Influencing Factors of the Initiation Point in the Parachute-Bomb Dynamic Detonation System
NASA Astrophysics Data System (ADS)
Qizhong, Li; Ye, Wang; Zhongqi, Wang; Chunhua, Bai
2017-12-01
The parachute system has been widely applied in modern armament design, especially for the fuel-air explosives. Because detonation of fuel-air explosives occurs during flight, it is necessary to investigate the influences of the initiation point to ensure successful dynamic detonation. In fact, the initiating position exist the falling area in the fuels, due to the error of influencing factors. In this paper, the major influencing factors of initiation point were explored with airdrop and the regularity between initiation point area and factors were obtained. Based on the regularity, the volume equation of initiation point area was established to predict the range of initiation point in the fuel. The analysis results showed that the initiation point appeared area, scattered on account of the error of attitude angle, secondary initiation charge velocity, and delay time. The attitude angle was the major influencing factors on a horizontal axis. On the contrary, secondary initiation charge velocity and delay time were the major influencing factors on a horizontal axis. Overall, the geometries of initiation point area were sector coupled with the errors of the attitude angle, secondary initiation charge velocity, and delay time.
Fire hazard after prescribed burning in a gorse shrubland: implications for fuel management.
Marino, Eva; Guijarro, Mercedes; Hernando, Carmen; Madrigal, Javier; Díez, Carmen
2011-03-01
Prescribed burning is commonly used to prevent accumulation of biomass in fire-prone shrubland in NW Spain. However, there is a lack of knowledge about the efficacy of the technique in reducing fire hazard in these ecosystems. Fire hazard in burned shrubland areas will depend on the initial capacity of woody vegetation to recover and on the fine ground fuels existing after fire. To explore the effect that time since burning has on fire hazard, experimental tests were performed with two fuel complexes (fine ground fuels and regenerated shrubs) resulting from previous prescribed burnings conducted in a gorse shrubland (Ulex europaeus L.) one, three and five years earlier. A point-ignition source was used in burning experiments to assess ignition and initial propagation success separately for each fuel complex. The effect of wind speed was also studied for shrub fuels, and several flammability parameters were measured. Results showed that both ignition and initial propagation success of fine ground fuels mainly depended on fuel depth and were independent of time since burning, although flammability parameters indicated higher fire hazard three years after burning. In contrast, time since burning increased ignition and initial propagation success of regenerated shrub fuels, as well as the flammability parameters assessed, but wind speed had no significant effect. The combination of results of fire hazard for fine ground fuels and regenerated shrubs according to the variation in relative coverage of each fuel type after prescribed burning enabled an assessment of integrated fire hazard in treated areas. The present results suggest that prescribed burning is a very effective technique to reduce fire hazard in the study area, but that fire hazard will be significantly increased by the third year after burning. These results are valuable for fire prevention and fuel management planning in gorse shrubland areas. Copyright © 2010 Elsevier Ltd. All rights reserved.
Alternative fuelds in urban fleets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, T.
1994-12-31
In this presentation the author addresses four main objectives. They are to: discuss programs that are driving the introduction of alternative fuels into fleet operations in urban areas around the country; define alternative fuels; quantify the present use and future projections on alternative fuel vehicles (AVFs) in the Chicago metropolitan statistical area; and discuss benefits of increased use of alternative fuels in urban areas. Factors which touch on these points include: present domestic dependence on petroleum for autos, with usage exceeding production; the large populations in urban areas which do not meet Clean Air Standards; recent legislative initiatives which givemore » guidance and aid in the adoption of such strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewe, W.E.; Krucoff, D.
1958-10-31
Work has begun on the ADFR, a reactor using a new fuel form -- fissionable dust carried in an inent gas. Temperatures in the range 2,000 to 3,000 deg F appear feasible in an all-ceramic system. Experimental study of the fuel form was initiated, and a loop to circulate the fuel dust was constructed. Initial operation is encouraging. Theoretical studies were carried on in the areas of reactor physics, heat transfer, and safety. (auth)
An application of LANDSAT digital technology to forest fire fuel type mapping
NASA Technical Reports Server (NTRS)
Kourtz, P. H.
1977-01-01
The role of digital classifications suitable as fuel maps was examined. A Taylor enhancement was produced for an 8 million hectare fire control region showing water, muskeg, coniferous, deciduous and mixed stands, clearcut logging, burned areas, regeneration areas, nonforested areas and large forest roads. Use of the map by fire control personnel demonstrated its usefulness for initial attack decision making.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schruder, Kristan; Goodwin, Derek
2013-07-01
AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less
NASA Astrophysics Data System (ADS)
Driscoll, Robert B.
An experimental study is conducted on a Pulse Detonation Engine-Crossover System to investigate the feasibility of repeated, shock-initiated combustion and characterize the initiation performance. A PDE-crossover system can decrease deflagration-to-detonation transition length while employing a single spark source to initiate a multi-PDE system. Visualization of a transferred shock wave propagating through a clear channel reveals a complex shock train behind the leading shock. Shock wave Mach number and decay rate remains constant for varying crossover tube geometries and operational frequencies. A temperature gradient forms within the crossover tube due to forward flow of high temperature ionized gas into the crossover tube from the driver PDE and backward flow of ionized gas into the crossover tube from the driven PDE, which can cause intermittent auto-ignition of the driver PDE. Initiation performance in the driven PDE is strongly dependent on initial driven PDE skin temperature in the shock wave reflection region. An array of detonation tubes connected with crossover tubes is developed using optimized parameters and successful operation utilizing shock-initiated combustion through shock wave reflection is achieved and sustained. Finally, an air-breathing, PDE-Crossover System is developed to characterize the feasibility of shock-initiated combustion within an air-breathing pulse detonation engine. The initiation effectiveness of shock-initiated combustion is compared to spark discharge and detonation injection through a pre-detonator. In all cases, shock-initiated combustion produces improved initiation performance over spark discharge and comparable detonation transition run-up lengths relative to pre-detonator initiation. A computational study characterizes the mixing processes and injection flow field within a rotating detonation engine. Injection parameters including reactant flow rate, reactant injection area, placement of the fuel injection, and fuel injection distribution are varied to assess the impact on mixing. Decreasing reactant injection areas improves fuel penetration into the cross-flowing air stream, enhances turbulent diffusion of the fuel within the annulus, and increases local equivalence ratio and fluid mixedness. Staggering fuel injection holes produces a decrease in mixing when compared to collinear fuel injection. Finally, emulating nozzle integration by increasing annulus back-pressure increases local equivalence ratio in the injection region due to increased convection residence time.
Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells
NASA Technical Reports Server (NTRS)
Hackler, I. M.
1986-01-01
The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.
Reburn severity in managed and unmanaged vegetation in a large wildfire
Thompson, Jonathan R.; Spies, Thomas A.; Ganio, Lisa M.
2007-01-01
Debate over the influence of postwildfire management on future fire severity is occurring in the absence of empirical studies. We used satellite data, government agency records, and aerial photography to examine a forest landscape in southwest Oregon that burned in 1987 and then was subject, in part, to salvage-logging and conifer planting before it reburned during the 2002 Biscuit Fire. Areas that burned severely in 1987 tended to reburn at high severity in 2002, after controlling for the influence of several topographical and biophysical covariates. Areas unaffected by the initial fire tended to burn at the lowest severities in 2002. Areas that were salvage-logged and planted after the initial fire burned more severely than comparable unmanaged areas, suggesting that fuel conditions in conifer plantations can increase fire severity despite removal of large woody fuels. PMID:17563370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mckinly, J.B.
The impact of the Federal Aviation Regulations (FARs) on fuel conservation in the air-transportation system. To date there exist over 89 identifiable fuel-conservation program and research areas. Operational constraints in the areas of FARs and Air Traffic Control (ATC), which hinder further fuel savings in any of the 89 program and research areas, are identified. The nature of this investigation presents an update of analyses from previous FAA, DOE, and NASA publications from a DOE viewpoint. The short duration and cost constraints of this study did not allow an assessment of safety, social, or any of the broader impacts ofmore » the regulations. However, this study was not intended to solve all of the regulatory problems. Rather, this was a cursory review of the FARs intended to pinpoint those fuel inefficient regulations which could be changed to improve the overall fuel-conservation effort in the air transportation industry. The program and research areas identified as being negatively impacted by FARs were analyzed to quantify the fuel savings available through revision or removal of those constraints. A recommended list of new R and D initiatives are proposed in order to improve fuel efficiency of the FARs in the air-transportation industry.« less
The Effect of Weathering on Octane Quality for Winter-Grade and Summer-Grade Gasolines.
1987-12-01
the following: 1. Fuels were stored at an ambient temperature 500 F and an initial (fresh fuel’ sample was taken under these conditions. Ŗ. Test...placed in the soak area and heated to a fuel temperature of 1100 F. This fuel temperature was controlled by room ambient temperature throughout the...Carl Borchers , Senior VP - Engineering FSDO #2 AVTEK Corporation 1387 Airport Boulevard S_4680 Calle Carga San Jose, CA 95110 Camarillo, CA 93010
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-04-11
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less
Liquid Fuels from Lignins: Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chum, H. L.; Johnson, D. K.
1986-01-01
This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-03-24
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less
Ham, Y.; Kerr, P.; Sitaraman, S.; ...
2016-05-05
Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Y.S.; Kerr, P.; Sitaraman, S.
The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported themore » successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Y.; Kerr, P.; Sitaraman, S.
Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less
Initial ecosystem restoration in the highly erodible Kisatchie Sandstone Hills
D. Andrew Scott
2014-01-01
Restoration of the unique and diverse habitats of the Kisatchie Sandstone Hills requires the re-introduction of fire to reduce fuel accumulation and promote herbaceous vegetation, but some soils in the area are extremely erodible, and past fires have resulted in high erosion rates. Overstory and understory vegetation, downed woody fuels, and other stand attributes were...
Minimum-fuel turning climbout and descent guidance of transport jets
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1983-01-01
The complete flightpath optimization problem for minimum fuel consumption from takeoff to landing including the initial and final turns from and to the runway heading is solved. However, only the initial and final segments which contain the turns are treated, since the straight-line climbout, cruise, and descent problems have already been solved. The paths are derived by generating fields of extremals, using the necessary conditions of optimal control together with singular arcs and state constraints. Results show that the speed profiles for straight flight and turning flight are essentially identical except for the final horizontal accelerating or decelerating turns. The optimal turns require no abrupt maneuvers, and an approximation of the optimal turns could be easily integrated with present straight-line climb-cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than the 250-knot terminal-area speed limit would save 36 lb of fuel for the 727-100 aircraft.
NASA Astrophysics Data System (ADS)
Tihay-Felicelli, V.; Santoni, P. A.; Gerandi, G.; Barboni, T.
2017-06-01
The aim of this study was to investigate emission characteristics in relation to differences in fuel moisture content (FMC) and initial dry mass. For this purpose, branches and twigs with leaves of Cistus monspeliensis were burned in a Large Scale Heat Release apparatus coupled to a Fourier Transform Infrared Spectrometer. A smoke analysis was conducted and the results highlighted the presence of CO2, H2O, CO, CH4, NO, NO2, NH3, SO2, and non-methane organic compounds (NMOC). CO2, NO, and NO2 species are mainly released during flaming combustion, whereas CO, CH4, NH3, and NMOC are emitted during both flaming and smoldering combustion. The emission of these compounds during flaming combustion is due to a rich fuel to air mixture, leading to incomplete combustion. The fuel moisture content and initial dry mass influence the flame residence time, the duration of smoldering combustion, the combustion efficiency, and the emission factors. By increasing the initial dry mass, the emission factors of NO, NO2, and CO2 decrease, whereas those of CO and CH4 increase. The increase of FMC induces an increase of the emission factors of CO, CH4, NH3, NMOC, and aerosols, and a decrease of those of CO2, NO, and NO2. Increasing fuel moisture content reduces fuel consumption, duration of smoldering, and peak heat release rate, but simultaneously increases the duration of propagation within the packed bed, and the flame residence time. Increasing the initial dry mass, causes all the previous combustion parameters to increase. These findings have implications for modeling biomass burning emissions and impacts.
Report on Carbon Nano Material Workshop: Challenges and Opportunities
2013-01-22
trolyte fuel cells ( PEMFCs ) utilize the ability of the catalysts to initiate and maintain the oxygen reduction reaction on the cathode and the fuel...oxidation reaction on the anode. In order to increase the efficiency of the PEMFC catalysts, high-surface-area mesoporous carbons, carbon blacks, carbon...mechanical and thermal properties derived from a three-dimensional intercon- nected nanonetwork structure. The exceptional properties of CAs for PEMFC
Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-03-01
A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, nine national laboratories, and numerous industry and academic partners to more rapidly identify commercially viable solutions. This multi-year project will provide industry with the scientific underpinnings required tomore » move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions.« less
NASA Technical Reports Server (NTRS)
Warshay, Marvin; Prokopius, Paul
1996-01-01
Though the fuel cell was invented in 1839, it was not until the early 1960's that the fuel cell power system was developed and used for a real application, for the NASA Space Mission Gemini. Unfortunately, fuel cell power systems did not, as a result, become in widespread use. Nevertheless, a great deal of progress has been made by both government and industry, culminating in many successful fuel cell power system demonstrations. Initially, each government agency and each private organization went its own way. Later, it became evident that coordination among programs was essential. An overview is presented of the current coordinated efforts by government and industry in fuel cells, with a sufficient historical background. The primary barriers to coordination of programs were institutional and differing application requirements. Initially, in the institutional area, it was the energy crisis and the formation of DOE which fostered close working relationships among government, manufacturers, and users. The authors discuss the fuel cell power system programs (of NASA, DOE, DOT, DOC, EPRI, GRI, industry, and universities), including missions and applications, technology advances, and demonstrations. The discussion covers the new Solar Regenerative Fuel Cell (RFC) program which has space, defense, and commercial terrestrial applications, and which is an excellent example of both program coordination and the Clinton Administration's dual-use application policy.
Integration of energy management concepts into the flight deck
NASA Technical Reports Server (NTRS)
Morello, S. A.
1981-01-01
The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.
Mapping the Distribution of Wildfire Fuels Using AVIRIS in the Santa Monica Mountains
NASA Technical Reports Server (NTRS)
Roberts, Dar; Gardner, M.; Regelbrugge, J.; Pedreros, D.; Ustin, S.
1998-01-01
Catastrophic wildfires, such as the 1990 Painted Cave Fire in Santa Barbara or Oakland fire of 1991, attest to the destructive potential of fire in the wildland/urban interface. For example, during the Painted Cave Fire, 673 structures were consumed over a period of only six hours at an estimated cost of 250 million dollars (Gomes et al., 1993). One of the primary sources of fuels is chaparral, which consists of plant species that are adapted to frequent fires and may actually promote its ignition and spread of through volatile organic compounds in foliage. As one of the most widely distributed plant communities in Southern California, and one of the most common vegetation types along the wildland urban interface, chaparral represents one of the greatest sources of wildfire hazard in the region. An ongoing NASA funded research project was initiated in 1994 to study the potential of AVIRIS for mapping wildfire fuel properties in Southern California chaparral. The project was initiated in the Santa Monica Mountains, an east-west trending range in western Los Angeles County that has experienced extremely high fire frequencies over the past 70 years. The Santa Monica Mountains were selected because they exemplify many of the problems facing the southwest, forming a complex mosaic of land ownership intermixed with a diversity of chaparral age classes and fuel loads. Furthermore, the area has a wide diversity of chaparral community types and a rich background in supporting geographic information including fire history, soils and topography. Recent fires in the Santa Monica Mountains, including several in 1993 and the Calabasas fire of 1996 attest to the active fire regime present in the area. The long term objectives of this project are to improve existing maps of wildland fuel properties in the area, link AVIRIS derived products to fuel models under development for the region, then predict fire hazard through models that simulate fire spread. In this paper, we describe the AVIRIS derived products we are developing to map wildland fuels.
Foliar nitrogen content and tree growth after prescribed fire in ponderosa pine.
J.D. Landsberg; P.H. Cochran; M.M. Finck; R.E. Martin
1984-01-01
This initial study of prescribed burning in ponderosa pine (Pinus ponderosa Doug. ex Laws.) stands in central Oregon showed that all periodic annual growth increments were reduced for trees alive four growing seasons later. Height growth was reduced 8 percent in areas burned by fires with moderate fuel consumption and 18 percent in areas with high...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.
We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less
NASA Technical Reports Server (NTRS)
Segal, Corin; Mcdaniel, James C.; Whitehurst, Robert B.; Krauss, Roland H.
1991-01-01
A study of transverse hydrogen injection behind a rearward facing step in a Mach 2 airflow was conducted to determine the combustion efficiency and the combustor/inlet interactions at the low temperature lean-mixture operational end of a scramjet combustor model. The fuel was injected at sonic conditions into the electrically heated airstream, which was maintained at 850 K or below. The static pressure delivered at the entrance of the combustor ranged between 0.25 to 0.5 atm. Injector configurations included single and staged injectors placed at 3 or 3-and-7 step-heights downstream of the step, respectively, with injector diameters of 1, 1.5, and 2 mm. Ignition was achieved by initially unstarting the test section. The constant area combustor and the low initial temperatures caused thermal choking and upstream interaction to occur at very low equivalence ratios. Typically, most of the fuel was burned in the recirculation region behind the step and around the jets. The effects of initial conditions (temperature and pressure), fuel-to-air dynamic pressure ratio, and boundaries (thermal vs adiabatic) are presented.
Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.
Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.
An Example of an INPRO Assessment of an INS in the Area of Waste Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, C.; Busurin, Y.; Depisch, F.
2006-07-01
Following a resolution of the General Conference of the IAEA in the year 2000 the International Project on Innovative Nuclear Reactors and Fuel Cycles, referred to as INPRO, was initiated. INPRO has defined requirements organized in a hierarchy of Basic Principles, User Requirements and Criteria (consisting of an indicator and an acceptance limit) to be met by innovative nuclear reactor systems (INS) in six areas, namely: economics, safety, waste management, environment, proliferation resistance, and infrastructure. If an INS meets all requirements in all areas it represents a sustainable system for the supply of energy, capable of making a significant contributionmore » to meeting the energy needs of the 21. century. Draft manuals have been developed, for each INPRO area, to provide guidance for performing an assessment of whether an INS meets the INPRO requirements in a given area. The manuals set out the information that needs to be assembled to perform an assessment and provide guidance on selecting the acceptance limits and, for a given INS, for determining the value of the indicators for comparison with the associated acceptance limits. Each manual also includes an example of a specific assessment to illustrate the guidance. This paper discusses the example presented in the manual for performing an INPRO assessment in the area of waste management. The example, chosen solely for the purpose of illustrating the INPRO methodology, describes an assessment of an INS based on the DUPIC fuel cycle. It is assumed that uranium is mined, milled, converted, enriched, and fabricated into LWR fuel in Canada. The LWR fuel is assumed to be leased to a utility in the USA. The spent LWR fuel is assumed to be returned to Canada where it is processed into CANDU DUPIC fuel, which is then burned in CANDU reactors. The assessment steps and the results are presented in detail in the paper. The example illustrates an assessment performed for an INS at an early stage of development. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; R. C. O'Brien; X. Zhang
2011-11-01
Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cellmore » and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.« less
Development of an alkaline fuel cell subsystem
NASA Technical Reports Server (NTRS)
1987-01-01
A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.
Impacts of climate on shrubland fuels and fire behavior in the Owyhee Basin, Idaho
NASA Astrophysics Data System (ADS)
Vogelmann, J. E.; Shi, H.; Hawbaker, T.; Li, Z.
2013-12-01
There is evidence that wildland fire is increasing as a function of global change. However, fire activity is spatially, temporally and ecologically variable across the globe, and our understanding of fire risk and behavior in many ecosystems is limited. After a series of severe fire seasons that occurred during the late 1990's in the western United States, the LANDFIRE program was developed with the goals of providing the fire community with objective spatial fuel data for assessing wildland fire risk. Even with access to the data provided by LANDFIRE, assessing fire behavior in shrublands in sagebrush-dominated ecosystems of the western United States has proven especially problematic, in part due to the complex nature of the vegetation, the variable influence of understory vegetation including invasive species (e.g. cheatgrass), and prior fire history events. Climate is undoubtedly playing a major role, affecting the intra- and inter-annual variability in vegetation conditions, which in turn impacts fire behavior. In order to further our understanding of climate-vegetation-fire interactions in shrublands, we initiated a study in the Owyhee Basin, which is located in southwestern Idaho and adjacent Nevada. Our goals include: (1) assessing the relationship between climate and vegetation condition, (2) quantifying the range of temporal variability in grassland and shrubland fuel loads, (3) identifying methods to operationally map the variability in fuel loads, and (4) assessing how the variability in fuel loads affect fire spread simulations. To address these goals, we are using a wide variety of geospatial data, including remotely sensed time-series data sets derived from MODIS and Landsat, and climate data from DAYMET and PRISM. Remotely-sensed information is used to characterize climate-induced temporal variability in primary productivity in the Basin, where fire spread can be extensive after senescence when dry vegetation is added to dead fuel loads. Gridded climate data indicate that this area has become warmer and dryer over the previous three decades. We have also observed that fires are especially prevalent in areas that have high Normalized Difference Vegetation Index (NDVI) values in the spring, followed by low NDVI in the summer. At present we are concentrating on the temporally rich MODIS data to map spatial and temporal variability in live fuel loads. To translate NDVI to biomass, we are scaling the range of biomass values using data from the literature. We assume that departure from maximum NDVI, typically occurring during spring, to NDVI values later in the season are related to the proportion of live biomass transferred to dead biomass, which burns more readily than green biomass. Using the FARSITE fire spread model, our initial simulations show that the conversion from live herbaceous fuel to dead fuel increases the burn area by 30% compared with using default static fuel parameters. This indicates that current fuel models underestimate fire spread and areas that could potentially burn. Our study also indicates that a combined remote sensing product with good temporal resolution (MODIS) and spatial resolution (Landsat) is necessary to provide accurate information on the fuel dynamics in shrublands.
Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Berton, Jeffrey J.; Hendricks, Eric S.; Tong, Michael T.; Haller, William J.; Thurman, Douglas R.
2011-01-01
Application of high speed, advanced turboprops, or propfans, to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation s environmental impact have renewed interest in unducted, open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Unfortunately, in the two decades that have passed since open rotor concepts were thoroughly investigated, NASA has lost experience and expertise in this technology area. This paper describes initial efforts to re-establish NASA s capability to assess aircraft designs with open rotor propulsion. Specifically, methodologies for aircraft-level sizing, performance analysis, and system-level noise analysis are described. Propulsion modeling techniques have been described in a previous paper. Initial results from application of these methods to an advanced single-aisle aircraft using open rotor engines based on historical blade designs are presented. These results indicate open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicates that current noise regulations can be met with old blade designs and modern, noiseoptimized blade designs are expected to result in even lower noise levels. Although an initial capability has been established and initial results obtained, additional development work is necessary to make NASA s open rotor system analysis capability on par with existing turbofan analysis capabilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Fuel Analyses, and Initial Compliance Requirements § 63.7530 How do I demonstrate initial compliance... this section, and Tables 5 and 7 to this subpart OR conducting initial fuel analyses to determine... in one of the liquid fuel subcategories that burn only fossil fuels and other gases and do not burn...
Jet transport energy management for minimum fuel consumption and noise impact in the terminal area
NASA Technical Reports Server (NTRS)
Bull, J. S.; Foster, J. D.
1974-01-01
Significant reductions in both noise and fuel consumption can be gained through careful tailoring of approach flightpath and airspeed profile, and the point at which the landing gear and flaps are lowered. For example, the noise problem has been successfully attacked in recent years with development of the 'two-segment' approach, which brings the aircraft in at a steeper angle initially, thereby achieving noise reduction through lower thrust settings and higher altitudes. A further reduction in noise and a significant reduction in fuel consumption can be achieved with the 'decelerating approach' concept. In this case, the approach is initiated at high airspeed and in a drag configuration that allows for low thrust. The landing flaps are then lowered at the appropriate time so that the airspeed slowly decelerates to V sub r at touchdown. The decelerating approach concept can be applied to constant glideslope flightpaths or segmented flightpaths such as the two-segment approach.
Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Berton, Jeffrey J.; Haller, William J.; Hendricks, Eric S.; Tong, Michael T.
2012-01-01
Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin.
Tillage effects on soil quality after three years of irrigation in Northern Spain
USDA-ARS?s Scientific Manuscript database
Irrigation is being initiated on large areas of traditionally rainfed land to meet increasing global demand for food, feed, fiber, and fuel. However, the consequences of this transition on soil quality (SQ) have scarcely been studied. Therefore, after previously identifying the most tillage-sensitiv...
Initial fuel temperature effects on burning rate of pool fire.
Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien
2011-04-15
The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.
Toward a national fuels mapping strategy: Lessons from selected mapping programs
Loveland, Thomas R.
2001-01-01
The establishment of a robust national fuels mapping program must be based on pertinent lessons from relevant national mapping programs. Many large-area mapping programs are under way in numerous Federal agencies. Each of these programs follows unique strategies to achieve mapping goals and objectives. Implementation approaches range from highly centralized programs that use tightly integrated standards and dedicated staff, to dispersed programs that permit considerable flexibility. One model facilitates national consistency, while the other allows accommodation of locally relevant conditions and issues. An examination of the programmatic strategies of four national vegetation and land cover mapping initiatives can identify the unique approaches, accomplishments, and lessons of each that should be considered in the design of a national fuel mapping program. The first three programs are the U.S. Geological Survey Gap Analysis Program, the U.S. Geological Survey National Land Cover Characterization Program, and the U.S. Fish and Wildlife Survey National Wetlands Inventory. A fourth program, the interagency Multiresolution Land Characterization Program, offers insights in the use of partnerships to accomplish mapping goals. Collectively, the programs provide lessons, guiding principles, and other basic concepts that can be used to design a successful national fuels mapping initiative.
Geoscientific Site Evaluation Approach for Canada's Deep Geological Repository for Used Nuclear Fuel
NASA Astrophysics Data System (ADS)
Sanchez-Rico Castejon, M.; Hirschorn, S.; Ben Belfadhel, M.
2015-12-01
The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The site evaluation process includes three main technical evaluation steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations, to assess the suitability of candidate areas in a stepwise manner over a period of many years. By the end of 2012, twenty two communities had expressed interest in learning more about the project. As of July 2015, nine communities remain in the site selection process. To date (July 2015), NWMO has completed Initial Screenings for the 22 communities that expressed interest, and has completed the first phase of Preliminary Assessments (desktop) for 20 of the communities. Phase 2 of the Preliminary Assessments has been initiated in a number of communities, with field activities such as high-resolution airborne geophysical surveys and geological mapping. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compliance with the emission limitations, fuel specifications and work practice standards? 63.7530 Section 63... Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance Requirements § 63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work...
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance with the emission limitations, fuel specifications and work practice standards? 63.7530 Section 63... Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance Requirements § 63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work...
Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?
Levin, Ingeborg; Rödenbeck, Christian
2008-03-01
The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... authorities of the Healthy Forest Restoration Act (HFRA) of 2004. After the initial request for public comment... and treatment of fuels within select Riparian Habitat Conservation Areas (RHCAs). RHCA treatment is... objectives were identified based on the intent of the 2004 Healthy Forest Restoration Act, the Umatilla...
Electric utility acid fuel cell stack technology advancement
NASA Astrophysics Data System (ADS)
Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.
1984-11-01
The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.
Electric utility acid fuel cell stack technology advancement
NASA Technical Reports Server (NTRS)
Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.
1984-01-01
The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.
Oguonu, Tagbo; Obumneme-Anyim, Ijeoma N; Eze, Joy N; Ayuk, Adaeze C; Okoli, Chinyere V; Ndu, Ikenna K
2018-05-01
Background Biofuels and other cooking fuels are used in households in low- and middle-income countries. Aim To investigate the impact of cooking fuels on lung function in children in urban and rural households in South-East Nigeria. Methods The multi-stage sampling method was used to enroll children exposed to cooking fuel in the communities. Lung function values FEV1, FVC and the FEV1/FVC ratio, were measured with ndd EasyOne R spirometer. Airflow limitation was determined with FEV1/FVC Z-score values at -1.64 as the lower limit of normal (LLN5). The Global Lung Function Initiative 2012 software was used to calculate the lung function indices. Results The median age (range) of the 912 children enrolled was 10.6 years (6-18). Altogether, 468 (51.6%) children lived in rural areas. Seven hundred and thirty-seven (80.7%) were directly exposed to cooking fuels (418/737, 56.5% in rural areas). Wood and kerosene were the dominant fuels in rural and urban households. The respective mean Z-scores of the exposed children in rural and urban were zFEV1 -0.62, FVC -0.21, FEV1/FVC -0.83 and zFEV1 -0.57, zFVC -0.14, FEV1/FVC -0.75. Few (5.2%, 38/737) of the children had airflow limitation. Most of them (60.5%, 25/38) lived in the rural community; the lowest FEV1/FVC Z-scores were those of exposed to a combination of fuels. Conclusion Exposure to cooking fuels affects lung function in children with airway limitation in a small proportion, Control measures are advocated to reduce the morbidity related to cooking fuels exposure.
Nuclear fuel performance: Trends, remedies and challenges
NASA Astrophysics Data System (ADS)
Rusch, C. A.
2008-12-01
It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.
Constitutive and damage material modeling in a high pressure hydrogen environment
NASA Technical Reports Server (NTRS)
Russell, D. A.; Fritzemeier, L. G.
1991-01-01
Numerous components in reusable space propulsion systems such as the SSME are exposed to high pressure gaseous hydrogen environments. Flow areas and passages in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber, and injector assembly contain high pressure hydrogen either high in purity or as hydrogen rich steam. Accurate constitutive and damage material models applicable to high pressure hydrogen environments are therefore needed for engine design and analysis. Existing constitutive and cyclic crack initiation models were evaluated only for conditions of oxidizing environments. The main objective is to evaluate these models for applicability to high pressure hydrogen environments.
Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier
NASA Astrophysics Data System (ADS)
Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.
2014-05-01
Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are:
Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge
Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U–10Momore » fuel meat and Al–6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are • A typical Zr diffusion barrier of thickness 25 µm • Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 µm • Chemical banding, in some areas more than 100 µm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt% • Decomposed areas containing plate-shaped low-Mo phase • A typical Zr/cladding interaction layer of thickness 1-2 µm • A visible UZr2 bearing layer of thickness 1-2 µm • Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U–Mo matrix • No excessive interaction between cladding and the uncoated fuel edge • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. • Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and interaction layer between U–Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.« less
Development of inexpensive metal macrocyclic complexes for use in fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.
Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.
Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2003-01-01
The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.
Wildfire, research, and a climate station
Ward McCaughey
2008-01-01
In August, the human-caused Tin Cup Fire took off a few miles to the north of where the Fire Sciences Laboratory crew was busy collecting fuels data on the Trapper Bunkhouse study site west of Darby. The fire demonstrated how quickly wildfire can escape initial attack in untreated stands, especially under extremely dry conditions, and how treated areas helped moderate...
VERIFI | Virtual Engine Research Institute and Fuels Initiative
VERIFI Virtual Engine Research Institute and Fuels Initiative Argonne National Laboratory Skip to Virtual Engine Research Institute and Fuels Initiative (VERIFI) at Argonne National Laboratory is the Argonne National Laboratory in which to answer your complex engine questions, verify the uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J. I.
2015-08-31
Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J. I.
2015-08-01
Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less
Kipf, Elena; Koch, Julia; Geiger, Bettina; Erben, Johannes; Richter, Katrin; Gescher, Johannes; Zengerle, Roland; Kerzenmacher, Sven
2013-10-01
We present a systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Under anoxic conditions nanoporous activated carbon cloth is a superior anode material in terms of current density normalized to the projected anode area and anode volume (24.0±0.3 μA cm(-2) and 482±7 μA cm(-3) at -0.2 vs. SCE, respectively). The good performance can be attributed to the high specific surface area of the material, which is available for mediated electron transfer through self-secreted flavins. Under aerated conditions no influence of the specific surface area is observed, which we attribute to a shift from primary indirect electron transfer by mediators to direct electron transfer via adherent cells. Furthermore, we show that an aerated initial growth phase enhances the current density under subsequent anoxic conditions fivefold when compared to a similar experiment that was conducted under permanently anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fuel-conservative guidance system for powered-lift aircraft
NASA Technical Reports Server (NTRS)
Erzberger, H.; Mclean, J. D.
1979-01-01
A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.
Minimum-fuel, 3-dimensional flightpath guidance of transfer jets
NASA Technical Reports Server (NTRS)
Neuman, F.; Kreindler, E.
1984-01-01
Minimum fuel, three dimensional flightpaths for commercial jet aircraft are discussed. The theoretical development is divided into two sections. In both sections, the necessary conditions of optimal control, including singular arcs and state constraints, are used. One section treats the initial and final portions (below 10,000 ft) of long optimal flightpaths. Here all possible paths can be derived by generating fields of extremals. Another section treats the complete intermediate length, three dimensional terminal area flightpaths. Here only representative sample flightpaths can be computed. Sufficient detail is provided to give the student of optimal control a complex example of a useful application of optimal control theory.
Allocating resources to large wildland fires: a model with stochastic production rates
Romain Mees; David Strauss
1992-01-01
Wildland fires that grow out of the initial attack phase are responsible for most of the damage and burned area. We model the allocation of fire suppression resources (ground crews, engines, bulldozers, and airdrops) to these large fires. The fireline at a given future time is partitioned into homogeneous segments on the basis of fuel type, available resources, risk,...
Terrorism in the Maritime Domain
2013-03-01
Indonesia-based terrorist group formed in the early 1990s to establish an Islamic state encompassing southern Thailand, Malaysia , Singapore, Indonesia...overseas. There are instances where the warships need to replenish their fuel and food supplies in a foreign country’s harbor. The terrorist group...initiated to improve the maritime domain awareness in the tri-border area (TBA) between the Philippines, Malaysia , and Indonesia, where terrorist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Douglas; Ulsh, Michael
The results of two Manufacturing Readiness Assessments of PEM fuel cell stacks and material handling equipment (MHE) and backup power (BUP) PEM fuel cell systems are given. Design modifications of fuel cell systems were made because the initial, 2008 designs did not fully meet the operational requirements of the markets. This situation indicates the 2008 risk elements were overstated.For 2010 BUP and MHE fuel cell systems, manufacturers had not reached the Low Rate Initial Production (LRIP) defined in the 2008 MRA Report at 1,000 units per year per manufacturer.For fuel cell stacks, LRIP was demonstrated by more than one manufacturer.Themore » federal tax incentive program has compensated for the initial high cost of fuel cell systems.The Balance-of-Plant (BOP) has not evolved as rapidly as the PEM fuel cell stack manufacturing readiness.The BOP in 2014 is as costly as the fuel cell stack for MHE applications.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters Testing, Fuel Analyses... 5 and 7 to this subpart OR conducting initial fuel analyses to determine emission rates and... fuel subcategories that burn only fossil fuels and other gases and do not burn any residual oil must...
Polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Gottesfeld, S.
The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.
Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M
2016-04-01
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. John Fahy; Lyle A. Johnson, Jr.
Beginning in 1990, efforts were initiated for Western Research Institute (WRI) to implement an in situ remediation project for the contaminated aquifer at the Bell Lumber and Pole Company (Bell Pole) Site in New Brighton, Minnesota. The remediation project involves the application of the Contained Recovery of Oily Waste (CROW{trademark}) process, which consists of hot-water injection to displace and recover the non-aqueous phase liquids (NAPL) (Johnson and Sudduth 1989). Wood treating activities began at the Bell Pole Site in 1923 and have included the use of creosote and pentachlorophenol (PCP) in a fuel oil carrier. Creosote was used as amore » wood preservative from 1923 to 1958. Provalene 4-A, a non-sludging fuel-oil-type carrier for PCP, was used from 1952 until it was no longer commercially available in 1968. A 5-6% mixture of PCP in fuel oil has been used as a wood preservative since 1952, and a fuel-oil-type carrier, P-9, has been used since 1968. While reviewing the site evaluation information, it became apparent that better site characterization would enhance the outcome of the project. Additional coring indicated that the area's extent of the contaminated soils was approximately eight times greater than initially believed. Because of these uncertainties, a pilot test was conducted, which provided containment and organic recovery information that assisted in the design of the full-scale CROW process demonstration.« less
Highway Fuel Consumption Computer Model (Version 1)
DOT National Transportation Integrated Search
1974-04-01
A highway fuel consumption computer model is given. The model allows the computation of fuel consumption of a highway vehicle class as a function of time. The model is of the initial value (in this case initial inventory) and lumped parameter type. P...
75 FR 74624 - Approval and Promulgation of Implementation Plans; Georgia: Stage II Vapor Recovery
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... public health and welfare, respectively. 75 FR 2938. Initially, EPA expected these NAAQS to become final... the fueling of motor vehicles. 42 U.S.C. 7511a(b)(3). Sections 182(c), 182(d) and 182(e) of the CAA... as well. 42 U.S.C. Sec. 7511a(c), (d), and (e). Accordingly, as a serious ozone nonattainment area...
Multi-material size optimization of a ladder frame chassis
NASA Astrophysics Data System (ADS)
Baker, Michael
The Corporate Average Fuel Economy (CAFE) is an American fuel standard that sets regulations on fuel economy in vehicles. This law ultimately shapes the development and design research for automakers. Reducing the weight of conventional cars offers a way to improve fuel efficiency. This research investigated the optimality of an automobile's ladder frame chassis (LFC) by conducting multi-objective optimization on the LFC in order to reduce the weight of the chassis. The focus of the design and optimization was a ladder frame chassis commonly used for mass production light motor vehicles with an open-top rear cargo area. This thesis is comprised of two major sections. The first looked to perform thickness optimization in the outer walls of the ladder frame. In the second section, many multi-material distributions, including steel and aluminium varieties, were investigated. A simplified model was used to do an initial hand calculation analysis of the problem. This was used to create a baseline validation to compare the theory with the modeling. A CAD model of the LFC was designed. From the CAD model, a finite element model was extracted and joined using weld and bolt connectors. Following this, a linear static analysis was performed to look at displacement and stresses when subjected to loading conditions that simulate harsh driving conditions. The analysis showed significant values of stress and displacement on the ends of the rails, suggesting improvements could be made elsewhere. An optimization scheme was used to find the values of an all steel frame an optimal thickness distribution was found. This provided a 13% weight reduction over the initial model. To advance the analysis a multi-material approach was used to push the weight savings even further. Several material distributions were analyzed and the lightest utilized aluminium in all but the most strenuous subjected components. This enabled a reduction in weight of 15% over the initial model, equivalent to approximately 1 mile per gallon (MPG) in fuel economy.
Fuel-conservative guidance system for powered-lift aircraft
NASA Technical Reports Server (NTRS)
Erzberger, H.; Mclean, J. D.
1979-01-01
A concept for automatic terminal-area guidance, comprising two modes of operation, has been developed and evaluated in flight tests. In the first or predictive mode, fuel-efficient approach trajectories are synthesized in fast time. In the second or tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion-system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The paper describes the design theory and discusses the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft.
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.
The Navy Biofuel Initiative Under the Defense Production Act
2012-06-22
Market for Biomass -Based Diesel Fuel in the Renewable Fuel Standard (RFS), by Brent D. Yacobucci, The Market for Biomass -Based Diesel Fuel in the...defense.17 During the 1970s, DOE directed a synthetic fuels program toward commercializing coal liquefaction, coal gasification , and oil shale... Biomass : Background and Policy, by Anthony Andrews and Jeffrey Logan. The Navy Biofuel Initiative Under the Defense Production Act Congressional
Asante, Kwaku Poku; Kinney, Patrick; Zandoh, Charles; Vliet, Eleanne Van; Nettey, Ernest; Abokyi, Livesy; Owusu-Agyei, Seth; Jack, Darby
2016-01-01
Background: Household air pollution is a leading risk factor for respiratory morbidity and mortality in developing countries where biomass fuel is mainly used for cooking. Materials and Method: A household cross-sectional survey was conducted in a predominantly rural area of Ghana in 2007 to determine the prevalence of respiratory symptoms and their associated risk factors. Household cooking practices were also assessed as part of the survey. Results: Household heads of twelve thousand, three hundred and thirty-three households were interviewed. Fifty-seven percent (7006/12333) of these households had at least one child less than five years of age. The prevalence of symptoms of acute lower respiratory infections (ALRI) was 13.7% (n= 957, 95% CI 12.8 – 15.5%). A majority (77.8%, 95% CI, 77.7 - 78.5%) of households used wood as their primary fuel. Majority of respondents who used wood as their primary fuel obtained them by gathering wood from their neighborhood (95.6%, 9177/9595) and used a 3-stone local stove for cooking (94.9%, 9101/9595). In a randomly selected subset of respondents, females were the persons who mostly gathered firewood from the fields (90.8%, 296/326) and did the cooking (94.8%, 384/406) for the household. Conclusion: Symptoms of ALRI reported by caregivers is high in the Kintampo area of Ghana where biomass fuel use is also high. There is the need to initiate interventions that use improved cook stoves and to test the health benefits of such interventions. PMID:28480444
Modular fuel-cell stack assembly
Patel, Pinakin
2010-07-13
A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.
Huang, Liping; Chen, Jingwen; Quan, Xie; Yang, Fenglin
2010-10-01
Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340-900 m2 m(-3). A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g(-1)VSS h(-1) and a power production of 2.4 ± 0.1 W m(-3) at a current density of 6.9 A m(-3) were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L(-1). Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.
Initial Implementation of Transient VERA-CS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, Andrew; Kochunas, Brendan; Salko, Robert
In this milestone the capabilities of both CTF and MPACT were extended to perform coupled transient calculations. This required several small changes in MPACT to setup the problems correctly, perform the edits correctly, and call the appropriate CTF interfaces in the right order. For CTF, revisions and corrections to the transient timestepping algorithm were made, as well as the addition of a new interface subroutine to allow MPACT to drive CTF at each timestep. With the modifications completed, the initial coupled capability was demonstrated on some problems used for code verification, a hypothetical small mini-core, and a Watts Bar demonstrationmore » problem. For each of these cases the results showed good agreement with the previous MPACT internal TH feedback model that relied on a simplified fuel heat conduction model and simplified coolant treatment. After the pulse the results are notably different as expected, where the effects of convection of heat to the coolant can be observed. Areas for future work were discussed, including assessment and development of the CTF dynamic fuel deformation and gap conductance models, addition of suitable transient boiling and CHF models for the rapid heating and cooling rates seen in RIAs, additional validation and demonstration work, and areas for improvement to the code input and output capabilities.« less
Chemistry of fuel deposits and sediments and their predursors
NASA Technical Reports Server (NTRS)
Mayo, F. R.; Lan, B. Y.; Buttrill, S. E., Jr.; St.john, G. A.
1984-01-01
The mechanism of solid deposit formation on hot engine parts from turbine fuels is investigated. Deposit formation is associated with oxidation of the hydrocarbon fuel. Therefore, oxidation rates and soluble gum formation were measured for several jet turbine fuels and pure hydrocarbon mixtures. Experiments were performed at 130 C using thermal initiation and at 100 C using ditertiary butyl peroxide as a chemical initiator. Correlation of the data shows that the ratio of rate of oxidation to rate of gum formation for a single fuel is not much affected by experimental conditions, even though there are differences in the abilities of different hydrocarbons to initiate and continue the oxidation. This indicates a close association of gum formation with the oxidation process. Oxidations of n-dodecane, tetralin and the more unstable jet fuels are autocatalytic, while those of 2-ethylnaphthalene and a stable jet fuel are self-retarding. However, the ratio of oxidation rate to gum formation rate appear to be nearly constant for each substrate. The effect of oxygen pressure on gum and oxidation formation was also studied. Dependence of gum formation on the concentration of initiator at 100 C is discussed and problems for future study are suggested.
30. Launch Area, Generator Building, interior view showing diesel fuel ...
30. Launch Area, Generator Building, interior view showing diesel fuel tank, fuel pump (foreground) and fuel lines leading to power-generating units (removed) VIEW NORTHWEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI
Dry Storage of Research Reactor Spent Nuclear Fuel - 13321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.
2013-07-01
Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.
2014-03-14
Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in themore » meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.« less
Advanced Low-Emissions Catalytic-Combustor Program, phase 1. [aircraft gas turbine engines
NASA Technical Reports Server (NTRS)
Sturgess, G. J.
1981-01-01
Six catalytic combustor concepts were defined, analyzed, and evaluated. Major design considerations included low emissions, performance, safety, durability, installations, operations and development. On the basis of these considerations the two most promising concepts were selected. Refined analysis and preliminary design work was conducted on these two concepts. The selected concepts were required to fit within the combustor chamber dimensions of the reference engine. This is achieved by using a dump diffuser discharging into a plenum chamber between the compressor discharge and the turbine inlet, with the combustors overlaying the prediffuser and the rear of the compressor. To enhance maintainability, the outer combustor case for each concept is designed to translate forward for accessibility to the catalytic reactor, liners and high pressure turbine area. The catalytic reactor is self-contained with air-cooled canning on a resilient mounting. Both selected concepts employed integrated engine-starting approaches to raise the catalytic reactor up to operating conditions. Advanced liner schemes are used to minimize required cooling air. The two selected concepts respectively employ fuel-rich initial thermal reaction followed by rapid quench and subsequent fuel-lean catalytic reaction of carbon monoxide, and, fuel-lean thermal reaction of some fuel in a continuously operating pilot combustor with fuel-lean catalytic reaction of remaining fuel in a radially-staged main combustor.
NASA Astrophysics Data System (ADS)
Fortkamp, Jonathan C.
Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.
Free-jet Testing of a REST Scramjet at Off-Design Conditions
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Ruf, Edward G.
2006-01-01
Scramjet flowpaths employing elliptical combustors have the potential to improve structural efficiency and performance relative to those using planar geometries. NASA Langley has developed a scramjet flowpath integrated into a lifting body vehicle, while transitioning from a rectangular capture area to both an elliptical throat and combustor. This Rectangular-to-Elliptical Shape Transition (REST) scramjet, has a design point of Mach 7.1, and is intended to operate with fixed-geometry between Mach 4.5 and 8.0. This paper describes initial free-jet testing of the heat-sink REST scramjet engine model at conditions simulating Mach 5.3 flight. Combustion of gaseous hydrogen fuel at equivalence ratios between 0.5 and 1.5 generated robust performance after ignition with a silane-hydrogen pilot. Facility model interactions were experienced for fuel equivalence ratios above 1.1, yet despite this, the flowpath was not unstarted by fuel addition at the Mach 5.3 test condition. Combustion tests at reduced stagnation enthalpy indicated that the engine self-started following termination of the fuel injection. Engine data is presented for the largest fuel equivalence ratio tested without facility interaction. These results indicate that this class of three-dimensional scramjet engine operates successfully at off-design conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.A. Wigeland
Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and themore » resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1403-000] Dominion Bridgeport Fuel Cell, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Dominion Bridgeport Fuel Cell, LLC's application for market-based rate authority, with an accompanying rate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ariani, Menik; Su'ud, Zaki; Waris, Abdul
2012-06-06
A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it ismore » shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.« less
Commercial aviation alternative fuels initiative
DOT National Transportation Integrated Search
2010-04-22
This presentation looks at alternative fuels to enhance environmental stability, reduction of greenhouse gas emissions, air quality benefits (e.g., SOx and PM), fuel supply stability, and fuel price stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Ch.; Cange, J.; Lambert, R.
In the early to mid-1960's, liquid low-level wastes (LLLW) generated at Oak Ridge National Laboratory were disposed of in specially-constructed, gravel-filled trenches within the Melton Valley watershed at the lab. The initial selected remedy for Trenches 5 and 7 was in situ vitrification; however, an amendment to the record of decision changed the remedy to in situ grouting of the trenches. The work was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout. At the HRE fuel wells,more » a 1-m ring of soil surrounding the fuel wells was grouted with acrylamide. The results of the hydraulic conductivity tests ranged from 4.74 x 10{sup -6} to 3.60 x 10{sup -7} cm/sec, values that were well below the 1 x 10{sup -5} cm/sec design criterion. In summary: The ISG Project was conducted to decrease hydraulic conductivity and thereby decrease water flow and contaminate migration from the area of the trenches. The initial remedy for Trenches 5 and 7 in the Melton Valley ROD was for in situ vitrification of the trench matrix. The remedy was changed to in situ grouting of the trenches and HRE fuel wells through an amendment to the ROD after moisture was found in the trenches. The grouting of the trenches was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout to further reduce water infiltration. Soil backfill above each of the seven HRE fuel wells was removed to a depth of approximately 1 m by augering, and the soils were replaced with a cement plug to prevent water infiltration from migrating down the original borehole. Soil surrounding the fuel wells was then grouted with acrylamide to ensure water infiltration through the HRE fuel wells is prevented. A summary of the quantities used is shown. After completion of grouting, in-situ hydraulic conductivities of the grouted materials were measured to verify attainment of the design objective. The areas were then covered with multi-layer caps as part of the MV hydrologic isolation project. (authors)« less
Fuel breaks affect nonnative species abundance in Californian plant communities
Merriam, K.E.; Keeley, J.E.; Beyers, J.L.
2006-01-01
We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.
Development of molten carbonate fuel cell technology at M-C Power Corporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilger, D.
1996-04-01
M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, andmore » removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.« less
Regenerative Fuel Cell Power Systems for Lunar and Martian Surface Exploration
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Jakupca, Ian J.; Gilligan, Ryan P.; Bennett, William R.; Smith, Phillip J.; Fincannon, James
2017-01-01
This paper presents the preliminary results of a recent National Aeronautics and Space Administration (NASA) study funded under the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) project. This study evaluated multiple surface locations on both the Moon and Mars, with the goal of establishing a common approach towards technology development and system design for surface power systems that use Regenerative Fuel Cell (RFC) energy storage methods. One RFC design may not be applicable to all surface locations; however, AMPS seeks to find a unified architecture, or series of architectures, that leverages a single development approach to answer the technology need for RFC systems. Early system trades were performed to select the most effective fuel cell and electrolyzer architectures based on current state-of-the-art technology, whereas later trades will establish a detailed system design to enable a near-term ground (non-flight) demonstration. This paper focuses on the initial trade studies, presents the selected fuel cell and electrolyzer architectures for follow-on system design studies, and suggests areas for further technology investment.
Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup
NASA Astrophysics Data System (ADS)
Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.
2017-12-01
Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.
FY 2005 Annual Progress Report for the DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roser, R.
1998-08-01
NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventionalmore » fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, J.R.; Hardin, R.T. Jr.
1987-07-07
This patent describes a nuclear reactor installation including means defining a fuel handling area and means defining a containment area separated from the fuel handling area and including a refuelling cavity; the improvement comprising: (a) a fuel transfer tube connecting the refuelling cavity with the fuel handling area; the fuel transfer tube having a first end in the fuel handling area and a second end in the refueling cavity; (b) valve means for opening and closing the first end; and (c) a hatch assembly mounted on the second end; the hatch assembly including (1) a hatch ring affixed to themore » fuel transfer tube at the second end the hatch ring has an integral annular seat surrounded by the hatch ring and defines a hatch opening in the second end of the fuel transfer tube; (2) a hatch cover adapts to be positioned on the annular seat for covering the hatch opening; (3) latching units are supported on the hatch ring about the hatch opening, each latching unit.« less
Sambandam, Sankar; Balakrishnan, Kalpana; Ghosh, Santu; Sadasivam, Arulselvan; Madhav, Satish; Ramasamy, Rengaraj; Samanta, Maitreya; Mukhopadhyay, Krishnendu; Rehman, Hafeez; Ramanathan, Veerabhadran
2015-03-01
Household air pollution from use of solid fuels is a major contributor to the national burden of disease in India. Currently available models of advanced combustion biomass cook-stoves (ACS) report significantly higher efficiencies and lower emissions in the laboratory when compared to traditional cook-stoves, but relatively little is known about household level exposure reductions, achieved under routine conditions of use. We report results from initial field assessments of six commercial ACS models from the states of Tamil Nadu and Uttar Pradesh in India. We monitored 72 households (divided into six arms to each receive an ACS model) for 24-h kitchen area concentrations of PM2.5 and CO before and (1-6 months) after installation of the new stove together with detailed information on fixed and time-varying household characteristics. Detailed surveys collected information on user perceptions regarding acceptability for routine use. While the median percent reductions in 24-h PM2.5 and CO concentrations ranged from 2 to 71% and 10-66%, respectively, concentrations consistently exceeded WHO air quality guideline values across all models raising questions regarding the health relevance of such reductions. Most models were perceived to be sub-optimally designed for routine use often resulting in inappropriate and inadequate levels of use. Household concentration reductions also run the risk of being compromised by high ambient backgrounds from community level solid-fuel use and contributions from surrounding fossil fuel sources. Results indicate that achieving health relevant exposure reductions in solid-fuel using households will require integration of emissions reductions with ease of use and adoption at community scale, in cook-stove technologies. Imminent efforts are also needed to accelerate the progress towards cleaner fuels.
Improved fire protection system for underground fueling areas. Volume II. Final report Sep 77-Oct 81
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, L.; Kennedy, D.; Reid, G.
1981-10-01
The objectives of this investigation were to (1) develop safe practice guidelines that will minimize the chance of fires in underground fueling areas and (2) to develop a low-cost, reliable, automatic fire control system (AFCS) for underground fueling areas. Volume I of the report covered the period from June 21, 1976, to September 30, 1977, and included (1) the preparation of safe practice guidelines for underground fueling areas; (2) preparation of recommended AFCS design concepts for underground fueling areas; and (3) the design, fabrication, and in-mine fire test of an AFCS at Pine Creek Mine, Bishop, Calif. Volume II ofmore » the report covers the period from September 30, 1977, to September 30, 1981, and includes (1) a long-term validation test of the AFCS in the Pine Creek Mine, (2) a study of the environmental effects of aqueous film-forming foam, (3) the design and installation of a system at AMAX Buick Mine, Boss, Mo., (4) the design of a system for enclosed fuel areas, and (5) the design of a system for semipermanent fueling areas.« less
Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine
NASA Astrophysics Data System (ADS)
Desrial; Saputro, W.; Garcia, P. P.
2018-05-01
Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.
Alternative Fuels Data Center: Coalition Leader Establishes Unique
Initiatives to Effect Change and Protect Ecosystem Coalition Leader Establishes Unique Initiatives to Effect Change and Protect Ecosystem to someone by E-mail Share Alternative Fuels Data Center : Coalition Leader Establishes Unique Initiatives to Effect Change and Protect Ecosystem on Facebook Tweet
Alternative Fuels Data Center: Blue Skies Initiative Clears the Air in
North Carolina for More Than a Decade Blue Skies Initiative Clears the Air in North Carolina for More Than a Decade to someone by E-mail Share Alternative Fuels Data Center: Blue Skies Initiative Center: Blue Skies Initiative Clears the Air in North Carolina for More Than a Decade on Twitter Bookmark
Recent work on gaseous detonations
NASA Astrophysics Data System (ADS)
Nettleton, M. A.
The paper reviews recent progress in the field of gaseous detonations, with sections on shock diffraction and reflection, the transition to detonation, hybrid, spherically-imploding, and galloping and stuttering fronts, their structure, their transmission and quenching by additives, the critical energy for initiation and detonation of more unusual fuels. The final section points out areas where our understanding is still far from being complete and contains some suggestions of ways in which progress might be made.
Advanced Fuel Cycle Cost Basis – 2017 Edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B. W.; Ganda, F.; Williams, K. A.
This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Puget Sound, Manchester Fuel... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a) The area. The waters of Puget Sound surrounding the Manchester Fuel Depot Point A, a point along the...
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Puget Sound, Manchester Fuel... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a) The area. The waters of Puget Sound surrounding the Manchester Fuel Depot Point A, a point along the...
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Puget Sound, Manchester Fuel... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a) The area. The waters of Puget Sound surrounding the Manchester Fuel Depot Point A, a point along the...
Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process
NASA Astrophysics Data System (ADS)
Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.
2014-12-01
The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.
Systems Analysis Initiated for All-Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft.
Fuel Cells: Reshaping the Future
ERIC Educational Resources Information Center
Toay, Leo
2004-01-01
In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…
40 CFR 63.7521 - What fuel analyses, fuel specification, and procedures must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel specification analyses for hydrogen sulfide and mercury according to the procedures in paragraphs... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What fuel analyses, fuel specification..., Commercial, and Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance...
1948-03-01
to this arbitrary value as ntandard. The compression time was maintained unifcum by uElng a ccnstent . driving ~ essure of 500 pounds per squ=e inch...ir ratio,0.066 (chemlo~ correct); initial~ essure , 14.7 lb/sq in. abs.; intt Ml temperature, 609° F abs~ Ignitiondelay Compres- Compres- sion...chemically correct); initial ~ essure , 14.7 lb/sq in. abso; fimal pressures 379 lb/sq in. abs.; initial temperatume~ 6090 F abs.; final temperature, 1340° F abs
40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...
40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...
40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...
40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...
Laser controlled flame stabilization
Early, James W.; Thomas, Matthew E.
2001-01-01
A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.
A physical description of fission product behavior fuels for advanced power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaganas, G.; Rest, J.; Nuclear Engineering Division
2007-10-18
The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuelsmore » under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.« less
Bulk Fuel Storage Facility Cape Canaveral Air Force Station, Florida. Environmental Assessment
2006-11-01
Potential DESC Fuel Depot Locations............................................2-7 Figure 2-5: Proposed Action Area Soils Map ... Area (FSA) #4, as the location is required to provide secure office space. 4) Maintain fuel operations in compliance with federal, state, and local...at the CCAFS fueling station(s) to Aboveground Storage Tanks (ASTs). Six alternative sites (five locations in the CCAFS Industrial Area and one
Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso
2016-09-01
As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less
Combustion in a Bomb with a Fuel-Injection System
NASA Technical Reports Server (NTRS)
Cohn, Mildred; Spencer, Robert C
1935-01-01
Fuel injected into a spherical bomb filled with air at a desired density and temperature could be ignited with a spark a few thousandths of a second after injection, an interval comparable with the ignition lag in fuel-injection engines. The effect of several variables on the extent and rate of combustion was investigated: time intervals between injection and ignition of fuel of 0.003 to 0.06 second and one of 5 minutes; initial air temperatures of 100 degrees C. to 250 degrees C.; initial air densities equivalent to 5, 10, and 15 absolute atmospheres pressure at 100 degrees C.; and air-fuel ratios of 5 to 25.
Proceedings of the 1993 Windsor Workshop on Alternative Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.
Multiple laser pulse ignition method and apparatus
Early, James W.
1998-01-01
Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.
Variants of closing the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.
2015-12-01
Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.
Fuels research studies at NASA Lewis
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1982-01-01
Fuels research studies carried out in a variety of areas related to aviation propulsion, ground transportation, and stationary power generation systems are discussed. The major efforts are directed to studies on fuels for jet aircraft. These studies involve fuels preparation, fuels analysis, and fuel quality evaluations. The scope and direction of research activities in these areas is discussed, descriptions of Lewis capabilities and facilities given, and results of recent research efforts reported.
Hydrogen Fuel Cell Electric Vehicle Learning Demonstration | Hydrogen and
Fuel Cells | NREL Fuel Cell Electric Vehicle Learning Demonstration Hydrogen Fuel Cell Electric Vehicle Learning Demonstration Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project-later dubbed the Fuel Cell Electric Vehicle (FCEV) Learning Demonstration
Preliminary Modeling of Accident Tolerant Fuel Concepts under Accident Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle A.; Hales, Jason D.
