Decentralized sensor fusion for Ubiquitous Networking Robotics in Urban Areas.
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T J
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.
Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927
Networked Environments that Create Hybrid Spaces for Learning Science
ERIC Educational Resources Information Center
Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen
2014-01-01
Networked learning environments that embed the essence of the Community of Inquiry (CoI) framework utilise pedagogies that encourage dialogic practices. This can be of significance for classroom teaching across all curriculum areas. In science education, networked environments are thought to support student investigations of scientific problems,…
Characterisation of Network Objects in Natural and Anthropic Environments
NASA Astrophysics Data System (ADS)
Harris, B.; McDougall, K.; Barry, M.
2014-11-01
Networks are structures that organise component objects, and they are extensive and recognisable across a range of environments. Estimating lengths of networks objects and their relationships to areas contiguous to them could assist provide owners with additional knowledge of their assets. There is currently some understanding of the way in which networks (such as waterways) relate and respond to their natural and anthropogenic environments. Despite this knowledge, there is no straight forward formula, method or model that can be applied to assess these relationships to a sufficient level of detail. Whilst waterway networks and their structures are well understood from the work of Horton and Strahler, relatively little attention has been paid to how (or if) these properties and behaviours can inform the understanding of other, unrelated, networks. Analysis of existing natural and built network objects exhibited how relationships derived from waterway networks can be applied in new areas of interest. We create a predictive approach to associate dissimilar objects such as pipe networks to assess if using the model established for waterway networks and their relationships can be functional in other areas. Using diversity of inputs we create data to assist with the creation of a predictive model. This work provides a clean theoretical connection between a formula applied to evaluate waterways and their environments, and other natural and anthropogenic network objects. It fills a key knowledge gap in the assessment and application of approaches used to measure natural and built networks.
NASA Technical Reports Server (NTRS)
Davies, Mark
1991-01-01
The enterprise network is currently a multivendor environment consisting of many defacto and proprietary standards. During the 1990s, these networks will evolve towards networks which are based on international standards in both Local Area Network (LAN) and Wide Area Network (WAN) space. Also, you can expect to see the higher level functions and applications begin the same transition. Additional information is given in viewgraph form.
Impact of indoor environment on path loss in body area networks.
Hausman, Sławomir; Januszkiewicz, Łukasz
2014-10-20
In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment-room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest-back and chest-arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation.
ERIC Educational Resources Information Center
Sanborn, Mark
2011-01-01
Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…
Impact of Indoor Environment on Path Loss in Body Area Networks
Hausman, Sławomir; Januszkiewicz, Łukasz
2014-01-01
In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment—room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest–back and chest–arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation. PMID:25333289
Modeling and Performance Simulation of the Mass Storage Network Environment
NASA Technical Reports Server (NTRS)
Kim, Chan M.; Sang, Janche
2000-01-01
This paper describes the application of modeling and simulation in evaluating and predicting the performance of the mass storage network environment. Network traffic is generated to mimic the realistic pattern of file transfer, electronic mail, and web browsing. The behavior and performance of the mass storage network and a typical client-server Local Area Network (LAN) are investigated by modeling and simulation. Performance characteristics in throughput and delay demonstrate the important role of modeling and simulation in network engineering and capacity planning.
Additional Security Considerations for Grid Management
NASA Technical Reports Server (NTRS)
Eidson, Thomas M.
2003-01-01
The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.
NASA Astrophysics Data System (ADS)
Oguchi, Kimio
2016-03-01
The recent dramatic advances in information and communication technologies have yielded new environments. However, adoption still differs area by area. To realize the future broadband environment that everyone can enjoy everywhere, several technical issues have to be resolved before network penetration becomes ubiquitous. One such key is the use of fiber optics for the home and mobile services. This article overviews initial observations drawn from numerical survey data gathered over the last decade in several countries/regions, and gives some example scenarios for network/service evolution. One result implies that implementing new/future services must consider the gross domestic product impact.
Field and long-term demonstration of a wide area quantum key distribution network.
Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Li, Hong-Wei; He, De-Yong; Li, Yu-Hu; Zhou, Zheng; Song, Xiao-Tian; Li, Fang-Yi; Wang, Dong; Chen, Hua; Han, Yun-Guang; Huang, Jing-Zheng; Guo, Jun-Fu; Hao, Peng-Lei; Li, Mo; Zhang, Chun-Mei; Liu, Dong; Liang, Wen-Ye; Miao, Chun-Hua; Wu, Ping; Guo, Guang-Can; Han, Zheng-Fu
2014-09-08
A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective integration between point-to-point QKD techniques and networking schemes.
A system for distributed intrusion detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snapp, S.R.; Brentano, J.; Dias, G.V.
1991-01-01
The study of providing security in computer networks is a rapidly growing area of interest because the network is the medium over which most attacks or intrusions on computer systems are launched. One approach to solving this problem is the intrusion-detection concept, whose basic premise is that not only abandoning the existing and huge infrastructure of possibly-insecure computer and network systems is impossible, but also replacing them by totally-secure systems may not be feasible or cost effective. Previous work on intrusion-detection systems were performed on stand-alone hosts and on a broadcast local area network (LAN) environment. The focus of ourmore » present research is to extend our network intrusion-detection concept from the LAN environment to arbitarily wider areas with the network topology being arbitrary as well. The generalized distributed environment is heterogeneous, i.e., the network nodes can be hosts or servers from different vendors, or some of them could be LAN managers, like our previous work, a network security monitor (NSM), as well. The proposed architecture for this distributed intrusion-detection system consists of the following components: a host manager in each host; a LAN manager for monitoring each LAN in the system; and a central manager which is placed at a single secure location and which receives reports from various host and LAN managers to process these reports, correlate them, and detect intrusions. 11 refs., 2 figs.« less
LaRC local area networks to support distributed computing
NASA Technical Reports Server (NTRS)
Riddle, E. P.
1984-01-01
The Langley Research Center's (LaRC) Local Area Network (LAN) effort is discussed. LaRC initiated the development of a LAN to support a growing distributed computing environment at the Center. The purpose of the network is to provide an improved capability (over inteactive and RJE terminal access) for sharing multivendor computer resources. Specifically, the network will provide a data highway for the transfer of files between mainframe computers, minicomputers, work stations, and personal computers. An important influence on the overall network design was the vital need of LaRC researchers to efficiently utilize the large CDC mainframe computers in the central scientific computing facility. Although there was a steady migration from a centralized to a distributed computing environment at LaRC in recent years, the work load on the central resources increased. Major emphasis in the network design was on communication with the central resources within the distributed environment. The network to be implemented will allow researchers to utilize the central resources, distributed minicomputers, work stations, and personal computers to obtain the proper level of computing power to efficiently perform their jobs.
Designing application software in wide area network settings
NASA Technical Reports Server (NTRS)
Makpangou, Mesaac; Birman, Ken
1990-01-01
Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described.
COMPARISON OF DATA FROM THE STN AND IMPROVE NETWORKS
Two national chemical speciation-monitoring networks operate currently within the United States. The Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network operates primarily in rural areas collecting aerosol and optical data to better understand th...
HeNCE: A Heterogeneous Network Computing Environment
Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; ...
1994-01-01
Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less
1982-10-01
class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
A Low Cost Micro-Computer Based Local Area Network for Medical Office and Medical Center Automation
Epstein, Mel H.; Epstein, Lynn H.; Emerson, Ron G.
1984-01-01
A Low Cost Micro-computer based Local Area Network for medical office automation is described which makes use of an array of multiple and different personal computers interconnected by a local area network. Each computer on the network functions as fully potent workstations for data entry and report generation. The network allows each workstation complete access to the entire database. Additionally, designated computers may serve as access ports for remote terminals. Through “Gateways” the network may serve as a front end for a large mainframe, or may interface with another network. The system provides for the medical office environment the expandability and flexibility of a multi-terminal mainframe system at a far lower cost without sacrifice of performance.
2014-09-18
Converter AES Advance Encryption Standard ANN Artificial Neural Network APS Application Support AUC Area Under the Curve CPA Correlation Power Analysis ...Importance WGN White Gaussian Noise WPAN Wireless Personal Area Networks XEnv Cross-Environment XRx Cross-Receiver xxi ADVANCES IN SCA AND RF-DNA...based tool called KillerBee was released in 2009 that increases the exposure of ZigBee and other IEEE 802.15.4-based Wireless Personal Area Networks
Bluetooth-enabled teleradiology: applications and complications.
Hura, Angela M
2002-01-01
Wireless personal area networks and local area networks are becoming increasingly more prevalent in the teleradiology and telemedicine industry. Although there has been much debate about the role that Bluetooth will play in the future of wireless technology, both promoters and doubters acknowledge that Bluetooth will have an impact on networking, even if only as a "niche" product. This article provides an overview of the Bluetooth standard and highlights current and future areas of inclusion for use in a teleradiology environment. The possibilities for Bluetooth in a teleradiology environment without wires are nearly boundless and an overview of current and proposed Bluetooth-enabled radiology equipment and vendors is provided. A comparison of Bluetooth and other wireless technologies is provided, including areas of similarity and potential conflict. Bluetooth and other wireless technologies can not only peacefully coexist but also complement each other and provide enhanced teleradiology services.
NASA Astrophysics Data System (ADS)
Ali, Azhar Tareq; Warip, Mohd Nazri Mohd; Yaakob, Naimah; Abduljabbar, Waleed Khalid; Atta, Abdu Mohammed Ali
2017-11-01
Vehicular Ad-hoc Networks (VANETs) is an area of wireless technologies that is attracting a great deal of interest. There are still several areas of VANETS, such as security and routing protocols, medium access control, that lack large amounts of research. There is also a lack of freely available simulators that can quickly and accurately simulate VANETs. The main goal of this paper is to develop a freely available VANETS simulator and to evaluate popular mobile ad-hoc network routing protocols in several VANETS scenarios. The VANETS simulator consisted of a network simulator, traffic (mobility simulator) and used a client-server application to keep the two simulators in sync. The VANETS simulator also models buildings to create a more realistic wireless network environment. Ad-Hoc Distance Vector routing (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) were initially simulated in a city, country, and highway environment to provide an overall evaluation.
Data Handling and Communication
NASA Astrophysics Data System (ADS)
Hemmer, FréDéRic Giorgio Innocenti, Pier
The following sections are included: * Introduction * Computing Clusters and Data Storage: The New Factory and Warehouse * Local Area Networks: Organizing Interconnection * High-Speed Worldwide Networking: Accelerating Protocols * Detector Simulation: Events Before the Event * Data Analysis and Programming Environment: Distilling Information * World Wide Web: Global Networking * References
ERIC Educational Resources Information Center
Rife, Martine Courant
2010-01-01
This article explores some of the legal and law-related challenges educators face in designing, implementing, and sustaining globally networked learning environments (GNLEs) in the context of conflicting international laws on intellectual property and censorship/free speech. By discussing cases and areas involving such legal issues, the article…
A wireless sensor network based personnel positioning scheme in coal mines with blind areas.
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures.
Huang, H K; Wong, A W; Zhu, X
1997-01-01
Asynchronous transfer mode (ATM) technology emerges as a leading candidate for medical image transmission in both local area network (LAN) and wide area network (WAN) applications. This paper describes the performance of an ATM LAN and WAN network at the University of California, San Francisco. The measurements were obtained using an intensive care unit (ICU) server connecting to four image workstations (WS) at four different locations of a hospital-integrated picture archiving and communication system (HI-PACS) in a daily regular clinical environment. Four types of performance were evaluated: magnetic disk-to-disk, disk-to-redundant array of inexpensive disks (RAID), RAID-to-memory, and memory-to-memory. Results demonstrate that the transmission rate between two workstations can reach 5-6 Mbytes/s from RAID-to-memory, and 8-10 Mbytes/s from memory-to-memory. When the server has to send images to all four workstations simultaneously, the transmission rate to each WS is about 4 Mbytes/s. Both situations are adequate for radiologic image communications for picture archiving and communication systems (PACS) and teleradiology applications.
A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures. PMID:22163446
Bolte, Gabriele; David, Madlen; Dębiak, Małgorzata; Fiedel, Lotta; Hornberg, Claudia; Kolossa-Gehring, Marike; Kraus, Ute; Lätzsch, Rebecca; Paeck, Tatjana; Palm, Kerstin; Schneider, Alexandra
2018-06-01
The comprehensive consideration of sex/gender in health research is essential to increase relevance and validity of research results. Contrary to other areas of health research, there is no systematic summary of the current state of research on the significance of sex/gender in environmental health. Within the interdisciplinary research network Sex/Gender-Environment-Health (GeUmGe-NET) the current state of integration of sex/gender aspects or, respectively, gender theoretical concepts into research was systematically assessed within selected topics of the research areas environmental toxicology, environmental medicine, environmental epidemiology and public health research on environment and health. Knowledge gaps and research needs were identified in all research areas. Furthermore, the potential for methodological advancements by using gender theoretical concepts was depicted. A dialogue between biomedical research, public health research, and gender studies was started with the research network GeUmGe-NET. This dialogue has to be continued particularly regarding a common testing of methodological innovations in data collection and data analysis. Insights of this interdisciplinary research are relevant for practice areas such as environmental health protection, health promotion, environmental justice, and environmental health monitoring.
The Erector Set Computer: Building a Virtual Workstation over a Large Multi-Vendor Network.
ERIC Educational Resources Information Center
Farago, John M.
1989-01-01
Describes a computer network developed at the City University of New York Law School that uses device sharing and local area networking to create a simulated law office. Topics discussed include working within a multi-vendor environment, and the communication, information, and database access services available through the network. (CLB)
Ombudsman for a day: a job rotation opportunity at the University Health Network.
Rogers, Sharon; Bakas, Vasiliki
2007-01-01
When staff at a major Canadian teaching hospital were asked what they found meaningful and important in the working environment, they responded by identifying four specific areas: recognition, communication, workload management and learning environment. One area that was identified as a particularly good example of a successful "learning environment" strategy was the opportunity to participate in a job rotation in a department other than their own.
2012-03-01
30 c. IEEE 802.16/WiMAX .............................................................31 4. Broadband Global Area Network...Space Agency, 2006) ...........................34 Figure 19. Global BGAN Coverage (From Inmarsat, 2009...BGAN Broadband Global Area Network C2 Command and Control CHSC California Homeland Security Consortium CIE Collaborative Information Environment CJCS
Walkability for Different Urban Granularities
NASA Astrophysics Data System (ADS)
Hollenstein, D.; Bleisch, S.
2016-06-01
The positive effects of low-intensity physical activity are widely acknowledged and in this context walking is often promoted as an active form of transport. Under the concept of walkability the role of the built environment in encouraging walking is investigated. For that purpose, walkability is quantified area-wise by measuring a varying set of built environment attributes. In purely GIS-based approaches to studying walkability, indices are generally built using existing and easily accessible data. These include street network design, population density, land use mix, and access to destinations. Access to destinations is usually estimated using either a fixed radius, or distances in the street network. In this paper, two approaches to approximate a footpath network are presented. The two footpath networks were built making different assumptions regarding the walkability of different street types with respect to more or less restrictive safety preferences. Information on sidewalk presence, pedestrian crossings, and traffic restrictions were used to build both networks. The first network comprises car traffic free areas only. The second network includes streets with low speed limits that have no sidewalks. Both networks are compared to the more commonly used street network in an access-to-distance analysis. The results suggest that for the generally highly walkable study area, access to destination mostly depends on destination density within the defined walkable distance. However, on single street segments access to destinations is diminished when only car traffic free spaces are assumed to be walkable.
Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti
2017-02-01
We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.
Distributed semantic networks and CLIPS
NASA Technical Reports Server (NTRS)
Snyder, James; Rodriguez, Tony
1991-01-01
Semantic networks of frames are commonly used as a method of reasoning in many problems. In most of these applications the semantic network exists as a single entity in a single process environment. Advances in workstation hardware provide support for more sophisticated applications involving multiple processes, interacting in a distributed environment. In these applications the semantic network may well be distributed over several concurrently executing tasks. This paper describes the design and implementation of a frame based, distributed semantic network in which frames are accessed both through C Language Integrated Production System (CLIPS) expert systems and procedural C++ language programs. The application area is a knowledge based, cooperative decision making model utilizing both rule based and procedural experts.
Computer network environment planning and analysis
NASA Technical Reports Server (NTRS)
Dalphin, John F.
1989-01-01
The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.
Issues and challenges of information fusion in contested environments: panel results
NASA Astrophysics Data System (ADS)
Blasch, Erik; Kadar, Ivan; Chong, Chee; Jones, Eric K.; Tierno, Jorge E.; Fenstermacher, Laurie; Gorman, John D.; Levchuk, Georgiy
2015-05-01
With the plethora of information, there are many aspects to contested environments such as the protection of information, network privacy, and restricted observational and entry access. In this paper, we review and contrast the perspectives of challenges and opportunities for future developments in contested environments. The ability to operate in a contested environment would aid societal operations for highly congested areas with limited bandwidth such as transportation, the lack of communication and observations after a natural disaster, or planning for situations in which freedom of movement is restricted. Different perspectives were presented, but common themes included (1) Domain: targets and sensors, (2) network: communications, control, and social networks, and (3) user: human interaction and analytics. The paper serves as a summary and organization of the panel discussion as towards future concerns for research needs in contested environments.
Li, Bo; Han, Zeng-Lin; Tong, Lian-Jun
2009-05-01
By the methods of in situ investigation and regional ecological planning, the present ecological environment, ecosystem vulnerability, and ecological environment sensitivity in "Ji Triangle" Region were analyzed, and the ecological network of the study area was constructed. According to the ecological resources abundance degree, ecological recovery, farmland windbreak system, environmental carrying capacity, forestry foundation, and ecosystem integrity, the study area was classified into three regional ecological function ecosystems, i. e., east low hill ecosystem, middle plain ecosystem, and west plain wetland ecosystem. On the basis of marking regional ecological nodes, the regional ecological corridor (Haerbin-Dalian regional axis, Changchun-Jilin, Changchun-Songyuan, Jilin-Songyuan, Jilin-Siping, and Songyuan-Siping transportation corridor) and regional ecological network (one ring, three links, and three belts) were constructed. Taking the requests of regional ecological security into consideration, the ecological environment security system of "Ji Triangle" Region, including regional ecological conservation district, regional ecological restored district, and regional ecological management district, was built.
Applications of wireless sensor networks in marine environment monitoring: a survey.
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-09-11
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Niskar, Amanda Sue
2005-01-01
The Centers for Disease Control and Prevention (CDC) is coordinating HELIX- Atlanta to provide information regarding the five-county Metropolitan Atlanta Area (Clayton, Cobb, DeKalb, Fulton, and Gwinett) via a network of integrated environmental monitoring and public health data systems so that all sectors can take action to prevent and control environmentally related health effects. The HELIX-Atlanta Network is a tool to access interoperable information systems with optional information technology linkage functionality driven by scientific rationale. HELIX-Atlanta is a collaborative effort with local, state, federal, and academic partners, including the NASA Marshall Space Flight Center. The HELIX-Atlanta Partners identified the following HELIX-Atlanta initial focus areas: childhood lead poisoning, short-latency cancers, developmental disabilities, birth defects, vital records, respiratory health, age of housing, remote sensing data, and environmental monitoring, HELIX-Atlanta Partners identified and evaluated information systems containing information on the above focus areas. The information system evaluations resulted in recommendations for what resources would be needed to interoperate selected information systems in compliance with the CDC Public Health Information Network (PHIN). This presentation will discuss the collaborative process of building a network that links health and environment data for information exchange, including NASA remote sensing data, for use in HELIX-Atlanta.
2015-12-01
research areas in network science. 15. SUBJECT TERMS scenario creation , emulation environment, NSRL 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...mobility aspect of the emulated environment, the development and creation of scenarios play an integral part. By creating scenarios that model certain...during the visualization phase. We examine these 3 phases in detail by describing the creation of a scenario based upon a vignette from the Multi-Level
Distributed Learning. CAUSE Professional Paper Series, No. 14.
ERIC Educational Resources Information Center
Oblinger, Diana G.; Maruyama, Mark K.
This paper synthesizes current thought about the role of networking technologies in instruction and addresses the need for higher education to create affordable and flexible student-centered "distributed learning environments" employing networking technologies. First, relevant trends are identified in the areas of information volume, technology…
Mobilizing and Empowering Native American Youth through Service, the Environment and Heritage.
ERIC Educational Resources Information Center
Kast, Sherry
1994-01-01
Describes activities of various youth councils of the United National Indian Tribal Youth (UNITY) network. The activities include developing projects in the areas of alcohol abuse education, community service, Native American heritage, and the environment. (HTH)
NASA Astrophysics Data System (ADS)
Sabah, L.; Şimşek, M.
2017-11-01
Social networks are the real social experience of individuals in the online environment. In this environment, people use symbolic gestures and mimics, sharing thoughts and content. Social network analysis is the visualization of complex and large quantities of data to ensure that the overall picture appears. It is the understanding, development, quantitative and qualitative analysis of the relations in the social networks of Graph theory. Social networks are expressed in the form of nodes and edges. Nodes are people/organizations, and edges are relationships between nodes. Relations are directional, non-directional, weighted, and weightless. The purpose of this study is to examine the effects of social networks on the evaluation of person data with spatial coordinates. For this, the cluster size and the effect on the geographical area of the circle where the placements of the individual are influenced by the frequently used placeholder feature in the social networks have been studied.
Water resources: Research network to track alpine water
USDA-ARS?s Scientific Manuscript database
The water cycle in alpine environments worldwide supplies fresh water to vast downstream areas inhabited by more than half of humanity. The International Network for Alpine Research Catchment Hydrology (INARCH) was launched this year by the Global Energy and Water Exchanges project of the World Clim...
Secure Wireless Networking at Simon Fraser University.
ERIC Educational Resources Information Center
Johnson, Worth
2003-01-01
Describes the wireless local area network (WLAN) at Simon Fraser University, British Columbia, Canada. Originally conceived to address computing capacity and reduce university computer space demands, the WLAN has provided a seamless computing environment for students and solved a number of other campus problems as well. (SLD)
Curvature-processing network in macaque visual cortex
Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.
2014-01-01
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328
Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey
Xu, Guobao; Shen, Weiming; Wang, Xianbin
2014-01-01
With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942
A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications
Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco
2017-01-01
This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556
A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.
Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco
2017-02-14
This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.
Client-Server: What Is It and Are We There Yet?
ERIC Educational Resources Information Center
Gershenfeld, Nancy
1995-01-01
Discusses client-server architecture in dumb terminals, personal computers, local area networks, and graphical user interfaces. Focuses on functions offered by client personal computers: individualized environments; flexibility in running operating systems; advanced operating system features; multiuser environments; and centralized data…
NASA Astrophysics Data System (ADS)
Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.
2018-03-01
Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.
Forecasting ozone concentrations in the east of Croatia using nonparametric Neural Network Models
NASA Astrophysics Data System (ADS)
Kovač-Andrić, Elvira; Sheta, Alaa; Faris, Hossam; Gajdošik, Martina Šrajer
2016-07-01
Ozone is one of the most significant secondary pollutants with numerous negative effects on human health and environment including plants and vegetation. Therefore, more effort is made recently by governments and associations to predict ozone concentrations which could help in establishing better plans and regulation for environment protection. In this study, we use two Artificial Neural Network based approaches (MPL and RBF) to develop, for the first time, accurate ozone prediction models, one for urban and another one for rural area in the eastern part of Croatia. The evaluation of actual against the predicted ozone concentrations revealed that MLP and RBF models are very competitive for the training and testing data in the case of Kopački Rit area whereas in the case of Osijek city, MLP shows better evaluation results with 9% improvement in the correlation coefficient. Furthermore, subsequent feature selection process has improved the prediction power of RBF network.
Faulty node detection in wireless sensor networks using a recurrent neural network
NASA Astrophysics Data System (ADS)
Atiga, Jamila; Mbarki, Nour Elhouda; Ejbali, Ridha; Zaied, Mourad
2018-04-01
The wireless sensor networks (WSN) consist of a set of sensors that are more and more used in surveillance applications on a large scale in different areas: military, Environment, Health ... etc. Despite the minimization and the reduction of the manufacturing costs of the sensors, they can operate in places difficult to access without the possibility of reloading of battery, they generally have limited resources in terms of power of emission, of processing capacity, data storage and energy. These sensors can be used in a hostile environment, such as, for example, on a field of battle, in the presence of fires, floods, earthquakes. In these environments the sensors can fail, even in a normal operation. It is therefore necessary to develop algorithms tolerant and detection of defects of the nodes for the network of sensor without wires, therefore, the faults of the sensor can reduce the quality of the surveillance if they are not detected. The values that are measured by the sensors are used to estimate the state of the monitored area. We used the Non-linear Auto- Regressive with eXogeneous (NARX), the recursive architecture of the neural network, to predict the state of a node of a sensor from the previous values described by the functions of time series. The experimental results have verified that the prediction of the State is enhanced by our proposed model.
2008-12-01
In future network-centric warfare environments, teams of autonomous vehicles will be deployed in a coorperative manner to conduct wide-area...of data back to the command station, autonomous vehicles configured with high bandwidth communication system are positioned between the command
Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China
Li, Haifeng; Chen, Wenbo; He, Wei
2015-01-01
Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a “one river and two banks, north and south twin cities” ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan’s ecological network has higher connectivity, but Changbei’s ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved. PMID:26501298
Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China.
Li, Haifeng; Chen, Wenbo; He, Wei
2015-10-15
Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a "one river and two banks, north and south twin cities" ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan's ecological network has higher connectivity, but Changbei's ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved.
Implementation of a Prototype Generalized Network Technology for Hospitals *
Tolchin, S. G.; Stewart, R. L.; Kahn, S. A.; Bergan, E. S.; Gafke, G. P.; Simborg, D. W.; Whiting-O'Keefe, Q. E.; Chadwick, M. G.; McCue, G. E.
1981-01-01
A demonstration implementation of a distributed data processing hospital information system using an intelligent local area communications network (LACN) technology is described. This system is operational at the UCSF Medical Center and integrates four heterogeneous, stand-alone minicomputers. The applications systems are PID/Registration, Outpatient Pharmacy, Clinical Laboratory and Radiology/Medical Records. Functional autonomy of these systems has been maintained, and no operating system changes have been required. The LACN uses a fiber-optic communications medium and provides extensive communications protocol support within the network, based on the ISO/OSI Model. The architecture is reconfigurable and expandable. This paper describes system architectural issues, the applications environment and the local area network.
Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.; Priest, David G.
2000-12-01
Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykstra, Dave; Garzoglio, Gabriele; Kim, Hyunwoo
As of 2012, a number of US Department of Energy (DOE) National Laboratories have access to a 100 Gb/s wide-area network backbone. The ESnet Advanced Networking Initiative (ANI) project is intended to develop a prototype network, based on emerging 100 Gb/s Ethernet technology. The ANI network will support DOE's science research programs. A 100 Gb/s network test bed is a key component of the ANI project. The test bed offers the opportunity for early evaluation of 100Gb/s network infrastructure for supporting the high impact data movement typical of science collaborations and experiments. In order to make effective use of thismore » advanced infrastructure, the applications and middleware currently used by the distributed computing systems of large-scale science need to be adapted and tested within the new environment, with gaps in functionality identified and corrected. As a user of the ANI test bed, Fermilab aims to study the issues related to end-to-end integration and use of 100 Gb/s networks for the event simulation and analysis applications of physics experiments. In this paper we discuss our findings from evaluating existing HEP Physics middleware and application components, including GridFTP, Globus Online, etc. in the high-speed environment. These will include possible recommendations to the system administrators, application and middleware developers on changes that would make production use of the 100 Gb/s networks, including data storage, caching and wide area access.« less
Performance evaluation of power control algorithms in wireless cellular networks
NASA Astrophysics Data System (ADS)
Temaneh-Nyah, C.; Iita, V.
