New low noise CCD cameras for Pi-of-the-Sky project
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.
2006-10-01
Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.
Development of X-ray CCD camera based X-ray micro-CT system
NASA Astrophysics Data System (ADS)
Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.
2017-02-01
Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.
NASA Astrophysics Data System (ADS)
Takashima, Ichiro; Kajiwara, Riichi; Murano, Kiyo; Iijima, Toshio; Morinaka, Yasuhiro; Komobuchi, Hiroyoshi
2001-04-01
We have designed and built a high-speed CCD imaging system for monitoring neural activity in an exposed animal cortex stained with a voltage-sensitive dye. Two types of custom-made CCD sensors were developed for this system. The type I chip has a resolution of 2664 (H) X 1200 (V) pixels and a wide imaging area of 28.1 X 13.8 mm, while the type II chip has 1776 X 1626 pixels and an active imaging area of 20.4 X 18.7 mm. The CCD arrays were constructed with multiple output amplifiers in order to accelerate the readout rate. The two chips were divided into either 24 (I) or 16 (II) distinct areas that were driven in parallel. The parallel CCD outputs were digitized by 12-bit A/D converters and then stored in the frame memory. The frame memory was constructed with synchronous DRAM modules, which provided a capacity of 128 MB per channel. On-chip and on-memory binning methods were incorporated into the system, e.g., this enabled us to capture 444 X 200 pixel-images for periods of 36 seconds at a rate of 500 frames/second. This system was successfully used to visualize neural activity in the cortices of rats, guinea pigs, and monkeys.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.
1993-01-01
Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.
High-resolution CCD imaging alternatives
NASA Astrophysics Data System (ADS)
Brown, D. L.; Acker, D. E.
1992-08-01
High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.
Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-08-20
The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.
Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-01-01
The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017
Design Method For Ultra-High Resolution Linear CCD Imagers
NASA Astrophysics Data System (ADS)
Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan
1984-11-01
This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.
Zhou, Zhen; Huang, Jingfeng; Wang, Jing; Zhang, Kangyu; Kuang, Zhaomin; Zhong, Shiquan; Song, Xiaodong
2015-01-01
Most areas planted with sugarcane are located in southern China. However, remote sensing of sugarcane has been limited because useable remote sensing data are limited due to the cloudy climate of this region during the growing season and severe spectral mixing with other crops. In this study, we developed a methodology for automatically mapping sugarcane over large areas using time-series middle-resolution remote sensing data. For this purpose, two major techniques were used, the object-oriented method (OOM) and data mining (DM). In addition, time-series Chinese HJ-1 CCD images were obtained during the sugarcane growing period. Image objects were generated using a multi-resolution segmentation algorithm, and DM was implemented using the AdaBoost algorithm, which generated the prediction model. The prediction model was applied to the HJ-1 CCD time-series image objects, and then a map of the sugarcane planting area was produced. The classification accuracy was evaluated using independent field survey sampling points. The confusion matrix analysis showed that the overall classification accuracy reached 93.6% and that the Kappa coefficient was 0.85. Thus, the results showed that this method is feasible, efficient, and applicable for extrapolating the classification of other crops in large areas where the application of high-resolution remote sensing data is impractical due to financial considerations or because qualified images are limited. PMID:26528811
Zhou, Zhen; Huang, Jingfeng; Wang, Jing; Zhang, Kangyu; Kuang, Zhaomin; Zhong, Shiquan; Song, Xiaodong
2015-01-01
Most areas planted with sugarcane are located in southern China. However, remote sensing of sugarcane has been limited because useable remote sensing data are limited due to the cloudy climate of this region during the growing season and severe spectral mixing with other crops. In this study, we developed a methodology for automatically mapping sugarcane over large areas using time-series middle-resolution remote sensing data. For this purpose, two major techniques were used, the object-oriented method (OOM) and data mining (DM). In addition, time-series Chinese HJ-1 CCD images were obtained during the sugarcane growing period. Image objects were generated using a multi-resolution segmentation algorithm, and DM was implemented using the AdaBoost algorithm, which generated the prediction model. The prediction model was applied to the HJ-1 CCD time-series image objects, and then a map of the sugarcane planting area was produced. The classification accuracy was evaluated using independent field survey sampling points. The confusion matrix analysis showed that the overall classification accuracy reached 93.6% and that the Kappa coefficient was 0.85. Thus, the results showed that this method is feasible, efficient, and applicable for extrapolating the classification of other crops in large areas where the application of high-resolution remote sensing data is impractical due to financial considerations or because qualified images are limited.
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Gong, Cailan; Hu, Yong; Li, Long; Meng, Peng
2015-10-01
Remote sensing technology has been broadly recognized for its convenience and efficiency in mapping vegetation, particularly in high-altitude and inaccessible areas where there are lack of in-situ observations. In this study, Landsat Thematic Mapper (TM) images and Chinese environmental mitigation satellite CCD sensor (HJ-1 CCD) images, both of which are at 30m spatial resolution were employed for identifying and monitoring of vegetation types in a area of Western China——Qinghai Lake Watershed(QHLW). A decision classification tree (DCT) algorithm using multi-characteristic including seasonal TM/HJ-1 CCD time series data combined with digital elevation models (DEMs) dataset, and a supervised maximum likelihood classification (MLC) algorithm with single-data TM image were applied vegetation classification. Accuracy of the two algorithms was assessed using field observation data. Based on produced vegetation classification maps, it was found that the DCT using multi-season data and geomorphologic parameters was superior to the MLC algorithm using single-data image, improving the overall accuracy by 11.86% at second class level and significantly reducing the "salt and pepper" noise. The DCT algorithm applied to TM /HJ-1 CCD time series data geomorphologic parameters appeared as a valuable and reliable tool for monitoring vegetation at first class level (5 vegetation classes) and second class level(8 vegetation subclasses). The DCT algorithm using multi-characteristic might provide a theoretical basis and general approach to automatic extraction of vegetation types from remote sensing imagery over plateau areas.
A High Resolution TDI CCD Camera forMicrosatellite (HRCM)
NASA Astrophysics Data System (ADS)
Hao, Yuncai; Zheng, You; Dong, Ying; Li, Tao; Yu, Shijie
In resent years it is a important development direction in the commercial remote sensing field to obtain (1-5)m high ground resolution from space using microsatellite. Thanks to progress of new technologies, new materials and new detectors it is possible to develop 1m ground resolution space imaging system with weight less than 20kg. Based on many years works on optical system design a project of very high resolution TDI CCD camera using in space was proposed by the authors of this paper. The performance parameters and optical lay-out of the HRCM was presented. A compact optical design and results analysis for the system was given in the paper also. and small fold mirror to take a line field of view usable for TDI CCD and short outer size. The length along the largest size direction is about 1/4 of the focal length. And two 4096X96(grades) line TDI CCD will be used as the focal plane detector. The special optical parts are fixed near before the final image for getting the ground pixel resolution higher than the Nyquist resolution of the detector using the sub-pixel technique which will be explained in the paper. In the system optical SiC will be used as the mirror material, the C-C composite material will be used as the material of the mechanical structure framework. The circle frame of the primary and secondary mirrors will use one time turning on a machine tool in order to assuring concentric request for alignment of the system. In general the HRCM have the performance parameters with 2.5m focal length, 20 FOV, 1/11relative aperture, (0.4-0.8) micrometer spectral range, 10 micron pixel size of TDI CCD, weight less than 20kg, 1m ground pixel resolution at flying orbit 500km high. Design and analysis of the HRCM put up in the paper indicate that HRCM have many advantages to use it in space. Keywords High resolution TDI CCD Sub-pixel imaging Light-weighted optical system SiC mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buts, Lieven; De Jonge, Natalie; Loris, Remy, E-mail: reloris@vub.ac.be
2005-10-01
The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA{sub C36}; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8more » Å resolution. Form III belongs to space group P2{sub 1}, with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution.« less
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range
NASA Astrophysics Data System (ADS)
Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.
2013-12-01
The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these worst-case resolution measurements, estimating the spatial resolution to be approximately 3.5 μm and 3.0 μm at 530 eV and 680 eV, well below the resolution limit of 5 μm required to improve the spectral resolution by a factor of 2.
NASA Astrophysics Data System (ADS)
Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.
1995-06-01
The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.
NASA Astrophysics Data System (ADS)
Wang, Zheng; Mao, Zhihua; Xia, Junshi; Du, Peijun; Shi, Liangliang; Huang, Haiqing; Wang, Tianyu; Gong, Fang; Zhu, Qiankun
2018-06-01
The cloud cover for the South China Sea and its coastal area is relatively large throughout the year, which limits the potential application of optical remote sensing. A HJ-charge-coupled device (HJ-CCD) has the advantages of wide field, high temporal resolution, and short repeat cycle. However, this instrument suffers from its use of only four relatively low-quality bands which can't adequately resolve the features of long wavelengths. The Landsat Enhanced Thematic Mapper-plus (ETM+) provides high-quality data, however, the Scan Line Corrector (SLC) stopped working and caused striping of remote sensed images, which dramatically reduced the coverage of the ETM+ data. In order to combine the advantages of the HJ-CCD and Landsat ETM+ data, we adopted a back-propagation artificial neural network (BP-ANN) to fuse these two data types for this study. The results showed that the fused output data not only have the advantage of data intactness for the HJ-CCD, but also have the advantages of the multi-spectral and high radiometric resolution of the ETM+ data. Moreover, the fused data were analyzed qualitatively, quantitatively and from a practical application point of view. Experimental studies indicated that the fused data have a full spatial distribution, multi-spectral bands, high radiometric resolution, a small difference between the observed and fused output data, and a high correlation between the observed and fused data. The excellent performance in its practical application is a further demonstration that the fused data are of high quality.
Design principles and applications of a cooled CCD camera for electron microscopy.
Faruqi, A R
1998-01-01
Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.
Quadrilinear CCD sensors for the multispectral channel of spaceborne imagers
NASA Astrophysics Data System (ADS)
Materne, Alex; Gili, Bruno; Laubier, David; Gimenez, Thierry
2001-12-01
The PLEIADES-HR Earth Observation satellites will combine a high resolution panchromatic channel -- 0.7 m at nadir -- and a multispectral channel allowing a 2.8 m resolution. This paper presents the main specifications, design and performances of a 52 microns pitch quadrilinear CCD sensor developed by ATMEL under CNES contract, for the multispectral channel of the PLEIADES-HR instrument. The monolithic CCD device includes four lines of 1500 pixels, each line dedicated to a narrow spectral band within blue to near infra red spectrum. The design of the photodiodes and CCD registers, with larger size than those developed up to now for CNES spaceborne imagers, needed some specific structures to break the large equipotential areas where charge do not flow properly. Results are presented on the options which were experimented to improve sensitivity, maintain transfer efficiency and reduce power dissipation. The four spectral bands are achieved by four stripe filters made by SAGEM-REOSC PRODUCTS on a glass substrate, to be assembled on the sensor window. Line to line spacing on the silicon die takes into account the results of straylight analysis. A mineral layer, with high optical absorption performances is deposited between photosensitive lines to further reduce straylight.
pnCCD for photon detection from near-infrared to X-rays
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strüder, Lothar
2006-09-01
A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This ‘frame-store pnCCD’ shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-Kα line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-Kα line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 °C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical photons. A novel type of pnCCD is in preparation, which allows single optical photon counting. This feature is accomplished by implementation of an avalanche-type amplifier in the pnCCD concept.
Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system
NASA Astrophysics Data System (ADS)
Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.
2004-01-01
This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).
Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karger, A.E.; Weiss, R.; Gesteland, R.F.
A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less
Design of area array CCD image acquisition and display system based on FPGA
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming
2014-09-01
With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.
Re-scan confocal microscopy: scanning twice for better resolution.
De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.
X-Ray Computed Tomography Monitors Damage in Composites
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1997-01-01
The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.
New frontiers in ground-based optical astronomy
NASA Astrophysics Data System (ADS)
Strom, Steve
1991-07-01
Technological advances made in telescope designs during 1980's are outlined, including a segmented primary mirror for a 10-m telescope, new mirror-figuring techniques, and control systems based on computers and electronics. A new detector technology employing CCD's and advances in high-resolution telescopes are considered, along with such areas of research ready for major advances given new observing tools as the origin of large-scale structures in the universe, the creation and evolution of galaxies, and the formation of stars and planetary systems. Attention is focused on circumstellar disks, dust veils, jets, and brown dwarfs.
Re-scan confocal microscopy: scanning twice for better resolution
De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422
Ultrahigh-speed X-ray imaging of hypervelocity projectiles
NASA Astrophysics Data System (ADS)
Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.
2011-08-01
High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.
The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector
Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...
2014-06-11
We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conder, A.; Mummolo, F. J.
The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2011-01-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA’s and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2006-03-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.
An Overview of the CBERS-2 Satellite and Comparison of the CBERS-2 CCD Data with the L5 TM Data
NASA Technical Reports Server (NTRS)
Chandler, Gyanesh
2007-01-01
CBERS satellite carries on-board a multi sensor payload with different spatial resolutions and collection frequencies. HRCCD (High Resolution CCD Camera), IRMSS (Infrared Multispectral Scanner), and WFI (Wide-Field Imager). The CCD and the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region. In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM).
Spibey, C A; Jackson, P; Herick, K
2001-03-01
In recent years the use of fluorescent dyes in biological applications has dramatically increased. The continual improvement in the capabilities of these fluorescent dyes demands increasingly sensitive detection systems that provide accurate quantitation over a wide linear dynamic range. In the field of proteomics, the detection, quantitation and identification of very low abundance proteins are of extreme importance in understanding cellular processes. Therefore, the instrumentation used to acquire an image of such samples, for spot picking and identification by mass spectrometry, must be sensitive enough to be able, not only, to maximise the sensitivity and dynamic range of the staining dyes but, as importantly, adapt to the ever changing portfolio of fluorescent dyes as they become available. Just as the available fluorescent probes are improving and evolving so are the users application requirements. Therefore, the instrumentation chosen must be flexible to address and adapt to those changing needs. As a result, a highly competitive market for the supply and production of such dyes and the instrumentation for their detection and quantitation have emerged. The instrumentation currently available is based on either laser/photomultiplier tube (PMT) scanning or lamp/charge-coupled device (CCD) based mechanisms. This review briefly discusses the advantages and disadvantages of both System types for fluorescence imaging, gives a technical overview of CCD technology and describes in detail a unique xenon/are lamp CCD based instrument, from PerkinElmer Life Sciences. The Wallac-1442 ARTHUR is unique in its ability to scan both large areas at high resolution and give accurate selectable excitation over the whole of the UV/visible range. It operates by filtering both the excitation and emission wavelengths, providing optimal and accurate measurement and quantitation of virtually any available dye and allows excellent spectral resolution between different fluorophores. This flexibility and excitation accuracy is key to multicolour applications and future adaptation of the instrument to address the application requirements and newly emerging dyes.
A novel approach of an absolute coding pattern based on Hamiltonian graph
NASA Astrophysics Data System (ADS)
Wang, Ya'nan; Wang, Huawei; Hao, Fusheng; Liu, Liqiang
2017-02-01
In this paper, a novel approach of an optical type absolute rotary encoder coding pattern is presented. The concept is based on the principle of the absolute encoder to find out a unique sequence that ensures an unambiguous shaft position of any angular. We design a single-ring and a n-by-2 matrix absolute encoder coding pattern by using the variations of Hamiltonian graph principle. 12 encoding bits is used in the single-ring by a linear array CCD to achieve an 1080-position cycle encoding. Besides, a 2-by-2 matrix is used as an unit in the 2-track disk to achieve a 16-bits encoding pattern by using an area array CCD sensor (as a sample). Finally, a higher resolution can be gained by an electronic subdivision of the signals. Compared with the conventional gray or binary code pattern (for a 2n resolution), this new pattern has a higher resolution (2n*n) with less coding tracks, which means the new pattern can lead to a smaller encoder, which is essential in the industrial production.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
NASA Astrophysics Data System (ADS)
Dudak, J.; Zemlicka, J.; Karch, J.; Hermanova, Z.; Kvacek, J.; Krejci, F.
2017-01-01
Photon counting detectors Timepix are known for their unique properties enabling X-ray imaging with extremely high contrast-to-noise ratio. Their applicability has been recently further improved since a dedicated technique for assembling large area Timepix detector arrays was introduced. Despite the fact that the sensitive area of Timepix detectors has been significantly increased, the pixel pitch is kept unchanged (55 microns). This value is much larger compared to widely used and popular X-ray imaging cameras utilizing scintillation crystals and CCD-based read-out. On the other hand, photon counting detectors provide steeper point-spread function. Therefore, with given effective pixel size of an acquired radiography, Timepix detectors provide higher spatial resolution than X-ray cameras with scintillation-based devices unless the image is affected by penumbral blur. In this paper we take an advance of steep PSF of photon counting detectors and test the possibility to improve the quality of computed tomography reconstruction using finer sampling of reconstructed voxel space. The achieved results are presented in comparison with data acquired under the same conditions using a commercially available state-of-the-art CCD X-ray camera.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a Jet Propulsion Laboratory SBIR (Small Business Innovative Research), Cambridge Research and Instrumentation Inc., developed a new class of filters for the construction of small, low-cost multispectral imagers. The VariSpec liquid crystal enables users to obtain multi-spectral, ultra-high resolution images using a monochrome CCD (charge coupled device) camera. Application areas include biomedical imaging, remote sensing, and machine vision.
Development of a CCD based solar speckle imaging system
NASA Astrophysics Data System (ADS)
Nisenson, Peter; Stachnik, Robert V.; Noyes, Robert W.
1986-02-01
A program to develop software and hardware for the purpose of obtaining high angular resolution images of the solar surface is described. The program included the procurement of a Charge Coupled Devices imaging system; an extensive laboratory and remote site testing of the camera system; the development of a software package for speckle image reconstruction which was eventually installed and tested at the Sacramento Peak Observatory; and experiments of the CCD system (coupled to an image intensifier) for low light level, narrow spectral band solar imaging.
NASA Astrophysics Data System (ADS)
von Zanthier, Christoph; Holl, Peter; Kemmer, Josef; Lechner, Peter; Maier, B.; Soltau, Heike; Stoetter, R.; Braeuninger, Heinrich W.; Dennerl, Konrad; Haberl, Frank; Hartmann, R.; Hartner, Gisela D.; Hippmann, H.; Kastelic, E.; Kink, W.; Krause, N.; Meidinger, Norbert; Metzner, G.; Pfeffermann, Elmar; Popp, M.; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Truemper, Joachim; Weber, U.; Carathanassis, D.; Engelhard, S.; Gebhart, Th.; Hauff, D.; Lutz, G.; Richter, R. H.; Seitz, H.; Solc, P.; Bihler, Edgar; Boettcher, H.; Kendziorra, Eckhard; Kraemer, J.; Pflueger, Bernhard; Staubert, Ruediger
1998-04-01
The concept and performance of the fully depleted pn- junction CCD system, developed for the European XMM- and the German ABRIXAS-satellite missions for soft x-ray imaging and spectroscopy in the 0.1 keV to 15 keV photon range, is presented. The 58 mm X 60 mm large pn-CCD array uses pn- junctions for registers and for the backside instead of MOS registers. This concept naturally allows to fully deplete the detector volume to make it an efficient detector to photons with energies up to 15 keV. For high detection efficiency in the soft x-ray region down to 100 eV, an ultrathin pn-CCD backside deadlayer has been realized. Each pn-CCD-channel is equipped with an on-chip JFET amplifier which, in combination with the CAMEX-amplifier and multiplexing chip, facilitates parallel readout with a pixel read rate of 3 MHz and an electronic noise floor of ENC < e-. With the complete parallel readout, very fast pn-CCD readout modi can be implemented in the system which allow for high resolution photon spectroscopy of even the brightest x-ray sources in the sky.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakhalkar, H. S.; Oldham, M.
2008-01-15
This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less
Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application
2007-08-12
deficit (the velocity of the wake relative to the free-stream velocity), decays rapidly with downstream distance, so that the streamwise velocity is...switched laser with double-pulse option) and a new imaging system (high-resolution: 4008x2672 pix2, low- noise (cooled) Cooke PCO-4000 CCD camera). The...was designed in-house for high-speed low- noise image acquisition. The KFS CCD image sensor was designed by Mark Wadsworth of JPL and has a resolution
NASA Astrophysics Data System (ADS)
Chatterjee, Abhijit; Verma, Anurag
2016-05-01
The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.
Ultrasound-modulated optical tomography with intense acoustic bursts.
Zemp, Roger J; Kim, Chulhong; Wang, Lihong V
2007-04-01
Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.
A compact high-speed pnCCD camera for optical and x-ray applications
NASA Astrophysics Data System (ADS)
Ihle, Sebastian; Ordavo, Ivan; Bechteler, Alois; Hartmann, Robert; Holl, Peter; Liebel, Andreas; Meidinger, Norbert; Soltau, Heike; Strüder, Lothar; Weber, Udo
2012-07-01
We developed a camera with a 264 × 264 pixel pnCCD of 48 μm size (thickness 450 μm) for X-ray and optical applications. It has a high quantum efficiency and can be operated up to 400 / 1000 Hz (noise≍ 2:5 ° ENC / ≍4:0 ° ENC). High-speed astronomical observations can be performed with low light levels. Results of test measurements will be presented. The camera is well suitable for ground based preparation measurements for future X-ray missions. For X-ray single photons, the spatial position can be determined with significant sub-pixel resolution.
Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging
NASA Astrophysics Data System (ADS)
Graeve, Thorsten; Dereniak, Eustace L.
1993-01-01
The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.
A simple, low-cost, versatile CCD spectrometer for plasma spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Den Hartog, D. J.; Holly, D. J.
1996-06-01
The authors have constructed a simple, low-cost CCD spectrometer capable of both high resolution ({Delta}{lambda} {le} 0.015 nm) and large bandpass (110 nm with {Delta}{lambda} {approximately}0.3 nm). These two modes of operation provide two broad areas of capability for plasma spectroscopy. The first major application is measurement of emission line broadening; the second is emission line surveys from the ultraviolet to the near infrared. Measurements have been made on a low-temperature plasma produced by a miniature electrostatic plasma source and the high-temperature plasma in the MST Reversed-Field Pinch. The spectrometer is a modified Jarrell-Ash 0.5 m Ebert-Fastie monochromator. Light ismore » coupled into the entrance slit with a fused silica fiber optic bundle. The exposure time (2 ms minimum) is controlled by a fast electromechanical shutter. The exit plane detector is a compact and robust CCD detector developed for amateur astronomy by Santa Barbara Instrument Group. The CCD detector is controlled and read out by a Macintosh{reg_sign} computer. This spectrometer is sophisticated enough to serve well in a research laboratory, yet is simple and inexpensive enough to be affordable for instructional use.« less
A CMOS-based large-area high-resolution imaging system for high-energy x-ray applications
NASA Astrophysics Data System (ADS)
Rodricks, Brian; Fowler, Boyd; Liu, Chiao; Lowes, John; Haeffner, Dean; Lienert, Ulrich; Almer, John
2008-08-01
CCDs have been the primary sensor in imaging systems for x-ray diffraction and imaging applications in recent years. CCDs have met the fundamental requirements of low noise, high-sensitivity, high dynamic range and spatial resolution necessary for these scientific applications. State-of-the-art CMOS image sensor (CIS) technology has experienced dramatic improvements recently and their performance is rivaling or surpassing that of most CCDs. The advancement of CIS technology is at an ever-accelerating pace and is driven by the multi-billion dollar consumer market. There are several advantages of CIS over traditional CCDs and other solid-state imaging devices; they include low power, high-speed operation, system-on-chip integration and lower manufacturing costs. The combination of superior imaging performance and system advantages makes CIS a good candidate for high-sensitivity imaging system development. This paper will describe a 1344 x 1212 CIS imaging system with a 19.5μm pitch optimized for x-ray scattering studies at high-energies. Fundamental metrics of linearity, dynamic range, spatial resolution, conversion gain, sensitivity are estimated. The Detective Quantum Efficiency (DQE) is also estimated. Representative x-ray diffraction images are presented. Diffraction images are compared against a CCD-based imaging system.
Toolkit for testing scientific CCD cameras
NASA Astrophysics Data System (ADS)
Uzycki, Janusz; Mankiewicz, Lech; Molak, Marcin; Wrochna, Grzegorz
2006-03-01
The CCD Toolkit (1) is a software tool for testing CCD cameras which allows to measure important characteristics of a camera like readout noise, total gain, dark current, 'hot' pixels, useful area, etc. The application makes a statistical analysis of images saved in files with FITS format, commonly used in astronomy. A graphical interface is based on the ROOT package, which offers high functionality and flexibility. The program was developed in a way to ensure future compatibility with different operating systems: Windows and Linux. The CCD Toolkit was created for the "Pie of the Sky" project collaboration (2).
Development of an all-in-one gamma camera/CCD system for safeguard verification
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo
2014-12-01
For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.
Design and laboratory calibration of the compact pushbroom hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin
2009-11-01
The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.
High Resolution Spectrograph for the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
Tull, R. G.; MacQueen, P. J.; Good, J.; Epps, H. W.; HET HRS Team
1998-12-01
A fiber fed high-resolution spectrograph (HRS) is under construction for the Hobby-Eberly Telescope (HET). The primary resolving power originally specified, from astrophysical considerations, was R = 60,000 with a fiber of diameter at least 1 arc-second, with full spectral coverage limited only by the combined band-pass of the HET, the optical fiber, and the image detector. This was achieved in the final design with a high blaze angle R-4 echelle mosaic, white pupil design, image slicing, and a large area CCD mosaic illuminated by an eight element refractive camera. Two back-to-back, user selectable first-order diffraction gratings are employed for cross dispersion, to separate echelle spectral orders; the entire spectral range (420 - 1,000 nm) can be covered in as few as two exposures. Critical issues addressed in the design are cross dispersion and order spacing, sky subtraction, echelle and CCD selection, fiber optic feed and scrambling, and image or pupil slicing. In the final design meeting the requirements we exploited the large-area 4096 square CCD, image slicing, and the optical performance of the white-pupil design to acquire a range of 30,000 < R < 120,000 with fibers of diameter 2 and 3 arc-seconds, without sacrificing full spectral coverage. Design details will be presented. Limiting magnitude is projected to be about V = 19 (for S/N = 10) at the nominal R = 60,000 resolving power. The poster display will outline performance characteristics expected in relation to projected astrophysical research capabilities outlined by Sneden et al., in this conference. HRS is supported by generous grants from NSF, NASA, the State of Texas, and private philanthropy, with matching funds granted by the University of Texas and by McDonald Observatory.
Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J
2012-02-01
Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using monochromatic x-rays above and below the K-edge of selenium. The MTF is poorer above the K-edge by an amount consistent with theoretical expectations.
NASA Astrophysics Data System (ADS)
Gonzaga, S.; et al.
2011-03-01
ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.
PN-CCD camera for XMM: performance of high time resolution/bright source operating modes
NASA Astrophysics Data System (ADS)
Kendziorra, Eckhard; Bihler, Edgar; Grubmiller, Willy; Kretschmar, Baerbel; Kuster, Markus; Pflueger, Bernhard; Staubert, Ruediger; Braeuninger, Heinrich W.; Briel, Ulrich G.; Meidinger, Norbert; Pfeffermann, Elmar; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Holl, Peter; Kemmer, Josef; Soltau, Heike; von Zanthier, Christoph
1997-10-01
The pn-CCD camera is developed as one of the focal plane instruments for the European photon imaging camera (EPIC) on board the x-ray multi mirror (XMM) mission to be launched in 1999. The detector consists of four quadrants of three pn-CCDs each, which are integrated on one silicon wafer. Each CCD has 200 by 64 pixels (150 micrometer by 150 micrometers) with 280 micrometers depletion depth. One CCD of a quadrant is read out at a time, while the four quadrants can be processed independently of each other. In standard imaging mode the CCDs are read out sequentially every 70 ms. Observations of point sources brighter than 1 mCrab will be effected by photon pile- up. However, special operating modes can be used to observe bright sources up to 150 mCrab in timing mode with 30 microseconds time resolution and very bright sources up to several crab in burst mode with 7 microseconds time resolution. We have tested one quadrant of the EPIC pn-CCD camera at line energies from 0.52 keV to 17.4 keV at the long beam test facility Panter in the focus of the qualification mirror module for XMM. In order to test the time resolution of the system, a mechanical chopper was used to periodically modulate the beam intensity. Pulse periods down to 0.7 ms were generated. This paper describes the performance of the pn-CCD detector in timing and burst readout modes with special emphasis on energy and time resolution.
Next generation of pnCCDs for X-ray spectroscopy and imaging
NASA Astrophysics Data System (ADS)
Meidinger, Norbert; Andritschke, Robert; Hälker, Olaf; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Kimmel, Nils; Schaller, Gerhard; Schnecke, Martina; Schopper, Florian; Soltau, Heike; Strüder, Lothar
2006-11-01
A special type of charge-coupled device, the pnCCD, has been developed in the nineties as focal-plane detector for the X-ray astronomy mission XMM-Newton of the European Space Agency. The pnCCD detector has been in operation since the satellite launch in 1999. It is performing up to date spectroscopy of X-rays in combination with imaging and high time resolution. The excellent performance of the flight camera is still maintained; in particular, the energy resolution has been nearly constant since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. The ‘frame store pnCCD’ shows various optimizations in device design and fabrication process. Devices with up to 256×512 pixels have been fabricated in 2004 and recently tested. Simultaneously, a programmable analog signal processor for the readout of the CCD signals, the DUO CAMEX, has been developed. The readout noise of the new detector has a value of 2 electrons ENC which is less than half of the figure of the XMM-Newton pnCCD. We measured an energy resolution that is close to the theoretical limit given by the Fano noise. In particular the low-energy response of the new devices was substantially improved. The quantum efficiency for X-rays is at least 90% in the entire energy band from 0.3 keV up to 11 keV. This is due to the ultra-thin photon entrance window as well as the full depletion of the 450 μm thick back-illuminated pnCCD. The position resolution is better than the pixel sizes of 75 μm×75 μm or 51 μm×51 μm because the signal charge is spread over up to four pixels which allows a more accurate event position determination. ‘Out of time’ events are substantially reduced to the order of 0.1% by operating the pnCCD in frame store mode. Higher operating temperatures, e.g. -20 °C, are possible due to the smaller thermally generated dark-current level of the new devices and the operation at higher frame rates. Low power consumption applications like for the ROSITA X-ray astronomy mission with low frame rates of, e.g. 20 images/s, as well as high frame rate applications, e.g. 200 images/s, are possible with the same device.
Wan, Huawei; Wang, Qiao; Jiang, Dong; Yang, Yipeng; Liu, Xiaoman
2014-01-01
Spartina alterniflora was introduced to Beihai, Guangxi (China), for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR) imagery from the unmanned aerial vehicle (UAV). The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS) detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population. PMID:24892066
Wan, Huawei; Wang, Qiao; Jiang, Dong; Fu, Jingying; Yang, Yipeng; Liu, Xiaoman
2014-01-01
Spartina alterniflora was introduced to Beihai, Guangxi (China), for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR) imagery from the unmanned aerial vehicle (UAV). The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS) detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population.
Solar x ray astronomy rocket program
NASA Technical Reports Server (NTRS)
1990-01-01
The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.
NASA Astrophysics Data System (ADS)
Mor, Ilan; Vartsky, David; Dangendorf, Volker; Tittelmeier, Kai.; Weierganz, Mathias; Goldberg, Mark Benjamin; Bar, Doron; Brandis, Michal
2018-06-01
We describe an analysis procedure for automatic unambiguous detection of fast-neutron-induced recoil proton tracks in a micro-capillary array filled with organic liquid scintillator. The detector is viewed by an intensified CCD camera. This imaging neutron detector possesses the capability to perform high position-resolution (few tens of μm), energy-dispersive transmission-imaging using ns-pulsed beams. However, when operated with CW or DC beams, it also features medium-quality spectroscopic capabilities for incident neutrons in the energy range 2-20 MeV. In addition to the recoil proton events which display a continuous extended track structure, the raw images exhibit complex ion-tracks from nuclear interactions of fast-neutrons in the scintillator, capillaries quartz-matrix and CCD. Moreover, as expected, one also observes a multitude of isolated scintillation spots of varying intensity (henceforth denoted "blobs") that originate from several different sources, such as: fragmented proton tracks, gamma-rays, heavy-ion reactions as well as events and noise that occur in the image-intensifier and CCD. In order to identify the continuous-track recoil proton events and distinguish them from all these background events, a rapid, computerized and automatic track-recognition-procedure was developed. Based on an appropriately weighted analysis of track parameters such as: length, width, area and overall light intensity, the method is capable of distinguishing a single continuous-track recoil proton from typically surrounding several thousands of background events that are found in each CCD frame.
Method and apparatus for ultra-high-sensitivity, incremental and absolute optical encoding
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1999-01-01
An absolute optical linear or rotary encoder which encodes the motion of an object (3) with increased resolution and encoding range and decreased sensitivity to damage to the scale includes a scale (5), which moves with the object and is illuminated by a light source (11). The scale carries a pattern (9) which is imaged by a microscope optical system (13) on a CCD array (17) in a camera head (15). The pattern includes both fiducial markings (31) which are identical for each period of the pattern and code areas (33) which include binary codings of numbers identifying the individual periods of the pattern. The image of the pattern formed on the CCD array is analyzed by an image processor (23) to locate the fiducial marking, decode the information encoded in the code area, and thereby determine the position of the object.
Imaging of transient surface acoustic waves by full-field photorefractive interferometry.
Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping
2015-05-01
A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.
Measuring high-resolution sky luminance distributions with a CCD camera.
Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther
2013-03-10
We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.
Development of a CCD array as an imaging detector for advanced X-ray astrophysics facilities
NASA Technical Reports Server (NTRS)
Schwartz, D. A.
1981-01-01
The development of a charge coupled device (CCD) X-ray imager for a large aperture, high angular resolution X-ray telescope is discussed. Existing CCDs were surveyed and three candidate concepts were identified. An electronic camera control and computer interface, including software to drive a Fairchild 211 CCD, is described. In addition a vacuum mounting and cooling system is discussed. Performance data for the various components are given.
Time and space integrating acousto-optic folded spectrum processing for SETI
NASA Technical Reports Server (NTRS)
Wagner, K.; Psaltis, D.
1986-01-01
Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.
Flat field concave holographic grating with broad spectral region and moderately high resolution.
Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng
2012-02-01
In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
Development and use of an L3CCD high-cadence imaging system for Optical Astronomy
NASA Astrophysics Data System (ADS)
Sheehan, Brendan J.; Butler, Raymond F.
2008-02-01
A high cadence imaging system, based on a Low Light Level CCD (L3CCD) camera, has been developed for photometric and polarimetric applications. The camera system is an iXon DV-887 from Andor Technology, which uses a CCD97 L3CCD detector from E2V technologies. This is a back illuminated device, giving it an extended blue response, and has an active area of 512×512 pixels. The camera system allows frame-rates ranging from 30 fps (full frame) to 425 fps (windowed & binned frame). We outline the system design, concentrating on the calibration and control of the L3CCD camera. The L3CCD detector can be either triggered directly by a GPS timeserver/frequency generator or be internally triggered. A central PC remotely controls the camera computer system and timeserver. The data is saved as standard `FITS' files. The large data loads associated with high frame rates, leads to issues with gathering and storing the data effectively. To overcome such problems, a specific data management approach is used, and a Python/PYRAF data reduction pipeline was written for the Linux environment. This uses calibration data collected either on-site, or from lab based measurements, and enables a fast and reliable method for reducing images. To date, the system has been used twice on the 1.5 m Cassini Telescope in Loiano (Italy) we present the reduction methods and observations made.
Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system
NASA Astrophysics Data System (ADS)
Nuster, Robert; Paltauf, Guenther
2017-07-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
NASA Astrophysics Data System (ADS)
Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.
2011-01-01
In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.
A high-resolution multimode digital microscope system.
Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry
2013-01-01
This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.
Aplanatic Three-Mirror Objective for High-Magnification Soft X-Ray Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyoda, M.; Jinno, T.; Yanagihara, M.
2011-09-09
An innovative solution for high-magnification microscopy, based on attaching afocal optics for focal length reduction, is proposed. The solution, consisting of three spherical mirrors, allows one to enhance a magnification of a laboratory based soft x-ray microscope over 1000x, where movies with diffraction-limited resolution can be observed with an x-ray CCD. The design example, having a numerical aperture of 0.25, was successfully demonstrated both a high magnification and a large field of view.
Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors
NASA Astrophysics Data System (ADS)
Philbrick, R. H.
2002-04-01
A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.
Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera
NASA Technical Reports Server (NTRS)
Stanojev, B. J.; Houts, M.
2004-01-01
Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.
Inexpensive Neutron Imaging Cameras Using CCDs for Astronomy
NASA Astrophysics Data System (ADS)
Hewat, A. W.
We have developed inexpensive neutron imaging cameras using CCDs originally designed for amateur astronomical observation. The low-light, high resolution requirements of such CCDs are similar to those for neutron imaging, except that noise as well as cost is reduced by using slower read-out electronics. For example, we use the same 2048x2048 pixel ;Kodak; KAI-4022 CCD as used in the high performance PCO-2000 CCD camera, but our electronics requires ∼5 sec for full-frame read-out, ten times slower than the PCO-2000. Since neutron exposures also require several seconds, this is not seen as a serious disadvantage for many applications. If higher frame rates are needed, the CCD unit on our camera can be easily swapped for a faster readout detector with similar chip size and resolution, such as the PCO-2000 or the sCMOS PCO.edge 4.2.
Design and development of a fiber optic TDI CCD-based slot-scan digital mammography system
NASA Astrophysics Data System (ADS)
Toker, Emre; Piccaro, Michele F.
1993-12-01
We previously reported on the development, design, and clinical evaluation of a CCD-based, high performance, filmless imaging system for stereotactic needle biopsy procedures in mammography. The MammoVision system has a limited imaging area of 50 mm X 50 mm, since it is designed specifically for breast biopsy applications. We are currently developing a new filmless imaging system designed to cover the 18 cm X 24 cm imaging area required for screening and diagnostic mammography. The diagnostic mammography system is based on four 1100 X 330 pixel format, full-frame, scientific grade, front illuminated, MPP mode CCDs, with 24 micrometers X 24 micrometers square pixels Each CCD is coupled to an x-ray intensifying screen via a 1.7:1 fiber optic reducer. The detector assembly (180 mm long and 13.5 mm wide) is scanned across the patient's breast synchronously with the x-ray source, with the CCDs operated in time-delay integration (TDI) mode. The total scan time is 4.0 seconds.
Chromatic Modulator for High Resolution CCD or APS Devices
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)
2003-01-01
A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.
Barnett, Patrick D; Angel, S Michael
2017-05-01
A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm -1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.
The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007
NASA Technical Reports Server (NTRS)
Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.;
2007-01-01
The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.
Three years of ULTRASPEC at the Thai 2.4-m telescope: Capabilities and scientific highlights
NASA Astrophysics Data System (ADS)
Yadav, Ram Kesh; Richichi, Andrea; Irawati, Puji; Dhillon, Vikram Singh; Marsh, Thomas R.; Soonthornthum, Boonrucksar
2018-04-01
High temporal resolution observations enable the study of rapid phenomena such as the flux variations in binary system objects, e.g. cataclysmic variables, compact binary systems, the flux variations in young star clusters, stellar occultations and more. The 2.4-m Thai National Telescope (TNT) is ideally suited for this niche research, being the largest facility in Southeast Asia and being equipped with ULTRASPEC, a high-speed imager based on a low-noise frame transfer electron-multiplying CCD. In the sub-window mode, ULTRASPEC can record uninterrupted sequences with frame rates as fast as few milliseconds. We present some of the key results obtained in the area of high time resolution with ULTRASPEC. We also present the results of a recent worldwide campaign to observe the current series of lunar occultations of Aldebaran (α Tauri) carried out in close collaboration with the Devasthal facilities, the out-of-eclipse variations on the post common-envelope system J1021+1744, and pre-main-sequence variables in young open cluster Stock 8.
NASA Astrophysics Data System (ADS)
Nuster, Robert; Wurzinger, Gerhild; Paltauf, Guenther
2017-03-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
High-speed line-scan camera with digital time delay integration
NASA Astrophysics Data System (ADS)
Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert
2007-02-01
Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.
Example-based super-resolution for single-image analysis from the Chang'e-1 Mission
NASA Astrophysics Data System (ADS)
Wu, Fan-Lu; Wang, Xiang-Jun
2016-11-01
Due to the low spatial resolution of images taken from the Chang'e-1 (CE-1) orbiter, the details of the lunar surface are blurred and lost. Considering the limited spatial resolution of image data obtained by a CCD camera on CE-1, an example-based super-resolution (SR) algorithm is employed to obtain high-resolution (HR) images. SR reconstruction is important for the application of image data to increase the resolution of images. In this article, a novel example-based algorithm is proposed to implement SR reconstruction by single-image analysis, and the computational cost is reduced compared to other example-based SR methods. The results show that this method can enhance the resolution of images using SR and recover detailed information about the lunar surface. Thus it can be used for surveying HR terrain and geological features. Moreover, the algorithm is significant for the HR processing of remotely sensed images obtained by other imaging systems.