2016-12-01
The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. Thus, the United States Department of Energy through its NEAMS (Nuclear Energy Advanced Modeling and Simulation) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is funded for a three-year period. The purpose of the HIP is to perform research into two potential accident tolerant concepts and provide an in-depth report to the Advanced Fuels Campaign (AFC) describing the behavior of themore » concepts, both of which are being considered for inclusion in a lead test assembly scheduled for placement into a commercial reactor in 2022. The initial focus of the HIP is on uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (INL, LANL, and ANL) a comprehensive mulitscale approach to modeling is being used including atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. In this paper, we present simulations of two proposed accident tolerant fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. The simulations investigate the fuel performance response of the proposed ATF systems under Loss of Coolant and Station Blackout conditions using the BISON code. Sensitivity analyses are completed using Sandia National Laboratories’ DAKOTA software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). Early results indicate that each concept has significant advantages as well as areas of concern. Further work is required prior to formulating the proposition report for the Advanced Fuels Campaign.« less
Characterizing dichotomous fire regimes of southern California: climate, vegetation and topography
NASA Astrophysics Data System (ADS)
Kolden, C.; Abatzoglou, J. T.
2013-12-01
Southern California Mediterranean ecosystems have long been a subject of wildfire research, in part because of the extensive Wildland Urban Interface in the region. This mix of homes and vegetation at the edge of wildlands has resulted in several of the costliest wildfire events in US history due to the number of homes burned, and its extent is projected to increase significantly over the next 50 years. As such, there has been considerable investment is identifying fire regime characteristics and potential mitigation measures in the region. However, all previous wildfire research in the region has initiated from the assumption that the dominant fire regime is associated with autumn katabatic winds, known locally as Santa Ana winds or Sundowners. To-date, there has been no effort to determine whether this is an accurate assumption, or whether the fire regime is more complex. Here, we utilize a dataset of large wildfires (>40ha) from 1948-2010 and a chronology of Santa Ana (SA) wind occurrence to disaggregate two distinct fire regimes in southwestern California: wildfires associated with SA wind occurrence events, and those not associated with Santa Ana conditions (NSA) that are fuel- and topography-driven instead. By decomposing burned area into SA and NSA fires, significant differences in seasonal, biogeographic and topographic characteristics were found, as well as distinct and significantly stronger climate-fire relationships than previously reported. NSA area burned was associated with summer fires, peaking in July, and significantly higher elevation, greater forested area, steeper slopes, and broadly across all aspects. SA area burned was associated with autumn fires, peaking in October, and significantly lower elevation, greater shrubland area, lower slopes, and more southeastern aspects. Annual burned area in NSA fires was associated with low spring precipitation, high vapor pressure deficit and low fuel moistures during the summer months that increase the seasonal window for fuel flammability. Furthermore, annual burned area in forested lands was correlated to concurrent long-term drought, whereas annual burned area in shrublands was correlated with pluvial conditions during the prior growing season. By contrast, annual area burned in SA fires did not show any robust relationship to climate anomalies in preceding months. Rather, large annual area burned in SA fires was associated with a delay in the onset of cool season precipitation that enables persistent low fuel moisture into a time of the year when SA events become more frequent. A significant increase in NSA annual burned area, the number of large fires in early summer (May-Jul) and the timing of fuel-driven wildfires was observed over the 60-year record, potentially due to increased early summer vegetation stress in recent decades. Such changes are consistent with projected climate change for southern California suggesting that NSA wildfires may play a more dominant role in landscape disturbances and hazards. These findings suggest that previous research aggregating SA and NSA wildfires may produce considerably different results if these two distinct fire regimes are uncoupled and addressed individually.
Minor Actinides-Loaded FBR Core Concept Suitable for the Introductory Period in Japan
NASA Astrophysics Data System (ADS)
Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi
According to the Japan's Framework for Nuclear Energy Policy(1), a basic scenario for fast breeder reactors (FBRs) is that they will be introduced on a commercial basis starting around 2050 replacing light water reactors (LWRs). During the FBR introduction period, the Pu from LWR spent fuel is used for FBR startup. Howerver, the FBR core loaded with this Pu has a larger burnup reactivity due to its larger isotopic content of Pu-241 than a core loaded with Pu from an FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of an FBR. We investigated, an FBR transitional core concept to confront the issues of the FBR introductory period in Japan. Core specifications are based on the compact-type sodium-cooled mixed oxide (MOX)-fueled core designed from the Japanese FBR cycle feasibility studies, because lower Pu inventory should be better for the FBR introductory period in view of its flexibility for the required reprocessing amount of LWR spent fuel to start up FBRs. The reference specifications were selected as follows. Output of 1500MWe and average discharge fuel burnup of about 150GWd/t. Minor Actinides (MAs) recovered from LWR spent fuels which provide Pu to startup FBRs are loaded to the initial loading fuels and exchanged fuels during few cycles until equilibrium. We made the MA content of the initial loading fuel four kinds like 0%, 3%, 4%, 5%. The average of the initial loading fuel is assumed to be 3%, and that of the exchange fuel is set as 5%. This 5% maximum of the MA content is based on the irradiation results of the experimental fast reactor Joyo. We evaluated the core performances including burnup characteristics and the reactivity coefficient and confirmed that transitional core from initial loading until equilibrium cycle with loaded Pu from LWR spent fuel performs similary to an FBR multi-recycling core.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
... SNM in the form of fully-assembled fuel assemblies that would later form the initial reactor core of WBN2. The SNM in the fuel assemblies is enriched up to 5% in the isotope U-235. The fresh fuel... received the initial core for WBN2. The NRC has not yet issued the OL for the Unit 2 reactor. The...
40 CFR 63.11210 - What are my initial compliance requirements and by what date must I conduct them?
Code of Federal Regulations, 2014 CFR
2014-07-01
... March 21, 2011 or within 180 days after startup of the source, whichever is later, according to § 63.7(a... basis the type of fuel combusted. If you intend to burn a new type of fuel or fuel mixture that does not... than 25 months or 61 months, respectively, after the initial startup of the new or reconstructed...
40 CFR 63.11210 - What are my initial compliance requirements and by what date must I conduct them?
Code of Federal Regulations, 2013 CFR
2013-07-01
... March 21, 2011 or within 180 days after startup of the source, whichever is later, according to § 63.7(a... basis the type of fuel combusted. If you intend to burn a new type of fuel or fuel mixture that does not... than 25 months or 61 months, respectively, after the initial startup of the new or reconstructed...
Synthetic fuels for ground transportation with special emphasis on hydrogen
NASA Technical Reports Server (NTRS)
Singh, J. J.
1975-01-01
The role of various synthetic fuels, for ground transportation in the United States, was examined for the near term (by 1985) and the longer term applications (1985-2000 and beyond 2000). Feasible options include synthetic oil, methanol, electric propulsion, and hydrogen. It is concluded that (1) the competition during the next 50 years will be for the fuels of all types, rather than among the fuels; (2) extensive domestic oil and gas exploration should be initiated concurrent with the development of several alternate fuels and related ancillaries; and (3) hydrogen, as an automotive fuel, seems to be equivalent to gasoline for optimum fuel to air mixtures. As a pollution free, high energy density fuel, hydrogen deserves consideration as the logical replacement for the hydrocarbons. Several research and development requirements, essential for the implementation of hydrogen economy for ground transportation, were identified. Extensive engineering development and testing activities should be initiated to establish hydrogen as the future automotive fuel, followed by demonstration projects and concerted efforts at public education.
Measurements of Background and Polluted Air in Rural Regions of Rwanda
NASA Astrophysics Data System (ADS)
DeWitt, L.; Gasore, J.; Prinn, R. G.; Potter, K. E.
2015-12-01
Rwanda, a mountainous nation in Equatorial East Africa, is one of the least-urbanized nations in Africa. The majority of the population are subsistence farmers, and major sources of air pollution (e.g., particulates, greenhouse gases) in Rwanda include agricultural burning and cookstoves in rural areas, and older diesel vehicles and mototaxis in cities. Currently, initiatives to supply efficient cookstoves, development of cleaner-burning fuel from recycled agricultural waste, and new regulations on vehicle emissions and importation are underway. These initiatives seek to help Rwanda grow in the greenest way possible, to mitigate negative health and climate effects of development; however, little ambient data on air quality is available in different regions of Rwanda for a baseline study before and benefits study after these initiatives. The Rwanda Climate Observatory, located on the summit of Mt. Mugogo (-1.5833°, 29.5667°), a 2.5 km peak, has recently begun measurements of black carbon (BC) aerosol concentration and O3 and CO gas concentrations. BC measurements were performed with a 7-wavelength Magee Scientific aethalometer and the aethalometer model was used to calculate the influence of fossil fuel and biomass burning sources on BC concentrations. CO and O3 measurements were used in conjunction with BC aerosol data, and HYSPLIT back trajectories were also used to help discriminate between periods of heavy burning and periods of regional influence from traffic and general cookfire emissions. Since Mt. Mugogo is in a rural area, this station captures a snapshot of regional background pollution away from high anthropogenic influence. The nearby households and fields also allow case studies of household and crop burning during localized events and help quanitfy potential daily exposure to particulates and climate-forcing emissions in remote areas of this developing country. We will present time series of the BC, O3, CO and insolation measurements at Mt. Mugogo, and interpret them in terms of sources, circulation, air chemistry and physics, and sinks.
Demonstration of fuel switching on oceangoing vessels in the Gulf of Mexico.
Browning, Louis; Hartley, Seth; Bandemehr, Angela; Gathright, Kenneth; Miller, Wayne
2012-09-01
Switching fuels from high-sulfur heavy fuel oils (HFO) to lower sulfur marine gas oils (MGO) on an oceangoing vessel (OGV) can substantially reduce both PM and SO(x) ship stack emissions, potentially resulting in significant human health and environmental benefits in Gulf of Mexico port communities. The International Maritime Organization (IMO) established an emission control area (ECA) within 200 nautical miles of the US. and Canadian coastlines and French territories off the coast of Canada with lower fuel sulfur standards effective beginning August 2012, where OGVs will need to switch from HFO to MGO. However some operators and other stakeholders, particularly in the Gulf of Mexico, may be unfamiliar with the benefits and requirements and ship operators may be concerned over potential implications for cost and operations. This first-ever US. Environmental Protection Agency (EPA)-sponsored fuel switching demonstration in the Gulf of Mexico was initiated to showcase the environmental and health benefits of as well as operational issues associated with, fuel switching through the following activities: (1) Fuel switching was conducted on typical container ships operating the Gulf of Mexico, as routine fuel switching has been demonstrated in California in recent years. Two vessels were employed in the demonstration: the Maersk Roubaix, which switched fuels entering Port of Houston, TX, and the Port of Progreso, Mexico, and the Hamburg Süd vessel Cap San Lorenzo, which switched fuels entering the Port of Houston and the Mexican Ports of Veracruz and Altamira. Operational and cost aspects were also noted. (2) Emissions reductions were quantified through both a calculation approach based on fuel use of the Maersk Line vessel Roubaix and in-stack monitoring of emissions from the Hamburg Süd Cap San Lorenzo. Pollutant emissions including PM, SO(x), NO(x), and PM component speciation were sampled during use of both fuels. These observations showed reductions (1-6%) in NO(x) and substantial reductions in PM (50-70%) and SO(x) (> 99%) depending on engine and load. (3) Emission inventories at three ports were calculated. (4) Potential health and environmental benefits to communities and ecosystems in the Gulf of Mexico were estimated through screening-level modeling of air dispersion and atmospheric deposition of ship emissions at the Port of Veracruz to indicate the substantial reductions available through fuel switching. The United States and Canada have recently adopted a North American Emission Control Area that will require a shift from high-sulfur to low-sulfur fuels in the marine transportation sector. Cleaner fuels are expected to reduce sulfur and particulate emissions. This paper verifies the feasibility of such switching operations, the potential to reduce emissions if extended to the Gulf of Mexico, and the associated environmental impacts of these emission reductions inland and to sensitive ecosystems.
NASA Technical Reports Server (NTRS)
Molnar, Melissa; Marek, C. John
2005-01-01
A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.
The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale
NASA Technical Reports Server (NTRS)
Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.
2011-01-01
The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.
Management self assessment plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debban, B.L.
Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled tomore » begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.« less
Multiple laser pulse ignition method and apparatus
Early, J.W.
1998-05-26
Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... roads for fuels treatment and for ecosystem maintenance and restoration, but these are restricted to..., the tree cutting exceptions for fuel treatment and ecosystem maintenance and restoration are... term hazardous fuels has been added. Hazardous fuels are defined as excessive live or dead wildland...
Developing a laser shockwave model for characterizing diffusion bonded interfaces
NASA Astrophysics Data System (ADS)
Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.
2015-03-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.
High Temperature Electrolysis using Electrode-Supported Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots
2010-07-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation ratesmore » of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik; Rooyen, Isabella van; Leckie, Rafael
2015-03-01
In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, G.; Rudisill, T.
2017-07-17
As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U 3O 8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H 2. The HFIR fuel cores will be dissolved using a flowsheet developed by the Savannahmore » River National Laboratory (SRNL) in either the 6.4D or 6.1D dissolver using a unique insert. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The recovered U will be down-blended into low-enriched U for subsequent use as commercial reactor fuel. During the development of the HFIR fuel dissolution flowsheet, the cycle time for the initial core was estimated at 28 to 40 h. Once the cycle is complete, H-Canyon personnel will open the dissolver and probe the HFIR insert wells to determine the height of any fuel fragments which did not dissolve. Before the next core can be charged to the dissolver, an analysis of the potential for H 2 gas generation must show that the combined surface area of the fuel fragments and the subsequent core will not generate H 2 concentrations in the dissolver offgas which exceeds 60% of the lower flammability limit (LFL) of H 2 at 200 °C. The objective of this study is to identify the maximum fuel fragment height as a function of the Al concentration in the dissolving solution which will provide criteria for charging successive HFIR cores to an H-Canyon dissolver.« less
Knapp, E.E.; Keeley, J.E.
2006-01-01
Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.
Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission
Tiago M. Oliveira; Ana M. G. Barros; Alan A. Ager; Paulo M. Fernandes
2016-01-01
Wildfires pose complex challenges to policymakers and fire agencies. Fuel break networks and area-wide fuel treatments are risk-management options to reduce losses from large fires. Two fuel management scenarios covering 3% of the fire-prone Algarve region of Portugal and differing in the intensity of treatment in 120-m wide fuel breaks were examined and compared with...
DOE Hydrogen Program: 2006 Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliken, J.
This report summarizes comments from the Peer Review Panel at the FY 2006 DOE Hydrogen Program Annual Merit Review, held on May 16-19, 2006, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, R.
1997-12-01
The author discusses the worldwide problem and need for rural electrification to support development. He points out that rural areas will pay high rates to receive such services, but cannot afford the capital cost for conventional services. The author looks at this problem from the point of energy choices, subsides, initial costs, financing, investors, local involvement, and governmental actions. In particular he is concerned with ways to make better use of biofuels, to promote sustainable harvesting, and to encourage development of more modern fuels.
1987-09-01
v PROPULSION AND ENERGETICS PANEL Chairman: Dr W.L.Macmillan Depuity Chairman: Ing. Principal de l’Armement P.Ramene Project Manager DRET EHF...initiative in historical perspective, describe the HPTET technical/ management approach, discuss some of the Dromising candidate technologies and present...the combustion process must be carefully managed to eliminate fuel-rich areas which could produce visible smoke in the engine exhaust. The combustor
DOE Hydrogen Program: 2005 Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chalk, S. G.
This report summarizes comments from the Peer Review Panel at the FY 2005 DOE Hydrogen Program Annual Merit Review, held on May 23-26, 2005, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.
DOE Hydrogen Program: 2007 Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliken, J.
This report summarizes comments from the Peer Review Panel at the FY 2007 DOE Hydrogen Program Annual Merit Review, held on May 14-18, 2007, in Washington, D.C. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.
NASA Astrophysics Data System (ADS)
Vershinina, K. Yu.; Kuznetsov, G. V.; Strizhak, P. A.
2017-01-01
To enlarge the power raw material base, the processes of stable initiation of combustion of drops of organic watercoal fuels have been investigated. For the main components, we used filter cakes (coal processing waste), anthracite, bituminous and brown coals of brands D and B2, water, and spent machine, turbine, and transformer oils. We have established the influence of concentrations of components on the minimum (limiting) ignition temperatures of organic water-coal fuels and the ignition delay times of drops of fuel components with initial sizes of 0.25-1.5 mm. Investigations were carried out for oxidizer temperatures of 600-1100 K and its velocities of 0.5-5 m/s characteristic of units, aggregates, and large and small power plants. We have determined the characteristic differences of organic water-coal fuel from water-coal fuel and the close laws of the investigated processes for these fuels.
Stabilizing platinum in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Remick, R. J.
1982-01-01
Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.
The Collection of Ice in Jet A-1 Fuel Pipes
NASA Astrophysics Data System (ADS)
Maloney, Thomas C.
Ice collection and blockages in fuel systems have been of interest to the aerospace community since their discovery in the late 1950's when a B-52 crashed. A recent growth of interest was provoked by several incidents that occurred within the last few years. This study seeks to understand the underlying principles of ice growth in fuel flow systems. Tests were performed in a recirculated fuel system with a fuel tank that held approximately 115 gallons of Jet A-1 fuel and ice accumulation was observed in two removable test pipes. The setup was in an altitude chamber capable of -60 °F and the experiments involved full scale flow components. Initially, tests were done to better understand the system and variables that effected accumulation. First, initial conditions within the test pipes were varied. Next, pipe geometry, pipe surface properties, initial water content of the fuel and heat transfer from the fuel pipe were varied. As a result of the tests, observations were made about other effects involved in the study. The effects include: the result of sequentially run tests, the effect of the fuel on the freezing temperature of the entrained water, the effect of ice accumulation on pipe welds, and the effect of the test pipe entrance and exit flow conditions on ice accumulation. The results of initial tests were qualitative. Later quantitative tests were done to demonstrate the dependence of temperature, Reynolds number, and heat transfer on ice accumulation. Tests were quantified with a pressure increase across the pipe sections that was normalized by the expected theoretical initial pressure. As a result of these tests the effect of contamination in the fuel was revealed. For ease of reference, the initial tests were called "stage I" and the later tests were called "stage II". The results of stage I showed that accumulation of soft ice was greatest when a layer of hard ice had initially formed on the pipe surface. Stainless steel collected more ice than Teflon® and there was a lack of a preferential accumulation region downstream of a pipe bend. A greater heat transfer from the pipe increased ice accumulation for aluminum that was made rough with 80 grit sand paper, and for Teflon®. Water was shown to collect in the pipe system as the number of tests increased and the freeze temperature of either the hard or soft ice was about 0 °C. Finally, results of "stage I" tests showed that stainless steel pipe welds were a preferred sight for ice to accumulate. Repeatability was done first in stage II and the normalized pressure increase for two 3/42 un-insulated pipe tests were within 7%. Normalized pressure increase across a pipe was shown to increase as Reynolds number decreased. A 50% increase in Reynolds number led to a 40% decrease in characteristic normalized pressure increase (CNPI). Tests were done at three temperatures and ice accumulated the most at -11 °C. The CNPI at -11 °C was about three times greater than the CNPI at -7.4 °C and about sixty times greater than the CNPI at -19.4 C. A greater heat transfer from the fuel pipe increased ice accumulation. For the amount of time that the tests ran, the total normalized pressure increase was about .9 greater for an un-insulated pipe than for an insulated pipe. Contamination in the fuel increased the amount of soft ice that collected in the system. The CNPI for the more contaminated fuel was more than double the case with less contaminated fuel. Possible solutions for the prevention or decrease of ice accumulation in aircraft fuel systems based on the results of this study are insulated pipes, a change in the type of pipe material, a higher fuel flow rate and cleaner fuel. The fuel temperature could also be altered to avoid temperatures where the most ice accumulates.
14 CFR 139.321 - Handling and storing of hazardous substances and materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...
14 CFR 139.321 - Handling and storing of hazardous substances and materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...
14 CFR 139.321 - Handling and storing of hazardous substances and materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...
14 CFR 139.321 - Handling and storing of hazardous substances and materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...
14 CFR 139.321 - Handling and storing of hazardous substances and materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Public protection. (3) Control of access to storage areas. (4) Fire safety in fuel farm and storage areas. (5) Fire safety in mobile fuelers, fueling pits, and fueling cabinets. (6) Training of fueling personnel in fire safety in accordance with paragraph (e) of this section. Such training at Class III...
NASA Astrophysics Data System (ADS)
Futko, S. I.; Bondarenko, V. P.; Dolgii, L. N.
2012-03-01
On the basis of macrokinetic calculations, the influence of the initial temperature on the impulse responses of the processes of ignition and combustion of the solid-fuel charge of the microelectromechanical system (MEMS) microthruster burning the solid fuel glycidyl azide polymer (GAP)/RDX has been investigated. It has been established that fuel heating/cooling in a wide range of temperature values from 150 to 450 K characteristic of the conditions of a satellite in orbital flight markedly affects both the thrust and the total impulse of the MEMS microthruster. In so doing, an increase in the initial temperature leads to a marked decrease in the induction period and an increase in the critical flux of fuel ignition. The influence of the change in the initial temperature on the self-ignition temperature of GAP can be neglected. To obtain stable characteristics of the microthruster, it seems expedient to use a thermostating system.
NASA Astrophysics Data System (ADS)
Lemoine, F.
1997-09-01
Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup, which, under overpower conditions, can lead to solid fuel pressurization and swelling causing severe PCMI (pellet clad mechanical interaction). In order to assess the reliability of high burnup fuel under RIAs, experimental programs have been initiated which have provided important data concerning the transient fission gas behavior and the clad loading mechanisms. The importance of the rim zone is demonstrated based on three experiments resulting in clad failure at low enthalpy, which are explained by energetic considerations. High gas release in non-failure tests with low energy deposition underlines the importance of grain boundary and porosity gas. Measured final releases are strongly correlated to the microstructure evolution, depending on energy deposition, pulse width, initial and refabricated fuel rod design. Observed helium release can also increase internal pressure and gives hints to the gas behavior understanding.
Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Petti
2014-06-01
Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germanymore » produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.« less
INITIAL ANALYSIS OF TRANSIENT POWER TIME LAG DUE TO HETEROGENEITY WITHIN THE TREAT FUEL MATRIX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. Wachs; A.X. Zabriskie, W.R. Marcum
2014-06-01
The topic Nuclear Safety encompasses a broad spectrum of focal areas within the nuclear industry; one specific aspect centers on the performance and integrity of nuclear fuel during a reactivity insertion accident (RIA). This specific accident has proven to be fundamentally difficult to theoretically characterize due to the numerous empirically driven characteristics that quantify the fuel and reactor performance. The Transient Reactor Test (TREAT) facility was designed and operated to better understand fuel behavior under extreme (i.e. accident) conditions; it was shutdown in 1994. Recently, efforts have been underway to commission the TREAT facility to continue testing of advanced accidentmore » tolerant fuels (i.e. recently developed fuel concepts). To aid in the restart effort, new simulation tools are being used to investigate the behavior of nuclear fuels during facility’s transient events. This study focuses specifically on the characterizing modeled effects of fuel particles within the fuel matrix of the TREAT. The objective of this study was to (1) identify the impact of modeled heterogeneity within the fuel matrix during a transient event, and (2) demonstrate acceptable modeling processes for the purpose of TREAT safety analyses, specific to fuel matrix and particle size. Hypothetically, a fuel that is dominantly heterogeneous will demonstrate a clearly different temporal heating response to that of a modeled homogeneous fuel. This time difference is a result of the uniqueness of the thermal diffusivity within the fuel particle and fuel matrix. Using MOOSE/BISON to simulate the temperature time-lag effect of fuel particle diameter during a transient event, a comparison of the average graphite moderator temperature surrounding a spherical particle of fuel was made for both types of fuel simulations. This comparison showed that at a given time and with a specific fuel particle diameter, the fuel particle (heterogeneous) simulation and the homogeneous simulation were related by a multiplier relative to the average moderator temperature. As time increases the multiplier is comparable to the factor found in a previous analytical study from literature. The implementation of this multiplier and the method of analysis may be employed to remove assumptions and increase fidelity for future research on the effect of fuel particles during transient events.« less
40 CFR 600.302-08 - Fuel economy label format requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or diesel fuel as calculated in § 600.210-08(a) and (b). (3) The fuel pump logo. (4) The following... *”. The title shall be positioned in the grey area above the window of the fuel pump logo, in a size and...)”]”. Both of these titles are centered in the grey area above the window of the fuel pump logo, with a size...
40 CFR 600.302-08 - Fuel economy label format requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or diesel fuel as calculated in § 600.210-08(a) and (b). (3) The fuel pump logo. (4) The following... *”. The title shall be positioned in the grey area above the window of the fuel pump logo, in a size and...)”]”. Both of these titles are centered in the grey area above the window of the fuel pump logo, with a size...
Podur, Justin J; Martell, David L
2009-07-01
Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.
NASA Astrophysics Data System (ADS)
Westerling, A. L.; Fites, J. A.; Keyser, A.
2015-12-01
Annual wildfire burned area in federally managed Sierra Nevada forests has increased by more than 10,000 ha per decade since the early 1970s. At the same time, recent years have seen some extremely large fires compared to the historical record, with significant areas of moderate to high severity fire (e.g., McNally 2002, Rim 2013, King 2014 fires). Changes to fuels and fire regimes due to fire suppression and land use, as well as warming temperatures and the occurrence of drought, are thought to be significant factors contributing to increased risks of large, severe fires in Sierra Nevada forests. Over 70% of the vegetated area in federally managed forests in the Sierra Nevada is classified as having altered fuels and fire regimes, while average annual temperature in the Sierra Nevada has been above the long term mean for all but four years in the past two decades. As climate is expected to continue warming for decades to come, we explored fuels management scenarios as the primary tools available to modify risks of large, severe wildfires. We developed experimental statistical models of fire occurrence, fire size, and high severity burned area, to explore the interaction between climate and altered fuels conditions. These models were applied to historical climate conditions, a sample of future climate projections, and to both current fuels conditions and a range of scenarios for fuels treatments. Emissions from wildfires were estimated using the Fire Inventory from the National Center for Atmospheric Research. Our models project that average annual burned area in the Sierra Nevada will more than double by mid-century. Similarly, particulate and other pollution emissions from Sierra Nevada wildfires are projected to more than double, even if future fire severity does not change. Fuels treatment scenarios significantly reduced simulated future burned area and emissions below untreated projections. High severity burned area responded to both climate and fuels treatments. A sensitivity analysis indicated that in areas where the fraction of highly altered fuels is high, successfully restoring fuels to prehistoric conditions could more than compensate for expected climate change effects on fire severity by mid-century.
35. FUEL HANDLING BUILDING, INTERIOR LOOKING SOUTHEAST SHOWING TRANSFER CANAL ...
35. FUEL HANDLING BUILDING, INTERIOR LOOKING SOUTHEAST SHOWING TRANSFER CANAL AREA, DEEP STORAGE AREA, FUEL STORAGE PIT (LOCATION BB) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA
Dependence of the pour point of diesel fuels on the properties of the initial components
NASA Technical Reports Server (NTRS)
Ostashov, V. M.; Bobrovskiy, S. A.
1979-01-01
An analytical expression is obtained for the dependence of the pour point of diesel fuels on the pour point and weight relationship of the initial components. For determining the pour point of a multicomponent fuel mixture, it is assumed that the mixture of two components has the pour point of a separate equivalent component, then calculating the pour point of this equivalent component mixed with a third component, etc.
NATURAL ATTENUATION OF FUEL HYDROCARBONS AT MULTIPLE AIR FORCE BASE DEMONSTRATION SITES
A major initiative to evaluate monitored natural attenuation(MNA) of ground water contaminated with fuel hydrocarbons began in June 1993 and continued through October 2000. During this time site characterization studies, both initial and follow-up, were conducted at 28 Air Forc...
Liquefied natural gas fuel use : basic training manual
DOT National Transportation Integrated Search
1994-05-01
The Urban Mass Transportation Administration's Alternative Fuel Initiative and the Environmental Protection Agency's 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus research and demonstrati...
Compressed natural gas fuel use training manual
DOT National Transportation Integrated Search
1992-09-01
The Urban Mass Transportation Administration (UMTA) Alternative Fuel Initiative and the Environmental Protection Agency (EPA) 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus demonstrations....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.
The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less
Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.; ...
2017-01-18
The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Vo, D.; Grogan, Brandon R.
The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/ 137Cs, 134Cs/ 137Cs, 106Ru/ 137Cs, and 144Ce/ 137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less
Favalli, Andrea; Vo, D.; Grogan, Brandon R.; ...
2016-02-26
The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/ 137Cs, 134Cs/ 137Cs, 106Ru/ 137Cs, and 144Ce/ 137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less
40 CFR 63.11211 - How do I demonstrate initial compliance with the emission limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Table 4 to this subpart, conducting a fuel analysis for each type of fuel burned in your boiler... single type of fuel, you are exempted from the compliance requirements of conducting a fuel analysis for each type of fuel burned in your boiler. For purposes of this subpart, boilers that use a supplemental...
40 CFR 63.11211 - How do I demonstrate initial compliance with the emission limits?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Table 4 to this subpart, conducting a fuel analysis for each type of fuel burned in your boiler... single type of fuel, you are exempted from the compliance requirements of conducting a fuel analysis for each type of fuel burned in your boiler. For purposes of this subpart, boilers that use a supplemental...
