Sample records for area navigation system

  1. Area navigation and required navigation performance procedures and depictions

    DOT National Transportation Integrated Search

    2012-09-30

    Area navigation (RNAV) and required navigation performance (RNP) procedures are fundamental to the implementation of a performance based navigation (PBN) system, which is a key enabling technology for the Next Generation Air Transportation System (Ne...

  2. A flight investigation of system accuracies and operational capabilities of a general aviation area navigation systems

    DOT National Transportation Integrated Search

    1977-06-01

    Flight tests were conducted at the National Aviation Facilities Experimental : Center (NAFEC) using a general aviation area navigation (RNAV) system to : investigate system accuracies and resultant airspace requirements in the : terminal area. Issues...

  3. Area navigation implementation for a microcomputer-based LORAN-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    Engineering performed to make LORAN-C a more useful and practical navigation system for general aviation is described. Development of new software, and implementation of this software on a (MOS6502) microcomputer to provide high quality practical area navigation information directly to the pilot and considered. Flight tests were performed specifically to examine the efficacy of this new software. Final results were exceptionally good and clearly demonstrate the merits of this new LORAN-C area navigation system.

  4. A comparative analysis of area navigation systems in general aviation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dodge, S. M.

    1973-01-01

    Radio navigation systems which offer the capabilities of area navigation to general aviation operators are discussed. The systems considered are: (1) the VORTAC system, (2) the Loran-C system, and (3) the Differential Omega system. The inital analyses are directed toward a comparison of the systems with respect to their compliance to specified performance parameters and to the cost effectiveness of each system in relation to those specifications. Further analyses lead to the development of system cost sensitivity charts, and the employment of these charts allows conclusions to be drawn relative to the cost-effectiveness of the candidate navigation system.

  5. Flight test and evaluation of Omega navigation for general aviation

    NASA Technical Reports Server (NTRS)

    Hwoschinsky, P. V.

    1975-01-01

    A seventy hour flight test program was performed to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely separated geographic areas. Comparison is made of the results of these flights with other navigation systems. Conclusions drawn from the test experience indicate that developmental system improvement is necessary before a competent fail safe or fail soft area navigation system is offered to general aviation.

  6. 33 CFR 161.25 - Vessel Traffic Service New York Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vessel Traffic Service New York... Movement Reporting System Areas and Reporting Points § 161.25 Vessel Traffic Service New York Area. The area consists of the navigable waters of the Lower New York Harbor bounded on the east by a line drawn...

  7. The development of a white cane which navigates the visually impaired.

    PubMed

    Shiizu, Yuriko; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige

    2007-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines, RFID tags and an intelligent white cane. In our system, some colored marking tapes are set on along the walking route. These lines are called navigation line. And also RFID tags are set on this line at each landmark point. The intelligent white cane can sense a color of navigation line and receive tag information. By vibration of white cane, the system informs the visually impaired that he/she is walking along the navigation line. At the landmark point, the system also notifies area information to him/her by pre-recorded voice. Ten normal subjects who were blind folded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the area information system was good. Therefore, we have concluded that our system will be extremely valuable in supporting the activities of the visually impaired.

  8. 75 FR 42819 - Airborne Area Navigation Equipment Using Loran-C Inputs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Using Loran-C Inputs AGENCY: Federal Aviation Administration (FAA), DOT ACTION: Notice of cancellation of: (1) Loran-C navigation system Technical Standard Orders (TSO); and (2) the revocation of Loran-C... the cancellation of Technical Standard Order (TSO) C-60, Airborne Area Navigation Equipment Using...

  9. 75 FR 22674 - Airborne Area Navigation Equipment Using Loran-C Inputs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Using Loran-C Inputs AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of cancellation of: (1) Loran-C navigation system Technical Standard Orders (TSO); and (2) the revocation of Loran-C... the cancellation of Technical Standard Order (TSO) C-60, Airborne Area Navigation Equipment Using...

  10. Crew aiding and automation: A system concept for terminal area operations, and guidelines for automation design

    NASA Technical Reports Server (NTRS)

    Dwyer, John P.

    1994-01-01

    This research and development program comprised two efforts: the development of guidelines for the design of automated systems, with particular emphasis on automation design that takes advantage of contextual information, and the concept-level design of a crew aiding system, the Terminal Area Navigation Decision Aiding Mediator (TANDAM). This concept outlines a system capable of organizing navigation and communication information and assisting the crew in executing the operations required in descent and approach. In service of this endeavor, problem definition activities were conducted that identified terminal area navigation and operational familiarization exercises addressing the terminal area navigation problem. Both airborne and ground-based (ATC) elements of aircraft control were extensively researched. The TANDAM system concept was then specified, and the crew interface and associated systems described. Additionally, three descent and approach scenarios were devised in order to illustrate the principal functions of the TANDAM system concept in relation to the crew, the aircraft, and ATC. A plan for the evaluation of the TANDAM system was established. The guidelines were developed based on reviews of relevant literature, and on experience gained in the design effort.

  11. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area

    PubMed Central

    Hao, Guozhu

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream. PMID:27391057

  12. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area.

    PubMed

    Jiang, Dan; Hao, Guozhu; Huang, Liwen; Zhang, Dan

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream.

  13. 33 CFR 161.45 - Vessel Traffic Service St. Marys River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vessel Traffic Service St. Marys... Movement Reporting System Areas and Reporting Points § 161.45 Vessel Traffic Service St. Marys River. (a) The VTS area consists of the navigable waters of the St. Marys River and lower Whitefish Bay from 45...

  14. Human Factors for Loran-C Receivers

    DOT National Transportation Integrated Search

    1990-04-01

    Loran-C is an inexpensive, compact, and functionally powerful area navigation system. : The application of this system to aeronautical navigation is an exciting occurrence for : general aviation pilots. In the cockpit these systems simplify and incre...

  15. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    PubMed

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  16. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles

    PubMed Central

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-01-01

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance. PMID:28346346

  17. The UAV take-off and landing system used for small areas of mobile vehicles

    NASA Astrophysics Data System (ADS)

    Ren, Tian-Yu; Duanmu, Qing-Duo; Wu, Bo-Qi

    2018-03-01

    In order to realize an UAV formation cluster system based on the current GPS and the fault and insufficiency of Beidou integrated navigation system in strong jamming environment. Due to the impact of the compass on the plane crash, navigation system error caused by the mobile area to help reduce the need for large landing sites and not in the small fast moving area to achieve the reality of the landing. By using Strapdown inertial and all-optical system to form Composite UAV flight control system, the photoelectric composite strapdown inertial coupling is realized, and through the laser and microwave telemetry link compound communication mechanism, using all-optical strapdown inertial and visual navigation system to solve the deviation of take-off and landing caused by electromagnetic interference, all-optical bidirectional data link realizes two-way position correction of landing site and aircraft, thus achieves the accurate recovery of UAV formation cluster in the mobile narrow area which the traditional navigation system can't realize. This system is a set of efficient unmanned aerial vehicle Group Take-off/descending system, which is suitable for many tasks, and not only realizes the reliable continuous navigation under the complex electromagnetic interference environment, moreover, the intelligent flight and Take-off and landing of unmanned aerial vehicles relative to the fast moving and small recovery sites in complex electromagnetic interference environment can not only improve the safe operation rate of unmanned aerial vehicle, but also guarantee the operation safety of the aircraft, and the more has important social value for the application foreground of the aircraft.

  18. 76 FR 58105 - Regulated Navigation Area; Saugus River, Lynn, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ...-AA11 Regulated Navigation Area; Saugus River, Lynn, MA AGENCY: Coast Guard, DHS. ACTION: Temporary... River in Lynn, MA. Establishing this temporary rule will allow the necessary stabilization work to be... on the Energy Systems Pipeline Bridge on the Saugus River in Lynn, MA. The regulated area encompasses...

  19. Human Factors Considerations for Performance-Based Navigation

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    A transition toward a performance-based navigation system is currently underway in both the United States and around the world. Performance-based navigation incorporates Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures that do not rely on the location of ground-based navigation aids. These procedures offer significant benefits to both operators and air traffic managers. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document human factors issues that have emerged during RNAV and RNP operations and propose areas for further consideration. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for human factors-specific instrument procedure design guidelines. Ongoing industry and government activities to address air-ground communication terminology, procedure design improvements, and chart-database commonality are strongly encouraged.

  20. 33 CFR 127.1111 - Communication systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Communication systems. 127.1111... systems. (a) The marine transfer area for LHG must possess a communication system that enables continuous... in charge of transfer for the facility. (b) The communication system required by paragraph (a) of...

  1. 33 CFR 127.1111 - Communication systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Communication systems. 127.1111... systems. (a) The marine transfer area for LHG must possess a communication system that enables continuous... in charge of transfer for the facility. (b) The communication system required by paragraph (a) of...

  2. 33 CFR 127.1111 - Communication systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Communication systems. 127.1111... systems. (a) The marine transfer area for LHG must possess a communication system that enables continuous... in charge of transfer for the facility. (b) The communication system required by paragraph (a) of...

  3. 33 CFR 127.1111 - Communication systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Communication systems. 127.1111... systems. (a) The marine transfer area for LHG must possess a communication system that enables continuous... in charge of transfer for the facility. (b) The communication system required by paragraph (a) of...

  4. 33 CFR 127.1111 - Communication systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Communication systems. 127.1111... systems. (a) The marine transfer area for LHG must possess a communication system that enables continuous... in charge of transfer for the facility. (b) The communication system required by paragraph (a) of...

  5. A model for addressing navigation limitations and metacognitive constraints in hypermedia training systems

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1990-01-01

    A model for addressing navigation limitations and metacognitive constraints in hypermedia training systems is presented in the form of the viewgraphs. The following subject areas are covered: samples of software and people problems; system design; and hypermedia training system.

  6. Evaluation of a technique to simplify area navigation and required navigation performance charts

    DOT National Transportation Integrated Search

    2013-06-30

    Performance based navigation (PBN), an enabler for the Federal Aviation Administration's Next Generation Air Transportation System (NextGEN), supports the design of more precise flight procedures. However, these new procedures can be visually complex...

  7. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.

  8. Navigation Operations for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  9. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position errors never exceeded 16 cm during these field tests.

  10. Preliminary Design of Nano Satellite for Regional Navigation System

    NASA Astrophysics Data System (ADS)

    Fathurrohim, L.; Poetro, R. E.; Kurniadi, B.; Fadillah, P. A.; Iqbal, M.

    2018-04-01

    A Low cost Regional Navigation Satellite System employing constellation of nano satellites has been proposed for Indonesian coverage. The constellation of Low Earth Orbit nano satellites off course will not be able to give better position fixed to the GPS. However, the design of navigation system has much lower in cost compare to the current navigation system. This paper tells about preliminary design of the proposed regional navigation satellite system. The results of our satellite design has 3 kg on its weight, 10 W on power requirement at the peak condition, and 2.7 years of lifetime. Payload communication of the satellite will use UHF and TT&C communication will use VHF. Total area of solar panel will be 0.11 m2.

  11. 78 FR 24987 - Regulated Navigation Area, Gulf of Mexico; Mississippi Canyon Block 20, South of New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... establishing a Regulated Navigation Area (RNA) in the Mississippi Canyon Block 20 in the Gulf of Mexico. This RNA is needed to protect the subsurface monitoring and collection dome system [[Page 24988

  12. Terminal area automatic navigation, guidance, and control research using the Microwave Landing System (MLS). Part 2: RNAV/MLS transition problems for aircraft

    NASA Technical Reports Server (NTRS)

    Pines, S.

    1982-01-01

    The problems in navigation and guidance encountered by aircraft in the initial transition period in changing from distance measuring equipment, VORTAC, and barometric instruments to the more precise microwave landing system data type navaids in the terminal area are investigated. The effects of the resulting discontinuities on the estimates of position and velocity for both optimal (Kalman type navigation schemes) and fixed gain (complementary type) navigation filters, and the effects of the errors in cross track, track angle, and altitude on the guidance equation and control commands during the critical landing phase are discussed. A method is presented to remove the discontinuities from the navigation loop and to reconstruct an RNAV path designed to land the aircraft with minimal turns and altitude changes.

  13. Aquatic habitat change in the Arkansas river after the development of a lock-and-dam commercial navigation system

    USGS Publications Warehouse

    Schramm, H.L.; Minnis, R.B.; Spencer, A.B.; Theel, R.T.

    2008-01-01

    The McClellan-Kerr Arkansas River Navigation System (MKARNS), completed in 1971, required the construction of 17 locks and dams and associated navigation works to make the Arkansas and Verdigris Rivers navigable for barge traffic from the Mississippi River to Catoosa, Oklahoma. We used a Geographic Information System to assess habitat changes in the 477-km portion of this system within Arkansas from 1973 to 1999. Total aquatic area declined by 9% from 42 404 to 38 655 ha. Aquatic habitat losses were 1-17% among pools. Greatest habitat losses occurred in diked secondary channels (former secondary channels with flow reduced by rock dikes) and backwaters adjacent to the main channel. Most of the area of dike pools (aquatic habitat downstream of rock dikes), diked secondary channels and adjacent backwaters were <0.9 m deep. Copyright ?? 2008 John Wiley & Sons, Ltd.

  14. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs

    PubMed Central

    Wu, Qiuping; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-01-01

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the g0 gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions. PMID:29757242

  15. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs.

    PubMed

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-05-12

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

  16. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry chemical...

  17. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry chemical...

  18. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  19. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  20. 33 CFR 127.111 - Communications systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Communications systems. 127.111... Waterfront Facilities Handling Liquefied Natural Gas § 127.111 Communications systems. (a) The marine transfer area for LNG must have a ship-to-shore communication system and a separate emergency ship-to-shore...

  1. 33 CFR 127.111 - Communications systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Communications systems. 127.111... Waterfront Facilities Handling Liquefied Natural Gas § 127.111 Communications systems. (a) The marine transfer area for LNG must have a ship-to-shore communication system and a separate emergency ship-to-shore...

  2. 33 CFR 127.111 - Communications systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Communications systems. 127.111... Waterfront Facilities Handling Liquefied Natural Gas § 127.111 Communications systems. (a) The marine transfer area for LNG must have a ship-to-shore communication system and a separate emergency ship-to-shore...

  3. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  4. 33 CFR 127.111 - Communications systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Communications systems. 127.111... Waterfront Facilities Handling Liquefied Natural Gas § 127.111 Communications systems. (a) The marine transfer area for LNG must have a ship-to-shore communication system and a separate emergency ship-to-shore...

  5. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  6. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry chemical...

  7. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry chemical...

  8. 33 CFR 127.609 - Dry chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dry chemical systems. 127.609... Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.609 Dry chemical systems. (a) Each marine transfer area for LNG must have a dry chemical system that provides at least two dry chemical...

  9. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  10. 33 CFR 127.111 - Communications systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Communications systems. 127.111... Waterfront Facilities Handling Liquefied Natural Gas § 127.111 Communications systems. (a) The marine transfer area for LNG must have a ship-to-shore communication system and a separate emergency ship-to-shore...

  11. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    PubMed Central

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206

  12. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    PubMed

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  13. 33 CFR 127.1305 - Operations Manual.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... personnel of the facility; (e) A description for each security system provided for the transfer area; (f) A... Section 127.1305 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Operations Manual must contain— (a) A description of each liquid-transfer system and vapor transfer system...

  14. Bio-Inspired Polarized Skylight-Based Navigation Sensors: A Review

    PubMed Central

    Karman, Salmah B.; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2012-01-01

    Animal senses cover a broad range of signal types and signal bandwidths and have inspired various sensors and bioinstrumentation devices for biological and medical applications. Insects, such as desert ants and honeybees, for example, utilize polarized skylight pattern-based information in their navigation activities. They reliably return to their nests and hives from places many kilometers away. The insect navigation system involves the dorsal rim area in their compound eyes and the corresponding polarization sensitive neurons in the brain. The dorsal rim area is equipped with photoreceptors, which have orthogonally arranged small hair-like structures termed microvilli. These are the specialized sensors for the detection of polarized skylight patterns (e-vector orientation). Various research groups have been working on the development of novel navigation systems inspired by polarized skylight-based navigation in animals. Their major contributions are critically reviewed. One focus of current research activities is on imitating the integration path mechanism in desert ants. The potential for simple, high performance miniaturized bioinstrumentation that can assist people in navigation will be explored. PMID:23202158

  15. Bio-inspired polarized skylight-based navigation sensors: a review.

    PubMed

    Karman, Salmah B; Diah, S Zaleha M; Gebeshuber, Ille C

    2012-10-24

    Animal senses cover a broad range of signal types and signal bandwidths and have inspired various sensors and bioinstrumentation devices for biological and medical applications. Insects, such as desert ants and honeybees, for example, utilize polarized skylight pattern-based information in their navigation activities. They reliably return to their nests and hives from places many kilometers away. The insect navigation system involves the dorsal rim area in their compound eyes and the corresponding polarization sensitive neurons in the brain. The dorsal rim area is equipped with photoreceptors, which have orthogonally arranged small hair-like structures termed microvilli. These are the specialized sensors for the detection of polarized skylight patterns (e-vector orientation). Various research groups have been working on the development of novel navigation systems inspired by polarized skylight-based navigation in animals. Their major contributions are critically reviewed. One focus of current research activities is on imitating the integration path mechanism in desert ants. The potential for simple, high performance miniaturized bioinstrumentation that can assist people in navigation will be explored.

  16. Addressing the Influence of Space Weather on Airline Navigation

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  17. A Functional Description of a Digital Flight Test System for Navigation and Guidance Research in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Hegarty, D. M.

    1974-01-01

    A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.

  18. Technical standing order : airborne supplemental navigation equipment using the global positioning system (GPS)

    DOT National Transportation Integrated Search

    2001-01-01

    This technical standard order (TSO) prescribes the minimum performance standard that airborne supplemental area navigation equipment using the global positioning system (GPS) must meet in order to be identified with the applicable TSO marking. Airbor...

  19. 76 FR 5068 - Establishment of Low Altitude Area Navigation Routes (T-281, T-283, T-285, T-286, and T-288...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... (IFR) approved Global Positioning System (GPS)/Global Navigation Satellite System (GNSS) equipment... only be available for use by GPS/GNSS equipped aircraft. This action enhances safety and facilitates...

  20. Taxiway Navigation and Situation Awareness (T-NASA) System : problem, design philosophy, and description of an integrated display suite for low-visibility airport surface operations

    DOT National Transportation Integrated Search

    1996-01-01

    An integrated cockpit display suite, the T-NASA (Taxiway Navigation and : Situation Awareness) system, is under development for NASA's Terminal Area : Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) : program. This system ha...

  1. 33 CFR 127.305 - Operations Manual.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security personnel; (e) A description of the security systems for the marine transfer area for LNG; (f) The...) Transfer operations start-up and shutdown; (3) Security violations; and (4) The communications systems; and... Section 127.305 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...

  2. A navigation system for the visually impaired an intelligent white cane.

    PubMed

    Fukasawa, A Jin; Magatani, Kazusihge

    2012-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane, this sensor senses a color of navigation line and the system informs the visually impaired that he/she is walking along the navigation line by vibration. This color recognition system is controlled by a one-chip microprocessor. RFID tags and a receiver for these tags are used in the map information system. RFID tags are set on the colored navigation line. An antenna for RFID tags and a tag receiver are also installed on a white cane. The receiver receives the area information as a tag-number and notifies map information to the user by mp3 formatted pre-recorded voice. And now, we developed the direction identification technique. Using this technique, we can detect a user's walking direction. A triaxiality acceleration sensor is used in this system. Three normal subjects who were blindfolded with an eye mask were tested with our developed navigation system. All of them were able to walk along the navigation line perfectly. We think that the performance of the system is good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  3. 77 FR 65253 - Amendment of Area Navigation Route T-240; AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... contains regulatory documents #0;having general applicability and legal effect, most of which are keyed #0... the legal description of area navigation (RNAV) route T-240 in Alaska by removing one waypoint that is no longer required and has been deleted from the National Airspace System Resources (NASR) database...

