 m....
D.A. Marion
2012-01-01
The hydraulic characteristics are determined for the June 11, 2010, flood on the Little Missouri River at the Albert Pike Recreation Area in Arkansas. These characteristics are then used to predict the high-water elevations for the 10-, 25-, 50-, and 100-year flood events in the Loop B, C, and D Campgrounds of the recreation area. The peak discharge and related...
Prediction of forest fires occurrences with area-level Poisson mixed models.
Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo
2015-05-01
The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States
Busing, Richard T.; Solomon, Allen M.
2006-01-01
This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.
Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia
NASA Astrophysics Data System (ADS)
Klinge, Michael; Dulamsuren, Choimaa; Erasmi, Stefan; Nikolaus Karger, Dirk; Hauck, Markus
2018-03-01
In northern Mongolia, at the southern boundary of the Siberian boreal forest belt, the distribution of steppe and forest is generally linked to climate and topography, making this region highly sensitive to climate change and human impact. Detailed investigations on the limiting parameters of forest and steppe in different biomes provide necessary information for paleoenvironmental reconstruction and prognosis of potential landscape change. In this study, remote sensing data and gridded climate data were analyzed in order to identify main distribution patterns of forest and steppe in Mongolia and to detect environmental factors driving forest development. Forest distribution and vegetation vitality derived from the normalized differentiated vegetation index (NDVI) were investigated for the three types of boreal forest present in Mongolia (taiga, subtaiga and forest-steppe), which cover a total area of 73 818 km2. In addition to the forest type areas, the analysis focused on subunits of forest and nonforested areas at the upper and lower treeline, which represent ecological borders between vegetation types. Climate and NDVI data were analyzed for a reference period of 15 years from 1999 to 2013. The presented approach for treeline delineation by identifying representative sites mostly bridges local forest disturbances like fire or tree cutting. Moreover, this procedure provides a valuable tool to distinguish the potential forested area. The upper treeline generally rises from 1800 m above sea level (a.s.l.) in the northeast to 2700 m a.s.l. in the south. The lower treeline locally emerges at 1000 m a.s.l. in the northern taiga and rises southward to 2500 m a.s.l. The latitudinal gradient of both treelines turns into a longitudinal one on the eastern flank of mountain ranges due to higher aridity caused by rain-shadow effects. Less productive trees in terms of NDVI were identified at both the upper and lower treeline in relation to the respective total boreal forest type area. The mean growing season temperature (MGST) of 7.9-8.9 °C and a minimum MGST of 6 °C are limiting parameters at the upper treeline but are negligible for the lower treeline. The minimum of the mean annual precipitation (MAP) of 230-290 mm yr-1 is a limiting parameter at the lower treeline but also at the upper treeline in the forest-steppe ecotone. In general, NDVI and MAP are lower in grassland, and MGST is higher compared to the corresponding boreal forest. One exception occurs at the upper treeline of the subtaiga and taiga, where the alpine vegetation consists of mountain meadow mixed with shrubs. The relation between NDVI and climate data corroborates that more precipitation and higher temperatures generally lead to higher greenness in all ecological subunits. MGST is positively correlated with MAP of the total area of forest-steppe, but this correlation turns negative in the taiga. The limiting factor in the forest-steppe is the relative humidity and in the taiga it is the snow cover distribution. The subtaiga represents an ecological transition zone of approximately 300 mm yr-1 precipitation, which occurs independently from the MGST. Since the treelines are mainly determined by climatic parameters, the rapid climate change in inner Asia will lead to a spatial relocation of tree communities, treelines and boreal forest types. However, a direct deduction of future tree vitality, forest composition and biomass trends from the recent relationships between NDVI and climate parameters is challenging. Besides human impact, it must consider bio- and geoecological issues like, for example, tree rejuvenation, temporal lag of climate adaptation and disappearing permafrost.
Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013
Tyukavina, Alexandra; Hansen, Matthew C.; Potapov, Peter V.; Stehman, Stephen V.; Smith-Rodriguez, Kevin; Okpa, Chima; Aguilar, Ricardo
2017-01-01
Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil’s national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000–2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000–2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives. PMID:28439536
Estimation of leaf area index using WorldView-2 and Aster satellite image: a case study from Turkey.
Günlü, Alkan; Keleş, Sedat; Ercanlı, İlker; Şenyurt, Muammer
2017-10-04
The objective of this study is to estimate the leaf area index (LAI) of a forest ecosystem using two different satellite images, WorldView-2 and Aster. For this purpose, 108 sample plots were taken from pure Crimean pine forest stands of Yenice Forest Management Planning Unit in Ilgaz Forest Management Enterprise, Turkey. Each sample plot was imaged with hemispherical photographs with a fish-eye camera to determine the LAI. These photographs were analyzed with the help of Hemisfer Hemiview software program, and thus, the LAI of each sample plot was estimated. Furthermore, multiple regression analysis method was used to model the statistical relationships between the LAI values and band spectral reflection values and some vegetation indices (Vis) obtained from satellite images. The results show that the high-resolution WorldView-2 satellite image is better than the medium-resolution Aster satellite image in predicting the LAI. It was also seen that the results obtained by using the VIs are better than the bands when the LAI value is predicted with satellite images.
NASA Astrophysics Data System (ADS)
Auler, Augusto S.; Wang, Xianfeng; Edwards, R. Lawrence; Cheng, Hai; Cristalli, Patrícia S.; Smart, Peter L.; Richards, David A.
2004-10-01
Several geomorphic features and palaeobiotic remains in now semi-arid northeastern Brazil indicate major palaeoenvironmental changes during past periods of increased rainfall. 230Th mass spectrometric ages of speleothems and travertines have allowed the determination of the timing and duration of wetter than present conditions. The data demonstrate that wet events have occurred throughout much of the Pleistocene, present dry conditions having been established at the end of the Younger Dryas. A markedly different fauna comprising megafaunal elements not adapted to the present low arboreal scrubland caatinga vegetation existed in the area. Palaeobotanical remains embedded in travertine indicate forested vegetation at these wetter intervals, suggesting that the caatinga was then replaced or mixed with a semi-deciduous forest. Due to the abundance of travertine sites containing fossil botanical remains in northeastern Brazil, it is believed that forest expansion occurred over large areas of the now semi-arid zone, showing that the long hypothesised forested links between biodiversity-rich Amazon and Atlantic rainforests may indeed have existed during these moister phases. Copyright
Forest to agriculture conversion in southern Belize: Implications for migrant land birds
Spruce, J.P.; Dowell, B.A.; Robbins, C.S.; Sader, S.A.; Doyle, Jamie K.; Schelhas, John
1993-01-01
Central America offers a suite of neotropical habitats vital to overwintering migrant land birds. The recent decline of many forest dwelling avian migrants is believed to be related in part to neotropical deforestation and land use change. However, spatio-temporal trends in neotropical habitat availability and avian migrant habitat use are largely unknown. Such information is needed to assess the impact of agriculture conversion on migrant land birds. In response, the USDI Fish and Wildlife Service and the University of Maine began a cooperative study in 1988 which applies remote sensing and field surveys to determine current habitat availability and avian migrant habitat use. Study sites include areas in Belize, Costa Rica, Guatemala and southern Mexico. Visual assessment of Landsat TM imagery indicates southern Belize forests are fragmented by various agricultural systems. Shifting agriculture is predominant in some areas, while permanent agriculture (citrus and mixed animal crops) is the primary system in others. This poster focuses on efforts to monitor forest to agriculture conversion in southern Belize using remote sensing, field surveys and GIS techniques. Procedures and avian migrant use of habitat are summarized.
Kathleen Ward; Kathryn Kromroy; Jennifer Juzwik
2007-01-01
The Twin Cities Metropolitan Area (TCMA) oak (Quercus spp.) forest area decreased by 5.6% between 1991 and 1998. Accompanying spatial transformation of the forest can have great impacts on forest health, water flow and quality, wildlife habitat, potential for the spread of invasive transformation that occurred along with the loss of oak forest in the...
Nath, Dilip C.; Mwchahary, Dimacha Dwibrang
2013-01-01
A favorable climatic condition for transmission of malaria prevails in Kokrajhar district throughout the year. A sizeable part of the district is covered by forest due to which dissimilar dynamics of malaria transmission emerge in forest and non-forest areas. Observed malaria incidence rates of forest area, non-forest area and the whole district over the period 2001-2010 were considered for analyzing temporal correlation between malaria incidence and climatic variables. Associations between the two were examined by Pearson correlation analysis. Cross-correlation tests were performed between pre-whitened series of climatic variable and malaria series. Linear regressions were used to obtain linear relationships between climatic factors and malaria incidence, while weighted least squares regression was used to construct models for explaining and estimating malaria incidence rates. Annual concentration of malaria incidence was analyzed by Markham technique by obtaining seasonal index. Forest area and non-forest area have distinguishable malaria seasons. Relative humidity was positively correlated with z malaria incidence, while temperature series were negatively correlated with non-forest malaria incidence. There was higher seasonality of concentration of malaria in the forest area than non-forest area. Significant correlation between annual changes in malaria cases in forest area and temperature was observed (coeff=0.689, p=0.040). Separate reliable models constructed for forecasting malaria incidence rates based on the combined influence of climatic variables on malaria incidence in different areas of the district were able to explain substantial percentage of observed variability in the incidence rates (R2adj=45.4%, 50.6%, 47.2%; p< .001 for all). There is an intricate association between climatic variables and malaria incidence of the district. Climatic variables influence malaria incidence in forest area and non-forest area in different ways. Rainfall plays a primary role in characterizing malaria incidences in the district. Malaria parasites in the district had adapted to a relative humidity condition higher than the normal range for transmission in India. Instead of individual influence of the climatic variables, their combined influence was utilizable for construction of models. PMID:23283041
Ecological restoration of litter in mined areas
NASA Astrophysics Data System (ADS)
Teresinha Gonçalves Bizuti, Denise; Nino Diniz, Najara; Schweizer, Daniella; de Marchi Soares, Thaís; Casagrande, José Carlos; Henrique Santin Brancalion, Pedro
2016-04-01
The success of ecological restoration projects depends on going monitoring of key ecological variables to determine if a desired trajectory has been established and, in the case of mining sites, nutrient cycling recovery plays an utmost importance. This study aimed to quantify and compare the annual litter production in native forests, and in restoration sites established in bauxite mines. We collected samples in 6 native forest remnants and 6 year-old restoration sites every month for a period of one year, in the city of Poços de Caldas/MG, SE Brazil. 120 wire collectors were used (0,6x0,6) and suspended 30cm above the soil surface. The material was dried until constant weight, weighed and fractionated in leaves, branches and reproductive material. The average annual litter production was 2,6 Mg ha-1 in native forests and 2,1 in forest in restoration sites, differing statistically. Litter production was higher in the rainy season, especially in September. Among the litter components, the largest contributor to total production was the fraction leaves, with 55,4% of the total dry weight of material collected, followed by reproductive material which contributed 24,5% and branches, with 20%. We conclude that the young areas in restoration process already restored important part, but still below the production observed in native areas.
Exposure of tropical ecosystems to artificial light at night: Brazil as a case study.
Freitas, Juliana Ribeirão de; Bennie, Jon; Mantovani, Waldir; Gaston, Kevin J
2017-01-01
Artificial nighttime lighting from streetlights and other sources has a broad range of biological effects. Understanding the spatial and temporal levels and patterns of this lighting is a key step in determining the severity of adverse effects on different ecosystems, vegetation, and habitat types. Few such analyses have been conducted, particularly for regions with high biodiversity, including the tropics. We used an intercalibrated version of the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) images of stable nighttime lights to determine what proportion of original and current Brazilian vegetation types are experiencing measurable levels of artificial light and how this has changed in recent years. The percentage area affected by both detectable light and increases in brightness ranged between 0 and 35% for native vegetation types, and between 0 and 25% for current vegetation (i.e. including agriculture). The most heavily affected areas encompassed terrestrial coastal vegetation types (restingas and mangroves), Semideciduous Seasonal Forest, and Mixed Ombrophilous Forest. The existing small remnants of Lowland Deciduous and Semideciduous Seasonal Forests and of Campinarana had the lowest exposure levels to artificial light. Light pollution has not often been investigated in developing countries but our data show that it is an environmental concern.
Water-quality characteristics of streams in forested and rural areas of North Carolina
Simmons, Clyde E.; Heath, Ralph C.
1979-01-01
Data collected in North Carolina during 1973-78 from a statewide network of 39 rural sampling sites were used to define unpolluted or baseline stream quality. The basins were 90 to 100 percent forested and, except for the unknown effects of air pollution, were relatively unaffected by man 's activities. Five distinct geochemical zones were delineated across the State. The chemical characteristics of surface waters in each zone are similar. Mean and other statistical values for major dissolved constituents, nutrients, and minor elements in base runoff and storm runoff were determined. Twenty additional rural sites were located in basins where farming activities ranged from 15 to 55 percent of basins ' land area. Data from these 20 sites were used for comparison with data from the 39 unpolluted sites to determine the increase in constituent levels caused by man. For basins where farming activities accounted for 20 or more percent of total land use, phosphorus levels were 2 to 13 times greater than those from the forested basins and several major constituents were 2 to 3 times greater. Concentrations of minor elements were essentially the same in both developed and undeveloped basins. (Kosco-USGS)
36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Minerals and Energy in the Roadless Area Conservation; National Forest System Lands in Idaho Final... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mineral activities in Idaho Roadless Areas. 294.25 Section 294.25 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...
36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Minerals and Energy in the Roadless Area Conservation; National Forest System Lands in Idaho Final... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mineral activities in Idaho Roadless Areas. 294.25 Section 294.25 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...
36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Minerals and Energy in the Roadless Area Conservation; National Forest System Lands in Idaho Final... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral activities in Idaho Roadless Areas. 294.25 Section 294.25 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...