Co-Optimization of Fuels and Engines | Transportation Research | NREL
Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Engines Photo of silver sedan in ), eight other national laboratories, and industry on the Co-Optimization of Fuels & Engines (Co-Optima research activities and accomplishments of the Co-Optima initiative in the Co-Optimization of Fuels &
A Profile of Biomass Stove Use in Sri Lanka
Elledge, Myles F.; Phillips, Michael J.; Thornburg, Vanessa E.; Everett, Kibri H.; Nandasena, Sumal
2012-01-01
A large body of evidence has confirmed that the indoor air pollution (IAP) from biomass fuel use is a major cause of premature deaths, and acute and chronic diseases. Over 78% of Sri Lankans use biomass fuel for cooking, the major source of IAP in developing countries. We conducted a review of the available literature and data sources to profile biomass fuel use in Sri Lanka. We also produced two maps (population density and biomass use; and cooking fuel sources by district) to illustrate the problem in a geographical context. The biomass use in Sri Lanka is limited to wood while coal, charcoal, and cow dung are not used. Government data sources indicate poor residents in rural areas are more likely to use biomass fuel. Respiratory diseases, which may have been caused by cooking emissions, are one of the leading causes of hospitalizations and death. The World Health Organization estimated that the number of deaths attributable to IAP in Sri Lanka in 2004 was 4300. Small scale studies have been conducted in-country in an attempt to associate biomass fuel use with cataracts, low birth weight, respiratory diseases and lung cancer. However, the IAP issue has not been broadly researched and is not prominent in Sri Lankan public health policies and programs to date. Our profile of Sri Lanka calls for further analytical studies and new innovative initiatives to inform public health policy, advocacy and program interventions to address the IAP problem of Sri Lanka. PMID:22690185
Park, Seunghyun; Ra, Youngchul; Reitz, Rolf D.; ...
2016-03-01
A reduced chemical kinetic mechanism for Tri-Propylene Glycol Monomethyl Ether (TPGME) has been developed and applied to computational fluid dynamics (CFD) calculations for predicting combustion and soot formation processes. The reduced TPGME mechanism was combined with a reduced n-hexadecane mechanism and a Poly-Aromatic Hydrocarbon (PAH) mechanism to investigate the effect of fuel oxygenation on combustion and soot emissions. The final version of the TPGME-n-hexadecane-PAH mechanism consists of 144 species and 730 reactions and was validated with experiments in shock tubes as well as in a constant volume spray combustion vessel (CVCV) from the Engine Combustion Network (ECN). The effects ofmore » ambient temperature, varying oxygen content in the tested fuels on ignition delay, spray liftoff length and soot formation under diesel-like conditions were analyzed and addressed using multidimensional reacting flow simulations and the reduced mechanism. Here, the results show that the present reduced mechanism gives reliable predictions of the combustion characteristics and soot formation processes. In the CVCV simulations, two important trends were identified. First, increasing the initial temperature in the CVCV shortens the ignition delay and lift-off length, reduces the fuel-air mixing, thereby increasing the soot levels. Secondly, fuel oxygenation introduces more oxygen into the central region of a fuel jet and reduces residence times of fuel rich area in active soot forming regions, thereby reducing soot levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seunghyun; Ra, Youngchul; Reitz, Rolf D.
A reduced chemical kinetic mechanism for Tri-Propylene Glycol Monomethyl Ether (TPGME) has been developed and applied to computational fluid dynamics (CFD) calculations for predicting combustion and soot formation processes. The reduced TPGME mechanism was combined with a reduced n-hexadecane mechanism and a Poly-Aromatic Hydrocarbon (PAH) mechanism to investigate the effect of fuel oxygenation on combustion and soot emissions. The final version of the TPGME-n-hexadecane-PAH mechanism consists of 144 species and 730 reactions and was validated with experiments in shock tubes as well as in a constant volume spray combustion vessel (CVCV) from the Engine Combustion Network (ECN). The effects ofmore » ambient temperature, varying oxygen content in the tested fuels on ignition delay, spray liftoff length and soot formation under diesel-like conditions were analyzed and addressed using multidimensional reacting flow simulations and the reduced mechanism. Here, the results show that the present reduced mechanism gives reliable predictions of the combustion characteristics and soot formation processes. In the CVCV simulations, two important trends were identified. First, increasing the initial temperature in the CVCV shortens the ignition delay and lift-off length, reduces the fuel-air mixing, thereby increasing the soot levels. Secondly, fuel oxygenation introduces more oxygen into the central region of a fuel jet and reduces residence times of fuel rich area in active soot forming regions, thereby reducing soot levels.« less
Shinneman, Douglas J.; Aldridge, Cameron L.; Coates, Peter S.; Germino, Matthew J.; Pilliod, David S.; Vaillant, Nicole M.
2018-03-15
Interactions between fire and nonnative, annual plant species (that is, “the grass/fire cycle”) represent one of the greatest threats to sagebrush (Artemisia spp.) ecosystems and associated wildlife, including the greater sage-grouse (Centrocercus urophasianus). In 2015, U.S. Department of the Interior called for a “science-based strategy to reduce the threat of large-scale rangeland fire to habitat for the greater sage-grouse and the sagebrush-steppe ecosystem.” An associated guidance document, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan,” identified fuel breaks as high priority areas for scientific research. Fuel breaks are intended to reduce fire size and frequency, and potentially they can compartmentalize wildfire spatial distribution in a landscape. Fuel breaks are designed to reduce flame length, fireline intensity, and rates of fire spread in order to enhance firefighter access, improve response times, and provide safe and strategic anchor points for wildland fire-fighting activities. To accomplish these objectives, fuel breaks disrupt fuel continuity, reduce fuel accumulation, and (or) increase plants with high moisture content through the removal or modification of vegetation in strategically placed strips or blocks of land.Fuel breaks are being newly constructed, enhanced, or proposed across large areas of the Great Basin to reduce wildfire risk and to protect remaining sagebrush ecosystems (including greater sage-grouse habitat). These projects are likely to result in thousands of linear miles of fuel breaks that will have direct ecological effects across hundreds of thousands of acres through habitat loss and conversion. These projects may also affect millions of acres indirectly because of edge effects and habitat fragmentation created by networks of fuel breaks. Hence, land managers are often faced with a potentially paradoxical situation: the need to substantially alter sagebrush habitats with fuel breaks to ultimately reduce a greater threat of their destruction from wildfire. However, there is relatively little published science that directly addresses the ability of fuel breaks to influence fire behavior in dryland landscapes or that addresses the potential ecological effects of the construction and maintenance of fuel breaks on sagebrush ecosystems and associated wildlife species.This report is intended to provide an initial assessment of both the potential effectiveness of fuel breaks and their ecological costs and benefits. To provide this assessment, we examined prior studies on fuel breaks and other scientific evidence to address three crucial questions: (1) How effective are fuel breaks in reducing or slowing the spread of wildfire in arid and semi-arid shrubland ecosystems? (2) How do fuel breaks affect sagebrush plant communities? (3) What are the effects of fuel breaks on the greater sage-grouse, other sagebrush obligates, and sagebrush-associated wildlife species? We also provide an overview of recent federal policies and management directives aimed at protecting remaining sagebrush and greater sage-grouse habitat; describe the fuel conditions, fire behavior, and fire trends in the Great Basin; and suggest how scientific inquiry and management actions can improve our understanding of fuel breaks and their effects in sagebrush landscapes.
Developing a laser shockwave model for characterizing diffusion bonded interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Jeffrey M., E-mail: Jeffrey.Lacy@inl.gov; Smith, James A., E-mail: Jeffrey.Lacy@inl.gov; Rabin, Barry H., E-mail: Jeffrey.Lacy@inl.gov
2015-03-31
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengthsmore » in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie; Orton, Christopher; Schwantes, Jon
Abstract—The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of reprocessing streams in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor), initial enrichment, burn up, and cooling time. Simulated gamma spectra were used to develop and test threemore » fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type. Locally weighted PLS models were fitted on-the-fly to estimate continuous fuel characteristics. Burn up was predicted within 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment within approximately 2% RMSPE. This automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters and material diversions.« less
Performance of fuel system at different diesel temperature
NASA Astrophysics Data System (ADS)
Xu, Xiaoyong; Li, Xiaolu; Sun, Zai
2010-08-01
This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.
The Charcoal Trap: Miombo Woddlands and the Energy Demands of People
NASA Astrophysics Data System (ADS)
Kutsch, W. L.; Merbold, L.; Mukelabai, M. M.
2012-04-01
Miombo woodlands cover the transition zone between dry open savannas and moist forests in Southern Africa. They cover about 2.7 million km2 in southern Africa and provide many ecosystem services that support rural life, including medical products, wild foods, construction timber and fuel. In Zambia, as in many of its neighbouring countries, miombo woodlands are currently experiencing accelerating degradation and clearing, mostly with charcoal production as the initial driver. Domestic energy needs in the growing urban areas are largely satisfied by charcoal, which is less energy-efficient fuel on a tree-to-table basis than the firewood that is used in rural areas, but has a higher energy density and is thus cheaper to transport. This study uses data from inventories and from eddy covariance measurements of carbon exchange to characterize the impact of charcoal production on miombo woodlands. We address the following questions: (i) how much carbon is lost at local as well as at national scale and (ii) does forest degradation result in the loss of a carbon sink? On the basis of our data we (iii) estimate the per capita emissions through deforestation and forest degradation in Zambia and relate it to fossil fuel emissions. Furthermore, (iv) a rough estimate of the energy that is provided by charcoal production to private households at a national level is calculated and (v) options for alternative energy supply to private households are discussed.
Will savannas survive outside the parks? A lesson from Zambia
NASA Astrophysics Data System (ADS)
Kutsch, W.; Merbold, L.; Scholes, B.; Mukelabai, M.
2012-04-01
Miombo woodlands cover the transition zone between dry open savannas and moist forests in Southern Africa. They cover about 2.7 million km2 in southern Africa and provide many ecosystem services that support rural life, including medical products, wild foods, construction timber and fuel. In Zambia, as in many of its neighbouring countries, miombo woodlands are currently experiencing accelerating degradation and clearing, mostly with charcoal production as the initial driver. Domestic energy needs in the growing urban areas are largely satisfied by charcoal, which is less energy-efficient fuel on a tree-to-table basis than the firewood that is used in rural areas, but has a higher energy density and is thus cheaper to transport. This study uses data from inventories and from eddy covariance measurements of carbon exchange to characterize the impact of charcoal production on miombo woodlands. We address the following questions: (i) how much carbon is lost at local as well as at national scale and (ii) does forest degradation result in the loss of a carbon sink? On the basis of our data we (iii) estimate the per capita emissions through deforestation and forest degradation in Zambia and relate it to fossil fuel emissions. Furthermore, (iv) a rough estimate of the energy that is provided by charcoal production to private households at a national level is calculated and (v) options for alternative energy supply to private households are discussed.
NASA Technical Reports Server (NTRS)
Somogyi, Dezso; Feiler, Charles E.
1960-01-01
The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.
Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Mishler, Jeffrey Harris
Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and validated against experimental data. The ice coverage coefficient was shown to be a key variable in matching with experimental data. From model analysis, it appears that the coulombs of charge passed before operation failure is an important parameter characterizing PEM fuel cell cold start. To investigate the coulombs of charge and its determining factors, PEM fuel cells were constructed to measure the effects of membrane configuration (thickness and initial state), catalyst layer configuration (thickness and ionomer-carbon ratio), current density, and temperature on the quantity. It was found that subfreezing temperature, ionomer-catalyst ratio, and catalyst-layer thickness significantly affect the amount of charge transferred before operational failure, whereas the membrane thickness and initial hydration level have limited effect for the considered cases. In addition, degradation of the catalyst layer was observed and quantified. These results improve the fundamental understanding of characteristics of subfreezing operation and thus are valuable for automobile applications of PEM fuel cells. The model directly relates the material properties to voltage loss, and predicts voltage evolution, thus providing a way for material optimization and diagnostics. Additionally, insights into component design and operating conditions can be used to better optimize the fuel cell for cold start-up of the vehicle.
DOT National Transportation Integrated Search
1978-07-01
Initial efforts with water/fuel emulsions in diesel engines were directed toward the control of NOx. More recent studies emphasized the use of emulsions to improve fuel economy. It is believed that in a diesel engine combustion process, emulsified fu...
40 CFR 63.7545 - What notifications must I submit and when?
Code of Federal Regulations, 2010 CFR
2010-07-01
... reconstructed boiler or process heater is in one of the liquid fuel subcategories and burns only liquid fossil... limited use subcategories (the limited use solid fuel subcategory, the limited use liquid fuel subcategory, or the limited use gaseous fuel subcategory), your Initial Notification must include the information...
40 CFR 63.7545 - What notifications must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... reconstructed boiler or process heater is in one of the liquid fuel subcategories and burns only liquid fossil... limited use subcategories (the limited use solid fuel subcategory, the limited use liquid fuel subcategory, or the limited use gaseous fuel subcategory), your Initial Notification must include the information...
40 CFR 63.7545 - What notifications must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... reconstructed boiler or process heater is in one of the liquid fuel subcategories and burns only liquid fossil... limited use subcategories (the limited use solid fuel subcategory, the limited use liquid fuel subcategory, or the limited use gaseous fuel subcategory), your Initial Notification must include the information...
NASA Astrophysics Data System (ADS)
Alam, Rashidah Zainal; Siwar, Chamhuri; Ludin, Norasikin Ahmad
Malaysia's energy sector is highly dependent on fossil fuels as a primary energy source. Economic growth and socio-economic wellbeing also rely on the utilization of energy in daily life routine. Nevertheless, the increasing cost for electricity and declining fossil fuels resources causes various negative impacts to the people and environment especially in rural areas. This prompted Malaysia to shift towards alternative energy sources such as solar energy to ensure social, economic and environmental benefits. The solar energy is one of the potential renewable energy sources in tropical countries particularly in Malaysia. The paper attempts to analyze the benefits and advantages related to energy efficiency of solar for sustainable energy use and socio economic wellbeing in rural areas, Malaysia. The paper uses secondary sources of data such as policies, regulations and research reports from relevant ministries and agencies to attain the objectives. As a signatory country to the UN Convention on Climate Change and the Kyoto Protocol, Malaysia has taken initiatives for decreasing energy dependence on oil to reduce greenhouse gas emissions (GHG) for sustainable development. The paper shows solar energy becomes one of the promising alternative energy sources to alleviate energy poverty in Malaysia for rural areas. Finally, solar energy has increased socio-economic wellbeing and develops green potential and toward achieving energy efficiency in energy sector of Malaysia by preserving environment as well as reducing carbon emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, Harold; Geelhood, Ken; Koeppel, Brian
2013-09-30
This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.
NASA Technical Reports Server (NTRS)
Molnar, Melissa; Marek, C. John
2004-01-01
A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.
Variable area fuel cell cooling
Kothmann, Richard E.
1982-01-01
A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.
33 CFR 334.510 - U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. 334.510 Section 334.510 Navigation and Navigable... REGULATIONS § 334.510 U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. (a) The...
1st Fire Behavior and Fuels Conference: Fuels Management-How to Measure Success
Patricia L. Andrews
2006-01-01
The 1st Fire Behavior and Fuels Conference: Fuels Management -- How to Measure Success was held in Portland, Oregon, March 28-30, 2006. The International Association of Wildland Fire (IAWF) initiated a conference on this timely topic primarily in response to the needs of the U.S. National Interagency Fuels Coordinating Group (http://www.nifc.gov/).
40 CFR 63.11211 - How do I demonstrate initial compliance with the emission limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Table 4 to this subpart, conducting a fuel analysis for each type of fuel burned in your boiler... evaluations according to § 63.11224. For affected boilers that burn a single type of fuel, you are exempted from the compliance requirements of conducting a fuel analysis for each type of fuel burned in your...
40 CFR 63.11211 - How do I demonstrate initial compliance with the emission limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Table 4 to this subpart, conducting a fuel analysis for each type of fuel burned in your boiler... evaluations according to § 63.11224. For affected boilers that burn a single type of fuel, you are exempted from the compliance requirements of conducting a fuel analysis for each type of fuel burned in your...
Phase 1A Final Report for the AREVA Team Enhanced Accident Tolerant Fuels Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrell, Mike E.
In response to the Department of Energy (DOE) funded initiative to develop and deploy lead fuel assemblies (LFAs) of Enhanced Accident Tolerant Fuel (EATF) into a US reactor within 10 years, AREVA put together a team to develop promising technologies for improved fuel performance during off normal operations. This team consisted of the University of Florida (UF) and the University of Wisconsin (UW), Savannah River National Laboratory (SRNL), Duke Energy and Tennessee Valley Authority (TVA). This team brought broad experience and expertise to bear on EATF development. AREVA has been designing; manufacturing and testing nuclear fuel for over 50 yearsmore » and is one of the 3 large international companies supplying fuel to the nuclear industry. The university and National Laboratory team members brought expertise in nuclear fuel concepts and materials development. Duke and TVA brought practical utility operating experience. This report documents the results from the initial “discovery phase” where the team explored options for EATF concepts that provide enhanced accident tolerance for both Design Basis (DB) and Beyond Design Basis Events (BDB). The main driver for the concepts under development were that they could be implemented in a 10 year time frame and be economically viable and acceptable to the nuclear fuel marketplace. The economics of fuel design make this DOE funded project very important to the nuclear industry. Even incremental changes to an existing fuel design can cost in the range of $100M to implement through to LFAs. If this money is invested evenly over 10 years then it can take the fuel vendor several decades after the start of the project to recover their initial investment and reach a breakeven point on the initial investment. Step or radical changes to a fuel assembly design can cost upwards of $500M and will take even longer for the fuel vendor to recover their investment. With the projected lifetimes of the current generation of nuclear power plants large scale investment by the fuel vendors is difficult to justify. Specific EATF enhancements considered by the AREVA team were; Improved performance in DB and BDB conditions; Reduced release to the environment in a catastrophic accident; Improved performance during normal operating conditions; Improved performance if US reactors start to load follow; Equal or improved economics of the fuel; and Improvements to the fuel behavior to support future transportation and storage of the used nuclear fuel (UNF). In pursuit of the above enhancements, EATF technology concepts that our team considered were; Additives to the fuel pellets which included; Chromia doping to increase fission gas retention. Chromia doping has the potential to improve load following characteristics, improve performance of the fuel pellet during clad failure, and potentially lock up cesium into the fuel matrix; Silicon Carbide (SiC) Fibers to improve thermal heat transfer in normal operating conditions which also improves margin in accident conditions and the potential to lock up iodine into the fuel matrix; Nano-diamond particles to enhance thermal conductivity; Coatings on the fuel cladding; and Nine coatings on the existing Zircaloy cladding to increase coping time and reduce clad oxidation and hydrogen generation during accident conditions, as well as reduce hydrogen pickup and mitigate hydride reorientation in the cladding. To facilitate the development process AREVA adopted a formal “Gate Review Process” (GR) that was used to review results and focus resources onto promising technologies to reduce costs and identify the technologies that would potentially be carried forward to LFAs within a 10 year period. During the initial discovery phase of the project AREVA took the decision to be relatively hands off and allow our university and National Laboratory partners to be free thinking and consider options that would not be constrained by preconceived ideas from the fuel vendor. To counter this and to keep the partners focused, the GR process was utilized. During this GR process each of the team members presented their findings to a board made up of technical experts from utilities, fuel manufacturing experts, fuel technical experts, and fuel research and development (R&D) experts. During the initial 2 years of the project there were several major accomplishments. These accomplishments, along with the implications for successfully implementing EATF, are; The experimental spark plasma sintering process (SPS) process was successfully used to produce fuel pellets containing either 10% SiC whiskers or nano-diamond particles. The ability to use this process enables the thermal margin enhancements of the fuel additives to be realized. Without the SPS process, the conventional process cannot support adding pellet additives in the required quantities; Coatings of Ti2AlC were successfully applied to Zircaloy-4 cladding. Testing of Ti2AlC coatings at Loss of Cooling Accident (LOCA) conditions showed reduced cladding oxidation compared to present un-coated Zircaloy-4 cladding. This achievement allows the presently used cladding system to be retained so that the 10 year schedule can be met. Having to implement a new cladding material will extend the development schedule beyond 10 years; Several documents were produced to support future development, testing, and licensing of EATF, including a design requirements traceability matrix, a draft business plan, a draft test plan, a draft regulatory plan, and the acceptance criteria for lead fuel assembly insertion into a commercial reactor. This preparatory work lays the foundation for ensuring the future development plans address all the areas required to test, license, and manufacture the new EATF; and In addition, the high velocity oxy-fuel and electrophoretic deposition (EPD) coating application processes were dropped from further consideration due to their inability to meet manufacturing criteria. This allows the resources to be focused on the most promising EATF concepts identified. Future development opportunities that were identified during this work include; The use of SiC or diamond requires that a new pellet production technique (Spark Plasma Sintering), be developed. This entails investment in developing, proving and implementing a new commercial pellet production process. Development of the process to apply thinner coatings is required; Coatings cannot be too “thick” or they will displace a significant volume of water in the core resulting in reduced thermal hydraulic characteristics; Application of the coating at high temperature can affect the Zircaloy substrate. This will require the development and implementation of a new cladding coating manufacturing process; and Replace the Cold Spray (CS) cladding coating application with the Physical Vapor Deposition (PVD) process to eliminate duplication of work and provide greater control over coating thicknesses. This can result in a reduction in the final cycle economic penalty of coatings.« less
NASA Astrophysics Data System (ADS)
Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.
2016-09-01
The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.
Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)
NASA Technical Reports Server (NTRS)
McLaughlin, Russell
2013-01-01
NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations manuals) necessary for KSC hydrogen system experts to approve use of the HFCML unit, including initiating the environmental checklist (i.e. exterior lighting waiver due to sea turtles), and development of operations and maintenance instructions. TEERM worked with SNL to establish a bailment agreement for KSC to utilize a Beta unit as part of normal Center Operations for a period of twelve months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut N; Brown, Nicholas R; Terrani, Kurt A
2017-01-01
This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of bothmore » accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.« less
New Technologies for Reliable, Low-Cost In Situ Resource Utilization
NASA Astrophysics Data System (ADS)
Ramohalli, Kumar
1998-01-01
New technologies can dramatically alter overall mission feasibility, architecture, window-of-opportunity, and science return. In the specific context of planetary exploration/development, several new technologies have been recently developed. It is significant that every one of these new technologies won a NASA NTR award in 1997-1998. In the area of low-cost space access and planetary transportation, hybrids are discussed. Whether we carry all of the fuel and oxidizer from Earth, or we make some or all of it in situ, mass advantages are shown through calculations. The hybrisol concept, where a solid fuel is cast over a state-of-the-art solid propellant, is introduced as a further advance in these ideas,. Thus, the motor operates as a controllable, high Isp rocket initially, and transitions to a high-thrust rocket after ascent, at which time the empty oxidizer tank is jettisoned. Again, calculations show significant advantages. In the area of efficient energy use for various mechanical actuations and robotic movements, muscle wires are introduced. Not only do we present detailed systems-level schemes, but we also present results from a hardware mechanism that has seen more than 18,000 cycles of operation. Recognizing that power is the real issue in planetary exploration/ development, the concept of LORPEX is introduced as a means of converting low-level energy accumulation into sudden bursts of power that can give factors of millions (in power magnification) in the process; this robot employs a low-power In Situ Resource Utilization (ISRU) unit to accumulate ISRU-generated fuel and oxidizer to be consumed at a rapid rate, chemically in an engine. Drilling, hopping, jumping, and ascent, or even return to Earth, are possible. Again, the hardware has been built and initial systems checkout demonstrated. Long-duration exploration and long-distance travel are made possible through aerobots, as is well known for planets with an atmosphere. However, power has again been a limiting factor. With our new concept of PV-enhanced aerobots, the aerobot surface is covered with ultra-lightweight photovoltaic cells that generate power. The power is used for buoyancy enhancement, communication, and science instruments In the area of fuel/oxidizer generation, a new concept is introduced that avoids the fragile solid oxide electrolyzers (SOXE) and Sabatier reactors (that need H). The new concept of MIMOCE is naturally suited for the local atmosphere, operates at a significantly lower temperature (<400? C), and has no troublesome seals or electrodes with bonding problems.
Evidence of fuels management and fire weather influencing fire severity in an extreme fire event
Lydersen, Jamie M; Collins, Brandon M.; Brooks, Matthew L.; Matchett, John R.; Shive, Kristen L.; Povak, Nicholas A.; Kane, Van R.; Smith, Douglas F.
2017-01-01
Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate severity wildfire reduced the prevalence of high severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. Proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high fire severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience.
Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area
Michele Salis; Maurizio Laconi; Alan A. Ager; Fermin J. Alcasena; Bachisio Arca; Olga Lozano; Ana Fernandes de Oliveira; Donatella Spano
2016-01-01
The goal of this work is to evaluate by a modeling approach the effectiveness of alternative fuel treatment strategies to reduce potential losses from wildfires in Mediterranean areas. We compared strategic fuel treatments located near specific human values vs random locations, and treated 3, 9 and 15% of a 68,000 ha study area located in Sardinia, Italy. The...
NASA Astrophysics Data System (ADS)
Pistner, C.; Liebert, W.; Fujara, F.
2006-06-01
Inert matrix fuels (IMF) with plutonium may play a significant role to dispose of stockpiles of separated plutonium from military or civilian origin. For reasons of reactivity control of such fuels, burnable poisons (BP) will have to be used. The impact of different possible BP candidates (B, Eu, Er and Gd) on the achievable burnup as well as on safety and non-proliferation aspects of IMF are analyzed. To this end, cell burnup calculations have been performed and burnup dependent reactivity coefficients (boron worth, fuel temperature and moderator void coefficient) were calculated. All BP candidates were analyzed for one initial BP concentration and a range of different initial plutonium-concentrations (0.4-1.0 g cm-3) for reactor-grade plutonium isotopic composition as well as for weapon-grade plutonium. For the two most promising BP candidates (Er and Gd), a range of different BP concentrations was investigated to study the impact of BP concentration on fuel burnup. A set of reference fuels was identified to compare the performance of uranium-fuels, MOX and IMF with respect to (1) the fraction of initial plutonium being burned, (2) the remaining absolute plutonium concentration in the spent fuel and (3) the shift in the isotopic composition of the remaining plutonium leading to differences in the heat and neutron rate produced. In the case of IMF, the remaining Pu in spent fuel is unattractive for a would be proliferator. This underlines the attractiveness of an IMF approach for disposal of Pu from a non-proliferation perspective.
DNS Study of the Ignition of n-Heptane Fuel Spray under HCCI Conditions
NASA Astrophysics Data System (ADS)
Wang, Yunliang; Rutland, Christopher J.
2004-11-01
Direct numerical simulations are carried out to investigate the mixing and auto-ignition processes of n-heptane fuel spray in a turbulent field using a skeletal chemistry mechanism with 44 species and 112 reactions. For the solution of the carrier gas fluid, we use the Eulerian method, while for the fuel spray, the Lagrangian method is used. We use an eighth-order finite difference scheme to calculate spacial derivatives and a fourth-order Runge-Kutta scheme for the time integration. The initial gas temperature is 926 K and the initial gas pressure is 30 atmospheres. The initial global equivalence ratio based on the fuel concentration is around 0.4. The initial droplet diameter is 60 macrons and the droplet temperature is 300 K. Evolutions of averaged temperature, species mass fraction, heat release and reaction rate are presented. Contours of temperature and species mass fractions are presented. The objective is to understand the mechanism of ignition under Homogeneous Charged Compression Ignition (HCCI) conditions, aiming at providing some useful information of HCCI combustion, which is one of the critical issues to be resolved.
40 CFR 86.513 - Fuel and engine lubricant specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513 Fuel and engine lubricant... of § 86.513—Gasoline Test Fuel Specifications Item Value Procedure 1 Distillation Range: 1. Initial... of § 86.513—Natural Gas Test Fuel Specifications Item Value 1 Methane, CH4 Minimum, 89.0 mole percent...
40 CFR 86.1321-94 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... to be used for the analysis of natural gas-fueled vehicle hydrocarbon samples, the methane response... following initial and periodic calibration. The HFID used with petroleum-fueled, natural gas-fueled and liquefied petroleum gas-fueled diesel engines shall be operated to a set point ±10 °F (±5.5 °C) between 365...
40 CFR 86.1321-94 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to be used for the analysis of natural gas-fueled vehicle hydrocarbon samples, the methane response... following initial and periodic calibration. The HFID used with petroleum-fueled, natural gas-fueled and liquefied petroleum gas-fueled diesel engines shall be operated to a set point ±10 °F (±5.5 °C) between 365...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John T; Holladay, John; Wagner, Robert
The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners withmore » increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.; ...
2018-03-17
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
NASA Technical Reports Server (NTRS)
Prok, G. M.; Seng, G. T.
1980-01-01
Characterization data and a hydrocarbon compositional analysis are presented for a research test fuel designated as an experimental referee broadened-specification aviation turbine fuel. This research fuel, which is a special blend of kerosene and hydrotreated catalytic gas oil, is a hypothetical representation of a future fuel should it become necessary to broaden current kerojet specifications. It is used as a reference fuel in research investigations into the effects of fuel property variations on the performance and durability of jet aircraft components, including combustors and fuel systems.
I.M. Meadows; D.C. Zwart; S.N. Jeffers; T.A. Waldrop; W.C. Bridges
2011-01-01
The National Fire and Fire Surrogate Study was initiated to study the effects of fuel reduction treatments on forest ecosystems. Four fuel reduction treatments were applied to three sites in a southern Appalachian Mountain forest in western North Carolina: prescribed burning, mechanical fuel reduction, mechanical fuel reduction followed by prescribed burning, and a non...
40 CFR 63.7510 - What are my initial compliance requirements and by what date must I conduct them?
Code of Federal Regulations, 2011 CFR
2011-07-01
... subpart, conducting a fuel analysis for each type of fuel burned in your boiler or process heater... sources that burn a single type of fuel, you are exempted from the compliance requirements of conducting a fuel analysis for each type of fuel burned in your boiler or process heater according to § 63.7521 and...