  4. 33 CFR 165.101 - Kittery, Maine-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... navigation area. 165.101 Section 165.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas First Coast Guard District § 165.101 Kittery...

  5. 33 CFR 165.101 - Kittery, Maine-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... navigation area. 165.101 Section 165.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas First Coast Guard District § 165.101 Kittery...

  6. 33 CFR 165.101 - Kittery, Maine-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... navigation area. 165.101 Section 165.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas First Coast Guard District § 165.101 Kittery...

  7. 33 CFR 165.101 - Kittery, Maine-regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... navigation area. 165.101 Section 165.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas First Coast Guard District § 165.101 Kittery...

  8. 33 CFR 165.101 - Kittery, Maine-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... navigation area. 165.101 Section 165.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas First Coast Guard District § 165.101 Kittery...

  9. 33 CFR 165.827 - Regulated Navigation Area; Galveston Channel, TX.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Regulated Navigation Area... HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas Eighth Coast Guard District § 165.827...

  10. 33 CFR 165.827 - Regulated Navigation Area; Galveston Channel, TX.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Regulated Navigation Area... HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas Eighth Coast Guard District § 165.827...

  11. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., WA-regulated navigation area. 165.1303 Section 165.1303 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas Thirteenth Coast Guard District...

  12. 77 FR 65254 - Amendment of Area Navigation Routes Q-42 and Q-480; PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    .... SUMMARY: This action amends the legal descriptions of area navigation (RNAV) routes Q-42 and Q-480 by... this will enhance safety within the National Airspace System and does not change the alignment or... the legal descriptions of RNAV routes and does not change the dimensions or operating requirements of...

  13. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  14. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  15. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  16. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  17. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  18. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD... § 165.714 Regulated Navigation Area; Atlantic Ocean, Charleston, SC. (a) Location. The following area is...

  19. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD... § 165.714 Regulated Navigation Area; Atlantic Ocean, Charleston, SC. (a) Location. The following area is...

  20. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD... § 165.714 Regulated Navigation Area; Atlantic Ocean, Charleston, SC. (a) Location. The following area is...

  1. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD... § 165.714 Regulated Navigation Area; Atlantic Ocean, Charleston, SC. (a) Location. The following area is...

  2. 33 CFR 165.714 - Regulated Navigation Area; Atlantic Ocean, Charleston, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area; Atlantic Ocean, Charleston, SC. 165.714 Section 165.714 Navigation and Navigable Waters COAST GUARD... § 165.714 Regulated Navigation Area; Atlantic Ocean, Charleston, SC. (a) Location. The following area is...

  3. Robust low-frequency spread-spectrum navigation system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2012-01-03

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  4. Robust low-frequency spread-spectrum navigation system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-01-25

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  5. Robust low-frequency spread-spectrum navigation system

    DOEpatents

    Smith, Stephen F; Moore, James A

    2012-10-30

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  6. Robust low-frequency spread-spectrum navigation system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2009-12-01

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  7. Navigating oceans and cultures: Polynesian and European navigation systems in the late eighteenth century

    NASA Astrophysics Data System (ADS)

    Walker, M.

    2012-05-01

    Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.

  8. Space-based augmentation for global navigation satellite systems.

    PubMed

    Grewal, Mohinder S

    2012-03-01

    This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA.

  9. Coding of navigational affordances in the human visual system

    PubMed Central

    Epstein, Russell A.

    2017-01-01

    A central component of spatial navigation is determining where one can and cannot go in the immediate environment. We used fMRI to test the hypothesis that the human visual system solves this problem by automatically identifying the navigational affordances of the local scene. Multivoxel pattern analyses showed that a scene-selective region of dorsal occipitoparietal cortex, known as the occipital place area, represents pathways for movement in scenes in a manner that is tolerant to variability in other visual features. These effects were found in two experiments: One using tightly controlled artificial environments as stimuli, the other using a diverse set of complex, natural scenes. A reconstruction analysis demonstrated that the population codes of the occipital place area could be used to predict the affordances of novel scenes. Taken together, these results reveal a previously unknown mechanism for perceiving the affordance structure of navigable space. PMID:28416669

  10. Significance of Waterway Navigation Positioning Systems On Ship's Manoeuvring Safety

    NASA Astrophysics Data System (ADS)

    Galor, W.

    The main goal of navigation is to lead the ship to the point of destination safety and efficiently. Various factors may affect ship realisating this process. The ship movement on waterway are mainly limited by water area dimensions (surface and depth). These limitations cause the requirement to realise the proper of ship movement trajectory. In case when this re requirement cant't fulfil then marine accident may happend. This fact is unwanted event caused losses of human health and life, damage or loss of cargo and ship, pollution of natural environment, damage of port structures or blocking the port of its ports and lost of salvage operation. These losses in same cases can be catas- trophical especially while e.i. crude oil spilling could be place. To realise of safety navigation process is needed to embrace the ship's movement trajectory by waterways area. The ship's trajectory is described by manoeuvring lane as a surface of water area which is require to realise of safety ship movement. Many conditions affect to ship manoeuvring line. The main are following: positioning accuracy, ship's manoeuvring features and phenomena's of shore and ship's bulk common affecting. The accuracy of positioning system is most important. This system depends on coast navigation mark- ing which can range many kinds of technical realisation. Mainly used systems based on lights (line), radionavigation (local system or GPS, DGPS), or radars. If accuracy of positiong is higer, then safety of navigation is growing. This article presents these problems exemplifying with approaching channel to ports situated on West Pomera- nian water region.

  11. Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.

    1980-01-01

    In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.

  12. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  13. Simulation and analysis of differential GPS

    NASA Astrophysics Data System (ADS)

    Denaro, R. P.

    NASA is conducting a research program to evaluate differential Global Positioning System (GPS) concepts for civil helicopter navigation. It is pointed out that the civil helicopter community will probably be an early user of GPS because of the unique mission operations in areas where precise navigation aids are not available. However, many of these applications involve accuracy requirements which cannot be satisfied by conventional GPS. Such applications include remote area search and rescue, offshore oil platform approach, remote area precision landing, and other precise navigation operations. Differential GPS provides a promising approach for meeting very demanding accuracy requirements. The considered procedure eliminates some of the common bias errors experienced by conventional GPS. This is done by making use of a second GPS receiver. A simulation process is developed as a tool for analyzing various scenarios of GPS-referenced civil aircraft navigation.

  14. Integrated Airport Surface Operations

    NASA Technical Reports Server (NTRS)

    Koczo, S.

    1998-01-01

    The current air traffic environment in airport terminal areas experiences substantial delays when weather conditions deteriorate to Instrument Meteorological Conditions (IMC). Research activity at NASA has culminated in the development, flight test and demonstration of a prototype Low Visibility Landing and Surface Operations (LVLASO) system. A NASA led industry team and the FAA developed the system which integrated airport surface surveillance systems, aeronautical data links, DGPS navigation, automation systems, and controller and flight deck displays. The LVLASO system was demonstrated at the Hartsfield-Atlanta International Airport using a Boeing 757-200 aircraft during August, 1997. This report documents the contractors role in this testing particularly in the area of data link and DGPS navigation.

  15. Can low-cost VOR and Omega receivers suffice for RNAV - A new computer-based navigation technique

    NASA Technical Reports Server (NTRS)

    Hollaar, L. A.

    1978-01-01

    It is shown that although RNAV is particularly valuable for the personal transportation segment of general aviation, it has not gained complete acceptance. This is due, in part, to its high cost and the necessary special-handling air traffic control. VOR/DME RNAV calculations are ideally suited for analog computers, and the use of microprocessor technology has been suggested for reducing RNAV costs. Three navigation systems, VOR, Omega, and DR, are compared for common navigational difficulties, such as station geometry, siting errors, ground disturbances, and terminal area coverage. The Kalman filtering technique is described with reference to the disadvantages when using a system including standard microprocessors. An integrated navigation system, using input data from various low-cost sensor systems, is presented and current simulation studies are noted.

  16. Relative receiver autonomous integrity monitoring for future GNSS-based aircraft navigation

    NASA Astrophysics Data System (ADS)

    Gratton, Livio Rafael

    The Global Positioning System (GPS) has enabled reliable, safe, and practical aircraft positioning for en-route and non-precision phases of flight for more than a decade. Intense research is currently devoted to extending the use of Global Navigation Satellite Systems (GNSS), including GPS, to precision approach and landing operations. In this context, this work is focused on the development, analysis, and verification of the concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) and its potential applications to precision approach navigation. RRAIM fault detection algorithms are developed, and associated mathematical bounds on position error are derived. These are investigated as possible solutions to some current key challenges in precision approach navigation, discussed below. Augmentation systems serving continent-size areas (like the Wide Area Augmentation System or WAAS) allow certain precision approach operations within the covered region. More and better satellites, with dual frequency capabilities, are expected to be in orbit in the mid-term future, which will potentially allow WAAS-like capabilities worldwide with a sparse ground station network. Two main challenges in achieving this goal are (1) ensuring that navigation fault detection functions are fast enough to alert worldwide users of hazardously misleading information, and (2) minimizing situations in which navigation is unavailable because the user's local satellite geometry is insufficient for safe position estimation. Local augmentation systems (implemented at individual airports, like the Local Area Augmentation System or LAAS) have the potential to allow precision approach and landing operations by providing precise corrections to user-satellite range measurements. An exception to these capabilities arises during ionospheric storms (caused by solar activity), when hazardous situations can exist with residual range errors several orders of magnitudes higher than nominal. Until dual frequency civil GPS signals are available, the ability to provide integrity during ionospheric storms, without excessive loss of availability is a major challenge. For all users, with or without augmentation, some situations cause short duration losses of satellites in view. Two examples are aircraft banking during turns and ionospheric scintillation. The loss of range signals can translate into gaps in good satellite geometry, and the resulting challenge is to ensure navigation continuity by bridging these gaps, while simultaneously maintaining high integrity. It is shown that the RRAIM methods developed in this research can be applied to mitigate each of these obstacles to safe and reliable precision aircraft navigation.

  17. Private Graphs - Access Rights on Graphs for Seamless Navigation

    NASA Astrophysics Data System (ADS)

    Dorner, W.; Hau, F.; Pagany, R.

    2016-06-01

    After the success of GNSS (Global Navigational Satellite Systems) and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS - Real Time Locating Services (e.g. WIFI) and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites), but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  18. STEPPING - Smartphone-Based Portable Pedestrian Indoor Navigation

    NASA Astrophysics Data System (ADS)

    Lukianto, C.; Sternberg, H.

    2011-12-01

    Many current smartphones are fitted with GPS receivers, which, in combination with a map application form a pedestrian navigation system for outdoor purposes. However, once an area with insufficient satellite signal coverage is entered, these navigation systems cease to function. For indoor positioning, there are already several solutions available which are usually based on measured distances to reference points. These solutions can achieve resolutions as low as the sub-millimetre range depending on the complexity of the set-up. STEPPING project, developed at HCU Hamburg Germany aims at designing an indoor navigation system consisting of a small inertial navigation system and a new, robust sensor fusion algorithm running on a current smartphone. As this system is theoretically able to integrate any available positioning method, it is independent of a particular method and can thus be realized on a smartphone without affecting user mobility. Potential applications include --but are not limited to: Large trade fairs, airports, parking decks and shopping malls, as well as ambient assisted living scenarios.

  19. Human Factors Considerations for Area Navigation Departure and Arrival Procedures

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    Area navigation (RNAV) procedures are being implemented in the United States and around the world as part of a transition to a performance-based navigation system. These procedures are providing significant benefits and have also caused some human factors issues to emerge. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document RNAV-related human factors issues and propose areas for further consideration. The component focusing on RNAV Departure and Arrival Procedures involved discussions with expert users, a literature review, and a focused review of the NASA Aviation Safety Reporting System (ASRS) database. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for specific instrument procedure design guidelines that consider the effects of human performance. Ongoing industry and government activities to address air-ground communication terminology, design improvements, and chart-database commonality are strongly encouraged. A review of factors contributing to RNAV in-service errors would likely lead to improved system design and operational performance.

  20. 33 CFR 165.840 - Regulated Navigation Area, Gulf of Mexico: Mississippi Canyon Block 20, South of New Orleans, LA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Regulated Navigation Area, Gulf of Mexico: Mississippi Canyon Block 20, South of New Orleans, LA. 165.840 Section 165.840 Navigation... Limited Access Areas Eighth Coast Guard District § 165.840 Regulated Navigation Area, Gulf of Mexico...

  1. 33 CFR 165.840 - Regulated Navigation Area, Gulf of Mexico: Mississippi Canyon Block 20, South of New Orleans, LA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Regulated Navigation Area, Gulf of Mexico: Mississippi Canyon Block 20, South of New Orleans, LA. 165.840 Section 165.840 Navigation... Limited Access Areas Eighth Coast Guard District § 165.840 Regulated Navigation Area, Gulf of Mexico...

  2. A risk analysis of winter navigation in Finnish sea areas.

    PubMed

    Valdez Banda, Osiris A; Goerlandt, Floris; Montewka, Jakub; Kujala, Pentti

    2015-06-01

    Winter navigation is a complex but common operation in north-European sea areas. In Finnish waters, the smooth flow of maritime traffic and safety of vessel navigation during the winter period are managed through the Finnish-Swedish winter navigation system (FSWNS). This article focuses on accident risks in winter navigation operations, beginning with a brief outline of the FSWNS. The study analyses a hazard identification model of winter navigation and reviews accident data extracted from four winter periods. These are adopted as a basis for visualizing the risks in winter navigation operations. The results reveal that experts consider ship independent navigation in ice conditions the most complex navigational operation, which is confirmed by accident data analysis showing that the operation constitutes the type of navigation with the highest number of accidents reported. The severity of the accidents during winter navigation is mainly categorized as less serious. Collision is the most typical accident in ice navigation and general cargo the type of vessel most frequently involved in these accidents. Consolidated ice, ice ridges and ice thickness between 15 and 40cm represent the most common ice conditions in which accidents occur. Thus, the analysis presented in this article establishes the key elements for identifying the operation types which would benefit most from further safety engineering and safety or risk management development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation.

    PubMed

    Wang, Hubiao; Wu, Lin; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-08-10

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°-145° E, 0°-40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China's Western Pacific area is ~1.0-4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy.

  4. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation

    PubMed Central

    Wang, Hubiao; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-01-01

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°–145° E, 0°–40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China’s Western Pacific area is ~1.0–4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy. PMID:28796158

  5. Study on Mobile Object Positioning and Alarming System Based on the “Map World” in the Core Area of the Silk Road Economic Belt

    NASA Astrophysics Data System (ADS)

    Mu, Kai

    2017-02-01

    The established “Map World” on the National Geographic Information Public Service Platform offers free access to many geographic information in the Core Area of the Silk Road Economic Belt. Considering the special security situation and severe splittism and anti-splittism struggles in the Core Area of the Silk Road Economic Belt, a set of moving target positioning and alarming platform based on J2EE platform and B/S structure was designed and realized by combining the “Map World” data and global navigation satellite system. This platform solves various problems, such as effective combination of Global Navigation Satellite System (GNSS) and “Map World” resources, moving target alarming setting, inquiry of historical routes, system management, etc.

  6. DIY-style GIS service in mobile navigation system integrated with web and wireless GIS

    NASA Astrophysics Data System (ADS)

    Yan, Yongbin; Wu, Jianping; Fan, Caiyou; Wang, Minqi; Dai, Sheng

    2007-06-01

    Mobile navigation system based on handheld device can not only provide basic GIS services, but also enable these GIS services to be provided without location limit, to be more instantly interacted between users and devices. However, we still see that most navigation systems have common defects on user experience like limited map format, few map resources, and unable location share. To overcome the above defects, we propose DIY-style GIS service which provide users a more free software environment and allow uses to customize their GIS services. These services include defining geographical coordinate system of maps which helps to hugely enlarge the map source, editing vector feature, related property information and hotlink images, customizing covered area of download map via General Packet Radio Service (GPRS), and sharing users' location information via SMS (Short Message Service) which establishes the communication between users who needs GIS services. The paper introduces the integration of web and wireless GIS service in a mobile navigation system and presents an implementation sample of a DIY-Style GIS service in a mobile navigation system.

  7. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  8. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  9. [Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions].

    PubMed

    Moche, M; Busse, H; Dannenberg, C; Schulz, T; Schmitgen, A; Trantakis, C; Winkler, D; Schmidt, F; Kahn, T

    2001-11-01

    The aim of this work was to realize and clinically evaluate an image fusion platform for the integration of preoperative MRI and fMRI data into the intraoperative images of an interventional MRI system with a focus on neurosurgical procedures. A vertically open 0.5 T MRI scanner was equipped with a dedicated navigation system enabling the registration of additional imaging modalities (MRI, fMRI, CT) with the intraoperatively acquired data sets. These merged image data served as the basis for interventional planning and multimodal navigation. So far, the system has been used in 70 neurosurgical interventions (13 of which involved image data fusion--requiring 15 minutes extra time). The augmented navigation system is characterized by a higher frame rate and a higher image quality as compared to the system-integrated navigation based on continuously acquired (near) real time images. Patient movement and tissue shifts can be immediately detected by monitoring the morphological differences between both navigation scenes. The multimodal image fusion allowed a refined navigation planning especially for the resection of deeply seated brain lesions or pathologies close to eloquent areas. Augmented intraoperative orientation and instrument guidance improve the safety and accuracy of neurosurgical interventions.

  10. BOREAS Level-0 C-130 Navigation Data

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Newcomer, Jeffrey A.; Domingues, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    The level-0 C-130 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions over the BOReal Ecosystem-Atmosphere Study (BOREAS) study areas. Various portions of the navigation data were collected at 1, 10, and 30 Hz. The level-0 C-130 navigation data collected for BOREAS in 1994 were improved over previous years in that the C-130 onboard navigation system was upgraded to output inertial navigation parameters every 1/30th of a second (i.e., 30 Hz). This upgrade was encouraged by users of the aircraft scanner data with the hope of improving the relative geometric positioning of the collected images.

  11. Simultaneous dual-band radar development

    NASA Technical Reports Server (NTRS)

    Liskow, C. L.

    1974-01-01

    Efforts to design and construct an airborne imaging radar operating simultaneously at L band and X band with an all-inertial navigation system in order to form a dual-band radar system are described. The areas of development include duplex transmitters, receivers, and recorders, a control module, motion compensation for both bands, and adaptation of a commercial inertial navigation system. Installation of the system in the aircraft and flight tests are described. Circuit diagrams, performance figures, and some radar images are presented.

  12. Navigation ability dependent neural activation in the human brain: an fMRI study.

    PubMed

    Ohnishi, Takashi; Matsuda, Hiroshi; Hirakata, Makiko; Ugawa, Yoshikazu

    2006-08-01

    Visual-spatial navigation in familiar and unfamiliar environments is an essential requirement of daily life. Animal studies indicated the importance of the hippocampus for navigation. Neuroimaging studies demonstrated gender difference or strategies dependent difference of neural substrates for navigation. Using functional magnetic resonance imaging, we measured brain activity related to navigation in four groups of normal volunteers: good navigators (males and females) and poor navigators (males and females). In a whole group analysis, task related activity was noted in the hippocampus, parahippocampal gyrus, posterior cingulate cortex, precuneus, parietal association areas, and the visual association areas. In group comparisons, good navigators showed a stronger activation in the medial temporal area and precuneus than poor navigators. There was neither sex effect nor interaction effect between sex and navigation ability. The activity in the left medial temporal areas was positively correlated with task performance, whereas activity in the right parietal area was negatively correlated with task performance. Furthermore, the activity in the bilateral medial temporal areas was positively correlated with scores reflecting preferred navigation strategies, whereas activity in the bilateral superior parietal lobules was negatively correlated with them. Our data suggest that different brain activities related to navigation should reflect navigation skill and strategies.