36 CFR 294.25 - Mineral activities in Idaho Roadless Areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Minerals and Energy in the Roadless Area Conservation; National Forest System Lands in Idaho Final... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral activities in Idaho Roadless Areas. 294.25 Section 294.25 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...
NASA Astrophysics Data System (ADS)
Molinario, G.; Hansen, M. C.; Potapov, P. V.
2015-09-01
Shifting cultivation has traditionally been practiced in the Democratic Republic of Congo by carving agricultural fields out of primary and secondary forest, resulting in the rural complex: a characteristic land cover mosaic of roads, villages, active and fallow fields and secondary forest. Forest clearing has varying impacts depending on where it occurs relative to this area: whether inside it, along its primary forest interface, or in more isolated primary forest areas. The spatial contextualization of forest cover loss is therefore necessary to understand its impacts and plan its management. We characterized forest clearing using spatial models in a Geographical Information System, applying morphological image processing to the Forets d’Afrique Central Evaluee par Teledetection product. This process allowed us to create forest fragmentation maps for 2000, 2005 and 2010, classifying previously homogenous primary forest into separate patch, edge, perforated, fragmented and core forest subtypes. Subsequently we used spatial rules to map the established rural complex separately from isolated forest perforations, tracking the growth of these areas in time. Results confirm that the expansion of the rural complex and forest perforations has high variance throughout the country, with consequent differences in local impacts on forest ecology and habitat fragmentation. Between 2000 and 2010 the rural complex grew by 10.2% (46 182 ha), increasing from 11.9% to 13.1% of the total land area (1.2% change) while perforated forest grew by 74.4% (23 856 ha), from 0.8% to 1.5%. Core forest decreased by 3.8% (54 852 ha), from 38% to 36.6% of the 2010 land area. Of particular concern is the nearly doubling of perforated forest, a land dynamic that represents greater spatial intrusion of forest clearing within core forest areas and a move away from the established rural complex.
Knoll, Fátima do Rosário Naschenveng; Penatti, N C
2012-10-01
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.
Montenegro, Alba Lucía; Vargas Ríos, Orlando
2008-09-01
The growth of a forest patch through colonization of the adjacent matrix is mostly determined by the particular characteristics of the edge zone. Knowing how these characteristics are related to a specific edge type and how they influence the regeneration process, is important for High Andean forest edges restoration. This study aimed to characterize three types of High Andean forest edge in Cogua Forest Reserve (Colombia): 1) edge of Chusquea scandens, 2) "paramizado", and 3) old edge, characterized for being in a later successional state. Two forest patches were chosen for each edge type and 13 criteria were analyzed; these were of topographic order, micro-environmental order, vegetation structure and species composition. In each patch the vegetation was evaluated by means of two 60 m transects perpendicular to the edge and along the matrix-edge-interior of the forest gradient. All woody plant species were identified and counted to determine their abundance. Environmental variables (air temperature, relative humidity, wind speed, and light radiation) were measured in one of the transects. Three of the 13 criteria were of little importance in shaping the type of edge habitat (slope, patch shape and area). The others were closely related with the micro-environmental conditions and in turn with the vegetation structure and composition; this relationship confers particular characteristics to each edge type. The microclimate and floristic edge limits coincided; edges extend between 10 and 20 m into the forest depending on the edge type. The paramizado edge has the smallest environmental self-regulation capacity and is more exposed to fluctuations of the studied variables, because of its greatest exposition to the wind action and loss of the tallest trees (between 10 and 15 m) which regulate the understorey microclimate. This low environmental buffer capacity prevents the establishing of mature forest species (for example, Schefflera sp. and Oreopanax bogotensis) although they are found in other areas within the same patch. All these results show that the paramizado edge needs the most intervention for its restoration. The Chusquea scandens edge forest is the most sheltered since this species acts as a protecting shield. However it still needs to be controlled to allow the adjacent matrix colonization by the forest species and natural regeneration, as it does in the old edge type forest, which moreover has an intermediate self-regulating capacity relative to the other two. The vegetation composition reveals that most of the edge species can also grow inside, beyond the forest edge.
Radar modeling of a boreal forest
NASA Technical Reports Server (NTRS)
Chauhan, Narinder S.; Lang, Roger H.; Ranson, K. J.
1991-01-01
Microwave modeling, ground truth, and SAR data are used to investigate the characteristics of forest stands. A mixed coniferous forest stand has been modeled at P, L, and C bands. Extensive measurements of ground truth and canopy geometry parameters were performed in a 200-m-square hemlock-dominated forest plot. About 10 percent of the trees were sampled to determine a distribution of diameter at breast height (DBH). Hemlock trees in the forest are modeled by characterizing tree trunks, branches, and needles as randomly oriented lossy dielectric cylinders whose area and orientation distributions are prescribed. The distorted Born approximation is used to compute the backscatter at P, L, and C bands. The theoretical results are found to be lower than the calibrated ground-truth data. The experiment and model results agree quite closely, however, when the ratios of VV to HH and HV to HH are compared.
Monitoring Forest Regrowth Using a Multi-Platform Time Series
NASA Technical Reports Server (NTRS)
Sabol, Donald E., Jr.; Smith, Milton O.; Adams, John B.; Gillespie, Alan R.; Tucker, Compton J.
1996-01-01
Over the past 50 years, the forests of western Washington and Oregon have been extensively harvested for timber. This has resulted in a heterogeneous mosaic of remaining mature forests, clear-cuts, new plantations, and second-growth stands that now occur in areas that formerly were dominated by extensive old-growth forests and younger forests resulting from fire disturbance. Traditionally, determination of seral stage and stand condition have been made using aerial photography and spot field observations, a methodology that is not only time- and resource-intensive, but falls short of providing current information on a regional scale. These limitations may be solved, in part, through the use of multispectral images which can cover large areas at spatial resolutions in the order of tens of meters. The use of multiple images comprising a time series potentially can be used to monitor land use (e.g. cutting and replanting), and to observe natural processes such as regeneration, maturation and phenologic change. These processes are more likely to be spectrally observed in a time series composed of images taken during different seasons over a long period of time. Therefore, for many areas, it may be necessary to use a variety of images taken with different imaging systems. A common framework for interpretation is needed that reduces topographic, atmospheric, instrumental, effects as well as differences in lighting geometry between images. The present state of remote-sensing technology in general use does not realize the full potential of the multispectral data in areas of high topographic relief. For example, the primary method for analyzing images of forested landscapes in the Northwest has been with statistical classifiers (e.g. parallelepiped, nearest-neighbor, maximum likelihood, etc.), often applied to uncalibrated multispectral data. Although this approach has produced useful information from individual images in some areas, landcover classes defined by these techniques typically are not consistent for the same scene imaged under different illumination conditions, especially in the mountainous regions. In addition, it is difficult to correct for atmospheric and instrumental differences between multiple scenes in a time series. In this paper, we present an approach for monitoring forest cutting/regrowth in a semi-mountainous portion of the southern Gifford Pinchot National Forest using a multisensor-time series composed of MSS, TM, and AVIRIS images.
NASA Astrophysics Data System (ADS)
Benyon, Richard G.; Lane, Patrick N. J.; Jaskierniak, Dominik; Kuczera, George; Haydon, Shane R.
2015-07-01
Mean sapwood thickness, measured in fifteen 73 year old Eucalyptus regnans and E. delegatensis stands, correlated strongly with forest overstorey stocking density (R2 0.72). This curvilinear relationship was used with routine forest stocking density and basal area measurements to estimate sapwood area of the forest overstorey at various times in 15 research catchments in undisturbed and disturbed forests located in the Great Dividing Range, Victoria, Australia. Up to 45 years of annual precipitation and streamflow data available from the 15 catchments were used to examine relationships between mean annual loss (evapotranspiration estimated as mean annual precipitation minus mean annual streamflow), and sapwood area. Catchment mean sapwood area correlated strongly (R2 0.88) with catchment mean annual loss. Variation in sapwood area accounted for 68% more variation in mean annual streamflow than precipitation alone (R2 0.90 compared with R2 0.22). Changes in sapwood area accounted for 96% of the changes in mean annual loss observed after forest thinning or clear-cutting and regeneration. We conclude that forest inventory data can be used reliably to predict spatial and temporal variation in catchment annual losses and streamflow in response to natural and imposed disturbances in even-aged forests. Consequently, recent advances in mapping of sapwood area using airborne light detection and ranging will enable high resolution spatial and temporal mapping of mean annual loss and mean annual streamflow over large areas of forested catchment. This will be particularly beneficial in management of water resources from forested catchments subject to disturbance but lacking reliable long-term (years to decades) streamflow records.
North Dakota's forest resources in 2005
David E. Haugen; Gary J. Brand; Michael Kangas
2006-01-01
This report completes the first 5 years of the annual forest inventory in North Dakota and presents estimates of forest area, volume, and biomass for 2005. It is part of the national effort of annual forest inventory authorized by the 1998 Farm Bill. Sine the third forest inventory, in 1994, total forest land area has increased by 51,000 acres. Private forest land...
Overview of contemporary issues of forest research and management in China
Hong S. He; Stephen R. Shifley; Frank R., III Thompson
2011-01-01
With 207 million ha of forest covering 22% of its land area, China ranks fifth in the world in forest area. Rapid economic growth, climate change, and forest disturbances pose new, complex challenges for forest research and management. Progress in meeting these challenges is relevant beyond China, because China's forests represent 34% of Asia's forests and 5...
Forest Productivity, Leaf Area, and Terrain in Southern Appalachian Deciduous Forests
Paul V. Bolstad; James M. Vose; Steven G. McNulty
2000-01-01
Leaf area index (LAI) is an important structural characteristic of forest ecosystems which has been shown to be strongly related to forest mass and energy cycles and forest productivity. LAI is more easily measured than forest productivity, and so a strong relationship between LAI and productivity would be a valuable tool in forest management. While a linear...
The global extent and determinants of savanna and forest as alternative biome states.
Staver, A Carla; Archibald, Sally; Levin, Simon A
2011-10-14
Theoretically, fire-tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire-driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. We use tree cover, climate, fire, and soils data sets to show that tree cover is globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to 2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire differentiates between savanna and forest. These may be alternative states over large areas, including parts of Amazonia and the Congo. Changes in biome distributions, whether at the cost of savanna (due to fragmentation) or forest (due to climate), will be neither smooth nor easily reversible.
Trend analysis of vegetation in Louisiana's Atchafalaya river basin
O'Neil, Calvin P.; deSteiguer, J. Edward; North, Gary W.
1978-01-01
The purpose of the study was to determine vegetation succession trends; produce a current vegetation map of the basin; and to develop a mathematical model capable of predicting vegetation changes based on hydrologic factors. A statistical relationship of forests and hydrological variables with forest succession constraints predicted forest acreage totals for 16 forest categories within 70% or better of actual values in two-thirds of the cases. Using time-lapsed photography covering 42 years, 23 categories were described. The succession trend of vegetation since 1930, by sedimentation, had been toward mixed hardwoods, except for isolated areas. Satellite MSS Band 7 imagery was used to map the current vegetation into three main categories and for assessment of acreage. Additionally, a geological anomaly was recognized on satellite imagery indication an effect on drainage and sedimentation.
A second look a North Dakota's timber lands, 1980.
Pamela J. Jakes; W. Brad Smith
1982-01-01
The second inventory of North Dakota forest resources shows a decline in commercial forest area between 1954 and 1980. Presented are text and statistics on forest area and timber volume, growth, mortality, ownership, stocking, future timber supply, timber use, forest management opportunities, and nontimber forest resources. A forest type map is included.
Forest ownership dynamics of southern forests
Brett J. Butler; David N. Wear
2013-01-01
Key FindingsPrivate landowners hold 86 percent of the forest area in the South; two-thirds of this area is owned by families or individuals.Fifty-nine percent of family forest owners own between 1 and 9 acres of forest land, but 60 percent of family-owned forests are in holdings of 100 acres or more.Two-...
Ronald L. Hackett
1983-01-01
The 1981 forest inventory of Kansas showed that 2.6 percent of the total land area is forested. Commercial forest land accounted for 89 percent or 1,207,900 acres of the forest land and oak-hickory is the major forest type. An important Kansas resource are the 150,000 acres of natural wooded strips.
Northeastern Area Forest Legacy Program Yearbook 2008
US Forest Service, Northeastern Area, State and Private Forestry
2009-01-01
The purpose of the Forest Legacy Program (FLP) is to protect environmentally important forest areas that are threatened by conversion to nonforest uses. The Forest Legacy Program is a partnership between participating States and the Forest Service, U.S. Department of Agriculture. These two entities work together to identify important forest lands and...
[Content of selected metals in forest fruits depending on the harvest site].
Rusinek, Elzbieta; Sembratowicz, Iwona; Ognik, Katarzyna
2008-01-01
Contents of selected metals (Pb, Cd, Cu, Zn, Fe, Mn) were determined in samples of forest fruits: blueberry, raspberry and wild strawberry harvested in Lublin region from areas considered as potentially not exposed to pollution (Skierbieszów Landscape Park) and potentially polluted areas (Cement Factory Rejowiec S.A.). Analyzed fruits originating from stands more exposed to pollution were characterized by higher lead (except from raspberry) as well as other metals contents than those from Krasiczyn commune. Among studied fruits, blueberry was distinguished by the lowest contents of Pb, Zn, Fe, Mn, wild strawberry contained the highest levels of Pb, Zn and Mn. Cadmium content in analyzed plant materials was high.