2014-10-01
Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.
Evaluation of QoS supported in Network Mobility NEMO environments
NASA Astrophysics Data System (ADS)
Hussien, L. F.; Abdalla, A. H.; Habaebi, M. H.; Khalifa, O. O.; Hassan, W. H.
2013-12-01
Network mobility basic support (NEMO BS) protocol is an entire network, roaming as a unit which changes its point of attachment to the Internet and consequently its reachability in the network topology. NEMO BS doesn't provide QoS guarantees to its users same as traditional Internet IP and Mobile IPv6 as well. Typically, all the users will have same level of services without considering about their application requirements. This poses a problem to real-time applications that required QoS guarantees. To gain more effective control of the network, incorporated QoS is needed. Within QoS-enabled network the traffic flow can be distributed to various priorities. Also, the network bandwidth and resources can be allocated to different applications and users. Internet Engineering Task Force (IETF) working group has proposed several QoS solutions for static network such as IntServ, DiffServ and MPLS. These QoS solutions are designed in the context of a static environment (i.e. fixed hosts and networks). However, they are not fully adapted to mobile environments. They essentially demands to be extended and adjusted to meet up various challenges involved in mobile environments. With existing QoS mechanisms many proposals have been developed to provide QoS for individual mobile nodes (i.e. host mobility). In contrary, research based on the movement of the whole mobile network in IPv6 is still undertaking by the IETF working groups (i.e. network mobility). Few researches have been done in the area of providing QoS for roaming networks. Therefore, this paper aims to review and investigate (previous /and current) related works that have been developed to provide QoS in mobile network. Consequently, a new proposed scheme will be introduced to enhance QoS within NEMO environment, achieving by which seamless mobility to users of mobile network node (MNN).
ERIC Educational Resources Information Center
Global Perspectives in Education, Inc., New York, NY.
The purpose of the International Network for Global Education (INGE) is to promote global education within the educational systems of network member countries. Areas of study are listed under the following headings: Peace Studies; East/West Relations; North/South Relations; Human Rights; Global Environment; Human Values; and Cross-cultural Issues.…
Peer-to-peer model for the area coverage and cooperative control of mobile sensor networks
NASA Astrophysics Data System (ADS)
Tan, Jindong; Xi, Ning
2004-09-01
This paper presents a novel model and distributed algorithms for the cooperation and redeployment of mobile sensor networks. A mobile sensor network composes of a collection of wireless connected mobile robots equipped with a variety of sensors. In such a sensor network, each mobile node has sensing, computation, communication, and locomotion capabilities. The locomotion ability enhances the autonomous deployment of the system. The system can be rapidly deployed to hostile environment, inaccessible terrains or disaster relief operations. The mobile sensor network is essentially a cooperative multiple robot system. This paper first presents a peer-to-peer model to define the relationship between neighboring communicating robots. Delaunay Triangulation and Voronoi diagrams are used to define the geometrical relationship between sensor nodes. This distributed model allows formal analysis for the fusion of spatio-temporal sensory information of the network. Based on the distributed model, this paper discusses a fault tolerant algorithm for autonomous self-deployment of the mobile robots. The algorithm considers the environment constraints, the presence of obstacles and the nonholonomic constraints of the robots. The distributed algorithm enables the system to reconfigure itself such that the area covered by the system can be enlarged. Simulation results have shown the effectiveness of the distributed model and deployment algorithms.
The Future of the Telephone Industry; 1970-1985.
ERIC Educational Resources Information Center
Baran, Paul; Lipinski, Andrew J.
Projections about the growth of the telephone industry from 1970-1985 were made from forecasts of five panels of experts, in five areas: (1) the regulatory environment; (2) changes in U.S. society; (3) existing networks and services; (4) future networks and services; (5) future characteristics of the labor force and employee-management relations.…
2D wireless sensor network deployment based on Centroidal Voronoi Tessellation
NASA Astrophysics Data System (ADS)
Iliodromitis, Athanasios; Pantazis, George; Vescoukis, Vasileios
2017-06-01
In recent years, Wireless Sensor Networks (WSNs) have rapidly evolved and now comprise a powerful tool in monitoring and observation of the natural environment, among other fields. The use of WSNs is critical in early warning systems, which are of high importance today. In fact, WSNs are adopted more and more in various applications, e.g. for fire or deformation detection. The optimum deployment of sensors is a multi-dimensional problem, which has two main components; network and positioning approach. Although lots of work has dealt with the issue, most of it emphasizes on mere network approach (communication, energy consumption) and not on the topography (positioning) of the sensors in achieving ideal geometry. In some cases, it is hard or even impossible to achieve perfect geometry in nodes' deployment. The ideal and desirable scenario of nodes arranged in square or hexagonal grid would raise extremely the cost of the network, especially in unfriendly or hostile environments. In such environments the positions of the sensors have to be chosen among a list of possible points, which in most cases are randomly distributed. This constraint has to be taken under consideration during the WSN planning. Full geographical coverage is in some applications of the same, if not of greater, importance than the network coverage. Cost is a crucial factor at network planning and given that resources are often limited, what matters, is to cover the whole area with the minimum number of sensors. This paper suggests a deployment method for nodes, in large scale and high density WSNs, based on Centroidal Voronoi Tessellation (CVT). It approximates the solution through the geometry of the random points and proposes a deployment plan, for the given characteristics of the study area, in order to achieve a deployment as near as possible to the ideal one.
González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina
2017-01-01
Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage. PMID:28075364
González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina
2017-01-09
Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.
Extensibility and limitations of FDDI
NASA Technical Reports Server (NTRS)
Game, David; Maly, Kurt J.
1990-01-01
Recently two standards for Metropolitan Area Networks (MANs), Fiber Distributed Data Interface (FDDI) and Distributed Queue Dual Bus (DQDB), have emerged as the primary competitors for the MAN arena. Great interest exists in building higher speed networks which support large numbers of node and greater distance, and it is not clear what types of protocols are needed for this type of environment. There is some question as to whether or not these MAN standards can be extended to such environments. The extensibility of FDDI to the Gbps range and a long distance environment is investigated. Specification parameters which affect performance are shown and a measure is provided for predicting utilization of FDDI. A comparison of FDDI at 100 Mbps and 1 Gbps is presented. Some specific problems with FDDI are addressed and modifications which improve the viability of FDDI in such high speed networks are investigated.
Is U.S. climatic diversity well represented within the existing federal protection network?
Batllori, Enric; Miller, Carol; Parisien, Marc-Andre; Parks, Sean A; Moritz, Max A
Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans. The conterminous United States of America (CONUS) has an extensive system of protected areas managed by federal agencies, but a comprehensive assessment of how this network represents CONUS climate is lacking. We present a quantitative classification of the climate space that is independent from the geographic locations to evaluate the climatic representation of the existing protected area network. We use this classification to evaluate the coverage of each agency's jurisdiction and to identify current conservation deficits. Our findings reveal that the existing network poorly represents CONUS climatic diversity. Although rare climates are generally well represented by the network, the most common climates are particularly underrepresented. Overall, 83% of the area of the CONUS corresponds to climates underrepresented by the network. The addition of some currently unprotected federal lands to the network would enhance the coverage of CONUS climates. However, to fully palliate current conservation deficits, large-scale private-land conservation initiatives will be critical.
DWTP: a basis for networked VR on the Internet
NASA Astrophysics Data System (ADS)
Broll, Wolfgang; Schick, Daniel
1998-04-01
Shared virtual worlds are one of today's major research topics. While limited to particular application areas and high speed networks in the past, they become more and more available to a large number of users. One reason for this development was the introduction of VRML (the Virtual Reality Modeling Language), which has been established as a standard of the exchange of 3D worlds on the Internet. Although a number of prototype systems have been developed to realize shared multi-user worlds based on VRML, no suitable network protocol to support the demands of such environments has yet been established. In this paper we will introduce our approach of a network protocol for shared virtual environments: DWTP--the Distributed Worlds Transfer and communication Protocol. We will show how DWTP meets the demands of shared virtual environments on the Internet. We will further present SmallView, our prototype of a distributed multi-user VR system, to show how DWTP can be used to realize shared worlds.
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning
Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo
2015-01-01
In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665
ERIC Educational Resources Information Center
Knight, John; Rochon, Rebecca
2012-01-01
It has been widely recognised that transition into higher education (HE) can be challenging for incoming students. Literature identifies three main areas where students may benefit from support: social, practical and academic. This paper discusses a case study that explores the potential of a social networking environment to provide support in…
Provably Secure Heterogeneous Access Control Scheme for Wireless Body Area Network.
Omala, Anyembe Andrew; Mbandu, Angolo Shem; Mutiria, Kamenyi Domenic; Jin, Chunhua; Li, Fagen
2018-04-28
Wireless body area network (WBAN) provides a medium through which physiological information could be harvested and transmitted to application provider (AP) in real time. Integrating WBAN in a heterogeneous Internet of Things (IoT) ecosystem would enable an AP to monitor patients from anywhere and at anytime. However, the IoT roadmap of interconnected 'Things' is still faced with many challenges. One of the challenges in healthcare is security and privacy of streamed medical data from heterogeneously networked devices. In this paper, we first propose a heterogeneous signcryption scheme where a sender is in a certificateless cryptographic (CLC) environment while a receiver is in identity-based cryptographic (IBC) environment. We then use this scheme to design a heterogeneous access control protocol. Formal security proof for indistinguishability against adaptive chosen ciphertext attack and unforgeability against adaptive chosen message attack in random oracle model is presented. In comparison with some of the existing access control schemes, our scheme has lower computation and communication cost.
Clandestine Message Passing in Virtual Environments
2008-09-01
accessed April 4, 2008). Weir, Laila. “Boring Game? Outsorce It.” (August 24, 2004). http://www.wired.com/ entertainment / music /news/2004/08/ 64638...Multiplayer Online MOVES - Modeling Virtual Environments and Simulation MTV – Music Television NPS - Naval Postgraduate School PAN – Personal Area...Network PSP - PlayStation Portable RPG – Role-playing Game SL - Second Life SVN - Subversion VE – Virtual Environments vMTV – Virtual Music
Distinctive Behaviors of Druggable Proteins in Cellular Networks
Workman, Paul; Al-Lazikani, Bissan
2015-01-01
The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/. PMID:26699810
Leu, Jenq-Shiou; Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source-Linphone-in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation.
Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source—Linphone—in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation. PMID:25300280
Graphical user interface for wireless sensor networks simulator
NASA Astrophysics Data System (ADS)
Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy
2008-01-01
Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.
Experimental high-speed network
NASA Astrophysics Data System (ADS)
McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.
1993-09-01
Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.
Unobstructive Body Area Networks (BAN) for efficient movement monitoring.
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.
Neural networks to classify speaker independent isolated words recorded in radio car environments
NASA Astrophysics Data System (ADS)
Alippi, C.; Simeoni, M.; Torri, V.
1993-02-01
Many applications, in particular the ones requiring nonlinear signal processing, have proved Artificial Neural Networks (ANN's) to be invaluable tools for model free estimation. The classifying abilities of ANN's are addressed by testing their performance in a speaker independent word recognition application. A real world case requiring implementation of compact integrated devices is taken into account: the classification of isolated words in radio car environment. A multispeaker database of isolated words was recorded in different environments. Data were first processed to determinate the boundaries of each word and then to extract speech features, the latter accomplished by using cepstral coefficient representation, log area ratios and filters bank techniques. Multilayered perceptron and adaptive vector quantization neural paradigms were tested to find a reasonable compromise between performances and network simplicity, fundamental requirement for the implementation of compact real time running neural devices.
E-Center: A Collaborative Platform for Wide Area Network Users
NASA Astrophysics Data System (ADS)
Grigoriev, M.; DeMar, P.; Tierney, B.; Lake, A.; Metzger, J.; Frey, M.; Calyam, P.
2012-12-01
The E-Center is a social collaborative web-based platform for assisting network users in understanding network conditions across network paths of interest to them. It is designed to give a user the necessary tools to isolate, identify, and resolve network performance-related problems. E-Center provides network path information on a link-by-link level, as well as from an end-to-end perspective. In addition to providing current and recent network path data, E-Center is intended to provide a social media environment for them to share issues, ideas, concerns, and problems. The product has a modular design that accommodates integration of other network services that make use of the same network path and performance data.
Enric Batllori; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz; Carol Miller
2017-01-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform...
1986-04-01
a Local Area Network Environment. Submitted for Publication. 1982. [Barrnger 791 Barringer . H,. P. C. Capon, and R . Phillips. The Portable Compiling...configuration and hardware. [Chesley 81 Chesley, Harry R . and Bruce V. Hunt., % Squire - A Communications-Oriented Operating System. Computer Networks 5(2...copying the information. Transfers between machines and copying " - r pages as necemry. [Nelson 80] Nelson, Bruce Jay. Remote Procedure Call. PhD Thesis
Assessing user engagement in a health promotion website using social networking.
Tague, Rhys; Maeder, Anthony J; Vandelanotte, Corneel; Kolt, Gregory S; Caperchione, Cristina M; Rosenkranz, Richard R; Savage, Trevor N; Van Itallie, Anetta
2014-01-01
Remote provision of supportive mechanisms for preventive health is a fast-growing area in eHealth. Web-based interventions have been suggested as an effective way to increase adoption and maintenance of healthy lifestyle behaviours. This paper describes results obtained in the "Walk 2.0" trial to promote physical activity through a self-managed walking programme, using a social networking website that provided an online collaborative environment. Engagement of participants with the website was assessed by monitoring usage of the individual social networking functions (e.g. status post). The results demonstrate that users generally preferred contributing non-interactive public posts of information concerned with their individual physical activity levels, and more occasionally communicating privately to friends. Further analysis of topics within posts was done by classifying word usage frequencies. Results indicated that the dominant topics are well aligned with the social environment within which physical activity takes place. Topics centred around four main areas: description of the activity, timing of the activity, affective response to the activity, and context within which the activity occurs. These findings suggest that strong levels of user awareness and communication occur in the social networking setting, indicative of beneficial self-image and self-actualisation effects.
Wireless local area network in a prehospital environment
Chen, Dongquan; Soong, Seng-jaw; Grimes, Gary J; Orthner, Helmuth F
2004-01-01
Background Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting. Methods We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined. Results The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed. Conclusions Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management. PMID:15339336
Wireless local area network in a prehospital environment.
Chen, Dongquan; Soong, Seng-jaw; Grimes, Gary J; Orthner, Helmuth F
2004-08-31
Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting. We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined. The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed. Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cree, Johnathan Vee; Delgado-Frias, Jose
Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configuremore » the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.« less
Output power distributions of mobile radio base stations based on network measurements
NASA Astrophysics Data System (ADS)
Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.
2013-04-01
In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.
Converged Infrastructure for Emerging Regions - A Research Agenda
NASA Astrophysics Data System (ADS)
Chevrollier, Nicolas; Zidbeck, Juha; Ntlatlapa, Ntsibane; Simsek, Burak; Marikar, Achim
In remote parts of Africa, the lack of energy supply, of wired infrastructure, of trained personnel and the limitation in OPEX and CAPEX impose stringent requirements on the network building blocks that support the communication infrastructure. Consequently, in this promising but untapped market, the research aims at designing and implementing energy-efficient, robust, reliable and affordable wide heterogeneous wireless mesh networks to connect geographically very large areas in a challenged environment. This paper proposes a solution that is aimed at enhancing the usability of Internet services in the harsh target environment and especially how the end-users experience the reliability of these services.
Fiber optic voice/data network
NASA Technical Reports Server (NTRS)
Bergman, Larry A. (Inventor)
1989-01-01
An asynchronous, high-speed, fiber optic local area network originally developed for tactical environments with additional benefits for other environments such as spacecraft, and the like. The network supports ordinary data packet traffic simultaneously with synchronous T1 voice traffic over a common token ring channel; however, the techniques and apparatus of this invention can be applied to any deterministic class of packet data networks, including multitier backbones, that must transport stream data (e.g., video, SAR, sensors) as well as data. A voice interface module parses, buffers, and resynchronizes the voice data to the packet network employing elastic buffers on both the sending and receiving ends. Voice call setup and switching functions are performed external to the network with ordinary PABX equipment. Clock information is passed across network boundaries in a token passing ring by preceeding the token with an idle period of non-transmission which allows the token to be used to re-establish a clock synchronized to the data. Provision is made to monitor and compensate the elastic receiving buffers so as to prevent them from overflowing or going empty.
Congestion Avoidance Testbed Experiments. Volume 2
NASA Technical Reports Server (NTRS)
Denny, Barbara A.; Lee, Diane S.; McKenney, Paul E., Sr.; Lee, Danny
1994-01-01
DARTnet provides an excellent environment for executing networking experiments. Since the network is private and spans the continental United States, it gives researchers a great opportunity to test network behavior under controlled conditions. However, this opportunity is not available very often, and therefore a support environment for such testing is lacking. To help remedy this situation, part of SRI's effort in this project was devoted to advancing the state of the art in the techniques used for benchmarking network performance. The second objective of SRI's effort in this project was to advance networking technology in the area of traffic control, and to test our ideas on DARTnet, using the tools we developed to improve benchmarking networks. Networks are becoming more common and are being used by more and more people. The applications, such as multimedia conferencing and distributed simulations, are also placing greater demand on the resources the networks provide. Hence, new mechanisms for traffic control must be created to enable their networks to serve the needs of their users. SRI's objective, therefore, was to investigate a new queueing and scheduling approach that will help to meet the needs of a large, diverse user population in a "fair" way.
Community Seismic Network (CSN)
NASA Astrophysics Data System (ADS)
Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Chandy, M.; Krause, A.
2010-12-01
In collaboration with computer science and earthquake engineering, we are developing a dense network of low-cost accelerometers that send their data via the Internet to a cloud-based center. The goal is to make block-by-block measurements of ground shaking in urban areas, which will provide emergency response information in the case of large earthquakes, and an unprecedented high-frequency seismic array to study structure and the earthquake process with moderate shaking. When deployed in high-rise buildings they can be used to monitor the state of health of the structure. The sensors are capable of a resolution of approximately 80 micro-g, connect via USB ports to desktop computers, and cost about $100 each. The network will adapt to its environment by using network-wide machine learning to adjust the picking sensitivity. We are also looking into using other motion sensing devices such as cell phones. For a pilot project, we plan to deploy more than 1000 sensors in the greater Pasadena area. The system is easily adaptable to other seismically vulnerable urban areas.
Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.
Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang
2015-09-25
Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.
Ooe, Yosuke; Anamizu, Hiromitsu; Tatsumi, Haruyuki; Tanaka, Hiroshi
2008-07-01
The financial condition of the Japanese health insurance system is said to be compounded with the aging of the population. The government argues that the application of IT and networking is required in order to streamline health care services while avoiding its collapse. The Internet environment has been furnished with broadband connection and multimedia in the span of one year or shorter, and is becoming more and more convenient. It is true that the Internet is now a part of Tokyo's infrastructure along with electricity and water supply, as it is the center of politics. However, in local cities, development of the Internet environment is still insufficient. In order to use the network as a common infrastructure at health care facilities, we need to be aware of this digital divide. This study investigated the development status of network infrastructure in regional cities.
Laven, Daniel N; Krymkowski, Daniel H; Ventriss, Curtis L; Manning, Robert E; Mitchell, Nora J
2010-08-01
National Heritage Areas (NHAs) are an alternative and increasingly popular form of protected area management in the United States. NHAs seek to integrate environmental objectives with community and economic objectives at regional or landscape scales. NHA designations have increased rapidly in the last 20 years, generating a substantial need for evaluative information about (a) how NHAs work; (b) outcomes associated with the NHA process; and (c) the costs and benefits of investing public moneys into the NHA approach. Qualitative evaluation studies recently conducted at three NHAs have identified the importance of understanding network structure and function in the context of evaluating NHA management effectiveness. This article extends these case studies by examining quantitative network data from each of the sites. The authors analyze these data using both a descriptive approach and a statistically more robust approach known as exponential random graph modeling. Study findings indicate the presence of transitive structures and the absence of three-cycle structures in each of these networks. This suggests that these networks are relatively ''open,'' which may be desirable, given the uncertainty of the environments in which they operate. These findings also suggest, at least at the sites reported here, that the NHA approach may be an effective way to activate and develop networks of intersectoral organizational partners. Finally, this study demonstrates the utility of using quantitative network analysis to better understand the effectiveness of protected area management models that rely on partnership networks to achieve their intended outcomes.
Body Area Network BAN--a key infrastructure element for patient-centered medical applications.
Schmidt, Robert; Norgall, Thomas; Mörsdorf, Joachim; Bernhard, Josef; von der Grün, Thomas
2002-01-01
The Body Area Network (BAN) concept enables wireless communication between several miniaturized, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN data via usual network infrastructure. BAN is expected to become a basic infrastructure element for service-based electronic health assistance: By integrating patient-attached sensors and control of mobile dedicated actor units, the range of medical workflow can be extended by wireless patient monitoring and therapy support. Beyond clinical use, professional disease management environments, and private personal health assistance scenarios (without financial reimbursement by health agencies/insurance companies), BAN enables a wide range of health care applications and related services.
In 1998, the U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) to help characterize the ubiquitous presence of dioxins in the environment. This final report represents the 2013 update to NDAMN.
Performance Evaluation of Communication Software Systems for Distributed Computing
NASA Technical Reports Server (NTRS)
Fatoohi, Rod
1996-01-01
In recent years there has been an increasing interest in object-oriented distributed computing since it is better quipped to deal with complex systems while providing extensibility, maintainability, and reusability. At the same time, several new high-speed network technologies have emerged for local and wide area networks. However, the performance of networking software is not improving as fast as the networking hardware and the workstation microprocessors. This paper gives an overview and evaluates the performance of the Common Object Request Broker Architecture (CORBA) standard in a distributed computing environment at NASA Ames Research Center. The environment consists of two testbeds of SGI workstations connected by four networks: Ethernet, FDDI, HiPPI, and ATM. The performance results for three communication software systems are presented, analyzed and compared. These systems are: BSD socket programming interface, IONA's Orbix, an implementation of the CORBA specification, and the PVM message passing library. The results show that high-level communication interfaces, such as CORBA and PVM, can achieve reasonable performance under certain conditions.
A Spectrum Sensing Network for Cognitive PMSE Systems
NASA Astrophysics Data System (ADS)
Brendel, Johannes; Riess, Steffen; Stoeckle, Andreas; Rummel, Rafael; Fischer, Georg
2012-09-01
This article is about a Spectrum Sensing Network (SSN) which generates an accurate radio environment map (e.g. power over frequency, time, and location) from a given application area. It is intended to be used in combination with cognitive Program Making and Special Events (PMSE) devices (e.g. wireless microphones) to improve their operation reliability. The SSN consists of a distributed network of multiple scanning radio receivers and a central data management and storage unit. The parts of the SSN are presented in detail and the advantages and use cases of such a sensing network structure will be outlined.
A neural networks-based hybrid routing protocol for wireless mesh networks.
Kojić, Nenad; Reljin, Irini; Reljin, Branimir
2012-01-01
The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.
A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks
Kojić, Nenad; Reljin, Irini; Reljin, Branimir
2012-01-01
The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360
Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user. PMID:23112726
Chruściel, Paweł; Kulik, Teresa; Jakubowska, Klaudia; Nalepa, Dorota
2018-06-19
Introduction and objective : Social support constitutes an important determinant of an elderly person’s health and of functioning in his or her living environment. It depends on available support networks and the type of help received. Measurement of social support should encompass both its structure and the functions it fulfills, which enables detailed assessment of the phenomenon. The aim of the study was to compare the perception of social support among rural area seniors provided with institutional care with those living in a home setting. Material and method : Using the diagnostic survey method and the technique of the distribution of a direct questionnaire, 364 respondents from rural areas were examined: those living in an institutional environment ( n = 190) and those living in their home (natural) environment ( n = 174). The respondents were selected on the basis of a combined sampling method: proportionate, stratified, and systematic. Variables were measured with the following questionnaires: Courage Social Network Index (CSNI) and Social Support Scale (SSS). Results : The living environment has been proved to differentiate average values of support both in the structural and functional dimensions in a statistically significant way ( p < 0.001). An untypical phenomenon was higher average values pertaining to emotional bonds, frequency of direct contacts, and help received in the group of respondents living in an institutional environment. Conclusions : The living environment and demographic variables affect the perception of social support among elderly people. Full-time institutional care of a senior citizen leads to the deterioration of social support; therefore, keeping an elderly person in a home environment should be one of the primary goals of the senior policy.
Animal transportation networks
Perna, Andrea; Latty, Tanya
2014-01-01
Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598
Research of the application of the Low Power Wide Area Network in power grid
NASA Astrophysics Data System (ADS)
Wang, Hao; Sui, Hong; Li, Jia; Yao, Jian
2018-03-01
Low Power Wide Area Network (LPWAN) technologies developed rapidly in recent years, but these technologies have not make large-scale applications in different application scenarios of power grid. LoRa is a mainstream LPWAN technology. This paper makes a comparison test of the signal coverage of LoRa and other traditional wireless communication technologies in typical signal environment of power grid. Based on the test results, this paper gives an application suggestion of LoRa in power grid services, which can guide the planning and construction of the LPWAN in power grid.
Risk analysis of urban gas pipeline network based on improved bow-tie model
NASA Astrophysics Data System (ADS)
Hao, M. J.; You, Q. J.; Yue, Z.
2017-11-01
Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.
Quantitative metrics that describe river deltas and their channel networks
NASA Astrophysics Data System (ADS)
Edmonds, Douglas A.; Paola, Chris; Hoyal, David C. J. D.; Sheets, Ben A.
2011-12-01
Densely populated river deltas are losing land at an alarming rate and to successfully restore these environments we must understand the details of their morphology. Toward this end we present a set of five metrics that describe delta morphology: (1) the fractal dimension, (2) the distribution of island sizes, (3) the nearest-edge distance, (4) a synthetic distribution of sediment fluxes at the shoreline, and (5) the nourishment area. The nearest-edge distance is the shortest distance to channelized or unchannelized water from a given location on the delta and is analogous to the inverse of drainage density in tributary networks. The nourishment area is the downstream delta area supplied by the sediment coming through a given channel cross section and is analogous to catchment area in tributary networks. As a first step, we apply these metrics to four relatively simple, fluvially dominated delta networks. For all these deltas, the average nearest-edge distances are remarkably constant moving down delta suggesting that the network organizes itself to maintain a consistent distance to the nearest channel. Nourishment area distributions can be predicted from a river mouth bar model of delta growth, and also scale with the width of the channel and with the length of the longest channel, analogous to Hack's law for drainage basins. The four delta channel networks are fractal, but power laws and scale invariance appear to be less pervasive than in tributary networks. Thus, deltas may occupy an advantageous middle ground between complete similarity and complete dissimilarity, where morphologic differences indicate different behavior.
Applications of software-defined radio (SDR) technology in hospital environments.