  13. KC-135 Crew System Criteria.

    DTIC Science & Technology

    1981-03-01

    Instrarf.ent Landing System (IT,S) f. Microwave Landing System (MLS) . Marker Beacon 2. OPEiRA’TiONAL :. Gen ~eral • b. Navigation (1) inertial (2...system with integrated navigation course guidance. 5. ENVIRONMENT. The pressurization, air conditioning, ox,- gen and liqhting must be suitable for...8217) ,nStruments, ~s s t-r se drsoal, cuae~ area covc. ace and I* i0n to + 1/4 inch. Thie com.uica i on systems must be fanc - i n I lv s imulated ( i. e

  14. 75 FR 18776 - Regulated Navigation Area; Galveston Channel, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... that the proposed regulated navigation area covers a small area and vessels are allowed to travel...-AA11 Regulated Navigation Area; Galveston Channel, TX AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY: The Coast Guard proposes to establish a regulated navigation area across the...

  15. 33 CFR 165.1323 - Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone. 165.1323 Section 165.1323 Navigation and..., Oregon Captain of the Port Zone. (a) Location. The following is a regulated navigation area (RNA): All...

  16. 33 CFR 165.1322 - Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone. 165.1322 Section 165.1322 Navigation and..., Oregon Captain of the Port Zone. (a) Location. The following is a regulated navigation area (RNA): All...

  17. 75 FR 47252 - Proposed Establishment of Low Altitude Area Navigation Routes (T-281, T-283, T-285, T-286, and T...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...)/Global Navigation Satellite System (GNSS) equipment. This action would enhance safety and improve the... on the appropriate IFR En Route Low Altitude charts and would only be intended for use by GPS/GNSS...

  18. Comparison of accuracy and safety of the SEVEN and the Navigator continuous glucose monitoring systems.

    PubMed

    Garg, Satish K; Smith, James; Beatson, Christie; Lopez-Baca, Benita; Voelmle, Mary; Gottlieb, Peter A

    2009-02-01

    This study evaluated the accuracy and safety of two continuous glucose monitoring (CGM) systems, the SEVEN (DexCom, San Diego, CA) and the Navigator (Abbott Diabetes Care, Alameda, CA), with the YSI laboratory measurements of blood glucose (blood glucose meter manufactured by YSI, Yellow Springs, OH), when worn concurrently in adults with type 1 diabetes. Fourteen subjects with type 1 diabetes, 33 +/- 6 (mean +/- SD) years old, were enrolled in this study. All subjects wore both sensors concurrently over three consecutive 5-day CGM sessions (15-day wear). On Days 5, 10, and 15, subjects participated in an 8-h in-clinic session where measurements from the CGM systems were collected and compared with YSI measurements every 15 min. At the end of Day 5 and 10 in-clinic sessions, the sensors were removed, and new sensors were inserted for the following CGM session despite the SEVEN system's recommended use for up to 7 days. The mean absolute relative difference (ARD) for the two CGM devices versus YSI was not different: 16.8% and 16.1% for SEVEN and Navigator, respectively (P = 0.38). In the hypoglycemic region (YSI value <80 mg/dL), the mean ARD for SEVEN was lower than for Navigator (21.5% vs. 29.8%, respectively; P = 0.001). The data analyses were similar when compared with self-monitoring of blood glucose (SMBG) values. Thirteen additional Navigator replacement devices were issued compared to two for the SEVEN. A total of three versus 14 skin reactions were reported with the SEVEN and Navigator insertion area, respectively. Glucose measurements with the SEVEN and Navigator were found to be similar compared with YSI and SMBG measurements, with the exception of the hypoglycemic range where the SEVEN performed better. However, the Navigator caused more skin area reactions.

  19. Study of the global positioning system for maritime concepts/applications: Study of the feasibility of replacing maritime shipborne navigation systems with NAVSTAR

    NASA Technical Reports Server (NTRS)

    Winn, C. B.; Huston, W.

    1981-01-01

    A geostationary reference satellite (REFSAT) that broadcasts every four seconds updated GPS satellite coordinates was developed. This procedure reduces the complexity of the GPS receiver. The economic and performance payoffs associated with replacing maritime stripborne navigation systems with NAVSTAR was quantified and the use of NAVSTAR for measurements of ocean currents in the broad ocean areas of the world was evaluated.

  20. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1991-01-01

    This quarterly reports on space communications, radio navigation, radio science, and ground based radio and radar astronomy in connection with the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and in operations. Also included is standards activity at JPL for space data and information systems and DSN work. Specific areas of research are: Tracking and ground based navigation; Spacecraft and ground communications; Station control and system technology; DSN Systems Implementation; and DSN Operations.

  1. Synthetic vision in the cockpit: 3D systems for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth

    2001-08-01

    Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.

  2. Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit

    PubMed Central

    Wystrach, Antoine; Schwarz, Sebastian; Baniel, Alice; Cheng, Ken

    2013-01-01

    Ants use multiple sources of information to navigate, but do not integrate all this information into a unified representation of the world. Rather, the available information appears to serve three distinct main navigational systems: path integration, systematic search and the use of learnt information—mainly via vision. Here, we report on an additional behaviour that suggests a supplemental system in the ant's navigational toolkit: ‘backtracking’. Homing ants, having almost reached their nest but, suddenly displaced to unfamiliar areas, did not show the characteristic undirected headings of systematic searches. Instead, these ants backtracked in the compass direction opposite to the path that they had just travelled. The ecological function of this behaviour is clear as we show it increases the chances of returning to familiar terrain. Importantly, the mechanistic implications of this behaviour stress an extra level of cognitive complexity in ant navigation. Our results imply: (i) the presence of a type of ‘memory of the current trip’ allowing lost ants to take into account the familiar view recently experienced, and (ii) direct sharing of information across different navigational systems. We propose a revised architecture of the ant's navigational toolkit illustrating how the different systems may interact to produce adaptive behaviours. PMID:23966644

  3. 33 CFR 161.60 - Vessel Traffic Service Prince William Sound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... William Sound. 161.60 Section 161.60 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Movement Reporting System Areas and Reporting Points § 161.60 Vessel Traffic Service Prince William Sound... Cape Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between...

  4. 33 CFR 161.60 - Vessel Traffic Service Prince William Sound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... William Sound. 161.60 Section 161.60 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Movement Reporting System Areas and Reporting Points § 161.60 Vessel Traffic Service Prince William Sound... Cape Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between...

  5. 33 CFR 161.60 - Vessel Traffic Service Prince William Sound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... William Sound. 161.60 Section 161.60 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Movement Reporting System Areas and Reporting Points § 161.60 Vessel Traffic Service Prince William Sound... Cape Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between...

  6. 33 CFR 161.60 - Vessel Traffic Service Prince William Sound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... William Sound. 161.60 Section 161.60 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Movement Reporting System Areas and Reporting Points § 161.60 Vessel Traffic Service Prince William Sound... Cape Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between...

  7. 33 CFR 161.60 - Vessel Traffic Service Prince William Sound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... William Sound. 161.60 Section 161.60 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Movement Reporting System Areas and Reporting Points § 161.60 Vessel Traffic Service Prince William Sound... Cape Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between...

  8. Integration of a synthetic vision system with airborne laser range scanner-based terrain referenced navigation for precision approach guidance

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank

    2005-05-01

    Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and laser scanner system is capable of providing near meter-level horizontal and vertical position estimates. Furthermore, the system under development capitalizes on 1) The position and integrity benefits provided by the Wide Area Augmentation System (WAAS) to reduce the initial search space size and; 2) The availability of high accuracy/resolution databases. This paper presents results from flight tests where the terrain reference navigator is used to provide guidance cues for a precision approach.

  9. Comparison of numeric keyboard and CRT line-labeled buttons for information access. [in computerized, area navigation system for aircraft

    NASA Technical Reports Server (NTRS)

    Williams, D.

    1976-01-01

    Test were conducted to determine whether differences in speed and accuracy are experienced when using either line-labeled index buttons or a numeric keyboard for page selection in airborne CRT-display area navigation systems. The experiment was conducted with six airline pilots, each flying the same two simulated RNAV routes. Three pilot subjects used line-labeled buttons adjacent to the CRT screen, while three used a numeric keyboard for page access. The hypothesis of no differences in response times between the two modes of access could not be rejected.

  10. Using wide area differential GPS to improve total system error for precision flight operations

    NASA Astrophysics Data System (ADS)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  11. Design and implementation of a patient navigation system in rural Nepal: Improving patient experience in resource-constrained settings.

    PubMed

    Raut, Anant; Thapa, Poshan; Citrin, David; Schwarz, Ryan; Gauchan, Bikash; Bista, Deepak; Tamrakar, Bibhu; Halliday, Scott; Maru, Duncan; Schwarz, Dan

    2015-12-01

    Patient navigation programs have shown to be effective across multiple settings in guiding patients through the care delivery process. Limited experience and literature exist, however, for such programs in rural and resource-constrained environments. Patients living in such settings frequently have low health literacy and substantially lower social status than their providers. They typically have limited experiences interfacing with formalized healthcare systems, and, when they do, their experience can be unpleasant and confusing. At a district hospital in rural far-western Nepal, we designed and implemented a patient navigation system that aimed to improve patients' subjective care experience. First, we hired and trained a team of patient navigators who we recruited from the local area. Their responsibility is exclusively to demonstrate compassion and to guide patients through their care process. Second, we designed visual cues throughout our hospital complex to assist in navigating patients through the buildings. Third, we incorporated the patient navigators within the management and communications systems of the hospital care team, and established standard operating procedures. We describe here our experiences and challenges in designing and implementing a patient navigator program. Such patient-centered systems may be relevant at other facilities in Nepal and globally where patient health literacy is low, patients come from backgrounds of substantial marginalization and disempowerment, and patient experience with healthcare facilities is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Engineering flight and guest pilot evaluation report, phase 2. [DC 8 aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.; Anderson, E. B.; Brown, G. W.; Schwind, G. K.

    1974-01-01

    Prior to the flight evaluation, the two-segment profile capabilities of the DC-8-61 were evaluated and flight procedures were developed in a flight simulator at the UA Flight Training Center in Denver, Colorado. The flight evaluation reported was conducted to determine the validity of the simulation results, further develop the procedures and use of the area navigation system in the terminal area, certify the system for line operation, and obtain evaluations of the system and procedures by a number of pilots from the industry. The full area navigation capabilities of the special equipment installed were developed to provide terminal area guidance for two-segment approaches. The objectives of this evaluation were: (1) perform an engineering flight evaluation sufficient to certify the two-segment system for the six-month in-service evaluation; (2) evaluate the suitability of a modified RNAV system for flying two-segment approaches; and (3) provide evaluation of the two-segment approach by management and line pilots.

  13. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Naval Support Activity Panama City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF....763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area is...

  14. 33 CFR 334.763 - Naval Support Activity Panama City; Gulf of Mexico; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Naval Support Activity Panama City; Gulf of Mexico; restricted area. 334.763 Section 334.763 Navigation and Navigable Waters CORPS OF....763 Naval Support Activity Panama City; Gulf of Mexico; restricted area. (a) The area. The area is...

  15. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area. Beginning...

  16. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  17. Two designs for an orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    The Orbital Transfer Vehicle (OTV) and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures.

  18. 33 CFR 162.20 - Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area. 162.20 Section 162.20 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.20 Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area. (a...

  19. Investigation of Air Transportation Technology at Ohio University, 1989-1990

    NASA Technical Reports Server (NTRS)

    Lilley, Robert W.

    1990-01-01

    The activities of the participants in the Joint University Program (JUP) at Ohio University are briefly surveyed. During 1989 to 1990, five topics received emphasis. A spectrum-efficient weather data uplink system was designed, constructed, and flight tested. An integrated Global Positioning System/Inertial Navigation System (GPS/INS) study continued, utilizing the Redundant strapdown Inertial Measurement Unit (IMU) on loan from NASA. The Ridge Regression theory was refined and applied to air navigation scenarios. System Identification theory was applied to GPS data to point the way to better understanding of the effects of Selective Availability on civilian users of this navigation system. An analysis of thought-related (electroencephalographic) signals for application to control of computer systems that could have significance in aiding paraplegics or for hands-off systems control in industrial or air traffic control areas was carried out.

  20. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted area. All...

  1. 77 FR 62437 - Regulated Navigation Area; Columbus Day Weekend, Biscayne Bay, Miami, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...-AA11 Regulated Navigation Area; Columbus Day Weekend, Biscayne Bay, Miami, FL AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is amending the Columbus Day weekend regulated navigation area on Biscayne Bay in Miami, Florida. The amended regulated navigation area alters the boundaries of...

  2. 33 CFR 334.1270 - Port Townsend, Indian Island, Walan Point; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Port Townsend, Indian Island, Walan Point; naval restricted area. 334.1270 Section 334.1270 Navigation and Navigable Waters CORPS OF....1270 Port Townsend, Indian Island, Walan Point; naval restricted area. (a) The area. The waters of Port...

  3. 33 CFR 334.1270 - Port Townsend, Indian Island, Walan Point; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Port Townsend, Indian Island, Walan Point; naval restricted area. 334.1270 Section 334.1270 Navigation and Navigable Waters CORPS OF....1270 Port Townsend, Indian Island, Walan Point; naval restricted area. (a) The area. The waters of Port...

  4. 75 FR 29652 - Amendment of Area Navigation Route Q-15; California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...-0028; Airspace Docket No. 10-AWP-1] Amendment of Area Navigation Route Q-15; California AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Area Navigation Route Q... Register a notice of proposed rulemaking (NPRM) to amend Area Navigation Route Q- 15 in California (75 FR...

  5. Global Positioning System Bibliography

    DTIC Science & Technology

    1992-03-01

    Nev., November, pp. 110-121. Chrzanowski, A. (1987). " Experiencias con GPS en mediciones de deformaciones." Presented at: Workshop on New Techniques...Material Placed in Open Waters Area 2 - Material Properties Related to Navigation and Dredging Area 3 - Dredge Plant Equipment and Systems Processes Area 4...Positioning System." Proceedings of the Second International Symposium on Problems Related to the Redefinintion of North American Geodetic Networks

  6. Use of NTRIP for optimizing the decoding algorithm for real-time data streams.

    PubMed

    He, Zhanke; Tang, Wenda; Yang, Xuhai; Wang, Liming; Liu, Jihua

    2014-10-10

    As a network transmission protocol, Networked Transport of RTCM via Internet Protocol (NTRIP) is widely used in GPS and Global Orbiting Navigational Satellite System (GLONASS) Augmentation systems, such as Continuous Operational Reference System (CORS), Wide Area Augmentation System (WAAS) and Satellite Based Augmentation Systems (SBAS). With the deployment of BeiDou Navigation Satellite system(BDS) to serve the Asia-Pacific region, there are increasing needs for ground monitoring of the BeiDou Navigation Satellite system and the development of the high-precision real-time BeiDou products. This paper aims to optimize the decoding algorithm of NTRIP Client data streams and the user authentication strategies of the NTRIP Caster based on NTRIP. The proposed method greatly enhances the handling efficiency and significantly reduces the data transmission delay compared with the Federal Agency for Cartography and Geodesy (BKG) NTRIP. Meanwhile, a transcoding method is proposed to facilitate the data transformation from the BINary EXchange (BINEX) format to the RTCM format. The transformation scheme thus solves the problem of handing real-time data streams from Trimble receivers in the BeiDou Navigation Satellite System indigenously developed by China.

  7. Study for incorporating time-synchronized approach control into the CH-47/VALT digital navigation system

    NASA Technical Reports Server (NTRS)

    Mcconnell, W. J., Jr.

    1979-01-01

    Techniques for obtaining time synchronized (4D) approach control in the VALT research helicopter is described. Various 4D concepts and their compatibility with the existing VALT digital computer navigation and guidance system hardware and software are examined. Modifications to various techniques were investigated in order to take advantage of the unique operating characteristics of the helicopter in the terminal area. A 4D system is proposed, combining the direct to maneuver with the existing VALT curved path generation capability.

  8. Real-time visual mosaicking and navigation on the seafloor

    NASA Astrophysics Data System (ADS)

    Richmond, Kristof

    Remote robotic exploration holds vast potential for gaining knowledge about extreme environments accessible to humans only with great difficulty. Robotic explorers have been sent to other solar system bodies, and on this planet into inaccessible areas such as caves and volcanoes. In fact, the largest unexplored land area on earth lies hidden in the airless cold and intense pressure of the ocean depths. Exploration in the oceans is further hindered by water's high absorption of electromagnetic radiation, which both inhibits remote sensing from the surface, and limits communications with the bottom. The Earth's oceans thus provide an attractive target for developing remote exploration capabilities. As a result, numerous robotic vehicles now routinely survey this environment, from remotely operated vehicles piloted over tethers from the surface to torpedo-shaped autonomous underwater vehicles surveying the mid-waters. However, these vehicles are limited in their ability to navigate relative to their environment. This limits their ability to return to sites with precision without the use of external navigation aids, and to maneuver near and interact with objects autonomously in the water and on the sea floor. The enabling of environment-relative positioning on fully autonomous underwater vehicles will greatly extend their power and utility for remote exploration in the furthest reaches of the Earth's waters---even under ice and under ground---and eventually in extraterrestrial liquid environments such as Europa's oceans. This thesis presents an operational, fielded system for visual navigation of underwater robotic vehicles in unexplored areas of the seafloor. The system does not depend on external sensing systems, using only instruments on board the vehicle. As an area is explored, a camera is used to capture images and a composite view, or visual mosaic, of the ocean bottom is created in real time. Side-to-side visual registration of images is combined with dead-reckoned navigation information in a framework allowing the creation and updating of large, locally consistent mosaics. These mosaics are used as maps in which the vehicle can navigate and localize itself with respect to points in the environment. The system achieves real-time performance in several ways. First, wherever possible, direct sensing of motion parameters is used in place of extracting them from visual data. Second, trajectories are chosen to enable a hierarchical search for side-to-side links which limits the amount of searching performed without sacrificing robustness. Finally, the map estimation is formulated as a sparse, linear information filter allowing rapid updating of large maps. The visual navigation enabled by the work in this thesis represents a new capability for remotely operated vehicles, and an enabling capability for a new generation of autonomous vehicles which explore and interact with remote, unknown and unstructured underwater environments. The real-time mosaic can be used on current tethered vehicles to create pilot aids and provide a vehicle user with situational awareness of the local environment and the position of the vehicle within it. For autonomous vehicles, the visual navigation system enables precise environment-relative positioning and mapping, without requiring external navigation systems, opening the way for ever-expanding autonomous exploration capabilities. The utility of this system was demonstrated in the field at sites of scientific interest using the ROVs Ventana and Tiburon operated by the Monterey Bay Aquarium Research Institute. A number of sites in and around Monterey Bay, California were mosaicked using the system, culminating in a complete imaging of the wreck site of the USS Macon , where real-time visual mosaics containing thousands of images were generated while navigating using only sensor systems on board the vehicle.

  9. 75 FR 76943 - Regulated Navigation Area; Hudson River South of the Troy Locks, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ...-AA11 Regulated Navigation Area; Hudson River South of the Troy Locks, NY AGENCY: Coast Guard, DHS... Navigation Area (RNA) on the navigable waters of the Hudson River in New York, south of the Troy Locks. This... within the waters of the Hudson River south of the Troy Locks when ice is a threat to navigation. DATES...

  10. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  11. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  12. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  13. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  14. 33 CFR 165.122 - Regulated Navigation Area: Navigable waters within Narragansett Bay and the Providence River...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... navigation area (RNA). The Regulated Navigation Area (RNA) encompasses all of the navigable waters of...) Regulations. (1) All commercial vessels must: (i) Maintain a minimum 10% of the vessel's draft as an under... commercial vessel traffic in all locations within this RNA shall keep out of the way of the oncoming deep...

  15. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  16. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  17. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All waters...