Krofcheck, Daniel J; Hurteau, Matthew D; Scheller, Robert M; Loudermilk, E Louise
2018-02-01
In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels reduction approaches that include mechanical thinning followed by regular prescribed fire are one approach to restore the ability of the ecosystem to tolerate episodic fire and still sequester C. Yet, the spatial extent of the area requiring treatment makes widespread treatment implementation unlikely. We sought to determine if a priori knowledge of where uncharacteristic wildfire is most probable could be used to optimize the placement of fuels treatments in a Sierra Nevada watershed. We developed two treatment placement strategies: the naive strategy, based on treating all operationally available area and the optimized strategy, which only treated areas where crown-killing fires were most probable. We ran forecast simulations using projected climate data through 2,100 to determine how the treatments differed in terms of C sequestration, fire severity, and C emissions relative to a no-management scenario. We found that in both the short (20 years) and long (100 years) term, both management scenarios increased C stability, reduced burn severity, and consequently emitted less C as a result of wildfires than no-management. Across all metrics, both scenarios performed the same, but the optimized treatment required significantly less C removal (naive=0.42 Tg C, optimized=0.25 Tg C) to achieve the same treatment efficacy. Given the extent of western forests in need of fire restoration, efficiently allocating treatments is a critical task if we are going to restore adaptive capacity in frequent-fire forests. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mahdavi Najafabadi, R.; Khajeddin, S. J.; Sofyanian, A. R.; Karimzadeh, H. R.; Rezaei, M.
2009-04-01
Most of arid and semiarid parts of the world suffer from great lack of forest land. Therefore taking a good care of these forest lands quantity and quality and control of renewable natural resources is very important. Zagroass forests are located in semiarid parts of Iran. The main purpose of this research is to determine the potential habitat of forest olive for Chaharmahal va Bakhtiary using GIS. This province has a total area of 1653300 hectars. The main steps of this project are as follows: collecting data and maps, digitizing topographic maps with scale of 1:25000, and developing maps of slope, elevation levels, aspect, climatic classification. Regretion analysis was performed on the climatic data and the gradian equations were developed with a high R2 value. Using these equations the following maps were developed. For the whole province: isothermal, isoheytal, abs. max isothermal, relative humidity relative humidity of dry months. Soil maps were also digitized and the information system suitable for this study was developed. Using this bank the following layers were made: land units, soil depth, two soil textures, EC, pH, CaCo3. The following layers were made using digitized data, land use hydraulic network, lake and marsh land. Considering ecological needs of olive and extracting them from all diferent layers using boolean method. The layers showing suitable locations for planting olive(olea europea) was made. One of these maps includes all types of soils suitable for planting olive and the other excludes silty clay loam soils which are not so suitable. The total area achived was 9500 hectars in the whole province and the area excluding silty clay loam soils was determined to be 900 hectars. Using RS information and GIS technology in these types of projects can increase accuracy specialy including some more layers is recommended.
36 CFR 251.23 - Experimental areas and research natural areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... research natural areas. 251.23 Section 251.23 Parks, Forests, and Public Property FOREST SERVICE... and research natural areas. The Chief of the Forest Service shall establish and permanently record a... a series of research natural areas, sufficient in number and size to illustrate adequately or typify...
36 CFR 251.23 - Experimental areas and research natural areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... research natural areas. 251.23 Section 251.23 Parks, Forests, and Public Property FOREST SERVICE... and research natural areas. The Chief of the Forest Service shall establish and permanently record a... a series of research natural areas, sufficient in number and size to illustrate adequately or typify...
Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine.
Kuemmerle, Tobias; Hostert, Patrick; Radeloff, Volker C; Perzanowski, Kajetan; Kruhlov, Ivan
2007-07-01
Forests provide important ecosystem services, and protected areas around the world are intended to reduce human disturbance on forests. The question is how forest cover is changing in different parts of the world, why some areas are more frequently disturbed, and if protected areas are effective in limiting anthropogenic forest disturbance. The Carpathians are Eastern Europe's largest contiguous forest ecosystem and are a hotspot of biodiversity. Eastern Europe has undergone dramatic changes in political and socioeconomic structures since 1990, when socialistic state economies transitioned toward market economies. However, the effects of the political and economic transition on Carpathian forests remain largely unknown. Our goals were to compare post-socialist forest disturbance and to assess the effectiveness of protected areas in the border triangle of Poland, Slovakia, and Ukraine, to better understand the role of broadscale political and socioeconomic factors. Forest disturbances were assessed using the forest disturbance index derived from Landsat MSS/TM/ETM+ images from 1978 to 2000. Our results showed increased harvesting in all three countries (up to 1.8 times) in 1988-1994, right after the system change. Forest disturbance rates differed markedly among countries (disturbance rates in Ukraine were 4.5 times higher than in Poland, and those in Slovakia were 4.3 times higher than in Poland), and in Ukraine, harvests tended to occur at higher elevations. Forest fragmentation increased in all three countries but experienced a stronger increase in Slovakia and Ukraine (approximately 5% decrease in core forest) than in Poland. Protected areas were most effective in Poland and in Slovakia, where harvesting rates dropped markedly (by nearly an order of magnitude in Slovakia) after protected areas were designated. In Ukraine, harvesting rates inside and outside protected areas did not differ appreciably, and harvests were widespread immediately before the designation of protected areas. In summary, the socioeconomic changes in Eastern Europe that occurred since 1990 had strong effects on forest disturbance. Differences in disturbance rates among countries appear to be most closely related to broadscale socioeconomic conditions, forest management practices, forest policies, and the strength of institutions. We suggest that such factors may be equally important in other regions of the world.
Reynolds, Glen; Payne, Junaidi; Sinun, Waidi; Mosigil, Gregory; Walsh, Rory P. D.
2011-01-01
In an earlier special issue of this journal, Marsh & Greer summarized forest land use in Sabah at that time and gave an introduction to the Danum Valley Conservation Area. Since that assessment, during the period 1990–2010, the forests of Sabah and particularly those of the ca 10 000 km2 concession managed on behalf of the State by Yayasan Sabah (the Sabah Foundation) have been subject to continual, industrial harvesting, including the premature re-logging of extensive tracts of previously only once-logged forest and large-scale conversion of natural forests to agricultural plantations. Over the same period, however, significant areas of previously unprotected pristine forest have been formally gazetted as conservation areas, while much of the forest to the north, the south and the east of the Danum Valley Conservation Area (the Ulu Segama and Malua Forest Reserves) has been given added protection and new forest restoration initiatives have been launched. This paper analyses these forest-management and land-use changes in Sabah during the period 1990–2010, with a focus on the Yayasan Sabah Forest Management Area. Important new conservation and forest restoration and rehabilitation initiatives within its borders are given particular emphasis. PMID:22006960
Reynolds, Glen; Payne, Junaidi; Sinun, Waidi; Mosigil, Gregory; Walsh, Rory P D
2011-11-27
In an earlier special issue of this journal, Marsh & Greer summarized forest land use in Sabah at that time and gave an introduction to the Danum Valley Conservation Area. Since that assessment, during the period 1990-2010, the forests of Sabah and particularly those of the ca 10 000 km(2) concession managed on behalf of the State by Yayasan Sabah (the Sabah Foundation) have been subject to continual, industrial harvesting, including the premature re-logging of extensive tracts of previously only once-logged forest and large-scale conversion of natural forests to agricultural plantations. Over the same period, however, significant areas of previously unprotected pristine forest have been formally gazetted as conservation areas, while much of the forest to the north, the south and the east of the Danum Valley Conservation Area (the Ulu Segama and Malua Forest Reserves) has been given added protection and new forest restoration initiatives have been launched. This paper analyses these forest-management and land-use changes in Sabah during the period 1990-2010, with a focus on the Yayasan Sabah Forest Management Area. Important new conservation and forest restoration and rehabilitation initiatives within its borders are given particular emphasis.
Domination of hillslope denudation by tree uprooting in an old-growth forest
NASA Astrophysics Data System (ADS)
Phillips, Jonathan D.; Šamonil, Pavel; Pawlik, Łukasz; Trochta, Jan; Daněk, Pavel
2017-01-01
Razula forest preserve in the Carpathian Mountains of the Czech Republic is an unmanaged forest that has not been logged or otherwise anthropically disturbed for at least 83 years, preceded by only infrequent selective logging. We examined this 25 ha area to determine the dominant geomorphological processes on the hillslope. Tree uprooting displaces about 2.9 m3 of soil and regolith per year, representing about 1.5 uprooted trees ha- 1 yr- 1, based on forest inventory records dating back to 1972, and contemporary measurements of displaced soil and pit-mound topography resulting from uprooting. Pits and mounds occupy > 14% of the ground surface. Despite typical slope gradients of 0.05 mm- 1, and up to 0.41, little evidence of mass wasting (e.g., slump or flow scars or deposits, colluvial deposits) was noted in the field, except in association with pit-mound pairs. Small avalanche and ravel features are common on the upslope side of uproot pits. Surface runoff features were rare and poorly connected, but do include stemwash erosion associated with stemflow. No rills or channels were found above the valley bottom area, and only small, localized areas of erosion and forest litter debris indicating overland flow. Where these features occurred, they either disappeared a short distance downslope (indicating infiltration), or indicate flow into tree throw pits. Surface erosion is also inhibited by surface armoring of coarse rock fragments associated with uprooting, as well as by the nearly complete vegetation and litter cover. These results show that the combination of direct and indirect impacts of tree uprooting can dominate slope processes in old-growth, unmanaged forests. The greater observed expression of different hillslope processes in adjacent managed forests (where tree uprooting dynamics are blocked by management activities) suggests that human interventions can change the slope process regime in forest ecosystems.
Suggestions for Forest Conservation Policy under Climate Change
NASA Astrophysics Data System (ADS)
Choe, H.; Thorne, J. H.; Lee, D. K.; Seo, C.
2015-12-01
Climate change and the destruction of natural habitats by land-use change are two main factors in decreasing terrestrial biodiversity. Studying land-use and climate change and their impact under different scenarios can help suggest policy directions for future events. This study explores the spatial results of different land use and climate models on the extent of species rich areas in South Korea. We built land use models of forest conversion and created four 2050 scenarios: (1) a loss trend following current levels, resulting in 15.5% lost; (2) similar loss, but with forest conservation in areas with suitable future climates; (3) a reduction of forest loss by 50%; and (4) a combination of preservation of forest climate refugia and overall reduction of loss by 50%. Forest climate refugia were identified through the use of species distribution models run on 1,031 forest plant species to project current and 2050 distributions. We calculated change in species richness under four climate projections, permitting an assessment of forest refugia zones. We then crossed the four land use models with the climate-driven change in species richness. Forest areas predominantly convert to agricultural areas, while climate-suitable extents for forest plants decline and move northward, especially to higher elevations. Scenario 2, that has the higher level of deforestation but protects future species rich areas, conserves nearly as much future biodiversity as scenario 3, which reduced deforestation rates by 50%. This points to the importance of including biogeographic climate dynamics in forest policy. Scenario 4 was the most effective at conserving forest biodiversity. We suggest conserving forest areas with suitable climates for biodiversity conservation and the establishment of monoculture plantations targeted to areas where species richness will decline based on our results.
Capturing heterogeneity: The role of a study area's extent for estimating mean throughfall
NASA Astrophysics Data System (ADS)
Zimmermann, Alexander; Voss, Sebastian; Metzger, Johanna Clara; Hildebrandt, Anke; Zimmermann, Beate
2016-11-01
The selection of an appropriate spatial extent of a sampling plot is one among several important decisions involved in planning a throughfall sampling scheme. In fact, the choice of the extent may determine whether or not a study can adequately characterize the hydrological fluxes of the studied ecosystem. Previous attempts to optimize throughfall sampling schemes focused on the selection of an appropriate sample size, support, and sampling design, while comparatively little attention has been given to the role of the extent. In this contribution, we investigated the influence of the extent on the representativeness of mean throughfall estimates for three forest ecosystems of varying stand structure. Our study is based on virtual sampling of simulated throughfall fields. We derived these fields from throughfall data sampled in a simply structured forest (young tropical forest) and two heterogeneous forests (old tropical forest, unmanaged mixed European beech forest). We then sampled the simulated throughfall fields with three common extents and various sample sizes for a range of events and for accumulated data. Our findings suggest that the size of the study area should be carefully adapted to the complexity of the system under study and to the required temporal resolution of the throughfall data (i.e. event-based versus accumulated). Generally, event-based sampling in complex structured forests (conditions that favor comparatively long autocorrelations in throughfall) requires the largest extents. For event-based sampling, the choice of an appropriate extent can be as important as using an adequate sample size.
NASA Astrophysics Data System (ADS)
Longo, R. M.; Ribeiro, A. I.
2017-12-01
Regina Márcia Longo2, Deborah Regina Mendes2, Admilson Irio Ribeiro31 Part of the project funded by the Foundation of the State of São Paulo Research - Brazil (FAPESP - process 2012 / 14423-8)2 Pontifícal Catholic University of Campinas - Brazil; email: regina.longo@puc-campinas.edu.br 3 Paulista State University (UNESP-Sorocaba - Brazil)Due to the disorderly growth of cities, especially in tropical areas, it is observed that the destruction or fragmentation of natural ecosystems has presented itself as one of the great problems of the present time. The forest fragments, although important for the maintenance of microclimate, genetic variety and species diversity, are increasingly impacted due to the activities that are developed in their environment. The present work had as main objective to quantify the level of natural fertility and the presence of heavy metals in the soil in border areas of a forest remnant located in an urban area in the city of Campinas / SP - Brazil in order to verify possible interferences of the anthropic actions carried out in adjacent areas. Soil composite samples were collected at 40 points equidistant at 200 m along the edge. In the samples were determined the contents of: pH (CaCl2); organic matter (OM); phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg), Cation Exchange Capacity (CEC), base sum (SB) and percentage saturation of bases in addition to heavy metals lead (Pb), chromium (Cr) and nickel (Ni). The results indicated that the nutritional quality of the soil was adequate for the tropical regions. In relation to micronutrients, high levels of copper, zinc and manganese were observed. Regarding the metals, it was observed that iron was the one that accused the most irregularities along the edge, while the lead had higher indices for all the edges evaluated. In general, the presented results indicated that the forest remnant presents its border areas under external pressures, presenting several factors of degradation as real estate occupation, presence of access roads and traffic of vehicles and people, of the production of sugar cane, fire and deposition of solid waste, or other degradation factor that directly interfere in the areas of the edges of this important remnant of Atlantic Forest. Key words: forest remnants, tropical soils, edge effect
Seasonal LAI in slash pine estimated with LANDSAT TM
NASA Technical Reports Server (NTRS)
Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.