Spatial resolution of a hard x-ray CCD detector.
Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott
2010-08-10
The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.
Multiple Sensor Camera for Enhanced Video Capturing
NASA Astrophysics Data System (ADS)
Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko
A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.
NASA Astrophysics Data System (ADS)
Schlosser, D. M.; Hartmann, R.; Kalok, D.; Bechteler, A.; Abboud, A.; Shokr, M.; Çonka, T.; Pietsch, U.; Strüder, L.
2017-04-01
By combining a low noise fully depleted pnCCD detector with a columnar CsI(Tl) scintillator an energy dispersive spatial resolving detector can be realized with a high quantum efficiency in the range from below 0.5 keV to above 150 keV. The used scintillator system increases the pulse height of gamma-rays converted in the CsI(Tl), due to focusing properties of the columnar scintillator structure by reducing the event size in indirect detection mode (conversion in the scintillator). In case of direct detection (conversion in the silicon of the pnCCD) the relative energy resolution is 0.7% at 122 keV (FWHM = 850 eV) and the spatial resolution is less than 75 μm. In case of indirect detection the relative energy resolution, integrated over all event sizes is about 9% at 122 keV with an expected spatial precision of below 75 μm.
High-performance visible/UV CCD focal plane technology for spacebased applications
NASA Technical Reports Server (NTRS)
Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.
1993-01-01
We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.
NASA Astrophysics Data System (ADS)
Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.
2017-11-01
Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.
GEM-based TPC with CCD imaging for directional dark matter detection
NASA Astrophysics Data System (ADS)
Phan, N. S.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Matthews, J. A. J.; Miller, E. H.
2016-11-01
The most mature directional dark matter experiments at present all utilize low-pressure gas Time Projection Chamber (TPC) technologies. We discuss some of the challenges for this technology, for which balancing the goal of achieving the best sensitivity with that of cost effective scale-up requires optimization over a large parameter space. Critical for this are the precision measurements of the fundamental properties of both electron and nuclear recoil tracks down to the lowest detectable energies. Such measurements are necessary to provide a benchmark for background discrimination and directional sensitivity that could be used for future optimization studies for directional dark matter experiments. In this paper we describe a small, high resolution, high signal-to-noise GEM-based TPC with a 2D CCD readout designed for this goal. The performance of the detector was characterized using alpha particles, X-rays, gamma-rays, and neutrons, enabling detailed measurements of electron and nuclear recoil tracks. Stable effective gas gains of greater than 1 × 105 were obtained in 100 Torr of pure CF4 by a cascade of three standard CERN GEMs each with a 140 μm pitch. The high signal-to-noise and sub-millimeter spatial resolution of the GEM amplification and CCD readout, together with low diffusion, allow for excellent background discrimination between electron and nuclear recoils down below ∼10 keVee (∼23 keVr fluorine recoil). Even lower thresholds, necessary for the detection of low mass WIMPs for example, might be achieved by lowering the pressure and utilizing full 3D track reconstruction. These and other paths for improvements are discussed, as are possible fundamental limitations imposed by the physics of energy loss.
French Meteor Network for High Precision Orbits of Meteoroids
NASA Technical Reports Server (NTRS)
Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.
2011-01-01
There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.
The Extended Range X-Ray Telescope center director's discretionary fund report
NASA Technical Reports Server (NTRS)
Hoover, R. B.; Cumings, N. P.; Hildner, E.; Moore, R. L.; Tandberg-Hanssen, E. A.
1985-01-01
An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD.
NASA Astrophysics Data System (ADS)
Kanamatsu, Toshiya; Usami, Kazuko; McHugh, Cecilia M. G.; Ikehara, Ken
2017-08-01
Using high-resolution paleomagnetic data, we examined the potential for obtaining precise ages from sediment core samples recovered from deep-sea basins close to rupture zones of the 2011 and earlier earthquakes off Tohoku, Japan. Obtaining detailed stratigraphic ages from deep-sea sediments below the calcium compensation depth (CCD) is difficult, but we found that the samples contain excellent paleomagnetic secular variation records to constrain age models. Variations in paleomagnetic directions obtained from the sediments reveal systematic changes in the cores. A stacked paleomagnetic profile closely matches the Lake Biwa data sets in southwest Japan for the past 7000 years, one can establish age models based on secular variations of the geomagnetic field on sediments recovered uniquely below the CCD. Comparison of paleomagnetic directions near a tephra and a paleomagnetic direction of contemporaneous pyroclastic flow deposits acquired by different magnetization processes shows precise depositional ages reflecting the magnetization delay of the marine sediment record.
NASA Astrophysics Data System (ADS)
Swain, Pradyumna; Mark, David
2004-09-01
The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.
High resolution in galaxy photometry and imaging
NASA Astrophysics Data System (ADS)
Nieto, J.-L.; Lelievre, G.
Techniques for increasing the resolution of ground-based photometric observations of galaxies are discussed. The theoretical limitations on resolution and their implications for choosing telescope size at a given site considered, with an emphasis on the importance of the Fried (1966) parameter r0. The techniques recommended are shortening exposure time, selection of the highest-resolution images, and a posteriori digital image processing (as opposed to active-mirror image stabilization or the cine-CCD system of Fort et al., 1984). The value of the increased resolution (by a factor of 2) achieved at Pic du Midi observatory for studies of detailed structure in extragalactic objects, for determining the distance to galaxies, and for probing the central cores of galaxies is indicated.
NASA Astrophysics Data System (ADS)
Materne, A.; Virmontois, C.; Bardoux, A.; Gimenez, T.; Biffi, J. M.; Laubier, D.; Delvit, J. M.
2014-10-01
This paper describes the activities managed by CNES (French National Space Agency) for the development of focal planes for next generation of optical high resolution Earth observation satellites, in low sun-synchronous orbit. CNES has launched a new programme named OTOS, to increase the level of readiness (TRL) of several key technologies for high resolution Earth observation satellites. The OTOS programme includes several actions in the field of detection and focal planes: a new generation of CCD and CMOS image sensors, updated analog front-end electronics and analog-to-digital converters. The main features that must be achieved on focal planes for high resolution Earth Observation, are: readout speed, signal to noise ratio at low light level, anti-blooming efficiency, geometric stability, MTF and line of sight stability. The next steps targeted are presented in comparison to the in-flight measured performance of the PLEIADES satellites launched in 2011 and 2012. The high resolution panchromatic channel is still based upon Backside illuminated (BSI) CCDs operated in Time Delay Integration (TDI). For the multispectral channel, the main evolution consists in moving to TDI mode and the competition is open with the concurrent development of a CCD solution versus a CMOS solution. New CCDs will be based upon several process blocks under evaluation on the e2v 6 inches BSI wafer manufacturing line. The OTOS strategy for CMOS image sensors investigates on one hand custom TDI solutions within a similar approach to CCDs, and, on the other hand, investigates ways to take advantage of existing performance of off-the-shelf 2D arrays CMOS image sensors. We present the characterization results obtained from test vehicles designed for custom TDI operation on several CIS technologies and results obtained before and after radiation on snapshot 2D arrays from the CMOSIS CMV family.
The Spectrum of VY Canis Majoris in 2000 February
NASA Astrophysics Data System (ADS)
Wallerstein, George; Gonzalez, Guillermo
2001-08-01
We present the current (2000 February) status of the optical spectrum of the irregularly variable M supergiant VY CMa, based on high-resolution CCD spectra. The emission spectrum is largely unchanged over the past 43 yr, with low-lying atomic lines as well as the molecules TiO and ScO in emission. Tables of observed wavelengths for both identified and unidentified lines are presented.
Funk, Chris; Peterson, Pete; Landsfeld, Martin; Pedreros, Diego; Verdin, James; Shukla, Shraddhanand; Husak, Gregory; Rowland, James; Harrison, Laura; Hoell, Andrew; Michaelsen, Joel
2015-01-01
The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
Funk, Chris; Peterson, Pete; Landsfeld, Martin; Pedreros, Diego; Verdin, James; Shukla, Shraddhanand; Husak, Gregory; Rowland, James; Harrison, Laura; Hoell, Andrew; Michaelsen, Joel
2015-01-01
The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. PMID:26646728
Near Real-Time Photometric Data Processing for the Solar Mass Ejection Imager (SMEI)
NASA Astrophysics Data System (ADS)
Hick, P. P.; Buffington, A.; Jackson, B. V.
2004-12-01
The Solar Mass Ejection Imager (SMEI) records a photometric white-light response of the interplanetary medium from Earth over most of the sky in near real time. In the first two years of operation the instrument has recorded the inner heliospheric response to several hundred CMEs, including the May 28, 2003 and the October 28, 2003 halo CMEs. In this preliminary work we present the techniques required to process the SMEI data from the time the raw CCD images become available to their final assembly in photometrically accurate maps of the sky brightness relative to a long-term time base. Processing of the SMEI data includes integration of new data into the SMEI data base; a conditioning program that removes from the raw CCD images an electronic offset ("pedestal") and a temperature-dependent dark current pattern; an "indexing" program that places these CCD images onto a high-resolution sidereal grid using known spacecraft pointing information. At this "indexing" stage further conditioning removes the bulk of the the effects of high-energy-particle hits ("cosmic rays"), space debris inside the field of view, and pixels with a sudden state change ("flipper pixels"). Once the high-resolution grid is produced, it is reformatted to a lower-resolution set of sidereal maps of sky brightness. From these sidereal maps we remove bright stars, background stars, and a zodiacal cloud model (their brightnesses are retained as additional data products). The final maps can be represented in any convenient sky coordinate system. Common formats are Sun-centered Hammer-Aitoff or "fisheye" maps. Time series at selected locations on these maps are extracted and processed further to remove aurorae, variable stars and other unwanted signals. These time series (with a long-term base removed) are used in 3D tomographic reconstructions. The data processing is distributed over multiple PCs running Linux, and, runs as much as possible automatically using recurring batch jobs ('cronjobs'). The batch scrips are controlled by Python scripts. The core data processing routines are written in several computer languages: Fortran, C++ and IDL.
Coded aperture detector: an image sensor with sub 20-nm pixel resolution.
Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick
2014-08-11
We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.
The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution
NASA Astrophysics Data System (ADS)
MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.
2007-03-01
In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.
Internal reflection sensors with high angular resolution
NASA Astrophysics Data System (ADS)
Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.
1996-07-01
We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.
A study of ten quasars with redshifts greater than four
NASA Technical Reports Server (NTRS)
Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.
1989-01-01
Four quasars with redshifts greater than four were detected in a low-resolution CCD grism survey. CCD photometry and high S/N, moderate resolution spectra are presented for these quasars and the six other known quasars with redshifts above 4. The M sub B values of nine of the objects are between -27.5 and -25, with the tenth quasar having an M sub B value of -29. The emission lines and shapes of the continua of these ten quasars are similar to those of lower-redshift quasars. The results suggest that the C IV emission lines in high-redshift quasars may be weaker than those in lower-redshift quasars. The continua of all of the high-redshift quasars display strong depressions blueward of the Ly-alpha emission line.
Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua
2017-03-01
Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.
Development of a 300,000-pixel ultrahigh-speed high-sensitivity CCD
NASA Astrophysics Data System (ADS)
Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Poggemann, D.; Ruckelshausen, A.; van Kuijk, H.; Bosiers, Jan T.
2006-02-01
We are developing an ultrahigh-speed, high-sensitivity broadcast camera that is capable of capturing clear, smooth slow-motion videos even where lighting is limited, such as at professional baseball games played at night. In earlier work, we developed an ultrahigh-speed broadcast color camera1) using three 80,000-pixel ultrahigh-speed, highsensitivity CCDs2). This camera had about ten times the sensitivity of standard high-speed cameras, and enabled an entirely new style of presentation for sports broadcasts and science programs. Most notably, increasing the pixel count is crucially important for applying ultrahigh-speed, high-sensitivity CCDs to HDTV broadcasting. This paper provides a summary of our experimental development aimed at improving the resolution of CCD even further: a new ultrahigh-speed high-sensitivity CCD that increases the pixel count four-fold to 300,000 pixels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up
Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less
Upgrading and testing program for narrow band high resolution planetary IR imaging spectrometer
NASA Technical Reports Server (NTRS)
Wattson, R. B.; Rappaport, S.
1977-01-01
An imaging spectrometer, intended primarily for observations of the outer planets, which utilizes an acoustically tuned optical filter (ATOF) and a charge coupled device (CCD) television camera was modified to improve spatial resolution and sensitivity. The upgraded instrument was a spatial resolving power of approximately 1 arc second, as defined by an f/7 beam at the CCD position and it has this resolution over the 50 arc second field of view. Less vignetting occurs and sensitivity is four times greater. The spectral resolution of 15 A over the wavelength interval 6500 A - 11,000 A is unchanged. Mechanical utility has been increased by the use of a honeycomb optical table, mechanically rigid yet adjustable optical component mounts, and a camera focus translation stage. The upgraded instrument was used to observe Venus and Saturn.
Research on coding and decoding method for digital levels.
Tu, Li-fen; Zhong, Si-dong
2011-01-20
A new coding and decoding method for digital levels is proposed. It is based on an area-array CCD sensor and adopts mixed coding technology. By taking advantage of redundant information in a digital image signal, the contradiction that the field of view and image resolution restrict each other in a digital level measurement is overcome, and the geodetic leveling becomes easier. The experimental results demonstrate that the uncertainty of measurement is 1 mm when the measuring range is between 2 m and 100 m, which can meet practical needs.
NASA Astrophysics Data System (ADS)
Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.
2017-12-01
Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.
NASA Astrophysics Data System (ADS)
Tower, J. R.; Cope, A. D.; Pellion, L. E.; McCarthy, B. M.; Strong, R. T.; Kinnard, K. F.; Moldovan, A. G.; Levine, P. A.; Elabd, H.; Hoffman, D. M.
1985-12-01
Performance measurements of two Multispectral Linear Array focal planes are presented. Both pushbroom sensors have been developed for application in remote sensing instruments. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a but-table, two-spectral-band, linear-format, shortwave infrared charge coupled device (IRCCD) have been developed under NASA funding. These silicon integrated circuits may be butted end to end to provide very-high-resolution multispectral focal planes. The visible CCD is organized as four sensor lines of 1024 pixels each. Each line views the scene in a different spectral window defined by integral optical bandpass filters. A prototype focal plane with five devices, providing 4x5120-pixel resolution has been demonstrated. The high quantum efficiency of the backside-illuminated CCD technology provides excellent signal-to-noise performance and unusually high MTF across the entire visible and near-IR spectrum. The shortwave infrared (SWIR) sensor is organized as two line sensors of 512 detectors each. The SWIR (1-2.5 μm) spectral windows may be defined by bandpass filters placed in close proximity to the devices. The dual-band sensor consists of Schottky barrier detectors read out by CCD multiplexers. This monolithic sensor operates at 125°K with radiometric performance. A prototype five-device focal plane providing 2x2560 detectors has been demonstrated. The devices provide very high uniformity, and excellent MTF across the SWIR band.
First qualification and selection of the eROSITA PNCCDs
NASA Astrophysics Data System (ADS)
Schächner, G.; Andritschke, R.; Hälker, O.; Herrmann, S.; Kimmel, N.; Meidinger, N.; Strüder, L.
2010-12-01
For the X-ray astronomy instrument eROSITA a framestore PNCCD was developed by the MPI Halbleiterlabor. The PNCCD has an image area of 384×384 pixels with a size of 75 μm×75 μm. Each channel of the PNCCD has an own readout anode which allows parallel amplification and signal processing of the CCD signals of one row. The first measurements for the spectroscopic characterization of the PNCCDs are made with a special measurement setup—the so-called Cold Chuck Probe Station. The Cold Chuck Probe Station allows to fully operate the CCD without mounting and bonding the chip on a PCB as the CCD is contacted only with needles. Thus all eROSITA PNCCDs can be qualified under the same measurement conditions and with an identical electronic setup. Therefore the results can be compared directly. The spectroscopic properties of the PNCCDs, like the charge transfer efficiency and the energy resolution are measured. Also pixel defects such as bright pixels or non-transferring pixels are detected. With the Cold Chuck Probe Station a readout noise of 2.7 e - ENC can be achieved and reliable measurement results obtained. Based on these results the best PNCCDs will be selected for eROSITA.
Atac, M.; McKay, T.A.
1998-04-21
An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.
Atac, Muzaffer; McKay, Timothy A.
1998-01-01
An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.
A novel imaging method for photonic crystal fiber fusion splicer
NASA Astrophysics Data System (ADS)
Bi, Weihong; Fu, Guangwei; Guo, Xuan
2007-01-01
Because the structure of Photonic Crystal Fiber (PCF) is very complex, and it is very difficult that traditional fiber fusion splice obtains optical axial information of PCF. Therefore, we must search for a bran-new optical imaging method to get section information of Photonic Crystal Fiber. Based on complex trait of PCF, a novel high-precision optics imaging system is presented in this article. The system uses a thinned electron-bombarded CCD (EBCCD) which is a kind of image sensor as imaging element, the thinned electron-bombarded CCD can offer low light level performance superior to conventional image intensifier coupled CCD approaches, this high-performance device can provide high contrast high resolution in low light level surveillance imaging; in order to realize precision focusing of image, we use a ultra-highprecision pace motor to adjust position of imaging lens. In this way, we can obtain legible section information of PCF. We may realize further concrete analysis for section information of PCF by digital image processing technology. Using this section information may distinguish different sorts of PCF, compute some parameters such as the size of PCF ventage, cladding structure of PCF and so on, and provide necessary analysis data for PCF fixation, adjustment, regulation, fusion and cutting system.
Mastoris, Mihalis; Li, Gang; Welander, Ulf; McDavid, W D
2004-03-01
To determine Line Spread Functions (LSFs) and Modulation Transfer Functions (MTFs) for a digital system for panoramic radiography: the Dimax I (Planmeca Oy, Helsinki, Finland) based on Charge-Coupled Device (CCD) technology. A test object was specially designed having a gold foil positioned vertically. Images of the gold foil created edge functions that were used to determine LSFs and MTFs. The design of the test object made it possible to move the gold foil forward and backward relative to the central plane of the image layer by means of a micrometer screw. The experiment was carried out for different object depths in 5 different regions: the anterior, the canine, the premolar, the molar, and the TMJ regions. LSFs and MTFs were calculated using specially designed software. The results are presented graphically. LSFs and MTFs for the central plane were essentially the same for all regions. The MTFs for different object depths in the 5 investigated regions exhibited typical characteristics of MTFs for panoramic radiography with the exception for the functions for the molar region. The present findings indicate that the resolution of the Dimax I CCD system is comparable to that of film-based panoramic radiography.
Heat dissipation schemes in QCLs monitored by CCD thermoreflectance (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pierscinski, Kamil; Pierścińska, Dorota; Morawiec, Magdalena; Gutowski, Piotr; Karbownik, Piotr; Serebrennikova, Olga; Bugajski, Maciej
2017-02-01
In this paper we present the development of the instrumentation for accurate evaluation of the thermal characteristics of quantum cascade lasers based on CCD thermoreflectance (CCD TR). This method allows rapid thermal characterization of QCLs, as the registration of high-resolution map of the whole device facet lasts only several seconds. The capabilities of the CCD TR are used to study temperature dissipation schemes in different designs of QCLs. We report on the investigation of thermal performance of QCLs developed at the Institute of Electron Technology, with an emphasis on the influence of different material system, processing technology and device designs. We investigate and compare AlInAs/InGaAs/InP QCLs (lattice matched and strain compensated) of different architectures, i.e., double trench and buried heterostructure (BH) in terms of thermal management. Experimental results are in very good agreement with numerical predictions of heat dissipation in various device constructions. Numerical model is based on FEM model solved by commercial software package. The model assumes anisotropic thermal conductivity in the AR layers as well as the temperature dependence of thermal conductivities of all materials in the project. We have observed experimentally improvement of thermal properties of devices based on InP materials, especially for buried heterostructure type. The use of buried heterostructure enhanced the lateral heat dissipation from the active region of QCLs. The BH structure and epilayer-down bonding help dissipate the heat generated from active core of the QCL.
Nichols, Brandon S; Schindler, Christine E; Brown, Jonathon Q; Wilke, Lee G; Mulvey, Christine S; Krieger, Marlee S; Gallagher, Jennifer; Geradts, Joseph; Greenup, Rachel A; Von Windheim, Jesko A; Ramanujam, Nirmala
2015-01-01
In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS), our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI) system utilizing a wide-field (imaging area = 17 cm(2)) 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR) was found to be greater than 40 dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0-8.9 cm(-1)) and scattering (μs' = 7.0-9.7 cm(-1)) coefficients. Very low inter-channel and CCD crosstalk was observed (2% max) when used on turbid media (including breast tissue). A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75 mm spatially resolved diffuse reflectance images (λ = 450-600 nm) of an entire margin (area = 17 cm(2)) in 13.8 minutes (1.23 cm(2)/min). Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing <1% variation across repeated scans of clinical specimens. We demonstrate the clinical utility of this device through a pilot 20-patient study of high-resolution optical parameter maps of the ratio of the β-carotene concentration to the reduced scattering coefficient. An empirical cumulative distribution function (eCDF) analysis is used to reduce optical property maps to quantitative distributions representing the morphological landscape of breast tumor margins. The optimizations presented in this work provide an avenue to rapidly survey large tissue areas on intra-operative time scales with improved sensitivity to regions of focal disease that may otherwise be overlooked.
Technical note: Signal resolution increase and noise reduction in a CCD digitizer.
González, A; Martínez, J A; Tobarra, B
2004-03-01
Increasing output resolution is assumed to improve noise characteristics of a CCD digitizer. In this work, however, we have found that as the quantization step becomes lower than the analog noise (present in the signal before its conversion to digital) the noise reduction becomes significantly lower than expected. That is the case for values of sigma(an)/delta larger than 0.6, where sigma(an) is the standard deviation of the analog noise and delta is the quantization step. The procedure is applied to a commercially available CCD digitizer, and noise reduction by means of signal resolution increase is compared to that obtained by low pass filtering.
JPRS Report, Science and Technology, Europe.
1989-06-16
nature of their central energy sources, to the complex distribution of gases around the nucleus and possibly to understanding the origin of the diffuse...development. CCD’s are ideal for single photon X-ray imaging and spectroscopy. They have a high quantum efficiency over a broad energy range, high spatial...resolution, low readout noise, and an energy resolution approaching 100 at high energy levels. Reflection gratings have been chosen for XMM rather
Multipurpose Hyperspectral Imaging System
NASA Technical Reports Server (NTRS)
Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon
2005-01-01
A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.
Solid state high resolution multi-spectral imager CCD test phase
NASA Technical Reports Server (NTRS)
1973-01-01
The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.
Ultrahigh resolution protein crystallography: Concanavalin A to 0.94 Å and beyond
NASA Astrophysics Data System (ADS)
Deacon, A. M.; Gleichmann, T.; Harrop, S. J.; Helliwell, J. R.; Kalb Gilboa, A. J.; Yariv, J.
1996-09-01
Many years ago the idea of collecting voluminous quantities of weak reflection intensities from a protein crystal, at high resolution, was a particular challenge [J.R. Helliwell (1979) Daresbury Study Weekend DL/SCI R13, pp. 1-6]. The combination of insertion devices with very high x-ray fluxes at short x-ray wavelengths, sensitive CCD detectors, and freezing of crystals have provided the means to certainly match those best hopes. So much so that the data can best be described as ultrahigh resolution, at least as evidenced in our studies of the 25000 molecular weight plant protein concanavalin A. (The intrinsic property of this protein is to bind sugar molecules; it is implicated in cell-to-cell recognition processes and is widely used as a laboratory diagnostic tool.) At CHESS we have used a 0.9 Å wavelength beam on station A1, fed by a 24 pole multipole wiggler. Both an imaging plate system and the Princeton 1k CCD detector [M. Tate et al., J. Appl. Cryst. 28, 196 (1995)] have been used on this experimental setup to collect diffraction data sets from frozen concanavalin A crystals (saccharide-free crystal form). The rapid readout of the CCD was most convenient compared with the image plate and its associated scanning and erasing. Moreover the data processing results towards the edges of the detectors, 0.98 Å, show that the CCD is much better than the image plate at recording these weaker data (Rmerge(I) 13% versus 44%, respectively). The poor performance of the image plate with weak signals has of course been documented by the Daresbury detector group [R. Lewis, J. Synchrotron Radiation 1, 43 (1994)]. However, the aperture of the CCD used was limiting here. Very recently, in another run at CHESS with the CCD on A1, we have been able to record diffraction data to 0.94 Å by further offsetting the detector. We again found that the reflections are still strong at the edge. Clearly the use of even shorter wavelengths than 0.9 Å would be very useful in matching the solid angle of the diffraction pattern to the available detector aperture, for a reasonable crystal-to-detector distance. In addition, absorption errors in the data can be simultaneously removed by such a strategy. Indeed, finely focused x-ray beams of, say 0.5 Å wavelength, are especially well suited to high energy, low emittance synchrotron radition (SR) machines. Some initial tests carried out on CHESS station F2 with a 0.5 Å wavelength beam and the CCD detector show an improvement in the R-merge(I) to 2 Å resolution, in comparison to the data collected at 0.9 Å wavelength (i.e., 2.3% versus 3.0%). In conclusion, the diffraction resolution limit (0.94 Å) seen already in our concanavalin A studies can be further enhanced and is important for the most detailed molecular model refinement (and the testing of structure solving strategies), in conjunction with novel spectroscopic and theoretical studies. This paper builds upon the work of Deacon et al. [Rev. Sci. Instrum. 66, 1287 (1995)].
The measured performance of a grazing incidence relay optics telescope for solar X-ray astronomy
NASA Technical Reports Server (NTRS)
Moses, Dan; Krieger, Allen S.; Davis, John M.
1986-01-01
The design, fabrication, and test performance of a grazing-incidence diverging magnifier (GIDM) for use in high-resolution X-ray imaging of the solar corona are described. The GIDM, designed to be mounted in front of the focus of a 30.48-cm Wolter-Schwarzschild primary, is an Ni-coated Be hyperboloid-hyperboloid structure of principal diameter 3.15 cm; the two components are mounted on a central steel plate which acts as a support and spacer. The combined instrument has overall length 1.9 m, effective focal length 5.4 m, and plate scale 26.0 micron/arcsec. In point- and line-source measurements in an 89.5-m vacuum test facility, the on-axis resolution is shown to be equal to that of the primary alone. The field of view for 1-arcsec resolution is limited to 1.25 arcmin in radius, but the effective-area limitation is less significant when CCD detectors of high quantum efficiency are used instead of film.
NASA Astrophysics Data System (ADS)
Hu, Jiandong; Cao, Baiqiong; Wang, Shun; Li, Jianwei; Wei, Wensong; Zhao, Yuanyuan; Hu, Xinran; Zhu, Juanhua; Jiang, Min; Sun, Xiaohui; Chen, Ruipeng; Ma, Liuzheng
2016-03-01
A sensing system for an angle-scanning optical surface-plasmon-resonance (SPR) based biosensor has been designed with a laser line generator in which a P polarizer is embedded to utilize as an excitation source for producing the surface plasmon wave. In this system, the emitting beam from the laser line generator is controlled to realize the angle-scanning using a variable speed direct current (DC) motor. The light beam reflected from the prism deposited with a 50 nm Au film is then captured using the area CCD array which was controlled by a personal computer (PC) via a universal serial bus (USB) interface. The photoelectric signals from the high speed digital camera (an area CCD array) were converted by a 16 bit A/D converter before it transferred to the PC. One of the advantages of this SPR biosensing platform is greatly demonstrated by the label-free and real-time bio-molecular analysis without moving the area CCD array by following the laser line generator. It also could provide a low-cost surface plasmon resonance platform to improve the detection range in the measurement of bioanalytes. The SPR curve displayed on the PC screen promptly is formed by the effective data from the image on the area CCD array and the sensing responses of the platform to bulk refractive indices were calibrated using various concentrations of ethanol solution. These ethanol concentrations indicated with volumetric fraction of 5%, 10%, 15%, 20%, and 25%, respectively, were experimented to validate the performance of the angle-scanning optic SPR biosensing platform. As a result, the SPR sensor was capable to detect a change in the refractive index of the ethanol solution with the relative high linearity at the correlation coefficient of 0.9842. This greatly enhanced detection range is obtained from the position relationship between the laser line generator and the right-angle prism to allow direct quantification of the samples over a wide range of concentrations.
The STAR-X X-Ray Telescope Assembly (XTA)
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.
2017-01-01
The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.
Electronic cameras for low-light microscopy.
Rasnik, Ivan; French, Todd; Jacobson, Ken; Berland, Keith
2013-01-01
This chapter introduces to electronic cameras, discusses the various parameters considered for evaluating their performance, and describes some of the key features of different camera formats. The chapter also presents the basic understanding of functioning of the electronic cameras and how these properties can be exploited to optimize image quality under low-light conditions. Although there are many types of cameras available for microscopy, the most reliable type is the charge-coupled device (CCD) camera, which remains preferred for high-performance systems. If time resolution and frame rate are of no concern, slow-scan CCDs certainly offer the best available performance, both in terms of the signal-to-noise ratio and their spatial resolution. Slow-scan cameras are thus the first choice for experiments using fixed specimens such as measurements using immune fluorescence and fluorescence in situ hybridization. However, if video rate imaging is required, one need not evaluate slow-scan CCD cameras. A very basic video CCD may suffice if samples are heavily labeled or are not perturbed by high intensity illumination. When video rate imaging is required for very dim specimens, the electron multiplying CCD camera is probably the most appropriate at this technological stage. Intensified CCDs provide a unique tool for applications in which high-speed gating is required. The variable integration time video cameras are very attractive options if one needs to acquire images at video rate acquisition, as well as with longer integration times for less bright samples. This flexibility can facilitate many diverse applications with highly varied light levels. Copyright © 2007 Elsevier Inc. All rights reserved.
The prevalence and geographic distribution of complex co-occurring disorders: a population study.
Somers, J M; Moniruzzaman, A; Rezansoff, S N; Brink, J; Russolillo, A
2016-06-01
A subset of people with co-occurring substance use and mental disorders require coordinated support from health, social welfare and justice agencies to achieve diversion from homelessness, criminal recidivism and further health and social harms. Integrated models of care are typically concentrated in large urban centres. The present study aimed to empirically measure the prevalence and distribution of complex co-occurring disorders (CCD) in a large geographic region that includes urban as well as rural and remote settings. Linked data were examined in a population of roughly 3.7 million adults. Inclusion criteria for the CCD subpopulation were: physician diagnosed substance use and mental disorders; psychiatric hospitalisation; shelter assistance; and criminal convictions. Prevalence per 100 000 was calculated in 91 small areas representing urban, rural and remote settings. 2202 individuals met our inclusion criteria for CCD. Participants had high rates of hospitalisation (8.2 admissions), criminal convictions (8.6 sentences) and social assistance payments (over $36 000 CDN) in the past 5 years. There was wide variability in the geographic distribution of people with CCD, with high prevalence rates in rural and remote settings. People with CCD are not restricted to areas with large populations or to urban settings. The highest per capita rates of CCD were observed in relatively remote locations, where mental health and substance use services are typically in limited supply. Empirically supported interventions must be adapted to meet the needs of people living outside of urban settings with high rates of CCD.
Design of system calibration for effective imaging
NASA Astrophysics Data System (ADS)
Varaprasad Babu, G.; Rao, K. M. M.
2006-12-01
A CCD based characterization setup comprising of a light source, CCD linear array, Electronics for signal conditioning/ amplification, PC interface has been developed to generate images at varying densities and at multiple view angles. This arrangement is used to simulate and evaluate images by Super Resolution technique with multiple overlaps and yaw rotated images at different view angles. This setup also generates images at different densities to analyze the response of the detector port wise separately. The light intensity produced by the source needs to be calibrated for proper imaging by the high sensitive CCD detector over the FOV. One approach is to design a complex integrating sphere arrangement which costs higher for such applications. Another approach is to provide a suitable intensity feed back correction wherein the current through the lamp is controlled in a closed loop arrangement. This method is generally used in the applications where the light source is a point source. The third method is to control the time of exposure inversely to the lamp variations where lamp intensity is not possible to control. In this method, light intensity during the start of each line is sampled and the correction factor is applied for the full line. The fourth method is to provide correction through Look Up Table where the response of all the detectors are normalized through the digital transfer function. The fifth method is to have a light line arrangement where the light through multiple fiber optic cables are derived from a single source and arranged them in line. This is generally applicable and economical for low width cases. In our applications, a new method wherein an inverse multi density filter is designed which provides an effective calibration for the full swath even at low light intensities. The light intensity along the length is measured, an inverse density is computed, a correction filter is generated and implemented in the CCD based Characterization setup. This paper describes certain novel techniques of design and implementation of system calibration for effective Imaging to produce better quality data product especially while handling high resolution data.
Zhang, Jingcheng; Pu, Ruiliang; Yuan, Lin; Wang, Jihua; Huang, Wenjiang; Yang, Guijun
2014-01-01
Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red (R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72). However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale. PMID:24691435
Zhang, Jingcheng; Pu, Ruiliang; Yuan, Lin; Wang, Jihua; Huang, Wenjiang; Yang, Guijun
2014-01-01
Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red (R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72). However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale.
Progress in video immersion using Panospheric imaging
NASA Astrophysics Data System (ADS)
Bogner, Stephen L.; Southwell, David T.; Penzes, Steven G.; Brosinsky, Chris A.; Anderson, Ron; Hanna, Doug M.
1998-09-01
Having demonstrated significant technical and marketplace advantages over other modalities for video immersion, PanosphericTM Imaging (PI) continues to evolve rapidly. This paper reports on progress achieved since AeroSense 97. The first practical field deployment of the technology occurred in June-August 1997 during the NASA-CMU 'Atacama Desert Trek' activity, where the Nomad mobile robot was teleoperated via immersive PanosphericTM imagery from a distance of several thousand kilometers. Research using teleoperated vehicles at DRES has also verified the exceptional utility of the PI technology for achieving high levels of situational awareness, operator confidence, and mission effectiveness. Important performance enhancements have been achieved with the completion of the 4th Generation PI DSP-based array processor system. The system is now able to provide dynamic full video-rate generation of spatial and computational transformations, resulting in a programmable and fully interactive immersive video telepresence. A new multi- CCD camera architecture has been created to exploit the bandwidth of this processor, yielding a well-matched PI system with greatly improved resolution. While the initial commercial application for this technology is expected to be video tele- conferencing, it also appears to have excellent potential for application in the 'Immersive Cockpit' concept. Additional progress is reported in the areas of Long Wave Infrared PI Imaging, Stereo PI concepts, PI based Video-Servoing concepts, PI based Video Navigation concepts, and Foveation concepts (to merge localized high-resolution views with immersive views).
Webb, Donna J.; Brown, Claire M.
2012-01-01
Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996
NASA Technical Reports Server (NTRS)
1996-01-01
PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.
The STROBE-X Science Case: An Overview
NASA Astrophysics Data System (ADS)
Maccarone, Thomas J.; STROBE-X consortium
2018-01-01
STROBE-X is a proposed NASA Probe class mission aimed at the extremes of high throughput X-ray astronomy, making use of an 8 m^2 total collecting area, CCD-quality spectral resolution, and a state-of-the art wide field monitor with both very large instantaneous sky coverage (ideal for follow-up of LIGO events) and good intrinsic spectral and time resolution. The core goals are time domain astrophysics and high count spectroscopy. Its capabilities span a broad range of topics, including those traditional to X-ray timing missions, like understanding the equation of states of neutron stars, and the spin distributions and masses of neutron stars and stellar mass and supermassive black holes, and the rates, and detailed properties, of a variety of classes of X-ray transients; and also topics not traditionally studied by such missions such as the spectra of supernova remnants, comets and of clusters and groups of galaxies.
Pattern-Recognition Processor Using Holographic Photopolymer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Cammack, Kevin
2006-01-01
proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square-law detector for the purpose of holographic recording of interference fringes. A typical state-of-the-art CCD has a pixel-pitch limited resolution of about 100 lines/mm. In contrast, the holographic photopolymer to be used in the proposed JTOC offers a resolution > 2,000 lines/mm. In addition to being disadvantageous in itself, the low resolution of the CCD causes overlap of a DC term and the desired correlation term in the output image. This overlap severely limits the correlation signal-to-noise ratio. The two-stage nature of the process limits the achievable throughput rate. A further limit is imposed by the low frame rate (typical video rates) of low- and medium-cost commercial CCDs.
DMD-based LED-illumination super-resolution and optical sectioning microscopy.
Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei
2013-01-01
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.
DMD-based LED-illumination Super-resolution and optical sectioning microscopy
Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei
2013-01-01
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens. PMID:23346373
NASA Astrophysics Data System (ADS)
Zeng, Yi; Han, Xue-bing; Yang, Dong-shang; Gui, Li-jia; Zhao, Xiao-xiang; Si, Fu-qi
2016-03-01
A space-borne differential optical absorption spectrometer is a high precision aerospace optical remote sensor. It obtains the hyper-spectral,high spatial resolution radiation information by using the spectrometer with CCD(Charge Coupled Device)array detectors. Since a few CCDs are used as the key detector, the performance of the entire instrument is greatly affected by working condition of CCDs. The temperature of CCD modules has a great impact on the instrument measurement accuracy. It requires strict temperature control. The selection of the thermal conductive filler sticking CCD to the radiator is important in the CCD thermal design. Besides,due tothe complex and compact structure, it needs to take into account the anti-pollution of the optical system. Therefore, it puts forward high requirements on the selection of the conductive filler. In this paper, according to the structure characteristics of the CCD modules and the distribution of heat consumption, the thermal analysis tool I-DEAS/TMG is utilized to compute and simulate the temperature level of the CCD modules, while filling in thermal grease and thermal pad respectively. The temperature distribution of CCD heat dissipation in typical operating conditions is obtained. In addition, the heat balance test was carried out under the condition of two kinds of thermal conductive fillers. The thermal control of CCD was tested under various conditions, and the results were compared with the results of thermal analysis. The results show that there are some differences in thermal performance between the two kinds of thermal conductive fillers. Although they both can meet the thermal performance requirements of the instrument, either would be chosen taking account of other conditions and requirements such as anti-pollution and insulation. The content and results of this paper will be a good reference for the thermal design of the CCD in the aerospace optical payload.
The image acquisition system design of floor grinder
NASA Astrophysics Data System (ADS)
Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin
2018-01-01
Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.
Gamboa, E. J.; Bachmann, B.; Kraus, D.; ...
2016-08-01
The recent development of high-repetition rate x-ray free electron lasers (FEL), makes it possible to perform x-ray scattering and emission spectroscopy measurements from thin foils or gasses heated to high-energy density conditions by integrating over many experimental shots. Since the expected signal may be weaker than the typical CCD readout noise over the region-of-interest, it is critical to the success of this approach to use a detector with high-energy resolution so that single x-ray photons may be isolated. We describe a dual channel x-ray spectrometer developed for the Atomic and Molecular Optics endstation at the Linac Coherent Light Source (LCLS)more » for x-ray spectroscopy near the K-edge of aluminum. The spectrometer is based on a pair of curved PET (002) crystals coupled to a single pnCCD detector which simultaneously measures x-ray scattering and emission in the forward and backward directions. Furthermore, the signals from single x-ray photons are accumulated permitting continuous single-shot acquisition at 120 Hz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hui
2001-01-01
Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitablymore » designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.« less
DOT National Transportation Integrated Search
2004-09-01
Conventionally, the road centerline surveys have : been performed by the traditional survey methods, : providing rather high, even sub-centimeter level of : accuracy. The major problem, however, that the : Departments of Transportation face, is the s...
Imaging quality evaluation method of pixel coupled electro-optical imaging system
NASA Astrophysics Data System (ADS)
He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui
2017-09-01
With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.
NASA Astrophysics Data System (ADS)
Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris
2016-07-01
World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass, to more detailed analysis of the video performance including noise, linearity, crosstalk, gain stability and transient response.