  18. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...

  19. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...

  20. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...

  1. Patient Navigation by Community Health Workers Increases Access to Surgical Care in Rural Haiti.

    PubMed

    Matousek, Alexi C; Addington, Stephen R; Kahan, Joseph; Sannon, Herriot; Luckner, Thelius; Exe, Chauvet; Jean Louis, Rodolphe R Eisenhower; Lipsitz, Stuart; Meara, John G; Riviello, Robert

    2017-12-01

    In the Hôpital Albert Schweitzer district in rural Haiti, patients from mountain areas receive fewer operations per capita than patients from the plains. Possible additional barriers for mountain patients include lower socioeconomic status, lack of awareness of financial support, illiteracy and unfamiliarity with the hospital system. We sought to increase the rate of elective surgery for a mountain population using a patient navigation program. Patient navigators were trained to guide subjects from a mountain population through the entire hospital process for elective surgery. We compared the rate of elective operations before and after the patient navigation intervention between three groups: a control group from a mountainous area, a control group from the plains and an intervention group from a mountainous area. The baseline elective operation rate differed significantly between the plains control group, the mountain control group and the mountain intervention group (361 vs. 57 vs. 68 operations per 100,000 population per year). The rate of elective surgery between the two mountain groups was not statistically different prior to the intervention. After the intervention, the elective operation rate in the mountain group that received patient navigation increased from 68 to 131 operations per 100,000 population per year (p = 0.017). Patient navigation doubled the elective operation rate for a mountain population in rural Haiti. While additional barriers to access remain for this vulnerable population, patient navigation is an essential augmentation to financial assistance programs to ensure that the poor gain access to surgical care.

  2. Development of the navigation system for visually impaired.

    PubMed

    Harada, Tetsuya; Kaneko, Yuki; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige

    2004-01-01

    A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without the help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for their correct route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination is used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and make notice to an user by vibration. This system recognizes the line of the color stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.

  3. Multiple beacons for supporting lunar landing navigation

    NASA Astrophysics Data System (ADS)

    Theil, Stephan; Bora, Leonardo

    2018-02-01

    The exploration and potential future exploitation of solar system bodies requires technologies for precise and safe landings. Current navigation systems for landing probes are relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. With a future transition from single exploration missions to more frequent first exploration and then exploitation missions, the implementation and operation of these missions changes, since it can be expected that a ground infrastructure on the target body is available in the vicinity of the landing site. In a previous paper, the impact of a single ground-based beacon on the navigation performance was investigated depending on the type of radiometric measurements and on the location of the beacon with respect to the landing site. This paper extends this investigation on options for ground-based multiple beacons supporting the on-board navigation system. It analyzes the impact on the achievable navigation accuracy. For that purpose, the paper introduces briefly the existing navigation architecture based on optical navigation and its extension with radiometric measurements. The same scenario of lunar landing as in the previous paper is simulated. The results are analyzed and discussed. They show a single beacon at a large distance along the landing trajectory and multiple beacons close to the landing site can improve the navigation performance. The results show how large the landing area can be increased where a sufficient navigation performance is achieved using the beacons.

  4. Navigation of military and space unmanned ground vehicles in unstructured terrains

    NASA Technical Reports Server (NTRS)

    Lescoe, Paul; Lavery, David; Bedard, Roger

    1991-01-01

    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  5. Core areas of practice and associated competencies for nurses working as professional cancer navigators.

    PubMed

    Cook, Sandra; Fillion, Lise; Fitch, Margaret; Veillette, Anne-Marie; Matheson, Tanya; Aubin, Michèle; de Serres, Marie; Doll, Richard; Rainville, François

    2013-01-01

    Fillion et al. (2012) recently designed a conceptual framework for professional cancer navigators describing key functions of professional cancer navigation. Building on this framework, this study defines the core areas of practice and associated competencies for professional cancer navigators. The methods used in this study included: literature review, mapping of navigation functions against practice standards and competencies, and validation of this mapping process with professional navigators, their managers and nursing experts and comparison of roles in similar navigation programs. Associated competencies were linked to the three identified core areas of practice, which are: 1) providing information and education, 2) providing emotional and supportive care, and 3) facilitating coordination and continuity of care. Cancer navigators are in a key position to improve patient and family empowerment and continuity of care. This is an important step for advancing the role of oncology nurses in navigator positions and identifying areas for further research.

  6. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  7. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  8. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  9. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  10. 33 CFR 334.525 - Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. 334.525 Section 334.525 Navigation and Navigable Waters CORPS... REGULATIONS § 334.525 Atlantic Ocean off John F. Kennedy Space Center, FL; restricted area. (a) The area. The...

  11. 33 CFR 109.10 - Special anchorage areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Special anchorage areas. 109.10 Section 109.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.10 Special anchorage areas. An Act of Congress of April 22, 1940, provides for the...

  12. 33 CFR 109.10 - Special anchorage areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Special anchorage areas. 109.10 Section 109.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.10 Special anchorage areas. An Act of Congress of April 22, 1940, provides for the...

  13. 33 CFR 109.10 - Special anchorage areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Special anchorage areas. 109.10 Section 109.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.10 Special anchorage areas. An Act of Congress of April 22, 1940, provides for the...

  14. 33 CFR 109.10 - Special anchorage areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Special anchorage areas. 109.10 Section 109.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.10 Special anchorage areas. An Act of Congress of April 22, 1940, provides for the...

  15. 33 CFR 109.10 - Special anchorage areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Special anchorage areas. 109.10 Section 109.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES GENERAL § 109.10 Special anchorage areas. An Act of Congress of April 22, 1940, provides for the...

  16. Health information technology: use it well, or don't! Findings from the use of a decision support system for breast cancer management.

    PubMed

    Bouaud, Jacques; Blaszka-Jaulerry, Brigitte; Zelek, Laurent; Spano, Jean-Philippe; Lefranc, Jean-Pierre; Cojean-Zelek, Isabelle; Durieux, Axel; Tournigand, Christophe; Rousseau, Alexandra; Séroussi, Brigitte

    2014-01-01

    The potential of health information technology is hampered by new types of errors which impact is not totally assessed. OncoDoc2 is a decision support system designed to support treatment decisions of multidisciplinary meetings (MDMs) for breast cancer patients. We evaluated how the way the system was used had an impact on MDM decision compliance with clinical practice guidelines. We distinguished "correct navigations" (N+), "incorrect navigations" (N-), and "missing navigations" (N0), according to the quality of data entry when using OncoDoc2. We collected 557 MDM decisions from three hospitals of Paris area (France) where OncoDoc2 was routinely used. We observed 33.9% N+, 36.8% N-, and 29.3% N0. The compliance rate was significantly different according to the quality of navigations, 94.2%, 80.0%, and 90.2% for N+, N-, and N0 respectively. Surprinsingly, it was better not to use the system (N0) than to use it improperly (N-).

  17. Rethinking Indoor Localization Solutions Towards the Future of Mobile Location-Based Services

    NASA Astrophysics Data System (ADS)

    Guney, C.

    2017-11-01

    Satellite navigation systems with GNSS-enabled devices, such as smartphones, car navigation systems, have changed the way users travel in outdoor environment. GNSS is generally not well suited for indoor location and navigation because of two reasons: First, GNSS does not provide a high level of accuracy although indoor applications need higher accuracies. Secondly, poor coverage of satellite signals for indoor environments decreases its accuracy. So rather than using GNSS satellites within closed environments, existing indoor navigation solutions rely heavily on installed sensor networks. There is a high demand for accurate positioning in wireless networks in GNSS-denied environments. However, current wireless indoor positioning systems cannot satisfy the challenging needs of indoor location-aware applications. Nevertheless, access to a user's location indoors is increasingly important in the development of context-aware applications that increases business efficiency. In this study, how can the current wireless location sensing systems be tailored and integrated for specific applications, like smart cities/grids/buildings/cars and IoT applications, in GNSS-deprived areas.

  18. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30...

  19. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30...

  20. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30...

  1. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30...

  2. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas

    PubMed Central

    2018-01-01

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites. PMID:29673230

  3. Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.

    PubMed

    Gakne, Paul Verlaine; O'Keefe, Kyle

    2018-04-17

    This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.

  4. Collaborative WiFi Fingerprinting Using Sensor-Based Navigation on Smartphones.

    PubMed

    Zhang, Peng; Zhao, Qile; Li, You; Niu, Xiaoji; Zhuang, Yuan; Liu, Jingnan

    2015-07-20

    This paper presents a method that trains the WiFi fingerprint database using sensor-based navigation solutions. Since micro-electromechanical systems (MEMS) sensors provide only a short-term accuracy but suffer from the accuracy degradation with time, we restrict the time length of available indoor navigation trajectories, and conduct post-processing to improve the sensor-based navigation solution. Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database. Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method. Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications.

  5. Collaborative WiFi Fingerprinting Using Sensor-Based Navigation on Smartphones

    PubMed Central

    Zhang, Peng; Zhao, Qile; Li, You; Niu, Xiaoji; Zhuang, Yuan; Liu, Jingnan

    2015-01-01

    This paper presents a method that trains the WiFi fingerprint database using sensor-based navigation solutions. Since micro-electromechanical systems (MEMS) sensors provide only a short-term accuracy but suffer from the accuracy degradation with time, we restrict the time length of available indoor navigation trajectories, and conduct post-processing to improve the sensor-based navigation solution. Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database. Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method. Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications. PMID:26205269

  6. 33 CFR 165.T01-0727 - Regulated Navigation Area; Arthur Kill, NY and NJ.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Kill, NY and NJ. 165.T01-0727 Section 165.T01-0727 Navigation and Navigable Waters COAST GUARD... § 165.T01-0727 Regulated Navigation Area; Arthur Kill, NY and NJ. (a) Regulated area. The following area..., and Gulfport Reach in the Arthur Kill; bounded in the northeast by a line drawn from position 40° 38...

  7. 33 CFR 165.T01-0727 - Regulated Navigation Area; Arthur Kill, NY and NJ.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Kill, NY and NJ. 165.T01-0727 Section 165.T01-0727 Navigation and Navigable Waters COAST GUARD... § 165.T01-0727 Regulated Navigation Area; Arthur Kill, NY and NJ. (a) Regulated area. The following area..., and Gulfport Reach in the Arthur Kill; bounded in the northeast by a line drawn from position 40° 38...

  8. Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'.

    PubMed

    Petrenko, Valery A; Gillespie, James W

    2017-03-01

    New phage-directed nanomedicines have emerged recently as a result of the in-depth study of the genetics and structure of filamentous phage and evolution of phage display and phage nanobiotechnology. This review focuses on the progress made in the development of the cancer-targeted nanomaterials and discusses the trends in using phage as a bioselectable molecular navigation system. Areas covered: The merging of phage display technologies with nanotechnology in recent years has proved promising in different areas of medicine and technology, such as medical diagnostics, molecular imaging, vaccine development and targeted drug/gene delivery, which is the focus of this review. The authors used data obtained from their research group and sourced using Science Citation Index (Web of Science) and NCBI PubMed search resources. Expert opinion: First attempts of adapting traditional concepts of direct targeting of tumor using phage-targeted nanomedicines has shown minimal improvements. With discovery and study of biological and technical barriers that prevent anti-tumor drug delivery, a paradigm shift from traditional drug targeting to nanomedicine navigation systems is required. The advanced bacteriophage-driven self-navigation systems are thought to overcome those barriers using more precise, localized phage selection methods, multi-targeting 'promiscuous' ligands and advanced multifunctional nanomedicine platforms.

  9. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  10. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  11. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  12. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  13. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1) East...

  14. 33 CFR 165.1413 - Regulated navigation area; Southern Oahu Tsunami Evacuation; Honolulu, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Southern Oahu Tsunami Evacuation; Honolulu, Hawaii. 165.1413 Section 165.1413 Navigation and Navigable... Fourteenth Coast Guard District § 165.1413 Regulated navigation area; Southern Oahu Tsunami Evacuation... staging area is intended for use by all commercial vessels intended to remain in the RNA during a tsunami...

  15. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false San Diego Harbor, Calif.; restricted area. 334.870 Section 334.870 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... introduction of external magnetic field sources within the area. (ii) Craft of any size shall not be excluded...

  16. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false San Diego Harbor, Calif.; restricted area. 334.870 Section 334.870 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... introduction of external magnetic field sources within the area. (ii) Craft of any size shall not be excluded...

  17. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false San Diego Harbor, Calif.; restricted area. 334.870 Section 334.870 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... introduction of external magnetic field sources within the area. (ii) Craft of any size shall not be excluded...

  18. 33 CFR 334.1275 - West Arm Behm Canal, Ketchikan, Alaska, restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false West Arm Behm Canal, Ketchikan, Alaska, restricted areas. 334.1275 Section 334.1275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1275 West Arm...

  19. 33 CFR 334.1275 - West Arm Behm Canal, Ketchikan, Alaska, restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false West Arm Behm Canal, Ketchikan, Alaska, restricted areas. 334.1275 Section 334.1275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1275 West Arm...

  20. 33 CFR 334.1275 - West Arm Behm Canal, Ketchikan, Alaska, restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false West Arm Behm Canal, Ketchikan, Alaska, restricted areas. 334.1275 Section 334.1275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1275 West Arm...

  1. 33 CFR 334.1275 - West Arm Behm Canal, Ketchikan, Alaska, restricted areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false West Arm Behm Canal, Ketchikan, Alaska, restricted areas. 334.1275 Section 334.1275 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1275 West Arm...

  2. 33 CFR 334.1215 - Port Gardner, Everett Naval Base, naval restricted area, Everett, Washington.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Port Gardner, Everett Naval Base, naval restricted area, Everett, Washington. 334.1215 Section 334.1215 Navigation and Navigable Waters... REGULATIONS § 334.1215 Port Gardner, Everett Naval Base, naval restricted area, Everett, Washington. (a) The...

  3. 75 FR 22228 - Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-AA11 Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT AGENCY: Coast Guard... establishing a regulated navigation area around the construction zone of the Lake Champlain Bridge between... on all vessels transiting the navigable waters of Lake Champlain in the vicinity of the bridge...

  4. The effects of link format and screen location on visual search of web pages.

    PubMed

    Ling, Jonathan; Van Schaik, Paul

    2004-06-22

    Navigation of web pages is of critical importance to the usability of web-based systems such as the World Wide Web and intranets. The primary means of navigation is through the use of hyperlinks. However, few studies have examined the impact of the presentation format of these links on visual search. The present study used a two-factor mixed measures design to investigate whether there was an effect of link format (plain text, underlined, bold, or bold and underlined) upon speed and accuracy of visual search and subjective measures in both the navigation and content areas of web pages. An effect of link format on speed of visual search for both hits and correct rejections was found. This effect was observed in the navigation and the content areas. Link format did not influence accuracy in either screen location. Participants showed highest preference for links that were in bold and underlined, regardless of screen area. These results are discussed in the context of visual search processes and design recommendations are given.

  5. 33 CFR 165.1407 - Security Zones; Oahu, HI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Oahu, HI. 165.1407 Section 165.1407 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Navigation Areas and Limited Access Areas Fourteenth Coast Guard District § 165.1407 Security Zones; Oahu, HI...

  6. 33 CFR 165.T01-0519 - Safety zone; ship repair in Penobscot Bay, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety zone; ship repair in Penobscot Bay, ME. 165.T01-0519 Section 165.T01-0519 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation...

  7. Image-guided laparoscopic surgery in an open MRI operating theater.

    PubMed

    Tsutsumi, Norifumi; Tomikawa, Morimasa; Uemura, Munenori; Akahoshi, Tomohiko; Nagao, Yoshihiro; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Maehara, Yoshihiko; Hashizume, Makoto

    2013-06-01

    The recent development of open magnetic resonance imaging (MRI) has provided an opportunity for the next stage of image-guided surgical and interventional procedures. The purpose of this study was to evaluate the feasibility of laparoscopic surgery under the pneumoperitoneum with the system of an open MRI operating theater. Five patients underwent laparoscopic surgery with a real-time augmented reality navigation system that we previously developed in a horizontal-type 0.4-T open MRI operating theater. All procedures were performed in an open MRI operating theater. During the operations, the laparoscopic monitor clearly showed the augmented reality models of the intraperitoneal structures, such as the common bile ducts and the urinary bladder, as well as the proper positions of the prosthesis. The navigation frame rate was 8 frames per min. The mean fiducial registration error was 6.88 ± 6.18 mm in navigated cases. We were able to use magnetic resonance-incompatible surgical instruments out of the 5-Gs restriction area, as well as conventional laparoscopic surgery, and we developed a real-time augmented reality navigation system using open MRI. Laparoscopic surgery with our real-time augmented reality navigation system in the open MRI operating theater is a feasible option.

  8. The sensory ecology of ocean navigation.

    PubMed

    Lohmann, Kenneth J; Lohmann, Catherine M F; Endres, Courtney S

    2008-06-01

    How animals guide themselves across vast expanses of open ocean, sometimes to specific geographic areas, has remained an enduring mystery of behavioral biology. In this review we briefly contrast underwater oceanic navigation with terrestrial navigation and summarize the advantages and constraints of different approaches used to analyze animal navigation in the sea. In addition, we highlight studies and techniques that have begun to unravel the sensory cues that underlie navigation in sea turtles, salmon and other ocean migrants. Environmental signals of importance include geomagnetic, chemical and hydrodynamic cues, perhaps supplemented in some cases by celestial cues or other sources of information that remain to be discovered. An interesting similarity between sea turtles and salmon is that both have been hypothesized to complete long-distance reproductive migrations using navigational systems composed of two different suites of mechanisms that function sequentially over different spatial scales. The basic organization of navigation in these two groups of animals may be functionally similar, and perhaps also representative of other long-distance ocean navigators.

  9. Bioinspired magnetoreception and navigation using magnetic signatures as waypoints.

    PubMed

    Taylor, Brian K

    2018-05-15

    Diverse taxa use Earth's magnetic field in conjunction with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. However, despite extensive research, the mechanisms that underlie animal magnetoreception are not clearly understood, and how animals use Earth's magnetic field to navigate is an active area of investigation. Concurrently, Earth's magnetic field offers a signal that engineered systems can leverage for navigation in environments where man-made systems such as GPS are unavailable or unreliable. Using a proxy for Earth's magnetic field, and inspired by migratory animal behavior, this work implements a behavioral strategy that uses combinations of magnetic field properties as rare or unique signatures that mark specific locations. Using a discrete number of these signatures as goal waypoints, the strategy navigates through a closed set of points several times in a variety of environmental conditions, and with various levels of sensor noise. The results from this engineering/quantitative biology approach support existing notions that some animals may use combinations of magnetic properties as navigational markers, and provides insights into features and constraints that would enable navigational success or failure. The findings also offer insights into how autonomous engineered platforms might be designed to leverage the magnetic field as a navigational resource.

  10. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model

    PubMed Central

    Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P.; Martin, Edward W.; Hitchcock, Charles L.; Yilmaz, Alper; Tweedle, Michael F.; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting. PMID:27367051

  11. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    PubMed

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P; Martin, Edward W; Hitchcock, Charles L; Yilmaz, Alper; Tweedle, Michael F; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  12. Indoor Pedestrian Navigation Using Foot-Mounted IMU and Portable Ultrasound Range Sensors

    PubMed Central

    Girard, Gabriel; Côté, Stéphane; Zlatanova, Sisi; Barette, Yannick; St-Pierre, Johanne; van Oosterom, Peter

    2011-01-01

    Many solutions have been proposed for indoor pedestrian navigation. Some rely on pre-installed sensor networks, which offer good accuracy but are limited to areas that have been prepared for that purpose, thus requiring an expensive and possibly time-consuming process. Such methods are therefore inappropriate for navigation in emergency situations since the power supply may be disturbed. Other types of solutions track the user without requiring a prepared environment. However, they may have low accuracy. Offline tracking has been proposed to increase accuracy, however this prevents users from knowing their position in real time. This paper describes a real time indoor navigation system that does not require prepared building environments and provides tracking accuracy superior to previously described tracking methods. The system uses a combination of four techniques: foot-mounted IMU (Inertial Motion Unit), ultrasonic ranging, particle filtering and model-based navigation. The very purpose of the project is to combine these four well-known techniques in a novel way to provide better indoor tracking results for pedestrians. PMID:22164034

  13. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River at Patrick Air Force Base, Fla.; restricted area. 334.560 Section 334.560 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.560 Banana...