1990-01-01
The leaf area index (LAI, total area of leaves per unit area of ground) of most forest canopies varies throughout the year, yet for logistical reasons it is difficult to estimate anything more detailed than a seasonal maximum LAI. To determine if remotely sensed data can be used to estimate LAI seasonally, field measurements of LAI were compared to normalized difference vegetation index (NDVI) values derived using LANDSAT Thematic Mapper (TM) data, for 16 fertilized and control slash pine plots on 3 dates. Linear relationships existed between NDVI and LAI with R(sup 2) values of 0.35, 0.75, and 0.86 for February 1988, September 1988, and March, 1989, respectively. This is the first reported study in which NDVI is related to forest LAI recorded during the month of sensor overpass. Predictive relationships based on data from eight of the plots were used to estimate the LAI of the other eight plots with a root-mean-square error of 0.74 LAI, which is 15.6 percent of the mean LAI. This demonstrates the potential use of LANDSAT TM data for studying seasonal dynamics in forest canopies.
[Analysis of urban forest landscape pattern in Hefei].
Wu, Zemin; Wu, Wenyou; Gao, Jian; Zhang, Shaojie
2003-12-01
Based on the theory and methodology of landscape ecology, the landscape pattern of the study area (17.6 km2) in the downtown of Hefei was analyzed by using the techniques of RS, GPS and GIS. The object was to provide a comprehensive method to study urban forest structure and its function in environmental improvement. The results showed that there were 5 major landscape elements, i.e., building and hard pavement surface, water, road, urban forest, and general green land in the area. The landscape matrix was building and pavement surface, occupied 73.13% of total land. Road was the typical corridor element in the city and occupied 6.89%. Green land occupied 11.44%, in which, urban forest patch occupied 9.18%. There were 408 urban forest patches, with an area of 161.16 hm2. The average area of the patch was 0.396 hm2, and the maximum area was 12 hm2. 48% of urban forest patch was identified as small scale patches with < 500 m2 of area, and only 8.6% of them was larger than 1 hm2. The number of general green land patch was 255, with an area of 39.74 hm2, which accounted for 2.26% of land area, and its average and maximum area was 0.1558 hm2 and 3.86 hm2, respectively. There were 147 water patches, with an area of 149.93 hm2, and occupied 8.54% of land, and the average and maximum area of the patch was 1.02 hm2 and 16 hm2, respectively. In the study area, both of the Shannon-Weiner landscape diversity index and evenness were low, only 0.928 and 0.576, respectively. In addition, the dominance of urban forest patch and general green land was 0.39 showing that the two landscape elements had a certain influence on the environment of the study area. The concept of interior habitat for forest was introduced in this paper, which was employed to make a scale class system of urban forest patch. The threshold area with interior habitat for urban forest patch was 9800 m2, and there was 31.69 hm2 of interior habitat of urban forest in total, which occupied 19.7% of the total area of urban forest patch. This situation was not favorable for providing more habitats to support species diversity. It's suggested that the concept of interior habitat could be employed to identify urban forest patch, and a scale system of small scale patch of urban forest-middle patch-large patch-extra large patch was build in the paper. Based on this system, the ratio of different scales of urban forest patch in the study area should be 2:2:2:3. The authors also suggested that larger pieces (1.5-3.0 hm2) of urban forest patch should be built, and more urban forests should be established in the northeastern part of the city in the future.
Jacobson, R.; Faust, T.
2014-01-01
Hydrologic connectivity between the channel and floodplain is thought to be a dominant factor determining floodplain processes and characteristics of floodplain forests. We explored the role of hydrologic connectivity in explaining floodplain forest community composition along streams in northern Missouri, USA. Hydrologic analyses at 20 streamgages (207–5827 km2 area) document that magnitudes of 2-year return floods increase systematically with increasing drainage area whereas the average annual number and durations of floodplain-connecting events decrease. Flow durations above the active-channel shelf vary little with increasing drainage area, indicating that the active-channel shelf is in quasi-equilibrium with prevailing conditions. The downstream decrease in connectivity is associated with downstream increase in channel incision. These relations at streamflow gaging stations are consistent with regional channel disturbance patterns: channel incision increases downstream, whereas upstream reaches have either not incised or adjusted to incision by forming new equilibrium floodplains. These results provide a framework to explain landscape-scale variations in composition of floodplain forest communities in northern Missouri. Faust (2006) had tentatively explained increases of flood-dependent tree species, and decreases of species diversity, with a downstream increase in flood magnitude and duration. Because frequency and duration of floodplain-connecting events do not increase downstream, we hypothesize instead that increases in relative abundance of flood-dependent trees at larger drainage area result from increasing size of disturbance patches. Bank-overtopping floods at larger drainage area create large, open, depositional landforms that promoted the regeneration of shade-intolerant species. Higher tree species diversity in floodplains with small drainage areas is associated with non-incised floodplains that are frequently connected to their channels and therefore subject to greater effective hydrologic variability compared with downstream floodplains. Understanding the landscape-scale geomorphic and hydrologic controls on floodplain connectivity provides a basis for more effective management and restoration of floodplain forest communities.
Lobo, Elena; Dalling, James W.
2014-01-01
Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032
Determining the rate of forest conversion in Mato Grosso, Brazil, using Landsat MSS and AVHRR data
NASA Technical Reports Server (NTRS)
Nelson, Ross; Horning, Ned; Stone, Thomas A.
1987-01-01
AVHRR-LAC thermal data and Landsat MSS and TM spectral data were used to estimate the rate of forest clearing in Mato Grosso, Brazil, between 1981 and 1984. The Brazilian state was stratified into forest and nonforest. A list sampling procedure was used in the forest stratum to select Landsat MSS scenes for processing based on estimates of fire activity in the scenes. Fire activity in 1984 was estimated using AVHRR-LAC thermal data. State-wide estimates of forest conversion indicate that between 1981 and 1984, 353,966 ha + or - 77,000 ha (0.4 percent of the state area) were converted per year. No evidence of reforestation was found in this digital sample. The relationship between forest clearing rate (based on MSS-TM analysis) and fire activity (estimated using AVHRR data) was noisy (R-squared = 0.41). The results suggest that AVHRR data may be put to better use as a stratification tool than as a subsidiary variable in list sampling.
NASA Astrophysics Data System (ADS)
Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.
2015-04-01
Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national scale. Our results allow national and sub-national level analysis of forest cover extent, change, and logging intensity and are available on-line as a baseline for further analyses of forest dynamics and its drivers.
Bispo, Polyanna da Conceição; dos Santos, João Roberto; Valeriano, Márcio de Morisson; Graça, Paulo Maurício Lima de Alencastro; Balzter, Heiko; França, Helena; Bispo, Pitágoras da Conceição
2016-01-01
Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty. PMID:27089013
Bispo, Polyanna da Conceição; Dos Santos, João Roberto; Valeriano, Márcio de Morisson; Graça, Paulo Maurício Lima de Alencastro; Balzter, Heiko; França, Helena; Bispo, Pitágoras da Conceição
2016-01-01
Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty.
NASA Technical Reports Server (NTRS)
Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius;
2011-01-01
Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.
Effects of forests, roads and mistletoe on bird diversity in monoculture rubber plantations
NASA Astrophysics Data System (ADS)
Sreekar, Rachakonda; Huang, Guohualing; Yasuda, Mika; Quan, Rui-Chang; Goodale, Eben; Corlett, Richard T.; Tomlinson, Kyle W.
2016-02-01
Rising global demand for natural rubber is expanding monoculture rubber (Hevea brasilensis) at the expense of natural forests in the Old World tropics. Conversion of forests into rubber plantations has a devastating impact on biodiversity and we have yet to identify management strategies that can mitigate this. We determined the life-history traits that best predict bird species occurrence in rubber plantations in SW China and investigated the effects of surrounding forest cover and distance to roads on bird diversity. Mistletoes provide nectar and fruit resources in rubber so we examined mistletoe densities and the relationship with forest cover and rubber tree diameter. In rubber plantations, we recorded less than half of all bird species extant in the surrounding area. Birds with wider habitat breadths and low conservation value had a higher probability of occurrence. Species richness and diversity increased logarithmically with surrounding forest cover, but roads had little effect. Mistletoe density increased exponentially with rubber tree diameters, but was unrelated to forest cover. To maximize bird diversity in rubber-dominated landscapes it is therefore necessary to preserve as much forest as possible, construct roads through plantations and not forest, and retain some large rubber trees with mistletoes during crop rotations.
Effects of forests, roads and mistletoe on bird diversity in monoculture rubber plantations.
Sreekar, Rachakonda; Huang, Guohualing; Yasuda, Mika; Quan, Rui-Chang; Goodale, Eben; Corlett, Richard T; Tomlinson, Kyle W
2016-02-23
Rising global demand for natural rubber is expanding monoculture rubber (Hevea brasilensis) at the expense of natural forests in the Old World tropics. Conversion of forests into rubber plantations has a devastating impact on biodiversity and we have yet to identify management strategies that can mitigate this. We determined the life-history traits that best predict bird species occurrence in rubber plantations in SW China and investigated the effects of surrounding forest cover and distance to roads on bird diversity. Mistletoes provide nectar and fruit resources in rubber so we examined mistletoe densities and the relationship with forest cover and rubber tree diameter. In rubber plantations, we recorded less than half of all bird species extant in the surrounding area. Birds with wider habitat breadths and low conservation value had a higher probability of occurrence. Species richness and diversity increased logarithmically with surrounding forest cover, but roads had little effect. Mistletoe density increased exponentially with rubber tree diameters, but was unrelated to forest cover. To maximize bird diversity in rubber-dominated landscapes it is therefore necessary to preserve as much forest as possible, construct roads through plantations and not forest, and retain some large rubber trees with mistletoes during crop rotations.
Mangrove forest recovery in the Everglades following Hurricane Wilma
Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.
2009-01-01
On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.
Buma, Brian; Barrett, Tara M
2015-09-01
Natural forest growth and expansion are important carbon sequestration processes globally. Climate change is likely to increase forest growth in some regions via CO2 fertilization, increased temperatures, and altered precipitation; however, altered disturbance regimes and climate stress (e.g. drought) will act to reduce carbon stocks in forests as well. Observations of asynchrony in forest change is useful in determining current trends in forest carbon stocks, both in terms of forest density (e.g. Mg ha(-1) ) and spatially (extent and location). Monitoring change in natural (unmanaged) areas is particularly useful, as while afforestation and recovery from historic land use are currently large carbon sinks, the long-term viability of those sinks depends on climate change and disturbance dynamics at their particular location. We utilize a large, unmanaged biome (>135 000 km(2) ) which spans a broad latitudinal gradient to explore how variation in location affects forest density and spatial patterning: the forests of the North American temperate rainforests in Alaska, which store >2.8 Pg C in biomass and soil, equivalent to >8% of the C in contiguous US forests. We demonstrate that the regional biome is shifting; gains exceed losses and are located in different spatio-topographic contexts. Forest gains are concentrated on northerly aspects, lower elevations, and higher latitudes, especially in sheltered areas, whereas loss is skewed toward southerly aspects and lower latitudes. Repeat plot-scale biomass data (n = 759) indicate that within-forest biomass gains outpace losses (live trees >12.7 cm diameter, 986 Gg yr(-1) ) on gentler slopes and in higher latitudes. This work demonstrates that while temperate rainforest dynamics occur at fine spatial scales (<1000 m(2) ), the net result of thousands of individual events is regionally patterned change. Correlations between the disturbance/establishment imbalance and biomass accumulation suggest the potential for relatively rapid biome shifts and biomass changes. © 2015 John Wiley & Sons Ltd.
Global Forest Area Trends Underestimate Threats from Forest Fragmentation
Forest loss and fragmentation of the remainder threaten the ecological attributes and functions which depend upon forests1. Forest interior area is particularly valued because it is relatively remote from human influence2, 3, 4, 5. Recent global assessments report declines in t...
Optical remote sensing for forest area estimation
Randolph H. Wynne; Richard G. Oderwald; Gregory A. Reams; John A. Scrivani
2000-01-01
The air photo dot-count method is now widely and successfully used for estimating operational forest area in the USDA Forest Inventory and Analysis (FIA) program. Possible alternatives that would provide for more frequent updates, spectral change detection, and maps of forest area include the AVHRR calibration center technique and various Landsat TM classification...
43 CFR 8224.1 - Use of the Fossil Forest Research Natural Area.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Use of the Fossil Forest Research Natural...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.1 Use of the Fossil Forest Research Natural Area. (a) Fossils may be collected...
43 CFR 8224.1 - Use of the Fossil Forest Research Natural Area.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Use of the Fossil Forest Research Natural...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.1 Use of the Fossil Forest Research Natural Area. (a) Fossils may be collected...
43 CFR 8224.1 - Use of the Fossil Forest Research Natural Area.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Use of the Fossil Forest Research Natural...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.1 Use of the Fossil Forest Research Natural Area. (a) Fossils may be collected...
43 CFR 8224.1 - Use of the Fossil Forest Research Natural Area.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Use of the Fossil Forest Research Natural...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.1 Use of the Fossil Forest Research Natural Area. (a) Fossils may be collected...
Statistical properties of alternative national forest inventory area estimators
Francis Roesch; John Coulston; Andrew D. Hill
2012-01-01
The statistical properties of potential estimators of forest area for the USDA Forest Service's Forest Inventory and Analysis (FIA) program are presented and discussed. The current FIA area estimator is compared and contrasted with a weighted mean estimator and an estimator based on the Polya posterior, in the presence of nonresponse. Estimator optimality is...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... range allotment management planning on the McKelvie Geographic Area, Samuel R. McKelvie National Forest... DEPARTMENT OF AGRICULTURE Forest Service McKelvie Geographic Area Range Allotment Management Planning on the Samuel R. McKelvie National Forest, Bessey Ranger District in Nebraska AGENCY: Forest...