Chávez-Santiago, Raúl; Mateska, Aleksandra; Chomu, Konstantin; Gavrilovska, Liljana; Balasingham, Ilangko
2013-01-01
A software-defined radio (SDR) is a radio communication system where the major part of its functionality is implemented by means of software in a personal computer or embedded system. Such a design paradigm has the major advantage of producing devices that can receive and transmit widely different radio protocols based solely on the software used. This flexibility opens several application opportunities in hospital environments, where a large number of wired and wireless electronic devices must coexist in confined areas like operating rooms and intensive care units. This paper outlines some possible applications in the 2360-2500 MHz frequency band. These applications include the integration of wireless medical devices in a common communication platform for seamless interoperability, and cognitive radio (CR) for body area networks (BANs) and wireless sensor networks (WSNs) for medical environmental surveillance. The description of a proof-of-concept CR prototype is also presented.
Propagation Characteristics of International Space Station Wireless Local Area Network
NASA Technical Reports Server (NTRS)
Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung
2005-01-01
This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments
Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-01-01
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.
Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-06-07
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
NASA Astrophysics Data System (ADS)
Kortström, Jari; Tiira, Timo; Kaisko, Outi
2016-03-01
The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.
Robin, Jessica; Hirshhorn, Marnie; Rosenbaum, R Shayna; Winocur, Gordon; Moscovitch, Morris; Grady, Cheryl L
2015-01-01
Several recent studies have compared episodic and spatial memory in neuroimaging paradigms in order to understand better the contribution of the hippocampus to each of these tasks. In the present study, we build on previous findings showing common neural activation in default network areas during episodic and spatial memory tasks based on familiar, real-world environments (Hirshhorn et al. (2012) Neuropsychologia 50:3094-3106). Following previous demonstrations of the presence of functionally connected sub-networks within the default network, we performed seed-based functional connectivity analyses to determine how, depending on the task, the hippocampus and prefrontal cortex differentially couple with one another and with distinct whole-brain networks. We found evidence for a medial prefrontal-parietal network and a medial temporal lobe network, which were functionally connected to the prefrontal and hippocampal seeds, respectively, regardless of the nature of the memory task. However, these two networks were functionally connected with one another during the episodic memory task, but not during spatial memory tasks. Replicating previous reports of fractionation of the default network into stable sub-networks, this study also shows how these sub-networks may flexibly couple and uncouple with one another based on task demands. These findings support the hypothesis that episodic memory and spatial memory share a common medial temporal lobe-based neural substrate, with episodic memory recruiting additional prefrontal sub-networks. © 2014 Wiley Periodicals, Inc.
Environment quality monitoring using ARM processor
NASA Astrophysics Data System (ADS)
Vinaya, C. H.; Krishna Thanikanti, Vamsi; Ramasamy, Sudha
2017-11-01
This paper of air quality monitoring system describes a model of sensors network to continuously monitoring the environment with low cost developed model. At present time all over the world turned into a great revolution in industrial domain and on the other hand environment get polluting in a dangerous value. There are so many technologies present to reduce the polluting contents but still there is no completely reduction of that pollution. Even there are different methods to monitor the pollution content; these are much costly that not everyone can adapt those methods or devices. Now we are proposing a sensors connected network to monitor the environment continuously and displaying the pollutant gases percentage in air surroundings and can transmit the results to our mobiles by message. The advantage of this system is easy to design, establish at area to monitor, maintenance and most cost effective as well.
Apply network coding for H.264/SVC multicasting
NASA Astrophysics Data System (ADS)
Wang, Hui; Kuo, C.-C. Jay
2008-08-01
In a packet erasure network environment, video streaming benefits from error control in two ways to achieve graceful degradation. The first approach is application-level (or the link-level) forward error-correction (FEC) to provide erasure protection. The second error control approach is error concealment at the decoder end to compensate lost packets. A large amount of research work has been done in the above two areas. More recently, network coding (NC) techniques have been proposed for efficient data multicast over networks. It was shown in our previous work that multicast video streaming benefits from NC for its throughput improvement. An algebraic model is given to analyze the performance in this work. By exploiting the linear combination of video packets along nodes in a network and the SVC video format, the system achieves path diversity automatically and enables efficient video delivery to heterogeneous receivers in packet erasure channels. The application of network coding can protect video packets against the erasure network environment. However, the rank defficiency problem of random linear network coding makes the error concealment inefficiently. It is shown by computer simulation that the proposed NC video multicast scheme enables heterogenous receiving according to their capacity constraints. But it needs special designing to improve the video transmission performance when applying network coding.
A GPU-accelerated cortical neural network model for visually guided robot navigation.
Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L
2015-12-01
Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Field demonstration of a continuous-variable quantum key distribution network.
Huang, Duan; Huang, Peng; Li, Huasheng; Wang, Tao; Zhou, Yingming; Zeng, Guihua
2016-08-01
We report on what we believe is the first field implementation of a continuous-variable quantum key distribution (CV-QKD) network with point-to-point configuration. Four QKD nodes are deployed on standard communication infrastructures connected with commercial telecom optical fiber. Reliable key exchange is achieved in the wavelength-division-multiplexing CV-QKD network. The impact of a complex and volatile field environment on the excess noise is investigated, since excess noise controlling and reduction is arguably the major issue pertaining to distance and the secure key rate. We confirm the applicability and verify the maturity of the CV-QKD network in a metropolitan area, thus paving the way for a next-generation global secure communication network.
Batllori, Enric; Parisien, Marc-André; Parks, Sean A; Moritz, Max A; Miller, Carol
2017-08-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Overview of hybrid fiber-coaxial network deployment in the deregulated UK environment
NASA Astrophysics Data System (ADS)
Cox, Alan L.
1995-11-01
Cable operators in the U.K. enjoy unprecedented license to construct networks and operate cable TV and telecommunications services within their franchise areas. In general, operators have built hybrid-fiber-coax (HFC) networks for cable TV in parallel with fiber-copper-pair networks for telephony. The commonly used network architectures are reviewed, together with their present and future capacities. Despite this dual-technology approach, there is considerable interest in the integration of telephony services onto the HFC network and the development of new interactive services for which HFC may be more suitable than copper pairs. Certain technological and commercial developments may have considerable significance for HFC networks and their operators. These include the digitalization of TV distribution and the rising demand for high-rate digital access lines. Possible scenarios are discussed.
ERIC Educational Resources Information Center
Jain, Rishee K.
2013-01-01
The built environment accounts for a substantial portion of energy consumption in the United States and in many parts of the world. Due to concerns over rising energy costs and climate change, researchers and practitioners have started exploring the area of eco-informatics to link information from the human, natural and built environments.…
Experimental study of thin film sensor networks for wind turbine blade damage detection
NASA Astrophysics Data System (ADS)
Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.
2017-02-01
Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.
NASA Astrophysics Data System (ADS)
Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.
2017-09-01
Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.
NASA Astrophysics Data System (ADS)
Terasawa, Motoko
The Great East Japan Earthquake of March 11, 2011 caused extensive damage over a widespread area. Our hospital library, which is located in the affected area, was no exception. A large collection of books was lost, and some web content was inaccessible due to damage to the network environment. This greatly hindered our efforts to continue providing post-disaster medical information services. Information support, such as free access to databases, journals, and other online content related to the disaster areas, helped us immensely during this time. We were fortunate to have the cooperation of various medical employees and library members via social networks, such as twitter, during the process of attaining this information support.
Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne
2017-04-21
In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System
Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun
2010-01-01
Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system. PMID:22163543
Social traits, social networks and evolutionary biology.
Fisher, D N; McAdam, A G
2017-12-01
The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Autoplan: A self-processing network model for an extended blocks world planning environment
NASA Technical Reports Server (NTRS)
Dautrechy, C. Lynne; Reggia, James A.; Mcfadden, Frank
1990-01-01
Self-processing network models (neural/connectionist models, marker passing/message passing networks, etc.) are currently undergoing intense investigation for a variety of information processing applications. These models are potentially very powerful in that they support a large amount of explicit parallel processing, and they cleanly integrate high level and low level information processing. However they are currently limited by a lack of understanding of how to apply them effectively in many application areas. The formulation of self-processing network methods for dynamic, reactive planning is studied. The long-term goal is to formulate robust, computationally effective information processing methods for the distributed control of semiautonomous exploration systems, e.g., the Mars Rover. The current research effort is focusing on hierarchical plan generation, execution and revision through local operations in an extended blocks world environment. This scenario involves many challenging features that would be encountered in a real planning and control environment: multiple simultaneous goals, parallel as well as sequential action execution, action sequencing determined not only by goals and their interactions but also by limited resources (e.g., three tasks, two acting agents), need to interpret unanticipated events and react appropriately through replanning, etc.
Deployed Communications in an Austere Environment: A Delphi Study
2013-12-01
gateways to access the Global Information Grid ( GIG ) will escalate dramatically. The ability simply to “deploy” a unit similar to the RF- SATCOM network...experts had divergent views on how deployed communications systems would link back to the GIG . The scenario uses both projected technologies. First...the self-configuring RF-SATCOM network link acts as a gateway to the GIG , providing wireless RF connectivity to autho- rized devices within the area
NASA Technical Reports Server (NTRS)
Inaba, H.
1986-01-01
An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.
ATM LAN Emulation: Getting from Here to There.
ERIC Educational Resources Information Center
Learn, Larry L., Ed.
1995-01-01
Discusses current LAN (local area network) configuration and explains ATM (asynchronous transfer mode) as the future telecommunications transport. Highlights include LAN emulation, which enables the interconnection of legacy LANs and the new ATM environment; virtual LANs; broadcast servers; and standards. (LRW)
Motion/imagery secure cloud enterprise architecture analysis
NASA Astrophysics Data System (ADS)
DeLay, John L.
2012-06-01
Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.
Wearable technology: role in respiratory health and disease.
Aliverti, Andrea
2017-06-01
In the future, diagnostic devices will be able to monitor a patient's physiological or biochemical parameters continuously, under natural physiological conditions and in any environment through wearable biomedical sensors. Together with apps that capture and interpret data, and integrated enterprise and cloud data repositories, the networks of wearable devices and body area networks will constitute the healthcare's Internet of Things. In this review, four main areas of interest for respiratory healthcare are described: pulse oximetry, pulmonary ventilation, activity tracking and air quality assessment. Although several issues still need to be solved, smart wearable technologies will provide unique opportunities for the future or personalised respiratory medicine.
Wearable technology: role in respiratory health and disease
2017-01-01
In the future, diagnostic devices will be able to monitor a patient’s physiological or biochemical parameters continuously, under natural physiological conditions and in any environment through wearable biomedical sensors. Together with apps that capture and interpret data, and integrated enterprise and cloud data repositories, the networks of wearable devices and body area networks will constitute the healthcare’s Internet of Things. In this review, four main areas of interest for respiratory healthcare are described: pulse oximetry, pulmonary ventilation, activity tracking and air quality assessment. Although several issues still need to be solved, smart wearable technologies will provide unique opportunities for the future or personalised respiratory medicine. PMID:28966692
MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.
Han, Ruisong; Yang, Wei; You, Kaiming
2016-12-16
Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.
MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey
Han, Ruisong; Yang, Wei; You, Kaiming
2016-01-01
Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258
A multi-agent intelligent environment for medical knowledge.
Vicari, Rosa M; Flores, Cecilia D; Silvestre, André M; Seixas, Louise J; Ladeira, Marcelo; Coelho, Helder
2003-03-01
AMPLIA is a multi-agent intelligent learning environment designed to support training of diagnostic reasoning and modelling of domains with complex and uncertain knowledge. AMPLIA focuses on the medical area. It is a system that deals with uncertainty under the Bayesian network approach, where learner-modelling tasks will consist of creating a Bayesian network for a problem the system will present. The construction of a network involves qualitative and quantitative aspects. The qualitative part concerns the network topology, that is, causal relations among the domain variables. After it is ready, the quantitative part is specified. It is composed of the distribution of conditional probability of the variables represented. A negotiation process (managed by an intelligent MediatorAgent) will treat the differences of topology and probability distribution between the model the learner built and the one built-in in the system. That negotiation process occurs between the agents that represent the expert knowledge domain (DomainAgent) and the agent that represents the learner knowledge (LearnerAgent).
Eom, Hyeonjin; Lee, Jaemin; Pichitpajongkit, Aekachan; Amjadi, Morteza; Jeong, Jun-Ho; Lee, Eungsug; Lee, Jung-Yong; Park, Inkyu
2014-10-29
Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring
NASA Astrophysics Data System (ADS)
Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.
2012-12-01
Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits <4ppb for CO and NO and <1ppb for NO2. Mead et al (submitted Aug., 2012)). Based on this work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM, temperature, relative humidity, wind speed and direction. The network incorporates existing GPRS infrastructures for real time sending of data with low overheads in terms of cost, effort and installation. In this paper we present data from the SNAQ Heathrow project as well as previous deployments showing measurement capability at the ppb level for NO, NO2 and CO. We show that variability can be observed and measured quantitatively using these sensor networks over widely differing time scales from individual emission events, diurnal variability associated with traffic and meteorological conditions, through to longer term synoptic weather conditions and seasonal behaviour. This work demonstrates a widely applicable generic capability to urban areas, airports as well as other complex emissions environments making this sensor system methodology valuable for scientific, policy and regulatory issues. We conclude that the low-cost high-density network philosophy has the potential to provide a more complete assessment of the high-granularity air quality structure generally observed in the environment. Further, when appropriately deployed, has the potential to offer a new paradigm in air quality quantification and monitoring.
Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan
2017-12-15
As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients' personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack.
Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.
Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909
Enabling Discoveries in Earth Sciences Through the Geosciences Network (GEON)
NASA Astrophysics Data System (ADS)
Seber, D.; Baru, C.; Memon, A.; Lin, K.; Youn, C.
2005-12-01
Taking advantage of the state-of-the-art information technology resources GEON researchers are building a cyberinfrastructure designed to enable data sharing, semantic data integration, high-end computations and 4D visualization in easy-to-use web-based environments. The GEON Network currently allows users to search and register Earth science resources such as data sets (GIS layers, GMT files, geoTIFF images, ASCII files, relational databases etc), software applications or ontologies. Portal based access mechanisms enable developers to built dynamic user interfaces to conduct advanced processing and modeling efforts across distributed computers and supercomputers. Researchers and educators can access the networked resources through the GEON portal and its portlets that were developed to conduct better and more comprehensive science and educational studies. For example, the SYNSEIS portlet in GEON enables users to access in near-real time seismic waveforms from the IRIS Data Management Center, easily build a 3D geologic model within the area of the seismic station(s) and the epicenter and perform a 3D synthetic seismogram analysis to understand the lithospheric structure and earthquake source parameters for any given earthquake in the US. Similarly, GEON's workbench area enables users to create their own work environment and copy, visualize and analyze any data sets within the network, and create subsets of the data sets for their own purposes. Since all these resources are built as part of a Service-oriented Architecture (SOA), they are also used in other development platforms. One such platform is Kepler Workflow system which can access web service based resources and provides users with graphical programming interfaces to build a model to conduct computations and/or visualization efforts using the networked resources. Developments in the area of semantic integration of the networked datasets continue to advance and prototype studies can be accessed via the GEON portal at www.geongrid.org
NASA Astrophysics Data System (ADS)
Ramli, N. H.; Jaafar, H.; Lee, Y. S.
2018-03-01
Recently, wireless implantable body area network (WiBAN) system become an active area of research due to their various applications such as healthcare, support systems for specialized occupations and personal communications. Biomedical sensors networks mounted in the human body have drawn greater attention for health care monitoring systems. The implantable chip printed antenna for WiBAN applications is designed and the antenna performances is investigated in term of gain, efficiency, return loss, operating bandwidth and radiation pattern at different environments. This paper is presents the performances of implantable chip printed antenna in selected part of human body (hand, chest, leg, heart and skull). The numerical investigation is done by using human voxel model in built in the CST Microwave Studio Software. Results proved that the chip printed antenna is suitable to implant in the human hand model. The human hand model has less complex structure as it consists of skin, fat, muscle, blood and bone. Moreover, the antenna is implanted under the skin. Therefore the signal propagation path length to the base station at free space environment is considerably short. The antenna’s gain, efficiency and Specific Absorption Rate (SAR) are - 13.62dBi, 1.50 % and 0.12 W/kg respectively; which confirms the safety of the antenna usage. The results of the investigations can be used as guidance while designing chip implantable antenna in future.
Mo, Wenbo; Wang, Yong; Zhang, Yingxue; Zhuang, Dafang
2017-01-01
Road networks affect the spatial structure of urban landscapes, and with continuous expansion, it will also exert more widespread influences on the regional ecological environment. With the support of geographic information system (GIS) technology, based on the application of various spatial analysis methods, this study analyzed the spatiotemporal changes of road networks and landscape ecological risk in the research area of Beijing to explore the impacts of road network expansion on ecological risk in the urban landscape. The results showed the following: 1) In the dynamic processes of change in the overall landscape pattern, the changing differences in landscape indices of various landscape types were obvious and were primarily related to land-use type. 2) For the changes in a time series, the expansion of the road kernel area was consistent with the extension of the sub-low-risk area in the urban center, but some differences were observed during different stages of development. 3) For the spatial position, the expanding changes in the road kernel area were consistent with the grade changes of the urban central ecological risk, primarily because both had a certain spatial correlation with the expressways. 4) The influence of road network expansion on the ecological risk in the study area had obvious spatial differences, which may be closely associated with the distribution of ecosystem types. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.
A Computational framework for telemedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.; von Laszewski, G.; Thiruvathukal, G. K.
1998-07-01
Emerging telemedicine applications require the ability to exploit diverse and geographically distributed resources. Highspeed networks are used to integrate advanced visualization devices, sophisticated instruments, large databases, archival storage devices, PCs, workstations, and supercomputers. This form of telemedical environment is similar to networked virtual supercomputers, also known as metacomputers. Metacomputers are already being used in many scientific application areas. In this article, we analyze requirements necessary for a telemedical computing infrastructure and compare them with requirements found in a typical metacomputing environment. We will show that metacomputing environments can be used to enable a more powerful and unified computational infrastructure formore » telemedicine. The Globus metacomputing toolkit can provide the necessary low level mechanisms to enable a large scale telemedical infrastructure. The Globus toolkit components are designed in a modular fashion and can be extended to support the specific requirements for telemedicine.« less
OhioView: Distribution of Remote Sensing Data Across Geographically Distributed Environments
NASA Technical Reports Server (NTRS)
Ramos, Calvin T.
1998-01-01
Various issues associated with the distribution of remote sensing data across geographically distributed environments are presented in viewgraph form. Specific topics include: 1) NASA education program background; 2) High level architectures, technologies and applications; 3) LeRC internal architecture and role; 4) Potential GIBN interconnect; 5) Potential areas of network investigation and research; 6) Draft of OhioView data model; and 7) the LeRC strategy and roadmap.
Social-ecological network analysis of scale mismatches in estuary watershed restoration.
Sayles, Jesse S; Baggio, Jacopo A
2017-03-07
Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social-ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners' assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social-ecological (or social-environmental) misalignments, also known as scale mismatches.
Social–ecological network analysis of scale mismatches in estuary watershed restoration
Sayles, Jesse S.
2017-01-01
Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social–ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners’ assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social–ecological (or social–environmental) misalignments, also known as scale mismatches. PMID:28223529
Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring
NASA Astrophysics Data System (ADS)
Stocklöw, Carsten; Kamieth, Felix
In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.
Building and measuring a high performance network architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, William T.C.; Toole, Timothy; Fisher, Chuck
2001-04-20
Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning.more » The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.« less
NASA Astrophysics Data System (ADS)
Porter, P. R.; Marunchak, A.
2011-12-01
One of the key challenges facing educators in the cryospheric sciences is to explain to students the processes that operate and the landforms that exist in relatively unfamiliar glacial environments. In many cases these environments are also largely inaccessible which can hinder field-based teaching. This is particularly the case for en-glacial and sub-glacial hydrology and the closely related topic of sub-glacial glacier dynamics, yet a full understanding of these subject areas is pivotal to overall student understanding of glaciology. An ability to visualise these unfamiliar and inaccessible environments offers a potentially powerful tool to assist student conceptualisation and comprehension. To address this we have developed a three-dimensional interactive 'virtual glacier' simulation model. Based on standards and technology established by the rapidly evolving video gaming industry, the user is presented with an interactive real-time three-dimensional environment designed to accurately portray multiple aspects of glacial environments. The user can move in all directions in the fore-field area, on the glacier surface and within en-glacial and sub-glacial drainage networks. Descent into the glacier hydrological system is via a moulin, from which the user can explore en-glacial channels linking to this moulin and ultimately descend into the sub-glacial drainage system. Various sub-glacial drainage network morphologies can then be 'explored' to aid conceptualisation and understanding and the user can navigate through drainage networks both up- and down-glacier and ultimately emerge at the portal into the fore-field environment. Interactive icons relating to features of interest are presented to the user throughout the model, prompting multimedia dialogue boxes to open. Dialogue box content (e.g. text, links to online resources, videos, journal papers, etc.) is fully customisable by the educator. This facilitates the use of the model at different academic levels. Although our model is predominantly based on the teaching of glacier hydrology, sufficient functionality has been designed into the model package to allow educators to uniquely populate other areas of the scene with interactive multimedia dialogue boxes. For example, users could explore fore-field geomorphology in a similar manner to the glacier hydrological system. We will also be developing this technology to build further suites of virtual interactive environments relevant to teaching in the earth and environmental sciences.
Adaptive Comanagement of a Marine Protected Area Network in Fiji
WEEKS, REBECCA; JUPITER, STACY D
2014-01-01
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. PMID:24112643
Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei; Song, Houbing
2017-07-12
Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs.
Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei
2017-01-01
Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs. PMID:28704959
A QoS Optimization Approach in Cognitive Body Area Networks for Healthcare Applications.
Ahmed, Tauseef; Le Moullec, Yannick
2017-04-06
Wireless body area networks are increasingly featuring cognitive capabilities. This work deals with the emerging concept of cognitive body area networks. In particular, the paper addresses two important issues, namely spectrum sharing and interferences. We propose methods for channel and power allocation. The former builds upon a reinforcement learning mechanism, whereas the latter is based on convex optimization. Furthermore, we also propose a mathematical channel model for off-body communication links in line with the IEEE 802.15.6 standard. Simulation results for a nursing home scenario show that the proposed approach yields the best performance in terms of throughput and QoS for dynamic environments. For example, in a highly demanding scenario our approach can provide throughput up to 7 Mbps, while giving an average of 97.2% of time QoS satisfaction in terms of throughput. Simulation results also show that the power optimization algorithm enables reducing transmission power by approximately 4.5 dBm, thereby sensibly and significantly reducing interference.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1982-09-01
This Annual Technical Report covers research covering the period from October 1, 1981 to September 30, 1982. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a study of channel access protocols that are executed by the nodes of a network to schedule their transmissions on multi-access broadcast channel. In particular the main body consists of a Ph.D. dissertation, Channel Access Protocols for Multi-Hop Broadcast Packet Radio Networks. This work discusses some new channel access protocols useful for mobile radio networks. Included is an analysis of slotted ALOHA and some tight bounds on the performance of all possible protocols in a mobile environment.
Making sense of the transition from the Detroit streets to drug treatment.
Draus, Paul; Roddy, Juliette; Asabigi, Kanzoni
2015-02-01
In this article we consider the process of adjustment from active street sex work to life in structured substance abuse treatment among Detroit-area women who participated in a semicoercive program administered through a drug court. We examine this transition in terms of changes in daily routines and social networks, drawing on extensive qualitative data to illuminate the ways in which women defined their own situations. Using concepts from Bourdieu and Latour as analytical aids, we analyze the role of daily routines, environments, and networks in producing the shifts in identity that those who embraced the goals of recovery demonstrated. We conclude with a discussion of how the restrictive environments and redundant situations experienced by women in treatment could be paradoxically embraced as a means to achieve expanded opportunity and enhanced individual responsibility because women effectively reassembled their social networks and identities to align with the goals of recovery. © The Author(s) 2014.
The national hydrologic bench-mark network
Cobb, Ernest D.; Biesecker, J.E.
1971-01-01
The United States is undergoing a dramatic growth of population and demands on its natural resources. The effects are widespread and often produce significant alterations of the environment. The hydrologic bench-mark network was established to provide data on stream basins which are little affected by these changes. The network is made up of selected stream basins which are not expected to be significantly altered by man. Data obtained from these basins can be used to document natural changes in hydrologic characteristics with time, to provide a better understanding of the hydrologic structure of natural basins, and to provide a comparative base for studying the effects of man on the hydrologic environment. There are 57 bench-mark basins in 37 States. These basins are in areas having a wide variety of climate and topography. The bench-mark basins and the types of data collected in the basins are described.
Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections
Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2016-01-01
With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network. PMID:27455270
Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections.
Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2016-07-22
With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.
Digital Signal Processing and Control for the Study of Gene Networks
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun
2016-04-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks.
Shin, Yong-Jun
2016-04-22
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks
Shin, Yong-Jun
2016-01-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828
Leveraging modern climatology to increase adaptive capacity across protected area networks
Davison, J.E.; Graumlich, L.J.; Rowland, E.L.; Pederson, G.T.; Breshears, D.D.
2012-01-01
Human-driven changes in the global environment pose an increasingly urgent challenge for the management of ecosystems that is made all the more difficult by the uncertain future of both environmental conditions and ecological responses. Land managers need strategies to increase regional adaptive capacity, but relevant and rapid assessment approaches are lacking. To address this need, we developed a method to assess regional protected area networks across biophysically important climatic gradients often linked to biodiversity and ecosystem function. We plot the land of the southwestern United States across axes of historical climate space, and identify landscapes that may serve as strategic additions to current protected area portfolios. Considering climate space is straightforward, and it can be applied using a variety of relevant climate parameters across differing levels of land protection status. The resulting maps identify lands that are climatically distinct from existing protected areas, and may be utilized in combination with other ecological and socio-economic information essential to collaborative landscape-scale decision-making. Alongside other strategies intended to protect species of special concern, natural resources, and other ecosystem services, the methods presented herein provide another important hedging strategy intended to increase the adaptive capacity of protected area networks. ?? 2011 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Terzopoulos, Demetri; Qureshi, Faisal Z.
Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.
2015-02-01
networking provides 24-hour access to data and information between friends and strangers alike. Technology also has played a significant role in the world’s...economic environment, many or- ganizations look at cyber budgets as areas to cut back. And many top-level managers and members of the acquisition
DOT National Transportation Integrated Search
2010-09-01
Initial research studied the use of wireless local area networks (WLAN) protocols in Inter-Vehicle Communications : (IVC) environments. The protocols performance was evaluated in terms of measuring throughput, jitter time and : delay time. This re...
Tsouri, Gill R.; Prieto, Alvaro; Argade, Nikhil
2012-01-01
Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity. PMID:23201987
Tsouri, Gill R; Prieto, Alvaro; Argade, Nikhil
2012-09-26
Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity.
Subsurface event detection and classification using Wireless Signal Networks.
Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T
2012-11-05
Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.
Subsurface Event Detection and Classification Using Wireless Signal Networks
Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.
2012-01-01
Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191
A Survey of MAC Protocols for Cognitive Radio Body Area Networks.
Bhandari, Sabin; Moh, Sangman
2015-04-20
The advancement in electronics, wireless communications and integrated circuits has enabled the development of small low-power sensors and actuators that can be placed on, in or around the human body. A wireless body area network (WBAN) can be effectively used to deliver the sensory data to a central server, where it can be monitored, stored and analyzed. For more than a decade, cognitive radio (CR) technology has been widely adopted in wireless networks, as it utilizes the available spectra of licensed, as well as unlicensed bands. A cognitive radio body area network (CRBAN) is a CR-enabled WBAN. Unlike other wireless networks, CRBANs have specific requirements, such as being able to automatically sense their environments and to utilize unused, licensed spectra without interfering with licensed users, but existing protocols cannot fulfill them. In particular, the medium access control (MAC) layer plays a key role in cognitive radio functions, such as channel sensing, resource allocation, spectrum mobility and spectrum sharing. To address various application-specific requirements in CRBANs, several MAC protocols have been proposed in the literature. In this paper, we survey MAC protocols for CRBANs. We then compare the different MAC protocols with one another and discuss challenging open issues in the relevant research.