40 CFR 63.7510 - What are my initial compliance requirements and by what date must I conduct them?
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart, conducting a fuel analysis for each type of fuel burned in your boiler or process heater... sources that burn a single type of fuel, you are exempted from the compliance requirements of conducting a fuel analysis for each type of fuel burned in your boiler or process heater according to § 63.7521 and...
NASA Astrophysics Data System (ADS)
Noirot, J.; Lamontagne, J.; Nakae, N.; Kitagawa, T.; Kosaka, Y.; Tverberg, T.
2013-11-01
A UO2 fuel with a heterogeneous distribution of 235U was irradiated up to a high burn-up in the Halden Boiling Water Reactor (HBWR). The last 100 days of irradiation were performed with an increased level of linear power. The effect of the heterogeneous fissile isotope distribution on the formation of the HBS was studied free of the possible influence of Pu which exists in heterogeneous MOX fuels. The HBS formed in 235U-rich agglomerates and its main characteristics were very similar to those of the HBS formed in Pu-rich agglomerates of heterogeneous MOX fuels. The maximum local contents of Nd and Xe before HBS formation were studied in this fuel. In addition to a Pu effect that promotes the HBS phenomenon, comparison with previous results for heterogeneous MOX fuels showed that the local fission product concentration was not the only parameter that has to be taken into consideration. It appears that the local actinide depletion by fission and/or the energy locally deposited through electronic interactions in the fission fragment recoils also have an effect on the HBS formation threshold. Moreover, a major release of fission gases from the peripheral 235U-rich agglomerates of HBS bubbles and a Cs radial movement are also evidenced in this heterogeneous UO2. Cs deposits on the peripheral grain boundaries, including the HBS grain boundaries, are considered to reveal the release paths. SUP>235U-rich agglomerates, SUP>235U-poor areas, an intermediate phase with intermediate 235U concentrations. Short fuel rods were fabricated with these pellets. The main characteristics of these fuel rods are shown in Table 1.These rods were irradiated to high burn-ups in the IFA-609/626 of the HBWR and then one was irradiated in the IFA-702 for 100 days. Fig. 2 shows the irradiation history of this fuel. The final average burn-up of the rod was 69 GWd/tU. Due to the flux differences along the rod, however, the average burn-up of the cross section examined was 63 GWd/tU. This fuel experienced high linear powers during the first year of irradiation, but at the end of the IFA-609/626 period, the average linear power of the rod was around 12 kW/m. In the IFA-702, the power was gradually increased over 7 days from 12 kW/m to 22.5 kW/m before it was decreased again to reach ˜19 kW/m at the end of the 100 days forming this part of the irradiation. A LEICA (DM RXA2) optical microscope. A shielded electronic microprobe (EPMA) SX-100R by CAMECA. A shielded scanning electron microscope (SEM): the Philips XL30. Image acquisitions were performed using the ADDA "SIS" system with the AnalySIS software for image analysis. A shielded secondary ion mass spectrometer (SIMS): the CAMECA IMS 6f was capable of analysing the same samples as the SEM and EPMA [16-22]. In the central part of the pellet for all three phases, Xe precipitated into bubbles with very little Xe remaining outside the bubbles. Some Xe-filled bubbles were detected under the surface in this area. They appear as bright spots. Around mid-radius on the periphery of the 235U-poor areas and in the intermediate phase, Xe was depleted on the periphery of the grains. This depletion was not associated with Xe-filled bubbles that would be detected under the polished surface. Moreover, no large intergranular open bubbles were visible. Therefore, this missing gas must have been released. In the 235U-rich agglomerates all over the section, Xe precipitated into bubbles with very little Xe remaining outside the bubbles. The Xe quantitative analyses through 235U-rich agglomerates on the pellet periphery (Fig. 9) confirmed the low quantity of Xe remaining outside the bubbles. This Xe content was around 0.1 wt%. Fig. 10 shows the Xe and Nd EPMA quantitative measurements along a radius of the cross section. In this figure and in Fig. 9, the weight percentage scales were set so that the two profiles would be almost identical without Xe release or precipitation. Along the Xe axis, the Nd profile can be considered as the local Xe production. Fig. 10 shows that the Xe measurement all through the central part is low except for a few points corresponding to unopened but close to the polished surface and detected by EPMA. These points correspond to the bright spots detected in the central part in Fig. 8. High concentrations were detected locally all over the radius on the Nd profile. They correspond to the 235U-rich agglomerates or their surroundings. Outside the central part, these high Nd concentrations correspond to low Xe concentrations, consistent with the maps in Fig. 8 and the detailed analyses across large 235U-rich agglomerates (Fig. 9).Fig. 11 shows a set of Xe (wt%) and (145Nd + 146Nd)/heavy metal radial profiles both acquired by SIMS. Three profiles are show for each set: one in the 235U-rich agglomerates, one in the 235U-poor areas and one in the intermediate phase. The three phases are not homogeneous themselves. This induces differences between (145Nd + 146Nd)/HM SIMS measurement points of a given phase. The (145Nd + 146Nd)/HM results are a reference for the Xe measurements, giving an estimation of the relative Xe local production. The (145Nd + 146Nd)/HM was high in the 235U-rich agglomerates, lower in the intermediate phase and even lower in the 235U-poor areas. Differences similar to those obtained herein between the phases would have been found in the Xe measurements if no release had occurred in any of those phases. The Xe (wt%) results show that this is not the case. The Xe measurements were quite similar in the intermediate phase and in the 235U-poor areas; they would have been higher in the intermediate phase if no release had occurred. The Xe measurements in the 235U-rich agglomerates were very low and lower than in the two other phases. For the 235U-rich agglomerates, there was a very big difference, across the entire radius, between the Xe measured and the Xe local production.In the SIMS Xe measurements, local depth profiles show peaks on a base line [19]. The base line corresponds to the solid solution Xe and to the nano-bubbles. The peaks correspond to Xe in larger bubbles opened by ion beam fuel sputtering. The SIMS total values correspond to the Xe outside these bubbles plus the Xe trapped in these bubbles.Fig. 12 shows the total Xe SIMS results (already shown in Fig. 11) together with the base line measurements for each measurement point and in separate graphs for each phase. The Xe EPMA quantitative measurements used as a background for these three graphs are the same as those in Fig. 10 and are the same for the three graphs, without any phase distinction. The SIMS Xe relative measurements were calibrated through a correspondence between the SIMS base line results and the EPMA measurements [20]. As expected, the SIMS base line profile was consistent with the EPMA all along the profile for each corresponding phase. For example, the SIMS base line in the 235U-rich agglomerates corresponds to the low EPMA measurement points of the Xe in this zone, i.e. the points of the EPMA profile in the 235U-rich agglomerates. By way of comparison between the Xe and the Nd measurements (the latter being rescaled to be representative of the creation level of Xe), Fig. 11 made it possible to identify two main parts on the Xe SIMS radius: The central part 0R to ˜0.5R: In the intermediate phase and the 235U-poor areas, the SIMS total was used to identify this part as a release area. The average fraction of gas measured in the bubbles (the ratio between the gas in the bubbles and the total measurement) was between 60% and 90%. The Xe content outside the bubbles was very low. In the 235U-rich agglomerates, the SIMS total represents only a small fraction of the produced Xe, which means that a large fraction of the Xe is released or not detected by SIMS due to the large size of some agglomerate bubbles compared with the volume of the crater analysed. sim;0.5R to ˜1R: The 235U-poor areas are not release areas. The fraction of gas in bubbles measured in these areas remained low, ˜5%. The intermediate phase is a release area with moderate release. The average fraction of gas measured in the bubbles was around 20%. In the 235U-rich agglomerates, the Xe SIMS total was very low. This part is a release area. Sharp transitions between initial microstructure and the HBS, often inside one grain. Increase in the resulting grain size with increasing distance from the pellet periphery. The grain sizes are in fact consistent with the MOX measurements [2]. Increase in the bubble size with the increasing distance from the pellet periphery, consistent with the MOX measurements. Smaller bubbles tend to be found in the peripheral part of the 235U-rich agglomerates rather than in their central part. Sharp transition, around 0.5R, between the peripheral area where the conventional form of HBS forms in the 235U-rich agglomerates and the central part where much larger bubbles form and where the grain size is also clearly larger. Xe concentration of 0.1 wt% outside the bubbles in the HBS areas is consistent with the [2] MOX measurements at equivalent local burn-ups. The heterogeneous MOX fuels examinations have firmly established that the HBS can extend outside the Pu-rich agglomerates due to the implantation of fission products around these agglomerates. Similarly, it has been shown that the small Pu-rich agglomerates can remain with the initial microstructure even if there is a similar actual local burn-up, a large rate of fission products being implanted outside the agglomerates themselves so that the local fission product concentration remains low.In this 235U heterogeneous UO2, the Xe and Nd concentration levels reached at the HBS formation limit ranged between 0.8 wt% and 1.1 wt% for Xe and between 0.63 wt% and 0.83 wt% for Nd. These ranges are similar to what was reported in [23] for the UO2 rim. These limits are, however, slightly higher than those found for Pu-rich agglomerates in heterogeneous MOX fuels in [2] or in [24]. Nonetheless, they are clearly lower than the concentrations reached without HBS in the special Pu-poor spots in [2]. In these spots, UO2 particles in heterogeneous MOX were really close or even surrounded by Pu-rich areas. As a result, their fission product content, due to recoil, was almost the same as that in the surrounding Pu-rich agglomerates themselves despite a very low actual local burn-up. In these special UO2 spots in MOX fuel, 1.4 wt% was reached for Xe and no HBS formed.If these high Xe concentrations without HBS in the special spots in [2] were made possible by the very low Pu local concentration only, very high Xe concentrations should have been common around the heterogeneous UO2 fuel 235U-rich agglomerates, since the Pu level was low everywhere in this fuel. This is not what was observed.Even if this effect due to a high fission product level reached without the formation of a HBS (as reported in [2] for heterogeneous MOX fuels in the special spots) is partially due to the very low local Pu level, it does not seem to be the only reason. It also seems to be partly due to the very low level of actual fissions occurring there. Between a rich agglomerate and such a highly implanted area there is: The same local fission product build-up and associated damage (due to cascades from the nuclei interactions during the last part of the fission fragment recoil). A large difference in the actinide isotope depletion to the extent that a difference in chemical composition exists between the two. A difference in the electronic excitation level at the beginning of the fission fragment recoil, higher in Pu agglomerates and in 235U-rich agglomerates than in the low fissile content areas, even surrounded by rich areas. The last two points may have an effect on the formation of a HBS though this paper cannot say which one is the most significant.The highest levels reached for Xe and Nd without HBS in the 235U heterogeneous fuel are very likely to correspond to places where the initial 235U content was particularly low but where fission recoil led to these high levels. The maximum concentrations of fission products reached before the formation of a HBS in the 235U heterogeneous fuel are lower than for the heterogeneous MOX special Pu-poor spots. This is most certainly due to the local 235U initial concentration in the 235U-poor areas which is nonetheless high when compared with the initial Pu concentrations in the Pu-poor areas in the MOX fuel. Consequently, there are more fission reactions there in the heterogeneous UO2 fuel than in the MOX fuel.This fission and/or fission spike effect has in fact little impact on the overall fuel behaviour, be it homogeneous or heterogeneous, but it has to be taken into account in the separate-effect experiments where unirradiated UO2 is submitted to ion irradiation to simulate the irradiation effects [9,25-30]. The depletion of the actinide isotopes cannot be simulated in these experiments. The IFA-702 re-irradiation, with the high power during the last period of the irradiation most certainly having played a role. The other major difference between this fuel was irradiated under BWR conditions, whereas those used in [2] were all PWR fuels. The images of the IFA-702 heterogeneous UO2 fuel on the periphery show that an internal zirconia layer was formed during the irradiation, which is a sign of gap closure under hot conditions, though a thin gap was still measured at room temperature. Therefore, the stress field in the pellet of this fuel must have been significantly different from that of the fuel used in [2]. The resulting release is all the more interesting since the release path is more or less revealed by the Cs deposits. This Cs is released from the hot central part of the pellet and is not only in the fuel-cladding gap and along the obvious radial cracks, but also in: All the grain boundaries around those radial cracks. The HBS 235U-rich agglomerates around those radial cracks. Like for Xe, the general trend for Cs was a release from the 235U peripheral agglomerates. The higher Cs measurement in the 235U-rich agglomerates close to the radial cracks results from both this release and the deposition of the Cs released from the hot central part.This singular release of Xe from the HBS bubbles of the 235U-rich agglomerates on the fuel periphery is all the more surprising that the Pu-rich agglomerates of the MIMAS MOX fuel irradiated under the same conditions [15] retained their fission gases in these areas. We found no definitive reason for that difference. the fission product implantation level has an effect. the local Pu content has also an effect. the actual local burn-up has an effect. This effect may be linked to fission through the local depletion of the fissile isotopes which changes the local chemical composition, as well as to the higher energy deposited there by electronic interactions at the beginning of the fission fragment recoils when compared with implanted areas with a low actual burn-up. Moreover, the major release of fission gases from the peripheral 235U-rich agglomerate HBS bubbles was evidenced in this heterogeneous UO2 fuel.The radial movement of Cs from the central part of the pellet towards its periphery was shown. This involved a deposition at the grain boundaries, including the HBS ones, around the radial cracks in the periphery. This showed the intergranular paths existing for the release of fission gases and Cs all through the fuel periphery. Grain Equivalent Circular Diameter (ECD) for which half of the surface is made of smaller grains and half of larger grains
Research Staff | Hydrogen and Fuel Cells | NREL
laboratory's research areas contribute to this work. Research Areas and Technical Leads NREL's hydrogen and fuel cell research and development is organized into eight research areas. Technical leaders work
Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru
2010-02-15
An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.
High specific power, direct methanol fuel cell stack
Ramsey, John C [Los Alamos, NM; Wilson, Mahlon S [Los Alamos, NM
2007-05-08
The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, M.; Mai, T.; Newes, E.
2013-03-01
The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, M.; Mai, T.; Newes, E.
2013-03-01
The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
Power System Trade Studies for the Lunar Surface Access Module
NASA Technical Reports Server (NTRS)
Kohout, Lisa, L.
2008-01-01
A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power.
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
This page summaries the final rule determining that the Atlanta metro area is no longer a federal reformulated gasoline (RFG) covered area and there is no requirement to use federal RFG in the Atlanta area.
Use of the Hugoniot elastic limit in laser shockwave experiments to relate velocity measurements
NASA Astrophysics Data System (ADS)
Smith, James A.; Lacy, Jeffrey M.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin
2016-02-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems.
Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth
NASA Technical Reports Server (NTRS)
Kim, Inchul; Sirignano, William A.
1999-01-01
This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.
Advanced Fuel Cycle Technology: Special Session in Honor of Dr. Michael Lineberry
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. Wachs; N. Woolstenhulme
2014-06-01
The US DOE recently initiated an effort to develop accident tolerant fuel designs for potential use in commercial power reactors. Evaluation of various fuel design concepts will require a broad array of testing that will include performance attributes at both steady state and transient irradiation conditions. The first stage of the transient testing program is intended to establish the relative performance limits of each proposed concept and to support development of first-draft fuel performance models. It is anticipated that this data can subsequently be used as the basis for larger scale qualification testing. This initial stage of the testing programmore » is outlined in this paper.« less
Estimating Fuel Bed Loadings in Masticated Areas
Sharon Hood; Ros Wu
2006-01-01
Masticated fuel treatments that chop small trees, shrubs, and dead woody material into smaller pieces to reduce fuel bed depth are used increasingly as a mechanical means to treat fuels. Fuel loading information is important to monitor changes in fuels. The commonly used planar intercept method however, may not correctly estimate fuel loadings because masticated fuels...
Responding effectively to fuel spills at airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, L.E.
1991-01-01
Fuel spills are among the most frequent causes of emergency calls faced by airport firefighters. Most fuel spills are a result of human error and careless procedures. They always constitute an emergency and require fast, efficient action to prevent disaster. A fuel spill is an accidental release of fuel, in this case, from an aircraft fuel system, refueling vehicle or refueling system. A normal release of a few drops of fuel associated with a disconnection or other regular fueling operations should not be classified as a fuel spill. However, anytime fuel must be cleaned up and removed from an area,more » a fuel spill has occurred. Volatile fuels pose significant threats to people, equipment, facilities and cargo when they are released. Anyone near a spill, including ramp workers, fueling personnel and aircraft occupants, are in danger if the fuel ignites. Buildings and equipment in a spill area, such as terminals, hangars, aircraft, fuel trucks and service equipment also are at risk. An often neglected point is that aircraft cargo also is threatened by fuel spills.« less
2008-06-25
CAPE CANAVERAL, Fla. – This photo shows the area within NASA's Kennedy Space Center where a solar photovoltaic power generation system will be built as the result of an agreement between NASA and Florida Power & Light. The agreement is part of a new initiative that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The major facility will produce an estimated 10 megawatts of electrical power, which can serve roughly 3,000 homes. A separate one-megawatt solar power facility will support the electrical needs of the center.
2008-06-25
CAPE CANAVERAL, Fla. – This map shows the area within NASA's Kennedy Space Center where one of the two solar photovoltaic power generation systems will be built as the result of an agreement between NASA and Florida Power & Light. The agreement is part of a new initiative that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The major facility will produce an estimated 10 megawatts of electrical power, which can serve roughly 3,000 homes. A separate one-megawatt solar power facility will support the electrical needs of the center.
2008-06-25
CAPE CANAVERAL, Fla. – This map shows the area within NASA's Kennedy Space Center where a solar photovoltaic power generation system will be built as the result of an agreement between NASA and Florida Power & Light. The agreement is part of a new initiative that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The major facility will produce an estimated 10 megawatts of electrical power, which can serve roughly 3,000 homes. A separate one-megawatt solar power facility will support the electrical needs of the center.
2008-06-25
CAPE CANAVERAL, Fla. – This photo shows the area within NASA's Kennedy Space Center where a solar photovoltaic power generation system will be built as the result of an agreement between NASA and Florida Power & Light. The agreement is part of a new initiative that will cut reliance on fossil fuels and improve the environment by reducing greenhouse gas emissions. The major facility will produce an estimated 10 megawatts of electrical power, which can serve roughly 3,000 homes. A separate one-megawatt solar power facility will support the electrical needs of the center.
Catalytically assisted combustion of Aquanol in demonstration vehicles
DOT National Transportation Integrated Search
2001-01-01
Aqueous fuels have the potential for lower emissions and higher engine efficiency than can be experienced with gasoline or diesel fuels. Past attempts to burn aqueous fuels in over-the-road vehicles have been unsuccessful due to difficulties in initi...
Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trammell, Michael P; Jolly, Brian C; Miller, James Henry
ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.
Ignitability of Diesel Fuel with an Inclusion of Ultrafine Carbon Particles
NASA Astrophysics Data System (ADS)
Krivosheev, P. N.; Leshchevich, V. V.; Shimchenko, S. Yu.; Shushkov, S. V.; Penyazkov, O. G.
2017-11-01
Nanosize carbon fuel additions were synthesized by the action of an electric discharge on a diesel fuel. Depending on the discharge regime, variously shaped carbon particles, including planar graphitized ones, were formed in the fuel. Ignitability of the produced samples was assessed by the method of initiation of a foamed fuel sample by a lowcurrent electric arc. The modified fuel showed the improvement of the ignition characteristics in the presence of a nanodispersed solid phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindell, M.A.; Grape, S.; Haekansson, A.
The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakestmore » barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)« less
EAST/WEST TRUCK BAY AREA OF TRANSFER BASIN CORRIDOR OF FUEL ...
EAST/WEST TRUCK BAY AREA OF TRANSFER BASIN CORRIDOR OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHWEST. INL PHOTO NUMBER HD-54-19-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
Dugger, Gordon L
1952-01-01
Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.
40 CFR 63.7515 - When must I conduct subsequent performance tests, fuel analyses, or tune-ups?
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance tests, fuel analyses, or tune-ups? 63.7515 Section 63.7515 Protection of Environment ENVIRONMENTAL... Compliance Requirements § 63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune... and the associated initial fuel analyses within 90 days after the completion of the performance tests...
40 CFR 63.7515 - When must I conduct subsequent performance tests, fuel analyses, or tune-ups?
Code of Federal Regulations, 2012 CFR
2012-07-01
... performance tests, fuel analyses, or tune-ups? 63.7515 Section 63.7515 Protection of Environment ENVIRONMENTAL... Compliance Requirements § 63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune... and the associated initial fuel analyses within 90 days after the completion of the performance tests...
Alternative Fuels Data Center: Blender Pump Dispensers
... Blender Pump Dispensers Updated April 2, 2012 Federal and local initiatives to increase the use of ethanol choose the blend of fuel they want to use based on price, their vehicle's fuel economy, and other factors blends of those two fuels. Many conventional stations today use blender pump dispensers to generate
Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less
Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
2017-03-01
Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less
Pulse combustor with controllable oscillations
Richards, George A.; Welter, Michael J.; Morris, Gary J.
1992-01-01
A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.
NASA Technical Reports Server (NTRS)
Mularz, Edward J.; Sockol, Peter M.
1987-01-01
Future aerospace propulsion concepts involve the combination of liquid or gaseous fuels in a highly turbulent internal air stream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at Lewis to better understand chemical reacting flows with the long term goal of establishing these reliable computer codes. The approach to understanding chemical reacting flows is to look at separate simple parts of this complex phenomena as well as to study the full turbulent reacting flow process. As a result research on the fluid mechanics associated with chemical reacting flows was initiated. The chemistry of fuel-air combustion is also being studied. Finally, the phenomena of turbulence-combustion interaction is being investigated. This presentation will highlight research, both experimental and analytical, in each of these three major areas.
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.
2007-01-01
The objective of this study was to develop a variety of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) conceptual designs for two operationally useful missions (hurricane science and communications relay) and compare their performance and cost characteristics. Sixteen potential HALE UAV configurations were initially developed, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative (SR) propulsion systems. Through an Analysis of Alternatives (AoA) down select process, the two leading consumable fuel configurations (one each from the HTA and LTA alternatives) and an HTA SR configuration were selected for further analysis. Cost effectiveness analysis of the consumable fuel configurations revealed that simply maximizing vehicle endurance can lead to a sub-optimum system solution. An LTA concept with a hybrid propulsion system (solar arrays and a hydrogen-air proton exchange membrane fuel cell) was found to have the best mission performance; however, an HTA diesel-fueled wing-body-tail configuration emerged as the preferred consumable fuel concept because of the large size and technical risk of the LTA concept. The baseline missions could not be performed by even the best HTA SR concept. Mission and SR technology trade studies were conducted to enhance understanding of the potential capabilities of such a vehicle. With near-term technology SR-powered HTA vehicles are limited to operation in favorable solar conditions, such as the long days and short nights of summer at higher latitudes. Energy storage system specific energy and solar cell efficiency were found to be the key technology areas for enhancing HTA SR performance.
NASA Astrophysics Data System (ADS)
Park, J. H.; Hong, W.; Park, G.; Sung, K. S.; Lee, K. H.; Kim, Y. E.; Kim, J. K.; Choi, H. W.; Kim, G. D.; Woo, H. J.
2013-01-01
We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO2 (fossil fuel CO2) in the atmosphere. Regions assumed to be free of fossil fuel CO2 were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The Δ14C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO2 ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO2 in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO2 over total CO2 in atmosphere), 13.9 ± 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.
40 CFR 80.52 - Vehicle preconditioning.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...
40 CFR 80.52 - Vehicle preconditioning.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...
40 CFR 80.52 - Vehicle preconditioning.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...
40 CFR 80.52 - Vehicle preconditioning.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...
40 CFR 80.52 - Vehicle preconditioning.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Vehicle preconditioning. 80.52 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.52 Vehicle preconditioning. (a) Initial vehicle preconditioning and preconditioning between tests with different fuels shall be performed in...
Green Energy for the Battlefield
2007-12-01
Biodiesel, Ethanol, Natural Gas, Coal-Derived Liquid Fuels, Electricity , Greenhouse Gas, Emissions, Battlefield, Hybrid Vehicles 16. PRICE CODE 17...37 5. Electricity ............................................................................................38 C. CURRENT DOD RESEARCH AND...APPLICATIONS............................38 1. Coal-Derived Liquid Fuels – Assured Fuels Initiative ...................38 2. Electricity – Luke Air Force
Study of hybrid power system potential to power agricultural water pump in mountain area
NASA Astrophysics Data System (ADS)
Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham
2016-03-01
As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.
Coal to methanol feasiblity study: Beluga methanol project. Volume 4: Environmental
NASA Astrophysics Data System (ADS)
1981-09-01
The major environmental issues relevant to development of a coal gasification and methanol fuels production facility and related coal mining activities and transportation systems in the west Cook Inlet area, Alaska were assessed. An extensive review into existing information on the Beluga region of west Cook Inlet was conducted and updated with the findings of land resource projects. Specific field activities then were initiated to expand the environmental data base in areas relevant to this project where there was a paucity of information. Based on these findings the project was reviewed in detail to identify significant environmental issues and to outline the state and federal permit requirements to ensure that these element are an integral component of all subsequent project planning and management decisions.
Salis, Michele; Del Giudice, Liliana; Arca, Bachisio; Ager, Alan A; Alcasena-Urdiroz, Fermin; Lozano, Olga; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo
2018-04-15
Wildfire spread and behavior can be limited by fuel treatments, even if their effects can vary according to a number of factors including type, intensity, extension, and spatial arrangement. In this work, we simulated the response of key wildfire exposure metrics to variations in the percentage of treated area, treatment unit size, and spatial arrangement of fuel treatments under different wind intensities. The study was carried out in a fire-prone 625 km 2 agro-pastoral area mostly covered by herbaceous fuels, and located in Northern Sardinia, Italy. We constrained the selection of fuel treatment units to areas covered by specific herbaceous land use classes and low terrain slope (<10%). We treated 2%, 5% and 8% of the landscape area, and identified priority sites to locate the fuel treatment units for all treatment alternatives. The fuel treatment alternatives were designed create diverse mosaics of disconnected treatment units with different sizes (0.5-10 ha, LOW strategy; 10-25 ha, MED strategy; 25-50 ha, LAR strategy); in addition, treatment units in a 100-m buffer around the road network (ROAD strategy) were tested. We assessed pre- and post-treatment wildfire behavior by the Minimum Travel Time (MTT) fire spread algorithm. The simulations replicated a set of southwestern wind speed scenarios (16, 24 and 32 km h -1 ) and the driest fuel moisture conditions observed in the study area. Our results showed that fuel treatments implemented near the existing road network were significantly more efficient than the other alternatives, and this difference was amplified at the highest wind speed. Moreover, the largest treatment unit sizes were the most effective in containing wildfire growth. As expected, increasing the percentage of the landscape treated and reducing wind speed lowered fire exposure profiles for all fuel treatment alternatives, and this was observed at both the landscape scale and for highly valued resources. The methodology presented in this study can support the design and optimization of fuel management programs and policies in agro-pastoral areas of the Mediterranean Basin and herbaceous type landscapes elsewhere, where recurrent grassland fires pose a threat to rural communities, farms and infrastructures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multivariate analysis of gamma spectra to characterize used nuclear fuel
Coble, Jamie; Orton, Christopher; Schwantes, Jon
2017-01-17
The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less
Multivariate analysis of gamma spectra to characterize used nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie; Orton, Christopher; Schwantes, Jon
The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less
PIE on Safety-Tested AGR-1 Compact 5-1-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.
Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactormore » (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.« less
DOT National Transportation Integrated Search
2006-11-01
Its widely accepted that smooth roads provide greater driver comfort and satisfaction, decreased vehicle maintenance costs, and better fuel economy. Now thanks to a recently completed study, the affect of pavement smoothness on fuel efficiency has...
Alkaline static feed electrolyzer based oxygen generation system
NASA Technical Reports Server (NTRS)
Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.
1988-01-01
In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.
Gum and deposit formation from jet turbine and diesel fuels at 100/sup 0/C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, F.R.; Lan, B.Y.
1987-02-01
Rates of oxidation and gum formation for six hydrocarbons, three jet turbine fuels and three diesel fuels have been measured at 100/sup 0/C in the presence of t-Bu/sub 2/O/sub 2/ as initiator. Four of the six fuels oxidize faster at 100/sup 0/C than in previous work at 130/sup 0/C without initiator. For any single substrate, the amount of gum produced for the oxygen absorbed is similar at 100 and 130/sup 0/C, even with large changes in rates and t-Bu/sub 2/O/sub 2/ concentrations. In general, the pure hydrocarbons have long kinetic chains and give good yields of hydroperoxides.
Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal
2017-08-01
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
Investigation of ramp injectors for supersonic mixing enhancement
NASA Technical Reports Server (NTRS)
Haimovitch, Y.; Gartenberg, E.; Roberts, A. S., Jr.
1994-01-01
A comparative study of wall mounted swept ramp injectors fitted with injector nozzles of different shape has been conducted in a constant area duct to explore mixing enhancement techniques for scramjet combustors. Six different injector nozzle inserts, all having equal exit and throat areas, were tested to explore the interaction between the preconditioned fuel jet and the vortical flowfield produced by the ramp: circular nozzle (baseline), nozzle with three downstream facing steps, nozzle with four vortex generators, elliptical nozzle, tapered-slot nozzle, and trapezoidal nozzle. The main flow was air at Mach 2, and the fuel was simulated by air injected at Mach 1.63 or by helium injected at Mach 1.7. Pressure and temperature surveys, combined with Mie and Rayleigh scattering visualization, were used to investigate the flow field. The experiments were compared with three dimensional Navier-Stokes computations. The results indicate that the mixing process is dominated by the streamwise vorticity generated by the ramp, the injectors' inner geometry having a minor effect. It was also found that the injectant/air mixing in the far-field is nearly independent of the injector geometry, molecular weight of the injectant, and the initial convective Mach number.