NASA Astrophysics Data System (ADS)
Umetani, Keiji; Yagi, Naoto; Suzuki, Yoshio; Ogasawara, Yasuo; Kajiya, Fumihiko; Matsumoto, Takeshi; Tachibana, Hiroyuki; Goto, Masami; Yamashita, Takenori; Imai, Shigeki; Kajihara, Yasumasa
2000-04-01
A microangiography system using monochromatized synchrotron radiation has been investigated as a diagnostic tool for circulatory disorders and early stage malignant tumors. The monochromatized X-rays with energies just above the contrast agent K-absorption edge energy can produce the highest contrast image of the contrast agent in small blood vessels. At SPring-8, digital microradiography with 6 - 24 micrometer pixel sizes has been carried out using two types of detectors designed for X-ray indirect and direct detection. The indirect-sensing detectors are fluorescent-screen optical-lens coupling systems using a high-sensitivity pickup-tube camera and a CCD camera. An X-ray image on the fluorescent screen is focused on the photoconductive layer of the pickup tube and the photosensitive area of the CCD by a small F number lens. The direct-sensing detector consists of an X-ray direct- sensing pickup tube with a beryllium faceplate for X-ray incidence to the photoconductive layer. Absorbed X-rays in the photoconductive layer are directly converted to photoelectrons and then signal charges are readout by electron beam scanning. The direct-sensing detector was expected to have higher spatial resolution in comparison with the indict-sensing detectors. Performance of the X-ray image detectors was examined at the bending magnet beamline BL20B2 using monochromatized X-ray at SPring-8. Image signals from the camera are converted into digital format by an analog-to- digital converter and stored in a frame memory with image format of 1024 X 1024 pixels. In preliminary experiments, tumor vessel specimens using barium contrast agent were prepared for taking static images. The growth pattern of tumor-induced vessels was clearly visualized. Heart muscle specimens were prepared for imaging of 3-dimensional microtomography using the fluorescent-screen CCD camera system. The complex structure of small blood vessels with diameters of 30 - 40 micrometer was visualized as a 3- dimensional CT image.
Electronic pictures from charged-coupled devices
NASA Technical Reports Server (NTRS)
Mccann, D. H.; Turly, A. P.; White, M.
1979-01-01
Imaging system uses charge-coupled devices (CCD's) to generate TV-like pictures with high resolution, sensitivity, and signal-to-noise ratio. It combines detectors for five spectral bands as well as processing and control circuitry all on single silicon chip.
NASA Astrophysics Data System (ADS)
Harpsøe, K. B. W.; Jørgensen, U. G.; Andersen, M. I.; Grundahl, F.
2012-06-01
Context. The EMCCD is a type of CCD that delivers fast readout times and negligible readout noise, making it an ideal detector for high frame rate applications which improve resolution, like lucky imaging or shift-and-add. This improvement in resolution can potentially improve the photometry of faint stars in extremely crowded fields significantly by alleviating crowding. Alleviating crowding is a prerequisite for observing gravitational microlensing in main sequence stars towards the galactic bulge. However, the photometric stability of this device has not been assessed. The EMCCD has sources of noise not found in conventional CCDs, and new methods for handling these must be developed. Aims: We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from an EMCCD is not normally distributed. Also, the readout process generates spurious charges in any CCD, but in EMCCD data, these charges are visible as opposed to the conventional CCD. Furthermore we aim to eliminate the photon waste associated with lucky imaging by combining this method with shift-and-add. Methods: A simple probabilistic model for the dark output of an EMCCD is developed. Fitting this model with the expectation-maximization algorithm allows us to estimate the bias, readout noise, amplification, and spurious charge rate per pixel and thus correct for these phenomena. To investigate the stability of the photometry, corrected frames of a crowded field are reduced with a point spread function (PSF) fitting photometry package, where a lucky image is used as a reference. Results: We find that it is possible to develop an algorithm that elegantly reduces EMCCD data and produces stable photometry at the 1% level in an extremely crowded field. Based on observation with the Danish 1.54 m telescope at ESO La Silla Observatory.
NASA Astrophysics Data System (ADS)
Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.
1990-10-01
Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.
Amateur Spectroscopy: What is Achievable from the Backyard?
NASA Astrophysics Data System (ADS)
Mais, D. E.; Stencel, R. E.
2004-05-01
Recent advances in technology have opened the doors for amateurs to potentially contribute in the area of spectroscopy. This is due to both a shift in the use of more sensitive CCD detectors and the recent availability of powerful and versatile spectrometers aimed at the amateur community. We will focus on the instrument produced by Santa Barbara Instrument Group (SBIG), the Self-Guided Spectrometer (SGS). This instrument appeared on the market about four years ago aimed at a sub group of amateurs. In conjunction with SBIG CCD cameras, the SGS is self-guiding in that it keeps the image of an object locked onto the entrance slit, which allows for long exposures to be taken. The SGS allows spectra to be obtained with only modest aperture instruments of stars down to 10-12 magnitude. In addition, the SGS features a dual grating carousal which, with the flip of a lever, allows you to obtain dispersions in the low-resolution mode ( 4 Angstroms/pixel) or higher resolution mode ( 1 Angstrom/pixel). In the low-resolution mode, about 3000 Angstrom coverage is obtained whereas in the high-resolution mode, about 750 Angstroms. The area of the visible and near infrared part of the spectrum you decide to obtain a spectrum is dialed in by the user. More recently, swappable grating carousals have allowed for gratings with even higher dispersions (0.5 -0.3 Angstroms/pixel). The lower resolution mode is useful for stellar classification and obtaining spectra of planetary nebula. In the high-resolution modes, many absorption lines are visible of atoms, ions and simple molecules. In addition, one can measure the Doppler shift of absorption and emission lines to determine velocities of approach or recession of objects along with rotation velocities of stars and planets. Our particular interests have focused on identifying chemical elements/ions and compounds in the atmospheres of stars and nebulae. The resolution and sensitivity of the instrument is such that we have been able to identify the unstable element technetium in certain S and C type stars along with anomalous 12C/13C ratios as measured by absorption bands of diatomic carbon (C2). Measurements of certain line intensity ratios in planetary nebula allows for the calculation of both the nebula temperature and electron density. Our presentation will go into detail on the use of the SGS, its calibration and some of the kinds of measurements that can be made with an amateur sized telescope equipped with such "off the shelf" instrument.
Vedantham, S; Karellas, A; Suryanarayanan, S
2003-01-01
Spatially coherent fiberoptic plates are important components of some charge-coupled device (CCD)-based x-ray imaging systems. These plates efficiently transmit scintillations from the phosphor, and also filter out x-rays not absorbed by the phosphor, thus protecting the CCD from direct x-ray interaction. The thickness of the fiberoptic plate and the CCD package present a significant challenge in the design of a digital x-ray cassette capable of insertion into the existing film-screen cassette holders of digital mammography systems. This study was performed with an aim to optimize fiberoptic plate thickness. Attenuation measurements were performed on nine fiberoptic plates varying in material composition that exhibit desirable optical characteristics such as good coupling efficiency. Mammographic spectra from a clinical mammographic system and an Americium-241 (Am-241) source (59.54 KeV) were used. The spectra were recorded with a high-resolution cadmium zinc telluride (CZT)-based spectrometer and corrected for dead time and pile-up. The linear attenuation coefficients varied by a factor of 3 in the set of tested fiberoptic plates at both mammographic energies and 59.54 keV. Our results suggest that a 3-mm thick high-absorption plate might provide adequate for shielding at mammographic energies. A thickness of 2-mm is feasible for mammographic applications with further optimization of the fiberoptic plate composition by incorporating non-scintillating, high-atomic number material. This would allow more space for cooling components of the cassette and for a more compact device, which is critical for clinical implementation of the technology.
PC-based high-speed video-oculography for measuring rapid eye movements in mice.
Sakatani, Tomoya; Isa, Tadashi
2004-05-01
We newly developed an infrared video-oculographic system for on-line tracking of the eye position in awake and head-fixed mice, with high temporal resolution (240 Hz). The system consists of a commercially available high-speed CCD camera and an image processing software written in LabVIEW run on IBM-PC with a plug-in video grabber board. This software calculates the center and area of the pupil by fitting circular function to the pupil boundary, and allows robust and stable tracking of the eye position in small animals like mice. On-line calculation is performed to obtain reasonable circular fitting of the pupil boundary even if a part of the pupil is covered with shadows or occluded by eyelids or corneal reflections. The pupil position in the 2-D video plane is converted to the rotation angle of the eyeball by estimating its rotation center based on the anatomical eyeball model. By this recording system, it is possible to perform quantitative analysis of rapid eye movements such as saccades in mice. This will provide a powerful tool for analyzing molecular basis of oculomotor and cognitive functions by using various lines of mutant mice.
High-precision gauging of metal rings
NASA Astrophysics Data System (ADS)
Carlin, Mats; Lillekjendlie, Bjorn
1994-11-01
Raufoss AS designs and produces air brake fittings for trucks and buses on the international market. One of the critical components in the fittings is a small, circular metal ring, which is going through 100% dimension control. This article describes a low-price, high accuracy solution developed at SINTEF Instrumentation based on image metrology and a subpixel resolution algorithm. The measurement system consists of a PC-plugg-in transputer video board, a CCD camera, telecentric optics and a machine vision strobe. We describe the measurement technique in some detail, as well as the robust statistical techniques found to be essential in the real life environment.
Silicon sample holder for molecular beam epitaxy on pre-fabricated integrated circuits
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor)
1994-01-01
The sample holder of the invention is formed of the same semiconductor crystal as the integrated circuit on which the molecular beam expitaxial process is to be performed. In the preferred embodiment, the sample holder comprises three stacked micro-machined silicon wafers: a silicon base wafer having a square micro-machined center opening corresponding in size and shape to the active area of a CCD imager chip, a silicon center wafer micro-machined as an annulus having radially inwardly pointing fingers whose ends abut the edges of and center the CCD imager chip within the annulus, and a silicon top wafer micro-machined as an annulus having cantilevered membranes which extend over the top of the CCD imager chip. The micro-machined silicon wafers are stacked in the order given above with the CCD imager chip centered in the center wafer and sandwiched between the base and top wafers. The thickness of the center wafer is about 20% less than the thickness of the CCD imager chip. Preferably, four titanium wires, each grasping the edges of the top and base wafers, compress all three wafers together, flexing the cantilever fingers of the top wafer to accommodate the thickness of the CCD imager chip, acting as a spring holding the CCD imager chip in place.
Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen
2017-08-30
This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.
NASA Astrophysics Data System (ADS)
Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen
2017-08-01
This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.
Laser scanning saturated structured illumination microscopy based on phase modulation
NASA Astrophysics Data System (ADS)
Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu
2017-08-01
Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.
Adding polarimetric imaging to depth map using improved light field camera 2.0 structure
NASA Astrophysics Data System (ADS)
Zhang, Xuanzhe; Yang, Yi; Du, Shaojun; Cao, Yu
2017-06-01
Polarization imaging plays an important role in various fields, especially for skylight navigation and target identification, whose imaging system is always required to be designed with high resolution, broad band, and single-lens structure. This paper describe such a imaging system based on light field 2.0 camera structure, which can calculate the polarization state and depth distance from reference plane for every objet point within a single shot. This structure, including a modified main lens, a multi-quadrants Polaroid, a honeycomb-liked micro lens array, and a high resolution CCD, is equal to an "eyes array", with 3 or more polarization imaging "glasses" in front of each "eye". Therefore, depth can be calculated by matching the relative offset of corresponding patch on neighboring "eyes", while polarization state by its relative intensity difference, and their resolution will be approximately equal to each other. An application on navigation under clear sky shows that this method has a high accuracy and strong robustness.
Extracting fields snow coverage information with HJ-1A/B satellites data
NASA Astrophysics Data System (ADS)
Dong, Wenquan; Meng, Jihua
2015-10-01
The distribution and change of snow coverage are sensitive factors of climate change. In northeast part of China, farmlands are still covered with snow in spring. Since sowing activity can only be done when the snow melted, fields snow coverage monitoring provides reference for the determination of sowing date. Because of the restriction of the sensors and application requirements, current researches on remote sensing of snow focus more on the study of musicale and large scale, rather than the study of small scale, and especially research on snow melting period is rarely reported.HJ-1A/B satellites are parts of little satellite constellation, focusing on environment and disaster monitoring and meteorological forecast. Compared to other data sources, HJ-1A/B satellites both have comparatively higher temporal and spatial resolution and are more conducive to monitor the variations of melting snow coverage at small watershed. This paper was based on HJ-1A/1B data, taking Hongxing farm of Bei'an, Heilongjiang Province, China as the study area. In this paper, we exploited the methods for extraction of snow cover information on farmland in two cases, both HJ-1A/1B CCD with HJ-1B IRS data and just HJ-1A/1B CCD data. The reason we chose the two cases is that, the two optical satellites HJ-1A/B are capable of providing a whole territory coverage period in visible light spectrum in two days, infrared spectrum in four days. So sometimes we can only obtain CCD image. In this case, the method of normalized snow index cannot be used to extract snow coverage information. Using HJ-1A/1B CCD with HJ-1B IRS data, combined with the theory of snow remote sensing monitoring, this paper analyzed spectral response characteristics of HJ-1A/1B satellites data, then the widely used Normalized Difference Snow Index(NDSI) and S3 Index were quoted to the HJ-1A/1B satellites data. The NDSI uses reflectance values of Red and SWIR spectral bands of HJ-1B, and S3 index uses reflectance values of NIR, Red and SWIR spectral bands. With multi-temporal HJ satellite data, the optimal threshold of normalized snow index was determined to divide the farmland into snow covering area, melting snow area and non-snow area. The results are quite similar to each other and of high accuracy, and the melting snow coverage can be well extracted by two types of normalized snow index. When we can only obtain CCD image, we use supervised classification method to extract melting snow coverage. With this method, the accuracy of fields snow coverage extraction is slightly lower than that using normalized snow index methods mentioned above. And in mountain area, the snow coverage area is slightly larger than that is extracted by normalized snow index methods, because the shadows make the color of snow in the valley darker, the supervised classification method divides it into non-snow coverage area, while the normalized snow index method well weakened the effect of shadow. This study shows that extraction accuracy in both cases is assessed, and both of them can meet the needs of practical applications. HJ-1A/1B satellites are conducive to monitor the variations of melting snow coverage over farmland, and they can provide reference for the determination of sowing date.
Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER
NASA Astrophysics Data System (ADS)
Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele
2004-02-01
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.
A synchrotron radiation microtomography system for the analysis of trabecular bone samples.
Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P
1999-10-01
X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.
Design of multi-mode compatible image acquisition system for HD area array CCD
NASA Astrophysics Data System (ADS)
Wang, Chen; Sui, Xiubao
2014-11-01
Combining with the current development trend in video surveillance-digitization and high-definition, a multimode-compatible image acquisition system for HD area array CCD is designed. The hardware and software designs of the color video capture system of HD area array CCD KAI-02150 presented by Truesense Imaging company are analyzed, and the structure parameters of the HD area array CCD and the color video gathering principle of the acquisition system are introduced. Then, the CCD control sequence and the timing logic of the whole capture system are realized. The noises of the video signal (KTC noise and 1/f noise) are filtered by using the Correlated Double Sampling (CDS) technique to enhance the signal-to-noise ratio of the system. The compatible designs in both software and hardware for the two other image sensors of the same series: KAI-04050 and KAI-08050 are put forward; the effective pixels of these two HD image sensors are respectively as many as four million and eight million. A Field Programmable Gate Array (FPGA) is adopted as the key controller of the system to perform the modularization design from top to bottom, which realizes the hardware design by software and improves development efficiency. At last, the required time sequence driving is simulated accurately by the use of development platform of Quartus II 12.1 combining with VHDL. The result of the simulation indicates that the driving circuit is characterized by simple framework, low power consumption, and strong anti-interference ability, which meet the demand of miniaturization and high-definition for the current tendency.
Fabry-Perot observations of comet Austin
NASA Technical Reports Server (NTRS)
Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.
1990-01-01
Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.
3D digital image correlation using single color camera pseudo-stereo system
NASA Astrophysics Data System (ADS)
Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang
2017-10-01
Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.
CCD charge collection efficiency and the photon transfer technique
NASA Technical Reports Server (NTRS)
Janesick, J.; Klaasen, K.; Elliott, T.
1985-01-01
The charge-coupled device (CCD) has shown unprecendented performance as a photon detector in the areas of spectral response, charge transfer, and readout noise. Recent experience indicates, however, that the full potential for the CCD's charge collection efficiency (CCE) lies well beyond that which is realized in currently available devices. A definition of CCE performance is presented and a standard test tool (the photon transfer technique) for measuring and optimizing this important CCD parameter is introduced. CCE characteristics for different types of CCDs are compared; the primary limitations in achieving high CCE performance are discussed, and the prospects for future improvement are outlined.
Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell
NASA Astrophysics Data System (ADS)
Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.
2015-08-01
Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.
Back-illuminated large area frame transfer CCDs for space-based hyper-spectral imaging applications
NASA Astrophysics Data System (ADS)
Philbrick, Robert H.; Gilmore, Angelo S.; Schrein, Ronald J.
2016-07-01
Standard offerings of large area, back-illuminated full frame CCD sensors are available from multiple suppliers and they continue to be commonly deployed in ground- and space-based applications. By comparison the availability of large area frame transfers CCDs is sparse, with the accompanying 2x increase in die area no doubt being a contributing factor. Modern back-illuminated CCDs yield very high quantum efficiency in the 290 to 400 nm band, a wavelength region of great interest in space-based instruments studying atmospheric phenomenon. In fast framing (e.g. 10 - 20 Hz), space-based applications such as hyper-spectral imaging, the use of a mechanical shutter to block incident photons during readout can prove costly and lower instrument reliability. The emergence of large area, all-digital visible CMOS sensors, with integrate while read functionality, are an alternative solution to CCDs; but, even after factoring in reduced complexity and cost of support electronics, the present cost to implement such novel sensors is prohibitive to cost constrained missions. Hence, there continues to be a niche set of applications where large area, back-illuminated frame transfer CCDs with high UV quantum efficiency, high frame rate, high full well, and low noise provide an advantageous solution. To address this need a family of large area frame transfer CCDs has been developed that includes 2048 (columns) x 256 (rows) (FT4), 2048 x 512 (FT5), and 2048 x 1024 (FT6) full frame transfer CCDs; and a 2048 x 1024 (FT7) split-frame transfer CCD. Each wafer contains 4 FT4, 2 FT5, 2 FT6, and 2 FT7 die. The designs have undergone radiation and accelerated life qualification and the electro-optical performance of these CCDs over the wavelength range of 290 to 900 nm is discussed.
Towards fish-eye camera based in-home activity assessment.
Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha
2008-01-01
Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.
Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu
2015-03-01
After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.
NASA Astrophysics Data System (ADS)
Iglesias, F. A.; Feller, A.; Nagaraju, K.; Solanki, S. K.
2016-05-01
Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance when attempting to respond to a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (~10-1 arcsec) and low noise (10-3 to 10-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims: We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Methods: We describe the instrument in depth, including the fast pnCCD camera employed, the achromatic modulator package, the main calibration steps, the effects of the modulation frequency on the levels of seeing-induced spurious signals, and the effect of the camera properties on the image restoration quality. Results: The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6%) and very low noise (4.94 e- rms). The modulator is optimized to have high (>80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals that are present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7 × 10-5) after integrating 7.66 min, (b) lower than the noise (2.3 × 10-4) after integrating 1.16 min and (c) slightly above the noise (4 × 10-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low S/N of 13.9) of an active region, we can obtain one complete set of high-quality restored measurements about every 2 s.
The design and performance of high resolution échelle spectrographs in astronomy
NASA Astrophysics Data System (ADS)
Barnes, Stuart
The design and performance of several high resolution spectrographs for use in astronomy will be described. After a basic outline of the required theory, the design and performance of HERCULES will be presented. HERCULES is an R2 spectrograph fibre-fed from the MJUO 1-m telescope. The échelle grating has 31.6 grooves/mm and it uses a BK7 prism with a 50° apex angle in double-pass for cross-dispersion. A folded Schmidt camera is used for imaging. With a detector having an area 50 x 50 mm, and pixels less than 25 µm, HERCULES is capable of resolving powers of 40,000 to 80,000 and wavelength coverage from 380 to 880 nm. The total throughput (from the fibre entrance to the CCD) is expected to be nearly 20% (in 1" seeing). Measured efficiencies are only slightly less than this. HERCULES is also shown to be capable of excellent radial velocity precision with no apparent difference between long-term and short-term stability. Several significant upgrade options are also described. As part of the evolution of the design of a high resolution spectrograph for SALT, several instruments were developed for 10-metre class telescopes. Early designs, based in part on the successful HERCULES design, did not meet the requirements of a number of potential users, due in particular to the limited ability to inter-leave object and sky orders. This resulted in the design of SALT HRS R2 which uses a mosaic of two 308 x 413 mm R2 échelle gratings with 87 grooves/mm. Cross-dispersion is achieved with a pair of large 40° apex angle BK7 prisms used in double-pass. The échelle grating accepts a 365-mm collimated beam. The camera is a catadioptric system having a 1.2-m primary mirror and three lenses made of BK7 each around 850 mm in diameter. Complete unvignetted (except by the CCD obstruction) wavelength coverage from 370nm to 890nm is possible on a mosaic of three 2k by 4k CCDS with 15 µm pixels. A maximum resolving power of R ≈ 80,000 is possible. For immunity to atmospheric pressure and temperature changes the entire spectrograph is designed to be housed inside either a helium atmosphere or a light vacuum. The spectrograph chamber is nearly seven metres long. An alternative to the R2 SALT HRS is also described. This instrument is an R4 dual beam spectrograph based on a white pupil layout. The design is based on suggestions by B. Delabre and follows closely this authors SOAR HRS instrument. SALT HRS R4 uses volume-phased holographic gratings for cross-dispersion and a 836 x 204 mm échelle grating with 41.6 grooves/mm. The grating will be replicated from two smaller gratings onto a single Zerodur blank. The spectrograph is split into blue and red arms by a dichroic located near the white pupil relay intermediate focus. Wavelengths from 370 nm to 890 nm are covered by two fixed format blue and red dedicated dioptric cameras. The detectors will be a single 2k by 4k CCD with 15 µm pixels for the blue camera and a 4k by 4k CCD with 15 µm pixels for the red. The size of the cameras is reduced significantly by white pupil demagnification from an initial 200-mm diameter collimated beam incident on the échelle grating to around 100 mm (in undispersed light) on the VPH gratings. The final SALT HRS R4 instrument is also designed to be immersed in a vacuum vessel which is considerably smaller than that proposed for the R2 spectrograph. SALT HRS R4 is currently being developed in detail and will be presented for a critical design review in 2005 April.
NASA Astrophysics Data System (ADS)
Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui
2007-05-01
A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.
NASA Astrophysics Data System (ADS)
Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei
2018-01-01
By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.
Earth elevation map production and high resolution sensing camera imaging analysis
NASA Astrophysics Data System (ADS)
Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai
2010-11-01
The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.
Advanced Silicon Detectors for High Energy Astrophysics Missions
NASA Technical Reports Server (NTRS)
Ricker, George
2005-01-01
A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.
Resolution enhancement using simultaneous couple illumination
NASA Astrophysics Data System (ADS)
Hussain, Anwar; Martínez Fuentes, José Luis
2016-10-01
A super-resolution technique based on structured illumination created by a liquid crystal on silicon spatial light modulator (LCOS-SLM) is presented. Single and simultaneous pairs of tilted beams are generated to illuminate a target object. Resolution enhancement of an optical 4f system is demonstrated by using numerical simulations. The resulting intensity images are recorded at a charged couple device (CCD) and stored in the computer memory for further processing. One dimension enhancement can be performed with only 15 images. Two dimensional complete improvement requires 153 different images. The resolution of the optical system is extended three times compared to the band limited system.
NASA Technical Reports Server (NTRS)
Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.
1993-01-01
Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.
X-Ray Spectroscopy of Optically Bright Planets using the Chandra Observatory
NASA Technical Reports Server (NTRS)
Ford, P. G.; Elsner, R. F.
2005-01-01
Since its launch in July 1999, Chandra's Advanced CCD Imaging Spectrometer (ACIS) has observed several planets (Venus, Mars, Jupiter and Saturn) and 6 comets. At 0.5 arc-second spatial resolution, ACIS detects individual x-ray photons with good quantum efficiency (25% at 0.6 KeV) and energy resolution (20% FWHM at 0.6 KeV). However, the ACIS CCDs are also sensitive to optical and near-infrared light, which is absorbed by optical blocking filters (OBFs) that eliminate optical contamination from all but the brightest extended sources, e.g., planets. .Jupiter at opposition subseconds approx.45 arc-seconds (90 CCD pixels.) Since Chandra is incapable of tracking a moving target, the planet takes 10 - 20 kiloseconds to move across the most sensitive ACIS CCD, after which the observatory must be re-pointed. Meanwhile, the OBF covering that CCD adds an opt,ical signal equivalent to approx.110 eV to each pixel that lies within thc outline of the Jovian disk. This has three consequences: (1) the observatory must be pointed away from Jupiter while CCD bias maps are constructed; (2) most x-rays from within the optical image will be misidentified as charged-particle background and ignored; and (3) those x-rays that are reported will bc assigned anomalously high energies. The same also applies to thc other planets, but is less serious since they are either dimmer at optical wavelengths, or they show less apparent motion across the sky, permitting reduced CCD exposure times: the optical contamination from Saturn acids approx.15 eV per pixel, and from Mars and Venus approx.31 eV. After analyzing a series of short .Jupiter observations in December 2000, ACIS parameters were optimized for the February 2003 opposition. CCD bias maps were constructed while Chandra pointed away from Jupiter, and the subsequent observations employed on-board software to ignore any pixel that contained less charge than that expected from optical leakage. In addition, ACIS was commanded to report 5 x 5 arrays of pixel values surrounding each x-ray event, and the outlying values were employed during ground processing to correct for the optical contamination.
Adaptive Optics at Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, D T
2003-03-10
Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media andmore » must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.« less
Experimental Study of an Advanced Concept of Moderate-resolution Holographic Spectrographs
NASA Astrophysics Data System (ADS)
Muslimov, Eduard; Valyavin, Gennady; Fabrika, Sergei; Musaev, Faig; Galazutdinov, Gazinur; Pavlycheva, Nadezhda; Emelianov, Eduard
2018-07-01
We present the results of an experimental study of an advanced moderate-resolution spectrograph based on a cascade of narrow-band holographic gratings. The main goal of the project is to achieve a moderately high spectral resolution with R up to 5000 simultaneously in the 4300–6800 Å visible spectral range on a single standard CCD, together with an increased throughput. The experimental study consisted of (1) resolution and image quality tests performed using the solar spectrum, and (2) a total throughput test performed for a number of wavelengths using a calibrated lab monochromator. The measured spectral resolving power reaches values over R > 4000 while the experimental throughput is as high as 55%, which agrees well with the modeling results. Comparing the obtained characteristics of the spectrograph under consideration with the best existing spectrographs, we conclude that the used concept can be considered as a very competitive and cheap alternative to the existing spectrographs of the given class. We propose several astrophysical applications for the instrument and discuss the prospect of creating its full-scale version.
Optical sample-position sensing for electrostatic levitation
NASA Technical Reports Server (NTRS)
Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.
1989-01-01
A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.
Fiber optic, Fabry-Perot high temperature sensor
NASA Technical Reports Server (NTRS)
James, K.; Quick, B.
1984-01-01
A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.
Modular Scanning Confocal Microscope with Digital Image Processing.
Ye, Xianjun; McCluskey, Matthew D
2016-01-01
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.
Application of CCD drift-scan photoelectric technique on monitoring GEO satellites
NASA Astrophysics Data System (ADS)
Yu, Yong; Zhao, Xiao-Fen; Luo, Hao; Mao, Yin-Dun; Tang, Zheng-Hong
2018-05-01
Geosynchronous Earth Orbit (GEO) satellites are widely used because of their unique characteristics of high-orbit and remaining permanently in the same area of the sky. Precise monitoring of GEO satellites can provide a key reference for the judgment of satellite operation status, the capture and identification of targets, and the analysis of collision warning. The observation using ground-based optical telescopes plays an important role in the field of monitoring GEO targets. Different from distant celestial bodies, there is a relative movement between the GEO target and the background reference stars, which makes the conventional observation method limited for long focal length telescopes. CCD drift-scan photoelectric technique is applied on monitoring GEO targets. In the case of parking the telescope, the good round images of the background reference stars and the GEO target at the same sky region can be obtained through the alternating observation of CCD drift-scan mode and CCD stare mode, so as to improve the precision of celestial positioning for the GEO target. Observation experiments of GEO targets were carried out with 1.56-meter telescope of Shanghai Astronomical Observatory. The results show that the application of CCD drift-scan photoelectric technique makes the precision of observing the GEO target reach the level of 0.2″, which gives full play to the advantage of the long focal length of the telescope. The effect of orbit improvement based on multi-pass of observations is obvious and the prediction precision of extrapolating to 72-h is in the order of several arc seconds in azimuth and elevation.
Lee, Si Hoon; Lindquist, Nathan C.; Wittenberg, Nathan J.; Jordan, Luke R.; Oh, Sang-Hyun
2012-01-01
With recent advances in high-throughput proteomics and systems biology, there is a growing demand for new instruments that can precisely quantify a wide range of receptor-ligand binding kinetics in a high-throughput fashion. Here we demonstrate a surface plasmon resonance (SPR) imaging spectroscopy instrument capable of extracting binding kinetics and affinities from 50 parallel microfluidic channels simultaneously. The instrument utilizes large-area (~cm2) metallic nanohole arrays as SPR sensing substrates and combines a broadband light source, a high-resolution imaging spectrometer and a low-noise CCD camera to extract spectral information from every channel in real time with a refractive index resolution of 7.7 × 10−6. To demonstrate the utility of our instrument for quantifying a wide range of biomolecular interactions, each parallel microfluidic channel is coated with a biomimetic supported lipid membrane containing ganglioside (GM1) receptors. The binding kinetics of cholera toxin b (CTX-b) to GM1 are then measured in a single experiment from 50 channels. By combining the highly parallel microfluidic device with large-area periodic nanohole array chips, our SPR imaging spectrometer system enables high-throughput, label-free, real-time SPR biosensing, and its full-spectral imaging capability combined with nanohole arrays could enable integration of SPR imaging with concurrent surface-enhanced Raman spectroscopy. PMID:22895607
Hayashi, T; Kurokawa, M; Miyakawa, M; Aizawa, T; Kanaki, A; Saitoh, A; Ishioka, K
1994-01-01
Photostereometry has widely been applied to the measurement of mandibular movements in 6 degrees of freedom. In order to improve the accuracy of this measurement, we developed a system utilizing small LEDs mounted on the jaws in redundant numbers and a 5000 pixel linear charge-coupled device (CCD) as a photo-sensor. A total of eight LEDs are mounted on the jaws, in two sets of four, by means of connecting facebows, each weighing approximately 55 g. The position of the LEDs are detected in three-dimensions by two sets of three CCD cameras, located bilaterally. The position and orientation of the mandible are estimated from the positions of all LEDs measured in the sense of least-squares, thereby effectively reducing the measurement errors. The static overall accuracy at all tooth and condylar points was considered to lie within 0.19 and 0.34 mm, respectively, from various accuracy verification tests.
Intermittent carbonate sedimentation in the equatoral Indian Ocean: fluctuations of the Eocene CCD?
NASA Astrophysics Data System (ADS)
Mitchison, F.; Kachovich, S.; Backman, J.; Pike, J.
2017-12-01
IODP Expedition 362 recently drilled from the sea floor to oceanic basement in the eastern equatorial Indian Ocean at Site U1480G (3°N, 91°E, water depth 4148 m). Beneath the thick ( 1250 m) predominantly siliciclastic Nicobar Fan succession, a condensed ( 10 m) middle Eocene pelagic interval displayed striking decimetre-scale banding, alternating between calcareous oozes and darker clays. We investigate whether deposition of the calcareous sediments was associated with periodic global carbonate accumulation events previously documented in the Equatorial Pacific and Atlantic Oceans, linked to oscillations of the carbonate compensation depth (CCD). We present high-resolution geochemical records (carbonate, organic carbon, bulk carbonate stable isotopes) and scanning electron microscope micro-element maps through several of the calcareous to clay transitions, as well as microfossil assemblages and new biostratigraphic constraints for the interval. Our data will reveal whether the banded sediments represent fluctuations of the CCD, and whether the CCD was likely responding to global (e.g. changes in pCO2) or local (e.g. local changes in calcareous plankton productivity) processes.
X-ray polarimeter with a transmission multilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamoto, Shunji; Murakami, Hiroshi; Shishido, Youich
2010-02-15
We fabricated a novel x-ray polarimeter with a transmission multilayer and measured its performance with synchrotron radiation. A self standing multilayer with seven Mo/Si bilayers was installed with an incident angle of 45 deg. in front of a back-illuminated CCD. The multilayer can be rotated around the normal direction of the CCD keeping an incident angle of 45 deg. This polarimeter can be easily installed along the optical axis of x-ray optics. By using the CCD as a photon counting detector with a moderate energy resolution, the polarization of photons in a designed energy band can be measured along withmore » the image. At high photon energies, where the multilayer is transparent, the polarimeter can be used for imaging and spectroscopic observations. We confirmed a modulation factor of 45% with 45% and 17% transmission for P- and S-polarization, respectively.« less
Adjustment of multi-CCD-chip-color-camera heads
NASA Astrophysics Data System (ADS)
Guyenot, Volker; Tittelbach, Guenther; Palme, Martin
1999-09-01
The principle of beam-splitter-multi-chip cameras consists in splitting an image into differential multiple images of different spectral ranges and in distributing these onto separate black and white CCD-sensors. The resulting electrical signals from the chips are recombined to produce a high quality color picture on the monitor. Because this principle guarantees higher resolution and sensitivity in comparison to conventional single-chip camera heads, the greater effort is acceptable. Furthermore, multi-chip cameras obtain the compete spectral information for each individual object point while single-chip system must rely on interpolation. In a joint project, Fraunhofer IOF and STRACON GmbH and in future COBRA electronic GmbH develop methods for designing the optics and dichroitic mirror system of such prism color beam splitter devices. Additionally, techniques and equipment for the alignment and assembly of color beam splitter-multi-CCD-devices on the basis of gluing with UV-curable adhesives have been developed, too.
NASA Technical Reports Server (NTRS)
Halama, G.; McAdoo, J.; Liu, H.
1998-01-01
To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.
Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing
NASA Astrophysics Data System (ADS)
Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.
2018-01-01
Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.
NASA Astrophysics Data System (ADS)
Masuzawa, Tomoaki; Ebisudani, Taishi; Ochiai, Jun; Saito, Ichitaro; Yamada, Takatoshi; Chua, Daniel H. C.; Mimura, Hidenori; Okano, Ken
2016-09-01
Although present imaging devices are mostly silicon-based devices such as CMOS and CCD, these devices are reaching their sensitivity limit due to the band gap of silicon. Amorphous selenium (a-Se) is a promising candidate for high- sensitivity photo imaging devices, because of its low thermal noise, high spatial resolution, as well as adaptability to wide-area deposition. In addition, internal signal amplification is reported on a-Se based photodetectors, which enables a photodetector having effective quantum efficiency over 100 % against visible light. Since a-Se has sensitivity to UV and soft X-rays, the reported internal signal amplification should be applicable to UV and X-ray detection. However, application of the internal signal amplification required high voltage, which caused unexpected breakdown at the contact or thin-film transistor-based signal read-out. For this reason, vacuum devices having electron-beam read-out is proposed. The advantages of vacuum-type devices are vacuum insulation and its extremely low dark current. In this study, we present recent progresses in developing a-Se based photoconductive films and photodetector using nitrogen-doped diamond electron beam source as signal read-out. A novel electrochemical method is used to dope impurities into a-Se, turning the material from weak p-type to n-type. A p-n junction is formed within a-Se photoconductive film, which has increased the sensitivity of a-Se based photodetector. Our result suggests a possibility of high sensitivity photodetector that can potentially break the limit of silicon-based devices.
STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.;
2018-01-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained
STROBE-X: X-Ray Timing Spectroscopy on Dynamical Timescales from Microseconds to Years
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Ray, P. S.; Gendreau, K.; Arzoumanian, Z.; Chakrabarty, D.; Remillard, R.; Feroci, M.; Maccarone, T.; Wood, K.; Jenke, P.
2017-01-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.
STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Thomas J.; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; Jenke, Peter
2017-08-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.
Modular Scanning Confocal Microscope with Digital Image Processing
McCluskey, Matthew D.
2016-01-01
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052
The SLD VXD3 detector and its initial performance
NASA Astrophysics Data System (ADS)
Abe, K.; Arodzero, A.; Baltay, C.; Brau, J.; Breidenbach, M.; Burrows, P. N.; Chou, A.; Crawford, G.; Damerell, C.; Dervan, P.; Dong, D.; Emmet, W.; English, R.; Etzion, E.; Foss, M.; Frey, R.; Haller, G.; Hasuko, K.; Hertzbach, S.; Hoeflich, J.; Huber, J.; Huffer, M.; Jackson, D.; Jaros, J.; Kelsy, J.; Kendall, H.; Lee, I.; Lia, V.; Lintern, L.; Liu, M.; Manly, S.; Masuda, H.; Moore, T.; Nagamine, T.; Ohishi, N.; Osborne, L.; Ross, D.; Russell, J.; Serbo, V.; Sinev, N.; Sinnott, J.; Skarpaas, K. Viii; Smy, M.; Snyder, J.; Strauss, M.; Dong, S.; Suekane, F.; Taylor, F.; Trandafir, A.; Usher, T.; Verdier, R.; Watts, S.; Weiss, E.; Yashima, J.; Yuta, H.; Zapalac, G.
1997-02-01
The SLD collaboration completed construction of a new CCD vertex detector (VXD3) in January 1996 and started data taking in April 1996 with the new system. VXD3 is an upgrade of the original CCD vertex detector, VXD2, which had successfully operated in SLD for three years. VXD3 consists of 96 large area CCDs, each having 3.2 million 20 μm × 20 μm pixels. By reducing the detector material and lengthening the lever arm, VXD3 is expected to improve secondary vertex resolution by about a factor of two compared with VXD2. The new three-layered structure enables stand-alone tracking without any ambiguity and its extended size along the beam direction improves the polar-angle coverage to |cos θ| < 0.85. An overview of this detector system and its initial performance are described.
NPS assessment of color medical displays using a monochromatic CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-02-01
This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired.
NPS assessment of color medical image displays using a monochromatic CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-10-01
This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired
Distribution and geologic history of materials excavated by the lunar crater Bullialdus
NASA Technical Reports Server (NTRS)
Tompkins, Stefanie; Pieters, Carle M.; Mustard, John F.
1993-01-01
The crater Bullialdus is a 61 km, Eratosthenian-age impact crater located on the western edge of Mare Nubium. Previous analysis of the spatial distribution of materials in the area using nine telescopic near-infrared spectra suggested a possible three-layer structure prior to the impact event: two shallow gabbroic layers and one deeper noritic layer (from a potential depth of 5.5 km). The initial interpretation of this stratigraphy was that Bullialdus may have tapped a layered mafic pluton, such as have been invoked to explain the existence of Mg-suite rocks. High-spatial resolution CCD images of Bullialdus were analyzed to better map the spatial distribution of the observed lithologies, and to assess the plausibility of the pluton interpretation.
NASA Astrophysics Data System (ADS)
Hoder, T.; Synek, P.; Chorvát, D.; Ráhel', J.; Brandenburg, R.; Černák, M.
2017-07-01
The coplanar barrier discharge in synthetic air at 30 kPa pressure was studied by time-correlated single photon counting enhanced optical emission spectroscopy, far-field microscopy enhanced intensified CCD camera and sensitive current measurements. The discharge operated in a regime where two subsequent microdischarges appeared within the same voltage half-period. The electrical analysis of the barrier discharge setup enabled us to quantify charge transfer and the effective electric field development. During the second microdischarge the positive surface streamers follow the interface (triple-line) between the area of deposited charge from the previous one and the area of uncharged dielectric surface. It is shown that additional branching and flashes of surface streamers are responsible for the increased spatial complexity of the deposited surface charges at high overvoltage. A suppressed streamer propagating over the area of deposited surface charge was tracked and the evidence of surface streamer reconnection is presented. A spatiotemporal distribution (resolution of 120 ps and 100 μm) of the reduced electric field strength was obtained for both microdischarges from the recorded luminosities of the molecular nitrogen. The reduced electric field of positive streamers in the first microdischarge reached 1200 Td. For the second one, the electric field values for the streamer at the triple-line are slightly lower than that, while for the suppressed streamers are even higher.
NASA Technical Reports Server (NTRS)
1998-01-01
PixelVision, Inc., has developed a series of integrated imaging engines capable of high-resolution image capture at dynamic speeds. This technology was used originally at Jet Propulsion Laboratory in a series of imaging engines for a NASA mission to Pluto. By producing this integrated package, Charge-Coupled Device (CCD) technology has been made accessible to a wide range of users.
The fast and accurate 3D-face scanning technology based on laser triangle sensors
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Chen, Yang; Kong, Bin
2013-08-01
A laser triangle scanning method and the structure of 3D-face measurement system were introduced. In presented system, a liner laser source was selected as an optical indicated signal in order to scanning a line one times. The CCD image sensor was used to capture image of the laser line modulated by human face. The system parameters were obtained by system calibrated calculated. The lens parameters of image part of were calibrated with machine visual image method and the triangle structure parameters were calibrated with fine wire paralleled arranged. The CCD image part and line laser indicator were set with a linear motor carry which can achieve the line laser scanning form top of the head to neck. For the nose is ledge part and the eyes are sunk part, one CCD image sensor can not obtain the completed image of laser line. In this system, two CCD image sensors were set symmetric at two sides of the laser indicator. In fact, this structure includes two laser triangle measure units. Another novel design is there laser indicators were arranged in order to reduce the scanning time for it is difficult for human to keep static for longer time. The 3D data were calculated after scanning. And further data processing include 3D coordinate refine, mesh calculate and surface show. Experiments show that this system has simply structure, high scanning speed and accurate. The scanning range covers the whole head of adult, the typical resolution is 0.5mm.