  14. 33 CFR 167.101 - In the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas. 167.101 Section 167.101 Navigation and Navigable... the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas. (a) A precautionary...

  15. 33 CFR 167.101 - In the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas. 167.101 Section 167.101 Navigation and Navigable... the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas. (a) A precautionary...

  16. 33 CFR 167.101 - In the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas. 167.101 Section 167.101 Navigation and Navigable... the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas. (a) A precautionary...

  17. 33 CFR 167.101 - In the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas. 167.101 Section 167.101 Navigation and Navigable... the approaches to Narragansett Bay, RI, and Buzzards Bay, MA: Precautionary areas. (a) A precautionary...

  18. 33 CFR 334.120 - Delaware Bay off Milford Neck; naval aircraft bombing target area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Delaware Bay off Milford Neck; naval aircraft bombing target area. 334.120 Section 334.120 Navigation and Navigable Waters CORPS OF....120 Delaware Bay off Milford Neck; naval aircraft bombing target area. (a) The danger zone. A circular...

  19. 33 CFR 334.1490 - Caribbean Sea, at St. Croix, V.I.; restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Caribbean Sea, at St. Croix, V.I.; restricted areas. 334.1490 Section 334.1490 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1490 Caribbean Sea...

  20. 33 CFR 334.1490 - Caribbean Sea, at St. Croix, V.I.; restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Caribbean Sea, at St. Croix, V.I.; restricted areas. 334.1490 Section 334.1490 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1490 Caribbean Sea...

  1. 33 CFR 334.120 - Delaware Bay off Milford Neck; naval aircraft bombing target area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Delaware Bay off Milford Neck; naval aircraft bombing target area. 334.120 Section 334.120 Navigation and Navigable Waters CORPS OF....120 Delaware Bay off Milford Neck; naval aircraft bombing target area. (a) The danger zone. A circular...

  2. 33 CFR 334.720 - Gulf of Mexico, south from Choctawhatchee Bay; Missile test area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico, south from Choctawhatchee Bay; Missile test area. 334.720 Section 334.720 Navigation and Navigable Waters CORPS OF ENGINEERS... Mexico, south from Choctawhatchee Bay; Missile test area. (a) The danger zone. The danger zone shall...

  3. 33 CFR 334.720 - Gulf of Mexico, south from Choctawhatchee Bay; Missile test area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico, south from Choctawhatchee Bay; Missile test area. 334.720 Section 334.720 Navigation and Navigable Waters CORPS OF ENGINEERS... Mexico, south from Choctawhatchee Bay; Missile test area. (a) The danger zone. The danger zone shall...

  4. 33 CFR 334.720 - Gulf of Mexico, south from Choctawhatchee Bay; Missile test area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico, south from Choctawhatchee Bay; Missile test area. 334.720 Section 334.720 Navigation and Navigable Waters CORPS OF ENGINEERS... Mexico, south from Choctawhatchee Bay; Missile test area. (a) The danger zone. The danger zone shall...

  5. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...

  6. 33 CFR 103.510 - Area Maritime Security (AMS) Plan review and approval.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Area Maritime Security (AMS) Plan review and approval. 103.510 Section 103.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF...) Plan § 103.510 Area Maritime Security (AMS) Plan review and approval. Each AMS Plan will be submitted...

  7. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...

  8. Analysis of safety reports involving area navigation and required navigation performance procedures.

    DOT National Transportation Integrated Search

    2010-11-03

    In order to achieve potential operational and safety benefits enabled by Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures it is important to monitor emerging issues in their initial implementation. Reports from the Aviation...

  9. 33 CFR 165.20 - Safety zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety zones. 165.20 Section 165... WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Safety Zones § 165.20 Safety zones. A Safety Zone is a water area, shore area, or water and shore area to which, for safety or environmental...

  10. 33 CFR 165.20 - Safety zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety zones. 165.20 Section 165... WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Safety Zones § 165.20 Safety zones. A Safety Zone is a water area, shore area, or water and shore area to which, for safety or environmental...

  11. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  12. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  13. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  14. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  15. 33 CFR 165.1122 - San Diego Bay, Mission Bay and their Approaches-Regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... area. (a) Regulated navigation area. The following area is a regulated navigation area (RNA): All... coordinates reference 1983 North American Datum (NAD 83). (b) Definitions. As used in this section— COLREGS... means every description of watercraft or other artificial contrivance used, or capable of being used, as...

  16. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    NASA Astrophysics Data System (ADS)

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  17. The attribution of success when using navigation aids.

    PubMed

    Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy

    2015-01-01

    Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors.

  18. The attribution of success when using navigation aids

    PubMed Central

    Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy

    2015-01-01

    Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. Practitioner Summary: This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors. PMID:25384842

  19. Georeferencing in Gnss-Challenged Environment: Integrating Uwb and Imu Technologies

    NASA Astrophysics Data System (ADS)

    Toth, C. K.; Koppanyi, Z.; Navratil, V.; Grejner-Brzezinska, D.

    2017-05-01

    Acquiring geospatial data in GNSS compromised environments remains a problem in mapping and positioning in general. Urban canyons, heavily vegetated areas, indoor environments represent different levels of GNSS signal availability from weak to no signal reception. Even outdoors, with multiple GNSS systems, with an ever-increasing number of satellites, there are many situations with limited or no access to GNSS signals. Independent navigation sensors, such as IMU can provide high-data rate information but their initial accuracy degrades quickly, as the measurement data drift over time unless positioning fixes are provided from another source. At The Ohio State University's Satellite Positioning and Inertial Navigation (SPIN) Laboratory, as one feasible solution, Ultra- Wideband (UWB) radio units are used to aid positioning and navigating in GNSS compromised environments, including indoor and outdoor scenarios. Here we report about experiences obtained with georeferencing a pushcart based sensor system under canopied areas. The positioning system is based on UWB and IMU sensor integration, and provides sensor platform orientation for an electromagnetic inference (EMI) sensor. Performance evaluation results are provided for various test scenarios, confirming acceptable results for applications where high accuracy is not required.

  20. 75 FR 8486 - Regulated Navigation Area; Hudson River south of the Troy Locks, New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ...-AA11 Regulated Navigation Area; Hudson River south of the Troy Locks, New York AGENCY: Coast Guard, DHS... area on the navigable waters of the Hudson River south of the Troy Locks. This regulated navigation... Hudson River south of the Troy locks when ice conditions are 8 inches or greater unless authorized by the...

  1. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  2. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  3. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  4. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  5. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  6. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  7. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  8. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a) The...

  9. 33 CFR 334.10 - Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area. 334.10 Section 334.10 Navigation and Navigable Waters CORPS... REGULATIONS § 334.10 Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area. (a) The danger...

  10. 33 CFR 334.10 - Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area. 334.10 Section 334.10 Navigation and Navigable Waters CORPS... REGULATIONS § 334.10 Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area. (a) The danger...

  11. 33 CFR 334.20 - Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. 334.20 Section 334.20 Navigation and Navigable Waters... REGULATIONS § 334.20 Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. (a) The...

  12. 33 CFR 334.20 - Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. 334.20 Section 334.20 Navigation and Navigable Waters... REGULATIONS § 334.20 Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. (a) The...

  13. 33 CFR 334.10 - Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area. 334.10 Section 334.10 Navigation and Navigable Waters CORPS... REGULATIONS § 334.10 Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area. (a) The danger...

  14. 33 CFR 334.20 - Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. 334.20 Section 334.20 Navigation and Navigable Waters... REGULATIONS § 334.20 Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. (a) The...

  15. 33 CFR 334.20 - Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. 334.20 Section 334.20 Navigation and Navigable Waters... REGULATIONS § 334.20 Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. (a) The...

  16. 33 CFR 334.20 - Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. 334.20 Section 334.20 Navigation and Navigable Waters... REGULATIONS § 334.20 Gulf of Maine off Cape Small, Maine; naval aircraft practice mining range area. (a) The...

  17. 33 CFR 334.10 - Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area. 334.10 Section 334.10 Navigation and Navigable Waters CORPS... REGULATIONS § 334.10 Gulf of Maine off Seal Island, Maine; naval aircraft bombing target area. (a) The danger...

  18. 33 CFR 334.510 - U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. 334.510 Section 334.510 Navigation and Navigable... REGULATIONS § 334.510 U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. (a) The...

  19. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  20. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  1. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  2. 33 CFR 334.820 - Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. 334.820 Section 334.820 Navigation and Navigable... REGULATIONS § 334.820 Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. (a...

  3. 33 CFR 334.820 - Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. 334.820 Section 334.820 Navigation and Navigable... REGULATIONS § 334.820 Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. (a...

  4. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  5. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  6. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  7. 33 CFR 165.923 - Regulated Navigation Area between mile markers 296.1 and 296.7 of the Chicago Sanitary and Ship...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area between mile markers 296.1 and 296.7 of the Chicago Sanitary and Ship Canal located near Romeoville, IL. 165.923 Section 165.923 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED...

  8. The new Euskalmet coastal-maritime warning system

    NASA Astrophysics Data System (ADS)

    Gaztelumendi, Santiago; Egaña, Joseba; Liria, Pedro; Gonzalez, Manuel; Aranda, José Antonio; Anitua, Pedro

    2016-06-01

    This work presents the main characteristics of the Basque Meteorology Agency (Euskalmet) maritime-coastal risk warning system, with special emphasis on the latest updates, including a clear differentiation on specific warning messages addressing sea conditions for navigation purposes in the first 2 nautical miles, and expected coastal impacts. Some details of the warning bulletin for maritime and coastal risk situations are also presented, together with other communication products and strategies used in coastal and maritime severe episodes at the Basque coast. Today, three different aspects are included in the coastal-maritime risk warning system in Basque Country, related to the main potential severe events that affecting coastal activities. - "Galerna" risk relates to a sudden wind reversal that can severely affect coastal navigation and recreational activities. - "Navigation" risk relates to severe sea state conditions for 0-2 miles, affecting different navigation activities. - "Coastal impact" risk relates to adverse wave characteristics and tidal surges that induce flooding events and different impacts in littoral areas.

  9. Project Longshot: A mission to Alpha Centauri

    NASA Technical Reports Server (NTRS)

    West, Curtis; Chamberlain, Sally; Pagan, Neftali; Stevens, Robert

    1989-01-01

    Project Longshot, an exercise in the Advanced Design Program for Space, had as its destination Alpha Centauri, the closest star system to our own solar system. Alpha Centauri, a trinary star system, is 4.34 light years from earth. Although Project Longshot is impossible based on existing technologies, areas that require further investigation in order to make this feat possible are identified. Three areas where advances in technology are needed are propulsion, data processing for autonomous command and control functions, and reliability. Propulsion, possibly by antimatter annihilation; navigation and navigation aids; reliable hardware and instruments; artificial intelligence to eliminate the need for command telemetry; laser communication; and a reliable, compact, and lightweight power system that converts energy efficiently and reliably present major challenges. Project Longshot promises exciting advances in science and technology and new information concerning the universe.

  10. 33 CFR 165.808 - Corpus Christi Ship Channel, Corpus Christi, TX, safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Corpus Christi Ship Channel, Corpus Christi, TX, safety zone. 165.808 Section 165.808 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigatio...

  11. 33 CFR 165.835 - Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Port of Mobile, Mobile Ship Channel, Mobile, AL. 165.835 Section 165.835 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated...

  12. 33 CFR 165.838 - Regulated Navigation Area; Gulf Intracoastal Waterway, Inner Harbor Navigation Canal, New Orleans...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... before closure of the navigational structures, all floating vessels must depart the RNA except as follows... Harbor Navigation Canal, New Orleans, LA. (a) Location. The following is a regulated navigation area (RNA... West of Harvey Locks (WHL) (b) Definitions. As used in this section: (1) Breakaway means a floating...

  13. 33 CFR 401.50 - Anchorage areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Anchorage areas. 401.50 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.50 Anchorage areas. Except in an... of the Seaway except in the following designated anchorage areas: (a) Point Fortier (Lake St. Louis...

  14. 33 CFR 401.50 - Anchorage areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Anchorage areas. 401.50 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.50 Anchorage areas. Except in an... of the Seaway except in the following designated anchorage areas: (a) Point Fortier (Lake St. Louis...

  15. 33 CFR 401.50 - Anchorage areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Anchorage areas. 401.50 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.50 Anchorage areas. Except in an... of the Seaway except in the following designated anchorage areas: (a) Point Fortier (Lake St. Louis...

  16. 33 CFR 401.50 - Anchorage areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Anchorage areas. 401.50 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.50 Anchorage areas. Except in an... of the Seaway except in the following designated anchorage areas: (a) Point Fortier (Lake St. Louis...

  17. 78 FR 76784 - Proposed Modification, Revocation, and Establishment of Area Navigation (RNAV) Routes; Charlotte, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... proposed to support the Charlotte Optimization of Airspace and Procedures in a Metroplex (OAPM) project.... 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application procedure... corridors serving the Charlotte area and would enhance the efficiency of the National Airspace System in the...

  18. National Airspace System : status of wide area augmentation system project

    DOT National Transportation Integrated Search

    1998-04-30

    As a key element of its overall program for modernizing the National Airspace : System, the Federal Aviation Administration (FAA) is planning a transition from : ground- to satellite-based navigation by using satellite signals generated by : the Depa...

  19. Global Positioning System wide area augmentation system (WAAS) performance standard.

    DOT National Transportation Integrated Search

    2008-10-31

    The U.S. Global Positioning System (GPS) Standard Positioning Service (SPS) consists of spacebased : positioning, navigation, and timing (PNT) signals generated from space vehicles orbiting the : earth and delivered free of direct user fees for civil...

  20. Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.

    1975-01-01

    A low cost flight research program was conducted to evaluate the performance of differential Omega navigation in a general aviation aircraft. The flight program consisted of two distinct parts corresponding to the two major objectives of the study. The Wallops Flight Program was conducted to obtain Omega signal and phase data in the Wallops Flight Center vicinity to provide preliminary technical information and experience in preparation for a comprehensive NASA/FAA flight test program of an experimental differential Omega system. The Northeast Corridor Flight Program was conducted to examine Omega operational suitability and performance on low altitude area navigation (RNAV) routes for city-center to city-center VTOL commercial operations in the Boston-New York-Washington corridor. The development, execution and conclusions of the flight research program are discribed. The results of the study provide both quantitative and qualitative data on the Omega Navigation System under actual operating conditions.

  1. Guidance and navigation for automatic landing, rollout, and turnoff using MLS and magnetic cable sensors

    NASA Technical Reports Server (NTRS)

    Pines, S.; Hueschen, R. M.

    1978-01-01

    This paper describes the navigation and guidance system developed for the TCV B-737, a Langley Field NASA research aircraft, and presents the results of an evaluation during final approach, landing, rollout and turnoff obtained through a nonlinear digital simulation. A Kalman filter (implemented in square root form) and a third order complementary filter were developed and compared for navigation. The Microwave Landing Systems (MLS) is used for all phases of the flight for navigation and guidance. In addition, for rollout and turnoff, a three coil sensor which detects the magnetic field induced by a buried wire in the runway (magnetic leader cable) is used. The outputs of the sensor are processed into measurements of position and heading deviation from the wire. The results show the concept to be both feasible and practical for commercial type aircraft terminal area control.

  2. Operation of a single-channel, sequential Navstar GPS receiver in a helicopter mission environment

    NASA Technical Reports Server (NTRS)

    Edwards, F. G.; Hamlin, J. R.

    1984-01-01

    It is pointed out that the future utilization of the Navstar Global Positioning System (GPS) by civil helicopters will provide an enhanced performance not obtainable with current navigations systems. GPS will supply properly equipped users with extremely accurate three-dimensional position and velocity information anywhere in the world. Preliminary studies have been conducted to investigate differential GPS concept mechanizations and cost, and to theoretically predict navigation performance and the impact of degradation of the GPS C/A code for national security considerations. The obtained results are encouraging, but certain improvements are needed. As a second step in the program, a single-channel sequential GPS navigator was installed and operated in the NASA SH-3G helicopter. A series of flight tests were conducted. It is found that performance of the Navstar GPS Z-set is quite acceptable to support area navigation and nonprecision approach operations.

  3. Development of the navigation system for the visually impaired by using white cane.

    PubMed

    Hirahara, Yoshiaki; Sakurai, Yusuke; Shiidu, Yuriko; Yanashima, Kenji; Magatani, Kazushige

    2006-01-01

    A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for there correcting route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination are used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and makes notice to a user by vibration. This system recognizes the color of the line stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.

  4. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1971-01-01

    Investigation of problems related to control of a mobile planetary vehicle according to a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: (1) overall systems analysis; (2) vehicle configuration and dynamics; (3) toroidal wheel design and evaluation; (4) on-board navigation systems; (5) satellite-vehicle navigation systems; (6) obstacle detection systems; (7) terrain sensing, interpretation and modeling; (8) computer simulation of terrain sensor-path selection systems; and (9) chromatographic systems design concept studies. The specific tasks which have been undertaken are defined and the progress which has been achieved during the period July 1, 1971 to December 31, 1971 is summarized.

  5. 33 CFR 334.740 - Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. 334.740 Section 334.740 Navigation and Navigable... REGULATIONS § 334.740 Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. (a...

  6. 33 CFR 334.740 - Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. 334.740 Section 334.740 Navigation and Navigable... REGULATIONS § 334.740 Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. (a...

  7. Development of a computer program data base of a navigation aid environment for simulated IFR flight and landing studies

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.; Haynie, A. T.; Mcdede, J. B.

    1980-01-01

    A general aviation single pilot instrument flight rule simulation capability was developed. Problems experienced by single pilots flying in IFR conditions were investigated. The simulation required a three dimensional spatial navaid environment of a flight navigational area. A computer simulation of all the navigational aids plus 12 selected airports located in the Washington/Norfolk area was developed. All programmed locations in the list were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navigational aids with their associated frequencies, call letters, locations, and orientations plus runways and true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to a runway on the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and landing.

  8. Accuracy Analysis of Precise Point Positioning of Compass Navigation System Applied to Crustal Motion Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing

    2017-04-01

    Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.

  9. Real-time synthetic vision cockpit display for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.

    1999-07-01

    Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.

  10. Use of Assisted Photogrammetry for Indoor and Outdoor Navigation Purposes

    NASA Astrophysics Data System (ADS)

    Pagliari, D.; Cazzaniga, N. E.; Pinto, L.

    2015-05-01

    Nowadays, devices and applications that require navigation solutions are continuously growing. For instance, consider the increasing demand of mapping information or the development of applications based on users' location. In some case it could be sufficient an approximate solution (e.g. at room level), but in the large amount of cases a better solution is required. The navigation problem has been solved from a long time using Global Navigation Satellite System (GNSS). However, it can be unless in obstructed areas, such as in urban areas or inside buildings. An interesting low cost solution is photogrammetry, assisted using additional information to scale the photogrammetric problem and recovering a solution also in critical situation for image-based methods (e.g. poor textured surfaces). In this paper, the use of assisted photogrammetry has been tested for both outdoor and indoor scenarios. Outdoor navigation problem has been faced developing a positioning system with Ground Control Points extracted from urban maps as constrain and tie points automatically extracted from the images acquired during the survey. The proposed approach has been tested under different scenarios, recovering the followed trajectory with an accuracy of 0.20 m. For indoor navigation a solution has been thought to integrate the data delivered by Microsoft Kinect, by identifying interesting features on the RGB images and re-projecting them on the point clouds generated from the delivered depth maps. Then, these points have been used to estimate the rotation matrix between subsequent point clouds and, consequently, to recover the trajectory with few centimeters of error.