JPARSS: A Java Parallel Network Package for Grid Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jie; Akers, Walter; Chen, Ying
2002-03-01
The emergence of high speed wide area networks makes grid computinga reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve bandwidth and to reduce latency on a high speed wide area network. This paper presents a Java package called JPARSS (Java Parallel Secure Stream (Socket)) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a grid environment without the necessity of tuning TCP window size.more » This package enables single sign-on, certificate delegation and secure or plain-text data transfer using several security components based on X.509 certificate and SSL. Several experiments will be presented to show that using Java parallelstreams is more effective than tuning TCP window size. In addition a simple architecture using Web services« less
Regular Topologies for Gigabit Wide-Area Networks. Volume 1
NASA Technical Reports Server (NTRS)
Shacham, Nachum; Denny, Barbara A.; Lee, Diane S.; Khan, Irfan H.; Lee, Danny Y. C.; McKenney, Paul
1994-01-01
In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source code of all software developed under CATE.
Rethinking Indoor Localization Solutions Towards the Future of Mobile Location-Based Services
NASA Astrophysics Data System (ADS)
Guney, C.
2017-11-01
Satellite navigation systems with GNSS-enabled devices, such as smartphones, car navigation systems, have changed the way users travel in outdoor environment. GNSS is generally not well suited for indoor location and navigation because of two reasons: First, GNSS does not provide a high level of accuracy although indoor applications need higher accuracies. Secondly, poor coverage of satellite signals for indoor environments decreases its accuracy. So rather than using GNSS satellites within closed environments, existing indoor navigation solutions rely heavily on installed sensor networks. There is a high demand for accurate positioning in wireless networks in GNSS-denied environments. However, current wireless indoor positioning systems cannot satisfy the challenging needs of indoor location-aware applications. Nevertheless, access to a user's location indoors is increasingly important in the development of context-aware applications that increases business efficiency. In this study, how can the current wireless location sensing systems be tailored and integrated for specific applications, like smart cities/grids/buildings/cars and IoT applications, in GNSS-deprived areas.
A Novel Human Body Area Network for Brain Diseases Analysis.
Lin, Kai; Xu, Tianlang
2016-10-01
Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.
NASA Technical Reports Server (NTRS)
Fuelberg, Henry E.; Schudalla, Ronald L.
1989-01-01
The study presented utilized special mesoscale Cooperative Huntsville Meteorological Experiment (COHMEX) data to understand the evolution of the preconvective environment on June 17, 1986. Using the special mesoscale COHMEX data, several mechanisms for triggering the convection are investigated. Afternoon heating probably was a major factor as observed noontime temperatures were near the sounding-derived convection temperatures. The special surface network revealed a quasi-stationary area of convergence not aligned with the front that may be associated with the orography of the area. This study demonstrates that rapid, small scale atmospheric variations preceded convective development on June 17, 1986.
A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Diaz, Juan R.
2009-01-01
A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements. PMID:22303185
NASA Communications Augmentation network
NASA Technical Reports Server (NTRS)
Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.
1990-01-01
The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.
Network-level architecture and the evolutionary potential of underground metabolism.
Notebaart, Richard A; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs
2014-08-12
A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.
Low Power Multi-Hop Networking Analysis in Intelligent Environments.
Etxaniz, Josu; Aranguren, Gerardo
2017-05-19
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.
Low Power Multi-Hop Networking Analysis in Intelligent Environments
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide. PMID:28534847
Suzuki, Yuriko; Goto, Aya; Yasumura, Seiji
2017-01-01
After the nuclear disaster in Fukushima on 11 March 2011, some businesses were permitted to continue operating even though they were located in the evacuation area designated by the Japanese government. The aim of this study was to examine differences in the mental health status, workplace, living environment, and lifestyle of employees in the evacuation and non-evacuation areas. We also investigated factors related to their mental health status. Data for this cross-sectional study were collected from the questionnaire responses of 647 employees at three medium-sized manufacturing companies in the evacuation and non-evacuation areas. Through a cross-tabulation analysis, employees who worked at companies in the evacuation areas showed an increase in the duration of overtime work, work burden, and commute time, and had experienced separation from family members due to the radiation disaster and perceived radiation risks. The results of a multivariate logistic regression analysis showed that, even in a harsh workplace and living environment, being younger, participating regularly in physical activity, having a social network (Lubben Social Network Scale-6 ≤ 12), laughing frequently, and feeling satisfied with one’s workplace and domestic life were significantly associated with maintaining a healthy mental health status after the disaster. These findings are applicable for workers’ health management measures after disasters. PMID:29301235
Orui, Masatsugu; Suzuki, Yuriko; Goto, Aya; Yasumura, Seiji
2017-12-31
After the nuclear disaster in Fukushima on 11 March 2011, some businesses were permitted to continue operating even though they were located in the evacuation area designated by the Japanese government. The aim of this study was to examine differences in the mental health status, workplace, living environment, and lifestyle of employees in the evacuation and non-evacuation areas. We also investigated factors related to their mental health status. Data for this cross-sectional study were collected from the questionnaire responses of 647 employees at three medium-sized manufacturing companies in the evacuation and non-evacuation areas. Through a cross-tabulation analysis, employees who worked at companies in the evacuation areas showed an increase in the duration of overtime work, work burden, and commute time, and had experienced separation from family members due to the radiation disaster and perceived radiation risks. The results of a multivariate logistic regression analysis showed that, even in a harsh workplace and living environment, being younger, participating regularly in physical activity, having a social network (Lubben Social Network Scale-6 ≤ 12), laughing frequently, and feeling satisfied with one's workplace and domestic life were significantly associated with maintaining a healthy mental health status after the disaster. These findings are applicable for workers' health management measures after disasters.
ERIC Educational Resources Information Center
Bing, Jon
1982-01-01
The rapid evolution of today's video games now fills arcades, snack bars, and homes with an array of highly interactive, graphically vivid technical devices. This electronic environment is creating a worldwide communication network. Developments in this area will be beneficial provided that appropriate media policies can be framed. (Author/JN)
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio
2014-02-01
High Efficiency Video Coding (HEVC), the latest video compression standard (also known as H.265), can deliver video streams of comparable quality to the current H.264 Advanced Video Coding (H.264/AVC) standard with a 50% reduction in bandwidth. Research into SHVC, the scalable extension to the HEVC standard, is still in its infancy. One important area for investigation is whether, given the greater compression ratio of HEVC (and SHVC), the loss of packets containing video content will have a greater impact on the quality of delivered video than is the case with H.264/AVC or its scalable extension H.264/SVC. In this work we empirically evaluate the layer-based, in-network adaptation of video streams encoded using SHVC in situations where dynamically changing bandwidths and datagram loss ratios require the real-time adaptation of video streams. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for SHVC-based highdefinition video streaming in loss prone network environments such as those commonly found in mobile networks. Among other results, we highlight that packet losses of only 1% can lead to a substantial reduction in PSNR of over 3dB and error propagation in over 130 pictures following the one in which the loss occurred. This work would be one of the earliest studies in this cutting-edge area that reports benchmark evaluation results for the effects of datagram loss on SHVC picture quality and offers empirical and analytical insights into SHVC adaptation to lossy, mobile networking conditions.
Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan
2017-01-01
As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients’ personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack. PMID:29244776
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Nix, Tricia; Junker, Robert; Brentano, Josef; Khona, Dhiren
2006-05-01
The technical concept for this project has existed since the Chernobyl accident in 1986. A host of Eastern European nations have developed countrywide grid of sensors to monitor airborne radiation. The objective is to build a radiological sensor network for real-time monitoring of environmental radiation levels in order to provide data for warning, and consequentially the assessment of a nuclear event. A network of radiation measuring equipment consisting of gamma, neutron, alpha, and beta counters would be distributed over a large area (preferably on fire station roof tops) and connected by a wireless network to the emergency response center. The networks would be deployed in urban environments and would supply first responders and federal augmentation teams (including those from the U.S. Departments of Energy, Defense, Justice, and Homeland Security) with detailed, accurate information regarding the transport of radioactive environmental contaminants, so the agencies can provide a safe and effective response. A networked sensor capability would be developed, with fixed sensors deployed at key locations and in sufficient numbers, to provide adequate coverage for early warning, and input to post-event emergency response. An overall system description and specification will be provided, including detector characteristics, communication protocols, infrastructure and maintenance requirements, and operation procedures. The system/network can be designed for a specifically identified urban area, or for a general urban area scalable to cities of specified size. Data collected via the network will be transmitted directly to the appropriate emergency response center and shared with multiple agencies via the Internet or an Intranet. The data collected will be managed using commercial off - the - shelf Geographical Information System (GIS). The data will be stored in a database and the GIS software will aid in analysis and management of the data. Unique features of the system include each node being assigned a health-effect based risk factor. By connecting the nodes on a particular measured isopleth one can define the plume accurately. Radon counts will be provided and used to calculate the alpha counts. The radiological data collected will also be of value under routine conditions, in the absence of a radiological threat, to provide a detailed map of radiation background in the urban environment and complement predictive models of radiation transport. The data can be transferred to the National Atmospheric Release Advisory Center (NARAC) to augment its predictive model, thereby increasing its fidelity. Initially, as a proof of concept, a few nodes will be built for the purpose of demonstrating the concept.
Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks
NASA Technical Reports Server (NTRS)
Birrane, Edward J. III; Burleigh, Scott C.; Cerf, Vint
2011-01-01
Challenged networks exhibit irregularities in their communication performance stemming from node mobility, power constraints, and impacts from the operating environment. These irregularities manifest as high signal propagation delay and frequent link disruption. Understanding those limits of link disruption and propagation delay beyond which core networking features fail is an ongoing area of research. Various wireless networking communities propose tools and techniques that address these phenomena. Emerging standardization activities within the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) look to build upon both this experience and scalability analysis. Successful research in this area is predicated upon identifying enablers for common communication functions (notably node discovery, duplex communication, state caching, and link negotiation) and how increased disruptions and delays affect their feasibility within the network. Networks that make fewer assumptions relating to these enablers provide more universal service. Specifically, reliance on node discovery and link negotiation results in network-specific operational concepts rather than scalable technical solutions. Fundamental to this debate are the definitions, assumptions, operational concepts, and anticipated scaling of these networks. This paper presents the commonalities and differences between delay and disruption tolerance, including support protocols and critical enablers. We present where and how these tolerances differ. We propose a set of use cases that must be accommodated by any standardized delay-tolerant network and discuss the implication of these on existing tool development.
Intra-building telecommunications cabling standards for Sandia National Laboratories, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, R.L.
1993-08-01
This document establishes a working standard for all telecommunications cable installations at Sandia National Laboratories, New Mexico. It is based on recent national commercial cabling standards. The topics addressed are Secure and Open/Restricted Access telecommunications environments and both twisted-pair and optical-fiber components of communications media. Some of the state-of-the-art technologies that will be supported by the intrabuilding cable infrastructure are Circuit and Packet Switched Networks (PBX/5ESS Voice and Low-Speed Data), Local Area Networks (Ethernet, Token Ring, Fiber and Copper Distributed Data Interface), and Wide Area Networks (Asynchronous Transfer Mode). These technologies can be delivered to every desk and can transportmore » data at rates sufficient to support all existing applications (such as Voice, Text and graphics, Still Images, Full-motion Video), as well as applications to be defined in the future.« less
Default mode of brain function in monkeys.
Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A; Buckner, Randy L; Vanduffel, Wim
2011-09-07
Human neuroimaging has revealed a specific network of brain regions-the default-mode network (DMN)-that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment.
Default Mode of Brain Function in Monkeys
Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A.; Buckner, Randy L.; Vanduffel, Wim
2013-01-01
Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment. PMID:21900574
NASA Technical Reports Server (NTRS)
Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.;
2011-01-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.
NASA Astrophysics Data System (ADS)
Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Losno, R.; Sciare, J.; Voss, K. J.; Kinne, S.; Nalli, N. R.; Joseph, E.; Krishna Moorthy, K.; Covert, D. S.; Gulev, S. K.; Milinevsky, G.; Larouche, P.; Belanger, S.; Horne, E.; Chin, M.; Remer, L. A.; Kahn, R. A.; Reid, J. S.; Schulz, M.; Heald, C. L.; Zhang, J.; Lapina, K.; Kleidman, R. G.; Griesfeller, J.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.
2011-01-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurements areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.
NASA Astrophysics Data System (ADS)
Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Losno, R.; Sciare, J.; Voss, K. J.; Kinne, S.; Nalli, N. R.; Joseph, E.; Krishna Moorthy, K.; Covert, D. S.; Gulev, S. K.; Milinevsky, G.; Larouche, P.; Belanger, S.; Horne, E.; Chin, M.; Remer, L. A.; Kahn, R. A.; Reid, J. S.; Schulz, M.; Heald, C. L.; Zhang, J.; Lapina, K.; Kleidman, R. G.; Griesfeller, J.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.
2011-03-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.
Manimegalai, C T; Gauni, Sabitha; Kalimuthu, K
2017-12-04
Wireless body area network (WBAN) is a breakthrough technology in healthcare areas such as hospital and telemedicine. The human body has a complex mixture of different tissues. It is expected that the nature of propagation of electromagnetic signals is distinct in each of these tissues. This forms the base for the WBAN, which is different from other environments. In this paper, the knowledge of Ultra Wide Band (UWB) channel is explored in the WBAN (IEEE 802.15.6) system. The measurements of parameters in frequency range from 3.1-10.6 GHz are taken. The proposed system, transmits data up to 480 Mbps by using LDPC coded APSK Modulated Differential Space-Time-Frequency Coded MB-OFDM to increase the throughput and power efficiency.
Output power distributions of terminals in a 3G mobile communication network.
Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan
2012-05-01
The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas. Copyright © 2011 Wiley Periodicals, Inc.
Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony
1996-01-01
This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.
Design Criteria For Networked Image Analysis System
NASA Astrophysics Data System (ADS)
Reader, Cliff; Nitteberg, Alan
1982-01-01
Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.
SPAN security policies and guidelines
NASA Technical Reports Server (NTRS)
Sisson, Patricia L.; Green, James L.
1989-01-01
A guide is provided to system security with emphasis on requirements and guidelines that are necessary to maintain an acceptable level of security on the network. To have security for the network, each node on the network must be secure. Therefore, each system manager, must strictly adhere to the requirements and must consider implementing the guidelines discussed. There are areas of vulnerability within the operating system that may not be addressed. However, when a requirement or guideline is discussed, implementation techniques are included. Information related to computer and data security is discussed to provide information on implementation options. The information is presented as it relates to a VAX computer environment.
ERIC Educational Resources Information Center
Hockly, Nicky
2013-01-01
In this series, we explore current technology-related themes and topics. The series aims to discuss and demystify what may be new areas for some readers and to consider their relevance to English language teachers. In future articles, we will be covering topics such as learning technologies in low-resource environments, personal learning networks,…
Teams, Networks, and Assistive Technology: Training Special Educators in Rural Areas.
ERIC Educational Resources Information Center
Henderson, Cheryl; Kyger, Maggie; Guarino-Murphey, Dana
Assistive technology is equipment that improves the functional capabilities of individuals with disabilities. Using assistive technology, children discover they have control over their environment and develop a sense of competence and independence. As special education enrollments increase, more students are using assistive technology, but many…
Intermodal rail yards are important nodes in the freight transportation network, where freight is organized and moved from one mode of transport to another, critical equipment is serviced, and freight is routed to its next destination. Rail yard environments are also areas with ...
Issues in ATM Support of High-Performance, Geographically Distributed Computing
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Dowd, Patrick W.; Srinidhi, Saragur M.; Blade, Eric D.G
1995-01-01
This report experimentally assesses the effect of the underlying network in a cluster-based computing environment. The assessment is quantified by application-level benchmarking, process-level communication, and network file input/output. Two testbeds were considered, one small cluster of Sun workstations and another large cluster composed of 32 high-end IBM RS/6000 platforms. The clusters had Ethernet, fiber distributed data interface (FDDI), Fibre Channel, and asynchronous transfer mode (ATM) network interface cards installed, providing the same processors and operating system for the entire suite of experiments. The primary goal of this report is to assess the suitability of an ATM-based, local-area network to support interprocess communication and remote file input/output systems for distributed computing.
Experience with PACS in an ATM/Ethernet switched network environment.
Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U
1998-03-01
Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.
Wide-area littoral discreet observation: success at the tactical edge
NASA Astrophysics Data System (ADS)
Toth, Susan; Hughes, William; Ladas, Andrew
2012-06-01
In June 2011, the United States Army Research Laboratory (ARL) participated in Empire Challenge 2011 (EC-11). EC-11 was United States Joint Forces Command's (USJFCOM) annual live, joint and coalition intelligence, surveillance and reconnaissance (ISR) interoperability demonstration under the sponsorship of the Under Secretary of Defense for Intelligence (USD/I). EC-11 consisted of a series of ISR interoperability events, using a combination of modeling & simulation, laboratory and live-fly events. Wide-area Littoral Discreet Observation (WALDO) was ARL's maritime/littoral capability. WALDO met a USD(I) directive that EC-11 have a maritime component and WALDO was the primary player in the maritime scenario conducted at Camp Lejeune, North Carolina. The WALDO effort demonstrated the utility of a networked layered sensor array deployed in a maritime littoral environment, focusing on maritime surveillance targeting counter-drug, counter-piracy and suspect activity in a littoral or riverine environment. In addition to an embedded analytical capability, the sensor array and control infrastructure consisted of the Oriole acoustic sensor, iScout unattended ground sensor (UGS), OmniSense UGS, the Compact Radar and the Universal Distributed Management System (UDMS), which included the Proxy Skyraider, an optionally manned aircraft mounting both wide and narrow FOV EO/IR imaging sensors. The capability seeded a littoral area with riverine and unattended sensors in order to demonstrate the utility of a Wide Area Sensor (WAS) capability in a littoral environment focused on maritime surveillance activities. The sensors provided a cue for WAS placement/orbit. A narrow field of view sensor would be used to focus on more discreet activities within the WAS footprint. Additionally, the capability experimented with novel WAS orbits to determine if there are more optimal orbits for WAS collection in a littoral environment. The demonstration objectives for WALDO at EC-11 were: * Demonstrate a networked, layered, multi-modal sensor array deployed in a maritime littoral environment, focusing on maritime surveillance targeting counter-drug, counter-piracy and suspect activity * Assess the utility of a Wide Area Surveillance (WAS) sensor in a littoral environment focused on maritime surveillance activities * Demonstrate the effectiveness of using UGS sensors to cue WAS sensor tasking * Employ a narrow field of view full motion video (FMV) sensor package that is collocated with the WAS to conduct more discrete observation of potential items of interest when queued by near-real-time data from UGS or observers * Couple the ARL Oriole sensor with other modality UGS networks in a ground layer ISR capability, and incorporate data collected from aerial sensors with a GEOINT base layer to form a fused product * Swarm multiple aerial or naval platforms to prosecute single or multiple targets * Track fast moving surface vessels in littoral areas * Disseminate time sensitive, high value data to the users at the tactical edge In short we sought to answer the following question: how do you layer, control and display disparate sensors and sensor modalities in such a way as to facilitate appropriate sensor cross-cue, data integration, and analyst control to effectively monitor activity in a littoral (or novel) environment?
Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems
NASA Astrophysics Data System (ADS)
Manzalini, Antonio; Minerva, Roberto; Moiso, Corrado
Today, people are making use of several devices for communications, for accessing multi-media content services, for data/information retrieving, for processing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras, mp3 players, smart cards and smart appliances. One of the most attracting service scenarios for future Telecommunications and Internet is the one where people will be able to browse any object in the environment they live: communications, sensing and processing of data and services will be highly pervasive. In this vision, people, machines, artifacts and the surrounding space will create a kind of computational environment and, at the same time, the interfaces to the network resources. A challenging technological issue will be interconnection and management of heterogeneous systems and a huge amount of small devices tied together in networks of networks. Moreover, future network and service infrastructures should be able to provide Users and Application Developers (at different levels, e.g., residential Users but also SMEs, LEs, ASPs/Web2.0 Service roviders, ISPs, Content Providers, etc.) with the most appropriate "environment" according to their context and specific needs. Operators must be ready to manage such level of complication enabling their latforms with technological advanced allowing network and services self-supervision and self-adaptation capabilities. Autonomic software solutions, enhanced with innovative bio-inspired mechanisms and algorithms, are promising areas of long term research to face such challenges. This chapter proposes a bio-inspired autonomic middleware capable of leveraging the assets of the underlying network infrastructure whilst, at the same time, supporting the development of future Telecommunications and Internet Ecosystems.
Design and simulation of sensor networks for tracking Wifi users in outdoor urban environments
NASA Astrophysics Data System (ADS)
Thron, Christopher; Tran, Khoi; Smith, Douglas; Benincasa, Daniel
2017-05-01
We present a proof-of-concept investigation into the use of sensor networks for tracking of WiFi users in outdoor urban environments. Sensors are fixed, and are capable of measuring signal power from users' WiFi devices. We derive a maximum likelihood estimate for user location based on instantaneous sensor power measurements. The algorithm takes into account the effects of power control, and is self-calibrating in that the signal power model used by the location algorithm is adjusted and improved as part of the operation of the network. Simulation results to verify the system's performance are presented. The simulation scenario is based on a 1.5 km2 area of lower Manhattan, The self-calibration mechanism was verified for initial rms (root mean square) errors of up to 12 dB in the channel power estimates: rms errors were reduced by over 60% in 300 track-hours, in systems with limited power control. Under typical operating conditions with (without) power control, location rms errors are about 8.5 (5) meters with 90% accuracy within 9 (13) meters, for both pedestrian and vehicular users. The distance error distributions for smaller distances (<30 m) are well-approximated by an exponential distribution, while the distributions for large distance errors have fat tails. The issue of optimal sensor placement in the sensor network is also addressed. We specify a linear programming algorithm for determining sensor placement for networks with reduced number of sensors. In our test case, the algorithm produces a network with 18.5% fewer sensors with comparable accuracy estimation performance. Finally, we discuss future research directions for improving the accuracy and capabilities of sensor network systems in urban environments.
Morelli, Federico
2017-01-01
Road and railway networks are pervasive elements of all environments, which have expanded intensively over the last century in all European countries. These transportation infrastructures have major impacts on the surrounding landscape, representing a threat to biodiversity. Roadsides and railways may function as corridors for dispersal of alien species in fragmented landscapes. However, only few studies have explored the spread of invasive species in relationship to transport network at large spatial scales. We performed a spatial mismatch analysis, based on a spatially explicit correlation test, to investigate whether alien plant species hotspots in Germany and Austria correspond to areas of high density of roads and railways. We tested this independently of the effects of dominant environments in each spatial unit, in order to focus just on the correlation between occurrence of alien species and density of linear transportation infrastructures. We found a significant spatial association between alien plant species hotspots distribution and roads and railways density in both countries. As expected, anthropogenic landscapes, such as urban areas, harbored more alien plant species, followed by water bodies. However, our findings suggested that the distribution of neobiota is strongest correlated to road/railways density than to land use composition. This study provides new evidence, from a transnational scale, that alien plants can use roadsides and rail networks as colonization corridors. Furthermore, our approach contributes to the understanding on alien plant species distribution at large spatial scale by the combination with spatial modeling procedures. PMID:28829818
Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
Richter, Philipp; Toledano-Ayala, Manuel
2015-01-01
Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate. PMID:26370996
Configuration development for ROMENET
NASA Astrophysics Data System (ADS)
Rhue, Lawrence
1989-10-01
A plan prepared by RJO Enterprises and BBN Communications Corporation (BBNCC) for the design of ROMENET, a DDN-like testbed for the Rome Air Development Center (RADC) Wide Area Networks (WAN) laboratory is presented. The ROMENET is intended to provide RADC with the ability to test and evaluate the performance and vulnerability of the Defense Data Network (DDN) technologies in support of specific Major Command programs and activities at RADC. It will also support experimentation with packet switched network technologies and includes facilities to analytically evaluate the performance of the network and its associated equipment and media. In addition, ROMENET will provide a simulation vehicle for controlled interference or jamming into the media for vulnerability assessment. Through interfaces with the RADC Battle Management Laboratory (BML), ROMENET will allow the Air Force to assess the restorative and performance characteristics of the network under stressed conditions. The closed environment of ROMENET makes it ideal for creating and testing routing algorithms and network control protocols.
Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo
2014-04-21
Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.
Revisiting the hierarchy of urban areas in the Brazilian Amazon: a multilevel approach
Costa, Sandra; Brondízio, Eduardo
2012-01-01
The Legal Brazilian Amazon, while the largest rainforest in the world, is also a region where most residents are urban. Despite close linkages between rural and urban processes in the region, rural areas have been the predominant focus of Amazon-based population-environment scholarship. Offering a focus on urban areas within the Brazilian Amazon, this paper examines the emergence of urban hierarchies within the region. Using a combination of nationally representative data and community based surveys, applied to a multivariate cluster methodology (Grade of Membership), we observe the emergence of sub-regional urban networks characterized by economic and political inter-dependency, population movement, and provision of services. These networks link rural areas, small towns, and medium and large cities. We also identify the emergence of medium-size cities as important nodes at a sub-regional level. In all, the work provides insight on the proposed model of ‘disarticulated urbanization’ within the Amazon by calling attention to the increasing role of regional and sub-regional urban networks in shaping the future expansion of land use and population distribution in the Amazon. We conclude with a discussion of implications for increasing intra-regional connectivity and fragmentation of conservation areas and ecosystems in the region. PMID:23129877
Animal welfare: a social networks perspective.
Kleinhappel, Tanja K; John, Elizabeth A; Pike, Thomas W; Wilkinson, Anna; Burman, Oliver H P
2016-01-01
Social network theory provides a useful tool to study complex social relationships in animals. The possibility to look beyond dyadic interactions by considering whole networks of social relationships allows researchers the opportunity to study social groups in more natural ways. As such, network-based analyses provide an informative way to investigate the factors influencing the social environment of group-living animals, and so has direct application to animal welfare. For example, animal groups in captivity are frequently disrupted by separations, reintroductions and/or mixing with unfamiliar individuals and this can lead to social stress and associated aggression. Social network analysis ofanimal groups can help identify the underlying causes of these socially-derived animal welfare concerns. In this review we discuss how this approach can be applied, and how it could be used to identify potential interventions and solutions in the area of animal welfare.
Downlink power distributions for 2G and 3G mobile communication networks.
Colombi, Davide; Thors, Björn; Persson, Tomas; Wirén, Niklas; Larsson, Lars-Eric; Jonsson, Mikael; Törnevik, Christer
2013-12-01
Knowledge of realistic power levels is key when conducting accurate EMF exposure assessments. In this study, downlink output power distributions for radio base stations in 2G and 3G mobile communication networks have been assessed. The distributions were obtained from network measurement data collected from the Operations Support System, which normally is used for network monitoring and management. Significant amounts of data were gathered simultaneously for large sets of radio base stations covering wide geographical areas and different environments. The method was validated with in situ measurements. For the 3G network, the 90th percentile of the averaged output power during high traffic hours was found to be 43 % of the maximum available power. The corresponding number for 2G, with two or more transceivers installed, was 65 % or below.