NASA Astrophysics Data System (ADS)
Masciotti, James M.; Rahim, Shaheed; Grover, Jarrett; Hielscher, Andreas H.
2007-02-01
We present a design for frequency domain instrument that allows for simultaneous gathering of magnetic resonance and diffuse optical tomographic imaging data. This small animal imaging system combines the high anatomical resolution of magnetic resonance imaging (MRI) with the high temporal resolution and physiological information provided by diffuse optical tomography (DOT). The DOT hardware comprises laser diodes and an intensified CCD camera, which are modulated up to 1 GHz by radio frequency (RF) signal generators. An optical imaging head is designed to fit inside the 4 cm inner diameter of a 9.4 T MRI system. Graded index fibers are used to transfer light between the optical hardware and the imaging head within the RF coil. Fiducial markers are integrated into the imaging head to allow the determination of the positions of the source and detector fibers on the MR images and to permit co-registration of MR and optical tomographic images. Detector fibers are arranged compactly and focused through a camera lens onto the photocathode of the intensified CCD camera.
Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi
2015-11-01
In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc.
VizieR Online Data Catalog: Li abundances and velocities in F and G stars (Mallik+, 2003)
NASA Astrophysics Data System (ADS)
Mallik, S. V.; Parthasarathy, M.; Pati, A.
2003-09-01
Lithium abundances have been determined in 127 F and G Pop I stars based on new measurements of the equivalent width of the λ6707Å Li I line from their high resolution CCD spectra. Distances and absolute magnitudes of these stars have been obtained from the Hipparcos Catalogue () and their masses and ages derived, enabling us to investigate the behaviour of lithium as a function of these parameters. Based on their location on the HR diagram superposed on theoretical evolutionary tracks, the sample of the stars has been chosen to ensure that they have more or less completed their Li depletion on the main sequence. (2 data files).
High-voltage compatible, full-depleted CCD
Holland, Stephen Edward
2007-09-18
A charge coupled device for detecting electromagnetic and particle radiation is described. The device includes a high-resistivity semiconductor substrate, buried channel regions, gate electrode circuitry, and amplifier circuitry. For good spatial resolution and high performance, especially when operated at high voltages with full or nearly full depletion of the substrate, the device can also include a guard ring positioned near channel regions, a biased channel stop, and a biased polysilicon electrode over the channel stop.
Design and realization of an AEC&AGC system for the CCD aerial camera
NASA Astrophysics Data System (ADS)
Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun
2015-08-01
An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.
High-resolution x-ray imaging using a structured scintillator.
Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan
2016-02-01
In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.
High-resolution x-ray imaging using a structured scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan
2016-02-15
Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less
Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.
NASA Astrophysics Data System (ADS)
Coakley, Monica Marie
1995-01-01
This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements of bright neutral species in the daysky as well as the potential for twenty-four hour coverage.
VizieR Online Data Catalog: Spectroscopy of V Tri (Ren+, 2017)
NASA Astrophysics Data System (ADS)
Ren, A. B.; Zhang, X. B.; Fu, J. N.; Zhang, Y. P.; Cang, T. Q.; Fox-Machado, L.; Li, C. Q.; Khokhuntod, P.; Luo, Y. P.
2017-08-01
The spectroscopic observations for V Tri were carried out with the 2.12m telescope at the Observatorio Astronemico Nacional on the Sierra San Pedro Martir (OAN-SPM) in Mexico on 2015 November 03 and 05. We used a 2048*2048 E2V CCD-4240 to collect the high-resolution (the maximum resolution is R=18000 at 5000Å) echelle spectra at the slit size 1''. The spectral range coverage was from 3800 to 7100Å (4 data files).
Occultation Predictions Using CCD Strip-Scanning Astrometry
NASA Technical Reports Server (NTRS)
Dunham, Edward W.; Ford, C. H.; Stone, R. P. S.; McDonald, S. W.; Olkin, C. B.; Elliot, J. L.; Witteborn, Fred C. (Technical Monitor)
1994-01-01
We are developing the method of CCD strip-scanning astrometry for the purpose of deriving reliable advance predictions for occultations involving small objects in the outer solar system. We are using a camera system based on a Ford/Loral 2Kx2K CCD with the Crossley telescope at Lick Observatory for this work. The columns of die CCD are aligned East-West, the telescope drive is stopped, and the CCD is clocked at the same rate that the stars drift across it. In this way we obtain arbitrary length strip images 20 arcmin wide with 0.58" pixels. Since planets move mainly in RA, it is possible to obtain images of the planet and star to be occulted on the same strip well before the occultation occurs. The strip-to-strip precision (i.e. reproducibility) of positions is limited by atmospheric image motion to about 0.1" rms per strip. However, for objects that are nearby in R.A., the image motion is highly correlated and their relative positions are good to 0.02" rms per strip. We will show that the effects of atmospheric image motion on a given strip can be removed if a sufficient number of strips of a given area have been obtained. Thus, it is possible to reach an rms precision of 0.02" per strip, corresponding to about 0.3 of Pluto or Triton's angular radius. The ultimate accuracy of a prediction based on strip-scanning astrometry is currently limited by the accuracy of the positions of the stars in the astrometric network used and by systematic errors most likely due to the optical system. We will show the results of . the prediction of some recent occultations as examples of the current capabilities and limitations of this technique.
Optical coherence tomography imaging based on non-harmonic analysis
NASA Astrophysics Data System (ADS)
Cao, Xu; Hirobayashi, Shigeki; Chong, Changho; Morosawa, Atsushi; Totsuka, Koki; Suzuki, Takuya
2009-11-01
A new processing technique called Non-Harmonic Analysis (NHA) is proposed for OCT imaging. Conventional Fourier-Domain OCT relies on the FFT calculation which depends on the window function and length. Axial resolution is counter proportional to the frame length of FFT that is limited by the swept range of the swept source in SS-OCT, or the pixel counts of CCD in SD-OCT degraded in FD-OCT. However, NHA process is intrinsically free from this trade-offs; NHA can resolve high frequency without being influenced by window function or frame length of sampled data. In this study, NHA process is explained and applied to OCT imaging and compared with OCT images based on FFT. In order to validate the benefit of NHA in OCT, we carried out OCT imaging based on NHA with the three different sample of onion-skin,human-skin and pig-eye. The results show that NHA process can realize practical image resolution that is equivalent to 100nm swept range only with less than half-reduced wavelength range.
Resolution Properties of a Calcium Tungstate (CaWO4) Screen Coupled to a CMOS Imaging Detector
NASA Astrophysics Data System (ADS)
Koukou, Vaia; Martini, Niki; Valais, Ioannis; Bakas, Athanasios; Kalyvas, Nektarios; Lavdas, Eleftherios; Fountos, George; Kandarakis, Ioannis; Michail, Christos
2017-11-01
The aim of the current work was to assess the resolution properties of a calcium tungstate (CaWO4) screen (screen coating thickness: 50.09 mg/cm2, actual thickness: 167.2 μm) coupled to a high resolution complementary metal oxide semiconductor (CMOS) digital imaging sensor. A 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor. Experiments were performed following the new IEC 62220-1-1:2015 International Standard, using an RQA-5 beam quality. Resolution was assessed in terms of the Modulation Transfer Function (MTF), using the slanted-edge method. The CaWO4/CMOS detector configuration was found with linear response, in the exposure range under investigation. The final MTF was obtained through averaging the oversampled edge spread function (ESF), using a custom-made software developed by our team, according to the IEC 62220-1-1:2015. Considering the renewed interest in calcium tungstate for various applications, along with the resolution results of this work, CaWO4 could be also considered for use in X-ray imaging devices such as charged-coupled devices (CCD) and CMOS.
MTF measurement of LCDs by a linear CCD imager: I. Monochrome case
NASA Astrophysics Data System (ADS)
Kim, Tae-hee; Choe, O. S.; Lee, Yun Woo; Cho, Hyun-Mo; Lee, In Won
1997-11-01
We construct the modulation transfer function (MTF) measurement system of a LCD using a linear charge-coupled device (CCD) imager. The MTF used in optical system can not describe in the effect of both resolution and contrast on the image quality of display. Thus we present the new measurement method based on the transmission property of a LCD. While controlling contrast and brightness levels, the MTF is measured. From the result, we show that the method is useful for describing of the image quality. A ne measurement method and its condition are described. To demonstrate validity, the method is applied for comparison of the performance of two different LCDs.
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-01-01
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-03-04
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.
Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method
NASA Astrophysics Data System (ADS)
Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao
2016-09-01
To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.
Dosimetry of heavy ions by use of CCD detectors
NASA Technical Reports Server (NTRS)
Schott, J. U.
1994-01-01
The design and the atomic composition of Charge Coupled Devices (CCD's) make them unique for investigations of single energetic particle events. As detector system for ionizing particles they detect single particles with local resolution and near real time particle tracking. In combination with its properties as optical sensor, particle transversals of single particles are to be correlated to any objects attached to the light sensitive surface of the sensor by simple imaging of their shadow and subsequent image analysis of both, optical image and particle effects, observed in affected pixels. With biological objects it is possible for the first time to investigate effects of single heavy ions in tissue or extinguished organs of metabolizing (i.e. moving) systems with a local resolution better than 15 microns. Calibration data for particle detection in CCD's are presented for low energetic protons and heavy ions.
Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto
2014-11-01
The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Speckle Toolbox: A Powerful Data Reduction Tool for CCD Astrometry
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Rowe, David; Genet, Russell
2017-01-01
Recent advances in high-speed low-noise CCD and CMOS cameras, coupled with breakthroughs in data reduction software that runs on desktop PCs, has opened the domain of speckle interferometry and high-accuracy CCD measurements of double stars to amateurs, allowing them to do useful science of high quality. This paper describes how to use a speckle interferometry reduction program, the Speckle Tool Box (STB), to achieve this level of result. For over a year the author (Harshaw) has been using STB (and its predecessor, Plate Solve 3) to obtain measurements of double stars based on CCD camera technology for pairs that are either too wide (the stars not sharing the same isoplanatic patch, roughly 5 arc-seconds in diameter) or too faint to image in the coherence time required for speckle (usually under 40ms). This same approach - using speckle reduction software to measure CCD pairs with greater accuracy than possible with lucky imaging - has been used, it turns out, for several years by the U. S. Naval Observatory.
A design of driving circuit for star sensor imaging camera
NASA Astrophysics Data System (ADS)
Li, Da-wei; Yang, Xiao-xu; Han, Jun-feng; Liu, Zhao-hui
2016-01-01
The star sensor is a high-precision attitude sensitive measuring instruments, which determine spacecraft attitude by detecting different positions on the celestial sphere. Imaging camera is an important portion of star sensor. The purpose of this study is to design a driving circuit based on Kodak CCD sensor. The design of driving circuit based on Kodak KAI-04022 is discussed, and the timing of this CCD sensor is analyzed. By the driving circuit testing laboratory and imaging experiments, it is found that the driving circuits can meet the requirements of Kodak CCD sensor.
Onboard TDI stage estimation and calibration using SNR analysis
NASA Astrophysics Data System (ADS)
Haghshenas, Javad
2017-09-01
Electro-Optical design of a push-broom space camera for a Low Earth Orbit (LEO) remote sensing satellite is performed based on the noise analysis of TDI sensors for very high GSDs and low light level missions. It is well demonstrated that the CCD TDI mode of operation provides increased photosensitivity relative to a linear CCD array, without the sacrifice of spatial resolution. However, for satellite imaging, in order to utilize the advantages which the TDI mode of operation offers, attention should be given to the parameters which affect the image quality of TDI sensors such as jitters, vibrations, noises and etc. A predefined TDI stages may not properly satisfy image quality requirement of the satellite camera. Furthermore, in order to use the whole dynamic range of the sensor, imager must be capable to set the TDI stages in every shots based on the affecting parameters. This paper deals with the optimal estimation and setting the stages based on tradeoffs among MTF, noises and SNR. On-board SNR estimation is simulated using the atmosphere analysis based on the MODTRAN algorithm in PcModWin software. According to the noises models, we have proposed a formulation to estimate TDI stages in such a way to satisfy the system SNR requirement. On the other hand, MTF requirement must be satisfy in the same manner. A proper combination of both parameters will guaranty the full dynamic range usage along with the high SNR and image quality.
Design, construction, and evaluation of new high resolution medical imaging detector/systems
NASA Astrophysics Data System (ADS)
Jain, Amit
Increasing need of minimally invasive endovascular image guided interventional procedures (EIGI) for accurate and successful treatment of vascular disease has set a quest for better image quality. Current state of the art detectors are not up to the mark for these complex procedures due to their inherent limitations. Our group has been actively working on the design and construction of a high resolution, region of interest CCD-based X-ray imager for some time. As a part of that endeavor, a Micro-angiographic fluoroscope (MAF) was developed to serve as a high resolution, ROI X-ray imaging detector in conjunction with large lower resolution full field of view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images with high resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a light image intensifier (LII) through a fiber optic taper. The CsI(Tl) phosphor serving as the front end is coupled to the LII. For this work, the MAF was designed and constructed. The linear system cascade theory was used to evaluate the performance theoretically. Linear system metrics such as MTF and DQE were used to gauge the detector performance experimentally. The capabilities of the MAF as a complete system were tested using generalized linear system metrics. With generalized linear system metrics the effects of finite size focal spot, geometric magnification and the presence of scatter are included in the analysis and study. To minimize the effect of scatter, an anti-scatter grid specially designed for the MAF was also studied. The MAF was compared with the flat panel detector using signal-to-noise ratio and the two dimensional linear system metrics. The signal-to-noise comparison was carried out to point out the effect of pixel size and Point Spread Function of the detector. The two dimensional linear system metrics were used to investigate the comparative performance of both the detectors in similar simulated clinical neuro-vascular conditions. The last part of this work presents a unique quality of the MAF: operation in single photon mode. The successful operation of the MAF was demonstrated with considerable improvement in spatial and contrast resolution over conventional energy integrating mode. The work presented shows the evolution of a high resolution, high sensitivity, and region of interest x-ray imaging detector as an attractive and capable x-ray imager for the betterment of complex EIGI procedures. The capability of single photon counting mode imaging provides the potential for additional uses of the MAF including the possibility of use in dual modality imaging with radionuclide sources as well as x-rays.
Utilizing the Southwest Ultraviolet Imaging System (SwUIS) on the International Space Station
NASA Astrophysics Data System (ADS)
Schindhelm, Eric; Stern, S. Alan; Ennico-Smith, Kimberly
2013-09-01
We present the Southwest Ultraviolet Imaging System (SwUIS), a compact, low-cost instrument designed for remote sensing observations from a manned platform in space. It has two chief configurations; a high spatial resolution mode with a 7-inch Maksutov-Cassegrain telescope, and a large field-of-view camera mode using a lens assembly. It can operate with either an intensified CCD or an electron multiplying CCD camera. Interchangeable filters and lenses enable broadband and narrowband imaging at UV/visible/near-infrared wavelengths, over a range of spatial resolution. SwUIS has flown previously on Space Shuttle flights STS-85 and STS-93, where it recorded multiple UV images of planets, comets, and vulcanoids. We describe the instrument and its capabilities in detail. The SWUIS's broad wavelength coverage and versatile range of hardware configurations make it an attractive option for use as a facility instrument for Earth science and astronomical imaging investigations aboard the International Space Station.
An LOD with improved breakdown voltage in full-frame CCD devices
NASA Astrophysics Data System (ADS)
Banghart, Edmund K.; Stevens, Eric G.; Doan, Hung Q.; Shepherd, John P.; Meisenzahl, Eric J.
2005-02-01
In full-frame image sensors, lateral overflow drain (LOD) structures are typically formed along the vertical CCD shift registers to provide a means for preventing charge blooming in the imager pixels. In a conventional LOD structure, the n-type LOD implant is made through the thin gate dielectric stack in the device active area and adjacent to the thick field oxidation that isolates the vertical CCD columns of the imager. In this paper, a novel LOD structure is described in which the n-type LOD impurities are placed directly under the field oxidation and are, therefore, electrically isolated from the gate electrodes. By reducing the electrical fields that cause breakdown at the silicon surface, this new structure permits a larger amount of n-type impurities to be implanted for the purpose of increasing the LOD conductivity. As a consequence of the improved conductance, the LOD width can be significantly reduced, enabling the design of higher resolution imaging arrays without sacrificing charge capacity in the pixels. Numerical simulations with MEDICI of the LOD leakage current are presented that identify the breakdown mechanism, while three-dimensional solutions to Poisson's equation are used to determine the charge capacity as a function of pixel dimension.
New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.
Olko, P; Marczewska, B; Czopyk, L; Czermak, M A; Klosowski, M; Waligórski, M P R
2006-01-01
At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Kraków, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene TetraFluoroEthylene (ETFE) polymer. Foil detectors were irradiated with (226)Ra brachytherapy sources and a (90)Sr/(90)Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm(2), which may be used to evaluate the dose distribution with a spatial resolution of 120 microm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy.
Detection for flatness of large surface based on structured light
NASA Astrophysics Data System (ADS)
He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang
2016-09-01
In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.
Development of Real Time Ultrasonic Imaging
1999-01-01
piezoelectric material known as poly vinyl difluoride ( PVDF ) which enables the conversion of mechanical energy to charge the CCD chip. The system...geometries such as curved (wing) surfaces. Other future applications might include heavy gauge welds in plate, corrosion in piping, welds in piping...Harrison, G. "A Novel High Speed, High Resolution Ultrasound Imaging System", QNDE Review of Progress In Quantitative NDE, Plenum Press, Volume 17B, pp
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)
2002-01-01
Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.
Timing generator of scientific grade CCD camera and its implementation based on FPGA technology
NASA Astrophysics Data System (ADS)
Si, Guoliang; Li, Yunfei; Guo, Yongfei
2010-10-01
The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.
Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization
Hu, Bolin; Zeng, Nan; Liu, Zhiyi; Ji, Yanhong; Xie, Weidong; Peng, Qing; Zhou, Yong; He, Yonghong; Ma, Hui
2011-01-01
Photodynamic therapy is a promising cancer treatment that involves activation of photosensitizer by visible light to create singlet oxygen. This highly reactive oxygen species is believed to induce cell death and tissue destruction in PDT. Our approach used a near-infrared area CCD with high quantum efficiency to detect singlet oxygen by its 1270-nm luminescence. Two-dimensional singlet oxygen images with its near-infrared luminescence during photosensitization could be obtained with a CCD integration time of 1 s, without scanning. Thus this system can produce singlet oxygen luminescence images faster and achieve more accurate measurements in comparison to raster-scanning methods. The experimental data show a linear relationship between the singlet oxygen luminescence intensity and sample concentration. This method provides a detection sensitivity of 0.0181 μg/ml (benzoporphyrin derivative monoacid ring A dissolved in ethanol) and a spatial resolution better than 50 μm. A pilot study was conducted on a total of six female Kunming mice. The results from this study demonstrate the system's potential for in vivo measurements. Further experiments were carried out on two tumor-bearing nude mice. Singlet oxygen luminescence images were acquired from the tumor-bearing nude mouse with intravenous injection of BPD-MA, and the experimental results showed real-time singlet oxygen signal depletion as a function of the light exposure. PMID:21280909
Specialized CCDs for high-frame-rate visible imaging and UV imaging applications
NASA Astrophysics Data System (ADS)
Levine, Peter A.; Taylor, Gordon C.; Shallcross, Frank V.; Tower, John R.; Lawler, William B.; Harrison, Lorna J.; Socker, Dennis G.; Marchywka, Mike
1993-11-01
This paper reports recent progress by the authors in two distinct charge coupled device (CCD) technology areas. The first technology area is high frame rate, multi-port, frame transfer imagers. A 16-port, 512 X 512, split frame transfer imager and a 32-port, 1024 X 1024, split frame transfer imager are described. The thinned, backside illuminated devices feature on-chip correlated double sampling, buried blooming drains, and a room temperature dark current of less than 50 pA/cm2, without surface accumulation. The second technology area is vacuum ultraviolet (UV) frame transfer imagers. A developmental 1024 X 640 frame transfer imager with 20% quantum efficiency at 140 nm is described. The device is fabricated in a p-channel CCD process, thinned for backside illumination, and utilizes special packaging to achieve stable UV response.
CCD Camera Detection of HIV Infection.
Day, John R
2017-01-01
Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software are used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as β-galactosidase under the control of the HIV-1 long terminal repeat, are infected with HIV and then incubated 2 days later with X-gal to stain the infected cells blue. Digital images of monolayers of the infected cells are captured using a high resolution CCD video camera and a macro video zoom lens. A software program is developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.
Test technology on divergence angle of laser range finder based on CCD imaging fusion
NASA Astrophysics Data System (ADS)
Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao
2016-09-01
Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.
Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles; ...
2016-05-16
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Wanchun; Broussard, Leah J.; Hoffbauer, Mark Arles
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15μm has been achieved, which is equivalent to a UCN energy resolution below 2 pico-electron-volts through the relation δE=m 0gδx. Here, the symbols δE, δx, m 0 and g are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. Asmore » a result, this method allows different types of UCN spectroscopy and other applications.« less
Full-field OCT: applications in ophthalmology
NASA Astrophysics Data System (ADS)
Grieve, Kate; Dubois, Arnaud; Paques, Michel; Le Gargasson, Jean-Francois; Boccara, Albert C.
2005-04-01
We present images of ocular tissues obtained using ultrahigh resolution full-field OCT. The experimental setup is based on the Linnik interferometer, illuminated by a tungsten halogen lamp. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by a high-resolution CCD camera. A spatial resolution of 0.7 μm × 0.9 μm (axial × transverse) is achieved thanks to the short source coherence length and the use of high numerical aperture microscope objectives. A detection sensitivity of 90 dB is obtained by means of image averaging and pixel binning. Whole unfixed eyes and unstained tissue samples (cornea, lens, retina, choroid and sclera) of ex vivo rat, mouse, rabbit and porcine ocular tissues were examined. The unprecedented resolution of our instrument allows cellular-level resolution in the cornea and retina, and visualization of individual fibers in the lens. Transcorneal lens imaging was possible in all animals, and in albino animals, transscleral retinal imaging was achieved. We also introduce our rapid acquisition full-field optical coherence tomography system designed to accommodate in vivo ophthalmologic imaging. The variations on the original system technology include the introduction of a xenon arc lamp as source, and rapid image acquisition performed by a high-speed CMOS camera, reducing acquisition time to 5 ms per frame.
A programmable CCD driver circuit for multiphase CCD operation
NASA Technical Reports Server (NTRS)
Ewin, Audrey J.; Reed, Kenneth V.
1989-01-01
A programmable CCD (charge-coupled device) driver circuit was designed to drive CCDs in multiphased modes. The purpose of the drive electronics is to operate developmental CCD imaging arrays for NASA's tiltable moderate resolution imaging spectrometer (MODIS-T). Five objectives for the driver were considered during its design: (1) the circuit drives CCD electrode voltages between 0 V and +30 V to produce reasonable potential wells, (2) the driving sequence is started with one input signal, (3) the driving sequence is started with one input signal, (4) the circuit allows programming of frame sequences required by arrays of any size, (5) it produces interfacing signals for the CCD and the DTF (detector test facility). Simulation of the driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400,000 pixels/s. Timing and packaging parameters were verified. The design uses 54 TTL (transistor-transistor logic) chips. Two versions of hardware were fabricated: wirewrap and printed circuit board. Both were verified functionally with a logic analyzer.
A webcam in Bayer-mode as a light beam profiler for the near infra-red
Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas
2013-01-01
Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique. PMID:23645943
A webcam in Bayer-mode as a light beam profiler for the near infra-red.
Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas
2013-05-01
Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique.
Note: A simple multi-channel optical system for modulation spectroscopies.
Solís-Macías, J; Sánchez-López, J D; Castro-García, R; Flores-Camacho, J M; Flores-Rangel, G; Ciou, Jian-Jhih; Chen, Kai-Wei; Chen, Chang-Hsiao; Lastras-Martínez, L F; Balderas-Navarro, R E
2017-12-01
Photoreflectance-difference (PR/PRD) and reflectance-difference (RD) spectroscopies employ synchronic detection usually with lock-in amplifiers operating at moderate (200-1000 Hz) and high (50-100 KHz) modulation frequencies, respectively. Here, we report a measurement system for these spectroscopies based on a multichannel CCD spectrometer without a lock-in amplifier. In the proposed scheme, a typical PRD or RD spectrum consists of numerical subtractions between a thousand CCD captures recorded, while a photoelastic modulator is either operating or inhibited. This is advantageous and fits the slow response of CCD detectors to high modulation frequencies. The resulting spectra are processed with Savitzky-Golay filtering and compared well with those measured with conventional scanning systems based on lock-in amplifiers.
Improving Technology for Vascular Imaging
NASA Astrophysics Data System (ADS)
Rana, Raman
Neuro-endovascular image guided interventions (Neuro-EIGIs) is a minimally invasive procedure that require micro catheters and endovascular devices be inserted into the vasculature via an incision near the femoral artery and guided under low dose fluoroscopy to the vasculature of the head and neck. However, the endovascular devices used for the purpose are of very small size (stents are of the order of 50mum to 100mum) and the success of these EIGIs depends a lot on the accurate placement of these devices. In order to accurately place these devices inside the patient, the interventionalist should be able to see them clearly. Hence, high resolution capabilities are of immense importance in neuro-EIGIs. The high-resolution detectors, MAF-CCD and MAF-CMOS, at the Toshiba Stroke and Vascular Research Center at the University at Buffalo are capable of presenting improved images for better patient care. Focal spot of an x-ray tube plays an important role in performance of these high resolution detectors. The finite size of the focal spot results into the blurriness around the edges of the image of the object resulting in reduced spatial resolution. Hence, knowledge of accurate size of the focal spot of the x-ray tube is very essential for the evaluation of the total system performance. Importance of magnification and image detector blur deconvolution was demonstrated to carry out the more accurate measurement of x-ray focal spot using a pinhole camera. A 30 micron pinhole was used to obtain the focal spot images using flat panel detector (FPD) and different source to image distances (SIDs) were used to achieve different magnifications (3.16, 2.66 and 2.16). These focal spot images were deconvolved with a 2-D modulation transfer function (MTF), obtained using noise response (NR) method, to remove the detector blur present in the images. Using these corrected images, the accurate size of all the three focal spots were obtained and it was also established that effect of detector blur can be reduced significantly by using a higher magnification. As discussed earlier, interventionalist need higher resolution capabilities during EIGIs for more confident and successful treatment of the patient. An experimental MAF-CCD enabled with a Control, Acquisition, Processing, Image Display and Storage (CAPIDS) system was installed and aligned on a detector changer attached to the C-arm of a clinical angiographic unit. The CAPIDS system was developed and implemented using LabVIEW software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF including: fluoroscopy, roadmap, radiography, and digital-subtraction-angiography (DSA). Whenever the higher resolution is needed, the MAD-CCD detector can be moved in front of the FPD. A particular set of steps were needed to deploy the MAF in front of the FPD and to transfer the controls to CAPIDS from the Toshiba Systems. In order to minimize any possible negative impact of using two different detectors during a procedure, a well-designed workflow was developed that enables smooth deployment of the MAF at critical stages of clinical procedures. The images obtained using MAF-CCD detector demonstrated the advantages the high resolution imagers have over FPDs. Scatter is inevitable in x-ray imaging as it reduces the image quality. The benefit of removing the scatter is that it improves contrast and also increases the signal-to-Noise (SNR). There are various scatter reduction methods like air-gap techniques, collimation, moving anti-scatter grids, stationary anti-scatter grids. Stationary anti-scatter grids is a preferred choice in dynamic imaging because of its compact design and ease to use. However, when these anti-scatter grids are used with high resolution detector, there will be anti-scatter grid-line pattern present in the image, as structure noise. Because of presence of this anti-scatter grid artifact, the contrast-to-Noise (CNR) of the image decreases when grid is used with high resolution detector. In order to address this issue, grid-line artifact minimization method for high resolution detectors is developed. (Abstract shortened by ProQuest.).
Event-based Sensing for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Cohen, G.; Afshar, S.; van Schaik, A.; Wabnitz, A.; Bessell, T.; Rutten, M.; Morreale, B.
A revolutionary type of imaging device, known as a silicon retina or event-based sensor, has recently been developed and is gaining in popularity in the field of artificial vision systems. These devices are inspired by a biological retina and operate in a significantly different way to traditional CCD-based imaging sensors. While a CCD produces frames of pixel intensities, an event-based sensor produces a continuous stream of events, each of which is generated when a pixel detects a change in log light intensity. These pixels operate asynchronously and independently, producing an event-based output with high temporal resolution. There are also no fixed exposure times, allowing these devices to offer a very high dynamic range independently for each pixel. Additionally, these devices offer high-speed, low power operation and a sparse spatiotemporal output. As a consequence, the data from these sensors must be interpreted in a significantly different way to traditional imaging sensors and this paper explores the advantages this technology provides for space imaging. The applicability and capabilities of event-based sensors for SSA applications are demonstrated through telescope field trials. Trial results have confirmed that the devices are capable of observing resident space objects from LEO through to GEO orbital regimes. Significantly, observations of RSOs were made during both day-time and nighttime (terminator) conditions without modification to the camera or optics. The event based sensor’s ability to image stars and satellites during day-time hours offers a dramatic capability increase for terrestrial optical sensors. This paper shows the field testing and validation of two different architectures of event-based imaging sensors. An eventbased sensor’s asynchronous output has an intrinsically low data-rate. In addition to low-bandwidth communications requirements, the low weight, low-power and high-speed make them ideally suitable to meeting the demanding challenges required by space-based SSA systems. Results from these experiments and the systems developed highlight the applicability of event-based sensors to ground and space-based SSA tasks.
Efficient high-resolution hard x-ray imaging with transparent Lu2O3:Eu scintillator thin films
NASA Astrophysics Data System (ADS)
Marton, Zsolt; Miller, Stuart R.; Brecher, Charles; Kenesei, Peter; Moore, Matthew D.; Woods, Russell; Almer, Jonathan D.; Miceli, Antonino; Nagarkar, Vivek V.
2015-09-01
We have developed microstructured Lu2O3:Eu scintillator films that provide spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their outstanding resolution, Lu2O3:Eu films also exhibits both high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission whose intensity rivals that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays; this results in excessive measurement time and exposure to the specimen. But the absorption efficiency of Lu2O3:Eu (99.9% @12 keV and 30% @ 70 keV) is much greater, significantly decreasing measurement time and radiation exposure. Our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapor deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, a microcolumnar structure for higher spatial resolution, and a bright emission (48000 photons/MeV) whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films of this material on a variety of matching substrates, measuring some 5-10μm in thickness and covering areas up to 1 x 1 cm2, which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT). The microstructure and optical transparency of such screens was optimized, and their imaging performance was evaluated in the Argonne National Laboratory's Advanced Photon Source. Spatial resolution and efficiency were also characterized.
Method of orthogonally splitting imaging pose measurement
NASA Astrophysics Data System (ADS)
Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong
2018-01-01
In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.
CCD imaging system for the EUV solar telescope
NASA Astrophysics Data System (ADS)
Gong, Yan; Song, Qian; Ye, Bing-Xun
2006-01-01
In order to develop the detector adapted to the space solar telescope, we have built a CCD camera system capable of working in the extra ultraviolet (EUV) band, which is composed of one phosphor screen, one intensified system using a photocathode/micro-channel plate(MCP)/ phosphor, one optical taper and one chip of front-illuminated (FI) CCD without screen windows. All of them were stuck one by one with optical glue. The working principle of the camera system is presented; moreover we have employed the mesh experiment to calibrate and test the CCD camera system in 15~24nm, the position resolution of about 19 μm is obtained at the wavelength of 17.1nm and 19.5nm.
Naivar, Mark A.; Wilder, Mark E.; Habbersett, Robert C.; Woods, Travis A.; Sebba, David S.; Nolan, John P.; Graves, Steven W.
2014-01-01
Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers. PMID:19852060
Naivar, Mark A; Wilder, Mark E; Habbersett, Robert C; Woods, Travis A; Sebba, David S; Nolan, John P; Graves, Steven W
2009-12-01
Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.
NASA Astrophysics Data System (ADS)
Kredzinski, Lukasz; Connelly, Michael J.
2012-06-01
Full-field Optical coherence tomography is an en-face interferometric imaging technology capable of carrying out high resolution cross-sectional imaging of the internal microstructure of an examined specimen in a non-invasive manner. The presented system is based on competitively priced optical components available at the main optical communications band located in the 1550 nm region. It consists of a superluminescent diode and an anti-stokes imaging device. The single mode fibre coupled SLD was connected to a multi-mode fibre inserted into a mode scrambler to obtain spatially incoherent illumination, suitable for OCT wide-field modality in terms of crosstalk suppression and image enhancement. This relatively inexpensive system with moderate resolution of approximately 24um x 12um (axial x lateral) was constructed to perform a 3D cross sectional imaging of a human tooth. To our knowledge this is the first 1550 nm full-field OCT system reported.
NASA Astrophysics Data System (ADS)
Tamura, K.; Jansen, R. A.; Eskridge, P. B.; Cohen, S. H.; Windhorst, R. A.
2010-06-01
We present the results of a study of the late-type spiral galaxy NGC 0959, before and after application of the pixel-based dust extinction correction described in Tamura et al. (Paper I). Galaxy Evolution Explorer far-UV, and near-UV, ground-based Vatican Advanced Technology Telescope, UBVR, and Spitzer/Infrared Array Camera 3.6, 4.5, 5.8, and 8.0 μm images are studied through pixel color-magnitude diagrams and pixel color-color diagrams (pCCDs). We define groups of pixels based on their distribution in a pCCD of (B - 3.6 μm) versus (FUV - U) colors after extinction correction. In the same pCCD, we trace their locations before the extinction correction was applied. This shows that selecting pixel groups is not meaningful when using colors uncorrected for dust. We also trace the distribution of the pixel groups on a pixel coordinate map of the galaxy. We find that the pixel-based (two-dimensional) extinction correction is crucial for revealing the spatial variations in the dominant stellar population, averaged over each resolution element. Different types and mixtures of stellar populations, and galaxy structures such as a previously unrecognized bar, become readily discernible in the extinction-corrected pCCD and as coherent spatial structures in the pixel coordinate map.
High-resolution continuum observations of the Sun
NASA Technical Reports Server (NTRS)
Zirin, Harold
1987-01-01
The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.
Advanced X-ray Astrophysics Facility (AXAF) science instruments
NASA Technical Reports Server (NTRS)
Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.
1991-01-01
The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.
NASA Astrophysics Data System (ADS)
Clay, M. P.; Buaria, D.; Gotoh, T.; Yeung, P. K.
2017-10-01
A new dual-communicator algorithm with very favorable performance characteristics has been developed for direct numerical simulation (DNS) of turbulent mixing of a passive scalar governed by an advection-diffusion equation. We focus on the regime of high Schmidt number (S c), where because of low molecular diffusivity the grid-resolution requirements for the scalar field are stricter than those for the velocity field by a factor √{ S c }. Computational throughput is improved by simulating the velocity field on a coarse grid of Nv3 points with a Fourier pseudo-spectral (FPS) method, while the passive scalar is simulated on a fine grid of Nθ3 points with a combined compact finite difference (CCD) scheme which computes first and second derivatives at eighth-order accuracy. A static three-dimensional domain decomposition and a parallel solution algorithm for the CCD scheme are used to avoid the heavy communication cost of memory transposes. A kernel is used to evaluate several approaches to optimize the performance of the CCD routines, which account for 60% of the overall simulation cost. On the petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign, scalability is improved substantially with a hybrid MPI-OpenMP approach in which a dedicated thread per NUMA domain overlaps communication calls with computational tasks performed by a separate team of threads spawned using OpenMP nested parallelism. At a target production problem size of 81923 (0.5 trillion) grid points on 262,144 cores, CCD timings are reduced by 34% compared to a pure-MPI implementation. Timings for 163843 (4 trillion) grid points on 524,288 cores encouragingly maintain scalability greater than 90%, although the wall clock time is too high for production runs at this size. Performance monitoring with CrayPat for problem sizes up to 40963 shows that the CCD routines can achieve nearly 6% of the peak flop rate. The new DNS code is built upon two existing FPS and CCD codes. With the grid ratio Nθ /Nv = 8, the disparity in the computational requirements for the velocity and scalar problems is addressed by splitting the global communicator MPI_COMM_WORLD into disjoint communicators for the velocity and scalar fields, respectively. Inter-communicator transfer of the velocity field from the velocity communicator to the scalar communicator is handled with discrete send and non-blocking receive calls, which are overlapped with other operations on the scalar communicator. For production simulations at Nθ = 8192 and Nv = 1024 on 262,144 cores for the scalar field, the DNS code achieves 94% strong scaling relative to 65,536 cores and 92% weak scaling relative to Nθ = 1024 and Nv = 128 on 512 cores.
Particle displacement tracking applied to air flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.
WIYN bench upgrade: a revitalized spectrograph
NASA Astrophysics Data System (ADS)
Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.
2008-07-01
We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.
NASA Astrophysics Data System (ADS)
Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo
2016-10-01
Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan; Hill, K. W.; Bitter, M.
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
High-resolution EEG techniques for brain-computer interface applications.
Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Astolfi, Laura; De Vico Fallani, Fabrizio; Tocci, Andrea; Bianchi, Luigi; Marciani, Maria Grazia; Gao, Shangkai; Millan, Jose; Babiloni, Fabio
2008-01-15
High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential measurements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of technologies, originally developed to obtain functional images of the brain's electrical activity, in the context of brain-computer interfaces (BCI). Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head structures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification would be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks. HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed source model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L(2)-norm constraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest corresponding to relevant Brodmann areas. Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG data was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed into the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r(2) analysis), to quantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques. The processing procedure was designed in such a way that computations could be split into a setup phase (which includes most of the computational burden) and the actual EEG processing phase, which was limited to a single matrix multiplication. This separation allowed to make the procedure suitable for on-line utilization, and a pilot experiment was performed. Results show that lateralization of electrical activity, which is expected to be contralateral to the imagined movement, is more evident on the estimated CCDs than in the scalp potentials. CCDs produce a pattern of relevant spectral features that is more spatially focused, and has a higher statistical significance (EEG: 0.20+/-0.114 S.D.; CCD: 0.55+/-0.16 S.D.; p=10(-5)). A pilot experiment showed that a trained subject could utilize voluntary modulation of estimated CCDs for accurate (eight targets) on-line control of a cursor. This study showed that it is practically feasible to utilize HREEG techniques for on-line operation of a BCI system; off-line analysis suggests that accuracy of BCI control is enhanced by the proposed method.