Willem W.S. van Hees
2001-01-01
Summary estimates are presented of forest resource area, timber volume, and growth and mortality of timber on unreserved national forest land in the Ketchikan inventory unit of the Tongass National Forest. Pacific Northwest Research Station, Forest Inventory and Analysis crews collected inventory data from 1995 to 1998. Productive forest land area (timberland) was...
Willem W.S. van Hees
2001-01-01
Summary estimates are presented of forest resource area, timber volume, and growth and mortality of timber on unreserved national forest land in the Chatham inventory unit of the Tongass National Forest. Pacific Northwest Research Station, Forest Inventory and Analysis crews collected inventory data from 1995 to 2000. Productive forest land area (timberland) was...
Willem W.S. van Hees
2001-01-01
Summary estimates are presented of forest resource area, timber volume, and growth and mortality of timber on unreserved national forest land in the Stikine inventory unit of the Tongass National Forest. Pacific Northwest Research Station, Forest Inventory and Analysis, crews collected inventory data from 1995 to 1998. Productive forest land area (timberland) was...
Forest management in Northeast China: history, problems, and challenges.
Yu, Dapao; Zhou, Li; Zhou, Wangming; Ding, Hong; Wang, Qingwei; Wang, Yue; Wu, Xiaoqing; Dai, Limin
2011-12-01
Studies of the history and current status of forest resources in Northeast China have become important in discussions of sustainable forest management in the region. Prior to 1998, excessive logging and neglected cultivation led to a series of problems that left exploitable forest reserves in the region almost exhausted. A substantial decrease in the area of natural forests was accompanied by severe disruption of stand structure and serious degradation of overall forest quality and function. In 1998, China shifted the primary focus of forest management in the country from wood production to ecological sustainability, adopting ecological restoration and protection as key foci of management. In the process, China launched the Natural Forest Conversion Program and implemented a new system of Classification-based Forest Management. Since then, timber harvesting levels in Northeast China have decreased, and forest area and stocking levels have slowly increased. At present, the large area of low quality secondary forest lands, along with high levels of timber production, present researchers and government agencies in China with major challenges in deciding on management models and strategies that will best protect, restore and manage so large an area of secondary forest lands. This paper synthesizes information from a number of sources on forest area, stand characteristics and stocking levels, and forest policy changes in Northeastern China. Following a brief historical overview of forest harvesting and ecological research in Northeast China, the paper discusses the current state of forest resources and related problems in forest management in the region, concluding with key challenges in need of attention in order to meet the demands for multi-purpose forest sustainability and management in the future.
Hugh D. Safford; Jens T. Stevens
2017-01-01
Yellow pine and mixed-conifer (YPMC) forests are the predominant montane forest type in the Sierra Nevada, southern Cascade Range, and neighboring forested areas on the Modoc and Inyo National Forests (the "assessment area"). YPMC forests occur above the oak woodland belt and below red fir forests, and are dominated by the yellow pines (ponderosa pine [
Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment
Hollaus, Markus; Wagner, Wolfgang; Maier, Bernhard; Schadauer, Klemens
2007-01-01
Airborne laser scanning (ALS) is an active remote sensing technique that uses the time-of-flight measurement principle to capture the three-dimensional structure of the earth's surface with pulsed lasers that transmit nanosecond-long laser pulses with a high pulse repetition frequency. Over forested areas most of the laser pulses are reflected by the leaves and branches of the trees, but a certain fraction of the laser pulses reaches the forest floor through small gaps in the canopy. Thus it is possible to reconstruct both the three-dimensional structure of the forest canopy and the terrain surface. For the retrieval of quantitative forest parameters such as stem volume or biomass it is necessary to use models that combine ALS with inventory data. One approach is to use multiplicative regression models that are trained with local inventory data. This method has been widely applied over boreal forest regions, but so far little experience exists with applying this method for mapping alpine forest. In this study the transferability of this approach to a 128 km2 large mountainous region in Vorarlberg, Austria, was evaluated. For the calibration of the model, inventory data as operationally collected by Austrian foresters were used. Despite these inventory data are based on variable sample plot sizes, they could be used for mapping stem volume for the entire alpine study area. The coefficient of determination R2 was 0.85 and the root mean square error (RMSE) 90.9 m3ha−1 (relative error of 21.4%) which is comparable to results of ALS studies conducted over topographically less complex environments. Due to the increasing availability, ALS data could become an operational part of Austrian's forest inventories.
1982-03-01
state the conditions under which forest products will be sold. They describe the products for sale and the location of the sales area , as well as the...price. Forest products are sold (1) by species or groups of species, ") by designated logging area or areas , or (3) by product, i.e. sawtimber, poles...Lump Sum Sale (Appendix J). Designated trees or entire sale areas may be sold with this method. Individual trees are marked for sale in some manner
A dynamic ecosystem growth model for forests at high complexity structure
NASA Astrophysics Data System (ADS)
Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.
2012-04-01
Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L.) where the medium-term (10 years) development of forest parameters were simulated. The results obtained for net primary production and for stem, root and foliage compartments as well as for forest structure i.e. Diameter at Breast Height, height and canopy cover are in good accordance with field data (R2>0.95). These results show how the model is able to predict forest yield as well as forest dynamic with good accuracy and encourage testing the model capability on other sites with a more complex forest structure and for long-time period with an higher spatial resolution.
Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis
Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H.; Jalava, Mika; Räsänen, Timo A.
2015-01-01
In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000–2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs’ and IFLs’ locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses. PMID:26466348
Colossal carbon! Disturbance and biomass dynamics in Alaska's national forests
John Kirkland; Tara Barrett
2016-01-01
The Chugach and Tongass National Forests are changing, possibly in response to global warming. Forested areas within Alaska's temperate rain forests are creeping into areas that were previously too cold or too wet. These forests are also becoming denser. As biomass increases, the amount of carbon stored in the forest also increases. Tara Barrett, a...
James F. Rosson
2001-01-01
Abstract - Highlights of the seventh forest survey of Arkansas are presented. Key elements important in assessing the sustainability of the forest resource are discussed. These include forest area, volume, growth, removals, and status of softwood plantations. Forest area and volumes appear stable or increasing or both. However, the amount of...
Alexander C. Vibrans; Ronald E. McRoberts; Paolo Moser; Adilson L. Nicoletti
2013-01-01
Estimation of large area forest attributes, such as area of forest cover, from remote sensing-based maps is challenging because of image processing, logistical, and data acquisition constraints. In addition, techniques for estimating and compensating for misclassification and estimating uncertainty are often unfamiliar. Forest area for the state of Santa Catarina in...
Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal
NASA Astrophysics Data System (ADS)
Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís
2010-03-01
Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.
J. Peterson; D. Schmoldt; D. Peterson; J. Eilers; R. Fisher; R. Bachman
1992-01-01
Forest Service air resource managers in the Pacific Northwest are responsible for protecting class 1 wilderness areas from air pollution. To do this, they need scientifically defensible information to determine critical concentrations of air pollution having the potential to impact class 1 wilderness values. This report documents the results of a workshop where current...
Urban users of wildland areas as forest fire risks
William S. Folkman
1979-01-01
A telephone survey of 1500 households in metropolitan Los Angeles and San Francisco was made to (1) determine extent of wildland use by residents of the two metropolitan areas, reasons for non-use, and the characteristics of users; (2) describe and analyze activities, knowledge, and attitudes of users which may contribute to their fire risk; and (3) assess selected...
Variation in vegetation following slash fires near Oakridge, Oregon.
Harold K. Steen
1965-01-01
The following photographic sequences illustrate how vegetation differed following slash fires on two logged areas 9 miles apart. As part of a regional study to determine effects of slash burning, two pairs of plots were established on the Willamette National Forest near Oakridge, Oreg. Both areas were clearcut in 1949, and the slash was burned in October of the same...
The Allied Medical Development Project, Forest Park Community College. Final Report.
ERIC Educational Resources Information Center
Saint Louis Community Coll., MO.
The Allied Medical Development Project was conceived to determine the role of the St. Louis-St. Louis County Junior College District in the education of personnel for allied medical careers in the St. Louis area. The underlying assumption was that the development of needed programs on a sound basis in the St. Louis area would result in general…
Analysis of nitrogen dynamics in the Lye Brook Wilderness Area, Vermont, USA
John L. Campbell; Christopher Eagar; William H. McDowell; James W. Hornbeck
2000-01-01
Nitrogen (N) deposition and its impact on terrestrial and aquatic ecosystems is a concern facing federal land managers at the Lye Brook Wilderness in Vermont and other protected areas throughout the northeastern United States. In this study, we compared N production in soils with N concentrations and outputs in leachates to determine how forest cover types differ in...
Forage production after thinning a natural loblolly pine-hardwoocl stand to clifferent basal areas
David G. Peitz; Michael G. Shelton; Philip A. Tappe
2001-01-01
Mixed pine (Pinus spp.)-hardwood forests are common in the southern United States (U.S.), but little quantitative information exists on the response of understory forage to reductions in basal area from thinning. We determined understory forage characteristics before thinning and 2 and 4 years after thinning a 35-year-old natural loblolly pine (
Janice Peterson; Daniel L. Schmoldt; David Peterson; Joseph Eilers; Richard Fisher; Robert Bachman
1992-01-01
Forest Service air resource managers in the Pacific Northwest are responsible for protecting class I wilderness areas from air pollution. To do this, they need scientifically defensible information to determine critical concentrations of air pollution having the potential to impact class I wilderness values. This report documents the results of a workshop where current...
Synergistic interactions between edge and area effects in a heavily fragmented landscape.
Ewers, Robert M; Thorpe, Stephen; Didham, Raphael K
2007-01-01
Both area and edge effects have a strong influence on ecological processes in fragmented landscapes, but there is little understanding of how these two factors might interact to exacerbate local species declines. To test for synergistic interactions between area and edge effects, we sampled a diverse beetle community in a heavily fragmented landscape in New Zealand. More than 35,000 beetles of approximately 900 species were sampled over large gradients in habitat area (10(-2) 10(6) ha) and distance from patch edge (2(0)-2(10) m from the forest edge into both the forest and adjacent matrix). Using a new approach to partition variance following an ordination analysis, we found that a synergistic interaction between habitat area and distance to edge was a more important determinant of patterns in beetle community composition than direct edge or area effects alone. The strength of edge effects in beetle-species composition increased nonlinearly with increasing fragment area. One important consequence of the synergy is that the slopes of species area (SA) curves constructed from habitat islands depend sensitively on the distance from edge at which sampling is conducted. Surprisingly, we found negative SA curves for communities sampled at intermediate distances from habitat edges, caused by differential edge responses of matrix- vs. forest-specialist species in fragments of increasing area. Our data indicate that distance to habitat edge has a consistently greater impact on beetle community composition than habitat area and that variation in the strength of edge effects may underlie many patterns that are superficially related to habitat area.
Minnesota's forest resources in 2004
Patrick D. Miles; Gary J. Brand; Manfred E. Mielke
2006-01-01
This report presents forest statistics based on the five annual inventory panels measured from 2000 through 2004. Forest area is estimated at 16.2 million acres or 32 percent of the total land area in the State. Important pests in Minnesota forests include the forest tent caterpillar and spruce budworm.
Iowa's forest resources, 1974.
John S. Jr. Spencer; Pamela J. Jakes
1980-01-01
The second inventory of Iowa's forest resources shows big declines in commercial forest area and in growing-stock and sawtimber volumes between 1954 and 1974. Presented are text and statistics on forest area and timber volume, growth, mortality, ownership, stocking, future timber supply, timber use, forest management opportunities, and nontimber resources.
Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model
NASA Astrophysics Data System (ADS)
V V L, P. A.
2015-12-01
In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have used Dynamic Global Vegetation Model to understand the possible vegetation dynamics in the event of climate change. The vegetation represents a biogeographic regime. Simulations were carried out for 70 years time period. The model produced leaf area index and biomass for each plant functional type and biome for each grid in that region.
Forest Cover Change Analysis in Inner Mongolia Using Remote Sensing Data
NASA Astrophysics Data System (ADS)
Xie, S.; Gong, J.; Huang, X.
2018-04-01
Forest is the lung of the earth, and it has important effect on maintaining the ecological balance of the whole earth. This study was conducted in Inner Mongolia during the year 1990-2015. Land use and land cover data were used to obtain forest cover change of Inner Mongolia. In addition, protected area data, road data, ASTER GDEM data were combined with forest cover change data to analyze the relationship between them. Moreover, patch density and landscape shape index were calculated to analyze forest change in perspective of landscape aspect. The results indicated that forest area increased overall during the study period. However, a few cities still had a phenomenon of reduced forest area. Results also demonstrated that the construction of protected area had positive effect on protecting forest while roads may disturbed forest due to human activities. In addition, forest patches in most of cities of Inner Mongolia tended to be larger and less fragmented. This paper reflected forest change in Inner Mongolia objectively, which is helpful for policy making by government.
[Estimation of Shenyang urban forest green biomass].
Liu, Chang-fu; He, Xing-yuan; Chen, Wei; Zhao, Gui-ling; Xu, Wen-duo
2007-06-01
Based on ARC/GIS and by using the method of "planar biomass estimation", the green biomass (GB) of Shenyang urban forests was measured. The results demonstrated that the GB per unit area was the highest (3.86 m2.m(-2)) in landscape and relaxation forest, and the lowest (2.27 m2.m(-2)) in ecological and public welfare forest. The GB per unit area in urban forest distribution area was 2.99 m2.m(-2), and that of the whole Shenyang urban area was 0.25 m2.m(-2). The total GB of Shenyang urban forests was about 1.13 x 10(8) m2, among which, subordinated forest, ecological and public welfare forest, landscape and relaxation forest, road forest, and production and management forest accounted for 36.64% , 23.99% , 19.38% , 16.20% and 3.79%, with their GB being 4. 15 x 10(7), 2.72 x 10(7), 2.20 x 10(7), 1.84 x 10(7) and 0.43 x 10(7) m2, respectively. The precision of the method "planar biomass estimation" was 91.81% (alpha = 0.05) by credit test.