Space Shuttle Main Engine High Pressure Fuel Turbopump Turbine Blade Cracking
NASA Technical Reports Server (NTRS)
Lee, Henry
1988-01-01
The analytical results from two-dimensional (2D) and three-dimensional (3D) finite element model investigations into the cracking of Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) first- and second-stage turbine blades are presented. Specifically, the initiation causes for transverse cracks on the pressure side of the firststage blade fir tree lobes and face/corner cracks on the downstream fir tree face of the second-state blade are evaluated. Because the blade material, MAR-M-246 Hf (DS), is highly susceptible to hydrogen embrittlement in the -100 F to 400 F thermal environment, a steady-state condition (full power level = 109 percent) rather than a start-up or shut-down transient was considered to be the most likely candidate for generating a high-strain state in the fir tree areas. Results of the analyses yielded strain levels on both first- and second-stage blade fir tree regions that are of a magnitude to cause hydrogen assisted low cycle fatigue cracking. Also evident from the analysis is that a positive margin against fir tree cracking exists for the planned design modifications, which include shot peening for both first- and second-stage blade fir tree areas.
Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P.; Splitter, Derek A.
The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less
Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine
Szybist, James P.; Splitter, Derek A.
2018-01-02
The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less
An Innovative Accident Tolerant LWR Fuel Rod Design Based on Uranium-Molybdenum Metal Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Robert O.; Bennett, Wendy D.; Henager, Charles H.
2016-09-12
The US Department of Energy is developing a uranium-molybdenum metal alloy Enhanced Accident Tolerant Fuel concept for Light Water Reactor applications that provides improved fuel performance during normal operation, anticipated operational occurrences, and postulated accidents. The high initial uranium atom density, the high thermal conductivity, and a low heat capacity permit a U-Mo-based fuel assembly to meet important design and safety requirements. These attributes also result in a fuel design that can satisfy increased fuel utilization demands and allow for improved accident tolerance in LWRs. This paper summarizes the results obtained from the on-going activities to; 1) evaluate the impactmore » of the U-10wt%Mo thermal properties on operational and accident safety margins, 2) produce a triple extrusion of stainless steel cladding/niobium liner/U-10Mo fuel rod specimen and 3) test the high temperature water corrosion of rodlet samples containing a drilled hole in the cladding. Characterization of the cladding and liner thickness uniformity, microstructural features of the U-Mo gamma phase, and the metallurgical bond between the component materials will be presented. The results from corrosion testing will be discussed which yield insights into the resistance to attack by water ingress during high temperature water exposure for the triple extruded samples containing a drilled hole. These preliminary evaluations find that the U-10Mo fuel design concept has many beneficial features that can meet or improve conventional LWR fuel performance requirements under normal operation, AOOs, and postulated accidents. The viability of a deployable U-Mo fuel design hinges on demonstrating that fabrication processes and alloying additions can produce acceptable irradiation stability during normal operation and accident conditions and controlled metal-water reaction rates in the unlikely event of a cladding perforation. In the area of enhanced accident tolerance, a key objective is to establish that the lower stored energy of the U-Mo fuel design can provide the emergency core cooling systems the opportunity to maintain the reactor core in a coolable geometry following an accident.« less
Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection
NASA Astrophysics Data System (ADS)
Pang, Bin
Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konyashov, Vadim V.; Krasnov, Alexander M.
Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. Anmore » approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)« less
Burning questions for managers: Fuels management practices in riparian areas
Kristen E. Meyer; Kathleen A. Dwire; Patricia A. Champ; Sandra E. Ryan; Gregg M. Riegel; Timothy A. Burton
2012-01-01
Vegetation treatment projects for fuel reduction in riparian areas can pose distinct challenges to resource managers. Riparian areas are protected by administrative regulations, many of which are largely custodial and restrict active management. Like uplands, however, riparian areas have been affected by fire suppression, land use, and multiple types of disturbance....
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Depot, Manchester, Washington; naval restricted area. 334.1244 Section 334.1244 Navigation and Navigable... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a... the military or naval authority shall enter the area without the permission of the enforcing agency or...
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Depot, Manchester, Washington; naval restricted area. 334.1244 Section 334.1244 Navigation and Navigable... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a... the military or naval authority shall enter the area without the permission of the enforcing agency or...
NASA Astrophysics Data System (ADS)
Williams, J.; Howerton, R.; Ramos, S.; Simpson, Z.; Weber, K.
2016-12-01
One of the most pronounced vegetation changes in recent history is the expansion of junipers (Juniperus spp.) throughout the intermountain west United States. These native species have expanded from their traditional fire-safe habitats into fire-dependent communities as a result of climatic fluctuations, grazing patterns, and wildfire suppression efforts. As junipers expand their range, they begin to dominate plant communities resulting in the recession of shrubs, grasses, and forbs. Land management agencies have a strong commitment to find areas that are vulnerable to juniper encroachment, so that these areas can be studied and more effectively managed. Aiding in this effort, this project used remote sensing to develop two tools that determine fire intensity on a per pixel basis and identify different phases of juniper encroachment, respectively. Landsat 8, representing land cover data was combined with topography information (slope and aspect) in a linear regression model that quantified fire intensity on a per pixel basis, identifying areas that would burn hotter and longer based on fuel type. The overall accuracy of the model was 86% with a kappa coefficient of 0.81. Visual validation using NAIP imagery in comparison with the fuel classification result showed good visual correlation of the fuel model with dense juniper stands. The second output of the project was an image/object based classification tool that uses multispectral imagery and supervised point classification to classify different vegetation types according to the spectral detail of the objects. The goal of the model is to improve phase identification of juniper stands. Initial visual verification with NAIP shows the model to be performing very satisfactorily but is dependent on the spatial resolution of the user fed input imagery. Furnishing land managers with these tools will assist in forecasting areas prone to juniper invasion based upon surrounding seedbanks, as well as, predict the ensuing intensity of fires should ignition occur.
Multi-criteria decision analysis for bioenergy in the Centre Region of Portugal
NASA Astrophysics Data System (ADS)
Esteves, T. C. J.; Cabral, P.; Ferreira, A. J. D.; Teixeira, J. C.
2012-04-01
With the consumption of fossil fuels, the resources essential to Man's survival are being rapidly contaminated. A sustainable future may be achieved by the use of renewable energies, allowing countries without non-renewable energy resources to guarantee energetic sovereignty. Using bioenergy may mean a steep reduction and/or elimination of the external dependency, enhancing the countries' capital and potentially reducing of the negative effects that outcome from the use of fossil fuels, such as loss of biodiversity, air, water, and soil pollution, … This work's main focus is to increase bioenergy use in the centre region of Portugal by allying R&D to facilitate determination of bioenergy availability and distribution throughout the study area.This analysis is essential, given that nowadays this knowledge is still very limited in the study area. Geographic Information Systems (GIS) was the main tool used to asses this study, due to its unseeingly ability to integrate various types of information (such as alphanumerical, statistical, geographical, …) and various sources of biomass (forest, agricultural, husbandry, municipal and industrial residues, shrublands, used vegetable oil and energy crops) to determine the bioenergy potential of the study area, as well as their spatial distribution. By allying GIS with multi-criteria decision analysis, the initial table-like information of difficult comprehension is transformed into tangible and easy to read results: both intermediate and final results of the created models will facilitate the decision making process. General results show that the major contributors for the bioenergy potential in the Centre Region of Portugal are forest residues, which are mostly located in the inner region of the study area. However, a more detailed analysis should be made to analyze the viability to use energy crops. As a main conclusion, we can say that, although this region may not use only this type of energy to be completely independent in terms of energy, it will certainly reduce the amount of consumed fossil fuels, leading to a substantial reduction of the importation of this product.
Explosion characteristics of LPG-air mixtures in closed vessels.
Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, D
2009-06-15
The experimental study of explosive combustion of LPG (liquefied petroleum gas)-air mixtures at ambient initial temperature was performed in two closed vessels with central ignition, at various total initial pressures within 0.3-1.3bar and various fuel/air ratios, within the flammability limits. The transient pressure-time records were used to determine several explosion characteristics of LPG-air: the peak explosion pressure, the explosion time (the time necessary to reach the peak pressure), the maximum rate of pressure rise and the severity factor. All explosion parameters are strongly dependent on initial pressure of fuel-air mixture and on fuel/air ratio. The explosion characteristics of LPG-air mixtures are discussed in comparison with data referring to the main components of LPG: propane and butane, obtained in identical conditions.
A correlation to estimate the velocity of convective currents in boilover.
Ferrero, Fabio; Kozanoglu, Bulent; Arnaldos, Josep
2007-05-08
The mathematical model proposed by Kozanoglu et al. [B. Kozanoglu, F. Ferrero, M. Muñoz, J. Arnaldos, J. Casal, Velocity of the convective currents in boilover, Chem. Eng. Sci. 61 (8) (2006) 2550-2556] for simulating heat transfer in hydrocarbon mixtures in the process that leads to boilover requires the initial value of the convective current's velocity through the fuel layer as an adjustable parameter. Here, a correlation for predicting this parameter based on the properties of the fuel (average ebullition temperature) and the initial thickness of the fuel layer is proposed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
... National Forest, Lookout Mountain Ranger District; Oregon; McKay Fuels and Vegetation Management Project... and vegetation management will be implemented in the McKay Fuels and Vegetation project area. [[Page... populations of noxious weeds are known to exist within the project area. There is a risk that management...
Fuel reduction management practices in riparian areas of the western USA
Katharine R. Stone; David S. Pilliod; Kathleen A. Dwire; Charles C. Rhoades; Sherry P. Wollrab; Michael K. Young
2010-01-01
Two decades of uncharacteristically severe wildfires have caused government and private land managers to actively reduce hazardous fuels to lessen wildfire severity in western forests, including riparian areas. Because riparian fuel treatments are a fairly new management strategy, we set out to document their frequency and extent on federal lands in the western U.S....
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results. Fourth Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The FCEBs in service at AC Transit are 40-foot, low-floor buses built by Van Hool with a hybrid electric propulsion system that includes a US Hybrid fuel cell power system and EnerDel lithium-based energy storage system. The buses began revenue service in May 2010.
Report on FY16 Low-dose Metal Fuel Irradiation and PIE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, Philip D.
2016-09-01
This report gives an overview of the efforts into the low-dose metal fuel irradiation and PIE as part of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) milestone M3FT-16OR020303031. The current status of the FCT and FCRP irradiation campaigns are given including a description of the materials that have been irradiated, analysis of the passive temperature monitors, and the initial PIE efforts of the fuel samples.
Neutronic study on conversion of SAFARI-1 to LEU silicide fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, G.; Pond, R.; Hanan, N.
1995-02-01
This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions.
Marine Fuel Choice For Ocean Going Vessels Within Emission Control Areas
2015-01-01
The U.S. Energy Information Administration (EIA) contracted with Leidos Corporation to analyze the impact on ocean-going vessel fuel usage of the International Convention for the Prevention of Pollution from Ships (MARPOL) emissions control areas in North America and the Caribbean. EIA plans to update the upcoming Annual Energy Outlook 2016 to include a new methodology for calculating the amount of fuel consumption by ocean-going vessels traveling though North American and Caribbean emissions control areas, including the impact of compliance strategies.
Kraus, Terry; Foster, Kevin
2014-08-01
The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout.
United States Air Force Summer Research Program - 1993. Volume 5B. Wright Laboratory
1993-12-01
31 Fuel Fuel Air LAir Air Air Fuel Fuel II 45 deg. downward injection 90 deg. radial injection 8 x 2 mm dia. holes 8x1mm di m holes la. Configuration...centerline. After some initial nonuniformities the profiles take a well known shape for a wall jet and the maximum in the mean velocity near the wall
2016-07-27
is a common requirement for aircraft, rockets , and hypersonic vehicles. The Aerospace Fuels Quality Test and Model Development (AFQTMoDev) project...was initiated to mature fuel quality assurance practices for rocket grade kerosene, thereby ensuring operational readiness of conventional and...and reliability, is a common requirement for aircraft, rockets , and hypersonic vehicles. The Aerospace Fuels Quality Test and Model Development
Code of Federal Regulations, 2010 CFR
2010-07-01
...) of this section. (i) You must determine the fuel type or fuel mixture that you could burn in your... for HCl, you must determine the fraction of the total heat input for each fuel type burned (Qi) based... of each fuel type burned (Ci). (iii) You must establish a maximum chlorine input level using Equation...
Opportunities and challenges for developing an oilseed to renewable jet fuel industry
USDA-ARS?s Scientific Manuscript database
Military and commercial aviation have expressed interest in using renewable aviation biofuels, with an initial goal of 1 billion gallons of drop-in aviation biofuels by 2018. While these fuels could come from many sources, hydrotreated renewable jet fuel (HRJ) from vegetable oils have been demonstra...
40 CFR 63.7520 - What stack tests and procedures must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial Compliance Requirements § 63.7520... representative operating load conditions while burning the type of fuel or mixture of fuels that has the highest... measured hydrogen chloride concentrations, and the measured mercury concentrations that result from the...
legislation dates back to the Clean Air Act of 1970, which created initiatives to reduce mobile sources of acts also include provisions related to alternative fuel vehicles (AFVs) and infrastructure. The Energy alternative fuel use and infrastructure development. The Energy Independence and Security Act of 2007 included
DOT National Transportation Integrated Search
2006-12-18
This study investigated the affect of pavement smoothness on fuel efficiency, specifically examining the miles per gallon in fuel savings for smooth versus rough pavement. The study found a 53% improvement in smoothness which resulted in over 2.4% im...
76 FR 13075 - Airworthiness Directives; Airbus Model A330-243F Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
.... * * * Data analysis confirmed a temporary fuel flow restriction and subsequent recovery, and indicated that also engine 1 experienced a temporary fuel flow restriction shortly after the initial event on engine 2... possibility for ice to temporarily restrict the fuel flow. * * * * * * The scenario of ice being shed and...
14 CFR 23.977 - Fuel tank outlet.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 23.977 Section 23.977...
14 CFR 23.977 - Fuel tank outlet.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 23.977 Section 23.977...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.977 - Fuel tank outlet.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 23.977 Section 23.977...
14 CFR 23.977 - Fuel tank outlet.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 23.977 Section 23.977...
14 CFR 23.977 - Fuel tank outlet.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... damage any fuel system component. (b) The clear area of each fuel tank outlet strainer must be at least... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 23.977 Section 23.977...
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.
1996-01-01
In 1993, fuel accounted for approximately 15 percent of an airline's expenses. Fuel consumption increases as fuel reserves increase because of the added weight to the aircraft. Calculating fuel reserves is a function of Federal Aviation Regulations, airline company policy, and factors that impact or are impacted by fuel usage enroute. This research studied how pilots and dispatchers determined the fuel needed for a flight and identified areas where improvements in methods may yield measurable fuel savings by (1) listing the uncertainties that contribute to adding contingency fuel, (2) obtaining the pilots' and dispatchers' perspective on how often each uncertainty occurred, and (3) obtaining pilots' and dispatchers' perspective on the fuel used for each occurrence. This study found that for the majority of the time, pilots felt that dispatchers included enough fuel. As for the uncertainties that flight crews and dispatchers account for, air traffic control accounts for 28% and weather uncertainties account for 58 percent. If improvements can be made in these two areas, a great potential exists to decrease the reserve required, and therefore, fuel usage without jeopardizing safety.
Large-area imager of hydrogen leaks in fuel cells using laser-induced breakdown spectroscopy.
Hori, M; Hayano, R S; Fukuta, M; Koyama, T; Nobusue, H; Tanaka, J
2009-10-01
We constructed a simple device, which utilized laser-induced breakdown spectroscopy to image H2 gas leaking from the surfaces of hydrogen fuel cells to ambient air. Nanosecond laser pulses of wavelength lambda=532 nm emitted from a neodymium-doped yttrium aluminum garnet laser were first compressed to a pulse length Deltat<1 ns using a stimulated Brillouin backscattering cell. Relay-imaging optics then focused this beam onto the H(2) leak and initiated the breakdown plasma. The Balmer-alpha (H-alpha) emission that emerged from this was collected with a 2-m-long macrolens assembly with a 90-mm-diameter image area, which covered a solid angle of approximately 1 x 10(-3)pi steradians seen from the plasma. The H-alpha light was isolated by two 100-mm-diameter interference filters with a 2 nm bandpass, and imaged by a thermoelectrically cooled charge-coupled device camera. By scanning the position of the laser focus, the spatial distribution of H2 gas over a 90-mm-diameter area was photographed with a spatial resolution of < or = 5 mm. Photoionization of the water vapor in the air caused a strong H-alpha background. By using pure N2 as a buffer gas, H2 leaks with rates of <1 cc/min were imaged. We also studied the possibilities of detecting He, Ne, or Xe gas leaks.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.
Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L
2017-09-06
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.; ...
2017-08-15
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
1987-10-01
discharged from these wells was containerized and transported to the base oil separator plant for treatment. It is estimated that approximately 25 percent...and 29). The fly ash is probably associated with the power plant tc the west of the Bulk Fuel Storage Area. Just below the fill, at 13 to 15 feet, is...been widely used in petroleum refineries and fuel terminals in response to similar spill impact situations. Although the collect ion/recov- ery
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
...EPA is amending the requirements under EPA's diesel sulfur program related to the sulfur content of locomotive and marine (LM) diesel fuel produced by transmix processors and pipeline facilities. These amendments will reinstate the ability of locomotive and marine diesel fuel produced from transmix by transmix processors and pipeline operators to meet a maximum 500 parts per million (ppm) sulfur standard outside of the Northeast Mid-Atlantic Area and Alaska and expand this ability to within the Northeast Mid-Atlantic Area provided that: the fuel is used in older technology locomotive and marine engines that do not require 15 ppm sulfur diesel fuel, and the fuel is kept segregated from other fuel. These amendments will provide significant regulatory relief for transmix processors and pipeline operators to allow the petroleum distribution system to function efficiently while continuing to transition the market to virtually all ultra-low sulfur diesel fuel (ULSD, i.e. 15 ppm sulfur diesel fuel) and the environmental benefits it provides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerman, C. E.; Sowa, E. S.; Okrent, D.
1961-08-01
Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)
Application of fuel cell for pyrite and heavy metal containing mining waste
NASA Astrophysics Data System (ADS)
Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.
2015-12-01
Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.
NASA Astrophysics Data System (ADS)
Kauahikaua, J.
A controlled source, time domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The geoelectric structure was determined as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves are qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered earth Marquardt inversion computer program. The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm meters.
Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI
2012-05-29
A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
Development of a 5 kW Prototype Coal-Based Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh
2014-01-20
The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageablemore » carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.« less
Modeling of terminal-area airplane fuel consumption
DOT National Transportation Integrated Search
2009-08-01
Accurate modeling of airplane fuel consumption is necessary for air transportation policy-makers to properly : adjudicate trades between competing environmental and economic demands. Existing public models used for : computing terminal-area airplane ...
Fuel cell membrane humidification
Wilson, Mahlon S.
1999-01-01
A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2011-11-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysismore » mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.« less
Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte
Johnsen, Richard [Waterbury, CT; Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT
2011-05-10
An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.
11. The work area of a typical fuel storage and ...
11. The work area of a typical fuel storage and transfer basin. The wooden floor was built over the 20-foot deep water-filled basin. Buckets filled with irradiated fuel of dummy slugs in the floor and were hung on trolleys attached to the monorail tracks suspended from the ceiling. 85-H807 - B Reactor, Richland, Benton County, WA
Fuel consumption modeling in support of ATM environmental decision-making
DOT National Transportation Integrated Search
2009-07-01
The FAA has recently updated the airport terminal : area fuel consumption methods used in its environmental models. : These methods are based on fitting manufacturers fuel : consumption data to empirical equations. The new fuel : consumption metho...
Renewable power production in a Pan-Caribbean energy grid
NASA Astrophysics Data System (ADS)
Miller, David
The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-01
We report a unique and highly stable electrocatalyst—platinum (Pt) supported on titanium–ruthenium oxide (TRO)—for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile—namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst—Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm−2 at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm−2 for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern. PMID:24367118
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-07
We report a unique and highly stable electrocatalyst-platinum (Pt) supported on titanium-ruthenium oxide (TRO)-for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile-namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst-Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm(-2) at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm(-2) for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern.
40 CFR 86.232-94 - Vehicle preconditioning.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213... existing fuel must be drained prior to the fuel fill. The test fuel shall be at a temperature less than or...
40 CFR 86.232-94 - Vehicle preconditioning.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213... existing fuel must be drained prior to the fuel fill. The test fuel shall be at a temperature less than or...
40 CFR 86.232-94 - Vehicle preconditioning.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213... existing fuel must be drained prior to the fuel fill. The test fuel shall be at a temperature less than or...
Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area.
Tao, Ling; Fairley, David; Kleeman, Michael J; Harley, Robert A
2013-09-17
Ocean-going vessels burning high-sulfur heavy fuel oil are an important source of air pollutants, such as sulfur dioxide and particulate matter. Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. To assess impacts of the fuel changes on air quality at the Port of Oakland and in the surrounding San Francisco Bay area, we analyzed speciated fine particle concentration data from four urban sites and two more remote sites. Measured changes in concentrations of vanadium, a specific marker for heavy fuel oil combustion, are related to overall changes in aerosol emissions from ships. We found a substantial reduction in vanadium concentrations after the fuel change and a 28-72% decrease in SO2 concentrations, with the SO2 decrease varying depending on proximity to shipping lanes. We estimate that the changes in ship fuel reduced ambient PM2.5 mass concentrations at urban sites in the Bay area by about 3.1 ± 0.6% or 0.28 ± 0.05 μg/m(3). The largest contributing factor to lower PM mass concentrations was reductions in particulate sulfate. Absolute sulfate reductions were fairly consistent across sites, whereas trace metal reductions were largest at a monitoring site in West Oakland near the port.
1980-02-01
fuel. Based on the survey data, wood chips in the NSTL area are sold for $13 to $16 per wet ton ($14 to $18 Der l03 kg wet), bark for $6 to $7 per wet...truck 3 Chip vans (initially) 1 Pickup (3/4 ton) 1 Front-end loader (for handling at chip pile) This equipment combination assumes all material ]-inch...ing sites in chip vans , preferably with live-beds to aid in unloading. At the processing site the chips would be stored in large piles. A Front-end
Advanced transportation concept for round-trip space travel
NASA Technical Reports Server (NTRS)
Yen, Chen-Wan L.
1988-01-01
A departure from the conventional concept of round-trip space travel is introduced. It is shown that a substantial reduction in the initial load required of the Shuttle or other launch vehicle can be achieved by staging the ascent orbit and leaving fuel for the return trip at each stage of the orbit. Examples of round trips from a low-inclination LEO to a high-inclination LEO and from an LEO to a GEO are used to show the merits of the new concept. Potential problem areas and research needed for the development of an efficient space transportation network are discussed.
An experimental investigation of gas jets in confined swirling air flow
NASA Technical Reports Server (NTRS)
Mongia, H.; Ahmed, S. A.; Mongia, H. C.
1984-01-01
The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.
Xiangyang Zhou; Shankar Mahalingam; David Weise
2007-01-01
This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient...
Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method
NASA Astrophysics Data System (ADS)
Li, Jing
2016-07-01
This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.
78 FR 38821 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... of a fuel leak, could result in fuel accumulating in an area containing electrical equipment. The... maintain buoyancy during emergency landings in water. EASA states that this closing of the fuel tank drains... of a fuel leak in flight, creates ``the risk of fuel accumulation and/or migration'' to an adjacent...
Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite
NASA Astrophysics Data System (ADS)
Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.
2016-06-01
Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in Africa, although this effect might have been partially driven by the presence of grazers in Africa or differences in landscape management. Finally, land management in the form of deforestation and agriculture also considerably affected fuel consumption regionally. We conclude that combining FRP and burned-area estimates, calibrated against field measurements, is a promising approach in deriving quantitative estimates of fuel consumption. Satellite-derived fuel consumption estimates may both challenge our current understanding of spatiotemporal fuel consumption dynamics and serve as reference datasets to improve biogeochemical modelling approaches. Future field studies especially designed to validate satellite-based products, or airborne remote sensing, may further improve confidence in the absolute fuel consumption estimates which are quickly becoming the weakest link in fire emission estimates.
DOT National Transportation Integrated Search
1990-01-01
The Urban Mass Transportation Administration (UMTA) Alternative Fuels initiative (AFI) and the Environmental Protection Ageny (EPA) 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus demonstra...
40 CFR 63.7522 - Can I use emissions averaging to comply with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (vi) Dutch ovens/pile burners designed to burn biomass/bio-based solid. (vii) Fuel Cells designed to...: Industrial, Commercial, and Institutional Boilers and Process Heaters Testing, Fuel Analyses, and Initial... allowed as follows: (i) You may average among units in any of the solid fuel subcategories. (ii) You may...
Electrically heated particulate filter preparation methods and systems
Gonze, Eugene V [Pinckney, MI
2012-01-31
A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.
Fuels Management-How to Measure Success: Conference Proceedings
Patricia L. Andrews; Bret W. Butler
2006-01-01
Fuels management programs are designed to reduce risks to communities and to improve and maintain ecosystem health. The International Association of Wildland Fire initiated the 1st Fire Behavior and Fuels Conference to address development, implementation, and evaluation of these programs. The focus was on how to measure success. Over 500 participants from several...
Experimental modeling of crown fire initiation in open and closed shrubland systems
W. Tachajapong; S. Lozano; S. Mahalingam; D.R. Weise
2014-01-01
The transition of surface fire to live shrub crown fuels was studied through a simplified laboratory experiment using an open-topped wind tunnel. Respective surface and crown fuels used were excelsior (shredded Populus tremuloides wood) and live chamise (Adenostoma fasciculatum, including branches and foliage). A high crown fuel...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With... range with the fuel initially saturated with water at 80 °F (27 °C) and having 0.025 fluid ounces per gallon (0.20 milliliters per liter) of free water added and cooled to the most critical condition for...
Variable area fuel cell process channels
Kothmann, Richard E.
1981-01-01
A fuel cell arrangement having a non-uniform distribution of fuel and oxidant flow paths, on opposite sides of an electrolyte matrix, sized and positioned to provide approximately uniform fuel and oxidant utilization rates, and cell conditions, across the entire cell.
Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate is in effect during
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andress, D.; Joy, D.S.; McLeod, N.B.
The Department of Energy has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design--the GA-4 and GA-9 truck casks and the BR-100 rail cask. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elementsmore » as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. This paper summarizes preliminary results of one part of that evaluation related to the ability of the From-Reactor Initiative I casks to accommodate the physical and radiological characteristics of the Spent Nuclear Fuel projected to be accepted into the Federal Waste Management System. 3 refs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.
Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.
Co-Optimization of Fuels and Engines (Co-Optima) -- Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John T; Wagner, Robert; Holladay, John
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a U.S. Department of Energy (DOE) effort funded by both the Vehicle and Bioenergy Technology Offices. The overall goal of the effort is to identify the combinations of fuel properties and engine characteristics that maximize efficiency, independent of production pathway or fuel composition, and accelerate commercialization of these technologies. Multiple research efforts are underway focused on both spark-ignition and compression-ignition strategies applicable across the entire light, medium, and heavy-duty fleet. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, andmore » provide refiners with increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. In addition to fuels and engines R&D, the initiative is guided by analyses assessing the near-term commercial feasibility of new blendstocks based on economics, environmental performance, compatibility, and large-scale production viability. This talk will provide an overview of the Co-Optima effort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Jr., Joe W.
A three-part study is conducted using the MCNP6 Monte Carlo radiation-transport code to calculate delayed-neutron (DN) and delayed-gamma (DG) emission signatures for nondestructive assay (NDA) metal-fuel pyroprocessing. In Part 1, MCNP6 is used to produce irradiation-induced used nuclear fuel (UNF) isotopic inventories for an Argonne National Laboratory (ANL) Advanced Burner Test Reactor (ABTR) preconceptual design fuel assembly (FA) model. The initial fuel inventory consists of uranium mixed with light-water-reactor transuranic (TRU) waste and 10 wt% zirconium (U-LWR-SFTRU-10%Zr). To facilitate understanding, parametric evaluation is done using models for 3% and 5% initial 235U a% enrichments, burnups of 5, 10, 15, 20,more » 30, …, 120 GWd/MTIHM, and 3-, 5-, 10-, 20-, and 30- year cooling times. Detailed delayed-particle radioisotope source terms for the irradiate FA are created using BAMF-DRT and SOURCES3A. Using simulation tallies, DG activity ratios (DGARs) are developed for 134Cs/ 137Cs 134Cs/ 154Eu, and 154Eu/ 137Cs markers as a function of (1) burnup and (2) actinide mass, including elemental uranium, neptunium, plutonium, americium, and curium. Spectral-integrated DN emission is also tallied. The study reveals a rich assortment of DGAR behavior as a function of DGAR type, enrichment, burnup, and cooling time. Similarly, DN emission plots show variation as a function of burnup and of actinide mass. Sensitivity of DGAR and DN signatures to initial 235U enrichment, burnup, and cooling time is evident. Comparisons of the ABTR radiation signatures and radiation signatures previously reported for a generic Westinghouse oxide-fuel assembly indicate that there are pronounced differences in the ABTR and Westinghouse oxide-fuel DN and DG signatures. These differences are largely attributable to the initial TRU inventory in the ABTR fuel. The actinide and nonactinide inventories for the FA models serve as source materials for the pre- and postelectrorefining models to be reported in Parts 2 and 3.« less
Power Authority calls for wise investment in hydropower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yould, E.P.