  11. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...

  12. V/STOLAND digital avionics system for XV-15 tilt rotor

    NASA Technical Reports Server (NTRS)

    Liden, S.

    1980-01-01

    A digital flight control system for the tilt rotor research aircraft provides sophisticated navigation, guidance, control, display and data acquisition capabilities for performing terminal area navigation, guidance and control research. All functions of the XV-15 V/STOLAND system were demonstrated on the NASA-ARC S-19 simulation facility under a comprehensive dynamic acceptance test. The most noteworthy accomplishments of the system are: (1) automatic configuration control of a tilt-rotor aircraft over the total operating range; (2) total hands-off landing to touchdown on various selectable straight-in glide slopes and on a flight path that includes a two-revolution helix; (3) automatic guidance along a programmed three-dimensional reference flight path; (4) navigation data for the automatic guidance computed on board, based on VOR/DME, TACAN, or MLS navid data; and (5) integration of a large set of functions in a single computer, utilizing 16k words of storage for programs and data.

  13. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  14. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  15. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.

    PubMed

    Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph

    2017-09-26

    Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.

  16. 33 CFR 100.35T09-0327 - Special Regulated Areas for summer events; Captain of the Port Lake Michigan Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Special Regulated Areas for summer events; Captain of the Port Lake Michigan Zone. 100.35T09-0327 Section 100.35T09-0327 Navigation... OF LIFE ON NAVIGABLE WATERS § 100.35T09-0327 Special Regulated Areas for summer events; Captain of...

  17. [First clinical experience with extended planning and navigation in an interventional MRI unit].

    PubMed

    Moche, M; Schmitgen, A; Schneider, J P; Bublat, M; Schulz, T; Voerkel, C; Trantakis, C; Bennek, J; Kahn, T; Busse, H

    2004-07-01

    To present an advanced concept for patient-based navigation and to report on our first clinical experience with interventions in the cranium, of soft-tissue structures (breast, liver) and in the musculoskeletal system. A PC-based navigation system was integrated into an existing interventional MRI environment. Intraoperatively acquired 3D data were used for interventional planning. The information content of these reference data was increased by integration of additional image modalities (e. g., fMRI, CT) and by color display of areas with early contrast media enhancement. Within 18 months, the system was used in 123 patients undergoing interventions in different anatomic regions (brain: 64, paranasal sinus: 9, breast: 20, liver: 17, bone: 9, muscle: 4). The mean duration of 64 brain interventions was compared with that of 36 procedures using the scanner's standard navigation. In contrast with the continuous scanning mode of the MR system (0.25 fps), the higher quality as well as the real time display (4 fps) of the MR images reconstructed from the 3D reference data allowed adequate hand-eye coordination. With our system, patient movement and tissue shifts could be immediately detected intraoperatively, and, in contrast to the standard procedure, navigation safely resumed after updating the reference data. The navigation system was characterized by good stability, efficient system integration and easy usability. Despite additional working steps still to be optimized, the duration of the image-guided brain tumor resections was not significantly longer. The presented system combines the advantage of intraoperative MRI with established visualization, planning, and real time capabilities of neuronavigation and can be efficiently applied in a broad range of non-neurosurgical interventions.

  18. [Magnetic navigation for ablation of cardiac arrhythmias].

    PubMed

    Chen, Jian; Hoff, Per Ivar; Solheim, Eivind; Schuster, Peter; Off, Morten Kristian; Ohm, Ole-Jørgen

    2010-08-12

    The first use of magnetic navigation for radiofrequency ablation of supraventricular tachycardias, was published in 2004. Subsequently, the method has been used for treatment of most types of tachyarrhythmias. This paper provides an overview of the method, with special emphasis on usefulness of a new remote-controlled magnetic navigation system. The paper is based on our own scientific experience and literature identified through a non-systematic search in PubMed. The magnetic navigation system consists of two external electromagnets (to be placed on opposite sides of the patient), which guide an ablation catheter (with a small magnet at the tip of the catheter) to the target area in the heart. The accuracy of this procedure is higher than that with manual navigation. Personnel can be quickly trained to use remote magnetic navigation, but the procedure itself is time-consuming, particularly for patients with atrial fibrillation. The major advantage is a considerably lower radiation burden to both patient and operator, in some studies more than 50 %, and a corresponding reduction in physical strain on the operator. The incidence of procedure-related complications seems to be lower than that observed with use of manually operated ablation catheters. Work is ongoing to improve magnetic ablation catheters and methods that can simplify mapping procedures and improve efficacy of arrhythmia ablation. The basic cost for installing a complete magnetic navigation laboratory may be three times that of a conventional electrophysiological laboratory. The new magnetic navigation system has proved to be applicable during ablation for a variety of tachyarrhythmias, but is still under development.

  19. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  20. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  1. 33 CFR 110.73 - St. Johns River, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false St. Johns River, Fla. 110.73 Section 110.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.73 St. Johns River, Fla. (a) Area A. The waters lying...

  2. 33 CFR 110.72b - St. Simons Island, Georgia.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false St. Simons Island, Georgia. 110.72b Section 110.72b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72b St. Simons Island, Georgia. The area...

  3. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  4. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  5. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  6. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  7. 33 CFR 110.52 - Thames River, New London, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Thames River, New London, Conn. 110.52 Section 110.52 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.52 Thames River, New London, Conn. (a) Area No...

  8. 33 CFR 110.52 - Thames River, New London, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Thames River, New London, Conn. 110.52 Section 110.52 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.52 Thames River, New London, Conn. (a) Area No...

  9. 33 CFR 110.75 - Corpus Christi Bay, Tex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Corpus Christi Bay, Tex. 110.75 Section 110.75 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.75 Corpus Christi Bay, Tex. (a) South area. Southward of...

  10. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  11. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  12. 33 CFR 110.75 - Corpus Christi Bay, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Corpus Christi Bay, Tex. 110.75 Section 110.75 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.75 Corpus Christi Bay, Tex. (a) South area. Southward of...

  13. 33 CFR 110.52 - Thames River, New London, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Thames River, New London, Conn. 110.52 Section 110.52 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.52 Thames River, New London, Conn. (a) Area No...

  14. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  15. 33 CFR 110.78 - Sturgeon Bay, Sturgeon Bay, Wis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Sturgeon Bay, Sturgeon Bay, Wis. 110.78 Section 110.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.78 Sturgeon Bay, Sturgeon Bay, Wis. (a) Area 1...

  16. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  17. 33 CFR 110.75 - Corpus Christi Bay, Tex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Corpus Christi Bay, Tex. 110.75 Section 110.75 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.75 Corpus Christi Bay, Tex. (a) South area. Southward of...

  18. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  19. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  20. 33 CFR 110.72b - St. Simons Island, Georgia.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false St. Simons Island, Georgia. 110.72b Section 110.72b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72b St. Simons Island, Georgia. The area...

  1. 33 CFR 110.78 - Sturgeon Bay, Sturgeon Bay, Wis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sturgeon Bay, Sturgeon Bay, Wis. 110.78 Section 110.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.78 Sturgeon Bay, Sturgeon Bay, Wis. (a) Area 1...

  2. 33 CFR 110.75 - Corpus Christi Bay, Tex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Corpus Christi Bay, Tex. 110.75 Section 110.75 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.75 Corpus Christi Bay, Tex. (a) South area. Southward of...

  3. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  4. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  5. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  6. 33 CFR 110.78 - Sturgeon Bay, Sturgeon Bay, Wis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sturgeon Bay, Sturgeon Bay, Wis. 110.78 Section 110.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.78 Sturgeon Bay, Sturgeon Bay, Wis. (a) Area 1...

  7. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  8. 33 CFR 110.73 - St. Johns River, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false St. Johns River, Fla. 110.73 Section 110.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.73 St. Johns River, Fla. (a) Area A. The waters lying...

  9. 33 CFR 110.72b - St. Simons Island, Georgia.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false St. Simons Island, Georgia. 110.72b Section 110.72b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72b St. Simons Island, Georgia. The area...

  10. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  11. 33 CFR 110.52 - Thames River, New London, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Thames River, New London, Conn. 110.52 Section 110.52 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.52 Thames River, New London, Conn. (a) Area No...

  12. 33 CFR 110.52 - Thames River, New London, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Thames River, New London, Conn. 110.52 Section 110.52 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.52 Thames River, New London, Conn. (a) Area No...

  13. 33 CFR 110.58 - Cos Cob Harbor, Greenwich, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cos Cob Harbor, Greenwich, Conn. 110.58 Section 110.58 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.58 Cos Cob Harbor, Greenwich, Conn. (a) Area A...

  14. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  15. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  16. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  17. 33 CFR 110.81a - Lake Betsie, Frankfort, MI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lake Betsie, Frankfort, MI. 110.81a Section 110.81a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.81a Lake Betsie, Frankfort, MI. The area...

  18. 33 CFR 110.75 - Corpus Christi Bay, Tex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Corpus Christi Bay, Tex. 110.75 Section 110.75 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.75 Corpus Christi Bay, Tex. (a) South area. Southward of...

  19. 33 CFR 110.73 - St. Johns River, Fla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false St. Johns River, Fla. 110.73 Section 110.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.73 St. Johns River, Fla. (a) Area A. The waters lying...

  20. 33 CFR 110.38 - Edgartown Harbor, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Edgartown Harbor, Mass. 110.38 Section 110.38 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.38 Edgartown Harbor, Mass. An area in the inner harbor...

  1. 33 CFR 110.32 - Hingham Harbor, Hingham, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Hingham Harbor, Hingham, Mass. 110.32 Section 110.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.32 Hingham Harbor, Hingham, Mass. (a) Area 1...

  2. 33 CFR 110.73 - St. Johns River, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false St. Johns River, Fla. 110.73 Section 110.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.73 St. Johns River, Fla. (a) Area A. The waters lying...

  3. 33 CFR 110.50 - Stonington Harbor, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Stonington Harbor, Conn. 110.50 Section 110.50 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50 Stonington Harbor, Conn. (a) Area No. 1. Beginning at...

  4. 33 CFR 110.72b - St. Simons Island, Georgia.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false St. Simons Island, Georgia. 110.72b Section 110.72b Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72b St. Simons Island, Georgia. The area...

  5. 33 CFR 110.78 - Sturgeon Bay, Sturgeon Bay, Wis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sturgeon Bay, Sturgeon Bay, Wis. 110.78 Section 110.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.78 Sturgeon Bay, Sturgeon Bay, Wis. (a) Area 1...

  6. 33 CFR 211.81 - Reservoir areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reservoir areas. 211.81 Section 211.81 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Sale of...

  7. 33 CFR 100.119 - Newport-Bermuda Regatta, Narragansett Bay, Newport, RI

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Newport-Bermuda Regatta, Narragansett Bay, Newport, RI 100.119 Section 100.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...-Bermuda Regatta, Narragansett Bay, Newport, RI (a) Regulated area. The regulated area includes all waters...

  8. 33 CFR 100.119 - Newport-Bermuda Regatta, Narragansett Bay, Newport, RI

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Newport-Bermuda Regatta, Narragansett Bay, Newport, RI 100.119 Section 100.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...-Bermuda Regatta, Narragansett Bay, Newport, RI (a) Regulated area. The regulated area includes all waters...

  9. 33 CFR 100.119 - Newport-Bermuda Regatta, Narragansett Bay, Newport, RI

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Newport-Bermuda Regatta, Narragansett Bay, Newport, RI 100.119 Section 100.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...-Bermuda Regatta, Narragansett Bay, Newport, RI (a) Regulated area. The regulated area includes all waters...

  10. 33 CFR 100.119 - Newport-Bermuda Regatta, Narragansett Bay, Newport, RI

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Newport-Bermuda Regatta, Narragansett Bay, Newport, RI 100.119 Section 100.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT...-Bermuda Regatta, Narragansett Bay, Newport, RI (a) Regulated area. The regulated area includes all waters...

  11. 33 CFR 165.T11-304 - Safety zone; Sea World Summer Nights Fireworks; Mission Bay, San Diego, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety zone; Sea World Summer Nights Fireworks; Mission Bay, San Diego, California. 165.T11-304 Section 165.T11-304 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREA...

  12. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  13. Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience.

    PubMed

    Tsuchida, Keiichi; García-García, Héctor M; van der Giessen, Willem J; McFadden, Eugène P; van der Ent, Martin; Sianos, Georgios; Meulenbrug, Hans; Ong, Andrew T L; Serruys, Patrick W

    2006-03-01

    The objective of this study was to investigate the efficacy of guidewire navigation across coronary artery stenoses using magnetic navigation system (MNS) versus conventional navigation. The MNS is a novel option to facilitate access to target lesions, particularly in tortuous vessels. In an experimental study using a challenging vessel phantom, magnetic-navigated guidewire passage has been reported to reduce fluoroscopy and procedure time significantly. Both magnetic and manual guidewire navigation were attempted in 21 consecutive diseased coronary arteries. The study endpoint was defined as an intraluminal wire position distal to the stenosis. Procedural success was defined as successful guidewire passage without procedural events. Procedure time, amount of contrast, fluoroscopy time, and radiation dose/area product (DAP) were evaluated. There were no procedural events related to either guidewire. Although the lesions attempted had relatively simple and straightforward characteristics, significantly shorter procedure and fluoroscopy time were observed for manual guidewire navigation compared to MNS (median, 40 vs. 120 sec, P=0.001; 38 vs. 105 sec, P=0.001, respectively). Contrast amount and DAP were higher in MNS than in conventional method (median, 13 vs. 9 ml, P=0.018; 215 vs. 73 Gym2, P=0.002, respectively). The magnetic wire did not cross in two vessels. Guidewire navigation using MNS presented a novel, safe, and feasible approach to address coronary artery lesions. Clinical studies are needed to evaluate the potential benefit of the MNS in more complex coronary lesions and tortuous anatomy. Copyright (c) 2006 Wiley-Liss, Inc.

  14. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  15. 75 FR 6319 - Proposed Amendment of Low Altitude Area Navigation Route T-254; Houston, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Amendment of Low Altitude Area Navigation Route T-254; Houston, TX AGENCY: Federal Aviation Administration... altitude Area Navigation (RNAV) route T-254 in the Houston, TX, terminal area by eliminating the segment..., TX, VORTAC. This action would eliminate a portion of T-254 that is no longer needed; thus, enhance...

  16. 33 CFR 334.782 - SUPSHIP Bath Maine Detachment Mobile at AUSTAL, USA, Mobile, AL; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... warranted access into the restricted navigation area be needed, all entities are to contact the Supervisor... Mobile at AUSTAL, USA, Mobile, AL; restricted area. 334.782 Section 334.782 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA...

  17. Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.

    PubMed

    Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas

    2016-10-17

    Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. V/STOLAND avionics system flight-test data on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Baker, F. A.; Jaynes, D. N.; Corliss, L. D.; Liden, S.; Merrick, R. B.; Dugan, D. C.

    1980-01-01

    The flight-acceptance test results obtained during the acceptance tests of the V/STOLAND (versatile simplex digital avionics system) digital avionics system on a Bell UH-1H helicopter in 1977 at Ames Research Center are presented. The system provides navigation, guidance, control, and display functions for NASA terminal area VTOL research programs and for the Army handling qualities research programs at Ames Research Center. The acceptance test verified system performance and contractual acceptability. The V/STOLAND hardware navigation, guidance, and control laws resident in the digital computers are described. Typical flight-test data are shown and discussed as documentation of the system performance at acceptance from the contractor.

  19. Improving CAR Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  20. Improving Car Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  1. Flight evaluation of two-segment approaches using area navigation guidance equipment

    NASA Technical Reports Server (NTRS)

    Schwind, G. K.; Morrison, J. A.; Nylen, W. E.; Anderson, E. B.

    1976-01-01

    A two-segment noise abatement approach procedure for use on DC-8-61 aircraft in air carrier service was developed and evaluated. The approach profile and procedures were developed in a flight simulator. Full guidance is provided throughout the approach by a Collins Radio Company three-dimensional area navigation (RNAV) system which was modified to provide the two-segment approach capabilities. Modifications to the basic RNAV software included safety protection logic considered necessary for an operationally acceptable two-segment system. With an aircraft out of revenue service, the system was refined and extensively flight tested, and the profile and procedures were evaluated by representatives of the airlines, airframe manufacturers, the Air Line Pilots Association, and the Federal Aviation Adminstration. The system was determined to be safe and operationally acceptable. It was then placed into scheduled airline service for an evaluation during which 180 approaches were flown by 48 airline pilots. The approach was determined to be compatible with the airline operational environment, although operation of the RNAV system in the existing terminal area air traffic control environment was difficult.

  2. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  3. Wide Area Assessment Demonstration of LiDAR and Orthophotography at Borrego Maneuver Area, Phase II Innovative Multi-Sensor Airborne Wide Area Assessment of UXO Sites, Version 2.0

    DTIC Science & Technology

    2007-12-03

    and reference datums, in addition to other field positioning tasks. 3.5.3. Navigation Systems An Applanix 510 A/V POS system was co-mounted with...Cal and POS EO from Applanix Corp. lmageStation Suite from Z/1 Imaging Images: Camera and Data Recorder · I SAT Aerial Triangulation Software

  4. Modification to area navigation equipment for instrument two-segment approaches

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A two-segment aircraft landing approach concept utilizing an area random navigation (RNAV) system to execute the two-segment approach and eliminate the requirements for co-located distance measuring equipment (DME) was investigated. This concept permits non-precision approaches to be made to runways not equipped with ILS systems, down to appropriate minima. A hardware and software retrofit kit for the concept was designed, built, and tested on a DC-8-61 aircraft for flight evaluation. A two-segment approach profile and piloting procedure for that aircraft that will provide adequate safety margin under adverse weather, in the presence of system failures, and with the occurrence of an abused approach, was also developed. The two-segment approach procedure and equipment was demonstrated to line pilots under conditions which are representative of those encountered in air carrier service.

  5. 76 FR 65376 - Regulated Navigation Area; Chelsea Street Bridge Construction, Chelsea, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...-AA11 Regulated Navigation Area; Chelsea Street Bridge Construction, Chelsea, MA AGENCY: Coast Guard... Area (RNA) on the navigable waters of the Chelsea River under and surrounding the Chelsea Street Bridge... opportunity for public questions or comments, during the bridge construction. We will provide written...

  6. Summary of paper: Area navigation implementation for a microcomputer-based Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, Fujiko

    1987-01-01

    The development of an area navigation program and the implementation of this software on a microcomputer-based Loran-C receiver to provide high-quality, practical area navigation information for general aviation are described. This software provides range and bearing angle to a selected waypoint, cross-track error, course deviation indication (CDI), ground speed, and estimated time of arrival at the waypoint. The range/bearing calculation, using an elliptical Earth model, provides very good accuracy; the error does not exceed more than -.012 nm (range) or 0.09 degree (bearing) for a maximum range to 530 nm. The alpha-beta filtering is applied in order to reduce the random noise on Loran-C raw data and in the ground speed calculation. Due to alpha-beta filtering, the ground speed calculation has good stability for constant or low-accelerative flight. The execution time of this software is approximately 0.2 second. Flight testing was done with a prototype Loran-C front-end receiver, with the Loran-C area navigation software demonstrating the ability to provide navigation for the pilot to any point in the Loran-C coverage area in true area navigation fashion without line-of-sight and range restriction typical of VOR area navigation.

  7. 33 CFR 100.1306 - National Maritime Week Tugboat Races, Seattle, WA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false National Maritime Week Tugboat Races, Seattle, WA. 100.1306 Section 100.1306 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Maritime Week Tugboat Races, Seattle, WA. (a) Regulated Area. A regulated area is established on that...

  8. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas § 127.105 Layout and...

  9. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas § 127.105 Layout and...