Shanley, J.B.; Strause, J.L.; Risley, J.C.
1995-01-01
Effects of selective forest clearing on water yield and water quality were investigated in a 308-hectare basin that drains to Quabbin Reservoir Watershed in central Massachusetts. The experimental basin and a nearby 280-hectare control basin were studied together for comparison. Streamflow was measured continuously and water-quality samples were collected biweekly in both basins from February 1985 through September 1989. During the same period, measurements of precipitation quantity and ground- water levels were made and samples were collected for determination of precipitation and ground-water quality. After an initial monitoring period to establish baseline hydrology and water quality in both basins, an area of red pine and white pine forest in the experimental basin was cleared. From October 1986 until April 1987, 23.8 percent of the total basal area was removed by clearcutting and thinning. Part of the cleared area was converted to rye and other field grasses, and the remainder was allowed to regrow naturally. Fertilizer and lime were applied to part of the cleared area. An additional 8.3 percent of basal area was cleared in fall 1988. Despite differences in bedrock geology, topography, and amount of wetland area, pre- treatment hydrology and chemistry of the two basins were similar. Biogeochemical reactions of the dilute mixture of sulfuric and nitric acids in precipitation with soils and rocks in the basins resulted in moderately buffered calcium-magnesium bicarbonate-type streamwater. During high flows, sulfate concentrations increased and alkalinity decreased. Selective forest clearing resulted in a slight increase in water yield during the year in which the clearing took place, particularly during the spring high-flow period, but flows returned to normal thereafter. Concurrent increases in solute flux were primarily a function of the increased water flux. No major alterations to biogeochemical processes were induced by the forest clearing, nor were any effects from the fertilizer or liming activity observed. The minimal effect observed from the clearing was attributed primarily to the limited area that was cleared, and the location of the cleared area in the headwaters of the basin (away from the riparian zone).
Soil Quality Index Determination Models for Restinga Forest
NASA Astrophysics Data System (ADS)
Bonilha, R. M.; Casagrande, J. C.; Soares, R. M.
2012-04-01
The Restinga Forest is a set of plant communities in mosaic, determined by the characteristics of their substrates as a result of depositional processes and ages. In this complex mosaic are the physiognomies of restinga forests of high-stage regeneration (high restinga) and middle stage of regeneration (low restinga), each with its plant characteristics that differentiate them. Located on the coastal plains of the Brazilian coast, suffering internal influences both the continental slopes, as well as from the sea. Its soils come from the Quaternary and are subject to constant deposition of sediments. The climate in the coastal type is tropical (Köppen). This work was conducted in four locations: (1) Anchieta Island, Ubatuba, (2) Juréia-Itatins Ecological Station, Iguape, (3) Vila das Pedrinhas, Comprida Island; and (4) Cardoso Island, Cananeia. The soil samples were collect at a depths of 0 to 5, 0-10, 0-20, 20-40 and 40 to 60cm for the chemical and physical analysis. Were studied the additive and pondering additive models to evaluate soil quality. It was concluded: a) the comparative additive model produces quantitative results and the pondering additive model quantitative results; b) as the pondering additive model, the values of Soil Quality Index (SQI) for soils under forest of restinga are low and realistic, demonstrating the small plant biomass production potential of these soils, as well as their low resilience; c) the values of SQI similar to areas with and without restinga forest give quantitative demonstration of the restinga be considered as soil phase; d) restinga forest, probably, is maintained solely by the cycling of nutrients in a closed nutrient cycling; e) for the determination of IQS for soils under restinga vegetation the use of routine chemical analysis is adequate. Keywords: Model, restinga forest, Soil Quality Index (SQI).
Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard
2005-01-01
Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...
Marcus V.N. d' Oliveira; Stephen E. Reutebuch; Robert J. McGaughey; Hans-Erik. Andersen
2012-01-01
The objectives of this study were to estimate above ground forest biomass and identify areas disturbed by selective logging in a 1000 ha Brazilian tropical forest in the Antimary State Forest using airborne lidar data. The study area consisted of three management units, two of which were unlogged, while the third unit was selectively logged at a low intensity. A...
Wisconsin's fourth forest inventory: area.
W. Brad Smith
1986-01-01
In 1983, the fourth Wisconsin forest inventory found 14.8 million acres of commercial forest land, an increase of nearly 2% since 1968. This bulletin analyzes findings from the inventory and presents detailed tables of forest area.
The fourth Minnesota forest inventory: area.
Pamela J. Jakes
1980-01-01
In 1977 the fourth Minnesota Forest Inventory found 13.7 million acres of commercial forest land, down 11% from that reported in 1962. This bulletin analyzes finding from the inventory and presents detailed tables of forest area.
A study on the utilization of forest policy to review from the aspect of climate change
NASA Astrophysics Data System (ADS)
Ardhana, I. Putu Gede
2017-11-01
The purpose of this study was to review the utilization of forests from the policy aspects of climate change. This was then associated with the implementation of governmental commitment to carry out REDD+ to cope with the impact of climate change and to achieve sustainable development. Firstly, the author studied this problem from data and information about vast forest areas and conservative water areas in Indonesia. According to provincial governments, there have been several decision letters from the Minister of Forestry from different years ranging from 1999-2014. Comparing the forest areas in letters of 2005, 2008, and 2015, it can be suggested that the areas allocated as productive forest exceeded the areas of conserved or protected forest. This indicates that the utilization of forest as a development resource has occurred, and will continue to become an important element in Indonesia. Furthermore, Indonesian forests continue to suffer deforestation and forest degradation. Therefore, the author presented data and information about deforestation and forest degradation that occurred from forest damage and forest fires. Thirdly, the author presented data and information about the deforestation rate from 2000-2014. In 1989, rehabilitation activities were carried out for critical lands, and from 2012-2014, rehabilitation of forest and riverside areas occurred. This research uses descriptive methods with an approximation of legislation and an approach to librarianship. Then, this study is described in a narrative as well as an interpretive style, and compiled in the form of a working paper. From the results of this research, it can be concluded that Indonesian governmental policy regarding forest utilization has wide potential mitigations, and it is absolutely necessary to consistently implement a number of such programs related to climate change.
Quantifying rate of deforestation and CO2 emission in Peninsular Malaysia using Palsar imageries
NASA Astrophysics Data System (ADS)
Hamdan, O.; Abd Rahman, K.; Samsudin, M.
2016-06-01
Increasing human population and the rapid growth of Malaysia's economy are often associated with various environmental disturbances which have been contributing to depletion of natural resources and climate change. The need for more spaces for numerous land development activities has made the existing forests suffer deforestation. The study was carried out in Peninsular Malaysia, which currently has about 5.9 million ha of forests. Phased array type L-band SAR (Palsar) and Palsar-2 images over the years 2010 and 2015, respectively were used to identify forest cover and deforestation occurrences resulted from various conversion of forests to other land uses. Forests have been identified from horizontal-vertical (HV) polarization and then classified into three major categories, which are inland, peat swamp and mangrove. Pixel subtraction technique was used to determine areas that have been changing from forests to other land uses. Forest areas have been found declined from about 6.1 million ha in year 2010 to some 5.9 million ha in 2015 due to conversion of forests to other land uses. Causes of deforestation have been identified and the amount of carbon dioxide (CO2) that has been emitted due to the deforestation activity has been determined in this study. Oil palm and rubber plantations expansion has been found the most prominent factor that caused deforestation in Peninsular Malaysia, especially in the states of Pahang, Terengganu, Johor and Kelantan. The rate of deforestation in the period was at 0.66% yr-1, which amounted a total of about 200,225 ha over the five years. Carbon loss was estimated at about 30.2 million Mg C, which has resulted in CO2 emission accounted at about 110.6 million Mg CO2. The rate of CO2 emission that has been resulted from deforestation was estimated at 22.1 million Mg CO2 yr-1. The study found that the use of a series of Palsar and Palsar-2 images, with a consistent, cloud-free images, are the most appropriate sensors to be used for monitoring of deforestation over the Peninsular Malaysia region.
Bradford, John B.; Bell, David M.
2017-01-01
Increasing aridity as a result of climate change is expected to exacerbate tree mortality. Reducing forest basal area – the cross-sectional area of tree stems within a given ground area – can decrease tree competition, which may reduce drought-induced tree mortality. However, neither the magnitude of expected mortality increases, nor the potential effectiveness of basal area reduction, has been quantified in dryland forests such as those of the drought-prone Southwest US. We used thousands of repeatedly measured forest plots to show that unusually warm and dry conditions are related to high tree mortality rates and that mortality is positively related to basal area. Those relationships suggest that while increasing high temperature extremes forecasted by climate models may lead to elevated tree mortality during the 21st century, future tree mortality might be partly ameliorated by reducing stand basal area. This adaptive forest management strategy may provide a window of opportunity for forest managers and policy makers to guide forest transitions to species and/or genotypes more suited to future climates.
Mathematic simulation of soil-vegetation condition and land use structure applying basin approach
NASA Astrophysics Data System (ADS)
Mishchenko, Natalia; Shirkin, Leonid; Krasnoshchekov, Alexey
2016-04-01
Ecosystems anthropogenic transformation is basically connected to the changes of land use structure and human impact on soil fertility. The Research objective is to simulate the stationary state of river basins ecosystems. Materials and Methods. Basin approach has been applied in the research. Small rivers basins of the Klyazma river have been chosen as our research objects. They are situated in the central part of the Russian plain. The analysis is carried out applying integrated characteristics of ecosystems functioning and mathematic simulation methods. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Results. Mathematic simulation resulted in defining possible permanent conditions of "phytocenosis-soil" system in coordinates of phytomass, phytoproductivity, humus percentage in soil. Ecosystem productivity is determined not only by vegetation photosynthesis activity but also by the area ratio of forest and meadow phytocenosis. Local maximums attached to certain phytomass areas and humus content in soil have been defined on the basin phytoproductivity distribution diagram. We explain the local maximum by synergetic effect. It appears with the definite ratio of forest and meadow phytocenosis. In this case, utmost values of phytomass for the whole area are higher than just a sum of utmost values of phytomass for the forest and meadow phytocenosis. Efficient correlation of natural forest and meadow phytocenosis has been defined for the Klyazma river. Conclusion. Mathematic simulation methods assist in forecasting the ecosystem conditions under various changes of land use structure. Nowadays overgrowing of the abandoned agricultural lands is very actual for the Russian Federation. Simulation results demonstrate that natural ratio of forest and meadow phytocenosis for the area will restore during agricultural overgrowing.
NASA Astrophysics Data System (ADS)
Chen, G.; Hayes, D. J.; Tian, H.
2013-12-01
Planted forest area in the United States gradually increased during the last half century, and by 2007 accounted for about 20% of the total forest area in the southern United States and about 13% in the entire country. Intensive plantation management activities - such as slash burning, thinning, weed control, fertilization and the use of genetically improved seedlings - are routinely applied during the forest rotation. However, no comprehensive assessments have been made to examine the impacts of this increased forest plantation area and associated management practices on ecosystem function. In this study, we integrated field measurement data and process-based modeling to quantitatively estimate the changes in carbon storage, nitrogen cycling and water use as influenced by forest plantations in the United States from 1925 to 2007. The results indicated that forest plantations and management practices greatly increased forest productivity, vegetation carbon, and wood product carbon storage in the United States, but slightly reduce soil carbon storage at some areas; however, the carbon sink induced by forest plantations was at the expense of more water use as represented by higher evapotranspiration. Stronger nitrogen and water limitations were found for forest plantations as compared to natural or naturally-regenerated forests.
Measuring forest landscape patterns in the Cascade Range of Oregon, USA
NASA Technical Reports Server (NTRS)
Ripple, William J.; Bradshaw, G. A.; Spies, Thomas A.
1995-01-01
This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife.
Menge, Duncan N L; Chazdon, Robin L
2016-02-01
Trees capable of symbiotic nitrogen (N) fixation ('N fixers') are abundant in many tropical forests. In temperate forests, it is well known that N fixers specialize in early-successional niches, but in tropical forests, successional trends of N-fixing species are poorly understood. We used a long-term census study (1997-2013) of regenerating lowland wet tropical forests in Costa Rica to document successional patterns of N fixers vs non-fixers, and used an individual-based model to determine the demographic drivers of these trends. N fixers increased in relative basal area during succession. In the youngest forests, N fixers grew 2.5 times faster, recruited at a similar rate and were 15 times less likely to die as non-fixers. As succession proceeded, the growth and survival disparities decreased, whereas N fixer recruitment decreased relative to non-fixers. According to our individual-based model, high survival was the dominant driver of the increase in basal area of N fixers. Our data suggest that N fixers are successful throughout secondary succession in tropical rainforests of north-east Costa Rica, and that attempts to understand this success should focus on tree survival. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A
2010-06-01
Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.
A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012
Kurt Riitters; James Wickham; Jennifer K. Costanza; Peter Vogt
2016-01-01
Context Published maps of global tree cover derived from Landsat data have indicated substantial changes in forest area from 2000 to 2012. The changes can be arranged in different patterns, with different consequences for forest fragmentation. Thus, the changes in forest area do not necessarily equate to changes in...
Area-specific recreation use estimation using the national visitor use monitoring program data.
Eric M. White; Stanley J. Zarnoch; Donald B.K. English
2007-01-01
Estimates of national forest recreation use are available at the national, regional, and forest levels via the USDA Forest Service National Visitor Use Monitoring (NVUM) program. In some resource planning and management applications, analysts desire recreation use estimates for subforest areas within an individual national forest or for subforest areas that combine...
Forest land area estimates from vegetation continuous fields
Mark D. Nelson; Ronald E. McRoberts; Matthew C. Hansen
2004-01-01
The USDA Forest Service's Forest Inventory and Analysis (FIA) program provides data, information, and knowledge about our Nation's forest resources. FIA regional units collect data from field plots and remotely sensed imagery to produce statistical estimates of forest extent (area); volume, growth, and removals; and health and condition. There is increasing...