Wise investment in hydropower is one of the most valuable long-term economic actions the state of Alaska can take. A review of the hydro projects shows that investigations needed for construction of the Susitna hydroelectric project will be initiated, while Green Lake and Solomon Gulch projects at Sitka and Valdez will enter their second construction season. Swan Lake and Terror Lake hydropower construction for Ketchikan and Kodiak will also be initiated in 1980 followed by Tyee Lake hydropower for Petersburg and Wrangell. Projects still under investigation which may prove feasible for construction in the future are at Cordova, Homer, Seward,more » Bristol Bay, the Tlingit-Haida area, the lower Kuskokwim and Yukon area, and at some smaller rural communities. Other communities may be able to develop wood or peat fueled generation, wile still others might be able to develop small tidal or wind power generation. The Alaska Power Authority is attempting to expedite these projects, and the end result should be a significant degree of electrical energy independence by the end of the next decade.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-03-01
This decision document presents the Air Force Center for Environmental Excellence (AFCEE) selected remedial action decisions for contaminant source areas at the following Areas of Contamination (AOCs) at the Massachusetts Military Reservation (MMR) in Barnstable County on Cape Cod, Massachusetts: Fire Training Area No. 2 and Landfill No. 2 (FTA-2/LF-2); Petroleum Fuels Storage Area, Fuel Spill No. 10, and Fuel Spill No. 11 (PFSA/FS-10/FS-11); Storm Drainage Ditch No. 2, Fuel Spill No. 6, and Fuel Spill No. 8 (SD-2/FS-6/FS-8); Storm Drainage Ditch No. 2, Fire Training Area No. 3, and Coal Storage Yard No. 4 (SF-3/FTA-3/CY-4); Storm Drainage Ditch No.more » 4 (SD-4); and Storm Drainage Ditch No. 5 and Fuel Spill No. 5 (SD-5/FS-5). The selected remedy for AOC FTA-2/LF-2 is Biosparging with Ambient Air Monitoring. This remedial action is a source control action that addresses leaching of organic compounds to groundwater, the principal known threat at AOC FTA-2/LF-2. It consists of designing, constructing, and operating a biosparging treatment system, maintaining institutional controls, and five-year reviews of remedy protectiveness. The remedy reduces the release of contaminants from subsurface soils by treating subsurface soils to meet protective cleanup levels.« less
Rural-urban differences in cooking practices and exposures in Northern Ghana
NASA Astrophysics Data System (ADS)
Wiedinmyer, Christine; Dickinson, Katherine; Piedrahita, Ricardo; Kanyomse, Ernest; Coffey, Evan; Hannigan, Michael; Alirigia, Rex; Oduro, Abraham
2017-07-01
Key differences between urban and rural populations can influence the adoption and impacts of new cooking technologies and fuels. We examine these differences among urban and rural households that are part of the REACCTING study in Northern Ghana. While urban and rural populations in the study area all use multiple stoves, the types of stoves and fuels differ, with urban participants more likely to use charcoal and LPG while rural households rely primarily on wood. Further, rural and urban households tend to use different stoves/fuels to cook the same dishes—for example, the staple porridge Tuo Zaafi (TZ) is primarily cooked over wood fires in rural areas and charcoal stoves in urban settings. This suggests that fuel availability and ability to purchase fuel may be a stronger predictor of fuel choice than cultural preferences alone. Ambient concentrations of air pollutants also differ in these two types of areas, with urban areas having pollutant hot spots to which residents can be exposed and rural areas having more homogeneous and lower pollutant concentrations. Further, exposures to carbon monoxide and particulate matter differ in magnitude and in timing between urban and rural study participants, suggesting different behaviors and sources of exposures. The results from this analysis highlight important disparities between urban and rural populations of a single region and imply that such a characterization is needed to successfully implement and assess the impacts of household energy interventions.
Jayne Fingerman Johnson; David N. Bengston; David P. Fan; Kristen C. Nelson
2006-01-01
The Healthy Forests Initiative (HFI) and Healthy Forests Restoration Act (HFRA) represent major policy and legislative responses to the fuels management problem in the United States. This study examined the nature and evolution of the public discussion and debate about these policy responses. Computer content analysis was used to analyze favorable and unfavorable...
Watcharapong Tachajapong; Jesse Lozano; Shankar Mahalingam; Xiangyang Zhou; David R. Weise
2008-01-01
Crown fire initiation is studied by using a simple experimental and detailed physical modeling based on Large Eddy Simulation (LES). Experiments conducted thus far reveal that crown fuel ignition via surface fire occurs when the crown base is within the continuous flame region and does not occur when the crown base is located in the hot plume gas region of the surface...
Initial Evaluation of Burn Characteristics of Phenolic Foam Runway Brake Arrestor Material
1993-12-01
foam immersed in a jet fuel fire when extinguished using 3-percent Aqueous Film Forming Foam ( AFFF ). Three pool...extinguishment time of phenolic foam immersed in a jet fuel fire, using 3-percent Aqueous Film Forming Foam ( AFFF ) extinguishing agent. The wind was negligible...percent Aqueous Film Forming Foam ( AFFF ) agent. This project is an initial assessment of the fire safety of phenolic foam
EXPERIMENTAL STUDIES OF TRANSIENT EFFECTS IN FAST REACTOR FUELS. SERIES I. UO$sub 2$ IRRADIATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, J.H.
1962-11-15
An experimental program to evaluate the performance of FCR and EFCR fuel during transient operation is outlined, and the initial series of tests are described in some detail. Test results from five experiments in the TREAT reactor, using 1-in. OD SS-clad UO/sub 2/ fuel specimens, are compared with regard to fuel temperatures, mechanical integrity, and post-irradiation appearance. Incipient fuel pin failure limits for transients are identified with maximum fuel temperatures in the range of 7000 deg F. Multiple transient damage to the cladding is likely for transients above the melting point of the fuel. (auth)
NASA Astrophysics Data System (ADS)
Winijkul, E.; Bond, T. C.
2011-12-01
In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with current emission in residential sector can be estimated, based on the cleanest plausible fuels and stove availability.
Downed woody fuel loading dynamics of a large-scale blowdown in northern Minnesota, U.S.A.
C.W. Woodall; L.M. Nagel
2007-01-01
On July 4, 1999, a large-scale blowdown occurred in the BoundaryWaters Canoe AreaWilderness (BWCAW) of northern Minnesota affecting up to 150,000 ha of forest. To further understand the relationship between downed woody fuel loading, stand processes, and disturbance effects, this study compares fuel loadings defined by three strata: (1) blowdown areas of the BWCAW (n...
Christopher W. Woodall; Bruce Leutscher
2005-01-01
The sampling design for the Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture Forest Service allows intensification of fuel inventory sampling in areas of ?special interest? and implementation of fuel sampling protocol by non-FIA personnel. The objective of this study is to evaluate the contribution of sampling intensification/extension...
Geoffrey J. Cary; Mike D. Flannigan; Robert E. Keane; Ross A. Bradstock; Ian D. Davies; James M. Lenihan; Chao Li; Kimberley A. Logan; Russell A. Parsons
2009-01-01
The behaviour of five landscape fire models (CAFE, FIRESCAPE, LAMOS(HS), LANDSUM and SEMLAND) was compared in a standardised modelling experiment. The importance of fuel management approach, fuel management effort, ignition management effort and weather in determining variation in area burned and number of edge pixels burned (a measure of potential impact on assets...
The impact of anthropogenic climate change on wildfire across western US forests
NASA Astrophysics Data System (ADS)
Williams, P.; Abatzoglou, J. T.
2016-12-01
Increased forest fire activity across the western United States (US) in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. The increase in forest fire activity has likely been enabled by a number of factors including the legacy of fire suppression and human settlement, changes in suppression policies, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western US. Anthropogenic increases in temperature and vapor pressure deficit have significantly enhanced fuel aridity across western US forests over the past several decades. Comparing observational climate records to records recalculated after removal of modeled anthropogenic trends, we find that anthropogenic climate change accounted for approximately 55% of observed increases in the eight-metric mean fuel aridity during 1979-2015 across western US forests. This implicates anthropogenic climate change as an important driver of observed increases in fuel aridity, and also highlights the importance of natural multi-decadal climate variability in influencing trends in forest fire potential on the timescales of human lives. Based on a very strong (R2 = 0.76) and mechanistically reasonable relationship between interannual variability in the eight-metric mean fuel aridity and forest-fire area in the western US, we estimate that anthropogenic increases in fuel aridity contributed to an additional 4.2 million ha (95% confidence range: 2.7-6.5 million ha) of forest fire area during 1984-2015, nearly doubling the total forest fire area expected in the absence of anthropogenic climate change. The relationship between annual forest fire area and fuel aridity is exponential and the proportion of total forest area burned in a given year has grown rapidly over the past 32 years. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a chronic driver of increased forest fire activity and should continue to do so where fuels are not limiting.
NASA Astrophysics Data System (ADS)
Asefi-Najafabady, S.; Gurney, K. R.; Rayner, P.; Huang, J.; Song, Y.
2012-12-01
The largest single net source of CO2 into the Earth's atmosphere is due to the combustion of fossil fuel and an accurate quantification of the fossil fuel flux is needed to better address the concern of rising atmospheric greenhouse gas concentrations. In the last decade, there has been a growing need, from both the science and policymaking communities for quantification of global fossil fuel CO2 emissions at finer space and time scales. Motivated by this concern, we have built a global fossil fuel CO2 emission inventory at 0.25° and 0.1° resolutions for the years of 1992 - 2010 using a combination of in situ and remotely sensed data in a fossil fuel data assimilation system (FFDAS). A suite of observations which include nightlights, population, sectoral national emissions and power plant stations are used to constrain the FFDAS model. FFDAS is based on a modified Kaya identity which expresses emissions as the product of areal population density, per capita economic activity, energy intensity of economic activity, and carbon intensity of energy consumption. Nightlights has been shown to correlate well with national and regional GDP and its relationship with population has been used as an initial means of downscaling fossil fuel emissions. However nightlights data are subject to instrumental saturation, causing areas of bright nightlights, such as urban cores, to be truncated. To address the saturation problem during several time periods, the National Geophysical Data Center (NGDC) has requested and received data collected at multiple fixed gain settings to observe the bright areas with no saturation. However, this dataset is limited to only four years (1999, 2002, 2006 and 2010). We have applied a numerical technique to these four years of data to estimate the unsaturated values for all years from 1992 to 2010. The corrected nightlights time series is then used in FFDAS to generate a multiyear fossil fuel CO2 emissions data product. Nightlights and population provide an approximate location and magnitude for fossil fuel CO2 emissions. Some emitting sectors, such as power plant emissions and heavy industry, are not coincident with where people live or lights are on. Therefore, for better accuracy, we used direct emissions information from power stations as a constraint to the FFDAS estimation. We present this new high resolution, multiyear emissions data product with analysis of the space/time patterns, trends and posterior uncertainty. We also compare the FFDAS results to the "bottom-up" high resolution fossil fuel CO2 emissions estimation generated by the Vulcan Project in the United States. Finally, we examine the sensitivity of the results to differences in the procedures used to generate the improved multiyear nightlights time series.
Machackova, Jirina; Wittlingerova, Zdena; Vlk, Kvetoslav; Zima, Jaroslav
2012-01-01
Biodegradation of petroleum hydrocarbons (TPH), mainly jet fuel, had taken place at the former Soviet Army air base in the Czech Republic. The remediation of large-scale petroleum contamination of soil and groundwater has provided valuable information about biosparging efficiency in the sandstone sedimentary bedrock. In 1997 petroleum contamination was found to be present in soil and groundwater across an area of 28 hectares, divided for the clean-up purpose into smaller clean-up fields (several hectares). The total estimated quantity of TPH released to the environment was about 7,000 metric tons. Biosparging was applied as an innovative clean-up technology at the site and was operated over a 10-year period (1997-2008). Importance of a variety of factors that affect bacterial activity in unsaturated and saturated zones was widely studied on the site and influence of natural and technological factors on clean-up efficiency in heavily contaminates areas of clean-up fields (initial contaminant mass 111-452 metric ton/ha) was evaluated. Long-term monitoring of the groundwater temperature has shown seasonal rises and falls of temperature which have caused a fluctuation in biodegradation activity during clean-up. By contrast, an overall rise of average groundwater temperature was observed in the clean-up fields, most probably as a result of the biological activity during the clean-up process. The significant rise of biodegradation rates, observed after air sparging intensification, and strong linear correlation between the air injection rates and biodegradation activities have shown that the air injection rate is the principal factor in biodegradation efficiency in heavily contaminated areas. It has a far more important role for achieving a biodegradation activity than the contamination content which appeared to have had only a slight effect after the removal of about 75% of initial contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James A. Smith; Jeffrey M. Lacy; Barry H. Rabin
12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEUmore » to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.« less
A model for recovery of scrap monolithic uranium molybdenum fuel by electrorefining
NASA Astrophysics Data System (ADS)
Van Kleeck, Melissa A.
The goal of the Reduced Enrichment for Research and Test Reactors program (RERTR) is toreduce enrichment at research and test reactors, thereby decreasing proliferation risk at these facilities. A new fuel to accomplish this goal is being manufactured experimentally at the Y12 National Security Complex. This new fuel will require its own waste management procedure,namely for the recovery of scrap from its manufacture. The new fuel is a monolithic uraniummolybdenum alloy clad in zirconium. Feasibility tests were conducted in the Planar Electrode Electrorefiner using scrap U-8Mo fuel alloy. These tests proved that a uranium product could be recovered free of molybdenum from this scrap fuel by electrorefining. Tests were also conducted using U-10Mo Zr clad fuel, which confirmed that product could be recovered from a clad version of this scrap fuel at an engineering scale, though analytical results are pending for the behavior of Zr in the electrorefiner. A model was constructed for the simulation of electrorefining the scrap material produced in the manufacture of this fuel. The model was implemented on two platforms, Microsoft Excel and MatLab. Correlations, used in the model, were developed experimentally, describing area specific resistance behavior at each electrode. Experiments validating the model were conducted using scrap of U-10Mo Zr clad fuel in the Planar Electrode Electrorefiner. The results of model simulations on both platforms were compared to experimental results for the same fuel, salt and electrorefiner compositions and dimensions for two trials. In general, the model demonstrated behavior similar to experimental data but additional refinements are needed to improve its accuracy. These refinements consist of a function for surface area at anode and cathode based on charge passed. Several approximations were made in the model concerning areas of electrodes which should be replaced by a more accurate function describing these areas.
Program for fundamental and applied research of fuel cells in VNIIEF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisin, A.V.; Borisseonock, V.A.; Novitskii, Y.Z.
1996-04-01
According to VNIIEF the integral part of development of fuel cell power plants is fundamental and applied research. This paper describes areas of research on molten carbonate fuel cells. Topics include the development of mathematical models for porous electrodes, thin film electrolytes, the possibility of solid nickel anodes, model of activation polarization of anode, electrolyte with high solubility of oxygen. Other areas include research on a stationary mode of stack operation, anticorrosion coatings, impedance diagnostic methods, ultrasound diagnostics, radiation treatments, an air aluminium cell, and alternative catalysts for low temperature fuel cells.
Tests of blending and correlation of distillate fuel properties
NASA Technical Reports Server (NTRS)
Erwin, J.; Bowden, J. N.
1982-01-01
The development of a fuel test matrix, results from tests of several blends of distillate aircraft fuels, and the use of correlations in formulation determination during a NASA-sponsored program to identify new aircraft fuels are described. The program was initiated in order to characterize fuel blends which are appropriate for different types of combustors in use and under development. The fuels were required to feature a specified range of properties. Attention is given to fuel volatility, hydrogen content, aromatic content, freezing point, kinematic viscosity, and naphthalene content. Paraffinic and naphtenic base stocks were employed, using alkyl benzene, naphthene benzenes, and naphthalenes to adjust the blend properties. Categories for the test fuels comprised source-controlled and composition controlled fuels. Test results and compositions of various fuels are provided.
Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foare, Genevieve; Meze, Florian; Bader, Sven
2013-07-01
Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were dividedmore » into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)« less
DOT National Transportation Integrated Search
2016-12-01
The objectives of this research were to study the feasibility of the deployment of renewable hydrogen fueling/DC fast charging stations at California Safety Roadside Rest Areas (SRRAs), not at service areas with commercial activity, and the integrati...
Fuel breaks affect nonnative species abundance in Californian plant communities
Kyle E Merriam; Jon E. Keeley; Jan L. Beyers
2006-01-01
We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment...
Fundamental research in the area of high temperature fuel cells in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyomin, A.K.
1996-04-01
Research in the area of molten carbonate and solid oxide fuel cells has been conducted in Russia since the late 60`s. Institute of High Temperature Electrochemistry is the lead organisation in this area. Research in the area of materials used in fuel cells has allowed us to identify compositions of electrolytes, electrodes, current paths and transmitting, sealing and structural materials appropriate for long-term fuel cell applications. Studies of electrode processes resulted in better understanding of basic patterns of electrode reactions and in the development of a foundation for electrode structure optimization. We have developed methods to increase electrode activity levelsmore » that allowed us to reach current density levels of up to 1 amper/cm{sup 2}. Development of mathematical models of processes in high temperature fuel cells has allowed us to optimize their structure. The results of fundamental studies have been tested on laboratory mockups. MCFC mockups with up to 100 W capacity and SOFC mockups with up to 1 kW capacity have been manufactured and tested at IHTE. There are three SOFC structural options: tube, plate and modular.« less
Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani
2014-01-01
A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.
Assessment of ground-water contamination at Wurtsmith Air Force Base, Michigan, 1982-85
Cummings, T.R.; Twenter, F.R.
1986-01-01
Continued study of ground-water contamination at Wurtsmith Air Force Base, Michigan, defined the movement and distribution of volatile organic compounds in the glacial sand and gravel aquifer at known sites of contamination, and has defined new plumes at two other sites. The Arrow Street purge system, installed in 1982 to remove contaminants from the Building 43 plume, has lowered concentrations of trichloroethylene in ground water in the central part of the most contaminated area from a range of 1,000 to 2,000 micrograms per liter to about 200 micrograms per liter. Trichloroethylene is not escaping off-Base from this area. In the southern part of the Base a plume containing principally trichloroethylene and dichloroethylene has been delineated along Mission Drive. Maximum concentrations observed were 5,290 micrograms per liter of trichloroethylene and 1,480 micrograms per liter of dichloroethylene. Hydrologically suitable sites for purge wells are identified in the southern part of the plume using a new ground-water flow model of the Base. A benzene plume near the bulk-fuel storage area, delineated in earlier work, lias shifted to a more northerly direction under influence of the Arrow Street purge system. Sites initially identified for purging the benzene plume have been repositioned because of the change in contaminant movement. JP-4 fuel was found to be accumulating in wells near the bulk-fuel storage area, largely in response to seasonal fluctuations in the water table. It is thought to originate from a spill that occurred several years ago. A more thorough definition of contaminants in the northern landfill area has permitted a determination of the most hydrologically suitable sites for purge wells. In general, Concentrations found in water do not differ greatly from those observed in 1981. Since 1981, concentrations of trichloroethylene have decreased significantly in the Alert Apron plume. Near the origin of the plume, the concentration of trichloroethylene has decreased from 1,000 micrograms per liter in 1980 to 50 micrograms per liter in 1984. Water from Van Etten Lake near the termination of the plume had only a trace of trichloroethylene at one site. Benzene detected in water from well AF2 seems to originate near the former site of buried fuel tanks west of the operational apron. During periods of normal purge pumping along Arrow Street, contaminants are drawn to the purge system. During periods when pumping is low, contaminants are drawn toward water-supply wells AF2, AF4, and AF5.
THE ARMOUR DUST FUELED REACTOR (ADFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krucoff, D.
1958-01-01
The A-DFR is based on the use of a fissionable dust carried in a gas. This fuel ferm offers promise of a major economic advance through the use of 2,000 to 3,000 F operating temperatures and a low cost fuel cycle. The development program is described that was initiated to investigate experimentally the proposed fuel and study analytically other reactor characteristics. A brief review of the reactor concept is presented. (W.D.M.)
Neutron economic reactivity control system for light water reactors
Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve
1989-01-01
A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.
Fuel treatment longevity in a Sierra Nevada mixed conifer forest
Scott. L. Stephens; Brandon M. Collins; Gary. Roller
2012-01-01
Understanding the longevity of fuel treatments in terms of their ability to maintain fire behavior and effects within a desired range is an important question. The objective of this study was to determine how fuels, forest structure, and predicted fire behavior changed 7-years after initial treatments. Three different treatments: mechanical only, mechanical plus fire,...
Conclusions and Recommendations Regarding the Deep Sea Hybrid Power Systems Initial Study
2010-06-01
proton-exchange membrane fuel cells ( PEMFC ) powered with hydrogen and oxygen, similar to that used on proven subsurface vessels; (2) fuel-cells...AND STORAGE OPTIONS CONSIDERED FOR INITIAL STUDY NO. NOMENCLATURE DESCRIPTION 1 PWR Nuclear Reactor + Battery 2 FC1 PEMFC + Line for surface O2...Wellhead Gas + Reformer + Battery 3 FC2 PEMFC + Stored O2 + Wellhead Gas + Reformer + Battery 4 SV1 PEMFC + Submersible Vehicle for O2 Transport
Laser ablation based fuel ignition
Early, J.W.; Lester, C.S.
1998-06-23
There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.
Laser ablation based fuel ignition
Early, James W.; Lester, Charles S.
1998-01-01
There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.
NASA Technical Reports Server (NTRS)
Gray, D. E.; Dugan, J. F.
1975-01-01
This paper reports on the exploratory investigation and initial findings of the study of future turbofan concepts to conserve fuel. To date, these studies have indicated a potential reduction in cruise thrust specific fuel consumption in 1990 turbofans of approximately 15% relative to present day new engines through advances in internal aerodynamics, structure-mechanics, and materials. Advanced materials also offer the potential for fuel savings through engine weight reduction. Further studies are required to balance fuel consumption reduction with sound airlines operational economics.
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
Code of Federal Regulations, 2010 CFR
2010-07-01
... following areas: (1) Northeast/Mid-Atlantic Area, which includes the following States and counties, through..., Elk, Jefferson, Clarion, Forest, Venango, Mercer, Crawford, Lawrence, Beaver, Washington, and Greene...
Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander
2017-09-01
The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.
NASA Astrophysics Data System (ADS)
Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.
2018-02-01
SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, William BJ J; Ade, Brian J; Bowman, Stephen M
2015-01-01
Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (k eff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of latticemore » design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup credit at peak reactivity requires a different set of experiments than for pressurized-water reactor burnup credit analysis because of differences in actinide compositions, presence of residual gadolinium absorber, and lower fission product concentrations. A survey of available critical experiments is presented along with a sample criticality code validation and determination of undercoverage penalties for some nuclides. The validation of depleted fuel compositions at peak reactivity presents many challenges which largely result from a lack of radiochemical assay data applicable to BWR fuel in this burnup range. In addition, none of the existing low burnup measurement data include residual gadolinium measurements. An example bias and uncertainty associated with validation of actinide-only fuel compositions is presented.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.71 Prohibitions. A used oil fuel marketer may initiate a shipment of off-specification used oil only to a used oil burner who: (a...
PWR and BWR spent fuel assembly gamma spectra measurements
NASA Astrophysics Data System (ADS)
Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.
2016-10-01
A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.
FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, E.; Tillman, D.
1997-12-01
The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Amongmore » these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.« less
40 CFR 86.232-94 - Vehicle preconditioning.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be filled to approximately the prescribed “tank fuel volume” with the test fuel specified § 86.213. If the existing fuel in the fuel tank(s) does not meet the specifications contained in § 86.213, the...
ADM. Tanks: from left to right: fuel oil tank, fuel ...
ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A comparison of five sampling techniques to estimate surface fuel loading in montane forests
Pamela G. Sikkink; Robert E. Keane
2008-01-01
Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...
Application of RAD-BCG calculator to Hanford's 300 area shoreline characterization dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonio, Ernest J.; Poston, Ted M.; Tiller, Brett L.
2003-07-01
Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwestmore » National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RAD-BCG Calculator. The RAD-BCG Calculator, a computer program that uses an Excel® spreadsheet and Visual Basic® software, showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RAD-BCG-Calculator’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RAD-BCG Calculator results to be conservative, which is appropriate for screening purposes.« less
Summary and Evaluation of the Strategic Defense Initiative Space Power Architecture Study
1989-03-01
coolant as fuel) and operates at high efficiency . It was also lower in vibration and dynamic effects than the combustion turbine. The fuel cell ...achievable with development. The main question with fuel cells is — can both high power density and high efficiency be achieved simultaneously? In...energy in a flywheel, fuel cell (power an electrolyzer) or battery. High power for weapon burst is obtained by discharging the storage device over a
The Ignition of Two Phase Detonation by a Branching Detonation Tube
NASA Astrophysics Data System (ADS)
Xiong, Cha; Qiu, Hua; Lu, Qinwei
2017-11-01
A branching tube is available to deliver sufficient energy to directly initiate a detonation wave. But sustaining the detonation wave through a branching tube is a challenge. In this study, a preliminary exploration about a branching pulsed detonation engine with a gas-liquid mixture was carried out to evaluate filling conditions on detonation initiation. Two detonation tubes were connected by three different schemes, such as Tail-Tail, Tail-Mid, and Tail-Head. Experimental results showed only end-head connected tubes can be ignited by the branching tube, which is quite different from the results using gas fuels or pre-evaporated liquid fuel. Liquid fuel distribution is crucial for successful detonation traveling through the branching tube.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report
DOT National Transportation Integrated Search
2017-09-01
This report presents results of a demonstration of fuel cell electric buses (FCEBs) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration that includes 13 advanced-d...
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Fourth Report
DOT National Transportation Integrated Search
2015-07-04
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-...
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Fifth Report
DOT National Transportation Integrated Search
2016-06-01
This report presents results of a demonstration of fuel cell electric buses (FCEBs) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced...
Rehfuess, Eva A; Briggs, David J; Joffe, Mike; Best, Nicky
2010-10-01
Indoor air pollution from solid fuel use is a significant risk factor for acute lower respiratory infections among children in sub-Saharan Africa. Interventions that promote a switch to modern fuels hold a large health promise, but their effective design and implementation require an understanding of the web of upstream and proximal determinants of household fuel use. Using Demographic and Health Survey data for Benin, Kenya and Ethiopia together with Bayesian hierarchical and spatial modelling, this paper quantifies the impact of household-level factors on cooking fuel choice, assesses variation between communities and districts and discusses the likely nature of contextual effects. Household- and area-level characteristics appear to interact as determinants of cooking fuel choice. In all three countries, wealth and the educational attainment of women and men emerge as important; the nature of area-level factors varies between countries. In Benin, a two-level model with spatial community random effects best explains the data, pointing to an environmental explanation. In Ethiopia and Kenya, a three-level model with unstructured community and district random effects is selected, implying relatively autonomous economic and social areas. Area-level heterogeneity, indicated by large median odds ratios, appears to be responsible for a greater share of variation in the data than household-level factors. This may be an indication that fuel choice is to a considerable extent supply-driven rather than demand-driven. Consequently, interventions to promote fuel switching will carefully need to assess supply-side limitations and devise appropriate policy and programmatic approaches to overcome them. To our knowledge, this paper represents the first attempt to model the determinants of solid fuel use, highlighting socio-economic differences between households and, notably, the dramatic influence of contextual effects. It illustrates the potential that multilevel and spatial modelling approaches hold for understanding determinants of major public health problems in the developing world. Copyright 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregson, Michael Warren; Mo, Tin; Sorenson, Ken Bryce
The authors provide a detailed overview of an on-going, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high-energy-density device. The program participants in the United States plus Germany, France and the United Kingdom, part of the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) have strongly supported and coordinated this research program. Sandia National Laboratoriesmore » has the lead role for conducting this research program; test program support is provided by both the US Department of Energy and the US Nuclear Regulatory Commission. The authors provide a summary of the overall, multiphase test design and a description of all explosive containment and aerosol collection test components used. They focus on the recently initiated tests on 'surrogate' spent fuel, unirradiated depleted uranium oxide and forthcoming actual spent fuel tests, and briefly summarize similar results from completed surrogate tests that used non-radioactive, sintered cerium oxide ceramic pellets in test rods.« less
46 CFR 108.237 - Fuel storage facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Fifth Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published four previous reports describing operation of these buses. This report presents new and updated results covering data from January 2015 through December 2015.
Improved Direct Methanol Fuel Cell Stack
Wilson, Mahlon S.; Ramsey, John C.
2005-03-08
A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew B.; Jeffers, Matthew A.
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published five previous reports describing operation of these buses. This report presents new and updated results covering data from January 2016 through December 2016.
NASA Astrophysics Data System (ADS)
Lee, Jin Wook; Kjeang, Erik
2013-11-01
Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.
ERIC Educational Resources Information Center
Crank, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…
NASA Astrophysics Data System (ADS)
Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María-Elena
2017-04-01
Specific studies of the impact of fuel spills on the vadose zone are currently required when trying to obtain the environmental permits for new fuel stations. The development of One-Dimensional mathematical models of fate and transport of BTEX on the vadose zone can therefore be used to understand the behavior of the pollutants under different scenarios. VLEACH - a simple One-Dimensional Finite Different Vadose Zone Leaching Model - uses an numerical approximation of the Millington Equation, a theoretical based model for gaseous diffusion in porous media. This equation has been widely used in the fields of soil physics and hydrology to calculate the gaseous or vapor diffusion in porous media. The model describes the movement of organic contaminants within and between three different phases: (1) as a solute dissolved in water, (2) as a gas in the vapor phase, and (3) as an absorbed compound in the soil phase. Initially, the equilibrium distribution of contaminant mass between liquid, gas and sorbed phases is calculated. Transport processes are then simulated. Liquid advective transport is calculated based on values defined by the user for infiltration and soil water content. The contaminant in the vapor phase migrates into or out of adjacent cells based on the calculated concentration gradients that exist between adjacent cells. After the mass is exchanged between the cells, the total mass in each cell is recalculated and re-equilibrated between the different phases. At the end of the simulation, (1) an overall area-weighted groundwater impact for the entire modeled area and (2) the concentration profile of BTEX on the vadose zone are calculated. This work shows the results obtained when applying VLEACH to analyze the contamination scenario caused by a BTEX spill coming from a set of future underground storage tanks located on a new fuel station in Aldaia (Valencia region - Spain).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
Cost-effectiveness analysis of CNG urban taxi operations.