  10. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  11. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  12. 33 CFR 110.50c - Mumford Cove, Groton, Conn.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mumford Cove, Groton, Conn. 110.50c Section 110.50c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50c Mumford Cove, Groton, Conn. (a) Area No. 1...

  13. 33 CFR 110.50c - Mumford Cove, Groton, Conn.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Mumford Cove, Groton, Conn. 110.50c Section 110.50c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50c Mumford Cove, Groton, Conn. (a) Area No. 1...

  14. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  15. 33 CFR 110.50c - Mumford Cove, Groton, Conn.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Mumford Cove, Groton, Conn. 110.50c Section 110.50c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50c Mumford Cove, Groton, Conn. (a) Area No. 1...

  16. 33 CFR 110.50c - Mumford Cove, Groton, Conn.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Mumford Cove, Groton, Conn. 110.50c Section 110.50c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50c Mumford Cove, Groton, Conn. (a) Area No. 1...

  17. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  18. 33 CFR 110.50c - Mumford Cove, Groton, Conn.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Mumford Cove, Groton, Conn. 110.50c Section 110.50c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.50c Mumford Cove, Groton, Conn. (a) Area No. 1...

  19. 33 CFR 110.80a - Lake Macatawa, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Macatawa, Mich. 110.80a Section 110.80a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.80a Lake Macatawa, Mich. An area located on the south...

  20. 33 CFR 100.903 - Harborfest Dragon Boat Race; South Haven, MI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Harborfest Dragon Boat Race; South Haven, MI. 100.903 Section 100.903 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Dragon Boat Race; South Haven, MI. (a) Regulated Area. A regulated area is established to include all...

  1. 33 CFR 100.118 - Searsport Lobster Boat Races, Searsport Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Searsport Lobster Boat Races, Searsport Harbor, ME. 100.118 Section 100.118 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Races, Searsport Harbor, ME. (a) Regulated Area. The regulated area includes all waters of...

  2. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of Winter...

  3. 33 CFR 334.1220 - Hood Canal, Bangor; naval restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Hood Canal, Bangor; naval restricted areas. 334.1220 Section 334.1220 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... intermittently by the Navy for magnetic silencing operations. (B) Use of any equipment such as anchors, grapnels...

  4. 33 CFR 165.1704 - Prince William Sound, Alaska-regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Prince William Sound, Alaska... District § 165.1704 Prince William Sound, Alaska-regulated navigation area. (a) The following is a... Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between 146°30′ W...

  5. 33 CFR 100.718 - Annual Suncoast Kilo Run; Sarasota Bay, Sarasota, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Annual Suncoast Kilo Run; Sarasota Bay, Sarasota, FL. 100.718 Section 100.718 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Suncoast Kilo Run; Sarasota Bay, Sarasota, FL. (a) Regulated area. The regulated area is established in...

  6. 33 CFR 165.1704 - Prince William Sound, Alaska-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Prince William Sound, Alaska... District § 165.1704 Prince William Sound, Alaska-regulated navigation area. (a) The following is a... Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between 146°30′ W...

  7. 33 CFR 165.1704 - Prince William Sound, Alaska-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Prince William Sound, Alaska... District § 165.1704 Prince William Sound, Alaska-regulated navigation area. (a) The following is a... Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between 146°30′ W...

  8. 33 CFR 165.1704 - Prince William Sound, Alaska-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Prince William Sound, Alaska... District § 165.1704 Prince William Sound, Alaska-regulated navigation area. (a) The following is a... Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between 146°30′ W...

  9. 33 CFR 100.903 - Harborfest Dragon Boat Race; South Haven, MI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Harborfest Dragon Boat Race; South Haven, MI. 100.903 Section 100.903 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Dragon Boat Race; South Haven, MI. (a) Regulated Area. A regulated area is established to include all...

  10. 33 CFR 100.903 - Harborfest Dragon Boat Race; South Haven, MI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Harborfest Dragon Boat Race; South Haven, MI. 100.903 Section 100.903 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Dragon Boat Race; South Haven, MI. (a) Regulated Area. A regulated area is established to include all...

  11. 33 CFR 100.903 - Harborfest Dragon Boat Race; South Haven, MI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Harborfest Dragon Boat Race; South Haven, MI. 100.903 Section 100.903 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Dragon Boat Race; South Haven, MI. (a) Regulated Area. A regulated area is established to include all...

  12. 33 CFR 100.903 - Harborfest Dragon Boat Race; South Haven, MI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Harborfest Dragon Boat Race; South Haven, MI. 100.903 Section 100.903 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Dragon Boat Race; South Haven, MI. (a) Regulated Area. A regulated area is established on the Black River...

  13. 33 CFR 165.1704 - Prince William Sound, Alaska-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Prince William Sound, Alaska... District § 165.1704 Prince William Sound, Alaska-regulated navigation area. (a) The following is a... Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between 146°30′ W...

  14. 33 CFR 100.913 - ACORA Garwood Classic Offshore Race, Algonac, MI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false ACORA Garwood Classic Offshore Race, Algonac, MI. 100.913 Section 100.913 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Classic Offshore Race, Algonac, MI. (a) Regulated Area. A regulated area is established to include all...

  15. 33 CFR 100.913 - ACORA Garwood Classic Offshore Race, Algonac, MI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false ACORA Garwood Classic Offshore Race, Algonac, MI. 100.913 Section 100.913 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Classic Offshore Race, Algonac, MI. (a) Regulated Area. A regulated area is established to include all...

  16. 33 CFR 100.916 - Chris Craft Silver Cup Races, Algonac, MI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Chris Craft Silver Cup Races, Algonac, MI. 100.916 Section 100.916 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Races, Algonac, MI. (a) Regulated Area. A regulated area is established to include all waters of the St...

  17. 33 CFR 100.916 - Chris Craft Silver Cup Races, Algonac, MI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Chris Craft Silver Cup Races, Algonac, MI. 100.916 Section 100.916 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Races, Algonac, MI. (a) Regulated Area. A regulated area is established to include all waters of the St...

  18. 33 CFR 100.913 - ACORA Garwood Classic Offshore Race, Algonac, MI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false ACORA Garwood Classic Offshore Race, Algonac, MI. 100.913 Section 100.913 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Classic Offshore Race, Algonac, MI. (a) Regulated Area. A regulated area is established to include all...

  19. 33 CFR 100.913 - ACORA Garwood Classic Offshore Race, Algonac, MI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false ACORA Garwood Classic Offshore Race, Algonac, MI. 100.913 Section 100.913 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Classic Offshore Race, Algonac, MI. (a) Regulated Area. A regulated area is established to include all...

  20. 33 CFR 100.916 - Chris Craft Silver Cup Races, Algonac, MI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Chris Craft Silver Cup Races, Algonac, MI. 100.916 Section 100.916 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Races, Algonac, MI. (a) Regulated Area. A regulated area is established to include all waters of the St...

  1. Seamless positioning and navigation by using geo-referenced images and multi-sensor data.

    PubMed

    Li, Xun; Wang, Jinling; Li, Tao

    2013-07-12

    Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments.

  2. Seamless Positioning and Navigation by Using Geo-Referenced Images and Multi-Sensor Data

    PubMed Central

    Li, Xun; Wang, Jinling; Li, Tao

    2013-01-01

    Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments. PMID:23857267

  3. Determining Locations by Use of Networks of Passive Beacons

    NASA Technical Reports Server (NTRS)

    Okino, Clayton; Gray, Andrew; Jennings, Esther

    2009-01-01

    Networks of passive radio beacons spanning moderate-sized terrain areas have been proposed to aid navigation of small robotic aircraft that would be used to explore Saturn s moon Titan. Such networks could also be used on Earth to aid navigation of robotic aircraft, land vehicles, or vessels engaged in exploration or reconnaissance in situations or locations (e.g., underwater locations) in which Global Positioning System (GPS) signals are unreliable or unavailable. Prior to use, it would be necessary to pre-position the beacons at known locations that would be determined by use of one or more precise independent global navigation system(s). Thereafter, while navigating over the area spanned by a given network of passive beacons, an exploratory robot would use the beacons to determine its position precisely relative to the known beacon positions (see figure). If it were necessary for the robot to explore multiple, separated terrain areas spanned by different networks of beacons, the robot could use a long-haul, relatively coarse global navigation system for the lower-precision position determination needed during transit between such areas. The proposed method of precise determination of position of an exploratory robot relative to the positions of passive radio beacons is based partly on the principles of radar and partly on the principles of radio-frequency identification (RFID) tags. The robot would transmit radar-like signals that would be modified and reflected by the passive beacons. The distance to each beacon would be determined from the roundtrip propagation time and/or round-trip phase shift of the signal returning from that beacon. Signals returned from different beacons could be distinguished by means of their RFID characteristics. Alternatively or in addition, the antenna of each beacon could be designed to radiate in a unique pattern that could be identified by the navigation system. Also, alternatively or in addition, sets of identical beacons could be deployed in unique configurations such that the navigation system could identify their unique combinations of radio-frequency reflections as an alternative to leveraging the uniqueness of the RFID tags. The degree of dimensional accuracy would depend not only on the locations of the beacons but also on the number of beacon signals received, the number of samples of each signal, the motion of the robot, and the time intervals between samples. At one extreme, a single sample of the return signal from a single beacon could be used to determine the distance from that beacon and hence to determine that the robot is located somewhere on a sphere, the radius of which equals that distance and the center of which lies at the beacon. In a less extreme example, the three-dimensional position of the robot could be determined with fair precision from a single sample of the signal from each of three beacons. In intermediate cases, position estimates could be refined and/or position ambiguities could be resolved by use of supplementary readings of an altimeter and other instruments aboard the robot.

  4. 75 FR 18047 - Amendment of Low Altitude Area Navigation Route T-254; Houston, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ...-0015; Airspace Docket No. 09-ASW-18] RIN 2120-AA66 Amendment of Low Altitude Area Navigation Route T... action amends low altitude Area Navigation (RNAV) route T-254 in the Houston, TX, terminal area by... the College Station, TX, VORTAC. The FAA is taking this action to eliminate a portion of T-254 that is...

  5. 33 CFR 165.838 - Regulated Navigation Area; New Orleans Area of Responsibility, New Orleans, LA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the RNA, or as authorized by a waiver approved by the COTP in accordance with paragraph (d) of this... as the malfunction of a bridge or lock within the RNA, the person in charge of a vessel may orally.... (a) Regulated Navigation Area. The following is a regulated navigation area (RNA): (1) The Inner...

  6. 33 CFR 165.838 - Regulated Navigation Area; New Orleans Area of Responsibility, New Orleans, LA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the RNA, or as authorized by a waiver approved by the COTP in accordance with paragraph (d) of this... as the malfunction of a bridge or lock within the RNA, the person in charge of a vessel may orally.... (a) Regulated Navigation Area. The following is a regulated navigation area (RNA): (1) The Inner...

  7. 33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...

  8. 33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...

  9. 33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...

  10. 33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...

  11. 33 CFR 165.838 - Regulated Navigation Area; New Orleans Area of Responsibility, New Orleans, LA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the RNA, or as authorized by a waiver approved by the COTP in accordance with paragraph (d) of this... as the malfunction of a bridge or lock within the RNA, the person in charge of a vessel may orally.... (a) Regulated Navigation Area. The following is a regulated navigation area (RNA): (1) The Inner...

  12. 33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...

  13. 33 CFR 165.838 - Regulated Navigation Area; New Orleans Area of Responsibility, New Orleans, LA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the RNA, or as authorized by a waiver approved by the COTP in accordance with paragraph (d) of this... as the malfunction of a bridge or lock within the RNA, the person in charge of a vessel may orally.... (a) Regulated Navigation Area. The following is a regulated navigation area (RNA): (1) The Inner...

  14. The Global Positioning System--Direction for the Future [and] GPS Technology and Agriculture.

    ERIC Educational Resources Information Center

    Edmondson, Paul R.; Ginsburg, Alan

    1996-01-01

    Edmondson introduces a satellite-based radio navigation, positioning, and timing system that can be integrated into a variety of curriculum areas. Ginsburg describes how the global positioning system brings far-reaching benefits for crop growers and the environment. (Author)

  15. 75 FR 11477 - Proposed Establishment of Class E Airspace; Kemmerer, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures... be submitted in triplicate to the Docket Management System (see ADDRESSES section for address and... Proposed Rulemaking Distribution System, which describes the application procedure. The Proposal The FAA is...

  16. 75 FR 16336 - Establishment of Low Altitude Area Navigation Route (T-284); Houston, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... (T-284); Houston, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes a low altitude area navigation (RNAV) route, designated T-284, in the Houston... Register a notice of proposed rulemaking (NPRM) to establish low altitude area navigation route T-284 (74...

  17. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security zones. 165.30 Section... AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Security Zones § 165.30 Security zones. (a) A security zone is an area of land, water, or land and water which is so designated by...

  18. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  19. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  20. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  1. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  2. 33 CFR 165.1104 - Security Zone: San Diego Bay, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: San Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: San Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...

  3. 33 CFR 162.235 - Puget Sound Area, Wash.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Puget Sound Area, Wash. 162.235...) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.235 Puget Sound Area, Wash. (a.... Southbound boats shall sound the signal within 600 yards of Port Townsend Canal Light. Northbound boats shall...

  4. 33 CFR 162.20 - Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Airport, Flushing, N.Y.; restricted area. 162.20 Section 162.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.20 Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area. (a...

  5. 33 CFR 162.20 - Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Airport, Flushing, N.Y.; restricted area. 162.20 Section 162.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.20 Flushing Bay near La Guardia Airport, Flushing, N.Y.; restricted area. (a...

  6. 33 CFR 165.756 - Regulated Navigation Area; Savannah River, Georgia.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....756 Regulated Navigation Area; Savannah River, Georgia. (a) Regulated Navigation Area (RNA). The... as a method of operation by which a towing vessel generates towline forces by thrust alone at an... presumed to be heel. Indirect mode means a towing technique defined as a method of operation by which an...

  7. 33 CFR 165.756 - Regulated Navigation Area; Savannah River, Georgia.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....756 Regulated Navigation Area; Savannah River, Georgia. (a) Regulated Navigation Area (RNA). The... as a method of operation by which a towing vessel generates towline forces by thrust alone at an... presumed to be heel. Indirect mode means a towing technique defined as a method of operation by which an...

  8. 33 CFR 165.756 - Regulated Navigation Area; Savannah River, Georgia.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....756 Regulated Navigation Area; Savannah River, Georgia. (a) Regulated Navigation Area (RNA). The... as a method of operation by which a towing vessel generates towline forces by thrust alone at an... presumed to be heel. Indirect mode means a towing technique defined as a method of operation by which an...

  9. 33 CFR 165.756 - Regulated Navigation Area; Savannah River, Georgia.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....756 Regulated Navigation Area; Savannah River, Georgia. (a) Regulated Navigation Area (RNA). The... as a method of operation by which a towing vessel generates towline forces by thrust alone at an... presumed to be heel. Indirect mode means a towing technique defined as a method of operation by which an...

  10. 33 CFR 165.756 - Regulated Navigation Area; Savannah River, Georgia.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....756 Regulated Navigation Area; Savannah River, Georgia. (a) Regulated Navigation Area (RNA). The... as a method of operation by which a towing vessel generates towline forces by thrust alone at an... presumed to be heel. Indirect mode means a towing technique defined as a method of operation by which an...

  11. 33 CFR 110.72c - Lake Murray, S.C.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lake Murray, S.C. 110.72c Section 110.72c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72c Lake Murray, S.C. (a) The area beginning at the 125...

  12. 33 CFR 110.72c - Lake Murray, S.C.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lake Murray, S.C. 110.72c Section 110.72c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72c Lake Murray, S.C. (a) The area beginning at the 125...

  13. 33 CFR 110.72c - Lake Murray, S.C.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lake Murray, S.C. 110.72c Section 110.72c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72c Lake Murray, S.C. (a) The area beginning at the 125...

  14. 33 CFR 110.72c - Lake Murray, S.C.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Murray, S.C. 110.72c Section 110.72c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72c Lake Murray, S.C. (a) The area beginning at the 125...

  15. 33 CFR 110.72c - Lake Murray, S.C.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Murray, S.C. 110.72c Section 110.72c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72c Lake Murray, S.C. (a) The area beginning at the 125...

  16. 33 CFR 162.245 - Kenai River, Kenai, Alaska; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Kenai River, Kenai, Alaska; use... § 162.245 Kenai River, Kenai, Alaska; use, administration, and navigation. (a) The area. The main channel area of the river, having a width of 150 feet, beginning at a point directly offshore from the...

  17. 33 CFR 165.811 - Atchafalaya River, Berwick Bay, LA-regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Bridge. (c) When the Morgan City River gauge reads 3.0 feet or above mean sea level, in addition to the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Atchafalaya River, Berwick Bay... § 165.811 Atchafalaya River, Berwick Bay, LA-regulated navigation area. (a) The following is a regulated...

  18. 33 CFR 165.906 - Lakeside Yacht Club in Cleveland Harbor, Cleveland, OH-regulated navigation areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lakeside Yacht Club in Cleveland... Guard District § 165.906 Lakeside Yacht Club in Cleveland Harbor, Cleveland, OH—regulated navigation... portion of the vessel extending above the waterline. All of these areas are inside the “Lakeside Yacht...

  19. 33 CFR 165.906 - Lakeside Yacht Club in Cleveland Harbor, Cleveland, OH-regulated navigation areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lakeside Yacht Club in Cleveland... Guard District § 165.906 Lakeside Yacht Club in Cleveland Harbor, Cleveland, OH—regulated navigation... portion of the vessel extending above the waterline. All of these areas are inside the “Lakeside Yacht...

  20. 33 CFR 100.919 - International Bay City River Roar, Bay City, MI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false International Bay City River Roar, Bay City, MI. 100.919 Section 100.919 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Bay City River Roar, Bay City, MI. (a) Regulated Area. A regulated area is established to include all...

  1. 33 CFR 100.919 - International Bay City River Roar, Bay City, MI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false International Bay City River Roar, Bay City, MI. 100.919 Section 100.919 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Bay City River Roar, Bay City, MI. (a) Regulated Area. A regulated area is established to include all...

  2. 33 CFR 100.740 - Annual Offshore Super Series Boat Race; Fort Myers Beach, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Annual Offshore Super Series Boat Race; Fort Myers Beach, FL. 100.740 Section 100.740 Navigation and Navigable Waters COAST GUARD... Annual Offshore Super Series Boat Race; Fort Myers Beach, FL. (a) Regulated area. (1) The regulated area...

  3. 33 CFR 100.740 - Annual Offshore Super Series Boat Race; Fort Myers Beach, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Annual Offshore Super Series Boat Race; Fort Myers Beach, FL. 100.740 Section 100.740 Navigation and Navigable Waters COAST GUARD... Annual Offshore Super Series Boat Race; Fort Myers Beach, FL. (a) Regulated area. (1) The regulated area...

  4. 33 CFR 100.740 - Annual Offshore Super Series Boat Race; Fort Myers Beach, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Annual Offshore Super Series Boat Race; Fort Myers Beach, FL. 100.740 Section 100.740 Navigation and Navigable Waters COAST GUARD... Annual Offshore Super Series Boat Race; Fort Myers Beach, FL. (a) Regulated area. (1) The regulated area...

  5. 33 CFR 100.740 - Annual Offshore Super Series Boat Race; Fort Myers Beach, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Annual Offshore Super Series Boat Race; Fort Myers Beach, FL. 100.740 Section 100.740 Navigation and Navigable Waters COAST GUARD... Annual Offshore Super Series Boat Race; Fort Myers Beach, FL. (a) Regulated area. (1) The regulated area...

  6. 33 CFR 100.915 - St. Clair River Classic Offshore Race, St. Clair, MI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false St. Clair River Classic Offshore Race, St. Clair, MI. 100.915 Section 100.915 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Classic Offshore Race, St. Clair, MI. (a) Regulated Area. A regulated area is established to include all...