NASA Astrophysics Data System (ADS)
Coffer, Amy Beth
Radiation imagers are import tools in the modern world for a wide range of applications. They span the use-cases of fundamental sciences, astrophysics, medical imaging, all the way to national security, nuclear safeguards, and non-proliferation verification. The type of radiation imagers studied in this thesis were gamma-ray imagers that detect emissions from radioactive materials. Gamma-ray imagers goal is to localize and map the distribution of radiation within their specific field-of-view despite the fact of complicating background radiation that can be terrestrial, astronomical, and temporal. Compton imaging systems are one type of gamma-ray imager that can map the radiation around the system without the use of collimation. Lack of collimation enables the imaging system to be able to detect radiation from all-directions, while at the same time, enables increased detection efficiency by not absorbing incident radiation in non-sensing materials. Each Compton-scatter events within an imaging system generated a possible cone-surface in space that the radiation could have originated from. Compton imaging is limited in its reconstructed image signal-to-background due to these source Compton-cones overlapping with background radiation Compton-cones. These overlapping cones limit Compton imaging's detection-sensitivity in image space. Electron-tracking Compton imaging (ETCI) can improve the detection-sensitivity by measuring the Compton-scattered electron's initial trajectory. With an estimate of the scattered electron's trajectory, one can reduce the Compton-back-projected cone to a cone-arc, thus enabling faster radiation source detection and localization. However, the ability to measure the Compton-scattered electron-trajectories adds another layer of complexity to an already complex methodology. For a real-world imaging applications, improvements are needed in electron-track detection efficiency and in electron-track reconstruction. One way of measuring Compton-scattered electron-trajectories is with high-resolution Charged-Coupled Devices (CCDs). The proof-of-principle CCD-based ETCI experiment demonstrated the CCDs' ability to measure the Compton-scattered electron-tracks as a 2-dimensional image. Electron-track-imaging algorithms using the electron-track-image are able to determine the 3-dimensional electron-track trajectory within +/- 20 degrees. The work presented here is the physics simulations developed along side the experimental proof-of-principle experiment. The development of accurate physics modeling for multiple-layer CCDs based ETCI systems allow for the accurate prediction of future ETCI system performance. The simulations also enable quick development insights for system design, and they guide the development of electron-track reconstruction methods. The physics simulation efforts for this project looked closely at the accuracy of the Geant4 Monte Carlo methods for medium energy electron transport. In older version of Geant4 there were some discrepancies between the electron-tracking experimental measurements and the simulation results. It was determined that when comparing the electron dynamics of electrons at very high resolutions, Geant4 simulations must be fine tuned with careful choices for physics production cuts and electron physics stepping sizes. One result of this work is a CCDs Monte Carlo model that has been benchmarked to experimental findings and fully characterized for both photon and electron transport. The CCDs physics model now match to within 1 percent error of experimental results for scattered-electron energies below 500 keV. Following the improvements of the CCDs simulations, the performance of a realistic two-layer CCD-stack system was characterized. The realistic CCD-stack system looked at the effect of thin passive-layers on the CCDs' front face and back-contact. The photon interaction efficiency was calculated for the two-layer CCD-stack, and we found that there is a 90 percent probability of scattered-electrons from a 662 keV source to stay within a single active layer. This demonstrates the improved detection efficiency, which is one of the strengths of the CCDs' implementation as a ETCI system. The CCD-stack simulations also established that electron-tracks scattering from one CCDs layer to another could be reconstructed. The passive-regions on the CCD-stack mean that these inter-layer scattered-electron-tracks will always loose both angular information and energy information. Looking at the angular changes of these electrons scattering between the CCDs layers showed us there is not a strong energy dependence on the angular changes due to the passive-regions of the CCDs. The angular changes of the electron track are, for the most part, a function of the thickness of the thin back-layer of the CCDs. Lastly, an approach using CCD-stack simulations was developed to reconstruct the energy transport across dead-layers and its feasibility was demonstrated. Adding back this lost energy will limit the loss of energy resolution of the scatter-interactions. Energy resolution losses would negatively impacted the achievable image resolution from image reconstruction algorithms. Returning some of the energy back to the reconstructed electron-track will help retain the expected performance of the electron-track trajectory determination algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hui
2001-01-01
Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less
High frame rate imaging systems developed in Northwest Institute of Nuclear Technology
NASA Astrophysics Data System (ADS)
Li, Binkang; Wang, Kuilu; Guo, Mingan; Ruan, Linbo; Zhang, Haibing; Yang, Shaohua; Feng, Bing; Sun, Fengrong; Chen, Yanli
2007-01-01
This paper presents high frame rate imaging systems developed in Northwest Institute of Nuclear Technology in recent years. Three types of imaging systems are included. The first type of system utilizes EG&G RETICON Photodiode Array (PDA) RA100A as the image sensor, which can work at up to 1000 frame per second (fps). Besides working continuously, the PDA system is also designed to switch to capture flash light event working mode. A specific time sequence is designed to satisfy this request. The camera image data can be transmitted to remote area by coaxial or optic fiber cable and then be stored. The second type of imaging system utilizes PHOTOBIT Complementary Metal Oxygen Semiconductor (CMOS) PB-MV13 as the image sensor, which has a high resolution of 1280 (H) ×1024 (V) pixels per frame. The CMOS system can operate at up to 500fps in full frame and 4000fps partially. The prototype scheme of the system is presented. The third type of imaging systems adopts charge coupled device (CCD) as the imagers. MINTRON MTV-1881EX, DALSA CA-D1 and CA-D6 camera head are used in the systems development. The features comparison of the RA100A, PB-MV13, and CA-D6 based systems are given in the end.
Preliminary results of a computerized Placido disk surgical corneal topographer
NASA Astrophysics Data System (ADS)
Carvalho, Luis A.; Tonissi, S. A.; Castro, Jarbas C.
1999-06-01
We have developed a novel instrument for computerized corneal topography during surgery. The instrument measures a region of approximately 7 mm in diameter, providing the surgeon with precise values of power and astigmatism. The system is based on a Placido Disc projecting system, which is attached to the objective lens of the surgical microscope. The Placido Disc pattern is reflected by a 50% beam splitter attached to the body of the microscope. At the beam splitter we installed our home-made adaptor and a CCD monochromatic high resolution camera. A high quality frame grabber is installed on a PC and images are digitized at a 480x640 resolution. Algorithms based on image processing techniques were implemented for edge detection of pattern. Calibrating curves based on 4 spherical surfaces were generated and approximately 3600 points were calculated for each exam. Preliminary measurements on 10 healthy corneas were compared with the measurements made on an EyeSys Corneal Topographer. Mean deviation was 0.05 for radius of curvature, 0.24 D for power and 5 degrees for cylinder. This system, with some improvements, may be successfully used to diminish high post surgical astigmatisms in surgeries such as cataract and corneal transplant. This system could also be used to gather preoperative data in corneal topography assisted LASIK.
Deep-UV-sensitive high-frame-rate backside-illuminated CCD camera developments
NASA Astrophysics Data System (ADS)
Dawson, Robin M.; Andreas, Robert; Andrews, James T.; Bhaskaran, Mahalingham; Farkas, Robert; Furst, David; Gershstein, Sergey; Grygon, Mark S.; Levine, Peter A.; Meray, Grazyna M.; O'Neal, Michael; Perna, Steve N.; Proefrock, Donald; Reale, Michael; Soydan, Ramazan; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.; Zanzucchi, Pete
2002-04-01
New applications for ultra-violet imaging are emerging in the fields of drug discovery and industrial inspection. High throughput is critical for these applications where millions of drug combinations are analyzed in secondary screenings or high rate inspection of small feature sizes over large areas is required. Sarnoff demonstrated in1990 a back illuminated, 1024 X 1024, 18 um pixel, split-frame-transfer device running at > 150 frames per second with high sensitivity in the visible spectrum. Sarnoff designed, fabricated and delivered cameras based on these CCDs and is now extending this technology to devices with higher pixel counts and higher frame rates through CCD architectural enhancements. The high sensitivities obtained in the visible spectrum are being pushed into the deep UV to support these new medical and industrial inspection applications. Sarnoff has achieved measured quantum efficiencies > 55% at 193 nm, rising to 65% at 300 nm, and remaining almost constant out to 750 nm. Optimization of the sensitivity is being pursued to tailor the quantum efficiency for particular wavelengths. Characteristics of these high frame rate CCDs and cameras will be described and results will be presented demonstrating high UV sensitivity down to 150 nm.
The Development of the Spanish Fireball Network Using a New All-Sky CCD System
NASA Astrophysics Data System (ADS)
Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.; Llorca, J.; Fabregat, J.; Martínez, V. J.; Reglero, V.; Jelínek, M.; Kubánek, P.; Mateo, T.; Postigo, A. De Ugarte
2004-12-01
We have developed an all-sky charge coupled devices (CCD) automatic system for detecting meteors and fireballs that will be operative in four stations in Spain during 2005. The cameras were developed following the BOOTES-1 prototype installed at the El Arenosillo Observatory in 2002, which is based on a CCD detector of 4096 × 4096 pixels with a fish-eye lens that provides an all-sky image with enough resolution to make accurate astrometric measurements. Since late 2004, a couple of cameras at two of the four stations operate for 30 s in alternate exposures, allowing 100% time coverage. The stellar limiting magnitude of the images is +10 in the zenith, and +8 below ~ 65° of zenithal angle. As a result, the images provide enough comparison stars to make astrometric measurements of faint meteors and fireballs with an accuracy of ~ 2°arcminutes. Using this prototype, four automatic all-sky CCD stations have been developed, two in Andalusia and two in the Valencian Community, to start full operation of the Spanish Fireball Network. In addition to all-sky coverage, we are developing a fireball spectroscopy program using medium field lenses with additional CCD cameras. Here we present the first images obtained from the El Arenosillo and La Mayora stations in Andalusia during their first months of activity. The detection of the Jan 27, 2003 superbolide of ± 17 ± 1 absolute magnitude that overflew Algeria and Morocco is an example of the detection capability of our prototype.
STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration
2018-01-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity of medium to high redshift clusters and nearby compact groups and unprecedented timing investigations of active galactic nuclei, is also obtained.
STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Tom; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; STROBE-X Collaboration
2017-01-01
We describe a proposed probe-class mission concept that will provide an unprecedented view of the X-ray sky, performing timing and spectroscopy over a broad band (0.2-30 keV) probing timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises two primary instruments. The soft band (0.2-12 keV) will be covered by an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates. This technology, fully developed for NICER, would be scaled up with enhanced optics to take advantage of the longer focal length of STROBE-X. The harder band (2 to at least 30 keV) would be covered by large-area collimated silicon drift detectors,developed for the European LOFT mission concept. Each instrument would provide an order of magnitude improvement in effective area compared with its predecessor (NICER in the soft band and RXTE in the hard band). A sensitive sky monitor would act as a trigger for pointed observations, provide high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enable multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.The broad coverage will enable thermal components, non-thermal components, iron lines, and reflection features to be studied simultaneously from a single platform for the first time in accreting black holes at all scales. The enormous collecting area will enable studies of the dense matter equation of state using both soft thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. Revolutionary science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, would also be obtained.We describe the mission concept and the planned trade studies that will optimize the mission to maximize the science return. This mission is being developed in collaboration with members of the European LOFT team, and a hardware contribution from Europe is expected.
Trap pumping schemes for the Euclid CCD273 detector: characterisation of electrodes and defects
NASA Astrophysics Data System (ADS)
Skottfelt, J.; Hall, D. J.; Dryer, B.; Bush, N.; Campa, J.; Gow, J. P. D.; Holland, A. D.; Jordan, D.; Burt, D.
2017-12-01
The VISible imager instrument (VIS) on board the Euclid mission will deliver high resolution shape measurements of galaxies down to very faint limits (R ~ 25 at 10σ) in a large part of the sky, in order to infer the distribution of dark matter in the Universe. To help mitigate radiation damage effects that will accumulate in the detectors over the mission lifetime, the properties of the radiation induced traps needs to be known with as high precision as possible. For this purpose the trap pumping method will be employed as part of the in-orbit calibration routines. Using trap pumping it is possible to identify and characterise single traps in a Charge-Coupled Device (CCD), thus providing information such as the density, emission time constants and sub-pixel positions of the traps in the detectors. This paper presents the trap pumping algorithms used for the radiation testing campaign of the CCD273 detectors, performed by the Centre for Electronic Imaging (CEI) at the Open University, that will be used for the VIS instrument. The CCD273 is a four-phase device with uneven phase widths, which complicates the trap pumping analysis. However, we find that by optimising the trap pumping algorithms and analysis routines, it is possible to obtain sub-pixel and even sub-phase positional information about the traps. Further, by comparing trap pumping data with simulations, it is possible to gain more information about the effective electrode widths of the device.
Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei
2013-04-01
The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.
High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time
NASA Astrophysics Data System (ADS)
Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven
2017-04-01
As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with <=1 nm resolution. With this system, nanoparticles ranging from 1 to 3000 nm diameters can be studied. The nanoparticles are typically suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.
Fast Solar Polarimeter: First Light Results
NASA Astrophysics Data System (ADS)
Krishnappa, N.; Feller, A.; Iglesia, F. A.; Solanki, S.
2013-12-01
Accurate measurements of magnetic fields on the Sun are crucial to understand various physical processes that take place in the solar atmosphere such as solar eruptions, coronal heating, solar wind acceleration, etc. The Fast Solar Polarimeter (FSP) is a new instrument that is being developed to probe magnetic fields on the Sun. One of the main goals of this polarimeter is to carry out high precision spectropolarimetric observations with spatial resolution close to the telescope diffraction limit. The polarimeter is based on pnCCD technology with split frame transfer and simultaneous multi-channel readout, resulting in frame rate upto 1 kHz. The FSP prototype instrument uses a small format pnCCD of 264x264 pixels which has been developed by PNSensor and by the semiconductor lab of the Max Planck Society. The polarization modulator is based on two ferro-electric liquid crystals (FLCs) interlaced between two static retarders. The first solar observations have been carried out with this prototype during May-June, 2013 at German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands, Spain. Here we present the instrument performance assessments and the first results on the magnetic field measurements. Further, we briefly discuss about the next phase of FSP which will be a dual beam system with 1k x 1k CCDs.
Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs
NASA Technical Reports Server (NTRS)
Grunthaner, Paula; Elliott, Stythe; Jones, Todd; Nikzad, Shouleh
2004-01-01
An improved process that includes a high-temperature bonding subprocess has been developed to enable the fabrication of robust, flat, silicon-based charge-coupled devices (CCDs) for imaging in ultraviolet (UV) light and/or for detecting low-energy charged particles. The CCDs in question are devices on which CCD circuitry has already been formed and have been thinned for backsurface illumination. These CCDs may be delta doped, and aspects of this type of CCD have been described in several prior articles in NASA Tech Briefs. Unlike prior low-temperature bonding subprocesses based on the use of epoxies or waxes, the high-temperature bonding subprocess is compatible with the deltadoping process as well as with other CCD-fabrication processes. The present improved process and its bonding, thinning, and delta-doping subprocesses, are characterized as postfabrication processes because they are undertaken after the fabrication of CCD circuitry on the front side of a full-thickness silicon substrate. In a typical case, it is necessary to reduce the thickness of the CCD to between 10 and 20 m in order to take advantage of back-side illumination and in order to perform delta doping and/or other back-side treatment to enhance the quantum efficiency. In the prior approach to the fabrication of back-side-illuminated CCDs, the thinning subprocess turned each CCD into a free-standing membrane that was fragile and tended to become wrinkled. In the present improved process, prior to thinning and delta doping, a CCD is bonded on its front side to a silicon substrate that has been prefabricated to include cutouts to accommodate subsequent electrical connections to bonding pads on the CCD circuitry. The substrate provides structural support to increase ruggedness and maintain flatness. At the beginning of this process, the back side of a CCD as fabricated on a full-thickness substrate is polished. Silicon nitride is deposited on the back side, opposite the bonding pads on the front side, in order to define a relatively thick frame. The portion of the CCD not covered by the frame is the portion to be thinned by etching.
Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications
Gao, Lan; Hill, K. W.; Bitter, M.; ...
2016-08-23
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Development of X-ray spectroscopic polarimetry with bent Si crystals and CFRP substrate
NASA Astrophysics Data System (ADS)
Iizuka, Ryo; Izumiya, Takanori; Tsuboi, Yohko
2016-07-01
The light from celestial objects includes four important quantities; images, time variation, energy spectrum, and polarization. In the field of X-ray astronomy, the capabilities of the former three have remarkably developed. On the other hand, the progress for the polarimetry is considerably delayed because of technical difficulties. In order to make a breakthrough in the field of X-ray polarimetry, we have developed a new type of optics for X-ray polarimetry. The system is collecting Bragg crystal with large area and very high sensitivity for the polarization dedicated to Fe-K lines. We adopt the 400 re ection of Si(100) crystals with high sensitivity for the polarization around Fe-K lines (6 7 keV), and bent the crystals with the wide X-ray band and high S/N ratio. Furthermore, to install small area of CCD to non-focal plane, it also has the spectroscopic capability with the better resolution than that of general X-ray CCD. Our previous development was to bent Si crystals to the cylindrical shape of circle and parabola with the DLC deposition. However, for the better optics for the X-ray polarimetry, the shape should be the paraboloid of revolution to collect X-rays with high S/N ratio. We searched for the method to bent the Si crystals to the shape of the paraboloid of revolution. We devised the method to mold the crystal and the CFRP substrate simultaneously pushed to the sophisticated foundation with the paraboloid of revolution. We developed the prototype of about 8 inch in radius of one-quater size. The crystals was also bent in the circumferential direction. Therefore, the image capability examined with optical parallel beam is 0.6 degree. In this thesis, we discussed the new design for X-ray spectroscopic polarimetry, the evaluation of image capability.
Visualization and void-fraction measurements in a molten metal bath
NASA Astrophysics Data System (ADS)
Baker, Michael Charles
In the experimental study of multiphase flow phenomena, including intense multiphase interactions, such as vapor explosions, the fluids are often opaque. To obtain images, suitable for quantitative analysis, of such phenomena requires the use of something other than visible light, such as x-rays or neutrons. In this study a unique flow visualization technique using a continuous high energy x-ray source to measure void fraction with good spatial and temporal resolution in pools of liquid metal has been developed. In the present experiments, 11 to 21 kg of molten tin at 360sp° C to 425sp° C is collected in a pre-heated stainless steel test section of rectangular cross section (18 x 10 cm). In the base of the test section are two injection ports for the introduction of nitrogen gas and water. Each port is composed of two coaxial tubes. Nitrogen gas flows through the annular region and either nitrogen gas or water flows through the central tube. The test section is imaged using a high energy x-ray source (Varian Linatron 3000A) with a peak energy of 9 MeV and a maximum on axis dose rate of 30 Gy/min. The transmitted x-rays are viewed with an imaging system composed of a high density silicate glass screen, a mirror, a lens coupled image intensifier, and a CCD camera. Two interchangeable CCD cameras allow for either high resolution imaging (1128 x 480 pixels) at a frame rate of 30 Hz or low resolution imaging (256 x 256 pixels) at a frame rate of 220 Hz. The collected images are digitally processed to obtain the chordal averaged local and volume integral void fractions. At the experimental conditions examined, estimated relative uncertainty using this measurement technique is 10% for worst case conditions. The upper bound on the relative systematic error due to void dynamics is estimated to be 20%. Reasonable agreement has been demonstrated between the data generated from the processed images, past integral void fraction experimental data, and a semi-empirical drift-flux correlation.
Advanced optical position sensors for magnetically suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Lafleur, S.
1985-01-01
A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.
VizieR Online Data Catalog: The populations of Carina. II. Abundances (Norris+, 2017)
NASA Astrophysics Data System (ADS)
Norris, J. E.; Yong, D.; Venn, K. A.; Gilmore, G.; Casagrande, L.; Dotter, A.
2017-08-01
Our selection of objects is based on unpublished CCD V, I observations that we have made of the Carina galaxy. High-resolution, moderate-S/N spectra were obtained of 39 Carina red giants, during 2007 November-2008 March, with the FLAMES system at the 8.2m Kueyen (VLT/UT2) telescope at Cerro Paranal. The spectra cover the wavelength ranges 4800-5750Å and 5840-6800Å. The resolving power was R=47000. Photometry has been obtained from several sources: P. B. Stetson provided us with homogenized BVI, M. J. Irwin furnished JHK from ESO VISTA survey photometry, and M. Gullieuszik supplied BVIJHKs. (12 data files).
A complex noise reduction method for improving visualization of SD-OCT skin biomedical images
NASA Astrophysics Data System (ADS)
Myakinin, Oleg O.; Zakharov, Valery P.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Khramov, Alexander G.
2014-05-01
In this paper we consider the original method of solving noise reduction problem for visualization's quality improvement of SD-OCT skin and tumors biomedical images. The principal advantages of OCT are high resolution and possibility of in vivo analysis. We propose a two-stage algorithm: 1) process of raw one-dimensional A-scans of SD-OCT and 2) remove a noise from the resulting B(C)-scans. The general mathematical methods of SD-OCT are unstable: if the noise of the CCD is 1.6% of the dynamic range then result distortions are already 25-40% of the dynamic range. We use at the first stage a resampling of A-scans and simple linear filters to reduce the amount of data and remove the noise of the CCD camera. The efficiency, improving productivity and conservation of the axial resolution when using this approach are showed. At the second stage we use an effective algorithms based on Hilbert-Huang Transform for more accurately noise peaks removal. The effectiveness of the proposed approach for visualization of malignant and benign skin tumors (melanoma, BCC etc.) and a significant improvement of SNR level for different methods of noise reduction are showed. Also in this study we consider a modification of this method depending of a specific hardware and software features of used OCT setup. The basic version does not require any hardware modifications of existing equipment. The effectiveness of proposed method for 3D visualization of tissues can simplify medical diagnosis in oncology.
Cometary activity in 2060 Chiron
NASA Technical Reports Server (NTRS)
Luu, Jane X.; Jewitt, David C.
1990-01-01
Results of a 2-yr (1988-90) investigation of cometary activity in 2060 Chiron based on CCD photometry and spectroscopy are reported. The photometry observations include a new rotational light curve of Chiron, a newly refined rotation period, recent developments of its long-term photometric behavior and surface brightness profiles, a deep image of the coma of Chiron, and narrowband images at wavelengths ranging from 3200 to 6840 A. The spectroscopic data include moderate resolution CCD spectra (10-20 A FWHM). Major results include the detection of impulsive brightening on a time scale of hours, evidence for a secular change in the blue portion of the reflectivity spectrum of the nucleus, no evidence for Rayleigh scattering in the near ultraviolet, and an upper limit of the column density of CO(+) ions in the coma.
NASA Astrophysics Data System (ADS)
Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.
2017-02-01
Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.
Seasonal and Interannual Variabilities in Tropical Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.
1999-01-01
This paper presents a detailed characterization of seasonal and interannual variability in tropical tropospheric column ozone (TCO). TCO time series are derived from 20 years (1979-1998) of total ozone mapping spectrometer (TOMS) data using the convective cloud differential (CCD) method. Our study identifies three regions in the tropics with distinctly different zonal characteristics related to seasonal and interannual variability. These three regions are the eastern Pacific, Atlantic, and western Pacific. Results show that in both the eastern and western Pacific seasonal-cycle variability of northern hemisphere (NH) TCO exhibits maximum amount during NH spring whereas largest amount in southern hemisphere (SH) TCO occurs during SH spring. In the Atlantic, maximum TCO in both hemispheres occurs in SH spring. These seasonal cycles are shown to be comparable to seasonal cycles present in ground-based ozonesonde measurements. Interannual variability in the Atlantic region indicates a quasi-biennial oscillation (QBO) signal that is out of phase with the QBO present in stratospheric column ozone (SCO). This is consistent with high pollution and high concentrations of mid-to-upper tropospheric O3-producing precursors in this region. The out of phase relation suggests a UV modulation of tropospheric photochemistry caused by the QBO in stratospheric O3. During El Nino events there is anomalously low TCO in the eastern Pacific and high values in the western Pacific, indicating the effects of convectively-driven transport of low-value boundary layer O3 (reducing TCO) and O3 precursors including H2O and OH. A simplified technique is proposed to derive high-resolution maps of TCO in the tropics even in the absence of tropopause-level clouds. This promising approach requires only total ozone gridded measurements and utilizes the small variability observed in TCO near the dateline. This technique has an advantage compared to the CCD method because the latter requires high-resolution footprint measurements of both reflectivity and total ozone in the presence of tropopause-level cloud tops.
30-lens interferometer for high energy x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G.
2016-07-27
We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined frommore » the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.« less
VizieR Online Data Catalog: Abundance ratio for 5 local stellar associations (Reddy+, 2015)
NASA Astrophysics Data System (ADS)
Reddy, A. B. S.; Lambert, D. L.
2018-01-01
In this paper, we have performed a homogeneous and a comprehensive abundance analysis using high-resolution spectroscopy. High-resolution and high signal-to-noise (S/N) spectra of the program stars were obtained during the nights of 2015 February 10-11 with the Robert G. Tull coude cross-dispersed echelle spectrograph (Tull et al. 1995PASP..107..251T) of the 2.7 m Harlan J. Smith reflector at the McDonald Observatory. We employed a Tektronix 2048x2048 24 μm pixel, backside illuminated and anti-reflection coated CCD as a detector and an R2 echelle grating with 52.67 grooves/mm with exposures centred at 5060 Å. (7 data files).
Betacam: a commercial approach to β-autoradiography
NASA Astrophysics Data System (ADS)
Cabello, J.; Holland, A.; Holland, K.; Bailey, A.; Kitchen, I.; Wells, K.
2009-02-01
Autoradiography is a well established imaging modality in Biology and Medicine. This aims to measure the location and concentration of labelled molecules within thin tissue sections. The brain is the most anatomically complex organ and identification of neuroanatomical structures is still a challenge particularly when small animals are used for pre-clinical trials. High spatial resolution and high sensitivity are therefore necessary. This work shows the performance and ability of a prototype commercial system, based on a Charged-Couple Device (CCD), to accurately obtain detailed functional information in brain Autoradiography. The sample is placed in contact with the detector enabling direct detection of β- particles in silicon, and the system is run in a range of quasi-room temperatures (17-22 °C) under stable conditions by using a precision temperature controller. Direct detection of β- particles with low energy down to ~5 keV from 3[H] is possible using this room temperature approach. The CCD used in this work is an E2V CCD47-20 frame-transfer device which removes the image smear arising in conventional full-frame imaging devices. The temporal stability of the system has been analyzed by exposing a set of 14[C] calibrated microscales for different periods of time, and measuring the stability of the resultant sensitivity and background noise. The thermal performance of the system has also been analyzed in order to demonstrate its capability of working in other life science applications, where higher working temperatures are required. Once the performance of the system was studied, a set of experiments with biological samples, labelled with typical β- radioisotopes, such as 3[H], has been carried out to demonstrate its application in life sciences.
Choice and maintenance of equipment for electron crystallography.
Mills, Deryck J; Vonck, Janet
2013-01-01
The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.
Shear wave elasticity imaging based on acoustic radiation force and optical detection.
Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing
2012-09-01
Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial resolution. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
1920x1080 pixel color camera with progressive scan at 50 to 60 frames per second
NASA Astrophysics Data System (ADS)
Glenn, William E.; Marcinka, John W.
1998-09-01
For over a decade, the broadcast industry, the film industry and the computer industry have had a long-range objective to originate high definition images with progressive scan. This produces images with better vertical resolution and much fewer artifacts than interlaced scan. Computers almost universally use progressive scan. The broadcast industry has resisted switching from interlace to progressive because no cameras were available in that format with the 1920 X 1080 resolution that had obtained international acceptance for high definition program production. The camera described in this paper produces an output in that format derived from two 1920 X 1080 CCD sensors produced by Eastman Kodak.
NASA Astrophysics Data System (ADS)
Sato, M.; Takahashi, Y.; Kudo, T.; Yanagi, Y.; Kobayashi, N.; Yamada, T.; Project, N.; Stenbaek-Nielsen, H. C.; McHarg, M. G.; Haaland, R. K.; Kammae, T.; Cummer, S. A.; Yair, Y.; Lyons, W. A.; Ahrns, J.; Yukman, P.; Warner, T. A.; Sonnenfeld, R. G.; Li, J.; Lu, G.
2011-12-01
The time evolution and spatial distributions of transient luminous events (TLEs) are the key parameters to identify the relationship between TLEs and parent lightning discharges, roles of electromagnetic pulses (EMPs) emitted by horizontal and vertical lightning currents in the formation of TLEs, and the occurrence condition and mechanisms of TLEs. Since the time scales of TLEs is typically less than a few milliseconds, new imaging technique that enable us to capture images with a high time resolution of < 1ms is awaited. By courtesy of "Cosmic Shore" Project conducted by Japan Broadcasting Corporation (NHK), we have carried out optical observations using a high-speed Image-Intensified (II) CMOS camera and a high-vision three-CCD camera from a jet aircraft on November 28 and December 3, 2010 in winter Japan. Using the high-speed II-CMOS camera, it is possible to capture images with 8,300 frames per second (fps), which corresponds to the time resolution of 120 us. Using the high-vision three-CCD camera, it is possible to capture high quality, true color images of TLEs with a 1920x1080 pixel size and with a frame rate of 30 fps. During the two observation flights, we have succeeded to detect 28 sprite events, and 3 elves events totally. In response to this success, we have conducted a combined aircraft and ground-based campaign of TLE observations at the High Plains in summer US. We have installed same NHK high-speed and high-vision cameras in a jet aircraft. In the period from June 27 and July 10, 2011, we have operated aircraft observations in 8 nights, and we have succeeded to capture TLE images for over a hundred events by the high-vision camera and succeeded to acquire over 40 high-speed images simultaneously. At the presentation, we will introduce the outlines of the two aircraft campaigns, and will introduce the characteristics of the time evolution and spatial distributions of TLEs observed in winter Japan, and will show the initial results of high-speed image data analysis of TLEs in summer US.
VizieR Online Data Catalog: Equivalent widths and atomic data for GCs (Lamb+, 2015)
NASA Astrophysics Data System (ADS)
Lamb, M. P.; Venn, K. A.; Shetrone, M. D.; Sakari, C. M.; Pritzl, B. J.
2017-11-01
Optical spectra were gathered with the High Resolution Spectrograph (HRS; Tull 1998, Proc. SPIE, 3355, 387) on the HET. The HRS was configured at resolution R=30000 with 2x2 pixel binning using the 2 arcsec fibre. The HRS splits the incoming beam on to two CCD chips, from which the spectral regions 6000-7000 Å (red chip) and 4800-5900 Å (blue chip) were extracted for this work. Two standard stars were also observed, RGB stars with previously published spectral analyses in each of the GCs M3 and M13. (2 data files).
Mosaic CCD method: A new technique for observing dynamics of cometary magnetospheres
NASA Technical Reports Server (NTRS)
Saito, T.; Takeuchi, H.; Kozuba, Y.; Okamura, S.; Konno, I.; Hamabe, M.; Aoki, T.; Minami, S.; Isobe, S.
1992-01-01
On April 29, 1990, the plasma tail of Comet Austin was observed with a CCD camera on the 105-cm Schmidt telescope at the Kiso Observatory of the University of Tokyo. The area of the CCD used in this observation is only about 1 sq cm. When this CCD is used on the 105-cm Schmidt telescope at the Kiso Observatory, the area corresponds to a narrow square view of 12 ft x 12 ft. By comparison with the photograph of Comet Austin taken by Numazawa (personal communication) on the same night, we see that only a small part of the plasma tail can be photographed at one time with the CCD. However, by shifting the view on the CCD after each exposure, we succeeded in imaging the entire length of the cometary magnetosphere of 1.6 x 10(exp 6) km. This new technique is called 'the mosaic CCD method'. In order to study the dynamics of cometary plasma tails, seven frames of the comet from the head to the tail region were twice imaged with the mosaic CCD method and two sets of images were obtained. Six microstructures, including arcade structures, were identified in both the images. Sketches of the plasma tail including microstructures are included.
Development and Characterization of a Chromotomosynthetic Hyperspectral Imaging System
2013-03-01
being taken piece-by-piece with photons not collected simultaneously in all spatial or spectral regions, rejecting energy that could contribute to the...alone define the spatial sampling resolution of the system. Incident photons excite the photocathode, which causes a release of electrons that are...create the photons that are incident on the CCD. The fiberoptic coupling between the photocathode and CCD array introduces a FWHM blur with
Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF
NASA Astrophysics Data System (ADS)
Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.
2017-10-01
A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989
NASA Astrophysics Data System (ADS)
Csorba, Illes P.
Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.
Linear CCD attitude measurement system based on the identification of the auxiliary array CCD
NASA Astrophysics Data System (ADS)
Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan
2015-10-01
Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.
Development of CCD imaging sensors for space applications, phase 1
NASA Technical Reports Server (NTRS)
Antcliffe, G. A.
1975-01-01
The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.
High efficiency microcolumnar Lu2O3:Eu scintillator thin film for hard X-ray microtomography
NASA Astrophysics Data System (ADS)
Marton, Z.; Bhandari, H. B.; Brecher, C.; Miller, S. R.; Singh, B.; Nagarkar, V. V.
2013-03-01
We have developed microstructured Lu2O3:Eu scintillator films capable of providing spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their extraordinary resolution, Lu2O3:Eu films simultaneously provide high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission, with intensity rivalling that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays, resulting in excessive measurement time and exposure to the specimen. Lu2O3:Eu would significantly improve that (99.9% @12 keV and 30% @ 70 keV). Important properties and features of our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapour deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, microcolumnar structure emitting 48000 photons/MeV whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films measuring 5-50μm in thickness as well as covering areas up to 5 × 5 cm2 which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT).
Large Format CMOS-based Detectors for Diffraction Studies
NASA Astrophysics Data System (ADS)
Thompson, A. C.; Nix, J. C.; Achterkirchen, T. G.; Westbrook, E. M.
2013-03-01
Complementary Metal Oxide Semiconductor (CMOS) devices are rapidly replacing CCD devices in many commercial and medical applications. Recent developments in CMOS fabrication have improved their radiation hardness, device linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large-format (e.g. 10 cm × 15 cm) CMOS devices with a pixel size of 100 μm × 100 μm are now becoming available that can be butted together on three sides so that very large area detector can be made with no dead regions. Like CCD systems our CMOS systems use a GdOS:Tb scintillator plate to convert stopping x-rays into visible light which is then transferred with a fiber-optic plate to the sensitive surface of the CMOS sensor. The amount of light per x-ray on the sensor is much higher in the CMOS system than a CCD system because the fiber optic plate is only 3 mm thick while on a CCD system it is highly tapered and much longer. A CMOS sensor is an active pixel matrix such that every pixel is controlled and readout independently of all other pixels. This allows these devices to be readout while the sensor is collecting charge in all the other pixels. For x-ray diffraction detectors this is a major advantage since image frames can be collected continuously at up 20 Hz while the crystal is rotated. A complete diffraction dataset can be collected over five times faster than with CCD systems with lower radiation exposure to the crystal. In addition, since the data is taken fine-phi slice mode the 3D angular position of diffraction peaks is improved. We have developed a cooled 6 sensor CMOS detector with an active area of 28.2 × 29.5 cm with 100 μm × 100 μm pixels and a readout rate of 20 Hz. The detective quantum efficiency exceeds 60% over the range 8-12 keV. One, two and twelve sensor systems are also being developed for a variety of scientific applications. Since the sensors are butt able on three sides, even larger systems could be built at reasonable cost.
Single-silicon CCD-CMOS platform for multi-spectral detection from terahertz to x-rays.
Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P
2017-11-15
Charge-coupled devices (CCDs) are a well-established imaging technology in the visible and x-ray frequency ranges. However, the small quantum photon energies of terahertz radiation have hindered the use of this mature semiconductor technological platform in this frequency range, leaving terahertz imaging totally dependent on low-resolution bolometer technologies. Recently, it has been shown that silicon CCDs can detect terahertz photons at a high field, but the detection sensitivity is limited. Here we show that silicon, complementary metal-oxide-semiconductor (CMOS) technology offers enhanced detection sensitivity of almost two orders of magnitude, compared to CCDs. Our findings allow us to extend the low-frequency terahertz cutoff to less than 2 THz, nearly closing the technological gap with electronic imagers operating up to 1 THz. Furthermore, with the silicon CCD/CMOS technology being sensitive to mid-infrared (mid-IR) and the x-ray ranges, we introduce silicon as a single detector platform from 1 EHz to 2 THz. This overcomes the present challenge in spatially overlapping a terahertz/mid-IR pump and x-ray probe radiation at facilities such as free electron lasers, synchrotron, and laser-based x-ray sources.
NASA Astrophysics Data System (ADS)
Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy
2016-10-01
Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.
A Solar Aspect System for the HEROES Mission
NASA Technical Reports Server (NTRS)
Christe, Steven; Shih, Albert; Rodriguez, Marcello; Gregory, Kyle; Cramer, Alexander; Edgerton, Melissa; Gaskin, Jessica; O'Connor, Brian; Sobey, Alexander
2014-01-01
A new Solar Aspect System (SAS) has been developed to provide the ability to observe the Sun on an existing balloon payload HERO (short for High Energy Replicated Optics). Developed under the HEROES program (High Energy Replicated Optics to Explore the Sun), the SAS aspect system provides solar pointing knowledge in pitch, yaw, and roll. The required precision of these measurements must be better than the HEROES X-ray resolution of approximately 20 arcsec Full Width at Half Maximum (FWHM) so as to not degrade the image resolution. The SAS consists of two separate systems: the Pitch-Yaw Aspect System (PYAS) and the Roll Aspect System (RAS). The PYAS functions by projecting an image of the Sun onto a screen with precision fiducials. A CCD camera takes an image of these fiducials, and an automated algorithm determines the location of the Sun as well as the location of the fiducials. The spacing between fiducials is unique and allows each to be identified so that the location of the Sun on the screen can be precisely determined. The RAS functions by imaging the Earth's horizon in opposite directions using a silvered prism imaged by a CCD camera. The design and first results of the performance of these systems during the HEROES flight which occurred in September 2013 are presented here.
Magnetic field sensing with nitrogen-vacancy color centers in diamond
NASA Astrophysics Data System (ADS)
Pham, Linh My
In recent years, the nitrogen-vacancy (NV) center has emerged as a promising magnetic sensor capable of measuring magnetic fields with high sensitivity and spatial resolution under ambient conditions. This combination of characteristics allows NV magnetometers to probe magnetic structures and systems that were previously inaccessible with alternative magnetic sensing technologies This dissertation presents and discusses a number of the initial efforts to demonstrate and improve NV magnetometry. In particular, a wide-field CCD based NV magnetic field imager capable of micron-scale spatial resolution is demonstrated; and magnetic field alignment, preferential NV orientation, and multipulse dynamical decoupling techniques are explored for enhancing magnetic sensitivity. The further application of dynamical decoupling control sequences as a spectral probe to extract information about the dynamics of the NV spin environment is also discussed; such information may be useful for determining optimal diamond sample parameters for different applications. Finally, several proposed and recently demonstrated applications which take advantage of NV magnetometers' sensitivity and spatial resolution at room temperature are presented, with particular focus on bio-magnetic field imaging.
Li, Guang; Luo, Shouhua; Yan, Yuling; Gu, Ning
2015-01-01
The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion.
2015-01-01
Background The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. Methods In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. Results By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. Conclusions The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion. PMID:25602532
VizieR Online Data Catalog: Solar-type stars from SDSS-III MARVELS. VI. HD 87646 (Ma+, 2016)
NASA Astrophysics Data System (ADS)
Ma, B.; Ge, J.; Wolszczan, A.; Muterspaugh, M. W.; Lee, B.; Henry, G. W.; Schneider, D. P.; Martin, E. L.; Niedzielski, A.; Xie, J.; Fleming, S. W.; Thomas, N.; Williamson, M.; Zhu, Z.; Agol, E.; Bizyaev, D.; da Costa, L. N.; Jiang, P.; Fiorenzano, A. F. M.; Hernandez, J. I. G.; Guo, P.; Grieves, N.; Li, R.; Liu, J.; Mahadevan, S.; Mazeh, T.; Nguyen, D. C.; Paegert, M.; Sithajan, S.; Stassun, K.; Thirupathi, S.; van Eyken, J. C.; Wan, X.; Wang, J.; Wisniewski, J. P.; Zhao, B.; Zucker, S.
2016-11-01
We have obtained a total of 16 observations of HD87646 using the W.M. Keck Exoplanet Tracker (KeckET) from 2006 December to 2007 June. The radial velocities obtained are listed in Table1. The KeckET instrument was constructed in 2005 August-2006 February with support from the Keck Foundation. It was coupled with a wide field Sloan Digital Sky Survey telescope (SDSS) and used for the pilot Multi-Object APO RV Exoplanet Large-Area Survey (MARVELS). This is the sixth paper in this series, examining the low-mass companions around solar-type stars from the SDSS-III MARVELS survey (Wisniewski et al. 2012, Cat. J/AJ/143/107; Fleming et al. 2012AJ....144...72F; Ma et al. 2013AJ....145...20M; Jiang et al. 2013AJ....146...65J; De Lee et al. 2013AJ....145..155D). The KeckET instrument consists of eight subsystems-a multi-object fiber feed, an iodine cell, a fixed-delay interferometer system, a slit, a collimator, a grating, a camera, and a 4k*4k CCD detector. In addition, it contains four auxiliary subsystems: the interferometer control, an instrument calibration system, a photon flux monitoring system, and a thermal probe and control system. The instrument is fed with 60 fibers with 200μm core diameters, which are coupled to 180μm core diameter short fibers from the SDSS telescope, corresponding to 3arcsec on the sky at f/5. The resolving power for the spectrograph is R=5100, and the wavelength coverage is ~900Å, centered at 5400Å. KeckET has one spectrograph and one 4k*4k CCD camera that captures one of the two interferometer outputs, and has a 5.5% detection efficiency from the telescope to the detector without the iodine cell under the typical APO seeing conditions (~1.5arcsec seeing). The CCD camera records fringing spectra from 59 objects in a single exposure. Subsequent observations were performed using the Exoplanet Tracker (ET) instrument at Kitt Peak National Observatory (KPNO). Initial follow-up was performed in 2007 November. Additional data points were obtained at KPNO in 2008 January, February, and May. The integration time was 35-40 minutes in 2007 November and 20 minutes in 2008 January, February, and May. A total of 40 data points were obtained from 2007 November to 2008 May and are also listed in Table1. Follow-up observations of HD87646 were conducted with the fiber-fed High Resolution Spectrograph (HRS) of the Hobby Eberley telescope (HET). The observations were executed in queue scheduled mode and used a 2 arcsec fiber, with the HRS slit set, to yield a spectral resolution of R~60000. A total of 29 data points were obtained between 2007 December and 2008 March. The HRS spectra consisted of 46 echelle orders recorded on the blue CCD (407-592nm) and 24 orders on the red one (602-784nm). The spectral data used for RV measurements were extracted from the 17 orders (505-592nm) in which the I2 cell superimposed strong absorption lines. The radial velocities obtained are also provided in Table1. HD87646 was selected as an radial velocity survey target by the Multi-object APO RV Exoplanet Large-area Survey (MARVELS) preselection criterion. The star has been monitored at 23 epochs using the MARVELS instrument mounted on the SDSS 2.5m Telescope at APO between 2009 May and 2011 December. The MARVELS instrument is a fiber-fed dispersed fixed-delay interferometer instrument capable of observing 60 objects simultaneously and covers a wavelength range of 5000-5700Å with a resolution of R~12000. The final differential radial velocity products are included in the SDSS Data Release 12 (Alam et al. 2015ApJS..219...12A) and are presented in Table1. We have obtained additional observations of HD87646 with a fiber-fed echelle spectrograph situated at the 2m Automatic Spectroscopic Telescope (AST) in the Fairborn Observatory. Through 2011 June, the detector was a 2048*4096 SITe ST-002A CCD with 15μm pixels. The AST echelle spectrograph has 21 orders that cover the wavelength range of 4920-7100Å, and has an average resolution of 0.17Å. In the summer of 2011, the SITe CCD detector and dewar were replaced with a Fairchild 486 CCD having 4K*4K 15μm pixels, which required a new readout electronics package, and a new dewar with a Cryotiger refrigeration system. The echelle spectrograms that were obtained with this new detector have 48 orders, covering the wavelength range of 3800-8260Å. A total of 135 data points were obtained from 2009 March through 2013 October and are listed in Table1. (1 data file).
Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng
2017-06-20
The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan, E-mail: lgao@pppl.gov; Hill, K. W.; Bitter, M.
A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ{sub 2} rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p)more » and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
A CCD experimental platform for large telescope in Antarctica based on FPGA
NASA Astrophysics Data System (ADS)
Zhu, Yuhua; Qi, Yongjun
2014-07-01
The CCD , as a detector , is one of the important components of astronomical telescopes. For a large telescope in Antarctica, a set of CCD detector system with large size, high sensitivity and low noise is indispensable. Because of the extremely low temperatures and unattended, system maintenance and software and hardware upgrade become hard problems. This paper introduces a general CCD controller experiment platform, using Field programmable gate array FPGA, which is, in fact, a large-scale field reconfigurable array. Taking the advantage of convenience to modify the system, construction of driving circuit, digital signal processing module, network communication interface, control algorithm validation, and remote reconfigurable module may realize. With the concept of integrated hardware and software, the paper discusses the key technology of building scientific CCD system suitable for the special work environment in Antarctica, focusing on the method of remote reconfiguration for controller via network and then offering a feasible hardware and software solution.
Mei, Liang; Guan, Peng; Kong, Zheng
2017-10-02
Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.
NASA Astrophysics Data System (ADS)
Boutet, J.; Debourdeau, M.; Laidevant, A.; Hervé, L.; Dinten, J.-M.
2010-02-01
Finding a way to combine ultrasound and fluorescence optical imaging on an endorectal probe may improve early detection of prostate cancer. A trans-rectal probe adapted to fluorescence diffuse optical tomography measurements was developed by our team. This probe is based on a pulsed NIR laser source, an optical fiber network and a time-resolved detection system. A reconstruction algorithm was used to help locate and quantify fluorescent prostate tumors. In this study, two different kinds of time-resolved detectors are compared: High Rate Imaging system (HRI) and a photon counting system. The HRI is based on an intensified multichannel plate and a CCD Camera. The temporal resolution is obtained through a gating of the HRI. Despite a low temporal resolution (300ps), this system allows a simultaneous acquisition of the signal from a large number of detection fibers. In the photon counting setup, 4 photomultipliers are connected to a Time Correlated Single Photon Counting (TCSPC) board, providing a better temporal resolution (0.1 ps) at the expense of a limited number of detection fibers (4). At last, we show that the limited number of detection fibers of the photon counting setup is enough for a good localization and dramatically improves the overall acquisition time. The photon counting approach is then validated through the localization of fluorescent inclusions in a prostate-mimicking phantom.
Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570
Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).
USDA-ARS?s Scientific Manuscript database
The high spatial resolution of QuickBird satellite images makes it possible to show spatial variability at fine details. However, the effect of topography-induced illumination variations become more evident, even in moderately sloped areas. Based on a high resolution (1 m) digital elevation model ge...
Swap intensified WDR CMOS module for I2/LWIR fusion
NASA Astrophysics Data System (ADS)
Ni, Yang; Noguier, Vincent
2015-05-01
The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.
Real-Time Label-Free Detection of Suspicious Powders Using Noncontact Optical Methods
2013-11-05
energy in a small, 1 pound, low power consumption package; and 2) new technology resistive gate linear CCD array detectors developed by Hamamatsu Corp...as a wide range of possible interferent or confusant organic materials such as powdered sugar, granulate sugar, fruit pectin, flower, corn starch ...resolution, room temperature, resistive gate linear CCD array, the BRANE sensor SWAP decreases along with a decrease in sensitivity, but the information
Cometary activity in 2060 Chiron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luu, J.X.; Jewitt, D.C.
Results of a 2-yr (1988-90) investigation of cometary activity in 2060 Chiron based on CCD photometry and spectroscopy are reported. The photometry observations include a new rotational light curve of Chiron, a newly refined rotation period, recent developments of its long-term photometric behavior and surface brightness profiles, a deep image of the coma of Chiron, and narrowband images at wavelengths ranging from 3200 to 6840 A. The spectroscopic data include moderate resolution CCD spectra (10-20 A FWHM). Major results include the detection of impulsive brightening on a time scale of hours, evidence for a secular change in the blue portionmore » of the reflectivity spectrum of the nucleus, no evidence for Rayleigh scattering in the near ultraviolet, and an upper limit of the column density of CO(+) ions in the coma. 46 refs.« less
IDSAC-IUCAA digital sampler array controller
NASA Astrophysics Data System (ADS)
Chattopadhyay, Sabyasachi; Chordia, Pravin; Ramaprakash, A. N.; Burse, Mahesh P.; Joshi, Bhushan; Chillal, Kalpesh
2016-07-01
In order to run the large format detector arrays and mosaics that are required by most astronomical instruments, readout electronic controllers are required which can process multiple CCD outputs simultaneously at high speeds and low noise levels. These CCD controllers need to be modular and configurable, should be able to run multiple detector types to cater to a wide variety of requirements. IUCAA Digital Sampler Array Controller (IDSAC), is a generic CCD Controller based on a fully scalable architecture which is adequately flexible and powerful enough to control a wide variety of detectors used in ground based astronomy. The controller has a modular backplane architecture that consists of Single Board Controller Cards (SBCs) and can control up to 5 CCDs (mosaic or independent). Each Single Board Controller (SBC) has all the resources to a run Single large format CCD having up to four outputs. All SBCs are identical and are easily interchangeable without needing any reconfiguration. A four channel video processor on each SBC can process up to four output CCDs with or without dummy outputs at 0.5 Megapixels/Sec/Channel with 16 bit resolution. Each SBC has a USB 2.0 interface which can be connected to a host computer via optional USB to Fibre converters. The SBC uses a reconfigurable hardware (FPGA) as a Master Controller. IDSAC offers Digital Correlated Double Sampling (DCDS) to eliminate thermal kTC noise. CDS performed in Digital domain (DCDS) has several advantages over its analog counterpart, such as - less electronics, faster readout and easier post processing. It is also flexible with sampling rate and pixel throughput while maintaining the core circuit topology intact. Noise characterization of the IDSAC CDS signal chain has been performed by analytical modelling and practical measurements. Various types of noise such as white, pink, power supply, bias etc. has been considered while creating an analytical noise model tool to predict noise of a controller system like IDSAC. Several tests are performed to measure the actual noise of IDSAC. The theoretical calculation matches very well with practical measurements within 10% accuracy.
An Efficient Image Compressor for Charge Coupled Devices Camera
Li, Jin; Xing, Fei; You, Zheng
2014-01-01
Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977
NASA Astrophysics Data System (ADS)
Kredzinski, Lukasz; Connelly, Michael J.
2011-06-01
Optical Coherence Tomography (OCT) is a promising non-invasive imaging technology capable of carrying out 3D high-resolution cross-sectional images of the internal microstructure of examined material. However, almost all of these systems are expensive, requiring the use of complex optical setups, expensive light sources and complicated scanning of the sample under test. In addition most of these systems have not taken advantage of the competitively priced optical components available at wavelength within the main optical communications band located in the 1550 nm region. A comparatively simple and inexpensive full-field OCT system (FF-OCT), based on a superluminescent diode (SLD) light source and anti-stokes imaging device was constructed, to perform 3D cross-sectional imaging. This kind of inexpensive setup with moderate resolution could be easily applicable in low-level biomedical and industrial diagnostics. This paper involves calibration of the system and determines its suitability for imaging structures of biological tissues such as teeth, which has low absorption at 1550 nm.
NASA Astrophysics Data System (ADS)
Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.
2017-11-01
The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virgo, Mathew; Quigley, Kevin J.; Chemerisov, Sergey
A process is being developed for commercial production of the medical isotope Mo-99 through a photo-nuclear reaction on a Mo-100 target using a highpower electron accelerator. This process requires temperature monitoring of the window through which a high-current electron beam is transmitted to the target. For this purpose, we evaluated two near infrared technologies: the OMEGA Engineering iR2 pyrometer and the Ocean Optics Maya2000 spectrometer with infrared-enhanced charge-coupled device (CCD) sensor. Measuring in the near infrared spectrum, in contrast to the long-wavelength infrared spectrum, offers a few immediate advantages: (1) ordinary glass or quartz optical elements can be used; (2)more » alignment can be performed without heating the target; and (3) emissivity corrections to temperature are typically less than 10%. If spatial resolution is not required, the infrared pyrometer is attractive because of its accuracy, low cost, and simplicity. If spatial resolution is required, we make recommendations for near-infrared imaging based on our data augmented by calculations« less
NASA Technical Reports Server (NTRS)
Kelley, Richard L.
2004-01-01
The Astro-E2 observatory is a rebuild of the original Astro-E observatory that was lost during launch in February 2000. It is scheduled for launch into low earth orbit on a Japanese M-V rocket in early 2005. The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, is developing the observatory with major contributions from the US. The three instruments on the observatory are the high-resolution x-ray spectrometer (the XRS) featuring a 30-pixel x-ray microcalorimeter array, a set of four CCD cameras (the XIS) and a combination photo-diode/scintillator detector system (the HXD) that will extend the band pass up to nearly 700 keV. A significant feature of Astro-E2 is that all of the instruments are coaligned and operated simultaneously. With its high spectral resolution and collecting area for spectroscopy above 1 keV, Astro-E2 should enable major discovery space and pioneer new technology for use in space. Prime areas for investigation are supernova remnants, active galaxies and the measurement of black hole properties via relativistically-broadened Fe-K emission galaxies. A number of enhancements have been made for the Astro-E2/XRS, including a higher resolution microcalorimeter array, ii mechanical cooler for longer cryogen life, and an improved in-flight calibration system. The Astro-E2/XIS has also been improved to include two back-side-illuminated CCDs to enhance the low energy response. Improvements have also been made to the x-ray mirrors used for both the XRS and XIS to sharpen the point spread function and reduce the effects of stray light. In this talk we will present the essential features of Astro-E2, paying particular attention to the enhancements, and describe the major scientific strengths of the observatory.
Development of a high spatial resolution neutron imaging system and performance evaluation
NASA Astrophysics Data System (ADS)
Cao, Lei
The combination of a scintillation screen and a charged coupled device (CCD) camera is a digitized neutron imaging technology that has been widely employed for research and industry application. The maximum of spatial resolution of scintillation screens is in the range of 100 mum and creates a bottleneck for the further improvement of the overall system resolution. In this investigation, a neutron sensitive micro-channel plate (MCP) detector with pore pitch of 11.4 mum is combined with a cooled CCD camera with a pixel size of 6.8 mum to provide a high spatial resolution neutron imaging system. The optical path includes a high reflection front surface mirror for keeping the camera out of neutron beam and a macro lens for achieving the maximum magnification that could be achieved. All components are assembled into an aluminum light tight box with heavy radiation shielding to protect the camera as well as to provide a dark working condition. Particularly, a remote controlled stepper motor is also integrated into the system to provide on-line focusing ability. The best focus is guaranteed through use of an algorithm instead of perceptual observation. An evaluation routine not previously utilized in the field of neutron radiography is developed in this study. Routines like this were never previously required due to the lower resolution of other systems. Use of the augulation technique to obtain presampled MTF addresses the problem of aliasing associated with digital sampling. The determined MTF agrees well with the visual inspection of imaging a testing target. Other detector/camera combinations may be integrated into the system and their performances are also compared. The best resolution achieved by the system at the TRIGA Mark II reactor at the University of Texas at Austin is 16.2 lp/mm, which is equivalent to a minimum resolvable spacing of 30 mum. The noise performance of the device is evaluated in terms of the noise power spectrum (NPS) and the detective quantum efficiency (DQE) is calculated with above determined MTF and NPS.
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.
Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.
NASA Astrophysics Data System (ADS)
Tyas, Luke Martin Graham
2012-05-01
SALT HRS (Southern African Large Telescope High Resolution Échelle Spectrograph) is a high-resolution, high-efficiency spectrograph for the 11m SALT telescope in Sutherland, South Africa. The initial optical design work was performed at the University of Canterbury, New Zealand. Revisions to the concept, the mechanical design, manufacture, assembly and testing have been handled by the Centre for Advanced Instrumentation, at Durham University in the United Kingdom. SALT HRS is a fibre-fed échelle grating spectrograph with four operational modes: low-, medium- and high-resolution and high-stability modes, having spectral resolutions of R≈16000, 37000, 67000 and 67000 respectively over a wavelength range of 370-890nm. The instrument is of a dual channel, 'white pupil' design, in which the primary mirror acts to collimate light onto a single R4 échelle grating, and also to focus dispersed light to an intermediate focus. A dichroic beam-splitter separates the dispersed light into two separate spectral channels. Spherical pupil mirrors transfer the separated beams via a fold mirror to two wavelength-specific volume-phase holographic gratings (VPHGs) used as cross-dispersers. Cross-dispersed spectra are then imaged by two fully dioptric camera systems onto optimized CCD detectors. This thesis presents the results of the laboratory testing and specification of several critical sub-systems of SALT HRS, as well as the development of key software tools for the design verification and operation at the telescope. In Chapter 1 we first review the technical development of high-resolution spectroscopy and its specific implementation in SALT HRS. In Chapter 2 we develop a comprehensive throughput model of the entire system based on a combination of as-built performance and specific throughput measurements in the laboratory. This is used to make some specific predictions for the on-sky performance of SALT HRS and the magnitude limits for science targets. We also present a graphical exposure time calculator based on these measurements which can be used by an astronomer to plan their observations with SALT HRS. Chapter 3 contains a detailed treatise on the optical fibre system of SALT HRS. Considerations for the use of optical fibres in astronomy are provided, as are details of an optional double scrambler, and the various instrument fibre modes. Extensive measurements of focal ratio degradation (FRD) are also presented, with testing of input beam speed; wavelength; fibre bending; variable pupil mirror illumination; and vacuum tank pressure dependency. The systems for fibre management are reviewed, as is the fibre bundle assembly process. Testing of two further sub-systems is described in Chapter 4. Firstly the long-term stability of the mirror mounting mechanisms is determined. The advantages of cross-dispersion of échelle spectra using volume-phase holographic gratings are then discussed, and the results of diffraction efficiency measurements are given for both red and blue channel gratings. Modern CCD technologies are examined in Chapter 5, and the blue detector is experimentally characterized using photon transfer and quantum efficiency curves. It is also used for an investigation into cosmic ray events in CCDs. Results from shielding the detector using lead are described, as is an attempt to distinguish the source of the events based on their morphology. Finally, Chapter 6 deals with the handling of data produced by SALT HRS. Methods of wavelength calibration of the spectra are discussed, including the use of Thorium-Argon lamps and an iodine absorption cell. The implementation of a Python based quick-look data reduction pipeline is reviewed, with a description of the processes performed. A summary of the thesis is given in Chapter 7.
Wang, Weibo; Wang, Chao; Liu, Jian; Tan, Jiubin
2016-01-01
We present an approach for an initial configuration design based on obscuration constraint and on-axis Taylor series expansion to realize the design of long working distance microscope (numerical aperture (NA) = 0.13 and working distance (WD) = 525 mm) with a low obscuration aspherical Schwarzschild objective in wide-spectrum imaging (λ = 400–900 nm). Experiments of the testing on the resolution target and inspection on United States Air Force (USAF) resolution chart and a line charge-coupled device (CCD) (pixel size of 14 μm × 56 μm) with different wavelength light sources (λ = 480 nm, 550 nm, 660 nm, 850 nm) were implemented to verify the validity of the proposed method. PMID:27834874
The Time-Dependent Sensitivity of the MAMA and CCD Long-Slit Gratings
NASA Astrophysics Data System (ADS)
Holland, Stephen T.; Aloisi, Alessandra; Bostroem, Azalee; Oliveria, Cristina; Proffitt, Charles
2014-12-01
We present the results of observing flux standard stars used to determine trends in the sensitivities of the five STIS low-resolution, long-slit gratings between 1997 and 2013. Also, the assumption that the sensitivity trends for the medium-resolution and echelle gratings are the same as those for the corresponding low-resolution gratings is tested.
NASA Technical Reports Server (NTRS)
1997-01-01
Two highly fractured craters are visible in this high resolution image of Jupiter's moon, Ganymede. NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. North is to the top of the picture and the sun illuminates the surface from the southeast. The two craters in the center of the image lie in the ancient dark terrain of Marius Regio, at 40 degrees latitude and 201 degrees longitude, at the border of a region of bright grooved terrain known as Byblus Sulcus (the eastern portion of which is visible on the left of this image). Pervasive fracturing has occurred in this area that has completely disrupted these craters and destroyed their southern and western walls. Such intense fracturing has occurred over much of Ganymede's surface and has commonly destroyed older features. The image covers an area approximately 26 kilometers (16 miles) by 18 kilometers (11 miles) across at a resolution of 86 meters (287 feet) per picture element. The image was taken on September 6, 1996 by the solid state imaging (CCD) system on NASA's Galileo spacecraft.
The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula
NASA Technical Reports Server (NTRS)
Weisskopf, M.; Hester, J. J.; Tennant, A. F.; Elsner, R. F.; Schulz, N. S.; Marshall, H. L.; Karovska, M.; Nichols, J. S.; Swartz, D. A.; Kolodziejczak, J. J.
2000-01-01
The Chandra X-ray Observatory observed the Crab Nebula and Pulsar During orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) read-out by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure, at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the Nebula.
Massive Binaries in the R 136 Cluster
NASA Astrophysics Data System (ADS)
Morrell, N. I.; Massey, P.; Degioia-Eastwood, K.; Penny, L. R.; Gies, D. R.; Tsitkin, Y.; Darnell, E.
2008-08-01
As part of a large project aimed to the discovery and follow up of massive eclipsing systems in young clusters and stellar associations, we have obtained V-band CCD imaging of the R136 cluster in 30 Doradus, and high resolution spectroscopy of several among the variable stars we found there. Here we summarize our preliminary analysis of light and radial velocity variations for 4 massive multiple systems in the R136 cluster.
The AstroSat Production Line: From AstroSat 100 to AstroSat 1000
NASA Astrophysics Data System (ADS)
Maliet, E.; Pawlak, D.; Koeck, C.; Beaufumé, E.
2008-08-01
From the late 90s onward, Astrium Satellites has developed and improved several classes of high resolution optical Earth Observation satellites. The resulting product line ranges from micro-satellites (about 120 kg) type to the large satellites (in the range of 1 200 kg). They all make uses of state of the art technologies for optical payloads, as well as for avionics. Several classes of platforms have thus been defined and standardised: AstroSat 100 for satellites up to 150 kg, allowing affordable but fully operational missions, AstroSat 500 for satellites up to 800 kg, allowing complex high resolution missions, and AstroSat 1000 for satellites up to 1 200 kg, providing very high resolution and outstanding imaging and agility capabilities. A new class, AstroSat 250, has been developed by Astrium Satellites, and is now proposed, offering a state-of-the-art 3-axis agile platform for high- resolution missions, with a launch mass below 550 kg. The Astrosat platforms rely on a centralised architecture avionics based on an innovative AOCS hybridising of measurements from GPS, stellar sensors and inertial reference unit. Operational safety has been emphasised through thruster free safe modes. All optical payloads make use of all Silicon Carbide (SiC) telescopes. High performance and low consumption linear CCD arrays provide state of the art images. The satellites are designed for simple flight operations, large data collection capability, and large versatility of payload and missions. They are adaptable to a large range of performances. Astrium satellites have already been selected by various customers worldwide.
NASA Astrophysics Data System (ADS)
Cong, Lin-xiao; Huang, Min; Cai, Qi-sheng
2017-10-01
In this paper, a multi-line interferogram stitching method based on orthogonal shear using the Wollaston prism(WP) was proposed with a 2D projection interferogram recorded through the rotation of CCD, making the spectral resolution of Fourier-Transform spectrometer(FTS) of a limited spatial size increase by at least three times. The fringes on multi-lines were linked with the pixels of equal optical path difference (OPD). Ideally, the error of sampled phase within one pixel was less than half the wavelength, ensuring consecutive values in the over-sampled dimension while aliasing in another. In the simulation, with the calibration of 1.064μm, spectral lines at 1.31μm and 1.56μm of equal intensity were tested and observed. The result showed a bias of 0.13% at 1.31μm and 1.15% at 1.56μm in amplitude, and the FWHM at 1.31μm reduced from 25nm to 8nm after the sample points increased from 320 to 960. In the comparison of reflectance spectrum of carnauba wax within near infrared(NIR) band, the absorption peak at 1.2μm was more obvious and zoom of the band 1.38 1.43μm closer to the reference, although some fluctuation was in the short-wavelength region arousing the spectral crosstalk. In conclusion, with orthogonal shear based on the rotation of the CCD relative to the axis of WP, the spectral resolution of static FTS was enhanced by the projection of fringes to the grid coordinates and stitching the interferograms into a larger OPD, which showed the advantages of cost and miniaturization in the space-constrained NIR applications.
The CTIO Acquisition CCD-TV camera design
NASA Astrophysics Data System (ADS)
Schmidt, Ricardo E.
1990-07-01
A CCD-based Acquisition TV Camera has been developed at CTIO to replace the existing ISIT units. In a 60 second exposure, the new Camera shows a sixfold improvement in sensitivity over an ISIT used with a Leaky Memory. Integration times can be varied over a 0.5 to 64 second range. The CCD, contained in an evacuated enclosure, is operated at -45 C. Only the image section, an area of 8.5 mm x 6.4 mm, gets exposed to light. Pixel size is 22 microns and either no binning or 2 x 2 binning can be selected. The typical readout rates used vary between 3.5 and 9 microseconds/pixel. Images are stored in a PC/XT/AT, which generates RS-170 video. The contrast in the RS-170 frames is automatically enhanced by the software.
NASA Astrophysics Data System (ADS)
Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark
2010-03-01
Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.
Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark
2010-01-01
Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2–3.6% for PRESAGE®, and 1.6–3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence. PMID:20134082
Chandra/ACIS Spectra of the 30 Doradus Star Forming Region
NASA Astrophysics Data System (ADS)
Townsley, L.; Broos, P.; Feigelson, E.; Burrows, D.; Chu, Y.-H.; Garmire, G.; Griffiths, R.; Maeda, Y.; Tsuboi, Y.
2000-12-01
We present the first high-spatial-resolution X-ray spectra of constituents of the 30 Doradus star-forming region in the Large Magellanic Cloud, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. Our continuing efforts to remove the spectral effects of CCD charge transfer inefficiency (CTI) due to radiation damage are described. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level by ACIS, allowing spectral analysis of several constituents. Other Wolf-Rayet stars and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the plerion SNR recently shown by X-ray observations to contain a 16-msec pulsar (Marshall et al., ApJ 499, L179). The spectrally soft superbubble structures seen by ROSAT are visible in the Chandra image; a composite spectrum, improved with CTI correction, is presented. Support for this effort was provided by NASA contract NAS8-38252 to Gordon Garmire, the ACIS Principal Investigator.
NASA Technical Reports Server (NTRS)
Currie, D. G.
1982-01-01
Research toward practical implementation of the Intensified Charge Coupled Device (ICCD) as a photon-counting array detector for astronomy is reported. The first area of concentration was to determine the rate and extent of the lifetime limiting damage to the CCD caused by the impact of high energy electrons, and to find whether various methods of annealing the damage were productive. The second effort was to determine the performance of the ICCD in a photon-counting mode to produce extended dynamic range measurements. There are two main effects that appear as the practical results of the electron damage to the CCD. One is an increase in the leakage current, i.e., the normal thermal generation of charge carriers in the silicon that provides a background dark signal that adds to the light produced image. In an undamaged CCD, the leakage current is usually fairly uniform across the photosensitive area of the silicon chip, with the exception of various bright pixels which have an anomalous leakage current well above the overall level.
Spectroscopic Study of a Pulsed High-Energy Plasma Deflagration Accelerator
NASA Astrophysics Data System (ADS)
Loebner, Keith; Underwood, Thomas; Mouratidis, Theodore; Cappelli, Mark
2015-11-01
Observations of broadened Balmer lines emitted by a highly-ionized transient plasma jet are presented. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged broadening data for a complete cross section of the plasma jet, and the data is Abel inverted to derive the radial plasma density distribution. This measurement is performed over narrow gate widths and at multiple axial positions to provide high spatial and temporal resolution. A streak camera coupled to a spectrometer is used to obtain continuous-time broadening data over the entire duration of the discharge event (10-50 microseconds). Analyses of discharge characteristics and comparisons with previous work are discussed. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program, as well as the National Defense Science Engineering Graduate Fellowship.
Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data ...
Hanada, Takashi; Katsuta, Shoichi; Yorozu, Atsunori; Maruyama, Koichi
2009-01-01
When using a HDR remote afterloading brachytherapy unit, results of treatment can be greatly influenced by both source position and treatment time. The purpose of this study is to obtain information on the source of the HDR remote afterloading unit, such as its position and time structure, with the use of a simple system consisting of a plastic scintillator block and a charge‐coupled device (CCD) camera. The CCD camera was used for recording images of scintillation luminescence at a fixed rate of 30 frames per second in real time. The source position and time structure were obtained by analyzing the recorded images. For a preset source‐step‐interval of 5 mm, the measured value of the source position was 5.0±1.0mm, with a pixel resolution of 0.07 mm in the recorded images. For a preset transit time of 30 s, the measured value was 30.0±0.6 s, when the time resolution of the CCD camera was 1/30 s. This system enabled us to obtain the source dwell time and movement time. Therefore, parameters such as I192r source position, transit time, dwell time, and movement time at each dwell position can be determined quantitatively using this plastic scintillator‐CCD camera system. PACS number: 87.53.Jw
Performance of the CHIRON high-resolution Echelle spectrograph
NASA Astrophysics Data System (ADS)
Schwab, Christian; Spronck, Julien F. P.; Tokovinin, Andrei; Szymkowiak, Andrew; Giguere, Matthew; Fischer, Debra A.
2012-09-01
CHIRON is a fiber-fed Echelle spectrograph with observing modes for resolutions from 28,000 to 120,000, built primarily for measuring precise radial velocities (RVs). We present the instrument performance as determined during integration and commissioning. We discuss the PSF, the effect of glass inhomogeneity on the cross-dispersion prism, temperature stabilization, stability of the spectrum on the CCD, and detector characteristics. The RV precision is characterized, with an iodine cell or a ThAr lamp as the wavelength reference. Including all losses from the sky to the detector, the overall efficiency is about 6%; the dominant limitation is coupling losses into the fiber due to poor guiding.
NASA Astrophysics Data System (ADS)
Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon
2012-09-01
A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.
Arcus: An Overview of the Soft X-ray Grating Explorer
NASA Astrophysics Data System (ADS)
Smith, Randall; Arcus Collaboration
2018-01-01
The Arcus MIDEX Explorer, which NASA selected for a Phase A study in August 2017, provides high-resolution soft X-ray spectroscopy in the 12-50Å bandpass with unprecedented sensitivity. Its capabilities include spectral resolution >2500 and effective areas in the range 200-600 cm^2. The three top science goals for Arcus are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, groups, and clusters, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback and (3) to explore how stars, circumstellar disks and exoplanet atmospheres form and evolve. Arcus relies upon the same 12m focal length grazing-incidence silicon pore X-ray optics (SPO) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest and mission operations are straightforward, as most observations will be long (~100 ksec), uninterrupted, and pre-planned.
Instruments at the Lowell Observatory Discovery Channel Telescope (DCT)
NASA Astrophysics Data System (ADS)
Jacoby, George H.; Bida, Thomas A.; Fischer, Debra; Horch, Elliott; Kutyrev, Alexander; Mace, Gregory N.; Massey, Philip; Roe, Henry G.; Prato, Lisa A.
2017-01-01
The Lowell Observatory Discovery Channel Telescope (DCT) has been in full science operation for 2 years (2015 and 2016). Five instruments have been commissioned during that period, and two additional instruments are planned for 2017. These include:+ Large Monolithic Imager (LMI) - a CCD imager (12.6 arcmin FoV)+ DeVeny - a general purpose optical spectrograph (2 arcmin slit length, 10 grating choices)+ NIHTS - a low resolution (R=160) YJHK spectrograph (1.3 arcmin slit)+ DSSI - a two-channel optical speckle imager (5 arcsec FoV)+ IGRINS - a high resolution (45,000) HK spectrograph, on loan from the University of Texas.In the upcoming year, instruments will be delivered from the University of Maryland (RIMAS - a YJHK imager/spectrograph) and from Yale University (EXPRES - a very high resolution stabilized optical echelle for PRV).Each of these instruments will be described, along with their primary science goals.
NASA Technical Reports Server (NTRS)
Tull, Robert G.; Macqueen, Phillip J.; Sneden, Christopher; Lambert, David L.
1995-01-01
A new high-resolution cross-dispersed echelle spectrometer has been installed at the coude focus of the McDonald Observatory 2.7-m telescope. Its primary goal was simultaneously to gather spectra over as much of the spectral range 3400 A to 1 micrometer as practical, at a resolution R identical with lambda/Delta lambda which approximately = 60,000 with signal-to-noise ratio of approximately 100 for stars down to magnitude 11, using 1-h exposures. In the instrument as built, two exposures are all that are needed to cover the full range. Featuring a white-pupil design, fused silica prism cross disperser, and folded Schmidt camera with a Tektronix 2048x2048 CCD used at either of two foci, it has been in regularly scheduled operation since 1992 April. Design details and performance are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Dor, E.; Saaroni, H.; Ochana, D.
1996-10-01
In this study we examined the capability of a laboratory infrared video camera for use in remote sensing of the environment. The instrument used, INFRAMETRICS 760, was mounted onboard a Bell 206 helicopter. Under the flight conditions examined, the radiometer proved itself to be very stable and produced high-quality thermal images in a real-time mode. We studied two different environmental aspects, as follows: (1) Urban heat island of the most dense city in Israel, Tel-Aviv- and (2) lithological distribution of a well-known mineralogical site in Israel, Makhtesh Ramon. The radiometer used in both studies was able to produce a temperaturemore » presentation, rather than a gray scale from an altitude of 7,000 and 10,000 feet and at 70 knots air speed. The instrument produced a high-quality set of data in terms of signal-to-noise, stability, temperature accuracy and spatial resolution. In the Tel-Aviv case, the results showed that the urban heat island of the city can be depicted in a very high spatial and thermal resolutions domain and that a significant correlation exists between ground objects and the surrounding air temperature values. Based on the flight results, we could generated an isotherm map of the city that, for the first time, located the urban heat island of the city both in meso- and microscales. In the case of Makhtesh Ramon, we found that under field conditions, the radiometer, coupled with a VIS-CCD camera can provide significant ATI parameters of typical rocks that characterize tile study area. Although more study is planned and suggested based on the current data, it was concluded that the airborne thermal video radiometry, is a promising, inexpensive tool for monitoring the environment on a real-time basis. 10 refs., 5 figs., 1 tab.« less
4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review
NASA Astrophysics Data System (ADS)
de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else
2016-08-01
We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics to the high-energy physics, galaxy evolution, and cosmology. Starting in 2021, 4MOST will deploy 2436 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. The fibres will feed one high-resolution (R 20,000) and two medium resolution (R 5000) spectrographs with fixed 3-channel designs and identical 6k x 6k CCD detectors. 4MOST will have a unique operations concept in which 5-year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept, showing that we can expect to observe more than 25 million objects in each 5-year survey period and will eventually be used to plan and conduct the actual survey.
Development of a Dual-PIV system for high-speed flow applications
NASA Astrophysics Data System (ADS)
Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre
2015-10-01
A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.
Data Reduction and Control Software for Meteor Observing Stations Based on CCD Video Systems
NASA Technical Reports Server (NTRS)
Madiedo, J. M.; Trigo-Rodriguez, J. M.; Lyytinen, E.
2011-01-01
The SPanish Meteor Network (SPMN) is performing a continuous monitoring of meteor activity over Spain and neighbouring countries. The huge amount of data obtained by the 25 video observing stations that this network is currently operating made it necessary to develop new software packages to accomplish some tasks, such as data reduction and remote operation of autonomous systems based on high-sensitivity CCD video devices. The main characteristics of this software are described here.
Proximal caries detection: Sirona Sidexis versus Kodak Ektaspeed Plus.
Khan, Emad A; Tyndall, Donald A; Ludlow, John B; Caplan, Daniel
2005-01-01
This study compared the accuracy of intraoral film and a charge-coupled device (CCD) receptor for proximal caries detection. Four observers evaluated images of the proximal surfaces of 40 extracted posterior teeth. The presence or absence of caries was scored using a five-point confidence scale. The actual status of each surface was determined from ground section histology. Responses were evaluated by means of receiver operating characteristic (ROC) analysis. Areas under ROC curves (Az) were assessed through a paired t-test. The performance of the CCD-based intraoral sensor was not different statistically from Ektaspeed Plus film in detecting proximal caries.
High-resolution optical imaging of the core of the globular cluster M15 with FastCam
NASA Astrophysics Data System (ADS)
Díaz-Sánchez, Anastasio; Pérez-Garrido, Antonio; Villó, Isidro; Rebolo, Rafael; Pérez-Prieto, Jorge A.; Oscoz, Alejandro; Hildebrandt, Sergi R.; López, Roberto; Rodríguez, Luis F.
2012-07-01
We present high-resolution I -band imaging of the core of the globular cluster M15 obtained at the 2.5-m Nordic Optical Telescope with FastCam, a low readout noise L3CCD-based instrument. Short exposure times (30 ms) were used to record 200 000 images (512 × 512 pixels each) over a period of 2 h and 43 min. The lucky imaging technique was then applied to generate a final image of the cluster centre with full width at half-maximum ˜0.1 arcsec and 13 × 13 arcsec 2 field of view. We obtained a catalogue of objects in this region with a limiting magnitude of I = 19.5. I -band photometry and astrometry are reported for 1181 stars. This is the deepest I -band observation of the M15 core at this spatial resolution. Simulations show that crowding is limiting the completeness of the catalogue. At shorter wavelengths, a similar number of objects have been reported using Hubble Space Telescope (HST )/Wide Field Planetary Camera observations of the same field. The cross-match with the available HST catalogues allowed us to produce colour-magnitude diagrams where we identify new blue straggler star candidates and previously known stars of this class.
Undersampled digital holographic interferometry
NASA Astrophysics Data System (ADS)
Halaq, H.; Demoli, N.; Sović, I.; Šariri, K.; Torzynski, M.; Vukičević, D.
2008-04-01
In digital holography, primary holographic fringes are recorded using a matricial CCD sensor. Because of the low spatial resolution of currently available CCD arrays, the angle between the reference and object beams must be limited to a few degrees. Namely, due to the digitization involved, the Shannon's criterion imposes that the Nyquist sampling frequency be at least twice the highest signal frequency. This means that, in the case of the recording of an interference fringe pattern by a CCD sensor, the inter-fringe distance must be larger than twice the pixel period. This in turn limits the angle between the object and the reference beams. If this angle, in a practical holographic interferometry measuring setup, cannot be limited to the required value, aliasing will occur in the reconstructed image. In this work, we demonstrate that the low spatial frequency metrology data could nevertheless be efficiently extracted by careful choice of twofold, and even threefold, undersampling of the object field. By combining the time-averaged recording with subtraction digital holography method, we present results for a loudspeaker membrane interferometric study obtained under strong aliasing conditions. High-contrast fringes, as a consequence of the vibration modes of the membrane, are obtained.
Research-grade CMOS image sensors for demanding space applications
NASA Astrophysics Data System (ADS)
Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre
2004-06-01
Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.
Research-grade CMOS image sensors for demanding space applications
NASA Astrophysics Data System (ADS)
Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre
2017-11-01
Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.
Optimum color filters for CCD digital cameras
NASA Astrophysics Data System (ADS)
Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl
1993-12-01
As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.
Estimating and Separating Noise from AIA Images
NASA Astrophysics Data System (ADS)
Kirk, Michael S.; Ireland, Jack; Young, C. Alex; Pesnell, W. Dean
2016-10-01
All digital images are corrupted by noise and SDO AIA is no different. In most solar imaging, we have the luxury of high photon counts and low background contamination, which when combined with carful calibration, minimize much of the impact noise has on the measurement. Outside high-intensity regions, such as in coronal holes, the noise component can become significant and complicate feature recognition and segmentation. We create a practical estimate of noise in the high-resolution AIA images across the detector CCD in all seven EUV wavelengths. A mixture of Poisson and Gaussian noise is well suited in the digital imaging environment due to the statistical distributions of photons and the characteristics of the CCD. Using state-of-the-art noise estimation techniques, the publicly available solar images, and coronal loop simulations; we construct a maximum-a-posteriori assessment of the error in these images. The estimation and mitigation of noise not only provides a clearer view of large-scale solar structure in the solar corona, but also provides physical constraints on fleeting EUV features observed with AIA.
Coaxial fundus camera for opthalmology
NASA Astrophysics Data System (ADS)
de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.
2015-09-01
A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.
NASA Technical Reports Server (NTRS)
McFerrin, Michael; Snell, Edward; Curreri, Peter A. (Technical Monitor)
2002-01-01
An X-ray based method for determining cryoprotectant concentrations necessary to protect solutions from crystalline ice formation was developed. X-ray images from a CCD area detector were integrated as powder patterns and quantified by determining the standard deviation of the slope of the normalized intensity curve in the resolution range where ice rings are known to occur. The method was tested determining the concentrations of glycerol, PEG400, ethylene glycol and 1,2-propanediol necessary to form an amorphous glass at 1OOK with each of the 98 crystallization solutions of Crystal Screens I and II (Hampton Research, Laguna Hills, California, USA). For conditions that required glycerol concentrations of 35% or above cryoprotectant conditions using 2,3-butanediol were determined. The method proved to be remarkably accurate. The results build on the work of [Garman and Mitchell] and extend the number, of suitable starting conditions to alternative cryoprotectants. In particular, 1,2-propanediol has emerged as a particularly good additive for glass formation upon flash cooling.
Development of Residual Gas Profile Monitors at GSI
NASA Astrophysics Data System (ADS)
Giacomini, T.; Barabin, S.; Forck, P.; Liakin, D.; Skachkov, V.
2004-11-01
Beam profile measurements at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. High spatial resolutions are essential for cold beams and beamwidth measurings. The currently used RGM supported very interesting measurements and applications. Due to the readout technology the spatial and time resolution is limited. To meet the expanded demands a more comprehensive device is under development. It will be an all-purpose residual gas monitor to cover the wide range of beam currents and transversal particle distributions. Due to the fast profile detection it will operate on primary electrons after residual gas ionization. A magnetic field of 100 mT binds them to the ionization point inside 0.1-mm orbits. The high-resolution mode will be read out by a digital CCD camera with an upstream MCP-phosphor screen assembly. It is planned to read out the fast turn-by-turn mode by an array of 100 photodiodes with a resolution of 1 mm. Every photodiode is equipped with an amplifier-digitizer device providing a frame rate of ˜ 10 MSamples/s.
Binary/Analog CCD Correlator Development.
1981-07-01
architecture , design and performance of a general purpose, 1,024-stage, programmable transversal filter implemented in CCD/NMOS technology is described. The device features programmability of the reference signal, the filter length and weighting coefficient resolution. Off-ship circuitry is minimized by incorporating both analog and digital support circuitry, on-chip. This results in a monolithic analog signal processing system that has the flexibility to be operated in nine programmable configurations, from 1,024-stages by 1-bit, to 128-stages by 8-bits. The versatility
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America
High-temperature hot spots on Io as seen by the Galileo solid state imaging (SSI) experiment
McEwen, A.S.; Simonelli, D.P.; Senske, D.R.; Klaasen, K.P.; Keszthelyi, L.; Johnson, T.V.; Geissler, P.E.; Carr, M.H.; Belton, M.J.S.