DOT National Transportation Integrated Search
1993-10-01
Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives : examining the use of alternative fuels for motor vehicles. Texas' program for alternate fuels includes compressed : natural gas (CNG)....
Guidance Documents for Marine Fuel
The following guidance documents apply to marine fuel used in ocean-going vessels. All vessels that operate in the North American Emission Control Area (ECA) must generally use fuel with 1,000 ppm sulfur or less.
The Accuracy and Correction of Fuel Consumption from Controller Area Network Broadcast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Gonder, Jeffrey D; Wood, Eric W
Fuel consumption (FC) has always been an important factor in vehicle cost. With the advent of electronically controlled engines, the controller area network (CAN) broadcasts information about engine and vehicle performance, including fuel use. However, the accuracy of the FC estimates is uncertain. In this study, the researchers first compared CAN-broadcasted FC against physically measured fuel use for three different types of trucks, which revealed the inaccuracies of CAN-broadcast fueling estimates. To match precise gravimetric fuel-scale measurements, polynomial models were developed to correct the CAN-broadcasted FC. Lastly, the robustness testing of the correction models was performed. The training cycles inmore » this section included a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. The mean relative differences were reduced noticeably.« less
[Effect of the initial anode potential on electricity generation in microbial fuel cell].
Fan, Ming-Zhi; Liang, Peng; Cao, Xiao-Xin; Huang, Xia
2008-01-01
The initial anode potential of the microbial fuel cell (MFC) was changed by additional circuit in the anode chamber, and the influence of the initial anode potential on the electricigens was studied. When the initial anode potential was 350 mV (vs Hg/Hg2 Cl2), the growth of microorganisms was much slower than that of the microorganisms which grew on the anode with an initial potential of -200 mV or 200 mV (vs Hg/Hg2 Cl2). After stable electricity generation, the anode resistances of the three MFCs, which had initial anode potentials of 350 mV, 200 mV and -200 mV respectively, were 71 Omega, 43 Omega and 80 Omega. The community structures in MFCs, before and after the electricity generation, were also studied by denaturing gradient gel electrophoresis (DGGE). Clostridium sticklandii, Pseudomonas mendocina and Paenibacillus taejonensis were the three most enriched strains on the anode.
Wayne Cook; Bret W. Butler
2007-01-01
The 2nd Fire Behavior and Fuels Conference: Fire Environment -- Innovations, Management and Policy was held in Destin, FL, March 26-30, 2007. Following on the success of the 1st Fire Behavior and Fuels Conference, this conference was initiated in response to the needs of the National Wildfire Coordinating Group -- Fire Environment Working Team.
Experimental and numerical modeling of shrub crown fire initiation
Watcharapong Tachajapong; Jesse Lozano; Shakar Mahalingam; Xiangyang Zhou; David Weise
2009-01-01
The transition of fire from dry surface fuels to wet shrub crown fuels was studied using laboratory experiments and a simple physical model to gain a better understanding of the transition process. In the experiments, we investigated the effects of varying vertical distances between surface and crown fuels (crown base height), and of the wind speed on crown fire...
Fuel quality-processing study. Volume 2: Literature survey
NASA Technical Reports Server (NTRS)
Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.
1981-01-01
The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.
241Am Ingrowth and Its Effect on Internal Dose
Konzen, Kevin
2016-07-01
Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons and reactor fuel. This work focuses on three typical plutonium mixtures, while observing the potential of 241Am ingrowth and its effect on internal dose. The term “ingrowth” is used to describe 241Am production due solely from the decay of 241Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for 241Am ingrowth unless the 241Pu quantity is specified. This work suggested that 241Am ingrowth be considered in bioassay analysis when theremore » is a potential of a 10% increase to the individual’s committed effective dose. It was determined that plutonium fuel mixtures, initially absent of 241Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 years; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. In conclusion, although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konzen, Kevin
Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons and reactor fuel. This work focuses on three typical plutonium mixtures, while observing the potential of 241Am ingrowth and its effect on internal dose. The term “ingrowth” is used to describe 241Am production due solely from the decay of 241Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for 241Am ingrowth unless the 241Pu quantity is specified. This work suggested that 241Am ingrowth be considered in bioassay analysis when theremore » is a potential of a 10% increase to the individual’s committed effective dose. It was determined that plutonium fuel mixtures, initially absent of 241Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 years; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. In conclusion, although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.« less
Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong
2017-08-01
This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.
77 FR 61539 - Airworthiness Directives; DASSAULT AVIATION Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... the area of the wheel well. We are proposing this AD to prevent fuel spillage in the event of a MLG... modification of the wing fuel tanks in the area of the wheel well which introduces a dry bay by adding a sealed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imhoff, Seth D.; Gibbs, Paul Jacob; Solis, Eunice Martinez
Process exploration for fuel production for the High Flux Isotope Reactor (HFIR) using cast LEU-10wt.%Mo as an initial processing step has just begun. This project represents the first trials concerned with casting design and quality. The studies carried out over the course of this year and information contained in this report address the initial mold development to be used as a starting point for future operations. In broad terms, the final billet design is that of a solid rolling blank with an irregular octagonal cross section. The work covered here is a comprehensive view of the initial attempts to producemore » a sound casting. This report covers the efforts to simulate, predict, cast, inspect, and revise the initial mold design.« less
Overview of fuel inventory in JET with the ITER-like wall
NASA Astrophysics Data System (ADS)
Widdowson, A.; Coad, J. P.; Alves, E.; Baron-Wiechec, A.; Barradas, N. P.; Brezinsek, S.; Catarino, N.; Corregidor, V.; Heinola, K.; Koivuranta, S.; Krat, S.; Lahtinen, A.; Likonen, J.; Matthews, G. F.; Mayer, M.; Petersson, P.; Rubel, M.; Contributors, JET
2017-08-01
Post mortem analyses of JET ITER-Like-Wall tiles and passive diagnostics have been completed after each of the first two campaigns (ILW-1 and ILW-2). They show that the global fuel inventory is still dominated by co-deposition; hence plasma parameters and sputtering processes affecting material migration influence the distribution of retained fuel. In particular, differences between results from the two campaigns may be attributed to a greater proportion of pulses run with strike points in the divertor corners, and having about 300 discharges in hydrogen at the end of ILW-2. Recessed and remote areas can contribute to fuel retention due to the larger areas involved, e.g. recessed main chamber walls, gaps in castellated Be main chamber tiles and material migration to remote divertor areas. The fuel retention and material migration due to the bulk W Tile 5 during ILW-1 are presented. Overall these tiles account for only a small percentage of the global accountancy for ILW-1.
Fireplaces and Fireplace Fuels.
ERIC Educational Resources Information Center
Metz, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…
46 CFR 108.237 - Fuel storage facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...
46 CFR 108.237 - Fuel storage facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...
46 CFR 108.237 - Fuel storage facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...
46 CFR 108.237 - Fuel storage facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...
Future long-range transports - Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: historical trends in airplane efficiency; technological opportunities including supercritical aerodynamics, vortex diffusers, composite materials, propulsion systems, active controls, and terminal-area operations; unconventional design concepts, and hydrogen-fueled airplane.
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peyton, Brent
This initiative funding helped put Montana State University (MSU) in a position to help lead in the development of biodiesel production strategies. Recent shortages in electrical power and rising gasoline prices have focused much attention on the development of alternative energy sources that will end our dependence on fossil fuels. In addition, as the concern for environmental impact of utilizing fossil fuels increases, effective strategies must be implemented to reduce emissions or the increased regulations imposed on fossil fuel production will cause economic barriers for their use to continue to increase. Biodiesel has been repeatedly promoted as a more environmentallymore » sound and renewable source of fuel and may prove to be a highly viable solution to provide, at the least, a proportion of our energy needs. Currently there are both practical and economic barriers to the implementation of alternative energy however the advent of these technologies is inevitable. Since many of the same strategies for the storage, transport, and utilization of biodiesel are common with that of fossil fuels, the practical barriers for biodiesel are comparatively minimal. Strategies were developed to harness the CO 2 as feedstock to support the growth of biodiesel producing algae. The initiative funding led to the successful funding of highly rated projects in competitive national grant programs in the National Science Foundation and the Department of Energy. This funding put MSU in a key position to develop technologies to utilize the CO 2 rich emissions produced in fossil fuel utilization and assembled world experts concerning the growth characteristics of photosynthetic microorganisms capable of producing biodiesel.« less
Feasibility of Using Alternate Fuels in the U.S. Antarctic Program: Initial Assessment
2017-09-01
Figures 1 Platts’ Jet A fuel prices per gallons from 1990 to 2013. Platts’ pricing is a real time market process for determining the cost of fossil ... fossil fuels. This process takes into account supply, demand, and current events. Since 1909, Platts has been reporting these real time prices and...refinery to upload NSF’s fuel to the day it arrives at a destination where it will per- form work for a different customer). Over the past decade, day
Safety consequences of local initiating events in an LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.
1975-12-01
The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.
Development of Accelerated Fuel-Engines Qualification Procedures Methodology. Volume II. Appendices.
1981-12-01
temperature test and the spot calibration, remove the clay filter. Reset the maximum fuel temperature safety device for 1900F. Continue cycling per Figure...34 -t " ;" " pum p . 1...0.,. Fuel ’ ’ ’ :’: ? Secondary ; Filter (S) -, A TVented Cap Removable Screen\\ - Tank Fu e.l ExpansSon DtVrent Pipe A n...practice, improper installation or adjustment of components *Do not remove or inspect secondary fuel filter. One of the initial production engines is
Drop-In Alternative Jet Fuels: Status of DoDs RDT and E, Interagency Initiatives, and Policies
2015-08-25
biodiesel , EVs, natural gas Drivers: Compliance and cost Market penetration: % of fuel use 3 INSTALLATIONS (COMPLIANCE) Military...including pure biodiesel (B100))1 – P‐Series.2 4 Why does DoD Care about “Drop‐in” Alternative Fuels for Operational Platforms? • Fuels for operations make
Missouri Soybean Association Biodiesel Demonstration Project: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, Dale; Hamilton, Jill
The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry educationmore » program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to support ongoing industry efforts to collect existing data and to increase awareness and knowledge among school district fleet managers. However, three years into the project, the original intent of the engine verification was no longer deemed by equipment manufacturers to be of sufficient economic interest to enter into a partnership. In response, MSA requested a project extension and re-scope to eliminate the aftermarket equipment verification and replace it with a petroleum education program. The revised project maintained four task areas with the following modifications. The first component was directed at increasing national compliance with newly initiated state level fuel blend mandates through a distributor education program. Component two was modified to eliminate the verification element and, instead, document operational data from biodiesel use in a district school bus fleet. Components three and four were unchanged and maintained their purpose of expanding upon the existing knowledge base of biodiesel use in school bus fleets.« less
Posttest examination results of recent treat tests on metal fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.; Wright, A.E.; Bauer, T.H.
A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity.more » Eutectic penetration and failure of the cladding were also examined in the failed pins.« less
NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao
2014-01-01
Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: 1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and 2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about 3 for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.
NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao
2014-01-01
Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: (1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and (2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about three for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.
On the critical flame radius and minimum ignition energy for spherical flame initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zheng; Burke, M. P.; Ju, Yiguang
2011-01-01
Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less
Outdoor cooking prevalence in developing countries and its implication for clean cooking policies
NASA Astrophysics Data System (ADS)
Langbein, Jörg; Peters, Jörg; Vance, Colin
2017-11-01
More than 3 billion people use wood fuels for their daily cooking needs, with detrimental health implications related to smoke emissions. Best practice global initiatives emphasize the dissemination of clean cooking stoves, but these are often expensive and suffer from interrupted supply chains that do not reach rural areas. This emphasis neglects that many households in the developing world cook outdoors. Our calculations suggest that for such households, the use of less expensive biomass cooking stoves can substantially reduce smoke exposure. The cost-effectiveness of clean cooking policies can thus be improved by taking cooking location and ventilation into account.
Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers
NASA Technical Reports Server (NTRS)
Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.
1961-01-01
Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.
Renewing Liquid Fueled Molten Salt Reactor Research and Development
NASA Astrophysics Data System (ADS)
Towell, Rusty; NEXT Lab Team
2016-09-01
Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.
Environmental Assessment (EA): Proposed Truck Offload Station, Hill Air Force Base, Utah
2012-11-09
AFB storm drainage system . A spill occurred outside the containment area when a fuel trailer struck a concrete wall and the fuel tank ruptured...The trailer was immediately pulled into the containment area, but some fuel had already entered the Hill AFB storm drainage system and flowed to Pond 3...placed in containers for proper disposal. Clean water would then be released to the Hill AFB storm drainage system . The proposed action would
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2000-04-01
During this quarter, in task area 1, work was performed on three separate areas of activity. These were (1) review of the proposed and final EPA Tier 2 regulations, (2) assistance in preparation of an ultra-clean transportation fuels report for the deputy assistant secretary for Fossil Energy, (3) preparation of a detailed trip report from attending the Clean Fuels 2000 conference in San Diego. In task area 4, three activities were undertaken: an update of coproduction, an analysis of the potential for gasification of petroleum coke in U.S. refineries, and preparation and presentation of a paper at the Coal Utilizationmore » and Fuel Systems conference in Clearwater. In task area 5, a presentation was prepared for the American Association of Petroleum Geologists (AAPG) Annual Convention to be held in New Orleans in April. This presentation was an overview of GTL technology including the current costs and product values. In addition the potential risks of the technology were addressed and the potential contribution of GTL products to the future world fuel market was discussed.« less
Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell
NASA Technical Reports Server (NTRS)
Britton, Doris L.
1996-01-01
The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snoj, L.; Sklenka, L.; Rataj, J.
2012-07-01
The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three differentmore » research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)« less
Small enterprise opportunities in municipal solid waste management.
Grierson, J P; Brown, A
1999-02-01
Most developing countries are rapidly urbanizing, with growing urban populations fueling demand for more and better urban services which many cities simply cannot provide given the current financial constraints. With the public sector unable to service the needs of expanding cities, small businesses are moving in to fill the vacuum. Such fledgling private sector initiatives have often prevented problems from becoming crises, while also demonstrating that private sector enterprises have an important role to play in meeting the demand for municipal services. Waste collection and processing is an area which could benefit from private sector involvement and greater public-private coordination. The authors examine the progress to date of an action-research initiative led by the Collaborative Group on Municipal Solid Waste Management in Low-income Countries which is developing best practice guidelines for expanding the involvement of micro- and small enterprises in municipal solid waste management.
Impact of anthropogenic climate change on wildfire across western US forests.
Abatzoglou, John T; Williams, A Park
2016-10-18
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.
Impact of anthropogenic climate change on wildfire across western US forests
NASA Astrophysics Data System (ADS)
Abatzoglou, John T.; Park Williams, A.
2016-10-01
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ˜55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.
NASA Astrophysics Data System (ADS)
White, Robin T.; Wu, Alex; Najm, Marina; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-05-01
A four-dimensional visualization approach, featuring three dimensions in space and one dimension in time, is proposed to study local electrode degradation effects during voltage cycling in fuel cells. Non-invasive in situ micro X-ray computed tomography (XCT) with a custom fuel cell fixture is utilized to track the same cathode catalyst layer domain throughout various degradation times from beginning-of-life (BOL) to end-of-life (EOL). With this unique approach, new information regarding damage features and trends are revealed, including crack propagation and catalyst layer thinning being quantified by means of image processing and analysis methods. Degradation heterogeneities as a result of local environmental variations under land and channel are also explored, with a higher structural degradation rate under channels being observed. Density and compositional changes resulting from carbon corrosion and catalyst layer collapse and thinning are observed by changes in relative X-ray attenuation from BOL to EOL, which also indicate possible vulnerable regions where crack initiation and propagation may occur. Electrochemical diagnostics and morphological features observed by micro-XCT are correlated by additionally collecting effective catalyst surface area, double layer capacitance, and polarization curves prior to imaging at various stages of degradation.
Low Carbon Technology Options for the Natural Gas ...
The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic
Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication
NASA Technical Reports Server (NTRS)
Mireles, O. R.; Broadway, J.; Hickman, R.
2014-01-01
Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.
On-site fuel cell field test support program
NASA Astrophysics Data System (ADS)
Staniunas, J. W.; Merten, G. P.
1982-01-01
In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.
Conceptual design of quadriso particles with europium burnable absorber in HTRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, A.; Nuclear Engineering Division
2010-05-18
In High Temperature Reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this study QUADRISO particles are proposed to manage the initial xcess reactivity of High Temperature Reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This echanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the nitialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, ore eutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic High Temperature Reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less
A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, A.
2010-07-01
In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less
Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor
NASA Astrophysics Data System (ADS)
Natta, Saswathi; Aristova, Maria; Gentile, Charles
2008-11-01
A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.
A novel concept of QUADRISO particles : Part II Utilization for excess reactivity control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, A.
2011-01-01
In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less
Balaguer, Jacint; Ripollés, Jordi
2016-01-01
The data described in this article were collected daily over the period June 10, 2010, to November 25, 2012, from the website of the Spanish Ministry of Industry, Energy and Tourism. The database includes information about fuel stations regarding to their prices (both gross and net of taxes), brand, location (latitude and longitude), and postal code in the Spanish provinces of Madrid and Barcelona. Moreover, obtaining the postal codes has allowed us to select those stations that are operating within the metropolitan areas of Madrid and Barcelona. By considering those fuel stations that uninterruptedly provided prices during the entire period, the data can be especially useful to explore the dynamics of prices in fuel markets. This is the case of Balaguer and Ripollés (2016), “Asymmetric fuel price responses under heterogeneity” [1], who, taking into account the presence of the potential heterogeneity of the behaviour of fuel stations, used this statistical information to perform an analysis on asymmetric fuel price responses. PMID:26933671
Balaguer, Jacint; Ripollés, Jordi
2016-06-01
The data described in this article were collected daily over the period June 10, 2010, to November 25, 2012, from the website of the Spanish Ministry of Industry, Energy and Tourism. The database includes information about fuel stations regarding to their prices (both gross and net of taxes), brand, location (latitude and longitude), and postal code in the Spanish provinces of Madrid and Barcelona. Moreover, obtaining the postal codes has allowed us to select those stations that are operating within the metropolitan areas of Madrid and Barcelona. By considering those fuel stations that uninterruptedly provided prices during the entire period, the data can be especially useful to explore the dynamics of prices in fuel markets. This is the case of Balaguer and Ripollés (2016), "Asymmetric fuel price responses under heterogeneity" [1], who, taking into account the presence of the potential heterogeneity of the behaviour of fuel stations, used this statistical information to perform an analysis on asymmetric fuel price responses.
NASA Astrophysics Data System (ADS)
Clief Pattipawaej, Sandro; Su'ud, Zaki
2017-01-01
A preliminary design study of GFR with helium gas-cooled has been performed. In this study used natural uranium and plutonium results LWR waste as fuel. Fuel with a small percentage of plutonium are arranged on the inside of the core area, and the fuel with a greater percentage set on the outside of the core area. The configuration of such fuel is deliberately set to increase breeding in this part of the central core and reduce the leakage of neutrons on the outer side of the core, in order to get long-lived reactor with a small reactivity. Configuration of fuel as it is also useful to generate a peak power reactors with relatively low in both the direction of axial or radial. Optimization has been done to fuel fraction 45.0% was found that the reactor may be operating in more than 10 year time with excess reactivity less than 1%.
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Milovanov, O. Yu; Sinelshchikov, V. A.; Sytchev, G. A.; Zaichenko, V. M.
2015-11-01
Effect of torrefaction on consumer characteristics of fuel pellets made of low-grade and agricultural waste is shown. Data on the volatile content, ash content, calorific value and hygroscopicity for initial pellets and pellets, heat-treated at various temperatures are presented. The experimental study of the combustion process of initial and heat-treated pellets showed that torrefaction of pellets leads to a decreasing of the ignition temperature and an increasing of the efficiency of boiler plant.
Thermally efficient melting and fuel reforming for glass making
Chen, Michael S.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary S.; Winchester, David C.
1991-01-01
An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.
Initial Design and Construction of a Mobil Regenerative Fuel Cell System
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Maloney, Thomas; Hoberecht, Mark (Technical Monitor)
2003-01-01
The design and initial construction of a mobile regenerative power system is described. The main components of the power system consists of a photovoltaic array, regenerative fuel cell and electrolyzer. The system is mounted on a modified landscape trailer and is completely self contained. An operational analysis is also presented that shows predicted performance for the system at various times of the year. The operational analysis consists of performing an energy balance on the system based on array output and total desired operational time.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
Wood wastes and residues generated along the Colorado Front Range as a potential fuel source
Julie E. Ward; Kurt H. Mackes; Dennis L. Lynch
2004-01-01
Throughout the United States there is interest in utilizing renewable fuel sources as an alternative to coal and nat-ural gas. This project was initiated to determine the availability of wood wastes and residues for use as fuel in ce-ment kilns and power plants located along the Colorado Front Range. Research was conducted through literature searches, phone surveys,...
Christine Esposito
2006-01-01
When making decisions about fuels treatments, forest managers need to assess not only the biological impacts of a treatment, but the social impacts as well. Social acceptability is based on value judgments by people-their notions of what is "good" and what is "better." This fact sheet discusses six questions that may be useful for framing initial...
NASA Technical Reports Server (NTRS)
Johnson, Lavern A; Meyer, Carl L
1950-01-01
A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.
Commercialization of proton exchange membrane fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wismer, L.
1996-04-01
Environmental concerns with air quality and global warming have triggered strict federal ambient ozone air quality standards. Areas on non-attainment of these standards exist across the United States. Because it contains several of the most difficult attainment areas, the State of California has adopted low emission standards including a zero emission vehicle mandate that has given rise to development of hybrid electric vehicles, both battery-powered and fuel-cell powered. Fuel cell powered vehicles, using on-board hydrogen as a fuel, share the non-polluting advantage of the battery electric vehicle while offering at least three times the range today`s battery technology.
Nanowire mesh solar fuels generator
Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin
2016-05-24
This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.
Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine
NASA Astrophysics Data System (ADS)
Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei
2017-05-01
In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.
Riparian fuel treatments in the western USA: Challenges and considerations
Kathleen A. Dwire; Kristen E. Meyer; Gregg Riegel; Timothy Burton
2016-01-01
Fuel reduction treatments are being conducted throughout watersheds of the western United States to reduce hazardous fuels in efforts to decrease the risk of high-severity fire. The number of fuel reduction projects that include near-stream environments is increasing, bringing new challenges to riparian management. Riparian areas are protected by administrative...
NASA Astrophysics Data System (ADS)
Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao
With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration : First Results Report
DOT National Transportation Integrated Search
2011-08-01
In response to the California Air Resources Board (CARB) rule for transit agencies in the state, five San Francisco Bay Area transit agencies have joined together to demonstrate the largest fleet of fuel cell buses in the United States. The Zero Emis...
NATIONAL INVENTORIES FOR AREA SOURCE FUEL COMBUSTION AND GASOLINE MARKETING IN 1999
The product will be a set of estimates of county-level 1999 emissions of all relevant air pollutants from gasoline marketing and from the combustion of fuel by "area" sources, i.e., those too small be be required to report their emissions individually.
Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen
environmental security of the United States by supporting local initiatives to adopt practices that reduce the federal fuel taxes. Common nontaxable uses in a motor vehicle are: on a farm for farming purposes; in
Clean Cities Now Vol. 19, No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-07-24
Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
NASA Technical Reports Server (NTRS)
Kraus, Donna Karen
1993-01-01
It is desired to maintain supersonic flow through the combustor of supersonic airbreathing engines to reduce static temperatures and total pressure losses inherent in reducing flow to subsonic speeds. Due to the supersonic speeds through the combustor, mixing of the fuel and air must by rapid for complete combustion to occur within a reasonable streamwise distance. It was proposed that the addition of swirl to the fuel jet prior to injection might enhance the mixing of the fuel with the air. The effects of swirl on the mixing of a 30 deg wall jet into a Mach 2 flow were experimentally investigated. Swirl was introduced into the fuel stream by tangential injection into a cylindrical swirl chamber. The flow was then accelerated through a convergent-divergent nozzle with an area ratio of two, and supersonically injected into the Mach 2 flow such that the static pressure of the fuel matched the effective back pressure of the main flow. Two different cases with swirl and one without swirl were investigated, with both helium and air simulating the fuel. Rayleigh scattering was used to visualize the flow and seeding the fuel with water allowed it to be traced through the main flow. Using histograms of the pure molecular Rayleigh scattering images, the helium concentration in the jet-mixing region of the flow was monitored and found to decrease slightly with swirl, indicating better mixing. Thresholding the water-seeded images allowed the jet-mixing region to be isolated and showed a slight increase in this area with swirl. Penetration, however, was slightly less with swirl. Rescaling the data for equal mass flow rates allowed comparison for a scramjet application of a combustor with a single injector and the desire to fuel to a specified fuel-to-oxidant ratio. These results showed a substantial increase in the spreading area with swirl, an increase in the mixing occurring in this area, and slightly better penetration.
Carlson, Gary A.
1976-01-01
An aerially delivered fuel-air munition consisting of an impermeable tank filled with a pressurized liquid fuel and joined at its two opposite ends with a nose section and a tail assembly respectively to complete an aerodynamic shape. On impact the tank is explosively ruptured to permit dispersal of the fuel in the form of a fuel-air cloud which is detonated after a preselected time delay by means of high explosive initiators ejected from the tail assembly. The primary component in the fuel is methylacetylene, propadiene, or mixtures thereof to which is added a small mole fraction of a relatively high vapor pressure liquid diluent or a dissolved gas diluent having a low solubility in the primary component.
Sun Grant Initiative : great strides toward a sustainable and more energy-independent future
DOT National Transportation Integrated Search
2014-09-01
The Sun Grant Initiative publication, developed by the U.S. Department of Transportation, offers a glimpse of how the Sun Grant Initiative Centers are advancing alternative fuels research. Transportation plays a significant role in biofuels research,...
Risks to global biodiversity from fossil-fuel production exceed those from biofuel production
Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.
2014-12-02
Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less
Risks to global biodiversity from fossil-fuel production exceed those from biofuel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.
Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less
A Burning Rate Emulator (BRE) for Study in Microgravity
NASA Technical Reports Server (NTRS)
Markan, A.; Sunderland, P. B.; Quintiere, J. G.; DeRis, J.; Stocker, D. P.
2015-01-01
A gas-fueled burner, the Burning Rate Emulator (BRE), is used to emulate condensed-phase fuel flames. The design has been validated to easily measure the burning behavior of condensed-phase fuels by igniting a controlled stream of gas fuel and diluent. Four properties, including the heat of combustion, the heat of gasification, the surface temperature, and the laminar smoke point, are assumed to be sufficient to define the steady burning rate of a condensed-phase fuel. The heat of gasification of the fuel is determined by measuring the heat flux and the fuel flow rate. Microgravity BRE tests in the NASA 5.2 s drop facility have examined the burning of pure methane and ethylene (pure and 50 in N2 balance). Fuel flow rates, chamber oxygen concentration and initial pressure have been varied. Two burner sizes, 25 and 50 mm respectively, are chosen to examine the nature of initial microgravity burning. The tests reveal bubble-like flames that increase within the 5.2s drop but the heat flux received from the flame appears to asymptotically approach steady state. Portions of the methane flames appear to locally detach and extinguish at center, while its shape remains fixed, but growing. The effective heat of gasification is computed from the final measured net heat flux and the fuel flow rate under the assumption of an achieved steady burning. Heat flux (or mass flux) and flame position are compared with stagnant layer burning theory. The analysis offers the prospect of more complete findings from future longer duration ISS experiments.
Lightweight aircraft engines, the potential and problems for use of automotive fuels
NASA Technical Reports Server (NTRS)
Patterson, D. J.
1983-01-01
A comprehensive data research and analysis for evaluating the use of automotive fuels as a substitute for aviation grade fuel by piston-type general aviation aircraft engines is presented. Historically known problems and potential problems with fuels were reviewed for possible impact relative to application to an aircraft operational environment. This report reviews areas such as: fuel specification requirements, combustion knock, preignition, vapor lock, spark plug fouling, additives for fuel and oil, and storage stability.
1990 fuel cell seminar: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-31
This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.
Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas
NASA Astrophysics Data System (ADS)
Stempien, J. P.; Chan, S. H.
2017-02-01
Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.
CleanFleet final report. Volume 4, fuel economy
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
National Jet Fuels Combustion Program – Area #3 : Advanced Combustion Tests
DOT National Transportation Integrated Search
2017-12-31
The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the experimental combustors developed under ASCENT National Fuel Combustion Program to measure sensitivity to fuel properties. We conducted advanced...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir
2014-09-18
Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performedmore » in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.« less
Out-of-core Evaluations of Uranium Nitride-fueled Converters
NASA Technical Reports Server (NTRS)
Shimada, K.
1972-01-01
Two uranium nitride fueled converters were tested parametrically for their initial characterization and are currently being life-tested out of core. Test method being employed for the parametric and the diagnostic measurements during the life tests, and test results are presented. One converter with a rhenium emitter had an initial output power density of 6.9 W/ sq cm at the black body emitter temperature of 1900 K. The power density remained unchanged for the first 1000 hr of life test but degraded nearly 50% percent during the following 1000 hr. Electrode work function measurements indicated that the uranium fuel was diffusing out of the emitter clad of 0.635 mm. The other converter with a tungsten emitter had an initial output power density of 2.2 W/ sq cm at 1900 K with a power density of 3.9 W/sq cm at 4300 h. The power density suddenly degraded within 20 hr to practically zero output at 4735 hr.
Geoffrey J. Cary; Ian D. Davies; Ross A. Bradstock; Robert E. Keane; Mike D. Flannigan
2017-01-01
Context: Wildland fire intensity influences natural communities, soil properties, erosion, and sequestered carbon. Measuring effectiveness of fuel treatment for reducing area of higher intensity unplanned fire is argued to be more meaningful than determining effect on total unplanned area burned. Objectives...