William W.S. van Hees
1980-01-01
The 1978 Arkansas Forest survey shows a 9 percent reduction in forest land area since 1969. Presently 16.6 million acres, 50 percent of the total State area, are forested. Diversions of forest land to agriculture, particularly to soybean fields in the Delta and to pasture in the Ozarks, account for most of the decline.
Land use mapping in Erie County, Pennsylvania: A pilot study
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); May, G. A.
1974-01-01
The author has identified the following significant results. A pilot study was conducted to determine the feasibility of mapping land use in the Great Lakes Basin area utilizing ERTS-1 data. Small streams were clearly defined by the presence of trees along their length in predominantly agricultural country. Field patterns were easily differentiated from forested areas; dairy and beef farms were differentiated from other farmlands, but no attempt was made to identify crops. Large railroad lines and major highway systems were identified. The city of Erie and several smaller towns were identified, as well as residential areas between these towns, and docks along the shoreline in Erie. Marshes, forests, and beaches within Presque Isle State Park were correctly identified, using the DCLUS program. Bay water was differentiated from lake water, with a small amount of misclassification.
Forest inventory using multistage sampling with probability proportional to size. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Lee, D. C. L.; Hernandezfilho, P.; Shimabukuro, Y. E.; Deassis, O. R.; Demedeiros, J. S.
1984-01-01
A multistage sampling technique, with probability proportional to size, for forest volume inventory using remote sensing data is developed and evaluated. The study area is located in the Southeastern Brazil. The LANDSAT 4 digital data of the study area are used in the first stage for automatic classification of reforested areas. Four classes of pine and eucalypt with different tree volumes are classified utilizing a maximum likelihood classification algorithm. Color infrared aerial photographs are utilized in the second stage of sampling. In the third state (ground level) the time volume of each class is determined. The total time volume of each class is expanded through a statistical procedure taking into account all the three stages of sampling. This procedure results in an accurate time volume estimate with a smaller number of aerial photographs and reduced time in field work.
NASA Astrophysics Data System (ADS)
Gei, Maria G.; Powers, Jennifer S.
2017-04-01
Legumes trees are well represented throughout the entire precipitation gradient of tropical forests. Many of these species are able to fix atmospheric dinitrogen through symbiosis and offer a mechanism to overcome nitrogen limitation typical of initial stages of secondary forest succession. While it is often assumed the success of legumes is linked to their fixation ability, the variation of other functional traits within this large group has received considerably less attention. Here we assessed legume abundance in secondary forest plots in 42 Neotropical chronosequences (the 2ndFOR network) that span a broad gradient of precipitation regimes and identified those traits that are favored in distinct successional environments. Our main finding is that in young secondary dry forests (5-20 years), legumes that have the potential to fix nitrogen and have small leaflet size become exceptionally abundant (up to 17-99% relative basal area). We suggest that in those species, reduced leaf area could help regulate leaf temperature and minimize water loss, and the cost of reduced total leaf area may be compensated by high photosynthetic rates maximized with nitrogen obtained through fixation. Overall, our study underscores great functional heterogeneity within tropical legumes, which likely translates into diverse biogeochemical cycles. In addition, these results provide a useful framework for active restoration of degraded areas, as it identifies a group of species that accumulate carbon at fast rates under warm and dry environments, conditions that are expected to become more common in the tropics.
Kiewra, Dorota; Stefańska-Krzaczek, Ewa; Szymanowski, Mariusz; Szczepańska, Anna
2017-03-01
This paper presents the distribution of questing Ixodes ricinus ticks in suburban forest intensively visited by people. The local-scale observations conducted during a 4-year study at 99 plots (of 100m 2 each) located throughout the entire area of a riparian urban forest, showed a high variation in the density of ticks from year to year. Although I. ricinus is generally permanent in the study area, spatial distribution of sample plots harbouring I. ricinus is variable, i.e. mainly random for adults and larvae, and random or clustered for nymphs. Among the most common plant species in the herb layer, there were not any species which had a statistically significant and constant impact on the occurrence of any of the development stages of I. ricinus. Also relations between the density of tick development stages and vegetation variables, including cover of the herb layer, total species number, species number of the herb layer, and percentage coverage of particular species, as well as ecological indices for light, soil moisture, reaction, and nutrients, did not show any constant and predictable pattern in subsequent years of the study. Only tree and shrub layers were found as variables positively affecting the density of ticks. Although small, suburban forests can be considered as tick-borne risk areas, it is impossible to determine in details areas of tick-borne risk. Copyright © 2017 Elsevier GmbH. All rights reserved.
Vasconcellos, Alexandre; Moura, Flávia Maria da Silva
2010-01-01
Termites constitute a considerable fraction of the animal biomass in tropical forest, but little quantitative data are available that indicates their importance in the processes of wood decomposition. This study evaluated the participation of Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae), N. ephratae (Holmgren), and N. macrocephalus (Silvestri) in the consumption of the wood litter in a remnant area of Atlantic Coastal Forest in northeastern Brazil. The populations of this species were quantified in nests and in decomposing tree trunks, while the rate of wood consumption was determined in the laboratory using wood test-blocks of Clitoria fairchildiana Howard (Fabales: Fabaceae), Cecropia sp. (Urticales: Cecropiaceae), and Protium heptaphyllum (Aublet) Marchand (Sapindales: Burseraceae). The abundance of the three species of termites varied from 40.8 to 462.2 individuals/m2. The average dry wood consumption for the three species was 9.4 mg/g of termites (fresh weight)/day, with N. macrocephalus demonstrating the greatest consumption (12.1 mg/g of termite (fresh weight)/day). Wood consumption by the three species of Nasutitermes was estimated to be 66.9 kg of dry wood /ha/year, corresponding to approximately 2.9% of the annual production of wood-litter in the study area. This consumption, together with that of the other 18 exclusively wood-feeders termite species known to occur in the area, indicates the important participation of termites in removing wood-litter within the Atlantic Coastal Forest domain. PMID:20673190
Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb
2011-08-01
Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.
Evaporation from cultivated and semi-wild Sudanian Savanna in west Africa
NASA Astrophysics Data System (ADS)
Ceperley, Natalie C.; Mande, Theophile; van de Giesen, Nick; Tyler, Scott; Yacouba, Hamma; Parlange, Marc B.
2017-08-01
Rain-fed farming is the primary livelihood of semi-arid west Africa. Changes in land cover have the potential to affect precipitation, the critical resource for production. Turbulent flux measurements from two eddy-covariance towers and additional observations from a dense network of small, wireless meteorological stations combine to relate land cover (savanna forest and agriculture) to evaporation in a small (3.5 km2) catchment in Burkina Faso, west Africa. We observe larger sensible and latent heat fluxes over the savanna forest in the headwater area relative to the agricultural section of the watershed all year. Higher fluxes above the savanna forest are attributed to the greater number of exposed rocks and trees and the higher productivity of the forest compared to rain-fed, hand-farmed agricultural fields. Vegetation cover and soil moisture are found to be primary controls of the evaporative fraction. Satellite-derived vegetation index (NDVI) and soil moisture are determined to be good predictors of evaporative fraction, as indicators of the physical basis of evaporation. Our measurements provide an estimator that can be used to derive evaporative fraction when only NDVI is available. Such large-scale estimates of evaporative fraction from remotely sensed data are valuable where ground-based measurements are lacking, which is the case across the African continent and many other semi-arid areas. Evaporative fraction estimates can be combined, for example, with sensible heat from measurements of temperature variance, to provide an estimate of evaporation when only minimal meteorological measurements are available in remote regions of the world. These findings reinforce local cultural beliefs of the importance of forest fragments for climate regulation and may provide support to local decision makers and rural farmers in the maintenance of the forest areas.
Machado, Tâmara Dias Oliveira; Minuzzi-Souza, Thaís Tâmara Castro; Ferreira, Tauana de Sousa; Freire, Luciana Pereira; Timbó, Renata Velôzo; Vital, Tamires Emanuele; Nitz, Nadjar; Silva, Mariana Neiva; Santos, Alcinei de Souza; Sales, Nathyla Morgana Cunha; Obara, Marcos Takashi; Andrade, Andrey José de; Gurgel-Gonçalves, Rodrigo
2017-10-01
Knowledge on synanthropic phlebotomines and their natural infection by Leishmania is necessary for the identification of potential areas for leishmaniasis occurrence. To analyse the occurrence of Phlebotominae in gallery forests and household units (HUs) in the city of Palmas and to determine the rate of natural infection by trypanosomatids. Gallery forests and adjacent household areas were sampled on July (dry season) and November (rainy season) in 2014. The total sampling effort was 960 HP light traps and eight Shannon traps. Trypanosomatids were detected in Phlebotominae females through the amplification of the SSU rDNA region, and the positive samples were used in ITS1-PCR. Trypanosomatid species were identified using sequencing. A total of 1,527 sand flies representing 30 species were captured in which 949 (28 spp.) and 578 (22 spp.) were registered in July and November, respectively. In July, more specimens were captured in the gallery forests than in the HUs, and Nyssomyia whitmani was particularly frequent. In November, most of the specimens were found in the HUs, and again, Ny. whitmani was the predominant species. Lutzomyia longipalpis was commonly found in domestic areas, while Bichromomyia flaviscutellata was most frequent in gallery forests. Molecular analysis of 154 pools of females (752 specimens) identified Leishmania amazonensis, L. infantum, and Crithidia fasciculata in Ny. whitmani, as well as L. amazonensis in Lu. longipalpis, Trypanosoma sp. and L. amazonensis in Pintomyia christenseni, and L. amazonensis in both Psathyromyia hermanlenti and Evandromyia walkeri. These results show the importance of gallery forests in maintaining Phlebotominae populations in the dry month, as well as their frequent occurrence in household units in the rainy month. This is the first study to identify Leishmania, Trypanosoma, and Crithidia species in Phlebotominae collected in Palmas, Tocantins, Brazil.
Andrew J. Hartsell; Tony G. Johnson
2009-01-01
The principle findings of the seventh forest survey of Alabama (2000) and changes that have occurred since the previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, and mortality.
Andrew J. Hartsell; Tony G. Johnson
2009-01-01
The principle findings of the eighth forest survey of Alabama (2005) and changes that have occurred since the previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth removals, and mortality.
Michigan's Fourth Forest Inventory: Area.
John S. Jr. Spencer
1983-01-01
The fourth inventory of Michigan's forest resources found 17.5 million acres of commercial forest, down 7% from the 18.9 million found in 1966. This bulletin analyzes findings from the inventory and presents detailed tables of forest area.
Edge and area effects on the occurrence of migrant forest songbirds
Parker, T.H.; Stansberry, B.M.; Becker, C.D.; Gipson, P.S.
2005-01-01
Concerns about forest fragmentation and its conservation implications have motivated numerous studies that investigate the influence of forest patch area and forest edge on songbird distribution patterns. The generalized effects of forest patch size and forest edge on animal distributions is still debatable because forest patch size and forest edge are often confounded and because of an incomplete synthesis of available data. To fill a portion of this gap, we incorporated all available published data (33 papers) in meta-analyses of forest edge and area effects on site occupancy patterns for 26 Neotropical migrant forest-nesting songbirds in eastern North America. All reported area effects are confounded or potentially confounded by edge effects, and we refer to these as "confounded" studies. The converse, however, is not true and most reported edge effects are independent of patch area. When considering only nonconfounded studies of edge effects, only 1 of 17 species showed significant edge avoidance and 3 had significant affinity for edges. In confounded studies, 12 of 22 species showed significant avoidance of small patches and edges, and 1 had an affinity for small patches and edges. Furthermore, average effect sizes averaged across studies or species tended to be higher for confounded studies than for edge studies. We discuss three possible reasons for differences in results between these two groups of studies. First, studies of edge effects tended to be carried out in landscapes with greater forest cover than studies of confounded effects; among confounded effects studies, as forest cover increased, we observed a nonsignificant trend towards decreasing strength of small patch or edge avoidance effects. Thus, the weaker effects in edge studies may be due to the fact that these studies were conducted in forest-dominated landscapes. Second, we may have detected strong effects only in confounded studies because area effects are much stronger than edge effects on bird occurrence, and area effects drive the results in confounded studies. Third, edge and area effects may interact in such a way that edge effects become more important as forest patch size decreases; thus, both edge and area effects are responsible for results in confounded studies. These three explanations cannot be adequately separated with existing data. Regardless, it is clear that fragmentation of forests into small patches is detrimental to many migrant songbird species. ??2005 Society for Conservation Biology.
Bachelot, Benedicte; Uriarte, María; Zimmerman, Jess K; Thompson, Jill; Leff, Jonathan W; Asiaii, Ava; Koshner, Jenny; McGuire, Krista
2016-09-01
Our understanding of the long-lasting effects of human land use on soil fungal communities in tropical forests is limited. Yet, over 70% of all remaining tropical forests are growing in former agricultural or logged areas. We investigated the relationship among land use history, biotic and abiotic factors, and soil fungal community composition and diversity in a second-growth tropical forest in Puerto Rico. We coupled high-throughput DNA sequencing with tree community and environmental data to determine whether land use history had an effect on soil fungal community descriptors. We also investigated the biotic and abiotic factors that underlie such differences and asked whether the relative importance of biotic (tree diversity, basal tree area, and litterfall biomass) and abiotic (soil type, pH, iron, and total carbon, water flow, and canopy openness) factors in structuring soil fungal communities differed according to land use history. We demonstrated long-lasting effects of land use history on soil fungal communities. At our research site, most of the explained variation in soil fungal composition (R 2 = 18.6%), richness (R 2 = 11.4%), and evenness (R 2 = 10%) was associated with edaphic factors. Areas previously subject to both logging and farming had a soil fungal community with lower beta diversity and greater evenness of fungal operational taxonomic units (OTUs) than areas subject to light logging. Yet, fungal richness was similar between the two areas of historical land use. Together, these results suggest that fungal communities in disturbed areas are more homogeneous and diverse than in areas subject to light logging. Edaphic factors were the most strongly correlated with soil fungal composition, especially in areas subject to light logging, where soils are more heterogenous. High functional tree diversity in areas subject to both logging and farming led to stronger correlations between biotic factors and fungal composition than in areas subject to light logging. In contrast, fungal richness and evenness were more strongly correlated with biotic factors in areas of light logging, suggesting that these metrics might reflect long-term associations in old-growth forests. The large amount of unexplained variance in fungal composition suggests that these communities are structured by both stochastic and niche assemblage processes. © 2016 by the Ecological Society of America.