1997-01-01
High-temperature hot spots on Io have been imaged at ???50 km spatial resolution by Galileo's CCD imaging system (SSI). Images were acquired during eclipses (Io in Jupiter's shadow) via the SSI clear filter (???0.4-1.0 ??m), detecting emissions from both small intense hot spots and diffuse extended glows associated with Io's atmosphere and plumes. A total of 13 hot spots have been detected over ???70% of Io's surface. Each hot spot falls precisely on a low-albedo feature corresponding to a caldera floor and/or lava flow. The hot-spot temperatures must exceed ???700 K for detection by SSI. Observations at wavelengths longer than those available to SSI require that most of these hot spots actually have significantly higher temperatures (???1000 K or higher) and cover small areas. The high-temperature hot spots probably mark the locations of active silicate volcanism, supporting suggestions that the eruption and near-surface movement of silicate magma drives the heat flow and volcanic activity of Io. Copyright 1997 by the American Geophysical Union.
A system design of data acquisition and processing for side-scatter lidar
NASA Astrophysics Data System (ADS)
Zhang, ZhanYe; Xie, ChenBo; Wang, ZhenZhu; Kuang, ZhiQiang; Deng, Qian; Tao, ZongMing; Liu, Dong; Wang, Yingjian
2018-03-01
A system for collecting data of Side-Scatter lidar based on Charge Coupled Device (CCD),is designed and implemented. The system of data acquisition is based on Microsoft. Net structure and the language of C# is used to call dynamic link library (DLL) of CCD for realization of the real-time data acquisition and processing. The software stores data as txt file for post data acquisition and analysis. The system has ability to operate CCD device in all-day, automatic, continuous and high frequency data acquisition and processing conditions, which will catch 24-hour information of the atmospheric scatter's light intensity and retrieve the spatial and temporal properties of aerosol particles. The experimental result shows that the system is convenient to observe the aerosol optical characteristics near surface.
Using a trichromatic CCD camera for spectral skylight estimation.
López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier; Olmo, F J; Cazorla, A; Alados-Arboledas, L
2008-12-01
In a previous work [J. Opt. Soc. Am. A 24, 942-956 (2007)] we showed how to design an optimum multispectral system aimed at spectral recovery of skylight. Since high-resolution multispectral images of skylight could be interesting for many scientific disciplines, here we also propose a nonoptimum but much cheaper and faster approach to achieve this goal by using a trichromatic RGB charge-coupled device (CCD) digital camera. The camera is attached to a fish-eye lens, hence permitting us to obtain a spectrum of every point of the skydome corresponding to each pixel of the image. In this work we show how to apply multispectral techniques to the sensors' responses of a common trichromatic camera in order to obtain skylight spectra from them. This spectral information is accurate enough to estimate experimental values of some climate parameters or to be used in algorithms for automatic cloud detection, among many other possible scientific applications.
Advances in photographic X-ray imaging for solar astronomy
NASA Technical Reports Server (NTRS)
Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.
1989-01-01
The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.
Imaging Molecular Signatures of Breast Cancer With X-ray Activated Nano-Phosphors
2011-09-01
high resolution with a decrease in X-ray dose to healthy tissue. For the first-year training goals, this grant has provided for extensive study in...europium (red) were studied . The light emission was imaged in a clinical X-ray scanner with a cooled CCD camera and a spectrophotometer; dose...Indeed, in a preliminary study , these phosphor were targeted to the Folate receptor (commonly expressed in breast cancer), and uptaken by live cells
NASA Astrophysics Data System (ADS)
Dennis, L.; Roesler, E. L.; Guba, O.; Hillman, B. R.; McChesney, M.
2016-12-01
The Atmospheric Radiation Measurement (ARM) climate research facility has three siteslocated on the North Slope of Alaska (NSA): Barrrow, Oliktok, and Atqasuk. These sites, incombination with one other at Toolik Lake, have the potential to become a "megasite" whichwould combine observational data and high resolution modeling to produce high resolutiondata products for the climate community. Such a data product requires high resolutionmodeling over the area of the megasite. We present three variable resolution atmosphericgeneral circulation model (AGCM) configurations as potential alternatives to stand-alonehigh-resolution regional models. Each configuration is based on a global cubed-sphere gridwith effective resolution of 1 degree, with a refinement in resolution down to 1/8 degree overan area surrounding the ARM megasite. The three grids vary in the size of the refined areawith 13k, 9k, and 7k elements. SquadGen, NCL, and GIMP are used to create the grids.Grids vary based upon the selection of areas of refinement which capture climate andweather processes that may affect a proposed NSA megasite. A smaller area of highresolution may not fully resolve climate and weather processes before they reach the NSA,however grids with smaller areas of refinement have a significantly reduced computationalcost compared with grids with larger areas of refinement. Optimal size and shape of thearea of refinement for a variable resolution model at the NSA is investigated.
Super-resolution for scanning light stimulation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitzer, L. A.; Neumann, K.; Benson, N., E-mail: niels.benson@uni-due.de
Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems.more » To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.« less
NASA Astrophysics Data System (ADS)
Lowrance, John L.; Mastrocola, V. J.; Renda, George F.; Swain, Pradyumna K.; Kabra, R.; Bhaskaran, Mahalingham; Tower, John R.; Levine, Peter A.
2004-02-01
This paper describes the architecture, process technology, and performance of a family of high burst rate CCDs. These imagers employ high speed, low lag photo-detectors with local storage at each photo-detector to achieve image capture at rates greater than 106 frames per second. One imager has a 64 x 64 pixel array with 12 frames of storage. A second imager has a 80 x 160 array with 28 frames of storage, and the third imager has a 64 x 64 pixel array with 300 frames of storage. Application areas include capture of rapid mechanical motion, optical wavefront sensing, fluid cavitation research, combustion studies, plasma research and wind-tunnel-based gas dynamics research.
Live event reconstruction in an optically read out GEM-based TPC
NASA Astrophysics Data System (ADS)
Brunbauer, F. M.; Galgóczi, G.; Gonzalez Diaz, D.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.
2018-04-01
Combining strong signal amplification made possible by Gaseous Electron Multipliers (GEMs) with the high spatial resolution provided by optical readout, highly performing radiation detectors can be realized. An optically read out GEM-based Time Projection Chamber (TPC) is presented. The device permits 3D track reconstruction by combining the 2D projections obtained with a CCD camera with timing information from a photomultiplier tube. Owing to the intuitive 2D representation of the tracks in the images and to automated control, data acquisition and event reconstruction algorithms, the optically read out TPC permits live display of reconstructed tracks in three dimensions. An Ar/CF4 (80/20%) gas mixture was used to maximize scintillation yield in the visible wavelength region matching the quantum efficiency of the camera. The device is integrated in a UHV-grade vessel allowing for precise control of the gas composition and purity. Long term studies in sealed mode operation revealed a minor decrease in the scintillation light intensity.
Scientific CCD technology at JPL
NASA Technical Reports Server (NTRS)
Janesick, J.; Collins, S. A.; Fossum, E. R.
1991-01-01
Charge-coupled devices (CCD's) were recognized for their potential as an imaging technology almost immediately following their conception in 1970. Twenty years later, they are firmly established as the technology of choice for visible imaging. While consumer applications of CCD's, especially the emerging home video camera market, dominated manufacturing activity, the scientific market for CCD imagers has become significant. Activity of the Jet Propulsion Laboratory and its industrial partners in the area of CCD imagers for space scientific instruments is described. Requirements for scientific imagers are significantly different from those needed for home video cameras, and are described. An imager for an instrument on the CRAF/Cassini mission is described in detail to highlight achieved levels of performance.
Weiqi Zhou; Austin Troy; Morgan Grove
2008-01-01
Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...
Remote sensing of potential lunar resources. I - Near-side compositional properties
NASA Technical Reports Server (NTRS)
Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.
1991-01-01
Using telescopic CCD multispectral images of the lunar near side and the results of 330-870 nm spectroscopy of selected regions, the compositional differences relevant to the locations of potential lunar resources (such as ilmenite, FeTiO3, and solar-wind-implanted He-3 and H) are estimated. The 400/560 nm CCD ratio images were converted to weight percent TiO2, and the values were used to construct a new TiO2 abundance map which can be used to estimate the areas potentially rich in ilmenite. A 950/560 nm CCD ratio mosaic of the full moon provides estimates of relative surface maturity. Since high He-3 concentrations correlate with mature ilmenite-rich soils, a combination of relative surface maturity maps and the TiO2 abundance maps can be used to estimate distributions of He-3 (and possibly H) on local scales.
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Morookian, John M.; Monacos, Steve P.; Lam, Raymond K.; Lebaw, C.; Bond, A.
2004-04-01
Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals. Current non-invasive eyetracking methods achieve a 30 Hz rate with possibly low accuracy in gaze estimation, that is insufficient for many applications. We propose a new non-invasive visual eyetracking system that is capable of operating at speeds as high as 6-12 KHz. A new CCD video camera and hardware architecture is used, and a novel fast image processing algorithm leverages specific features of the input CCD camera to yield a real-time eyetracking system. A field programmable gate array (FPGA) is used to control the CCD camera and execute the image processing operations. Initial results show the excellent performance of our system under severe head motion and low contrast conditions.
2014-01-01
Background In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. Results The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. Conclusions We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm. PMID:24947472
NASA Astrophysics Data System (ADS)
Yilmaz, Hasan
2016-03-01
Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).
NESSI and `Alopeke: Two new dual-channel speckle imaging instruments
NASA Astrophysics Data System (ADS)
Scott, Nicholas J.
2018-01-01
NESSI and `Alopeke are two new speckle imagers built at NASA's Ames Research Center for community use at the WIYN and Gemini telescopes, respectively. The two instruments are functionally similar and include the capability for wide-field imaging in additional to speckle interferometry. The diffraction-limited imaging available through speckle effectively eliminates distortions due to the presence of Earth's atmosphere by `freezing out' changes in the atmosphere by taking extremely short exposures and combining the resultant speckles in Fourier space. This technique enables angular resolutions equal to the theoretical best possible for a given telescope, effectively giving space-based resolution from the ground. Our instruments provide the highest spatial resolution available today on any single aperture telescope.A primary role of these instruments is exoplanet validation for the Kepler, K2, TESS, and many RV programs. Contrast ratios of 6 or more magnitudes are easily obtained. The instrument uses two emCCD cameras providing simultaneous dual-color observations help to characterize detected companions. High resolution imaging enables the identification of blended binaries that contaminate many exoplanet detections, leading to incorrectly measured radii. In this way small, rocky systems, such as Kepler-186b and the TRAPPIST-1 planet family, may be validated and thus the detected planets radii are correctly measured.
Massie, Norbert A.; Oster, Yale
1992-01-01
A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.
Spatial resolution test of a beam diagnostic system for DESIREE
NASA Astrophysics Data System (ADS)
Das, Susanta; Kallberg, A.
2010-11-01
A diagnostic system based on the observation of low energy ( ˜ 10 eV) secondary electrons (SE) produced by a beam, striking a metallic foil has been built to monitor and to cover the wide range of beam intensities and energies for Double ElectroStatic Ion Ring ExpEriment [1,2].The system consists of a Faraday cup to measure the beam current, a collimator with circular apertures of different diameters to measure the spatial resolution of the system, a beam profile monitoring system (BPMS), and a control unit. The BPMS, in turn, consists of an aluminim (Al) foil, a grid placed in front of the Al foil to accelerate the SE, position sensitive MCP, fluorescent screen, and a CCD camera to capture the images. The collimator contains a set of circular holes of different diameters and separations (d) between them. The collimator cuts out from the beam areas equal to the holes with separation d mm between the beams centers and creates well separated (distinguishable) narrow beams of approximately same intensity close to each other. A 10 keV proton beam was used. The spatial resolution of the system was tested for different Al plate and MCP voltages and resolution of better than 2 mm was achieved. Ref.: 1. K. Kruglov {et al}., NIM A 441 (2000) 595; 701 (2002) 193c, 2. MSL and Atomic Physics, Stockholm Univ.(www.msl.se, http://www.atom.physto.se/Cederquist/desiree/web/hc.html).
Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M
2006-02-01
Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.
Airborne multidimensional integrated remote sensing system
NASA Astrophysics Data System (ADS)
Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua
2006-12-01
In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.
Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage.
Deshpande, Ishan; Seeber, Andrew; Shimada, Kenji; Keusch, Jeremy J; Gut, Heinz; Gasser, Susan M
2017-10-19
Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical identification of two nearby Isolated Neutron Stars through proper motion measuremnt.
NASA Astrophysics Data System (ADS)
Zane, Silvia
2004-07-01
Aim of this proposal is to perform high-resolution imaging of the proposed optical counterparts of the two, radio silent, isolated neutron stars RXJ1308.6+2127 and RX J1605.3+3249 with the STIS/50CCD. Imaging both fields with the same instrumental configuration used in mid 2001 by Kaplan et al {2002; 2003}, will allow us to measure the objects' position and to determine their proper motions over a time base of nearly four years. The measurement of proper motions at the level of at least few tens mas/yr, expected for relatively nearby neutron stars, would unambigouosly secure the proposed optical identifications, not achievable otherwise. In addition, the knowledge of the proper motion will provide useful indications on the space velocity and distance of these neutrons stars, as well as on the radius. Constraining these parameters is of paramount importance to discriminate between the variety of emission mechanisms invoked to explain their observed thermal X-ray spectra and to probe the neutron star equation of state {EOS}. The determination of the proper motion is a decisive step toward a dedicated follow-up program aimed at measuring the objects' optical parallax, thus providing much firmer constrains on the star properties, again to be performed with the STIS/50CCD.
Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Slit-Jaw Imaging System
NASA Astrophysics Data System (ADS)
Wilkerson, P.; Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.
2017-12-01
The Marshall Grazing Incidence X-ray Spectrometer is a NASA sounding rocket payload providing a 0.6 - 2.5 nm spectrum with unprecedented spatial and spectral resolution. The instrument is comprised of a novel optical design, featuring a Wolter1 grazing incidence telescope, which produces a focused solar image on a slit plate, an identical pair of stigmatic optics, a planar diffraction grating and a low-noise detector. When MaGIXS flies on a suborbital launch in 2019, a slit-jaw camera system will reimage the focal plane of the telescope providing a reference for pointing the telescope on the solar disk and aligning the data to supporting observations from satellites and other rockets. The telescope focuses the X-ray and EUV image of the sun onto a plate covered with a phosphor coating that absorbs EUV photons, which then fluoresces in visible light. This 10-week REU project was aimed at optimizing an off-axis mounted camera with 600-line resolution NTSC video for extremely low light imaging of the slit plate. Radiometric calculations indicate an intensity of less than 1 lux at the slit jaw plane, which set the requirement for camera sensitivity. We selected a Watec 910DB EIA charge-coupled device (CCD) monochrome camera, which has a manufacturer quoted sensitivity of 0.0001 lux at F1.2. A high magnification and low distortion lens was then identified to image the slit jaw plane from a distance of approximately 10 cm. With the selected CCD camera, tests show that at extreme low-light levels, we achieve a higher resolution than expected, with only a moderate drop in frame rate. Based on sounding rocket flight heritage, the launch vehicle attitude control system is known to stabilize the instrument pointing such that jitter does not degrade video quality for context imaging. Future steps towards implementation of the imaging system will include ruggedizing the flight camera housing and mounting the selected camera and lens combination to the instrument structure.
The Mapping X-ray Fluorescence Spectrometer (MapX)
NASA Astrophysics Data System (ADS)
Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.
2017-12-01
Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.
Chavarria, Alvaro E.; Tiffenberg, Javier; Aguilar-Arevalo, Alexis; ...
2015-03-24
We introduce the fully-depleted charge-coupled device (CCD) as a particle detector. We demonstrate its low energy threshold operation, capable of detecting ionizing energy depositions in a single pixel down to 50 eV ee. We present results of energy calibrations from 0.3 keV ee to 60 ke Vee, showing that the CCD is a fully active detector with uniform energy response throughout the silicon target, good resolution (Fano ~0.16), and remarkable linear response to electron energy depositions. We show the capability of the CCD to localize the depth of particle interactions within the silicon target. We discuss the mode of operationmore » and unique imaging capabilities of the CCD, and how they may be exploited to characterize and suppress backgrounds. We present the first results from the deployment of 250 μm thick CCDs in SNOLAB, a prototype for the upcoming DAMIC100. DAMIC100 will have a target mass of 0.1 kg and should be able to directly test the CDMS-Si signal within a year of operation.« less
Femtosecond imaging of nonlinear acoustics in gold.
Pezeril, Thomas; Klieber, Christoph; Shalagatskyi, Viktor; Vaudel, Gwenaelle; Temnov, Vasily; Schmidt, Oliver G; Makarov, Denys
2014-02-24
We have developed a high-sensitivity, low-noise femtosecond imaging technique based on pump-probe time-resolved measurements with a standard CCD camera. The approach used in the experiment is based on lock-in acquisitions of images generated by a femtosecond laser probe synchronized to modulation of a femtosecond laser pump at the same rate. This technique allows time-resolved imaging of laser-excited phenomena with femtosecond time resolution. We illustrate the technique by time-resolved imaging of the nonlinear reshaping of a laser-excited picosecond acoustic pulse after propagation through a thin gold layer. Image analysis reveals the direct 2D visualization of the nonlinear acoustic propagation of the picosecond acoustic pulse. Many ultrafast pump-probe investigations can profit from this technique because of the wealth of information it provides over a typical single diode and lock-in amplifier setup, for example it can be used to image ultrasonic echoes in biological samples.
NASA Astrophysics Data System (ADS)
Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey
2015-10-01
As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.
The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.
2017-02-01
Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.
Radioactive Quality Evaluation and Cross Validation of Data from the HJ-1A/B Satellites' CCD Sensors
Zhang, Xin; Zhao, Xiang; Liu, Guodong; Kang, Qian; Wu, Donghai
2013-01-01
Data from multiple sensors are frequently used in Earth science to gain a more complete understanding of spatial information changes. Higher quality and mutual consistency are prerequisites when multiple sensors are jointly used. The HJ-1A/B satellites successfully launched on 6 September 2008. There are four charge-coupled device (CCD) sensors with uniform spatial resolutions and spectral range onboard the HJ-A/B satellites. Whether these data are keeping consistency is a major issue before they are used. This research aims to evaluate the data consistency and radioactive quality from the four CCDs. First, images of urban, desert, lake and ocean are chosen as the objects of evaluation. Second, objective evaluation variables, such as mean, variance and angular second moment, are used to identify image performance. Finally, a cross validation method are used to ensure the correlation of the data from the four HJ-1A/B CCDs and that which is gathered from the moderate resolution imaging spectro-radiometer (MODIS). The results show that the image quality of HJ-1A/B CCDs is stable, and the digital number distribution of CCD data is relatively low. In cross validation with MODIS, the root mean square errors of bands 1, 2 and 3 range from 0.055 to 0.065, and for band 4 it is 0.101. The data from HJ-1A/B CCD have better consistency. PMID:23881127
Zhang, Xin; Zhao, Xiang; Liu, Guodong; Kang, Qian; Wu, Donghai
2013-07-05
Data from multiple sensors are frequently used in Earth science to gain a more complete understanding of spatial information changes. Higher quality and mutual consistency are prerequisites when multiple sensors are jointly used. The HJ-1A/B satellites successfully launched on 6 September 2008. There are four charge-coupled device (CCD) sensors with uniform spatial resolutions and spectral range onboard the HJ-A/B satellites. Whether these data are keeping consistency is a major issue before they are used. This research aims to evaluate the data consistency and radioactive quality from the four CCDs. First, images of urban, desert, lake and ocean are chosen as the objects of evaluation. Second, objective evaluation variables, such as mean, variance and angular second moment, are used to identify image performance. Finally, a cross validation method are used to ensure the correlation of the data from the four HJ-1A/B CCDs and that which is gathered from the moderate resolution imaging spectro-radiometer (MODIS). The results show that the image quality of HJ-1A/B CCDs is stable, and the digital number distribution of CCD data is relatively low. In cross validation with MODIS, the root mean square errors of bands 1, 2 and 3 range from 0.055 to 0.065, and for band 4 it is 0.101. The data from HJ-1A/B CCD have better consistency.
Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).
Imamura, S; Sakuma, K; Takahashi, T
1983-01-01
713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.
NASA Astrophysics Data System (ADS)
Grant, Catherine E.; Prigozhin, Gregory Y.; LaMarr, Beverly; Bautz, Mark W.
2003-03-01
Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the focal plane instruments on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earth's radiation belts. The ACIS team is continuing to study the properties of the damage with an emphasis on developing techniques to mitigate charge transfer inefficiency (CTI) and spectral resolution degradation. A post-facto CTI corrector has been developed which can effectively recover much of the lost resolution. Any further improvements in performance will require knowledge of the location and amount of sacrificial charge - charge deposited along the readout path of an event which fills electron traps and changes CTI. We report on efforts by the ACIS Instrument team to characterize which charge traps cause performance degradation and the properties of the sacrificial charge seen on-orbit. We also report on attempts to correct X-ray pulseheights for the presence of sacrificial charge.
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J
2012-07-01
We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ∼7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
NASA Astrophysics Data System (ADS)
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.
2012-07-01
We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ~7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Hormuth, Felix
Lucky Imaging improves the angular resolution of astronomical observations hampered by atmospheric turbulence ("seeing"). Unlike adaptive optics, Lucky Imaging is a passive observing technique with individual integration times comparable to the atmospheric coherence time. Thanks to the advent of essentially noise free "Electron multiplying CCD" detectors, Lucky Imaging saw a renewed interest in the past decade. It is now routinely used at a number of 2-5-m class telescopes, such as ESO's NTT. We review the history of Lucky Imaging, present the technical implementation, describe the data analysis philosophy, and show some recent results obtained with this technique. We also discuss the advantages and limitations of Lucky Imaging compared to other passive and active high angular resolution observing techniques.
Post-Disaster Damage Assessment Through Coherent Change Detection on SAR Imagery
NASA Astrophysics Data System (ADS)
Guida, L.; Boccardo, P.; Donevski, I.; Lo Schiavo, L.; Molinari, M. E.; Monti-Guarnieri, A.; Oxoli, D.; Brovelli, M. A.
2018-04-01
Damage assessment is a fundamental step to support emergency response and recovery activities in a post-earthquake scenario. In recent years, UAVs and satellite optical imagery was applied to assess major structural damages before technicians could reach the areas affected by the earthquake. However, bad weather conditions may harm the quality of these optical assessments, thus limiting the practical applicability of these techniques. In this paper, the application of Synthetic Aperture Radar (SAR) imagery is investigated and a novel approach to SAR-based damage assessment is presented. Coherent Change Detection (CCD) algorithms on multiple interferometrically pre-processed SAR images of the area affected by the seismic event are exploited to automatically detect potential damages to buildings and other physical structures. As a case study, the 2016 Central Italy earthquake involving the cities of Amatrice and Accumoli was selected. The main contribution of the research outlined above is the integration of a complex process, requiring the coordination of a variety of methods and tools, into a unitary framework, which allows end-to-end application of the approach from SAR data pre-processing to result visualization in a Geographic Information System (GIS). A prototype of this pipeline was implemented, and the outcomes of this methodology were validated through an extended comparison with traditional damage assessment maps, created through photo-interpretation of high resolution aerial imagery. The results indicate that the proposed methodology is able to perform damage detection with a good level of accuracy, as most of the detected points of change are concentrated around highly damaged buildings.
Transmission Grating and Optics Technology Development for the Arcus Explorer Mission
NASA Astrophysics Data System (ADS)
Heilmann, Ralf; Arcus Team
2018-01-01
Arcus is a high-resolution x-ray spectroscopy MIDEX mission selected for a Phase A concept study. It is designed to explore structure formation through measurements of hot baryon distributions, feedback from black holes, and the formation and evolution of stars, disks, and exoplanet atmospheres. The design provides unprecedented sensitivity in the 1.2-5 nm wavelength band with effective area above 450 sqcm and spectral resolution R > 2500. The Arcus technology is based on 12 m-focal length silicon pore optics (SPO) developed for the European Athena mission, and critical-angle transmission (CAT) x-ray diffraction gratings and x-ray CCDs developed at MIT. The modular design consists of four parallel channels, each channel holding an optics petal, followed by a grating petal. CAT gratings are lightweight, alignment insensitive, high-efficiency x-ray transmission gratings that blaze into high diffraction orders, leading to high spectral resolution. Each optics petal represents an azimuthal sub-aperture of a full Wolter optic. The sub-aperturing effect increases spectral resolving power further. Two CCD readout strips receive photons from each channel, including higher-energy photons in 0th order. Each optics petal holds 34 SPO modules. Each grating petal holds 34 grating windows, and each window holds 4-6 grating facets. A grating facet consists of a silicon grating membrane, bonded to a flexure frame that interfaces with the grating window. We report on a sequence of tests with increasing complexity that systematically increase the Technology Readiness Level (TRL) for the combination of CAT gratings and SPOs towards TLR 6. CAT gratings have been evaluated in x rays for diffraction efficiency (> 30% at 2.5 nm) and for resolving power (R> 10,000). A CAT grating/SPO combination was measured at R ~ 3100 at blaze angles smaller than design values, exceeding Arcus requirements. Efficiency and resolving power were not impacted by vibration and thermal testing of gratings. A pair of large (32 mm x 32 mm) gratings was aligned using laser metrology, and alignment was verified under x rays. We present results on simultaneous illumination of the aligned grating pair, and describe our progress towards further tests.
A curved surface micro-moiré method and its application in evaluating curved surface residual stress
NASA Astrophysics Data System (ADS)
Zhang, Hongye; Wu, Chenlong; Liu, Zhanwei; Xie, Huimin
2014-09-01
The moiré method is typically applied to the measurement of deformations of a flat surface while, for a curved surface, this method is rarely used other than for projection moiré or moiré interferometry. Here, a novel colour charge-coupled device (CCD) micro-moiré method has been developed, based on which a curved surface micro-moiré (CSMM) method is proposed with a colour CCD and optical microscope (OM). In the CSMM method, no additional reference grating is needed as a Bayer colour filter array (CFA) installed on the OM in front of the colour CCD image sensor performs this role. Micro-moiré fringes with high contrast are directly observed with the OM through the Bayer CFA under the special condition of observing a curved specimen grating. The principle of the CSMM method based on a colour CCD micro-moiré method and its application range and error analysis are all described in detail. In an experiment, the curved surface residual stress near a welded seam on a stainless steel tube was investigated using the CSMM method.
Direct detection of x-rays for protein crystallography employing a thick, large area CCD
Atac, Muzaffer; McKay, Timothy
1999-01-01
An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudka, A. P., E-mail: dudka@ns.crys.ras.ru
2017-03-15
Accurate X-ray diffraction study of langasite (La{sub 3}Ga{sub 5}SiO{sub 14}) single crystal has been performed using the data obtained on a diffractometer equipped with a CCD area detector at 295 and 90.5 K. Within the known La{sub 3}Ga{sub 5}SiO{sub 14} model, Ga and Si cations jointly occupy the 2d site. A new model of a “multicell” consisting of two different unit cells is proposed. Gallium atoms occupy the 2d site in one of these cells, and silicon atoms occupy this site in the other cell; all other atoms correspondingly coordinate these cations. This structure implements various physical properties exhibited bymore » langasite family crystals. The conclusions are based on processing four data sets obtained with a high resolution (sin θ/λ ≤ 1.35 Å{sup –1}), the results reproduced in repeated experiments, and the high relative precision of the study (sp. gr. P321, Z = 1; at 295 K, a = 8.1652(6) Å, c = 5.0958(5) Å, R/wR = 0.68/0.68%, 3927 independent reflections; at 90.5 K, a = 8.1559(4) Å, c = 5.0913(6) Å, R/wR = 0.92/0.93%, 3928 reflections).« less
Wide field/planetary camera optics study. [for the large space telescope
NASA Technical Reports Server (NTRS)
1979-01-01
Design feasibility of the baseline optical design concept was established for the wide field/planetary camera (WF/PC) and will be used with the space telescope (ST) to obtain high angular resolution astronomical information over a wide field. The design concept employs internal optics to relay the ST image to a CCD detector system. Optical design performance predictions, sensitivity and tolerance analyses, manufacturability of the optical components, and acceptance testing of the two mirror Cassegrain relays are discussed.
Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors
NASA Astrophysics Data System (ADS)
Han, Ling
Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features portable and mobile capabilities for easy handling and on-site applications at remote locations where hospital facilities are not available.
Anazawa, Takashi; Uchiho, Yuichi; Yokoi, Takahide; Chalkidis, George; Yamazaki, Motohiro
2017-06-27
A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.
Advances and Challenges in Super-Resolution
2004-03-15
resolution in video. In: Proc. European Conf on Computer Vision (ECCV), May 2002, pp. 331–336. N. Sochen, R . Kimmel, R . Malladi . 1998. A general...2004a). 48 Vol. 14, 47–57 (2004) distinguish between a generic down-sampling operation (or CCD decimation by a factor r ) and the sampling...factor r often depends on the number of available low-resolution frames, the computational limitations (exponential in r ), and the accuracy of motion
NASA Astrophysics Data System (ADS)
Bohn, Birger; Lohse, Insa
2017-09-01
The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D), resulting in estimated detection limits of 5 × 10-7 and 1 × 10-7 s-1, respectively, derived from nighttime measurements on the ground (0.3 s integration time, 10 s averages). For j(O1D) the detection limit could be further reduced by setting spectral actinic flux densities to zero below atmospheric cutoff wavelengths. The accuracies of photolysis frequencies were determined from linear regressions with data from the double-monochromator reference instrument. The agreement was typically within ±5 %. Because optical-receiver aspects are not specific for the CCD spectroradiometers, they were widely excluded in this work and will be treated in a separate paper, in particular with regard to airborne applications.
Diffraction-based optical sensor detection system for capture-restricted environments
NASA Astrophysics Data System (ADS)
Khandekar, Rahul M.; Nikulin, Vladimir V.
2008-04-01
The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.
Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry
NASA Astrophysics Data System (ADS)
Krstajić, Nikola; Doran, Simon J.
2006-12-01
This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.
Nanometric depth resolution from multi-focal images in microscopy.
Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H
2011-07-06
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.
Nanometric depth resolution from multi-focal images in microscopy
Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.
2011-01-01
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948
High-frame rate multiport CCD imager and camera
NASA Astrophysics Data System (ADS)
Levine, Peter A.; Patterson, David R.; Esposito, Benjamin J.; Tower, John R.; Lawler, William B.
1993-01-01
A high frame rate visible CCD camera capable of operation up to 200 frames per second is described. The camera produces a 256 X 256 pixel image by using one quadrant of a 512 X 512 16-port, back illuminated CCD imager. Four contiguous outputs are digitally reformatted into a correct, 256 X 256 image. This paper details the architecture and timing used for the CCD drive circuits, analog processing, and the digital reformatter.
C2D8: An eight channel CCD readout electronics dedicated to low energy neutron detection
NASA Astrophysics Data System (ADS)
Bourrion, O.; Clement, B.; Tourres, D.; Pignol, G.; Xi, Y.; Rebreyend, D.; Nesvizhevsky, V. V.
2018-02-01
Position-sensitive detectors for cold and ultra-cold neutrons (UCN) are in use in fundamental research. In particular, measuring the properties of the quantum states of bouncing neutrons requires micro-metric spatial resolution. To this end, a Charge Coupled Device (CCD) coated with a thin conversion layer that allows a real time detection of neutron hits is under development at LPSC. In this paper, we present the design and performance of a dedicated electronic board designed to read-out eight CCDs simultaneously and operating under vacuum.
Jones, J.W.; Jarnagin, T.
2009-01-01
Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.
Ramachandra, Ranjan; Bouwer, James C; Mackey, Mason R; Bushong, Eric; Peltier, Steven T; Xuong, Nguyen-Huu; Ellisman, Mark H
2014-06-01
Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, electron energy loss spectroscopy techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of charge coupled device (CCD)-based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD's) to increase the signal to noise as compared with CCD's. A 3× improvement in signal is reported with a DDD versus a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames.
High-speed imaging using 3CCD camera and multi-color LED flashes
NASA Astrophysics Data System (ADS)
Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis
2017-11-01
This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.
Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph
NASA Astrophysics Data System (ADS)
Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.
2018-01-01
The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.
NASA Astrophysics Data System (ADS)
Weatherill, Daniel P.; Stefanov, Konstantin D.; Greig, Thomas A.; Holland, Andrew D.
2014-07-01
Pixellated monolithic silicon detectors operated in a photon-counting regime are useful in spectroscopic imaging applications. Since a high energy incident photon may produce many excess free carriers upon absorption, both energy and spatial information can be recovered by resolving each interaction event. The performance of these devices in terms of both the energy and spatial resolution is in large part determined by the amount of diffusion which occurs during the collection of the charge cloud by the pixels. Past efforts to predict the X-ray performance of imaging sensors have used either analytical solutions to the diffusion equation or simplified monte carlo electron transport models. These methods are computationally attractive and highly useful but may be complemented using more physically detailed models based on TCAD simulations of the devices. Here we present initial results from a model which employs a full transient numerical solution of the classical semiconductor equations to model charge collection in device pixels under stimulation from initially Gaussian photogenerated charge clouds, using commercial TCAD software. Realistic device geometries and doping are included. By mapping the pixel response to different initial interaction positions and charge cloud sizes, the charge splitting behaviour of the model sensor under various illuminations and operating conditions is investigated. Experimental validation of the model is presented from an e2v CCD30-11 device under varying substrate bias, illuminated using an Fe-55 source.
Preliminary study of the reliability of imaging charge coupled devices
NASA Technical Reports Server (NTRS)
Beall, J. R.; Borenstein, M. D.; Homan, R. A.; Johnson, D. L.; Wilson, D. D.; Young, V. F.
1978-01-01
Imaging CCDs are capable of low light level response and high signal-to-noise ratios. In space applications they offer the user the ability to achieve extremely high resolution imaging with minimum circuitry in the photo sensor array. This work relates the CCD121H Fairchild device to the fundamentals of CCDs and the representative technologies. Several failure modes are described, construction is analyzed and test results are reported. In addition, the relationship of the device reliability to packaging principles is analyzed and test data presented. Finally, a test program is defined for more general reliability evaluation of CCDs.
Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications
NASA Astrophysics Data System (ADS)
Olson, Gaylord G.; Walker, Jo N.
1997-09-01
Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.
Insect Wing Displacement Measurement Using Digital Holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la
2008-04-15
Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame ratemore » digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.« less
Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope
NASA Technical Reports Server (NTRS)
Scott, Nic J.; Howell, Steve; Horch, Elliott
2016-01-01
Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.
NASA Astrophysics Data System (ADS)
Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh
2016-03-01
We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.
Talbot phase-contrast X-ray imaging for the small joints of the hand
Stutman, Dan; Beck, Thomas J; Carrino, John A; Bingham, Clifton O
2011-01-01
A high resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of Rheumatoid Arthritis (RA) and Osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 μm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast or refraction based X-ray imaging (DPC) with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and it can be implemented with conventional X-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high resolution bench-top interferometer using 10 μm period gratings, a W anode tube and a CCD based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging comes thus mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long ‘symmetric’ interferometer operated in a high Talbot order. PMID:21841214
Talbot phase-contrast x-ray imaging for the small joints of the hand
NASA Astrophysics Data System (ADS)
Stutman, Dan; Beck, Thomas J.; Carrino, John A.; Bingham, Clifton O.
2011-09-01
A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 µm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 µm period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long 'symmetric' interferometer operated in a high Talbot order.
Resolution power in digital in-line holography
NASA Astrophysics Data System (ADS)
Garcia-Sucerquia, J.; Xu, W.; Jericho, S. K.; Jericho, M. H.; Klages, P.; Kreuzer, H. J.
2006-01-01
Digital in-line holographic microscopy (DIHM) can achieve wavelength resolution both laterally and in depth with the simple optical setup consisting of a laser illuminating a wavelength-sized pinhole and a CCD camera for recording the hologram. The reconstruction is done numerically on the basis of the Kirchhoff-Helmholtz transform which yields a three-dimensional image of the objects throughout the sample volume. Resolution in DIHM depends on several controllable factors or parameters: (1) pinhole size controlling spatial coherence, (2) numerical aperture given by the size and positioning of the recording CCD chip, (3) pixel density and dynamic range controlling fringe resolution and noise level in the hologram and (4) wavelength. We present a detailed study of the individual and combined effects of these factors by doing an analytical analysis coupled with numerical simulations of holograms and their reconstruction. The result of this analysis is a set of criteria, also in the form of graphs, which can be used for the optimum design of the DIHM setup. We will also present a series of experimental results that test and confirm our theoretical analysis. The ultimate resolution to date is the imaging of the motion of submicron spheres and bacteria, a few microns apart, with speeds of hundreds of microns per second.
Personal medical information system using laser card
NASA Astrophysics Data System (ADS)
Cho, Seong H.; Kim, Keun Ho; Choi, Hyung-Sik; Park, Hyun Wook
1996-04-01
The well-known hospital information system (HIS) and the picture archiving and communication system (PACS) are typical applications of multimedia to medical area. This paper proposes a personal medical information save-and-carry system using a laser card. This laser card is very useful, especially in emergency situations, because the medical information in the laser card can be read at anytime and anywhere if there exists a laser card reader/writer. The contents of the laser card include the clinical histories of a patient such as clinical chart, exam result, diagnostic reports, images, and so on. The purpose of this system is not a primary diagnosis, but emergency reference of clinical history of the patient. This personal medical information system consists of a personal computer integrated with laser card reader/writer, color frame grabber, color CCD camera and a high resolution image scanner optionally. Window-based graphical user interface was designed for easy use. The laser card has relatively sufficient capacity to store the personal medical information, and has fast access speed to restore and load the data with a portable size as compact as a credit card. Database items of laser card provide the doctors with medical data such as laser card information, patient information, clinical information, and diagnostic result information.
The STAR-X X-Ray Telescope Assembly (XTA)
NASA Astrophysics Data System (ADS)
McClelland, Ryan S.
2017-08-01
The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCDs capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called metashells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.
Kühl, Sebastian; Krummenauer, Frank; Dagassan-Berndt, Dorothea; Lambrecht, Thomas J; d'Hoedt, Bernd; Schulze, Ralf Kurt Willy
2011-06-01
The aim of this study was to compare the depiction ability of small grayscale contrasts in ink-jet printouts of digital radiographs on different print media with CRT monitor. A CCD-based digital cephalometric image of a stepless aluminum wedge containing 50 bur holes of different depth was cut into 100 isometric images. Each image was printed on glossy paper and on transparent film by means of a high-resolution desktop inkjet printer at specific settings. The printed images were viewed under standardized conditions, and the perceptibility of the bur holes was evaluated and compared to the perceptibility on a 17-in CRT monitor. Thirty observers stated their blinded decision on a five-point confidence scale. Areas (Az) under receiver operating characteristics curves were calculated and compared using the pair wise sign tests. Overall agreement was estimated using Cohen's kappa device and observer bias using McNemar's test. Glossy paper prints and monitor display revealed significantly higher (P < 0.001) average Az values (0.83) compared to prints on transparent film (0.79), which was caused by higher sensitivity. Specificity was similar for all modalities. The sensitivity was dependent on the mean gray scale values for the transparent film.
Theoretical performance analysis for CMOS based high resolution detectors.
Jain, Amit; Bednarek, Daniel R; Rudin, Stephen
2013-03-06
High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.
Mapping of the Moon by Clementine
McEwen, A.S.; Robinson, M.S.
1997-01-01
The "faster, cheaper, better" Clementine spacecraft mission mapped the Moon from February 19 to May 3, 1994. Global coverage was acquired in 11 spectral bandpasses from 415 to 2792 nm and at resolutions of 80-330 m/pixel; a thermal-infrared camera sampled ???20% of the surface; a high-resolution camera sampled selected areas (especially the polar regions); and a lidar altimeter mapped the large-scale topography up to latitudes of ??75??. The spacecraft was in a polar, elliptical orbit, 400-450 km periselene altitude. Periselene latitude was -28.5?? for the first month of mapping, then moved to +28.5??. NASA is supporting the archiving, systematic processing, and analysis of the ???1.8 million lunar images and other datasets. A new global positional network has been constructed from 43,000 images and ???0.5 million match points; new digital maps will facilitate future lunar exploration. In-flight calibrations now enable photometry to a high level of precision for the uv-visible CCD camera. Early science results include: (1) global models of topography, gravity, and crustal thicknesses; (2) new information on the topography and structure of multiring impact basins; (3) evidence suggestive of water ice in large permanent shadows near the south pole; (4) global mapping of iron abundances; and (5) new constraints on the Phanerozoic cratering rate of the Earth. Many additional results are expected following completion of calibration and systematic processing efforts. ?? 1997 COSPAR. Published by Elsevier Science Ltd.