Modeling a Wireless Network for International Space Station
NASA Technical Reports Server (NTRS)
Alena, Richard; Yaprak, Ece; Lamouri, Saad
2000-01-01
This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.
Real-time surveillance system for marine environment based on HLIF LiDAR
NASA Astrophysics Data System (ADS)
Babichenko, Sergey; Sobolev, Innokenti; Aleksejev, Valeri; Sõro, Oliver
2017-10-01
The operational monitoring of the risk areas of marine environment requires cost-effective solutions. One of the options is the use of sensor networks based on fixed installations and moving platforms (coastal boats, supply-, cargo-, and passenger vessels). Such network allows to gather environmental data in time and space with direct links to operational activities in the controlled area for further environmental risk assessment. Among many remote sensing techniques the LiDAR (Light Detection And Ranging) based on Light Induced Fluorescence (LIF) is the tool of direct assessment of water quality variations caused by chemical pollution, colored dissolved organic matter, and phytoplankton composition. The Hyperspectral LIF (HLIF) LiDAR acquires comprehensive LIF spectra and analyses them by spectral pattern recognition technique to detect and classify the substances in water remotely. Combined use of HLIF LiDARs with Real-Time Data Management System (RTDMS) provides the economically effective solution for the regular monitoring in the controlled area. OCEAN VISUALS in cooperation with LDI INNOVATION has developed Oil in Water Locator (OWL™) with RTDMS (OWL MAP™) based on HLIF LiDAR technique. This is a novel technical solution for monitoring of marine environment providing continuous unattended operations. OWL™ has been extensively tested on board of various vessels in the North Sea, Norwegian Sea, Barents Sea, Baltic Sea and Caribbean Sea. This paper describes the technology features, the results of its operational use in 2014-2017, and outlook for the technology development.
NASA Astrophysics Data System (ADS)
Musyawaroh, M.; Pitana, T. S.; Masykuri, M.; Nandariyah
2018-02-01
Revitalization is a much-needed for a historic kampong as a settlement, place of business, and as tourist destinations. The research was conducted in Kauman as one of the cultural heritage kampong which was formerly as a residence of abdidalemulamaKeraton who also work as batik entrepreneurs. This study aims to formulate a sustainable revitalization step based on the character of the area and the building. Aspects of sustainable revitalization that analyzed are the physical and non-physical condition of the environment. This research is an applied research with qualitative rationalistic approach supported with spatial distribution analysis through satellite imagery and Arch-GIS. The results revealed that sustainable revitalization for Kaumancan be done through: 1) Physical condition of the environment consists of land and building use, green open space, recreational park and sport activities, streets, drainage network, sewer network, the garbage disposal network; 2) Non-physical of the environment consists of economy, heritage socio-cultural, and the engagement of relevant stakeholders. The difference of this study with others is, this study is a continuation of the Kauman revitalization assistance program which involves community participation to produce a more appropriate solution for the problem of kampong.
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
2017-01-01
Recently, the development of wireless body area sensor network (WBASN) has accelerated due to the rapid development of wireless technology. In the WBASN environment, many WBASNs coexist where communication ranges overlap with each other, resulting in the possibility of interference. Although nodes in a WBASN typically operate at a low power level, to avoid adversely affecting the human body, high transmission rates may be required to support some applications. In addition to this, since many varieties of applications exist in the WBASN environment, each prospective user may have different quality of service (QoS) requirements. Hence, the following issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs, which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS of each user, i.e., the required QoS such as user throughput should be considered to ensure that all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose a transmission power adjustment algorithm that addresses interference problems and guarantees QoS fairness between users. First, we use a new utility function to measure the degree of the satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated using the Cucker–Smale model, and the QoS satisfaction of each user is synchronized dispersively. The results of simulations show that the proposed algorithm performs better than existing algorithms, with respect to QoS fairness and energy efficiency. PMID:29036924
Lee, Chan-Jae; Jung, Ji-Young; Lee, Jung-Ryun
2017-10-14
Recently, the development of wireless body area sensor network (WBASN) has accelerated due to the rapid development of wireless technology. In the WBASN environment, many WBASNs coexist where communication ranges overlap with each other, resulting in the possibility of interference. Although nodes in a WBASN typically operate at a low power level, to avoid adversely affecting the human body, high transmission rates may be required to support some applications. In addition to this, since many varieties of applications exist in the WBASN environment, each prospective user may have different quality of service (QoS) requirements. Hence, the following issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs, which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS of each user, i.e., the required QoS such as user throughput should be considered to ensure that all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose a transmission power adjustment algorithm that addresses interference problems and guarantees QoS fairness between users. First, we use a new utility function to measure the degree of the satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated using the Cucker-Smale model, and the QoS satisfaction of each user is synchronized dispersively. The results of simulations show that the proposed algorithm performs better than existing algorithms, with respect to QoS fairness and energy efficiency.
Transport spatial model for the definition of green routes for city logistics centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamučar, Dragan, E-mail: dpamucar@gmail.com; Gigović, Ljubomir, E-mail: gigoviclj@gmail.com; Ćirović, Goran, E-mail: cirovic@sezampro.rs
This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas.more » The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.« less
Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery.
Pawar, Pravin A; Edla, Damodar R; Edoh, Thierry; Shinde, Vijay; van Beijnum, Bert-Jan
2017-10-31
A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.
Energy harvesting: small scale energy production from ambient sources
NASA Astrophysics Data System (ADS)
Yeatman, Eric M.
2009-03-01
Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.
NASA Technical Reports Server (NTRS)
Greenspan, Sol; Feblowitz, Mark
1992-01-01
ACME is an experimental environment for investigating new approaches to modeling and analysis of system requirements and designs. ACME is built on and extends object-oriented conceptual modeling techniques and knowledge representation and reasoning (KRR) tools. The most immediate intended use for ACME is to help represent, understand, and communicate system designs during the early stages of system planning and requirements engineering. While our research is ostensibly aimed at software systems in general, we are particularly motivated to make an impact in the telecommunications domain, especially in the area referred to as Intelligent Networks (IN's). IN systems contain the software to provide services to users of a telecommunications network (e.g., call processing services, information services, etc.) as well as the software that provides the internal infrastructure for providing the services (e.g., resource management, billing, etc.). The software includes not only systems developed by the network proprietors but also by a growing group of independent service software providers.
Real-time indoor monitoring system based on wireless sensor networks
NASA Astrophysics Data System (ADS)
Wu, Zhengzhong; Liu, Zilin; Huang, Xiaowei; Liu, Jun
2008-10-01
Wireless sensor networks (WSN) greatly extend our ability to monitor and control the physical world. It can collaborate and aggregate a huge amount of sensed data to provide continuous and spatially dense observation of environment. The control and monitoring of indoor atmosphere conditions represents an important task with the aim of ensuring suitable working and living spaces to people. However, the comprehensive air quality, which includes monitoring of humidity, temperature, gas concentrations, etc., is not so easy to be monitored and controlled. In this paper an indoor WSN monitoring system was developed. In the system several sensors such as temperature sensor, humidity sensor, gases sensor, were built in a RF transceiver board for monitoring indoor environment conditions. The indoor environmental monitoring parameters can be transmitted by wireless to database server and then viewed throw PC or PDA accessed to the local area networks by administrators. The system, which was also field-tested and showed a reliable and robust characteristic, is significant and valuable to people.
Local area networking in a radio quiet environment
NASA Astrophysics Data System (ADS)
Childers, Edwin L.; Hunt, Gareth; Brandt, Joseph J.
2002-11-01
The Green Bank facility of the National Radio Astronomy Observatory is spread out over 2,700 acres in the Allegheny Mountains of West Virginia. Good communication has always been needed between the radio telescopes and the control buildings. The National Radio Quiet Zone helps protect the Green Bank site from radio transmissions that interfere with the astronomical signals. Due to stringent Radio Frequency Interference (RFI) requirements, a fiber optic communication system was used for Ethernet transmissions on the site and coaxial cable within the buildings. With the need for higher speed communications, the entire network has been upgraded to use optical fiber with modern Ethernet switches. As with most modern equipment, the implementation of the control of the newly deployed Green Bank Telescope (GBT) depends heavily on TCP/IP. In order to protect the GBT from the commodity Internet, the GBT uses a non-routable network. Communication between the control building Local Area Network (LAN) and the GBT is implemented using a Virtual LAN (VLAN). This configuration will be extended to achieve isolation between trusted local user systems, the GBT, and other Internet users. Legitimate access to the site, for example by remote observers, is likely to be implemented using a virtual private network (VPN).
Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher R. Johnson, Charles D. Hansen
2001-10-29
The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less
Implementing Internet of Things in a military command and control environment
NASA Astrophysics Data System (ADS)
Raglin, Adrienne; Metu, Somiya; Russell, Stephen; Budulas, Peter
2017-05-01
While the term Internet of Things (IoT) has been coined relatively recently, it has deep roots in multiple other areas of research including cyber-physical systems, pervasive and ubiquitous computing, embedded systems, mobile ad-hoc networks, wireless sensor networks, cellular networks, wearable computing, cloud computing, big data analytics, and intelligent agents. As the Internet of Things, these technologies have created a landscape of diverse heterogeneous capabilities and protocols that will require adaptive controls to effect linkages and changes that are useful to end users. In the context of military applications, it will be necessary to integrate disparate IoT devices into a common platform that necessarily must interoperate with proprietary military protocols, data structures, and systems. In this environment, IoT devices and data will not be homogeneous and provenance-controlled (i.e. single vendor/source/supplier owned). This paper presents a discussion of the challenges of integrating varied IoT devices and related software in a military environment. A review of contemporary commercial IoT protocols is given and as a practical example, a middleware implementation is proffered that provides transparent interoperability through a proactive message dissemination system. The implementation is described as a framework through which military applications can integrate and utilize commercial IoT in conjunction with existing military sensor networks and command and control (C2) systems.
DOT National Transportation Integrated Search
2011-06-21
In this report, vehicle-based and infrastructure-based data acquisition technologies are assessed. Vehicle-based technologies include methods for accessing the Controller Area Network (CAN) Bus on heavy vehicles, the On-Board Diagnostic (OBD II) on s...
Campus-Wide Computing: Early Results Using Legion at the University of Virginia
2006-01-01
Bernard et al., “Primitives for Distributed Computing in a Heterogeneous Local Area Network Environ- ment”, IEEE Trans on Soft. Eng. vol. 15, no. 12...1994. [16] F. Ferstl, “CODINE Technical Overview,” Genias, April, 1993. [17] R. F. Freund and D. S. Cornwell , “Superconcurrency: A form of distributed
A tri-state optical switch for local area network communications
NASA Technical Reports Server (NTRS)
Simms, Garfield
1993-01-01
This novel structure is a heterojunction phototransistor which can be used as an emitter-detector, and when placed in a quiescent mode, the device becomes a passive transmitter. By varying the voltage bias, this novel device will switch between all three modes of operation. Such a device has broad application in network environments with operation speeds of less than 50 MHz and distances of less than 1 km, e.g. automobiles, airplanes, and intra-instrumentation. During this period, the emission mode for this device was studied and mathematically modeled.
Modelling multi-rotor UAVs swarm deployment using virtual pheromones
Pujol, Mar; Rizo, Ramón; Rizo, Carlos
2018-01-01
In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the simulation. In addition, the macroscopic and microscopic models will be compared verifying the number of predicted individuals for each state regarding the simulation. PMID:29370203
A Network Access Control Framework for 6LoWPAN Networks
Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime
2013-01-01
Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610
NASA Astrophysics Data System (ADS)
Rettberg, P.; Ellis-Evans, C.; Prieur, D.; Loreto, F.; Walter, N.; Le Bris, N.; Elster, J.; Amils, R.; Marteinsson, V.
2008-09-01
Life in Extreme Environments is an emerging area of research in which Europe has considerable expertise but a relatively fragmented research infrastructure. The science of such environments has enormous relevance for our knowledge of the diversity and environmental limits of microbial, plant and animal life and the novel strategies employed for survival and growth. Such studies are essential in understanding how life established on the early Earth and in assessing the possibilities for life on other planetary bodies. These environments are also a rich source of novel exploitable compounds. At the European level, there is a need for better coordination of life in extreme environments research, the FP7-funded CAREX project aims to address this need by developing a clearly identifiable, dynamic and durable community. Establishing this community will encourage greater interdisciplinarity and increasing knowledge of extreme environments. It will provide a target for young career scientists and allow a more focussed dialogue with other science areas, with funding agencies, with industrial groups and with international organisations outside Europe. CAREX will last for three years and with a wide scope covering microbial life, plant adaptation and animal adaptation to various marine, polar, terrestrial extreme environments as well as outer space. CAREX's outputs will include a strategic roadmap for European life in extreme environments research (including enabling technologies), diverse opportunities for knowledge transfer, standardisation of methodologies, encouragement and support for early career scientists and a network of links to relevant organisations. These deliverables together with improved community networking, supported by newsletters, promotional leaflets, a series of science publications and an interactive web portal, will help consolidate the community and its identity. Outcomes will be facilitated through science/technology workshops, diverse forums, field/laboratory protocol intercomparisons, a summer school and individual grants to facilitate knowledge transfer. CAREX has evolved with the key players from the highly successful ESF "Investigating Life in Extreme Environments" initiative. For more information: www.carex-eu.org
Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju
2015-01-01
Indoor location-based services (iLBS) are extremely dynamic and changeable, and include numerous resources and mobile devices. In particular, the network infrastructure requires support for high scalability in the indoor environment, and various resource lookups are requested concurrently and frequently from several locations based on the dynamic network environment. A traditional map-based centralized approach for iLBSs has several disadvantages: it requires global knowledge to maintain a complete geographic indoor map; the central server is a single point of failure; it can also cause low scalability and traffic congestion; and it is hard to adapt to a change of service area in real time. This paper proposes a self-organizing and fully distributed platform for iLBSs. The proposed self-organizing distributed platform provides a dynamic reconfiguration of locality accuracy and service coverage by expanding and contracting dynamically. In order to verify the suggested platform, scalability performance according to the number of inserted or deleted nodes composing the dynamic infrastructure was evaluated through a simulation similar to the real environment. PMID:26016908
Towards a dynamic social-network-based approach for service composition in the Internet of Things
NASA Astrophysics Data System (ADS)
Xu, Wen; Hu, Zheng; Gong, Tao; Zhao, Zhengzheng
2011-12-01
The User-Generated Service (UGS) concept allows end-users to create their own services as well as to share and manage the lifecycles of these services. The current development of the Internet-of-Things (IoT) has brought new challenges to the UGS area. Creating smart services in the IoT environment requires a dynamic social network that considers the relationship between people and things. In this paper, we consider the know-how required to best organize exchanges between users and things to enhance service composition. By surveying relevant aspects including service composition technology, social networks and a recommendation system, we present the first concept of our framework to provide recommendations for a dynamic social network-based means to organize UGSs in the IoT.
NASA Astrophysics Data System (ADS)
Jarriel, T. M.; Isikdogan, F.; Passalacqua, P.; Bovik, A.
2017-12-01
River deltas are one of the environmental ecosystems most threatened by climate change and anthropogenic activity. While their low elevation gradients and fertile soil have made them optimal for human inhabitation and diverse ecologic growth, it also makes them susceptible to adverse effects of sea level rise, flooding, subsidence, and manmade structures such as dams, levees, and dikes. One particularly large and threatened delta that is the focus area of this study, is the Ganges-Brahmaputra-Meghna Delta (GBMD) on the southern coast of Bangladesh/West Bengal India. In this study we analyze the GBMD channel network, identify areas of maximum change of the network, and use this information to predict how the network will respond under future scenarios. Landsat images of the delta from 1973 to 2017 are analyzed using new tools for the automatic extraction of channel networks from remotely sensed imagery [Isikdogan et al., 2017a, Isikdogan et al., 2017b]. The tools return channel width and channel centerline location at the resolution of the input imagery (30 m). Channel location variance over time is computed using the combined data from 1973 to 2017 and, based on this information, zones of highest change in the system are identified (Figure 1). Network metrics measuring characteristics of the delta's channels and islands are calculated for each year of the study and compared to the variance results in order to identify what metrics capture this change. These results provide both a method to identify zones of the GBMD that are currently experiencing the most change, as well as a means to predict what areas of the delta will experience network changes in the future. This information will be useful for informing coastal sustainability decisions about what areas of such a large and complex network should be the focus of remediation and mitigation efforts. Isikdogan, F., A. Bovik, P. Passalacqua (2017a), RivaMap: An Automated River Analysis and Mapping Engine, Remote Sensing of Environment, in press. Isikdogan, F., A. Bovik, P. Passalacqua (2017b), River Network Extraction by Deep Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, under review.
Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H
2005-01-01
Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.
NASA Astrophysics Data System (ADS)
Sokolova, N.; Morrison, A.; Haakonsen, T. A.
2015-04-01
Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.
Electronic document delivery using the Internet.
Bennett, V M; Palmer, E M
1994-01-01
The Health Sciences Libraries Consortium (HSLC) was established in 1985 by thirteen founding member institutions in Pennsylvania and Delaware. In 1989, the Interlibrary Loan, Document Delivery, and Union List Task Force, appointed by the HSLC Board of Directors, successfully demonstrated the feasibility of supplying 94% of all interlibrary loan (ILL) photocopy requests in forty-eight hours or less by a network application of group 3-level memory telefacsimiles. However, the expenses associated with the telefacsimile operation and the limitations associated with network polling protocols challenged participants to seek new alternatives for ILL. In 1990, the HSLC introduced HSLC HealthNET, an online wide-area network linking eleven of the thirteen institutions and their resources while providing access to the Internet. The HSLC HealthNET additionally supports a centralized shared library system, several locally mounted databases, and consortiumwide electronic mail. In 1991, a project was initiated to evaluate Ariel software, pioneered by the Research Libraries Group (RLG), compared to the existing network application of group 3-level telefacsimiles. Factors identified as critical to Ariel's potential to replace the telefacsimile network were the proprietary software specifications for Internet access, the use of HSLC's existing wide-area network (WAN), and a hardware platform that was optimal for an ILL environment. This article describes the Ariel project history, the transition to Ariel from the telefacsimile network, evaluation of equipment features for processing efficiency, and operational issues affecting ILL policy. PMID:8004018
Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong
2015-01-01
It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks. PMID:26076404
Distributed clone detection in static wireless sensor networks: random walk with network division.
Khan, Wazir Zada; Aalsalem, Mohammed Y; Saad, N M
2015-01-01
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
NASA Astrophysics Data System (ADS)
Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.
2012-04-01
Urmia Lake (salt lake in northwest of Iran) plays a valuable role in environment, wildlife and economy of Iran and the region, and now faces great challenges for survival. The Lake is in immediate and great danger and rapidly going to become salty desert. During the recent years and new heat wave, Iran, like many other countries are experiencing, is faced with relativity reduced rain fall. From a few years ago environment activists warned about potential dangers. Geodetic measurements, e.g., repeated leveling measurements of first order leveling network of Iran and continuous GPS measurements of Iranian Permanent GPS network of Iran (IPGN) showed that there is subsidence in surrounding areas of the lake. This paper investigates the relation between subsidence and climate changing in the area, using the wavelet coherence of the data of permanent GPS stations and daily methodological data. The results show that there is strong coherence between the subsidence phenomena induced by GPS data and climate warming from January 2009 up to end of August 2009. However, relative lake height variations computed from altimetry observations (TOPEX/POSEIDON (T/P), Jason-1 and Jason-2/OSTM) confirms maximum evaporation rates of the lake in this period.
Selection for territory acquisition is modulated by social network structure in a wild songbird
Farine, D R; Sheldon, B C
2015-01-01
The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large-scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late-arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals’ social networks. Associating with late-arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free-living populations, the integration of these concepts could yield significant insights into social evolution. PMID:25611344
Vukovic, Vladimir; Tabares-Velasco, Paulo Cesar; Srebric, Jelena
2010-09-01
A growing interest in security and occupant exposure to contaminants revealed a need for fast and reliable identification of contaminant sources during incidental situations. To determine potential contaminant source positions in outdoor environments, current state-of-the-art modeling methods use computational fluid dynamic simulations on parallel processors. In indoor environments, current tools match accidental contaminant distributions with cases from precomputed databases of possible concentration distributions. These methods require intensive computations in pre- and postprocessing. On the other hand, neural networks emerged as a tool for rapid concentration forecasting of outdoor environmental contaminants such as nitrogen oxides or sulfur dioxide. All of these modeling methods depend on the type of sensors used for real-time measurements of contaminant concentrations. A review of the existing sensor technologies revealed that no perfect sensor exists, but intensity of work in this area provides promising results in the near future. The main goal of the presented research study was to extend neural network modeling from the outdoor to the indoor identification of source positions, making this technology applicable to building indoor environments. The developed neural network Locator of Contaminant Sources was also used to optimize number and allocation of contaminant concentration sensors for real-time prediction of indoor contaminant source positions. Such prediction should take place within seconds after receiving real-time contaminant concentration sensor data. For the purpose of neural network training, a multizone program provided distributions of contaminant concentrations for known source positions throughout a test building. Trained networks had an output indicating contaminant source positions based on measured concentrations in different building zones. A validation case based on a real building layout and experimental data demonstrated the ability of this method to identify contaminant source positions. Future research intentions are focused on integration with real sensor networks and model improvements for much more complicated contamination scenarios.
Network exploitation using WAMI tracks
NASA Astrophysics Data System (ADS)
Rimey, Ray; Record, Jim; Keefe, Dan; Kennedy, Levi; Cramer, Chris
2011-06-01
Creating and exploiting network models from wide area motion imagery (WAMI) is an important task for intelligence analysis. Tracks of entities observed moving in the WAMI sensor data are extracted, then large numbers of tracks are studied over long time intervals to determine specific locations that are visited (e.g., buildings in an urban environment), what locations are related to other locations, and the function of each location. This paper describes several parts of the network detection/exploitation problem, and summarizes a solution technique for each: (a) Detecting nodes; (b) Detecting links between known nodes; (c) Node attributes to characterize a node; (d) Link attributes to characterize each link; (e) Link structure inferred from node attributes and vice versa; and (f) Decomposing a detected network into smaller networks. Experimental results are presented for each solution technique, and those are used to discuss issues for each problem part and its solution technique.
Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks.
Bardoscia, Marco; Marsili, Matteo; Samal, Areejit
2015-07-01
System-level properties of metabolic networks may be the direct product of natural selection or arise as a by-product of selection on other properties. Here we study the effect of direct selective pressure for growth or viability in particular environments on two properties of metabolic networks: latent versatility to function in additional environments and carbon usage efficiency. Using a Markov chain Monte Carlo (MCMC) sampling based on flux balance analysis (FBA), we sample from a known biochemical universe random viable metabolic networks that differ in the number of directly constrained environments. We find that the latent versatility of sampled metabolic networks increases with the number of directly constrained environments and with the size of the networks. We then show that the average carbon wastage of sampled metabolic networks across the constrained environments decreases with the number of directly constrained environments and with the size of the networks. Our work expands the growing body of evidence about nonadaptive origins of key functional properties of biological networks.
Physical and hydrologic environments of the Mulberry coal reserves in eastern Kansas
Kenny, J.F.; Bevans, H.E.; Diaz, A.M.
1982-01-01
Strippable reserves of Mulberry coal underlie an area of approximately 300 square miles of Miami, Linn, and Bourbon Counties of eastern Kansas. Although subject to State reclamation law, current and projected strip mining of this relatively thin coal seam could alter and hydrologic environment of the study area. Drained by the Marais des Cygnes and Little Osage Rivers and their tributaries, this area is characterized by low relief and moderately impermeable soils. Streamflows are poorly sustained by ground-water discharge and fluctuate widely due to climatic extremes and usage of surface-water supplies. Because ground-water supplies are generally unreliable in quantity and quality, surface water is used to meet most water requirements in the study area. Primary used of surface waters are for domestic supplies, maintenance of wildlife and recreational areas, and cooling needs at LaCygne Power Plant. The prevailing chemical type of the natural streamflow is calcium bicarbonate, with concentrations of dissolved solids generally less than 500 milligrams per liter and pH near neutral. Additional streamflow and water-quality data are needed to evaluate the premining characteristics of and the anticipated changes in the hydrologic environment as strip mining proceeds within the study area. A network of data-collection stations and a sampling scheme have been established to acquire this additional information. (USGS)
Molecular communication and networking: opportunities and challenges.
Nakano, Tadashi; Moore, Michael J; Wei, Fang; Vasilakos, Athanasios V; Shuai, Jianwei
2012-06-01
The ability of engineered biological nanomachines to communicate with biological systems at the molecular level is anticipated to enable future applications such as monitoring the condition of a human body, regenerating biological tissues and organs, and interfacing artificial devices with neural systems. From the viewpoint of communication theory and engineering, molecular communication is proposed as a new paradigm for engineered biological nanomachines to communicate with the natural biological nanomachines which form a biological system. Distinct from the current telecommunication paradigm, molecular communication uses molecules as the carriers of information; sender biological nanomachines encode information on molecules and release the molecules in the environment, the molecules then propagate in the environment to receiver biological nanomachines, and the receiver biological nanomachines biochemically react with the molecules to decode information. Current molecular communication research is limited to small-scale networks of several biological nanomachines. Key challenges to bridge the gap between current research and practical applications include developing robust and scalable techniques to create a functional network from a large number of biological nanomachines. Developing networking mechanisms and communication protocols is anticipated to introduce new avenues into integrating engineered and natural biological nanomachines into a single networked system. In this paper, we present the state-of-the-art in the area of molecular communication by discussing its architecture, features, applications, design, engineering, and physical modeling. We then discuss challenges and opportunities in developing networking mechanisms and communication protocols to create a network from a large number of bio-nanomachines for future applications.
Intelligent On-Board Processing in the Sensor Web
NASA Astrophysics Data System (ADS)
Tanner, S.
2005-12-01
Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by sensors and their on-board processes. The two primary research areas for this project are (1) the on-board processing and communications framework itself, and (2) data mining algorithms targeted to the needs and constraints of the on-board environment. The team is leveraging its experience in on-board processing, data mining, custom data processing, and sensor network design. Several unique UAH-developed technologies are employed in the AODP project, including EVE, an EnVironmEnt for on-board processing, and the data mining tools included in the Algorithm Development and Mining (ADaM) toolkit.
Multi-criteria anomaly detection in urban noise sensor networks.
Dauwe, Samuel; Oldoni, Damiano; De Baets, Bernard; Van Renterghem, Timothy; Botteldooren, Dick; Dhoedt, Bart
2014-01-01
The growing concern of citizens about the quality of their living environment and the emergence of low-cost microphones and data acquisition systems triggered the deployment of numerous noise monitoring networks spread over large geographical areas. Due to the local character of noise pollution in an urban environment, a dense measurement network is needed in order to accurately assess the spatial and temporal variations. The use of consumer grade microphones in this context appears to be very cost-efficient compared to the use of measurement microphones. However, the lower reliability of these sensing units requires a strong quality control of the measured data. To automatically validate sensor (microphone) data, prior to their use in further processing, a multi-criteria measurement quality assessment model for detecting anomalies such as microphone breakdowns, drifts and critical outliers was developed. Each of the criteria results in a quality score between 0 and 1. An ordered weighted average (OWA) operator combines these individual scores into a global quality score. The model is validated on datasets acquired from a real-world, extensive noise monitoring network consisting of more than 50 microphones. Over a period of more than a year, the proposed approach successfully detected several microphone faults and anomalies.
NASA Astrophysics Data System (ADS)
Grewe, L.