Recent Area Changes in Southern Forest Ownerships and Cover Types
Ralph J. Alig; Herbert A. Knight; Richard A. Birdsey
1986-01-01
Forest area data were examined from the most recent surveys of the 12 Southern States by the Forest Inventory and Analysis units of the USDA Forest Service. From 1977 to 1985, forest industry acreage in the South has continued to increase, miscellaneous private acreage has increased at a slower rate, and farm forest acreage has continued to drop sharply. During the...
Assessing the Effects of Forest Fragmentation Using Satellite Imagery and Forest Inventory Data
Ronald E. McRoberts; Greg C. Liknes
2005-01-01
For a study area in the North Central region of the USA, maps of predicted proportion forest area were created using Landsat Thematic Mapper imagery, forest inventory plot data, and a logistic regression model. The maps were used to estimate quantitative indices of forest fragmentation. Correlations between the values of the indices and forest attributes observed on...
Victor A. Rudis; Burl Carraway; Raymond M. [and others] Sheffield
2008-01-01
Forest land covers 12.1 million acres in east Texas, or about 57 percent of the land area. The majority of forests, 11.9 million acres, are classed as timberland. The 2003 timberland area is the highest recorded since 1975. Forests classed as softwood forest types were found on 5.2 million acres of the timberland; almost one-half of the softwood forests are pine...
NASA Astrophysics Data System (ADS)
Santos, E. G.; Jorge, A.; Shimabukuro, Y. E.; Gasparini, K.
2017-12-01
The State of Mato Grosso - MT has the second largest area with degraded forest among the states of the Brazilian Legal Amazon. Land use and land cover change processes that occur in this region cause the loss of forest biomass, releasing greenhouse gases that contribute to the increase of temperature on earth. These degraded forest areas lose biomass according to the intensity and magnitude of the degradation type. The estimate of forest biomass, commonly performed by forest inventory through sample plots, shows high variance in degraded forest areas. Due to this variance and complexity of tropical forests, the aim of this work was to estimate forest biomass using LiDAR point clouds in three distinct forest areas: one degraded by fire, another by selective logging and one area of intact forest. The approach applied in these areas was the Individual Tree Detection (ITD). To isolate the trees, we generated Canopy Height Models (CHM) images, which are obtained by subtracting the Digital Elevation Model (MDE) and the Digital Terrain Model (MDT), created by the cloud of LiDAR points. The trees in the CHM images are isolated by an algorithm provided by the Quantitative Ecology research group at the School of Forestry at Northern Arizona University (SILVA, 2015). With these points, metrics were calculated for some areas, which were used in the model of biomass estimation. The methodology used in this work was expected to reduce the error in biomass estimate in the study area. The cloud points of the most representative trees were analyzed, and thus field data was correlated with the individual trees found by the proposed algorithm. In a pilot study, the proposed methodology was applied generating the individual tree metrics: total height and area of the crown. When correlating 339 isolated trees, an unsatisfactory R² was obtained, as heights found by the algorithm were lower than those obtained in the field, with an average difference of 2.43 m. This shows that the algorithm used to isolate trees in temperate areas did not obtained satisfactory results in the tropical forest of Mato Grosso State. Due to this, in future works two algorithms, one developed by Dalponte et al. (2015) and another by Li et al. (2012) will be used.
Twedt, D.J.; Uihlein, W.B.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.
2005-01-01
Thousands of ha of cleared wetlands are being reforested annually in the Mississippi Alluvial Valley (MAV). Despite the expansive and long-term impacts of reforestation on the biological communities of the MAV, there is generally a lack of landscape level planning in its implementation. To address this deficiency we used raster-based digital data to assess the value of forest restoration to migratory landbirds for each ha within the MAV. Raster themes were developed that reflected distance from 3 existing forest cover parameters: (1) extant forest, (2) contiguous forest patches between 1,012 and 40,000 ha, and (3) forest cores with contiguous area 1 km from an agricultural, urban, or pastoral edge. Two additional raster themes were developed that combined information on the proportion of forest cover and average size of forest patches, respectively, within landscapes of 50,000, 100,000, 150,000, and 200,000 ha. Data from these 5 themes were amalgamated into a single raster using a weighting system that gave increased emphasis to existing forest cores, larger forest patches, and moderately forested landscapes while deemphasizing reforestation near small or isolated forest fragments and within largely agricultural landscapes. This amalgamated raster was then modified by the geographic location of historical forest cover and the current extent of public land ownership to assign a reforestation priority score to each ha in the MAV. However, because reforestation is not required on areas with extant forest cover and because restoration is unlikely on areas of open water and urban communities, these lands were not assigned a reforestation priority score. These spatially explicit reforestation priority scores were used to simulate reforestation of 368,000 ha (5%) of the highest priority lands in the MAV. Targeting restoration to these high priority areas resulted in a 54% increase in forest core - an area of forest core that exceeded the area of simulated reforestation. Bird Conservation Regions, developed within the framework of the Partners in Flight: Mississippi Alluvial Valley Bird Conservation Plan, encompassed a large proportion (circa 70%) of the area with highest priority for reforestation. Similarly, lands with high reforestation priority often were enrolled in the Wetland Reserve Program.
Reassessment of forest area and its scoring as a permanent production forest
NASA Astrophysics Data System (ADS)
Sudarmadji, T.; Hartati, W.
2018-04-01
Along with the increasing demand for tropical timber, the need for wood raw materials is not enough just to rely on natural forests, and therefore in the early 1990s began to be developed timber estates concessions. The designation of forest areas can basically be altered using procedures established by the Ministry of and Forestry. PT Permata Borneo Abadi (PBA) as the holder of IUPHHK-HT covering 38.680 ha intends to propose changing of forest function from limited production forest (HPT) and convertible production forest (HPK) into permanent production forest (HP) to be developed as timber estates with fast growing species. Reassessment of forest function is intended to formulate official documents aimed to reevaluate IUPHHK-HT especially HPT and HPK. The assessment is based on established criteria and standard values (scores) covering topographic, soil and vegetation conditions as well as regional rainfall distribution. The assessment results indicate that there is an area with a slope of >40% of 840.18 ha with score >175 which must therefore as protected areas. The area of HPT that scored between 125-174 remains HPT is 12.287,77 ha. The area of HPT that scored <125 is 27.637.80 ha and therefore is possible to be converted into HP. The results can be used as an important basis for intensive forest management synergically with conservation efforts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... airspace reservation over the Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota... Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota. (a) Description of areas..., Lake, and St. Louis, State of Minnesota, within the exterior boundaries of the Superior National Forest...
Code of Federal Regulations, 2014 CFR
2014-07-01
... airspace reservation over the Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota... Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota. (a) Description of areas..., Lake, and St. Louis, State of Minnesota, within the exterior boundaries of the Superior National Forest...
Code of Federal Regulations, 2011 CFR
2011-07-01
... airspace reservation over the Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota... Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota. (a) Description of areas..., Lake, and St. Louis, State of Minnesota, within the exterior boundaries of the Superior National Forest...
Code of Federal Regulations, 2010 CFR
2010-07-01
... airspace reservation over the Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota... Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota. (a) Description of areas..., Lake, and St. Louis, State of Minnesota, within the exterior boundaries of the Superior National Forest...
Code of Federal Regulations, 2012 CFR
2012-07-01
... airspace reservation over the Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota... Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota. (a) Description of areas..., Lake, and St. Louis, State of Minnesota, within the exterior boundaries of the Superior National Forest...
NASA Astrophysics Data System (ADS)
Belik, Anton; Devyatova, Tatiana; Bozhko, Svetlana; Gorbunova, Yulia
2016-04-01
The infield varietu of available forms in the forest-steppe of western part Central Chernozemic region The Central Chernozemic region of Russia has been a region with a strong agricultural industry and determines the food security of the state by most part. The soil cover of the region is represented mainly by chernozems and is favorable for the cultivation of major crops and produce high crop yields. However, the high development of agriculture in the territory of Central Chernozemic region are led to the development of agrogenic degradation processes which impacts on the growth of the soil cover complexity and contrast, and as a consequence a significant infield variety of soil fertility and yields of major crops. In this regard, very promising direction in CChR is the development and practical application technologies of precision agriculture, which implies the spatial variety of soil fertility analysis within specific fields and work areas, especially the content of available forms of nutrients. The aim of our research was a study of the agro-ecological characteristics of the spatial variety of the content by available forms to plants of major nutrients in representative areas of sloping agricultural landscapes with forest-steppe chernozems in the western part of Central Chernozemic region of Russia. The research of infield variety by content of available forms of major nutrients are carried in the fields of Russian Research Institute of Agriculture and Protect the Soil from Erosion experimental and industrial farm in Medvensky district of Kursk region. The area characterized by a complex organization of relief. The soil cover is represented by full-profile typical (conventional and carbonate), leached chernozems. The growth of contrast of the soil cover are largely determined by the appearance of eroded soils of these analogues, as well as zoogenic dug and accumulative soils All of the studied areas with the forest-steppe chernozems were characterized by pronounced variation in the content of available forms of nitrogen, phosphorus and potassium. In the most varied contents of available phosphorus and potassium (coefficients of variation increase by 1.2 - 1.3 times as the complexity of the soil cover and reduced 1.3 - 1.6 times as reducing the area of the site and the growth detailed studies). The least within the fields of content of nitrogen are varied at its most high average grade. As the most important factors determining the spatial variety of the batteries for the phosphorus and potassium should be made kind of soil, the degree of erosion, the depth of the carbonates. The above factors the humus content is added the level of applied agricultural technologies and the history of land use within the studied areas for the nitrogen. Thus, the identification of significant infield variety in the content of available forms of nutrients in the forest-steppe chernozems is the result of processes of water erosion. In terms of slope forest-steppe agricultural landscapes of Central Chernozemic region of spatial variability of available forms of nitrogen, phosphorus and potassium is an important factor, which is limited the yields and causes the most promising application the technologies of precision agriculture.
Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India.
Manaswini, G; Sudhakar Reddy, C
2015-10-01
Forest fire has been identified as one of the key environmental issue for long-term conservation of biodiversity and has impact on global climate. Spatially multiple observations are necessary for monitoring of forest fires in tropics for understanding conservation efficacy and sustaining biodiversity in protected areas. The present work was carried out to estimate the spatial extent of forest burnt areas and fire frequency using Resourcesat Advanced Wide Field Sensor (AWiFS) data (2009, 2010, 2012, 2013 and 2014) in Andhra Pradesh, India. The spatio-temporal analysis shows that an area of 7514.10 km(2) (29.22% of total forest cover) has been affected by forest fires. Six major forest types are distributed in Andhra Pradesh, i.e. semi-evergreen, moist deciduous, dry deciduous, dry evergreen, thorn and mangroves. Of the total forest burnt area, dry deciduous forests account for >75%. District-wise analysis shows that Kurnool, Prakasam and Cuddapah have shown >100 km(2) of burnt area every year. The total forest burnt area estimate covering protected areas ranges between 6.9 and 22.3% during the study period. Spatial burnt area analysis for protected areas in 2014 indicates 37.2% of fire incidences in the Nagarjunasagar Srisailam Tiger Reserve followed by 20.2 % in the Sri Lankamalleswara Wildlife Sanctuary, 20.1% in the Sri Venkateswara Wildlife Sanctuary and 17.4% in the Gundla Brahmeswaram Wildlife Sanctuary. The analysis of cumulative fire occurrences from 2009 to 2014 has helped in delineation of conservation priority hotspots using a spatial grid cell approach. Conservation priority hotspots I and II are distributed in major parts of study area including protected areas of the Nagarjunasagar Srisailam Tiger Reserve and Gundla Brahmeswaram Wildlife Sanctuary. The spatial database generated will be useful in studies related to influence of fires on species adaptability, ecological damage assessment and conservation planning.
Spatial Patterns of Forest Cover Loss in the Democratic Republic of Congo
NASA Astrophysics Data System (ADS)
Molinario, G.; Hansen, M.; Potapov, P.; Justice, C. O.
2013-12-01
Three groups of metrics of spatial patterns of forest cover loss were calculated for the Democratic Republic of Congo (DRC). While other studies had previously assessed landscape patterns in the Congo Basin, they had done so for small areas due to data limitations. The input data for this study, the Forets d;Afrique Central Evaluee par Teledetection(FACET), allowed the analysis to be performed at the national level. FACET is a landsat-scale dataset giving an unprecedented synoptic view of forest cover and forest cover loss for the DRC for three time periods: 2000, 2005 and 2010. The three groups of metrics evaluated the following spatial characteristics of forest cover loss for the same standard 1.5km unit of area: proportions of typologies of forest lost, forest fragmentation and proximity of forest loss patches from other land cover types. Results indicate that there are several different typologies of forest cover loss in the DRC, and offer quantitative explanations of these differences, providing a valuable locally-relevant tool for land use planning, available at the national level. Spatial patterns of forest cover loss highlight differences between areas of high primary forest loss due to agriculture conversion in frontier deforestation, such as in the east of the country, areas of equivalent primary and secondary forest loss emanating from the rural complex and areas of variable proportions of primary and secondary forest loss but important ecological repercussions of forest fragmentation due to isolated, but systematic forest perforations. Typologies of spatial patterns of forest cover loss are presented as well as their correlated drivers, and ecological, conservation and land use planning considerations are discussed.