  7. 33 CFR 100.915 - St. Clair River Classic Offshore Race, St. Clair, MI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false St. Clair River Classic Offshore Race, St. Clair, MI. 100.915 Section 100.915 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Classic Offshore Race, St. Clair, MI. (a) Regulated Area. A regulated area is established to include all...

  8. 33 CFR 100.915 - St. Clair River Classic Offshore Race, St. Clair, MI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false St. Clair River Classic Offshore Race, St. Clair, MI. 100.915 Section 100.915 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Classic Offshore Race, St. Clair, MI. (a) Regulated Area. A regulated area is established to include all...

  9. 33 CFR 100.915 - St. Clair River Classic Offshore Race, St. Clair, MI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false St. Clair River Classic Offshore Race, St. Clair, MI. 100.915 Section 100.915 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Classic Offshore Race, St. Clair, MI. (a) Regulated Area. A regulated area is established to include all...

  10. The Global Positioning System: Theory and operation

    NASA Astrophysics Data System (ADS)

    Tucker, Lester Plunkett

    Scope and method of study. The purpose of this study is to document the theory, development, and training needs of the United States Global Positioning System for the United States Air Force. This subject area had very little information and to assess the United States Air Force training needs required an investigation into existing training accomplished on the Global Positioning System. The United States Air Force has only one place to obtain the data at Headquarters Air Education and Training Command. Findings and conclusion. The United States Air Force, at the time of this study, does not have a theory and operations course dealing with the newest technology advancement in world navigation. Although this new technology is being provided on aircraft in the form of new navigation hardware, no official course of study is provided by the United States Air Force to it's pilots and navigators dealing with theory and operation. Based on the latest reports dealing with the Global Positioning System, a course on the Global Positioning System was developed in the Instructional Systems Design format to provide background information and understanding of this new technology. Readers of this study must be aware that the information contained in this study is very dynamic. Technology is advancing so fast in this area that it might make this information obsolete in a short amount of time.

  11. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing areas...

  12. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing areas...

  13. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing areas...

  14. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing areas...

  15. 46 CFR 113.25-30 - General emergency alarm systems for barges of 300 or more gross tons with sleeping accommodations...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... location of contact makers must be determined by the design, service, and operation of the barge. Note: Contact makers in the primary work area, quarters area, galley and mess area, machinery spaces, and the navigating bridge or control area should be considered. (b) If a distribution panel cannot be above the...

  16. Effects of ATC automation on precision approaches to closely space parallel runways

    NASA Technical Reports Server (NTRS)

    Slattery, R.; Lee, K.; Sanford, B.

    1995-01-01

    Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.

  17. Observability-Based Guidance and Sensor Placement

    NASA Astrophysics Data System (ADS)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  18. On the ionospheric impact of recent storm events on satellite-based augmentation systems in middle and low-latitude sectors

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Sparks, Lawrence; Mannucci, Anthony J.; Pi, Xiaoqing

    2003-01-01

    The Ionospheric correction algorithms have been characterized extensively for the mid-latitude region of the ionosphere where benign conditions usually exist. The United States Federal Aviation Administration's (FAA) Wide Area Augmentation System (WAAS) for civil aircraft navigation is focused primarily on the Conterminous United States (CONUS). Other Satellite-based Augmentation Systems (SBAS) include the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Global Navigation Satellite System (MSAS). Researchers are facing a more serious challenge in addressing the ionospheric impact on navigation using SBAS in other parts of the world such as the South American region on India. At equatorial latitudes, geophysical conditions lead to the so-called Appleton-Hartree (equatorial) anomaly phenomenon, which results in significantly larger ionospheric range delays and range delay spatial gradients than is observed in the CONUS or European sectors. In this paper, we use GPS measurements of geomagnetic storm days to perform a quantitative assessment of WAAS-type ionospheric correction algorithms in other parts of the world such as the low-latitude Brazil and mid-latitude Europe. For the study, we access a world-wide network of 400+ dual frequency GPS receivers.

  19. Development of a chronic kidney disease patient navigator program.

    PubMed

    Jolly, Stacey E; Navaneethan, Sankar D; Schold, Jesse D; Arrigain, Susana; Konig, Victoria; Burrucker, Yvette K; Hyland, Jennifer; Dann, Priscilla; Tucky, Barbara H; Sharp, John W; Nally, Joseph V

    2015-05-03

    Chronic Kidney Disease (CKD) is a public health problem and there is a scarcity of type 2 CKD translational research that incorporates educational tools. Patient navigators have been shown to be effective at reducing disparities and improving outcomes in the oncology field. We describe the creation of a CKD Patient Navigator program designed to help coordinate care, address system-barriers, and educate/motivate patients. The conceptual framework for the CKD Patient Navigator Program is rooted in the Chronic Care Model that has a main goal of high-quality chronic disease management. Our established multidisciplinary CKD research team enlisted new members from information technology and data management to help create the program. It encompassed three phases: hiring, training, and implementation. For hiring, we wanted a non-medical or lay person with a college degree that possessed strong interpersonal skills and experience in a service-orientated field. For training, there were three key areas: general patient navigator training, CKD education, and electronic health record (EHR) training. For implementation, we defined barriers of care and created EHR templates for which pertinent study data could be extracted. We have hired two CKD patient navigators who will be responsible for navigating CKD patients enrolled in a clinical trial. They have undergone training in general patient navigation, specific CKD education through directed readings and clinical shadowing, as well as EHR and other patient related privacy and research training. The need for novel approaches like our CKD patient navigator program designed to impact CKD care is vital and should utilize team-based care and health information technology given the changing landscape of our health systems.

  20. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 10. Subsystem Performance Requirements.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...

  1. GPS/GLONASS RAIM augmentation to WAAS for CAT 1 precision approach

    DOT National Transportation Integrated Search

    1997-06-30

    This paper deals with the potential use of Receiver Autonomous Integrity Monitoring @AIM) to supplement the FAAs Wide Area Augmentation System (WAAS). Integrity refers to the capability of a navigation or landing system to provide a timely warning...

  2. Hänsel, Gretel and the slime mould—how an external spatial memory aids navigation in complex environments

    NASA Astrophysics Data System (ADS)

    Smith-Ferguson, Jules; Reid, Chris R.; Latty, Tanya; Beekman, Madeleine

    2017-10-01

    The ability to navigate through an environment is critical to most organisms’ ability to survive and reproduce. The presence of a memory system greatly enhances navigational success. Therefore, natural selection is likely to drive the creation of memory systems, even in non-neuronal organisms, if having such a system is adaptive. Here we examine if the external spatial memory system present in the acellular slime mould, Physarum polycephalum, provides an adaptive advantage for resource acquisition. P. polycephalum lays tracks of extracellular slime as it moves through its environment. Previous work has shown that the presence of extracellular slime allows the organism to escape from a trap in laboratory experiments simply by avoiding areas previously explored. Here we further investigate the benefits of using extracellular slime as an external spatial memory by testing the organism’s ability to navigate through environments of differing complexity with and without the ability to use its external memory. Our results suggest that the external memory has an adaptive advantage in ‘open’ and simple bounded environments. However, in a complex bounded environment, the extracellular slime provides no advantage, and may even negatively affect the organism’s navigational abilities. Our results indicate that the exact experimental set up matters if one wants to fully understand how the presence of extracellular slime affects the slime mould’s search behaviour.

  3. V/STOL AND digital avionics system for UH-1H

    NASA Technical Reports Server (NTRS)

    Liden, S.

    1978-01-01

    A hardware and software system for the Bell UH-1H helicopter was developed that provides sophisticated navigation, guidance, control, display, and data acquisition capabilities for performing terminal area navigation, guidance and control research. Two Sperry 1819B general purpose digital computers were used. One contains the development software that performs all the specified system flight computations. The second computer is available to NASA for experimental programs that run simultaneously with the other computer programs and which may, at the push of a button, replace selected computer computations. Other features that provide research flexibility include keyboard selectable gains and parameters and software generated alphanumeric and CRT displays.

  4. Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.

    2013-01-01

    This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.

  5. 33 CFR 165.100 - Regulated Navigation Area: Navigable waters within the First Coast Guard District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 3.05-1(b). (b) Definitions. Terms used in this section have the same meaning as those found in 33... District. (a) Regulated navigation area. All navigable waters of the United States, as that term is used in... tug of sufficient capability to promptly push or tow the tank barge away from danger of grounding or...

  6. 33 CFR 165.100 - Regulated Navigation Area: Navigable waters within the First Coast Guard District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 3.05-1(b). (b) Definitions. Terms used in this section have the same meaning as those found in 33... District. (a) Regulated navigation area. All navigable waters of the United States, as that term is used in... tug of sufficient capability to promptly push or tow the tank barge away from danger of grounding or...

  7. 76 FR 8654 - Regulated Navigation Area; Hudson River South of the Troy Locks, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-AA11 Regulated Navigation Area; Hudson River South of the Troy Locks, NY AGENCY: Coast Guard, DHS... navigable waters of the Hudson River in New York, south of the Troy Locks. This action is necessary to... Hudson River south of the Troy Locks when ice is a threat to navigation. DATES: This rule is effective in...

  8. 33 CFR 334.470 - Cooper River and Charleston Harbor, S.C.; restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Cooper River and Charleston Harbor, S.C.; restricted areas. 334.470 Section 334.470 Navigation and Navigable Waters CORPS OF...″, Longitude 79°55′31″. (b) The regulations. (1) There shall be no introduction of magnetic material or magneto...

  9. 33 CFR 334.470 - Cooper River and Charleston Harbor, S.C.; restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cooper River and Charleston Harbor, S.C.; restricted areas. 334.470 Section 334.470 Navigation and Navigable Waters CORPS OF...″, Longitude 79°55′31″. (b) The regulations. (1) There shall be no introduction of magnetic material or magneto...

  10. 33 CFR 334.470 - Cooper River and Charleston Harbor, S.C.; restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Cooper River and Charleston Harbor, S.C.; restricted areas. 334.470 Section 334.470 Navigation and Navigable Waters CORPS OF...″, Longitude 79°55′31″. (b) The regulations. (1) There shall be no introduction of magnetic material or magneto...

  11. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  12. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  13. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  14. 33 CFR 334.300 - Hampton Roads and Willoughby Bay, Norfolk Naval Base, naval restricted area, Norfolk, Virginia.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hampton Roads and Willoughby Bay, Norfolk Naval Base, naval restricted area, Norfolk, Virginia. 334.300 Section 334.300 Navigation and... RESTRICTED AREA REGULATIONS § 334.300 Hampton Roads and Willoughby Bay, Norfolk Naval Base, naval restricted...

  15. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD...

  16. 33 CFR 334.775 - Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area. 334.775 Section 334.775 Navigation... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze...

  17. 33 CFR 334.775 - Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area. 334.775 Section 334.775 Navigation... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze...

  18. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD...

  19. 33 CFR 334.1080 - San Francisco Bay adjacent to northeast corner of Treasure Island; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false San Francisco Bay adjacent to northeast corner of Treasure Island; naval restricted area. 334.1080 Section 334.1080 Navigation and... RESTRICTED AREA REGULATIONS § 334.1080 San Francisco Bay adjacent to northeast corner of Treasure Island...

  20. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  1. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  2. 77 FR 73916 - Regulated Navigation Area; S99 Alford Street Bridge Rehabilitation Project, Mystic River, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ...-AA11 Regulated Navigation Area; S99 Alford Street Bridge Rehabilitation Project, Mystic River, MA... against hazardous conditions created by repair work on the S99 Alford Street Bridge across the Mystic... Coast Guard to establish a regulated navigation area in connection with the S99 Alford Street Bridge...

  3. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  4. 76 FR 35742 - Superfund Site, New Bedford Harbor, New Bedford, MA: Anchorage Ground and Regulated Navigation Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Coast Guard is also establishing a regulated navigation area (RNA) prohibiting activities that disturb the seabed around the site. The RNA would not affect transit or navigation of the area. DATES: This rule is effective July 20, 2011. ADDRESSES: Comments and material received from the public, as well as...

  5. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  6. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  7. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  8. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RNA must report the information required by this section as set out in table 165.921(g) to this...) Regulated Navigation Area. The following waters are a regulated navigation area (RNA): the Illinois Waterway... RNA. This section does not apply to towing vessel operators responsible for barges not carrying CDC...

  9. 75 FR 6095 - Revision of Area Navigation (RNAV) Route Q-108; Florida

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ...-0885; Airspace Docket No. 09-ASO-17] Revision of Area Navigation (RNAV) Route Q-108; Florida AGENCY... an error in the legal description for RNAV route Q-108 that was published in the Federal Register on... Area Navigation (RNAV) Route Q-108 in northern Florida by realigning the route structure. In the legal...

  10. Coupled Integration of CSAC, MIMU, and GNSS for Improved PNT Performance

    PubMed Central

    Ma, Lin; You, Zheng; Liu, Tianyi; Shi, Shuai

    2016-01-01

    Positioning, navigation, and timing (PNT) is a strategic key technology widely used in military and civilian applications. Global navigation satellite systems (GNSS) are the most important PNT techniques. However, the vulnerability of GNSS threatens PNT service quality, and integrations with other information are necessary. A chip scale atomic clock (CSAC) provides high-precision frequency and high-accuracy time information in a short time. A micro inertial measurement unit (MIMU) provides a strap-down inertial navigation system (SINS) with rich navigation information, better real-time feed, anti-jamming, and error accumulation. This study explores the coupled integration of CSAC, MIMU, and GNSS to enhance PNT performance. The architecture of coupled integration is designed and degraded when any subsystem fails. A mathematical model for a precise time aiding navigation filter is derived rigorously. The CSAC aids positioning by weighted linear optimization when the visible satellite number is four or larger. By contrast, CSAC converts the GNSS observations to range measurements by “clock coasting” when the visible satellite number is less than four, thereby constraining the error divergence of micro inertial navigation and improving the availability of GNSS signals and the positioning accuracy of the integration. Field vehicle experiments, both in open-sky area and in a harsh environment, show that the integration can improve the positioning probability and accuracy. PMID:27187399

  11. Coupled Integration of CSAC, MIMU, and GNSS for Improved PNT Performance.

    PubMed

    Ma, Lin; You, Zheng; Liu, Tianyi; Shi, Shuai

    2016-05-12

    Positioning, navigation, and timing (PNT) is a strategic key technology widely used in military and civilian applications. Global navigation satellite systems (GNSS) are the most important PNT techniques. However, the vulnerability of GNSS threatens PNT service quality, and integrations with other information are necessary. A chip scale atomic clock (CSAC) provides high-precision frequency and high-accuracy time information in a short time. A micro inertial measurement unit (MIMU) provides a strap-down inertial navigation system (SINS) with rich navigation information, better real-time feed, anti-jamming, and error accumulation. This study explores the coupled integration of CSAC, MIMU, and GNSS to enhance PNT performance. The architecture of coupled integration is designed and degraded when any subsystem fails. A mathematical model for a precise time aiding navigation filter is derived rigorously. The CSAC aids positioning by weighted linear optimization when the visible satellite number is four or larger. By contrast, CSAC converts the GNSS observations to range measurements by "clock coasting" when the visible satellite number is less than four, thereby constraining the error divergence of micro inertial navigation and improving the availability of GNSS signals and the positioning accuracy of the integration. Field vehicle experiments, both in open-sky area and in a harsh environment, show that the integration can improve the positioning probability and accuracy.

  12. An Analysis of Navigation Algorithms for Smartphones Using J2ME

    NASA Astrophysics Data System (ADS)

    Santos, André C.; Tarrataca, Luís; Cardoso, João M. P.

    Embedded systems are considered one of the most potential areas for future innovations. Two embedded fields that will most certainly take a primary role in future innovations are mobile robotics and mobile computing. Mobile robots and smartphones are growing in number and functionalities, becoming a presence in our daily life. In this paper, we study the current feasibility of a smartphone to execute navigation algorithms. As a test case, we use a smartphone to control an autonomous mobile robot. We tested three navigation problems: Mapping, Localization and Path Planning. For each of these problems, an algorithm has been chosen, developed in J2ME, and tested on the field. Results show the current mobile Java capacity for executing computationally demanding algorithms and reveal the real possibility of using smartphones for autonomous navigation.

  13. 33 CFR 165.T01-0048 - Regulated Navigation Area; MBTA Saugus River Railroad Drawbridge rehabilitation project, Saugus...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a Regulated Navigation Area (RNA): All navigable waters, surface to bottom, on the Saugus River..., the operator of the vessel must proceed as directed. (5) Notwithstanding any other provisions in this...

  14. Self-calibrating pseudolite arrays: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lemaster, Edward Alan

    Tasks envisioned for future-generation Mars rovers---sample collection, area survey, resource mining, habitat construction, etc.---will require greatly enhanced navigational capabilities over those possessed by the 1997 Mars Sojourner rover. Many of these tasks will involve cooperative efforts by multiple rovers and other agents, necessitating both high accuracy and the ability to share navigation information among different users. On Earth, satellite-based carrier-phase differential GPS provides a means of delivering centimeter-level, drift-free positioning to multiple users in contact with a reference base station. It would be highly desirable to have a similar navigational capability for use in Mars exploration. This research has originated a new local-area navigation system---a Self-Calibrating Pseudolite Array (SCPA)---that can provide centimeter-level localization to multiple rovers by utilizing GPS-based pseudolite transceivers deployed in a ground-based array. Such a system of localized beacons can replace or augment a system based on orbiting satellite transmitters. Previous pseudolite arrays have relied upon a priori information to survey the locations of the pseudolites, which must be accurately known to enable navigation within the array. In contrast, an SCPA does not rely upon other measurement sources to determine these pseudolite locations. This independence is a key requirement for autonomous deployment on Mars, and is accomplished through the use of GPS transceivers containing both transmit and receive components and through algorithms that utilize limited motion of a transceiver-bearing rover to determine the locations of the stationary transceivers. This dissertation describes the theory and operation of GPS transceivers, and how they can be used for navigation within a Self-Calibrating Pseudolite Array. It presents new algorithms that can be used to self-survey such arrays robustly using no a priori information, even under adverse conditions such as high-multipath environments. It then describes the experimental SCPA prototype developed at Stanford University and used in conjunction with the K9 Mars rover operated by NASA Ames Research Center. Using this experimental system, it provides experimental validation of both successful positioning using GPS transceivers and full calibration of an SCPA following deployment in an unknown configuration.

  15. Design and Development of a Mobile Sensor Based the Blind Assistance Wayfinding System

    NASA Astrophysics Data System (ADS)

    Barati, F.; Delavar, M. R.

    2015-12-01

    The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  16. Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) web service to support Area Navigation (RNAV) flight planning

    DOT National Transportation Integrated Search

    2008-01-28

    The Volpe Center designed, implemented, and deployed a Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) prediction system in the mid 1990s to support both Air Force and Federal Aviation Administration (FAA) use of TSO C...

  17. High accuracy-nationwide differential global positioning system test and analysis : phase II report

    DOT National Transportation Integrated Search

    2005-07-01

    The High Accuracy-Nationwide Differential Global Positioning System (HA-NDGPS) program focused on the development of compression and broadcast techniques to provide users over a large area wit very accurate radio navigation solutions. The goal was ac...

  18. 33 CFR 62.21 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for a given area. (b) The U.S. Aids to Navigation System is designed for use with nautical charts... Logistics Agency, Defense Supply Center Richmond, ATTN: JNB, 8000 Jefferson Davis Highway, Richmond, VA...

  19. 33 CFR 62.21 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for a given area. (b) The U.S. Aids to Navigation System is designed for use with nautical charts... Logistics Agency, Defense Supply Center Richmond, ATTN: JNB, 8000 Jefferson Davis Highway, Richmond, VA...

  20. 33 CFR 62.21 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for a given area. (b) The U.S. Aids to Navigation System is designed for use with nautical charts... Logistics Agency, Defense Supply Center Richmond, ATTN: JNB, 8000 Jefferson Davis Highway, Richmond, VA...

Top