2013-05-01
This paper explores the current practices in social data fusion and analysis as it applies to consumer-oriented applications in a slew of areas including business, economics, politics, sciences, medicine, education and more. A categorization of these systems is proposed and contributions to each area are explored preceded by a discussion of some special issues related to social data and networks. From this work, future paths of consumer-based social data analysis research and current outstanding problems are discovered.
Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula
2010-10-01
The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.
Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica
2016-01-01
The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone. PMID:27195005
Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica
2016-01-01
The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.
LESS: Link Estimation with Sparse Sampling in Intertidal WSNs
Ji, Xiaoyu; Chen, Yi-chao; Li, Xiaopeng; Xu, Wenyuan
2018-01-01
Deploying wireless sensor networks (WSN) in the intertidal area is an effective approach for environmental monitoring. To sustain reliable data delivery in such a dynamic environment, a link quality estimation mechanism is crucial. However, our observations in two real WSN systems deployed in the intertidal areas reveal that link update in routing protocols often suffers from energy and bandwidth waste due to the frequent link quality measurement and updates. In this paper, we carefully investigate the network dynamics using real-world sensor network data and find it feasible to achieve accurate estimation of link quality using sparse sampling. We design and implement a compressive-sensing-based link quality estimation protocol, LESS, which incorporates both spatial and temporal characteristics of the system to aid the link update in routing protocols. We evaluate LESS in both real WSN systems and a large-scale simulation, and the results show that LESS can reduce energy and bandwidth consumption by up to 50% while still achieving more than 90% link quality estimation accuracy. PMID:29494557
Impact assessments of water allocation on water environment of river network: Method and application
NASA Astrophysics Data System (ADS)
Wang, Qinggai; Wang, Yaping; Lu, Xuchuan; Jia, Peng; Zhang, Beibei; Li, Chen; Li, Sa; Li, Shibei
2018-02-01
Two types of water allocation scenarios were proposed for reasonably utilizing water resources and improving water quality in a two-river network in Tongzhou District. Water circulation and quality were selected as two important indexes to evaluate the two scenario. Meanwhile, one-dimensional water amount and quality model was set up on the basis of the MIKE11 model to compare the two scenarios in terms of improving water environment. The results showed that both scenarios changed the hydrodynamic conditions, and consequently the river flow reached 0.05 m/s or higher in the central part of river stream. In addition, we also found that the two plans have similar effects on water quality, with first scenario producing larger area of water class III and IV than the second scenario.
Latency Hiding in Dynamic Partitioning and Load Balancing of Grid Computing Applications
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak
2001-01-01
The Information Power Grid (IPG) concept developed by NASA is aimed to provide a metacomputing platform for large-scale distributed computations, by hiding the intricacies of highly heterogeneous environment and yet maintaining adequate security. In this paper, we propose a latency-tolerant partitioning scheme that dynamically balances processor workloads on the.IPG, and minimizes data movement and runtime communication. By simulating an unsteady adaptive mesh application on a wide area network, we study the performance of our load balancer under the Globus environment. The number of IPG nodes, the number of processors per node, and the interconnected speeds are parameterized to derive conditions under which the IPG would be suitable for parallel distributed processing of such applications. Experimental results demonstrate that effective solution are achieved when the IPG nodes are connected by a high-speed asynchronous interconnection network.
NASA Astrophysics Data System (ADS)
Bejuri, Wan Mohd Yaakob Wan; Mohamad, Mohd Murtadha
2014-11-01
This paper introduces a new grey-world-based feature detection and matching algorithm, intended for use with mobile positioning systems. This approach uses a combination of a wireless local area network (WLAN) and a mobile phone camera to determine positioning in an illumination environment using a practical and pervasive approach. The signal combination is based on retrieved signal strength from the WLAN access point and the image processing information from the building hallways. The results show our method can handle information better than Harlan Hile's method relative to the illumination environment, producing lower illumination error in five (5) different environments.
Analysis of black soil environment based on Arduino
NASA Astrophysics Data System (ADS)
Li, Y.; Zhang, Y. F.; Wu, C. H.; Wang, J. F.
2017-05-01
As everyone knows, the black soil of Heilongjiang bred rice is famous in the world. How to use networking technology to detection the growth environment of Heilongjiang rice, and expands it to the local planting environment to our country is the most important topic. However, the growth environment of rice is complex. In current research, some importnat factors such as carbon dioxide, oxygen, temperature and humidity, pH value and microbial content in black soil that affect the growth of plants are selected, and a kind of black land based on data acquisition and transmission system based on the Arduino development environment and the mechanism construction of Kingview has been realized. The collected data was employed to establish the simulation environment for the growth of rice in Heilongjiang. It can be applied to stimulate the rice growing environment of Heilongjiang province, and gives a improvement of rice quality in other areas. Keywords: Arduino; Kingview; living environment
Adaptive comanagement of a marine protected area network in Fiji.
Weeks, Rebecca; Jupiter, Stacy D
2013-12-01
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. Co-Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Intermodal rail yards are important nodes in the freight transportation network, where freight is organized and moved from one mode of transport to another, critical equipment is serviced, and freight is routed to its next destination. Rail yard environments are also areas with ...
A distributed data base management facility for the CAD/CAM environment
NASA Technical Reports Server (NTRS)
Balza, R. M.; Beaudet, R. W.; Johnson, H. R.
1984-01-01
Current/PAD research in the area of distributed data base management considers facilities for supporting CAD/CAM data management in a heterogeneous network of computers encompassing multiple data base managers supporting a variety of data models. These facilities include coordinated execution of multiple DBMSs to provide for administration of and access to data distributed across them.
Providing the Tools for Information Sharing: Net-Centric Enterprise Services
2007-07-01
The Department of Defense (DoD) is establishing a net-centric environment that increasingly leverages shared services and Service-Oriented...transformational program that delivers a set of shared services as part of the DoD’s common infrastructure to enable networked joint force capabilities, improved interoperability, and increased information sharing across mission area services.
Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring n...
Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trettin, L.D.; Petrich, C.H.; Saulsbury, J.W.
This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Nativemore » Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.« less
Throughput assurance of wireless body area networks coexistence based on stochastic geometry
Wang, Yinglong; Shu, Minglei; Wu, Shangbin
2017-01-01
Wireless body area networks (WBANs) are expected to influence the traditional medical model by assisting caretakers with health telemonitoring. Within WBANs, the transmit power of the nodes should be as small as possible owing to their limited energy capacity but should be sufficiently large to guarantee the quality of the signal at the receiving nodes. When multiple WBANs coexist in a small area, the communication reliability and overall throughput can be seriously affected due to resource competition and interference. We show that the total network throughput largely depends on the WBANs distribution density (λp), transmit power of their nodes (Pt), and their carrier-sensing threshold (γ). Using stochastic geometry, a joint carrier-sensing threshold and power control strategy is proposed to meet the demand of coexisting WBANs based on the IEEE 802.15.4 standard. Given different network distributions and carrier-sensing thresholds, the proposed strategy derives a minimum transmit power according to varying surrounding environment. We obtain expressions for transmission success probability and throughput adopting this strategy. Using numerical examples, we show that joint carrier-sensing thresholds and transmit power strategy can effectively improve the overall system throughput and reduce interference. Additionally, this paper studies the effects of a guard zone on the throughput using a Matern hard-core point process (HCPP) type II model. Theoretical analysis and simulation results show that the HCPP model can increase the success probability and throughput of networks. PMID:28141841
Mura, Maria Chiara; De Felice, Marco; Morlino, Roberta; Fuselli, Sergio
2010-01-01
In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6), concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a) node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b) node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c) node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW) non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%); most important, they suggest a possible procedure to optimize network design.
Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Wilson, William C.; Juarez, Peter D.
2014-01-01
NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.
Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B
2015-07-01
Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.
A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji
Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.
Wireless local area network for the dental office.
Mupparapu, Muralidhar
2004-01-01
Dental offices are no exception to the implementation of new and advanced technology, especially if it enhances productivity. In a rapidly transforming digital world, wireless technology has a special place, as it has truly "retired the wire" and contributed to the ease and efficient access to patient data and other software-based applications for diagnosis and treatment. If the office or the clinic is networked, access to patient management software, imaging software and treatment planning tools is enhanced. Access will be further enhanced and unrestricted if the entire network is wireless. As with any new, emerging technology, there will be issues that should be kept in mind before adapting to the wireless environment. Foremost is the network security involved in the installation and use of these wireless networks. This short, technical manuscript deals with standards and choices in wireless technology currently available for implementation within a dental office. The benefits of each network security protocol available to protect patient data and boost the efficiency of a modern dental office are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.
2015-07-15
Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in amore » preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.« less
Noise characteristics of single-walled carbon nanotube network transistors.
Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun
2008-07-16
The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors.
NASA Astrophysics Data System (ADS)
Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid
Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.
Information infrastructure for emergency medical services.
Orthner, Helmuth; Mishra, Ninad; Terndrup, Thomas; Acker, Joseph; Grimes, Gary; Gemmill, Jill; Battles, Marcie
2005-01-01
The pre-hospital emergency medical and public safety information environment is nearing a threshold of significant change. The change is driven in part by several emerging technologies such as secure, high-speed wireless communication in the local and wide area networks (wLAN, 3G), Geographic Information Systems (GIS), Global Positioning Systems (GPS), and powerful handheld computing and communication services, that are of sufficient utility to be more widely adopted. We propose a conceptual model to enable improved clinical decision making in the pre-hospital environment using these change agents.
Hammock, Mallory L; Chortos, Alex; Tee, Benjamin C-K; Tok, Jeffrey B-H; Bao, Zhenan
2013-11-13
Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gabriele, Salvatore; Gariano, Stefano Luigi; Iovine, Giulio; Mondini, Alessandro; Terranova, Oreste
2014-05-01
Heavy rainstorms often cause natural disasters with damage to the built up environment, injures and victims, strongly hampering social and economic development in the Mediterranean area. Accuracy in space and time of rainfall measurements is a pre-requisite for any attempt of hydrological modelling. Unfortunately, except for a few areas subject to experimentation, rain gauge networks are generally inadequate to describe the spatial distribution of the rainfall. Pluviometric data have hence to be integrated by considering other types of sources. Thanks to its characteristics, mainly in terms of spatial and temporal resolution, the METEOSAT of second generation (MSG) allows for an accurate observation of clouds, and then of the rainstorms, over the entire European territory. More in detail, origin and development of clouds associated to extreme events can be monitored, and the peculiar structures of severe convective rainstorms can be characterized. By the way, several studies pointed out correlations among physical parameters obtained from satellite images and rainstorm intensities. In the Mediterranean area, short rainstorm events are usually associated to cumulonimbus that exhibit a high vertical development. Their top may reach the stratosphere, at 12-13 km above the ground, where the the clouds diverge horizontally to form the typical "anvil". Such notable spreading of the anvil testifies a strong divergence, i.e. upwelling of the air, due to convection. Moreover, due to the limited size of the rainstorm cells (generally, in the order of few tens of km), the maximum intensity can only rarely be recorded by traditional rain gauge networks. Hydrological analyses commonly point out wrong return periods estimations, especially for highly localized and spatially variable events. Despite the huge amount of data, available computer power and storage capacity allow to include in a GIS environment all territorial information, including those derived from satellite images and from the rain gauge network. In the present study, examples of application of rainfall data obtained from satellite images and calibrated by means of traditional rain gauge records are discussed, concerning recent catastrophic rainstorms that affected the Italian territory.
NASA Astrophysics Data System (ADS)
Lazar, Aurel A.; White, John S.
1987-07-01
Theoretical analysis of integrated local area network model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up during video and voice calls during periods of little movement in the images and periods of silence in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamicaly controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real-time multimedia workstation EDDY, which integrates video, voice, and data traffic flows. Protocols supporting variable-bandwidth, fixed-quality packetized video transport are described in detail.
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Statman, Joseph
2013-01-01
This work includes a simplified analysis of the radiated near to mid-field from JPL/NASA Deep Space Network (DSN) reflector antennas and uses an averaging technique over the main beam region and beyond for complying with FAA regulations in specific aviation environments. The work identifies areas that require special attention, including the implications of the very narrow beam of the DSN transmitters. The paper derives the maximum averaged power densities allowed and identifies zones where mitigation measures are required.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.
Experimental damage detection of wind turbine blade using thin film sensor array
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha
2017-04-01
Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.
Dong, Junzi; Colburn, H. Steven
2016-01-01
In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem. PMID:26866056
NASA Technical Reports Server (NTRS)
Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary
1996-01-01
We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.
Dong, Junzi; Colburn, H Steven; Sen, Kamal
2016-01-01
In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.
PLANNING AND RESPONSE IN THE AFTERMATH OF A LARGE CRISIS: AN AGENT-BASED INFORMATICS FRAMEWORK*
Barrett, Christopher; Bisset, Keith; Chandan, Shridhar; Chen, Jiangzhuo; Chungbaek, Youngyun; Eubank, Stephen; Evrenosoğlu, Yaman; Lewis, Bryan; Lum, Kristian; Marathe, Achla; Marathe, Madhav; Mortveit, Henning; Parikh, Nidhi; Phadke, Arun; Reed, Jeffrey; Rivers, Caitlin; Saha, Sudip; Stretz, Paula; Swarup, Samarth; Thorp, James; Vullikanti, Anil; Xie, Dawen
2014-01-01
We present a synthetic information and modeling environment that can allow policy makers to study various counter-factual experiments in the event of a large human-initiated crisis. The specific scenario we consider is a ground detonation caused by an improvised nuclear device in a large urban region. In contrast to earlier work in this area that focuses largely on the prompt effects on human health and injury, we focus on co-evolution of individual and collective behavior and its interaction with the differentially damaged infrastructure. This allows us to study short term secondary and tertiary effects. The present environment is suitable for studying the dynamical outcomes over a two week period after the initial blast. A novel computing and data processing architecture is described; the architecture allows us to represent multiple co-evolving infrastructures and social networks at a highly resolved temporal, spatial, and individual scale. The representation allows us to study the emergent behavior of individuals as well as specific strategies to reduce casualties and injuries that exploit the spatial and temporal nature of the secondary and tertiary effects. A number of important conclusions are obtained using the modeling environment. For example, the studies decisively show that deploying ad hoc communication networks to reach individuals in the affected area is likely to have a significant impact on the overall casualties and injuries. PMID:25580055
PLANNING AND RESPONSE IN THE AFTERMATH OF A LARGE CRISIS: AN AGENT-BASED INFORMATICS FRAMEWORK*
Barrett, Christopher; Bisset, Keith; Chandan, Shridhar; Chen, Jiangzhuo; Chungbaek, Youngyun; Eubank, Stephen; Evrenosoğlu, Yaman; Lewis, Bryan; Lum, Kristian; Marathe, Achla; Marathe, Madhav; Mortveit, Henning; Parikh, Nidhi; Phadke, Arun; Reed, Jeffrey; Rivers, Caitlin; Saha, Sudip; Stretz, Paula; Swarup, Samarth; Thorp, James; Vullikanti, Anil; Xie, Dawen
2013-01-01
We present a synthetic information and modeling environment that can allow policy makers to study various counter-factual experiments in the event of a large human-initiated crisis. The specific scenario we consider is a ground detonation caused by an improvised nuclear device in a large urban region. In contrast to earlier work in this area that focuses largely on the prompt effects on human health and injury, we focus on co-evolution of individual and collective behavior and its interaction with the differentially damaged infrastructure. This allows us to study short term secondary and tertiary effects. The present environment is suitable for studying the dynamical outcomes over a two week period after the initial blast. A novel computing and data processing architecture is described; the architecture allows us to represent multiple co-evolving infrastructures and social networks at a highly resolved temporal, spatial, and individual scale. The representation allows us to study the emergent behavior of individuals as well as specific strategies to reduce casualties and injuries that exploit the spatial and temporal nature of the secondary and tertiary effects. A number of important conclusions are obtained using the modeling environment. For example, the studies decisively show that deploying ad hoc communication networks to reach individuals in the affected area is likely to have a significant impact on the overall casualties and injuries.
Fault-Tolerant Algorithms for Connectivity Restoration in Wireless Sensor Networks.
Zeng, Yali; Xu, Li; Chen, Zhide
2015-12-22
As wireless sensor network (WSN) is often deployed in a hostile environment, nodes in the networks are prone to large-scale failures, resulting in the network not working normally. In this case, an effective restoration scheme is needed to restore the faulty network timely. Most of existing restoration schemes consider more about the number of deployed nodes or fault tolerance alone, but fail to take into account the fact that network coverage and topology quality are also important to a network. To address this issue, we present two algorithms named Full 2-Connectivity Restoration Algorithm (F2CRA) and Partial 3-Connectivity Restoration Algorithm (P3CRA), which restore a faulty WSN in different aspects. F2CRA constructs the fan-shaped topology structure to reduce the number of deployed nodes, while P3CRA constructs the dual-ring topology structure to improve the fault tolerance of the network. F2CRA is suitable when the restoration cost is given the priority, and P3CRA is suitable when the network quality is considered first. Compared with other algorithms, these two algorithms ensure that the network has stronger fault-tolerant function, larger coverage area and better balanced load after the restoration.
Evaluation of Deep Learning Representations of Spatial Storm Data
NASA Astrophysics Data System (ADS)
Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.
2017-12-01
The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.
NASA Astrophysics Data System (ADS)
Cabral, Mariza Castanheira De Moura Da Costa
In the fifty-two years since Robert Horton's 1945 pioneering quantitative description of channel network planform (or plan view morphology), no conclusive findings have been presented that permit inference of geomorphological processes from any measures of network planform. All measures of network planform studied exhibit limited geographic variability across different environments. Horton (1945), Langbein et al. (1947), Schumm (1956), Hack (1957), Melton (1958), and Gray (1961) established various "laws" of network planform, that is, statistical relationships between different variables which have limited variability. A wide variety of models which have been proposed to simulate the growth of channel networks in time over a landsurface are generally also in agreement with the above planform laws. An explanation is proposed for the generality of the channel network planform laws. Channel networks must be space filling, that is, they must extend over the landscape to drain every hillslope, leaving no large undrained areas, and with no crossing of channels, often achieving a roughly uniform drainage density in a given environment. It is shown that the space-filling constraint can reduce the sensitivity of planform variables to different network growth models, and it is proposed that this constraint may determine the planform laws. The "Q model" of network growth of Van Pelt and Verwer (1985) is used to generate samples of networks. Sensitivity to the model parameter Q is markedly reduced when the networks generated are required to be space filling. For a wide variety of Q values, the space-filling networks are in approximate agreement with the various channel network planform laws. Additional constraints, including of energy efficiency, were not studied but may further reduce the variability of planform laws. Inference of model parameter Q from network topology is successful only in networks not subject to spatial constraints. In space-filling networks, for a wide range of Q values, the maximal-likelihood Q parameter value is generally in the vicinity of 1/2, which yields topological randomness. It is proposed that space filling originates the appearance of randomness in channel network topology, and may cause difficulties to geomorphological inference from network planform.
2D PWV monitoring of a wide and orographically complex area with a low dense GNSS network
NASA Astrophysics Data System (ADS)
Ferrando, Ilaria; Federici, Bianca; Sguerso, Domenico
2018-04-01
This study presents an innovative procedure to monitor the precipitable water vapor (PWV) content of a wide and orographically complex area with low-density networks. The procedure, termed G4M (global navigation satellite system, GNSS, for Meteorology), has been developed in a geographic information system (GIS) environment using the free and open source GRASS GIS software (https://grass.osgeo.org). The G4M input data are zenith total delay estimates obtained from GNSS permanent stations network adjustment and pressure ( P) and temperature ( T) observations using existing infrastructure networks with different geographic distributions in the study area. In spite of the wide sensor distribution, the procedure produces 2D maps with high spatiotemporal resolution (up to 250 m and 6 min) based on a simplified mathematical model including data interpolation, which was conceived by the authors to describe the atmosphere's physics. In addition to PWV maps, the procedure provides ΔPWV and heterogeneity index maps: the former represents PWV variations with respect to a "calm" moment, which are useful for monitoring the PWV evolution; and the latter are promising indicators to localize severe meteorological events in time and space. This innovative procedure is compared with meteorological simulations in this paper; in addition, an application to a severe event that occurred in Genoa (Italy) is presented.[Figure not available: see fulltext.
A patch-based convolutional neural network for remote sensing image classification.
Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di
2017-11-01
Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Open solutions to distributed control in ground tracking stations
NASA Technical Reports Server (NTRS)
Heuser, William Randy
1994-01-01
The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the communications provided by the local area network is only one part of the solution. The services and protocols used by the application programs to communicate across the network are as indispensable as the local area network. And the selection of services and protocols that do not match the system requirements will limit the capabilities, performance, and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on 'open' standards. The question that must be answered is 'which one is the best one for my job?' This paper examines a model for tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the five different software architectures and supporting protocol solutions. Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model.
Propagation Characteristics in an Underground Shopping Area for 5GHz-band Wireless Access Systems
NASA Astrophysics Data System (ADS)
Itokawa, Kiyohiko; Kita, Naoki; Sato, Akio; Matsue, Hideaki; Mori, Daisuke; Watanabe, Hironobu
5-GHz band wireless access systems, such as the RLAN (Radio Local Area Network) system of IEEE802.11a, HiperLAN/2, HiSWANa and AWA, are developed and provide transmission rates over 20 Mbps for indoor use. Those 5-GHz access systems are expected to extend service areas from the office to the so-called “hot-spot" in public areas. Underground shopping malls are one of the anticipated service areas for such a nomadic wireless access service. Broadband propagation characteristics are required for radio zone design in an underground mall environment despite previous results obtained by narrow band measurements. This paper presents results of an experimental study on the propagation characteristics for broadband wireless access systems in an underground mall environment. First, broadband propagation path loss is measured and formulated considering human body shadowing. A ray trace simulation is used to clarify the basic propagation mechanism in such a closed environment. Next, a distance dependency of the delay spread during a crowded time period, rush hour, is found to be at most 65 nsec, which is under the permitted maximum value of the present 5-GHz systems. Finally, above propagation characteristics support the result of transmission test carried out by using AWA equipment.
NPSNET: Aural cues for virtual world immersion
NASA Astrophysics Data System (ADS)
Dahl, Leif A.
1992-09-01
NPSNET is a low-cost visual and aural simulation system designed and implemented at the Naval Postgraduate School. NPSNET is an example of a virtual world simulation environment that incorporates real-time aural cues through software-hardware interaction. In the current implementation of NPSNET, a graphics workstation functions in the sound server role which involves sending and receiving networked sound message packets across a Local Area Network, composed of multiple graphics workstations. The network messages contain sound file identification information that is transmitted from the sound server across an RS-422 protocol communication line to a serial to Musical Instrument Digital Interface (MIDI) converter. The MIDI converter, in turn relays the sound byte to a sampler, an electronic recording and playback device. The sampler correlates the hexadecimal input to a specific note or stored sound and sends it as an audio signal to speakers via an amplifier. The realism of a simulation is improved by involving multiple participant senses and removing external distractions. This thesis describes the incorporation of sound as aural cues, and the enhancement they provide in the virtual simulation environment of NPSNET.
Distributed Clone Detection in Static Wireless Sensor Networks: Random Walk with Network Division
Khan, Wazir Zada; Aalsalem, Mohammed Y.; Saad, N. M.
2015-01-01
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads. PMID:25992913
NASA Astrophysics Data System (ADS)
Smith, Charles L.; Chu, Wei-Kom; Wobig, Randy; Chao, Hong-Yang; Enke, Charles
1999-07-01
An ongoing PACS project at our facility has been expanded to include providing and managing images used for routine clinical operation of the department of radiation oncology. The intent of our investigation has been to enable out clinical radiotherapy service to enter the tele-medicine environment through the use of a PACS system initially implemented in the department of radiology. The backbone for the imaging network includes five CT and three MR scanners located across three imaging centers. A PC workstation in the department of radiation oncology was used to transmit CT imags to a satellite facility located approximately 60 miles from the primary center. Chest CT images were used to analyze network transmission performance. Connectivity established between the primary department and satellite has fulfilled all image criteria required by the oncologist. Establishing the link tot eh oncologist at the satellite diminished bottlenecking of imaging related tasks at the primary facility due to physician absence. A 30:1 compression ratio using a wavelet-based algorithm provided clinically acceptable images treatment planning. Clinical radiotherapy images can be effectively managed in a wide- area-network to link satellite facilities to larger clinical centers.
The Integration of Personal Learning Environments & Open Network Learning Environments
ERIC Educational Resources Information Center
Tu, Chih-Hsiung; Sujo-Montes, Laura; Yen, Cherng-Jyh; Chan, Junn-Yih; Blocher, Michael
2012-01-01
Learning management systems traditionally provide structures to guide online learners to achieve their learning goals. Web 2.0 technology empowers learners to create, share, and organize their personal learning environments in open network environments; and allows learners to engage in social networking and collaborating activities. Advanced…
1983-06-01
constrained at each step. Use of dis- crete simulation can be a powerful tool in this process if its role is carefully planned. The gross behavior of the...by projecting: - the arrival of units of work at SPLICE processing facilities (workload analysis) . - the amount of processing resources comsumed in
ERIC Educational Resources Information Center
Cornelius, Amy; Macaluso, Paul
The Berry Informational Technology (B.I.T.S.) program at Berry College (Georgia) is an apprenticeship opportunity associated with student work. The program gives students the opportunity to seek technological training in areas, such as building computer systems, trouble-shooting, networking, Web development, and user and technical support. In…
ERIC Educational Resources Information Center
Wise, Greg
2009-01-01
Research on entrepreneurship in rural areas has increasingly stressed the importance of a supportive environment and social networks in enhancing innovation. This report examines a novel approach to promoting entrepreneurship using regional Inventor & Entrepreneur (I&E) Clubs. A telephone survey of 21 I&E Clubs was completed to collect…
The purpose of this SOP is to describe procedures for using and maintaining the local area network (LAN) and related microcomputer equipment at the HRP Site of the Arizona Prevention Center. These methods were used for all data operations and maintenance routines during the Ariz...
The purpose of this SOP is to describe procedures for using and maintaining the local area network (LAN) and related microcomputer equipment at the Health Related Professions site at the University of Arizona. These methods were used for all data operations and maintenance routi...
Human body and head characteristics as a communication medium for Body Area Network.
Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald
2015-01-01
An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.
Astaras, Alexander; Arvanitidou, Marina; Chouvarda, Ioanna; Kilintzis, Vassilis; Koutkias, Vassilis; Sanchez, Eduardo Monton; Stalidis, George; Triantafyllidis, Andreas; Maglaveras, Nicos
2008-01-01
A flexible, scaleable and cost-effective medical telemetry system is described for monitoring sleep-related disorders in the home environment. The system was designed and built for real-time data acquisition and processing, allowing for additional use in intensive care unit scenarios where rapid medical response is required in case of emergency. It comprises a wearable body area network of Zigbee-compatible wireless sensors worn by the subject, a central database repository residing in the medical centre and thin client workstations located at the subject's home and in the clinician's office. The system supports heterogeneous setup configurations, involving a variety of data acquisition sensors to suit several medical applications. All telemetry data is securely transferred and stored in the central database under the clinicians' ownership and control.
Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard.