Cross-reacting carbohydrate determinants and hymenoptera venom allergy.
Brehler, Randolf; Grundmann, Sonja; Stöcker, Benedikt
2013-08-01
Insect venom allergy is an important cause of anaphylaxis. Venom immunotherapy assume the clear identification of the culprit insect, but this is impeded by Immunoglobulin E (IgE) antibodies to cross reactive carbohydrate determinant (CCD) epitopes of common glycoproteins. Here we give an overview about inducers, importance, and relevance of anti-N-Glycan CCD IgE antibodies. Pollen exposure and insect stings induce anti-CCD IgE antibodies interfering with in-vitro tests for allergy diagnosis due to extensive IgE cross-reactivity. Instead of being biologically active these antibodies are irrelevant for allergic reactions due to hymenoptera stings. The general response of the immune system to the ubiquitous exposure to N-glycan containing glycoproteins is still a matter of debate. CCD specific IgG antibodies in sera of bee keepers suggest tolerance induction due to high-dose exposure. Tolerance induction by pollen and food glycoproteins has not been proved. Hymenoptera stings and pollen exposure induce anti-CCD IgE. In regard to anaphylaxis due to Hymenoptera stings these antibodies are not clinically relevant, but they are important for the specificity of in-vitro tests proving insect venom allergy. The introduction of component based diagnostic IgE testing improves the specificity of in-vitro tests if proteins devoid of CCD epitopes are used.
Full-field optical coherence tomography image restoration based on Hilbert transformation
NASA Astrophysics Data System (ADS)
Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha
2007-02-01
We propose the envelope detection method that is based on Hilbert transform for image restoration in full-filed optical coherence tomography (FF-OCT). The FF-OCT system presenting a high-axial resolution of 0.9 μm was implemented with a Kohler illuminator based on Linnik interferometer configuration. A 250 W customized quartz tungsten halogen lamp was used as a broadband light source and a CCD camera was used as a 2-dimentional detector array. The proposed image restoration method for FF-OCT requires only single phase-shifting. By using both the original and the phase-shifted images, we could remove the offset and the background signals from the interference fringe images. The desired coherent envelope image was obtained by applying Hilbert transform. With the proposed image restoration method, we demonstrate en-face imaging performance of the implemented FF-OCT system by presenting a tilted mirror surface, an integrated circuit chip, and a piece of onion epithelium.
ARGon{sup 3}: ''3D appearance robot-based gonioreflectometer'' at PTB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoepe, A.; Atamas, T.; Huenerhoff, D.
At the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany, a new facility for measuring visual appearance-related quantities has been built up. The acronym ARGon{sup 3} stands for ''3D appearance robot-based gonioreflectometer''. Compared to standard gonioreflectometers, there are two main new features within this setup. First, a photometric luminance camera with a spatial resolution of 28 {mu}m on the device under test (DUT) enables spatially high-resolved measurements of luminance and color coordinates. Second, a line-scan CCD-camera mounted to a spectrometer provides measurements of the radiance factor, respectively the bidirectional reflectance distribution function, in full V({lambda})-range (360 nm-830 nm) with arbitrarymore » angles of irradiation and detection relative to the surface normal, on a time scale of about 2 min. First goniometric measurements of diffuse reflection within 3D-space above the DUT with subsequent colorimetric representation of the obtained data of special effect pigments based on the interference effect are presented.« less
Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy
NASA Astrophysics Data System (ADS)
Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie
2015-08-01
Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.
Wang, Guizhou; Liu, Jianbo; He, Guojin
2013-01-01
This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.
NASA Astrophysics Data System (ADS)
Jerram, P. A.; Fryer, M.; Pratlong, J.; Pike, A.; Walker, A.; Dierickx, B.; Dupont, B.; Defernez, A.
2017-11-01
CCDs have been used for many years for Hyperspectral imaging missions and have been extremely successful. These include the Medium Resolution Imaging Spectrometer (MERIS) [1] on Envisat, the Compact High Resolution Imaging Spectrometer (CHRIS) on Proba and the Ozone Monitoring Instrument operating in the UV spectral region. ESA are also planning a number of further missions that are likely to use CCD technology (Sentinel 3, 4 and 5). However CMOS sensors have a number of advantages which means that they will probably be used for hyperspectral applications in the longer term. There are two main advantages with CMOS sensors: First a hyperspectral image consists of spectral lines with a large difference in intensity; in a frame transfer CCD the faint spectral lines have to be transferred through the part of the imager illuminated by intense lines. This can lead to cross-talk and whilst this problem can be reduced by the use of split frame transfer and faster line rates CMOS sensors do not require a frame transfer and hence inherently will not suffer from this problem. Second, with a CMOS sensor the intense spectral lines can be read multiple times within a frame to give a significant increase in dynamic range. We will describe the design, and initial test of a CMOS sensor for use in hyperspectral applications. This device has been designed to give as high a dynamic range as possible with minimum cross-talk. The sensor has been manufactured on high resistivity epitaxial silicon wafers and is be back-thinned and left relatively thick in order to obtain the maximum quantum efficiency across the entire spectral range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradere, P.; Perol, A.
The requirements for the design of an XRII can be quite different depending on the application: medical; industrial; low or high energy. A specific need for industrial applications is to reduce image burn-in, a permanent marking of the tube related to the inspection of sharp contrast objects with high X-ray doses. Burn-in is mainly related to the darkening of the output screen which depends on the electron beam density in the tube. A first way to reduce burn-in is to reduce the tube gain. A more efficient solution now proposed by Thomson Tubes Electroniques is to use a non browning,more » radiation hard glass for the tube output window together with a more adapted screen process that will limit the darkening of the output phosphor itself. The new industrial tube will be proposed in 9 in. (215 mm useful) or 12 in. (290 mm) format and could be ideally combined with a new high resolution (1024 x 1024 pixels) 12 bits real time CCD camera. This camera includes a new interline CCD developed to avoid image smear and blooming. Integrated image heads with power supply and folded optics are available. Low energy, beryllium windowed 9 in. XRII is already available in industrial version.« less
Active pixel sensor array as a detector for electron microscopy.
Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu
2005-09-01
A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.
Quantum enhanced superresolution microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Oron, Dan; Tenne, Ron; Israel, Yonatan; Silberberg, Yaron
2017-02-01
Far-field optical microscopy beyond the Abbe diffraction limit, making use of nonlinear excitation (e.g. STED), or temporal fluctuations in fluorescence (PALM, STORM, SOFI) is already a reality. In contrast, overcoming the diffraction limit using non-classical properties of light is very difficult to achieve due to the fragility of quantum states of light. Here, we experimentally demonstrate superresolution microscopy based on quantum properties of light naturally emitted by fluorophores used as markers in fluorescence microscopy. Our approach is based on photon antibunching, the tendency of fluorophores to emit photons one by one rather than in bursts. Although a distinctively quantum phenomenon, antibunching is readily observed in most common fluorophores even at room temperature. This nonclassical resource can be utilized directly to enhance the imaging resolution, since the non-classical far-field intensity correlations induced by antibunching carry high spatial frequency information on the spatial distribution of emitters. Detecting photon statistics simultaneously in the entire field of view, we were able to detect non-classical correlations of the second and third order, and reconstructed images with resolution significantly beyond the diffraction limit. Alternatively, we demonstrate the utilization of antibunching for augmenting the capabilities of localization-based superresolution imaging in the presence of multiple emitters, using a novel detector comprised of an array of single photon detectors connected to a densely packed fiber bundle. These features allow us to enhance the spatial and temporal resolution with which multiple emitters can be imaged compared with other techniques that rely on CCD cameras.
Measurement of the Radial Velocity of Vega and SAO 104807 by high resolution spectrometry
NASA Astrophysics Data System (ADS)
Rosas, F.; Ordoñez, J.; Suarez, W.; Quijano, A.
2017-07-01
The radial velocity is the component of the velocity with which a celestial object approaches (blueshift) or go away (redshift) of the observer. The precise measurement of the redshift allowed to Humason and Hubble discover the expansion of the Universe. In 1998 two research teams simultaneously discovered that this expansion is accelerated, for that reason the hypothesis of the dark energy has been raised to explain the existing repulsion. The present work shows the measurement of the radial velocity of Vega and SAO104807 by high resolution spectrometry. Using the instruments of the Astronomical Observatory of the University of Nariño, located in the south of Colombia, was measured the displacement that the spectral lines of both celestial objects suffer due to the Doppler effect. The results obtained were quite close to those recorded in databases such as SIMBAD, according to the used equipment. The instruments used were: Celestron CGE Pro 1400 Telescope, Shelyak LHIRES III High Resolution Spectrometer and SBIG ST-8300 CCD Camera. The characteristics of the spectrometer are: Diffraction grating: 2400 lines/mm, Spectral dispersion (H alpha): 0:012 nm/pixel, Radial velocity resolution: 5 km/s.
NASA Astrophysics Data System (ADS)
Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang
2010-11-01
This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.
NASA Astrophysics Data System (ADS)
Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.
2017-02-01
We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.
Wu, Tao; Zhao, Dong-zhi; Zhang, Feng-shou; Wei, Bao-quan
2011-07-01
Based on the comprehensive consideration of the high resolution characteristics of remote sensing data and the current situation of land cover and land use in Dayang River Estuary wetland, a classification system with different resolutions of wetland landscape in the Estuary was established. The landscape pattern indices and landscape transition matrix were calculated by using the high resolution remote sensing data, and the dynamic changes of the landscape pattern from 1984 to 2008 were analyzed. In the study period, the wetland landscape components changed drastically. Wetland landscape transferred from natural wetland into artificial wetland, and wetland core regional area decreased. Natural wetland's largest patch area index descended, and the fragmentation degree ascended; while artificial wetland area expanded, its patch number decreased, polymerization degree increased, and the maximum patch area index had an obvious increasing trend. Increasing human activities, embankment construction, and reclamation for aquaculture were the main causes for the decrease of wetland area and the degradation of the ecological functions of Dayang River Estuary. To constitute long-term scientific and reasonable development plan, establish wetland nature reserves, protect riverway, draft strict inspective regimes for aquaculture reclamation, and energetically develop resource-based tourism industry would be the main strategies for the protection of the estuarine wetland.
Using a delta-doped CCD to determine the energy of a low-energy particle
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Croley, Donald R. (Inventor); Murphy, Gerald B. (Inventor)
2001-01-01
The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to determine the energy of a very low-energy particle that penetrates less than 1.0 nm into the CCD, such as a proton having energy less than 10 keV.
Delta-doped CCD's as low-energy particle detectors and imagers
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Hecht, Michael H. (Inventor)
2002-01-01
The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to detect very low-energy particles that penetrate less than 1.0 nm into the CCD, including electrons having energies less than 1000 eV and protons having energies less than 10 keV.
NASA Astrophysics Data System (ADS)
Baruch, Daniel; Abookasis, David
2017-04-01
The application of optical techniques as tools for biomedical research has generated substantial interest for the ability of such methodologies to simultaneously measure biochemical and morphological parameters of tissue. Ongoing optimization of optical techniques may introduce such tools as alternative or complementary to conventional methodologies. The common approach shared by current optical techniques lies in the independent acquisition of tissue's optical properties (i.e., absorption and reduced scattering coefficients) from reflected or transmitted light. Such optical parameters, in turn, provide detailed information regarding both the concentrations of clinically relevant chromophores and macroscopic structural variations in tissue. We couple a noncontact optical setup with a simple analysis algorithm to obtain absorption and scattering coefficients of biological samples under test. Technically, a portable picoprojector projects serial sinusoidal patterns at low and high spatial frequencies, while a spectrometer and two independent CCD cameras simultaneously acquire the reflected diffuse light through a single spectrometer and two separate CCD cameras having different bandpass filters at nonisosbestic and isosbestic wavelengths in front of each. This configuration fills the gaps in each other's capabilities for acquiring optical properties of tissue at high spectral and spatial resolution. Experiments were performed on both tissue-mimicking phantoms as well as hands of healthy human volunteers to quantify their optical properties as proof of concept for the present technique. In a separate experiment, we derived the optical properties of the hand skin from the measured diffuse reflectance, based on a recently developed camera model. Additionally, oxygen saturation levels of tissue measured by the system were found to agree well with reference values. Taken together, the present results demonstrate the potential of this integrated setup for diagnostic and research applications.
NASA Astrophysics Data System (ADS)
Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.
2016-12-01
Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.
The timing of events surrounding the Eocene-Oligocene boundary - Results from ODP Leg 199
NASA Astrophysics Data System (ADS)
Pälike, H.; Wilson, P. A.; Coxall, H.; Backman, J.
2003-04-01
The Eocene/Oligocene (E/O) boundary represents an extreme and rapid climatic transition from the ``greenhouse'' world of the Cretaceous and early Paleogene into the late Paleogene-Neogene ``ice-house''. It is marked by a large and global deepening in the calcite compensation depth (CCD), as well as pronounced changes in the isotopic composition of carbon and oxygen in seawater, recorded in biogenic calcium carbonate. A good understanding is still lacking as to why climatic, palaeoceanographic and marine biological productivity changes occurred within a few tens of thousands of years, and what change in boundary conditions triggered a non-linear response of the climate system. Detailed palaeoceanographic records surrounding the E/O have been rare because of the lack of well-dated, expanded deep-sea sedimentary sections containing well-preserved calcareous microfossils. Ocean Drilling Program Leg 199 recently recovered an extensive set of high-quality sediment cores across the E/O that span a latitudinal and depth transect in the central Pacific Ocean. We present new high-resolution records of bulk %CaCO3, δ18O and δ13C for a set of sites that form a depth transect, clearly delineating the relative depth with respect to the CCD during the transition. Our data show that a two-stepped deepening of the CCD coincides with a remarkably similar and simultaneous evolution of bulk δ18O values. We can demonstrate the imprint of climatic cycles around the E/O boundary, and very high-quality bio- and paleomagnetic datum points allow us to link these to Earth's orbital variations. Shipboard measurements of sediment properties and down-hole log measurements also display an imprint of climatic cycles, and allow us to obtain an astronomically calibrated time scale across the E/O. Our results put tighter constraints on the timing of the evolution of the CCD, mass accumulation rates, and biological productivity across the E/O, which display a distinct two-step shift in the most expanded section at the shallowest end of the transect (Site 1218). The initial deepening of the CCD occurred in less than 50 thousand years, and we observe a change in the nature and amplitude of climatic cycles that are recorded in sediments from Leg 199 across the E/O.
Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays
NASA Astrophysics Data System (ADS)
Plimley, Brian Christopher
Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron track Compton imaging an effective means of reducing image background for photons of energy as low as 500 keV, or even less. The angular sensitivity of the reconstruction algorithm was also evaluated experimentally, by measuring electron tracks in the CCD in coincidence with the scattered photon in a germanium double-sided strip detector. By this method, electron tracks could be measured with the true initial direction known to within 3° FWHM, and the angular response of the algorithm compared to the known direction. The challenge of this experiment lay in the low geometric efficiency for photons scattering into the germanium, the poor time resolution in the current CCD implementation, and the resulting signal-to-background ratio of about 10--4 for photons scattered from the CCD into the germanium detector. Nonetheless, 87 events were measured in the FWHM of the total energy deposited and the angular resolution measure, with electron tracks between 160 keV and 360 keV in energy. The electron tracks from true coincident event sequences showed a FWHM in the pixel plane of 23°, and excellent agreement with the distribution calculated with models, with likelihood p-values of 0.44 and 0.73. Thus, the models used for the more thorough evaluation of angular sensitivities are shown to be consistent with the measured tracks from true coincident event sequences.
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
NASA Astrophysics Data System (ADS)
Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.
2017-09-01
iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.
Zhang, Da-wei; Zhao, Ming-ming; He, Hong-qiu; Guo, Shun-xing
2013-09-15
HIV-1 integrase, an essential enzyme for retroviral replication, is a validated target for anti-HIV therapy development. The catalytic core domain of integrase (IN-CCD) is capable of catalyzing disintegration reaction. In this work, a hairpin-shaped disintegration substrate was designed and validated by enzyme-linked immunosorbent assay; a molecular beacon-based assay was developed for disintegration reaction of IN-CCD. Results showed that the disintegration substrate could be recognized and catalyzed by IN-CCD, and the disintegration reaction can be monitored according to the increase of fluorescent signal. The assay can be applied to real-time detection of disintegration with advantages of simplicity, high sensitivity, and excellent specificity. Copyright © 2013 Elsevier Inc. All rights reserved.
Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.
2000-01-01
The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.
Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.
Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell
2000-06-20
The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.
NASA Astrophysics Data System (ADS)
Shvelidze, T. D.; Malyuto, V. D.
Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for 333 stars in four areas. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre and the main meridional section of the Galaxy. The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
VizieR Online Data Catalog: AQ Boo VRI differential light curves (Wang+, 2016)
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Pi, Q.; Han, X. L.; Zhang, X.; Lu, H.; Wang, D.; Li, T.
2016-11-01
On March 22 and April 19 in 2014, we observed AQ Boo with the 60cm telescope at Xinglong Station of the National Astronomical Observatories of China (NAOC). The CCD camera on this telescope has a resolution of 1024 x 1024 pixels and its corresponding field of view is 17'x17' (Yang, 2013NewA...25..109Y). The other three days of data were obtained using the 1-m telescope at Yunnan Observatory of Chinese Academy of Sciences, on January 20, 21 and February 28 in 2015. The CCD camera on this telescope has a resolution of 2048x2048 pixels and its corresponding field of view is 7.3'x7.3'. Bessel VRI filters were used. The exposure times are 100-170s, 50-100s and 50-80s in the V, R, I bands, respectively. (1 data file).
Advances in CCD detector technology for x-ray diffraction applications
NASA Astrophysics Data System (ADS)
Thorson, Timothy A.; Durst, Roger D.; Frankel, Dan; Bordwell, Rex L.; Camara, Jose R.; Leon-Guerrero, Edward; Onishi, Steven K.; Pang, Francis; Vu, Paul; Westbrook, Edwin M.
2004-01-01
Phosphor-coupled CCDs are established as one of the most successful technologies for x-ray diffraction. This application demands that the CCD simultaneously achieve both the highest possible sensitivity and high readout speeds. Recently, wafer-scale, back illuminated devices have become available which offer significantly higher quantum efficiency than conventional devices (the Fairchild Imaging CCD 486 BI). However, since back thinning significantly changes the electrical properties of the CCD the high speed operation of wafer-scale, back-illuminated devices is not well understood. Here we describe the operating characteristics (including noise, linearity, full well capacity and CTE) of the back-illuminated CCD 486 at readout speeds up to 4 MHz.
New technology and techniques for x-ray mirror calibration at PANTER
NASA Astrophysics Data System (ADS)
Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin
2008-07-01
The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.
Shaw, S L; Salmon, E D; Quatrano, R S
1995-12-01
In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.
Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.
Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio
2009-01-01
3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.
Fast optical and electrical diagnostics of pulsed spark discharges in different gap geometries
NASA Astrophysics Data System (ADS)
Höft, Hans; Huiskamp, Tom; Kettlitz, Manfred
2016-09-01
Spark discharges in different electrode configurations and with various electrode materials were ignited in air at atmospheric pressure using a custom build pulse charger with 1 μs voltage rise time (up to 28 kV) in single shot operation. Fast voltage and current measurements were combined with iCCD imaging with high spatial resolution (better than 10 μm) on pin-to-pin, pin-to-half-sphere and symmetrical half-sphere tungsten electrodes and symmetrical half-sphere brass electrodes for electrode gaps of 0.1 to 0.7 mm. Breakdown voltages, consumed electrical energies and the discharge emission structures as well as the discharge diameters were obtained. Because of the synchronization of the electrical measurements and the iCCD imaging (i.e. one complete data set for every shot), it was possible to estimate the current density and the change of the discharge pattern, such as single or multiple channels, for all cases. EU funding under Grant No 316216 (PlasmaShape).
Design of a CCD Camera for Space Surveillance
2016-03-05
Laboratory fabricated CCID-51M, a 2048x1024 pixel Charge Couple Device (CCD) imager. [1] The mission objective is to observe and detect satellites in...phased to transfer the charge to the outputs. An electronic shutter is created by having an equal area of pixels covered by an opaque metal mask. The...Figure 4 CDS Timing Diagram By design the CCD readout rate is 400 KHz. This rate was chosen so reading the 2E6 pixels from one output is less than
NASA Astrophysics Data System (ADS)
Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aarts, Henri; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Mara; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Hosei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Fritzs; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F. Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yohichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki
2012-09-01
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-12 keV with high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
a New Object-Based Framework to Detect Shodows in High-Resolution Satellite Imagery Over Urban Areas
NASA Astrophysics Data System (ADS)
Tatar, N.; Saadatseresht, M.; Arefi, H.; Hadavand, A.
2015-12-01
In this paper a new object-based framework to detect shadow areas in high resolution satellite images is proposed. To produce shadow map in pixel level state of the art supervised machine learning algorithms are employed. Automatic ground truth generation based on Otsu thresholding on shadow and non-shadow indices is used to train the classifiers. It is followed by segmenting the image scene and create image objects. To detect shadow objects, a majority voting on pixel-based shadow detection result is designed. GeoEye-1 multi-spectral image over an urban area in Qom city of Iran is used in the experiments. Results shows the superiority of our proposed method over traditional pixel-based, visually and quantitatively.
Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration
NASA Astrophysics Data System (ADS)
Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng
2017-02-01
A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun
2016-09-01
Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two modalities.
Aerosol Optical Depth Value-Added Product for the SAS-He Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ermold, B; Flynn, CJ; Barnard, J
2013-11-27
The Shortwave Array Spectroradiometer – Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures the direct and diffuse solar irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) – an instrument that has been in the ARM suite of instruments for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm width from 415 to 940 nm. The SAS-He, in contrast, incorporates two fiber-coupled grating spectrometers: a Si CCD spectrometer with overmore » 2000 pixels covering the range from 325-1040 nm with ~ 2.5 nm resolution ,and an InGaAs array spectrometer with 256 pixels covering the wavelength range from 960-1700 nm with ~ 6 nm resolution.« less
Bottenberg, Peter; Jacquet, Wolfgang; Stachniss, Vitus; Wellnitz, Johann; Schulte, Andreas G
2011-04-01
To determine the ability of digital sensors (CMOS and CCD sensors) and D and F-speed films to detect cavitated and non-cavitated enamel caries lesions at different exposure conditions compared to a gold standard. 100 extracted human molars and premolars were selected and mounted in a block between two neighboring teeth. Sensors or films were exposed with voltages of 60 or 70 kVp at varying times. Three observers assessed each approximal site independently. Lesion depth was rated according to an anatomical five-point scale (0 = no lesion to 4 = lesion reaching inner half of dentin). Serial sections of resin-embedded teeth were prepared. Gold-standard scores were established by consensus based on histological sectioning. A carious lesion was present at scores of 1 and higher. Statistical evaluation (sensitivity, specificity and receiver-operating curves) was based on caries-free surfaces and those presenting enamel caries (n=116). The ROC curves had "area under the curve" values (Az) from 0.50 (F-speed, 70 kVp, 0.20 seconds) to 0.58 (CCD 60 kVp, 0.08 seconds). The detection percentage of cavitated lesions was generally higher (0-52%, depending on technique and observer) than that of non-cavitated lesions (3-32%). The CMOS sensor showed Az values comparable to the CCD sensors but required higher exposure times. There was no significant difference between 60 and 70 kVp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Brian W., E-mail: brian.miller@pnnl.gov; Frost, Sofia H. L.; Frayo, Shani L.
2015-07-15
Purpose: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclidemore » distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ({sup 211}At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10{sup −4} cpm/cm{sup 2} (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was performed using a large-area iQID configuration (ø 11.5 cm). Estimation of the {sup 211}At activity distribution was demonstrated at mBq/μg-levels. Conclusions: Single-particle digital autoradiography of α emitters has advantages over traditional film-based autoradiographic techniques that use phosphor screens, in terms of spatial resolution, sensitivity, and activity quantification capability. The system features and characterization results presented in this study show that the iQID is a promising technology for microdosimetry, because it provides necessary information for interpreting alpha-RIT outcomes and for predicting the therapeutic efficacy of cell-targeted approaches using α emitters.« less
Miller, Brian W; Frost, Sofia H L; Frayo, Shani L; Kenoyer, Aimee L; Santos, Erlinda; Jones, Jon C; Green, Damian J; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Orozco, Johnnie J; Press, Oliver W; Pagel, John M; Sandmaier, Brenda M
2015-07-01
Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50-80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ((211)At) activity distributions in cryosections of murine and canine tissue samples. The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10(-4) cpm/cm(2) (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was performed using a large-area iQID configuration (ø 11.5 cm). Estimation of the (211)At activity distribution was demonstrated at mBq/μg-levels. Single-particle digital autoradiography of α emitters has advantages over traditional film-based autoradiographic techniques that use phosphor screens, in terms of spatial resolution, sensitivity, and activity quantification capability. The system features and characterization results presented in this study show that the iQID is a promising technology for microdosimetry, because it provides necessary information for interpreting alpha-RIT outcomes and for predicting the therapeutic efficacy of cell-targeted approaches using α emitters.
The Chandra X-Ray Observatory and its Role for the Study of Ionized Plasmas
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2010-01-01
NASA's Chandra X-Ray Observatory was launched in July of 1999. Featuring a 1000cm2-class X-ray telescope with sub-arcsecond angular resolution, the Observatory has observed targets from the solar system including the earth s moon, comets, and planets to the most distant galaxy clusters and active galactic nuclei. Capable of performing moderate energy resolution image-resolved spectroscopy using its CCD detectors, and high-resolution grating spectroscopy, the Observatory has produced, and continues to produce, valuable data and insights into the emission mechanisms of the ionized plasmas in which the X-rays originate. We present a brief overview of the Observatory to provide insight as to how to use it for your investigations. We also present an, admittedly brief and biased, overview of some of the results of investigations performed with Chandra that may be of interest to this audience.
Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.
2015-01-01
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570
Design of a novel noninvasive spectrometer for pesticide residues monitor
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-11-01
Although the gas or liquid chromatography had been widely used into pesticide residues monitoring, some drawbacks such as time-consuming, complicated operation and especially the destructivity for samples were existed. To overcome the limits of destructive detection methods, the noninvasive detection method based on spectroscopy was used to detect the pesticide residues in this paper. To overcome low resolution and light-efficiency due to the drawbacks of the classical plane and holography concave gratings, a novel noninvasive spectrometer for pesticide residues monitor (PRM) based on volume holography transmission (VHT) grating was designed. Meanwhile, a custom-built splitting light system for PRM based on the VHT grating was developed. In addition, the linear charge coupled device (CCD) with combined data acquisition (DAQ) card and the virtual-PRM based on LabVIEW were respectively used as the spectral acquisition hardware and software-platform. Experimental results showed that the spectral resolution of this spectrometer reached 2nm, and the VHT grating's diffraction efficiency was gotten via the simulation experiment.
Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Opal, C. B.
1983-01-01
Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.
Digital Copy of the Pulkovo Plate Collection
NASA Astrophysics Data System (ADS)
Kanaev, I.; Kanaeva, N.; Poliakow, E.; Pugatch, T.
Report is devoted to a problem of saving of the Pulkovo plate collection. In total more than 50 thousand astronegatives are stored in the observatory. First of them are dated back to 1893. A risk of emulsion corrupting raises with current of time. Since 1996 the operation on digitization and record of the images of plates on electronic media (HDD, CD) are carried out in the observatory. The database ECSIP - Electronic Collection of the Star Images of the Pulkovo is created. There are recorded in it both complete, and extracted (separate areas) images of astronegatives. The plates as a whole are scanned on the photoscanner with rather rough optical resolution 600-2400 dpi. The matrixes with the separate images are digitized on the precision measuring machine "Fantasy" with high (6000-25400 dpi) resolution. The DB ECSIP allows to accept and to store different types of data of a matrix structure, including, CCD-frames. Structure of the ECSIP's software includes systems of visualization, processing and manipulation by the images, and also programs for position and photometric measurements. To the present time more than 40% completed and 10% extracted images from its total amount are digitized and recorded in DB ECSIP. The project is fulfilled at financial support by the Ministry of Science of Russian Federation, grant 01-54 "The coordinate -measuring astrographic machine "Fantasy".
Signal processing applications of massively parallel charge domain computing devices
NASA Technical Reports Server (NTRS)
Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)
1999-01-01
The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.
Parallel robot for micro assembly with integrated innovative optical 3D-sensor
NASA Astrophysics Data System (ADS)
Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer
2002-10-01
Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Stuart S; Samulski, Edward; Lopez, Renee
2010-01-01
ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less
Movement measurement of isolated skeletal muscle using imaging microscopy
NASA Astrophysics Data System (ADS)
Elias, David; Zepeda, Hugo; Leija, Lorenzo S.; Sossa, Humberto; de la Rosa, Jose I.
1997-05-01
An imaging-microscopy methodology to measure contraction movement in chemically stimulated crustacean skeletal muscle, whose movement speed is about 0.02 mm/s is presented. For this, a CCD camera coupled to a microscope and a high speed digital image acquisition system, allowing us to capture 960 images per second are used. The images are digitally processed in a PC and displayed in a video monitor. A maximal field of 0.198 X 0.198 mm2 and a spatial resolution of 3.5 micrometers are obtained.
Zhang, Yuzhong; Zhang, Yan
2016-07-01
In an optical measurement and analysis system based on a CCD, due to the existence of optical vignetting and natural vignetting, photometric distortion, in which the intensity falls off away from the image center, affects the subsequent processing and measuring precision severely. To deal with this problem, an easy and straightforward method used for photometric distortion correction is presented in this paper. This method introduces a simple polynomial fitting model of the photometric distortion function and employs a particle swarm optimization algorithm to get these model parameters by means of a minimizing eight-neighborhood gray gradient. Compared with conventional calibration methods, this method can obtain the profile information of photometric distortion from only a single common image captured by the optical CCD-based system, with no need for a uniform luminance area source used as a standard reference source and relevant optical and geometric parameters in advance. To illustrate the applicability of this method, numerical simulations and photometric distortions with different lens parameters are evaluated using this method in this paper. Moreover, the application example of temperature field correction for casting billets also demonstrates the effectiveness of this method. The experimental results show that the proposed method is able to achieve the maximum absolute error for vignetting estimation of 0.0765 and the relative error for vignetting estimation from different background images of 3.86%.
Fourier transform digital holographic adaptive optics imaging system
Liu, Changgeng; Yu, Xiao; Kim, Myung K.
2013-01-01
A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541
NASA Astrophysics Data System (ADS)
Bessell, Michael S.
2000-08-01
Spectacular colour images have been made by combining CCD images in three different passbands using Adobe Photoshop. These beautiful images highlight a variety of astrophysical phenomena and should be a valuable resource for science education and public awareness of science. The wide field images were obtained at the Siding Spring Observatory (SSO) by mounting a Hasselblad or Nikkor telephoto lens in front of a 2K × 2K CCD. Options of more than 30 degrees or 6 degrees square coverage are produced in a single exposure in this way. Narrow band or broad band filters were placed between lens and CCD enabling deep, linear images in a variety of passbands to be obtained. We have mapped the LMC and SMC and are mapping the Galactic Plane for comparison with the Molonglo Radio Survey. Higher resolution images have also been made with the 40 inch telescope of galaxies and star forming regions in the Milky Way.
NASA Astrophysics Data System (ADS)
Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng
2009-08-01
A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.
Fully depleted back illuminated CCD
Holland, Stephen Edward
2001-01-01
A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.
High-Voltage Clock Driver for Photon-Counting CCD Characterization
NASA Technical Reports Server (NTRS)
Baker, Robert
2013-01-01
A document discusses the CCD97 from e2v technologies as it is being evaluated at Goddard Space Flight Center's Detector Characterization Laboratory (DCL) for possible use in ultra-low background noise space astronomy applications, such as Terrestrial Planet Finder Coronagraph (TPF-C). The CCD97 includes a photoncounting mode where the equivalent output noise is less than one electron. Use of this mode requires a clock signal at a voltage level greater than the level achievable by the existing CCD (charge-coupled-device) electronics. A high-voltage waveform generator has been developed in code 660/601 to support the CCD97 evaluation. The unit generates required clock waveforms at voltage levels from -20 to +50 V. It deals with standard and arbitrary waveforms and supports pixel rates from 50 to 500 kHz. The system is designed to interface with existing Leach CCD electronics.
Huxham, Mark; Emerton, Lucy; Kairo, James; Munyi, Fridah; Abdirizak, Hassan; Muriuki, Tabitha; Nunan, Fiona; Briers, Robert A
2015-07-01
Mangrove forests are under global pressure. Habitat destruction and degradation persist despite longstanding recognition of the important ecological functions of mangroves. Hence new approaches are needed to help stakeholders and policy-makers achieve sound management that is informed by the best science. Here we explore how the new policy concept of Climate Compatible Development (CCD) can be applied to achieve better outcomes. We use economic valuation approaches to combine socio-economic data, projections of forest cover based on quantitative risk mapping and storyline scenario building exercises to articulate the economic consequences of plausible alternative future scenarios for the mangrove forests of the South Kenya coast, as a case study of relevance to many other areas. Using data from 645 household surveys, 10 focus groups and 74 interviews conducted across four mangrove sites, and combining these with information on fish catches taken at three landing sites, a mangrove carbon trading project and published data allowed us to make a thorough (although still partial) economic valuation of the forests. This gave a current value of the South Coast mangroves of USD 6.5 million, or USD 1166 ha(-1), with 59% of this value on average derived from regulating services. Quantitative risk mapping, projecting recent trends over the next twenty years, suggests a 43% loss of forest cover over that time with 100% loss at the most vulnerable sites. Much of the forest lost between 1992 and 2012 has not been replaced by high value alternative land uses hence restoration of these areas is feasible and may not involve large opportunity costs. We invited thirty eight stakeholders to develop plausible storyline scenarios reflecting Business as Usual (BAU) and CCD - which emphasises sustainable forest conservation and management - in twenty years time, drawing on local and regional expert knowledge of relevant policy, social trends and cultures. Combining these scenarios with the quantitative projections and economic baseline allowed the modelling of likely value added and costs avoided under the CCD scenario. This suggests a net present value of more than US$20 million of adoption of CCD rather than BAU. This work adds to the economic evidence for mangrove conservation and helps to underline the importance of new real and emerging markets, such as for REDD + projects, in making this case for carbon-rich coastal habitats. It demonstrates a policy tool - CCD - that can be used to engage stakeholders and help to co-ordinate policy across different sectors towards mangrove conservation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biological applications of an LCoS-based programmable array microscope (PAM)
NASA Astrophysics Data System (ADS)
Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.
2007-02-01
We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.
Yang, Minghui; Sun, Steven; Kostov, Yordan
2010-01-01
There is a well-recognized need for low cost biodetection technologies for resource-poor settings with minimal medical infrastructure. Lab-on-a-chip (LOC) technology has the ability to perform biological assays in such settings. The aim of this work is to develop a low cost, high-throughput detection system for the analysis of 96 samples simultaneously outside the laboratory setting. To achieve this aim, several biosensing elements were combined: a syringe operated ELISA lab-on-a-chip (ELISA-LOC) which integrates fluid delivery system into a miniature 96-well plate; a simplified non-enzymatic reporter and detection approach using a gold nanoparticle-antibody conjugate as a secondary antibody and silver enhancement of the visual signal; and Carbon nanotubes (CNT) to increase primary antibody immobilization and improve assay sensitivity. Combined, these elements obviate the need for an ELISA washer, electrical power for operation and a sophisticated detector. We demonstrate the use of the device for detection of Staphylococcal enterotoxin B, a major foodborne toxin using three modes of detection, visual detection, CCD camera and document scanner. With visual detection or using a document scanner to measure the signal, the limit of detection (LOD) was 0.5ng/ml. In addition to visual detection, for precise quantitation of signal using densitometry and a CCD camera, the LOD was 0.1ng/ml for the CCD analysis and 0.5 ng/ml for the document scanner. The observed sensitivity is in the same range as laboratory-based ELISA testing. The point of care device can analyze 96 samples simultaneously, permitting high throughput diagnostics in the field and in resource poor areas without ready access to laboratory facilities or electricity. PMID:21503269
The SWIFT Gamma-Ray Burst X-Ray Telescope
NASA Technical Reports Server (NTRS)
Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.
2006-01-01
The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.
Yang, Qi; Meng, Fan-Rui; Bourque, Charles P-A; Zhao, Zhengyong
2017-09-08
Forest ecosite reflects the local site conditions that are meaningful to forest productivity as well as basic ecological functions. Field assessments of vegetation and soil types are often used to identify forest ecosites. However, the production of high-resolution ecosite maps for large areas from interpolating field data is difficult because of high spatial variation and associated costs and time requirements. Indices of soil moisture and nutrient regimes (i.e., SMR and SNR) introduced in this study reflect the combined effects of biogeochemical and topographic factors on forest growth. The objective of this research is to present a method for creating high-resolution forest ecosite maps based on computer-generated predictions of SMR and SNR for an area in Atlantic Canada covering about 4.3 × 10 6 hectares (ha) of forestland. Field data from 1,507 forest ecosystem classification plots were used to assess the accuracy of the ecosite maps produced. Using model predictions of SMR and SNR alone, ecosite maps were 61 and 59% correct in identifying 10 Acadian- and Maritime-Boreal-region ecosite types, respectively. This method provides an operational framework for the production of high-resolution maps of forest ecosites over large areas without the need for data from expensive, supplementary field surveys.
NASA Technical Reports Server (NTRS)
Tarbell, T. D.; Peri, M.; Frank, Z.; Shine, R.; Title, A. M.
1988-01-01
Spectra (l - v diagrams) from high resolution observations taken at the Vacuum Tower Telescope (NSO/Sunspot) are presented. The raw data are CCD images taken through the SOUP narrowband filter in Fe I 5576 A. Four filtergrams spaced through the spectral line are combined to form velocity movies. Spectra for 80 min of data with 0.5 to 1.5 arcsec resolution are presented for the entire field-of-view and for quiet and magnetic (plage) subregions. Ridges f and p1 to p5 are evident in velocity spectra, extending to l = 2500 (f), l = 1800 (p1), and l = 1200 (p2). Much less power is seen in the magnetic region than in the quiet Sun. Three-dimensional Fourier filtering shows that oscillation velocity amplitude drops sharply at the boundary of the active region for each family of modes considered.
Development of an optical inspection platform for surface defect detection in touch panel glass
NASA Astrophysics Data System (ADS)
Chang, Ming; Chen, Bo-Cheng; Gabayno, Jacque Lynn; Chen, Ming-Fu
2016-04-01
An optical inspection platform combining parallel image processing with high resolution opto-mechanical module was developed for defect inspection of touch panel glass. Dark field images were acquired using a 12288-pixel line CCD camera with 3.5 µm per pixel resolution and 12 kHz line rate. Key features of the glass surface were analyzed by parallel image processing on combined CPU and GPU platforms. Defect inspection of touch panel glass, which provided 386 megapixel image data per sample, was completed in roughly 5 seconds. High detection rate of surface scratches on the touch panel glass was realized with minimum defects size of about 10 µm after inspection. The implementation of a custom illumination source significantly improved the scattering efficiency on the surface, therefore enhancing the contrast in the acquired images and overall performance of the inspection system.
A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload
NASA Technical Reports Server (NTRS)
Golub, Leon
1989-01-01
Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.
High contrast computed tomography with synchrotron radiation
NASA Astrophysics Data System (ADS)
Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami
1995-02-01
This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.
Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M.
2013-12-15
An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.
NASA Astrophysics Data System (ADS)
Ye, L.; Wu, B.
2017-09-01
High-resolution imagery is an attractive option for surveying and mapping applications due to the advantages of high quality imaging, short revisit time, and lower cost. Automated reliable and dense image matching is essential for photogrammetric 3D data derivation. Such matching, in urban areas, however, is extremely difficult, owing to the complexity of urban textures and severe occlusion problems on the images caused by tall buildings. Aimed at exploiting high-resolution imagery for 3D urban modelling applications, this paper presents an integrated image matching and segmentation approach for reliable dense matching of high-resolution imagery in urban areas. The approach is based on the framework of our existing self-adaptive triangulation constrained image matching (SATM), but incorporates three novel aspects to tackle the image matching difficulties in urban areas: 1) occlusion filtering based on image segmentation, 2) segment-adaptive similarity correlation to reduce the similarity ambiguity, 3) improved dense matching propagation to provide more reliable matches in urban areas. Experimental analyses were conducted using aerial images of Vaihingen, Germany and high-resolution satellite images in Hong Kong. The photogrammetric point clouds were generated, from which digital surface models (DSMs) were derived. They were compared with the corresponding airborne laser scanning data and the DSMs generated from the Semi-Global matching (SGM) method. The experimental results show that the proposed approach is able to produce dense and reliable matches comparable to SGM in flat areas, while for densely built-up areas, the proposed method performs better than SGM. The proposed method offers an alternative solution for 3D surface reconstruction in urban areas.