Goswami, Dayananda; Sarma, Kanak C; Mahanta, Anil
2016-06-01
The wireless body area network (WBAN) has gaining tremendous attention among researchers and academicians for its envisioned applications in healthcare service. Ultra wideband (UWB) radio technology is considered as excellent air interface for communication among body area network devices. Characterisation and modelling of channel parameters are utmost prerequisite for the development of reliable communication system. The path loss of on-body UWB channel for each frequency band defined in IEEE 802.15.6 standard is experimentally determined. The parameters of path loss model are statistically determined by analysing measurement data. Both the line-of-sight and non-line-of-sight channel conditions are considered in the measurement. Variations of parameter values with the size of human body are analysed along with the variation of parameter values with the surrounding environments. It is observed that the parameters of the path loss model vary with the frequency band as well as with the body size and surrounding environment. The derived parameter values are specific to the particular frequency bands of IEEE 802.15.6 standard, which will be useful for the development of efficient UWB WBAN system.
Smets, G; Alcalde, E; Andres, D; Carron, D; Delzenne, P; Heise, A; Legris, G; Martinez Parrilla, M; Verhaert, J; Wandelt, C; Ilegems, M; Rüdelsheim, P
2014-07-01
The European Union (EU) Directive 2001/18/EC on the deliberate release of genetically modified organisms (GMOs) into the environment requires that both Case-Specific Monitoring (CSM) and General Surveillance (GS) are considered as post-market implementing measures. Whereas CSM is directed to monitor potential adverse effects of GMOs or their use identified in the environmental risk assessment, GS aims to detect un-intended adverse effects of GMOs or their use on human and animal health or the environment. Guidance documents on the monitoring of genetically modified (GM) plants from the Commission and EFSA clarify that, as appropriate, GS can make use of established routine surveillance practices. Networks involved in routine surveillance offer recognised expertise in a particular domain and are designed to collect information on important environmental aspects over a large geographical area. However, as the suitability of existing monitoring networks to provide relevant data for monitoring impacts of GMOs is not known, plant biotechnology companies developed an approach to describe the processes and criteria that will be used for selecting and evaluating existing monitoring systems. In this paper, the availability of existing monitoring networks for this purpose is evaluated. By cataloguing the existing environmental monitoring networks in the EU, it can be concluded that they can only be used, in the context of GMO cultivation monitoring, as secondary tools to collect baseline information.
Assessing Routing Strategies for Cognitive Radio Sensor Networks
Zubair, Suleiman; Fisal, Norsheila; Baguda, Yakubu S.; Saleem, Kashif
2013-01-01
Interest in the cognitive radio sensor network (CRSN) paradigm has gradually grown among researchers. This concept seeks to fuse the benefits of dynamic spectrum access into the sensor network, making it a potential player in the next generation (NextGen) network, which is characterized by ubiquity. Notwithstanding its massive potential, little research activity has been dedicated to the network layer. By contrast, we find recent research trends focusing on the physical layer, the link layer and the transport layers. The fact that the cross-layer approach is imperative, due to the resource-constrained nature of CRSNs, can make the design of unique solutions non-trivial in this respect. This paper seeks to explore possible design opportunities with wireless sensor networks (WSNs), cognitive radio ad-hoc networks (CRAHNs) and cross-layer considerations for implementing viable CRSN routing solutions. Additionally, a detailed performance evaluation of WSN routing strategies in a cognitive radio environment is performed to expose research gaps. With this work, we intend to lay a foundation for developing CRSN routing solutions and to establish a basis for future work in this area. PMID:24077319
NASA Astrophysics Data System (ADS)
Arndt, Josua; Krystofiak, Lukas; Bonehi, Vahid; Wunderlich, Ralf; Heinen, Stefan
2017-09-01
Power consumption in wireless networks is crucial. In most scenarios the transmission time is short compared to the idle listening time for data transmission, the most power is consumed by the receiver. In low latency systems there is a need for low power wake-up receivers (WuRx) that reduce the power consumption when the node is idle, but keep it responsive. This work presents a WuRx designed out of commercial components to investigate the needs of a WuRx when it is embedded in a Wireless Personal Area Network (WPAN) system in a real environment setup including WLAN and LTE communication and considering interferer rejection. The calculation necessary for the attenuation of those interferers is explained in detail. Furthermore, a system design is presented that fulfills the requirements for this environment and is build from off-the-shelf components.
Conceptualizing and Comparing Neighborhood and Activity Space Measures for Food Environment Research
Crawford, Thomas W.; Pitts, Stephanie B. Jilcott; McGuirt, Jared T.; Keyserling, Thomas C.; Ammerman, Alice S.
2014-01-01
Greater accessibility to geospatial technologies has led to a surge of spatialized public health research, much of which has focused on food environments. The purpose of this study was to analyze differing spatial measures of exposure to supermarkets and farmers’ markets among women of reproductive age in eastern North Carolina. Exposure measures were derived using participant-defined neighborhoods, investigator-defined road network neighborhoods, and activity spaces incorporating participants’ time space behaviors. Results showed that mean area for participant-defined neighborhoods (0.04 sq. miles) was much smaller than 2.0 mile road network neighborhoods (3.11 sq. miles) and activity spaces (26.36 sq. miles), and that activity spaces provided the greatest market exposure. The traditional residential neighborhood concept may not be particularly relevant for all places. Time-space approaches capturing activity space may be more relevant, particularly if integrated with mixed methods strategies. PMID:25306420
The Virtual Pelvic Floor, a tele-immersive educational environment.
Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.
1999-01-01
This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378
Gao, Min; Qiu, Tianlei; Sun, Yanmei; Wang, Xuming
2018-07-01
Composting is considered to reduce the introduction of antimicrobial resistance genes (ARGs) into the environment through land application of manure; however, the possible pollution of ARGs in the atmospheric environment of composting plants is unknown. In this study, 29 air samples including up- and downwind, composting, packaging, and office areas from 4 composting plants were collected. Dynamic concentrations of 22 subtypes of ARGs, class 1 integron (intl1), and 2 potential human pathogenic bacteria (HPB), and bacterial communities were investigated using droplet digital PCR and 16S rRNA gene sequencing, respectively. In this study, intl1 and 22 subtypes of ARGs (except tetQ) were detected in air of composting, packaging, office, and downwind areas. The highest concentration of 15 out of 22 subtypes of ARGs was detected in the packaging areas, and intl1 also had the maximum average concentration of 10 4 copies/m 3 , with up to (1.78 ± 0.49) × 10 -2 copies/16S rRNA copy. Non-metric multi-dimensional scaling of ARGs, potential HPBs, and bacterial components all indicated that the bioaerosol pollutant pattern in packaging areas was most similar to that in composting areas, followed by office, downwind, and upwind areas. The co-occurrence between ARGs and bacterial taxa assessed by Procrustes test, mantel test, and network analysis implied that aerosolized ARG fragments from composting and packaging areas contributed to the compositions of ARG aerosols in office and downwind areas. The results presented here show that atmoshperic environments of composting plants harbor abundant and diverse ARGs, which highlight the urgent need for comprehensive evaluation of potential human health and ecological risks of composts during both production as well as land application. Copyright © 2018 Elsevier Ltd. All rights reserved.
Andrade, Alexandro; Dominski, Fábio Hech; Coimbra, Danilo Reis
2017-07-01
In order to minimize adverse health effects and increase the benefits of physical activity, it is important to systematize indoor air quality study in environments used for physical exercise and sports. To investigate and analyze the scientific production related to indoor air quality of environments used for physical exercise and sports practice through a bibliometric analysis. The databases Scielo, Science Direct, Scopus, Lilacs, Medline via Pubmed, and SportDiscus were searched from their inception to March 2016. Bibliometric analysis was performed for authors, institutions, countries, and collaborative networks, in relation to publication year, theme, citation network, funding agency, and analysis of titles and keywords of publications. Country, area, and impact factor of the journals were analyzed. Of 1281 studies screened, 34 satisfied the inclusion criteria. The first publication occurred in 1975. An increase in publications was observed in the last 15 years. Most of the studies were performed by researchers in the USA, followed by Portugal and Italy. Seventeen different scientific journals have published studies on the subject, and most are in the area of Environmental Sciences. It was noted that the categories of author keywords associated with "Pollutants," "Sport Environment," and "Physical Exercise" were the most commonly used in most studies. A total of 68% of the studies had at least one funding agency, and 81% of studies published in the last decade had funding. Our results demonstrate that there is recent exponential growth, driven in the last decade by researchers in environmental science from European institutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sader, S. A.; Joyce, A. T.
1984-01-01
The relationship between forest clearing, biophysical factors (e.g, ecological zones, slope gradient, soils), and transportation network in Costa Rica was analyzed. The location of forested areas at four reference datas (1940, 1950, 1961, and 1977) as derived from aerial photography and LANDSAT MSS data was digitilized and entered into a geographically-referenced data base. Ecological zones as protrayed by the Holdridge Life Zone Ecology System, and the location of roads and railways were also digitized from maps of the entire country as input to the data base. Information on slope gradient and soils was digitized from maps of a 21,000 square kilometer area. The total area of forest cleared over four decades are related to biophysical factors was analyzed within the data base and deforestation rates and trends were tabulated. The relatiohship between forest clearing and ecological zone and the influence of topography, sils, and transportation network are presented and discussed.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
Remote Autonomous Sensor Networks: A Study in Redundancy and Life Cycle Costs
NASA Astrophysics Data System (ADS)
Ahlrichs, M.; Dotson, A.; Cenek, M.
2017-12-01
The remote nature of the United States and Canada border and their extreme seasonal shifts has made monitoring much of the area impossible using conventional monitoring techniques. Currently, the United States has large gaps in its ability to detect movement on an as-needed-basis in remote areas. The proposed autonomous sensor network aims to meet that need by developing a product that is low cost, robust, and can be deployed on an as-needed-basis for short term monitoring events. This is accomplished by identifying radio frequency disturbance and acoustic disturbance. This project aims to validate the proposed design and offer optimization strategies by conducting a redundancy model as well as performing a Life Cycle Assessment (LCA). The model will incorporate topological, meteorological, and land cover datasets to estimate sensor loss over a three-month period, ensuring that the remaining network does not have significant gaps in coverage which preclude being able to receive and transmit data. The LCA will investigate the materials used to create the sensor to generate an estimate of the total environmental energy that is utilized to create the network and offer alternative materials and distribution methods that can lower this cost. This platform can function as a stand-alone monitoring network or provide additional spatial and temporal resolution to existing monitoring networks. This study aims to create the framework to determine if a sensor's design and distribution is appropriate for the target environment. The incorporation of a LCA will seek to answer if the data a proposed sensor network will collect outweighs the environmental damage that will result from its deployment. Furthermore, as the arctic continues to thaw and economic development grows, the methodology described in paper will function as a guidance document to ensure that future sensor networks have a minimal impact on these pristine areas.
Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina
2015-01-01
Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.
An Optimal Balance between Efficiency and Safety of Urban Drainage Networks
NASA Astrophysics Data System (ADS)
Seo, Y.
2014-12-01
Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.
Comprehensive evaluation of ecological security in mining area based on PSR-ANP-GRAY.
He, Gang; Yu, Baohua; Li, Shuzhou; Zhu, Yanna
2017-09-06
With the large exploitation of mineral resources, a series of problems have appeared in the ecological environment of the mining area. Therefore, evaluating the ecological security of mining area is of great significance to promote its healthy development. In this paper, the evaluation index system of ecological security in mining area was constructed from three dimensions of nature, society and economy, combined with Pressure-State-Response framework model. Then network analytic hierarchy process and GRAY relational analysis method were used to evaluate the ecological security of the region, and the weighted correlation degree of ecological security was calculated through the index data of a coal mine from 2012 to 2016 in China. The results show that the ecological security in the coal mine area is on the rise as a whole, though it alternatively rose and dropped from 2012 to 2016. Among them, the ecological security of the study mining area is at the general security level from 2012 to 2015, and at a relatively safe level in 2016. It shows that the ecological environment of the study mining area can basically meet the requirement of the survival and development of the enterprises.
Frisch, Noreen; Atherton, Pat; Borycki, Elizabeth; Mickelson, Grace; Cordeiro, Jennifer; Novak Lauscher, Helen; Black, Agnes
2014-02-21
Use of Web 2.0 and social media technologies has become a new area of research among health professionals. Much of this work has focused on the use of technologies for health self-management and the ways technologies support communication between care providers and consumers. This paper addresses a new use of technology in providing a platform for health professionals to support professional development, increase knowledge utilization, and promote formal/informal professional communication. Specifically, we report on factors necessary to attract and sustain health professionals' use of a network designed to increase nurses' interest in and use of health services research and to support knowledge utilization activities in British Columbia, Canada. "InspireNet", a virtual professional network for health professionals, is a living laboratory permitting documentation of when and how professionals take up Web 2.0 and social media. Ongoing evaluation documents our experiences in establishing, operating, and evaluating this network. Overall evaluation methods included (1) tracking website use, (2) conducting two member surveys, and (3) soliciting member feedback through focus groups and interviews with those who participated in electronic communities of practice (eCoPs) and other stakeholders. These data have been used to learn about the types of support that seem relevant to network growth. Network growth exceeded all expectations. Members engaged with varying aspects of the network's virtual technologies, such as teams of professionals sharing a common interest, research teams conducting their work, and instructional webinars open to network members. Members used wikis, blogs, and discussion groups to support professional work, as well as a members' database with contact information and areas of interest. The database is accessed approximately 10 times per day. InspireNet public blog posts are accessed roughly 500 times each. At the time of writing, 21 research teams conduct their work virtually using the InspireNet platform; 10 topic-based Action Teams meet to address issues of mutual concern. Nursing and other health professionals, even those who rated themselves as computer literate, required significant mentoring and support in their efforts to adopt their practice to a virtual environment. There was a steep learning curve for professionals to learn to work in a virtual environment and to benefit from the available technologies. Virtual professional networks can be positioned to make a significant contribution to ongoing professional practice and to creating environments supportive of information sharing, mentoring, and learning across geographical boundaries. Nonetheless, creation of a Web 2.0 and social media platform is not sufficient, in and of itself, to attract or sustain a vibrant community of professionals interested in improving their practice. Essential support includes instruction in the use of Web-based activities and time management, a biweekly e-Newsletter, regular communication from leaders, and an annual face-to-face conference.
The Jade File System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rao, Herman Chung-Hwa
1991-01-01
File systems have long been the most important and most widely used form of shared permanent storage. File systems in traditional time-sharing systems, such as Unix, support a coherent sharing model for multiple users. Distributed file systems implement this sharing model in local area networks. However, most distributed file systems fail to scale from local area networks to an internet. Four characteristics of scalability were recognized: size, wide area, autonomy, and heterogeneity. Owing to size and wide area, techniques such as broadcasting, central control, and central resources, which are widely adopted by local area network file systems, are not adequate for an internet file system. An internet file system must also support the notion of autonomy because an internet is made up by a collection of independent organizations. Finally, heterogeneity is the nature of an internet file system, not only because of its size, but also because of the autonomy of the organizations in an internet. The Jade File System, which provides a uniform way to name and access files in the internet environment, is presented. Jade is a logical system that integrates a heterogeneous collection of existing file systems, where heterogeneous means that the underlying file systems support different file access protocols. Because of autonomy, Jade is designed under the restriction that the underlying file systems may not be modified. In order to avoid the complexity of maintaining an internet-wide, global name space, Jade permits each user to define a private name space. In Jade's design, we pay careful attention to avoiding unnecessary network messages between clients and file servers in order to achieve acceptable performance. Jade's name space supports two novel features: (1) it allows multiple file systems to be mounted under one direction; and (2) it permits one logical name space to mount other logical name spaces. A prototype of Jade was implemented to examine and validate its design. The prototype consists of interfaces to the Unix File System, the Sun Network File System, and the File Transfer Protocol.
Considerations for the future development of virtual technology as a rehabilitation tool
Kenyon, Robert V; Leigh, Jason; Keshner, Emily A
2004-01-01
Background Virtual environments (VE) are a powerful tool for various forms of rehabilitation. Coupling VE with high-speed networking [Tele-Immersion] that approaches speeds of 100 Gb/sec can greatly expand its influence in rehabilitation. Accordingly, these new networks will permit various peripherals attached to computers on this network to be connected and to act as fast as if connected to a local PC. This innovation may soon allow the development of previously unheard of networked rehabilitation systems. Rapid advances in this technology need to be coupled with an understanding of how human behavior is affected when immersed in the VE. Methods This paper will discuss various forms of VE that are currently available for rehabilitation. The characteristic of these new networks and examine how such networks might be used for extending the rehabilitation clinic to remote areas will be explained. In addition, we will present data from an immersive dynamic virtual environment united with motion of a posture platform to record biomechanical and physiological responses to combined visual, vestibular, and proprioceptive inputs. A 6 degree-of-freedom force plate provides measurements of moments exerted on the base of support. Kinematic data from the head, trunk, and lower limb was collected using 3-D video motion analysis. Results Our data suggest that when there is a confluence of meaningful inputs, neither vision, vestibular, or proprioceptive inputs are suppressed in healthy adults; the postural response is modulated by all existing sensory signals in a non-additive fashion. Individual perception of the sensory structure appears to be a significant component of the response to these protocols and underlies much of the observed response variability. Conclusion The ability to provide new technology for rehabilitation services is emerging as an important option for clinicians and patients. The use of data mining software would help analyze the incoming data to provide both the patient and the therapist with evaluation of the current treatment and modifications needed for future therapies. Quantification of individual perceptual styles in the VE will support development of individualized treatment programs. The virtual environment can be a valuable tool for therapeutic interventions that require adaptation to complex, multimodal environments. PMID:15679951
NASA Astrophysics Data System (ADS)
Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.
2013-12-01
Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.
An Optimized Handover Scheme with Movement Trend Awareness for Body Sensor Networks
Sun, Wen; Zhang, Zhiqiang; Ji, Lianying; Wong, Wai-Choong
2013-01-01
When a body sensor network (BSN) that is linked to the backbone via a wireless network interface moves from one coverage zone to another, a handover is required to maintain network connectivity. This paper presents an optimized handover scheme with movement trend awareness for BSNs. The proposed scheme predicts the future position of a BSN user using the movement trend extracted from the historical position, and adjusts the handover decision accordingly. Handover initiation time is optimized when the unnecessary handover rate is estimated to meet the requirement and the outage probability is minimized. The proposed handover scheme is simulated in a BSN deployment area in a hospital environment in UK. Simulation results show that the proposed scheme reduces the outage probability by 22% as compared with the existing hysteresis-based handover scheme under the constraint of acceptable handover rate. PMID:23736852
IsoWAN: A NASA Science and Engineering Information and Services Framework
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Chow, Edward T.; Conroy, Michael P.; Swanson, Keith (Technical Monitor)
2000-01-01
We believe that the next evolutionary step in supporting wide-area application and services delivery to customers is a network framework that provides for collocation of applications and services at distinct sites in the network, an interconnection between these sites that is performance optimized for these applications, and value-added services for applications. We use the term IsoWAN to describe an advanced, isolated network interconnect services framework that will enable applications to be more secure, and able to access and be in use in both local and remote environments. The main functions of an IsoWAN are virtual localization of application services, an application service interface, coordinated delivery of applications and associated data to the customer, and supporting collaborative application development for customers. An initial pilot network between three NASA Centers: Ames Research Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, has been built and its properties will be discussed.
Zeng, Yuanyuan; Sreenan, Cormac J; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
Research Networks, Mentorship and Sustainability Knowledge
NASA Astrophysics Data System (ADS)
Kafle, A.; Mukhopadhyay, P.; Nepal, M.; Shyamsundar, P.
2015-12-01
In South Asia, a majority of institutions are ill-equipped to undertake research on multi-disciplinary environmental problems, though these problems are increasing at a fast rate and connected to the region's poverty and growth objectives. In this context, the South Asian Network for Development and Environmental Economics (SANDEE) tries to fill a research, training and knowledge gap by building skills in the area of Environment and Development Economics. In this paper, the authors argue that research networks contribute to the growth of sustainability knowledge through (a) knowledge creation, (b) knowledge transfer and (c) knowledge deepening. The paper tries to show the relationship between capacity building, mentorship and research scholarship. It demonstrates that researchers, by associating with the network and its multiple training and mentoring processes, are able to build skills, change curricula and deliver useful knowledge products. The paper discusses the need for interdisciplinary research and the challenges of bridging the gap between research outputs and policy reforms.
Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774
Recognizing explosion sites with a self-organizing network for unsupervised learning
NASA Astrophysics Data System (ADS)
Tarvainen, Matti
1999-06-01
A self-organizing neural network model has been developed for identifying mining explosion locations in different environments in Finland and adjacent areas. The main advantage of the method is its ability to automatically find a suitable network structure and naturally correctly identify explosions as such. The explosion site recognition was done using extracted waveform attributes of various kind event records from the small-aperture array FINESS in Finland. The recognition was done by using P-S phase arrival differences and rough azimuth estimates to provide a first robust epicentre location. This, in turn, leads to correct mining district identification where more detailed tuning was performed using different phase amplitude and signal-to-noise attributes. The explosions studied here originated in mines and quarries located in Finland, coast of Estonia and in the St. Petersburg area, Russia. Although the Helsinki bulletins in 1995 and 1996 listed 1649 events in these areas, analysis was restricted to the 380 (ML≥2) events which, besides, were found in the reviewed event bulletins (REB) of the CTBTO/UN prototype international data centre (pIDC) in Arlington, VA, USA. These 380 events with different attributes were selected for the learning stage. Because no `ground-truth' information was available the corresponding mining, `code' coordinates used earlier to compile Helsinki bulletins were utilized instead. The novel self-organizing method was tested on 18 new event recordings in the mentioned area in January-February 1997, out of which 15 were connected to correct mines. The misconnected three events were those which did not have all matching attributes in the self-organizing maps (SOMs) network.
NASA Astrophysics Data System (ADS)
Juang, J. Y.; Sun, C. H.; Jiang, J. A.; Wen, T. H.
2017-12-01
The urban heat island effect (UHI) caused by the regional-to-global environmental changes, dramatic urbanization, and shifting in land-use compositions has becoming an important environmental issue in recent years. In the past century, the coverage of urban area in Taipei Basin has dramatically increasing by ten folds. The strengthen of UHI effect significantly enhances the frequency of warm-night effect, and strongly influences the thermal environment of the residents in the Greater Taipei Metropolitan. In addition, the urban expansions due to dramatic increasing in urban populations and traffic loading significantly impacts the air quality and causes health issue in Taipei. In this study, the main objective is to quantify and characterize the temporal and spatial distributions of thermal environmental and air quality in the Greater Taipei Metropolitan Area by using monitoring data from Central Weather Bureau, Environmental Protection Administration. In addition, in this study, we conduct the analysis on the distribution of physiological equivalent temperature in the micro scale in the metropolitan area by using the observation data and quantitative simulation to investigate how the thermal environment is influenced under different conditions. Furthermore, we establish a real-time mobile monitoring system by using wireless sensor network to investigate the correlation between the thermal environment, air quality and other environmental factors, and propose to develop the early warning system for heat stress and air quality in the metropolitan area. The results from this study can be integrated into the management and planning system, and provide sufficient and important background information for the development of smart city in the metropolitan area in the future.
Energy-efficient and fast data gathering protocols for indoor wireless sensor networks.
Tümer, Abdullah Erdal; Gündüz, Mesut
2010-01-01
Wireless Sensor Networks have become an important technology with numerous potential applications for the interaction of computers and the physical environment in civilian and military areas. In the routing protocols that are specifically designed for the applications used by sensor networks, the limited available power of the sensor nodes has been taken into consideration in order to extend the lifetime of the networks. In this paper, two protocols based on LEACH and called R-EERP and S-EERP with base and threshold values are presented. R-EERP and S-EERP are two efficient energy aware routing protocols that can be used for some critical applications such as detecting dangerous gases (methane, ammonium, carbon monoxide, etc.) in an indoor environment. In R-EERP, sensor nodes are deployed randomly in a field similar to LEACH. In S-EERP, nodes are deployed sequentially in the rooms of the flats of a multi-story building. In both protocols, nodes forming clusters do not change during a cluster change time, only the cluster heads change. Furthermore, an XOR operation is performed on the collected data in order to prevent the sending of the same data sensed by the nodes close to each other. Simulation results show that our proposed protocols are more energy-efficient than the conventional LEACH protocol.
The costs of chronic noise exposure for terrestrial organisms.
Barber, Jesse R; Crooks, Kevin R; Fristrup, Kurt M
2010-03-01
Growth in transportation networks, resource extraction, motorized recreation and urban development is responsible for chronic noise exposure in most terrestrial areas, including remote wilderness sites. Increased noise levels reduce the distance and area over which acoustic signals can be perceived by animals. Here, we review a broad range of findings that indicate the potential severity of this threat to diverse taxa, and recent studies that document substantial changes in foraging and anti-predator behavior, reproductive success, density and community structure in response to noise. Effective management of protected areas must include noise assessment, and research is needed to further quantify the ecological consequences of chronic noise exposure in terrestrial environments.
Emotions promote social interaction by synchronizing brain activity across individuals
Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko
2012-01-01
Sharing others’ emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas “tick together” in participants who are viewing similar emotional events in a movie. Participants’ brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness–unpleasantness (i.e., valence) and of arousal–calmness. Pearson’s correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel–based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals’ brain areas supporting emotional sensations and understanding of another’s actions, whereas high arousal directs individuals’ attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534
Cyber situation awareness as distributed socio-cognitive work
NASA Astrophysics Data System (ADS)
Tyworth, Michael; Giacobe, Nicklaus A.; Mancuso, Vincent
2012-06-01
A key challenge for human cybersecurity operators is to develop an understanding of what is happening within, and to, their network. This understanding, or situation awareness, provides the cognitive basis for human operators to take action within their environments. Yet developing situation awareness of cyberspace (cyber-SA) is understood to be extremely difficult given the scope of the operating environment, the highly dynamic nature of the environment and the absence of physical constraints that serve to bound the cognitive task23. As a result, human cybersecurity operators are often "flying blind" regarding understanding the source, nature, and likely impact of malicious activity on their networked assets. In recent years, many scholars have dedicated their attention to finding ways to improve cyber-SA in human operators. In this paper we present our findings from our ongoing research of how cybersecurity analysts develop and maintain cyber-SA. Drawing from over twenty interviews of analysts working in the military, government, industrial, and educational domains, we find that cyber-SA to be distributed across human operators and technological artifacts operating in different functional areas.
Large-scale P2P network based distributed virtual geographic environment (DVGE)
NASA Astrophysics Data System (ADS)
Tan, Xicheng; Yu, Liang; Bian, Fuling
2007-06-01
Virtual Geographic Environment has raised full concern as a kind of software information system that helps us understand and analyze the real geographic environment, and it has also expanded to application service system in distributed environment--distributed virtual geographic environment system (DVGE), and gets some achievements. However, limited by the factor of the mass data of VGE, the band width of network, as well as numerous requests and economic, etc. DVGE still faces some challenges and problems which directly cause the current DVGE could not provide the public with high-quality service under current network mode. The Rapid development of peer-to-peer network technology has offered new ideas of solutions to the current challenges and problems of DVGE. Peer-to-peer network technology is able to effectively release and search network resources so as to realize efficient share of information. Accordingly, this paper brings forth a research subject on Large-scale peer-to-peer network extension of DVGE as well as a deep study on network framework, routing mechanism, and DVGE data management on P2P network.
A Mobile Sensor Network System for Monitoring of Unfriendly Environments.
Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo
2008-11-14
Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.
Analyzing the Effects of UAV Mobility Patterns on Data Collection in Wireless Sensor Networks.
Rashed, Sarmad; Soyturk, Mujdat
2017-02-20
Sensor nodes in a Wireless Sensor Network (WSN) can be dispersed over a remote sensing area (e.g., the regions that are hardly accessed by human beings). In such kinds of networks, datacollectionbecomesoneofthemajorissues. Getting connected to each sensor node and retrieving the information in time introduces new challenges. Mobile sink usage-especially Unmanned Aerial Vehicles (UAVs)-is the most convenient approach to covering the area and accessing each sensor node in such a large-scale WSN. However, the operation of the UAV depends on some parameters, such as endurance time, altitude, speed, radio type in use, and the path. In this paper, we explore various UAV mobility patterns that follow different paths to sweep the operation area in order to seek the best area coverage with the maximum number of covered nodes in the least amount of time needed by the mobile sink. We also introduce a new metric to formulate the tradeoff between maximizing the covered nodes and minimizing the operation time when choosing the appropriate mobility pattern. A realistic simulation environment is used in order to compare and evaluate the performance of the system. We present the performance results for the explored UAV mobility patterns. The results are very useful to present the tradeoff between maximizing the covered nodes and minimizing the operation time to choose the appropriate mobility pattern.
Analyzing the Effects of UAV Mobility Patterns on Data Collection in Wireless Sensor Networks
Rashed, Sarmad; Soyturk, Mujdat
2017-01-01
Sensor nodes in a Wireless Sensor Network (WSN) can be dispersed over a remote sensing area (e.g., the regions that are hardly accessed by human beings). In such kinds of networks, data collection becomes one of the major issues. Getting connected to each sensor node and retrieving the information in time introduces new challenges. Mobile sink usage—especially Unmanned Aerial Vehicles (UAVs)—is the most convenient approach to covering the area and accessing each sensor node in such a large-scale WSN. However, the operation of the UAV depends on some parameters, such as endurance time, altitude, speed, radio type in use, and the path. In this paper, we explore various UAV mobility patterns that follow different paths to sweep the operation area in order to seek the best area coverage with the maximum number of covered nodes in the least amount of time needed by the mobile sink. We also introduce a new metric to formulate the tradeoff between maximizing the covered nodes and minimizing the operation time when choosing the appropriate mobility pattern. A realistic simulation environment is used in order to compare and evaluate the performance of the system. We present the performance results for the explored UAV mobility patterns. The results are very useful to present the tradeoff between maximizing the covered nodes and minimizing the operation time to choose the appropriate mobility pattern. PMID:28230727
DMP: Detouring Using Multiple Paths against Jamming Attack for Ubiquitous Networking System
Kim, Mihui; Chae, Kijoon
2010-01-01
To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute. PMID:22319316
Duerinckx, A J; Kenagy, J J; Grant, E G
1998-01-01
This study analysed the design and cost of a picture archiving and communications system (PACS), computerized radiography (CR) and a wide-area network for teleradiology. The Desert Pacific Healthcare Network comprises 10 facilities, including four tertiary medical centres and one small hospital. Data were collected on radiologists' workloads, and patient and image flow within and between these medical centres. These were used to estimate the size and cash flows associated with a system-wide implementation of PACS, CR and teleradiology services. A cost analysis model was used to estimate the potential cost savings in a filmless radiology environment. ATM technology was selected as the communications medium between the medical centres. A strategic plan and business plan were successfully developed. The cost model predicted the cost-effectiveness of the proposed PACS/CR configuration within four to six years, if the base costs were kept low. The experience gained in design and cost analysis of a PACS/teleradiology network will serve as a model for similar projects.
DMP: detouring using multiple paths against jamming attack for ubiquitous networking system.
Kim, Mihui; Chae, Kijoon
2010-01-01
To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute.
Wireless remote monitoring of critical facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.
A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatusmore » includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.« less
NASA Astrophysics Data System (ADS)
Shao, Huaiyong; Xian, Wei; Yang, Wunian
2009-07-01
The large-scale and super-strength development of mineral resources in mining cities in long term has made great contributions to China's economic construction and development, but it has caused serious damage to the ecological environment even ecological imbalance at the same time because the neglect of the environmental impact even to the expense of the environment to some extent. In this study, according to the characteristics of mining cities, the scientific and practical eco-environmental vulnerability evaluation index system of mining cities had been established. Taking Panzhihua city of Sichuan province as an example, using remote sensing and GIS technology, applying various types of remote sensing image (TM, SPOT5, IKONOS) and Statistical data, the ecological environment evaluation data of mining cities was extracted effectively. For the non-linear relationship between the evaluation indexes and the degree of eco-environmental vulnerability in mining cities, this study innovative took the evaluation of eco-environmental vulnerability of the study area by using artificial neural network whose training used SCE-UA algorithm that well overcome the slow learning and difficult convergence of traditional neural network algorithm. The results of ecoenvironmental vulnerability evaluation of the study area were objective, reasonable and the credibility was high. The results showed that the area distribution of five eco-environmental vulnerability grade types was basically normal, and the overall ecological environment situation of Panzhihua city was in the middle level, the degree of eco-environmental vulnerability in the south was higher than the north, and mining activities were dominant factors to cause ecoenvironmental damage and eco-environmental Vulnerability. In this study, a comprehensive theory and technology system of regional eco-environmental vulnerability evaluation which included the establishment of eco-environmental vulnerability evaluation index system, processing of evaluation data and establishing of evaluation model. New ideas and methods had provided for eco-environmental vulnerability of mining cities.
ERIC Educational Resources Information Center
Lin, Jian-Wei; Huang, Hsieh-Hong; Chuang, Yuh-Shy
2015-01-01
An e-learning environment that supports social network awareness (SNA) is a highly effective means of increasing peer interaction and assisting student learning by raising awareness of social and learning contexts of peers. Network centrality profoundly impacts student learning in an SNA-related e-learning environment. Additionally,…
Impact of foliage on LoRa 433MHz propagation in tropical environment
NASA Astrophysics Data System (ADS)
Ahmad, Khairol Amali; Salleh, Mohd Sharil; Segaran, Jivitraa Devi; Hashim, Fakroul Ridzuan
2018-02-01
LoRa is being considered as one of the promising system for Low-Power-Wide-Area-Network (LPWAN) to support the growth of Internet of Things (IoT) applications. Designed to operate in the industrial, scientific and medical (ISM) bands, LoRa had been tested and evaluated mainly in Europe and US in the 868 MHz and 915 MHz modulation bands. Using chirp spread spectrum technology, LoRa is expected to be robust against degredation. This paper provides some early results in the performance of LoRa signal propagation of 433 MHz modulation in tropical foliage environments.
Observing complex action sequences: The role of the fronto-parietal mirror neuron system.
Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco
2006-11-15
A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.
The Emerging Wireless Body Area Network on Android Smartphones: A Review
NASA Astrophysics Data System (ADS)
Puspitaningayu, P.; Widodo, A.; Yundra, E.
2018-01-01
Our society now has driven us into an era where almost everything can be digitally monitored and controlled including the human body. The growth of wireless body area network (WBAN), as a specific scope of sensor networks which mounted or attached to human body also developing rapidly. It allows people to monitor their health and several daily activities. This study is intended to review the trend of WBAN especially on Android, one of the most popular smartphone platforms. A systematic literature review is concerned to the following parameters: the purpose of the device and/or application, the type of sensors, the type of Android device, and its connectivity. Most of the studies were more concern to healthcare or medical monitoring systems: blood pressure, electro cardiograph, tremor detection, etc. On the other hand, the rest of them aimed for activity tracker, environment sensing, and epidemic control. After all, those studies shown that not only Android can be a powerful platform to process data from various sensors but also smartphones can be a good alternative to develop WBANs for medical and other daily applications.
New Applications for the Testing and Visualization of Wireless Networks
NASA Technical Reports Server (NTRS)
Griffin, Robert I.; Cauley, Michael A.; Pleva, Michael A.; Seibert, Marc A.; Lopez, Isaac
2005-01-01
Traditional techniques for examining wireless networks use physical link characteristics such as Signal-to-Noise (SNR) ratios to assess the performance of wireless networks. Such measurements may not be reliable indicators of available bandwidth. This work describes two new software applications developed at NASA Glenn Research Center for the investigation of wireless networks. GPSIPerf combines measurements of Transmission Control Protocol (TCP) throughput with Global Positioning System (GPS) coordinates to give users a map of wireless bandwidth for outdoor environments where a wireless infrastructure has been deployed. GPSIPerfView combines the data provided by GPSIPerf with high-resolution digital elevation maps (DEM) to help users visualize and assess the impact of elevation features on wireless networks in a given sample area. These applications were used to examine TCP throughput in several wireless network configurations at desert field sites near Hanksville, Utah during May of 2004. Use of GPSIPerf and GPSIPerfView provides a geographically referenced picture of the extent and deterioration of TCP throughput in tested wireless network configurations. GPSIPerf results from field-testing in Utah suggest that it can be useful in assessing other wireless network architectures, and may be useful to future human-robotic exploration missions.
Ren, Li-Hong; Ding, Yong-Sheng; Shen, Yi-Zhen; Zhang, Xiang-Feng
2008-10-01
Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.
NASA Astrophysics Data System (ADS)
Mohr, Ulrich
2001-11-01
For efficient business continuance and backup of mission- critical data an inter-site storage network is required. Where traditional telecommunications costs are prohibitive for all but the largest organizations, there is an opportunity for regional carries to deliver an innovative storage service. This session reveals how a combination of optical networking and protocol-aware SAN gateways can provide an extended storage networking platform with the lowest cost of ownership and the highest possible degree of reliability, security and availability. Companies of every size, with mainframe and open-systems environments, can afford to use this integrated service. Three mayor applications are explained; channel extension, Network Attached Storage (NAS), Storage Area Networks (SAN) and how optical networks address the specific requirements. One advantage of DWDM is the ability for protocols such as ESCON, Fibre Channel, ATM and Gigabit Ethernet, to be transported natively and simultaneously across a single fiber pair, and the ability to multiplex many individual fiber pairs over a single pair, thereby reducing fiber cost and recovering fiber pairs already in use. An optical storage network enables a new class of service providers, Storage Service Providers (SSP) aiming to deliver value to the enterprise by managing storage, backup, replication and restoration as an outsourced service.
Water Catchment and Storage Monitoring
NASA Astrophysics Data System (ADS)
Bruenig, Michael; Dunbabin, Matt; Moore, Darren
2010-05-01
Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.
1966-11-14
S66-63030 (14 Nov. 1966) --- Gulf Coast area from Matagorda Bay, Texas, to Vermillion Bay, Louisiana, looking east, as seen from the Gemini-12 spacecraft during its 44th revolution of Earth. Galveston Bay is in center of picture. Houston and its environs are clearly visible. Note network of freeways and superhighways. Large lake near left center of picture is the Sam Rayburn Reservoir. Photo credit: NASA
Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network
2015-01-01
For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system. PMID:26089863
Customizing cell signaling using engineered genetic logic circuits.
Wang, Baojun; Buck, Martin
2012-08-01
Cells live in an ever-changing environment and continuously sense, process and react to environmental signals using their inherent signaling and gene regulatory networks. Recently, there have been great advances on rewiring the native cell signaling and gene networks to program cells to sense multiple noncognate signals and integrate them in a logical manner before initiating a desired response. Here, we summarize the current state-of-the-art of engineering synthetic genetic logic circuits to customize cellular signaling behaviors, and discuss their promising applications in biocomputing, environmental, biotechnological and biomedical areas as well as the remaining challenges in this growing field. Copyright © 2012 Elsevier Ltd. All rights reserved.
Creating Successful Scientist-Teacher-Student Collaborations: Examples From the GLOBE Program
NASA Astrophysics Data System (ADS)
Geary, E.; Wright, E.; Yule, S.; Randolph, G.; Larsen, J.; Smith, D.
2007-12-01
Actively engaging students in research on the environment at local, regional, and globe scales is a primary objective of the GLOBE (Global Learning and Observations to Benefit the Environment) Program. During the past 18 months, GLOBE, an international education and science program in 109 countries and tens of thousands of schools worldwide, has been working with four NSF-funded Earth System Science Projects to involve K-12 students, teachers, and scientists in collaborative research investigations of Seasons and Biomes, the Carbon Cycle, Local and Extreme Environments, and Watersheds. This talk will discuss progress to date in each of these investigation areas and highlight successes and challenges in creating effective partnerships between diverse scientific and educational stakeholders. More specifically we will discuss lessons learned in the following areas: (a) mutual goal and responsibility setting, (b) resource allocation, (c) development of adaptable learning activities, tools, and services, (d) creation of scientist and school networks, and (e) development of evaluation metrics, all in support of student research.
Mobile access to the Internet: from personal bubble to satellites
NASA Astrophysics Data System (ADS)
Gerla, Mario
2001-10-01
Mobile, wireless access and networking has emerged in the last few years as one of the most important directions of Internet growth. The popularity of mobile, and, more generally, nomadic Internet access is due to many enabling factors including: (a) emergence of meaningful applications tailored to the individual on the move; (b) small form factor and long battery life; (c) efficient middleware designed to support mobility; and, (d) efficient wireless networking technologies. A key player in the mobile Internet access is the nomad, i.e. the individual equipped with various computing and I/O gadgets (cellular phone, earphones, GPS navigator, palm pilot, beeper, portable scanner, digital camera, etc.). These devices form his/her Personal Area Network or PAN or personal bubble. The connectivity within the bubble is wireless (using for example a low cost, low power wireless LAN such as Bluetooth). The bubble can expand and contract dynamically depending on needs. It may temporarily include sensors and actuators as the nomad walks into a new environment. In this paper, we identify the need for the interconnection of the PAN with other wireless networks in order to achieve costeffective mobile access to the Internet. We will overview some key networking technologies required to support the PAN (eg, Bluetooth). We will also discuss an emerging technology, Ad Hoc wireless networking which is the natural complement of the PAN in sparsely populated areas. Finally, we will identify the need for intelligent routers to assist the mobile user in the selection of the best Internet access strategy.
A Low Cost High Density Sensor Network for Air Quality at London Heathrow Airport
NASA Astrophysics Data System (ADS)
Bright, V.; Mead, M. I.; Popoola, O. A.; Baron, R. P.; Saffell, J.; Stewart, G.; Kaye, P.; Jones, R.
2012-12-01
Atmospheric composition within urban areas has a direct effect on the air quality of an environment in which a large majority of people live and work. Atmospheric pollutants including ozone (O3), nitrogen dioxide (NO2), volatile organic compounds (VOCs) and particulate matter (PM) can have a significant effect on human health. As such it is important to determine the potential exposure of individuals to these atmospheric constituents and investigate the processes that lead to the degradation of air quality within the urban environment. Whilst modelled pollutant levels on the local scale often suggest high degrees of spatial and temporal variability, the relatively sparse fixed site automated urban networks only provide low spatial resolution data that do not appear adequate in detecting such small scale variability. In this paper we demonstrate that measurements can now be made using networks of low-cost sensors that utilise a variety of techniques, including electrochemical and optical, to measure concentrations of atmospheric species. Once equipped with GPS and GPRS to determine position and transmit data respectively, these networks have the potential to provide valuable insights into pollutant variability inherent on the local or micro-scale. The methodology has been demonstrated successfully in field campaigns carried out in cities including London and Valencia, and is now being deployed as part of the Sensor Networks for Air Quality currently deployed at London Heathrow airport (SNAQ-Heathrow) which is outlined in the partner paper presented by Mead et al. (this conference). The SNAQ-Heathrow network of 50 sensor nodes will provide an unprecedented data set that includes measurements of O3, NO, NO2, CO, CO2, SO2, total VOCs, size-speciated PM as well as meteorological variables that include temperature, relative humidity, wind speed and direction. This network will provide high temporal (20 second intervals) and spatial (50 sites within the airport area) resolution data over a 12 month period with data transmitted back to a server every 2 hours. In this paper we present the data capture and storage, data accessibility, data mining and visualisation techniques applied to the measurements of the SNAQ Heathrow high density sensor network, the preliminary results of which provide an insight into the potential use of such networks in characterising air quality, emissions and validating dispersion models on local scales. We also present a web based interface developed for the sensor network that allows users to access archived data and assess meteorological conditions, atmospheric dispersion, pollutant levels and emission rates.
Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.
Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio
2008-11-24
Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.
Analysis and Testing of Mobile Wireless Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)
2002-01-01
Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.
A virus spreading model for cognitive radio networks
NASA Astrophysics Data System (ADS)
Hou, L.; Yeung, K. H.; Wong, K. Y.
2012-12-01
Since cognitive radio (CR) networks could solve the spectrum scarcity problem, they have drawn much research in recent years. Artificial intelligence(AI) is introduced into CRs to learn from and adapt to their environment. Nonetheless, AI brings in a new kind of attacks specific to CR networks. The most powerful one is a self-propagating AI virus. And no spreading properties specific to this virus have been reported in the literature. To fill this research gap, we propose a virus spreading model of an AI virus by considering the characteristics of CR networks and the behavior of CR users. Several important observations are made from the simulation results based on the model. Firstly, the time taken to infect the whole network increases exponentially with the network size. Based on this result, CR network designers could calculate the optimal network size to slow down AI virus propagation rate. Secondly, the anti-virus performance of static networks to an AI virus is better than dynamic networks. Thirdly, if the CR devices with the highest degree are initially infected, the AI virus propagation rate will be increased substantially. Finally, it is also found that in the area with abundant spectrum resource, the AI virus propagation speed increases notably but the variability of the spectrum does not affect the propagation speed much.
Hughes, Laurie; Wang, Xinheng; Chen, Tao
2012-01-01
The issues inherent in caring for an ever-increasing aged population has been the subject of endless debate and continues to be a hot topic for political discussion. The use of hospital-based facilities for the monitoring of chronic physiological conditions is expensive and ties up key healthcare professionals. The introduction of wireless sensor devices as part of a Wireless Body Area Network (WBAN) integrated within an overall eHealth solution could bring a step change in the remote management of patient healthcare. Sensor devices small enough to be placed either inside or on the human body can form a vital part of an overall health monitoring network. An effectively designed energy efficient WBAN should have a minimal impact on the mobility and lifestyle of the patient. WBAN technology can be deployed within a hospital, care home environment or in the patient's own home. This study is a review of the existing research in the area of WBAN technology and in particular protocol adaptation and energy efficient cross-layer design. The research reviews the work carried out across various layers of the protocol stack and highlights how the latest research proposes to resolve the various challenges inherent in remote continual healthcare monitoring. PMID:23202185
Ribeiro, Haroldo V; Hanley, Quentin S; Lewis, Dan
2018-01-01
Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothesis. SAMs remove the inherent biases of per capita measures computed in the absence of isometric allometries. However, this approach is limited to urban areas, while a large portion of the world's population still lives outside cities and rural areas dominate land use worldwide. Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs) to reveal relationships among different types of crime and property metrics. Our approach allows all human environments to be considered, avoids problems in the definition of urban areas, and accounts for the heterogeneity of population distributions within urban regions. By combining DSAMs, cross-correlation, and complex network analysis, we find that crime and property types have intricate and hierarchically organized relationships leading to some striking conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property transaction values are indicators of affluence, twelve out of fourteen crime metrics showed no evidence of specifically targeting affluence. Burglary and robbery were the most connected in our network analysis and the modular structures suggest an alternative to "zero-tolerance" policies by unveiling the crime and/or property types most likely to affect each other.
Hanley, Quentin S.; Lewis, Dan
2018-01-01
Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothesis. SAMs remove the inherent biases of per capita measures computed in the absence of isometric allometries. However, this approach is limited to urban areas, while a large portion of the world’s population still lives outside cities and rural areas dominate land use worldwide. Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs) to reveal relationships among different types of crime and property metrics. Our approach allows all human environments to be considered, avoids problems in the definition of urban areas, and accounts for the heterogeneity of population distributions within urban regions. By combining DSAMs, cross-correlation, and complex network analysis, we find that crime and property types have intricate and hierarchically organized relationships leading to some striking conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property transaction values are indicators of affluence, twelve out of fourteen crime metrics showed no evidence of specifically targeting affluence. Burglary and robbery were the most connected in our network analysis and the modular structures suggest an alternative to “zero-tolerance” policies by unveiling the crime and/or property types most likely to affect each other. PMID:29470499
Maturation of Structural Health Management Systems for Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Quing, Xinlin; Beard, Shawn; Zhang, Chang
2011-01-01
Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.
State profiles in environmental education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruskey, A.
1995-12-31
An awareness and appreciation of their natural and built environment; knowledge of natural systems and ecological concepts; understanding of the range of current environmental issues; and the ability to use investigative, critical-thinking, and problem-solving skills toward the resolution of environmental issues: these are key traits of an environmentally literate citizenry. It follows that they are the key objectives of environmental education. Nearly every state in the country currently has an environmental education program in some form. However, few states have comprehensive programs of the sort that can foster widespread environmental literacy in the populace. Comprehensive programs infuse environmental education intomore » most or all subject areas and grade levels through curriculum requirements, subject-area frameworks, pre-service and in-service teacher training, opportunities for small grants for teachers and schools, resource guides and networks, statewide advisory councils, interagency networks, and more.« less
A Standard-Compliant Virtual Meeting System with Active Video Object Tracking
NASA Astrophysics Data System (ADS)
Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting
2002-12-01
This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.
Adaptation disrupts motion integration in the primate dorsal stream
Patterson, Carlyn A.; Wissig, Stephanie C.; Kohn, Adam
2014-01-01
Summary Sensory systems adjust continuously to the environment. The effects of recent sensory experience—or adaptation—are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or area will alter the input provided to others, with unclear consequences for computations implemented in the downstream circuit. Here we show that prolonged adaptation with drifting gratings, which alters responses in the early visual system, impedes the ability of area MT neurons to integrate motion signals in plaid stimuli. Perceptual experiments reveal a corresponding loss of plaid coherence. A simple computational model shows how the altered representation of motion signals in early cortex can derail integration in MT. Our results suggest that the effects of adaptation cascade through the visual system, derailing the downstream representation of distinct stimulus attributes. PMID:24507198
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...
Selected hydrologic data, through water year 1994, Black Hills Hydrology Study, South Dakota
Driscoll, D.G.; Bradford, W.L.; Neitzert, K.M.
1996-01-01
This report presents water-level, water-quality, and spring data that have been collected or compiled, through water year 1994, for the Black Hills Hydrology Study. This study is a long-term cooperative effort between the U.S. Geological Survey, the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District (which represents various local and county cooperators). This report is the second in a series of biennial project data reports produced for the study. Daily water-level data are presented for 39 observation wells and 2 cave sites in the Black Hills area of western South Dakota. The wells are part of a network of observation wells maintained by the Department of Environment and Natural Resources and are completed in various bedrock formations that are utilized as aquifers in the Black Hills area. Both cave sites are located within outcrops of the Madison Limestone. Data presented include site descriptions, hydrographs, and tables of daily water levels. Annual measurements of water levels collected during water years 1993-94 from a network of 20 additional, miscellaneous wells are presented. These wells are part of a Statewide network of wells completed in bedrock aquifers that was operated from 1959 through 1989 in cooperation with the Department of Environment and Natural Resources. Site descriptions and hydrographs for the entire period of record for each site also are presented. Drawdown and recovery data are presented for five wells that were pumped (or flowed) for collection of water-quality samples. These wells are part of the network of observation wells for which daily water-level records are compiled. Water-quality data are presented for 20 surface-water sites and 22 ground-water sites. Data presented include field parameters, bacteria counts, and concentrations of common ions, solids, nutrients, trace elements, radiometrics and isotopes, cyanide, phenols, and suspended sediment. Spring data are presented for 94 springs and 21 stream reaches with significant springflow components. Data presented include site information, discharge, and field water-quality parameters including temperature, specific conductance, dissolved oxygen, and pH.
Metabolic principles of river basin organization.
Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea
2011-07-19
The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.
Rojas-Martínez, Augusto; Giraldo-Ríos, Alejandro; Jiménez-Arce, Gerardo; de Vargas, Aída Falcón; Giugliani, Roberto
2014-03-01
Latin America and the Caribbean region make up one of the largest areas of the world, and this region is characterized by a complex mixture of ethnic groups sharing Iberian languages. The area is comprised of nations and regions with different levels of social development. This region has experienced historical advances in the last decades to increase the minimal standards of quality of life; however, several factors, such as concentrated populations in large urban centers and isolated and poor communities, still have an important impact on medical services, particularly genetics services. Latin American researchers have greatly contributed to the development of human genetics and historic inter-ethnic diversity, and the multiplicity of geographic areas are unique for the study of gene-environment interactions. As a result of regional developments in the fields of human and medical genetics, the Latin American Network of Human Genetics (Red Latinoamericana de Genética Humana - RELAGH) was created in 2001 to foster the networking of national associations and societies dedicated to these scientific disciplines. RELAGH has developed important educational activities, such as the Latin American School of Human and Medical Genetics (ELAG), and has held three biannual meetings to encourage international research cooperation among the member countries and international organizations. Since its foundation, RELAGH has been admitted as a full regional member to the International Federation of Human Genetics Societies. This article describes the historical aspects, activities, developments, and challenges that are still faced by the Network.
Rojas-Martínez, Augusto; Giraldo-Ríos, Alejandro; Jiménez-Arce, Gerardo; de Vargas, Aída Falcón; Giugliani, Roberto
2014-01-01
Latin America and the Caribbean region make up one of the largest areas of the world, and this region is characterized by a complex mixture of ethnic groups sharing Iberian languages. The area is comprised of nations and regions with different levels of social development. This region has experienced historical advances in the last decades to increase the minimal standards of quality of life; however, several factors, such as concentrated populations in large urban centers and isolated and poor communities, still have an important impact on medical services, particularly genetics services. Latin American researchers have greatly contributed to the development of human genetics and historic inter-ethnic diversity, and the multiplicity of geographic areas are unique for the study of gene-environment interactions. As a result of regional developments in the fields of human and medical genetics, the Latin American Network of Human Genetics (Red Latinoamericana de Genética Humana - RELAGH) was created in 2001 to foster the networking of national associations and societies dedicated to these scientific disciplines. RELAGH has developed important educational activities, such as the Latin American School of Human and Medical Genetics (ELAG), and has held three biannual meetings to encourage international research cooperation among the member countries and international organizations. Since its foundation, RELAGH has been admitted as a full regional member to the International Federation of Human Genetics Societies. This article describes the historical aspects, activities, developments, and challenges that are still faced by the Network. PMID:24764765
Changes induced by sea level rise on network properties of restoration areas
NASA Astrophysics Data System (ADS)
Jiménez, Mirian; Castanedo, Sonia; Zhou, Zeng; Coco, Giovanni; Medina, Raúl
2015-04-01
Human actions have been reducing the natural domain of estuarine systems for centuries. In the past, estuaries were perceived as unhealthy areas, source of diseases, which were adapted to human use by drainage and heavy engineering. Our current understanding shows that estuaries are not sources of disease, but rich ecosystems that cover important ecosystem functions. They need to be restored to their natural state. However, restoration actions may induce morphological changes that may change the estuary current behavior. It is thus of the utmost importance to understand the morphodynamic changes induced by restoration actions, more so when the final aim is to predict these changes. Dikes have been the most used mean to enclose and drain areas of estuaries. In this work, we focus our attention on dike removal as a means to restore the areas enclosed by these dikes. Dikes may be removed completely, or only partially (opening one or several breaches), to allow the tidal flow to enter into the area to be restored. Morphodynamic effects of dike removal are simulated numerically using Delft3d. Different dike removal configurations are studied and their effect on the recovery of the estuary quantified. Estuarine tidal networks are characterized by means of a new approach that links network connectivity to the spatial hydrodynamic fields developed in the estuary. The impact of different restorations strategies in the drainage properties of the network has been studied in the short term (5 -10 years) and in the long term (100 years) allowing the connectivity to evolve with time. Results show, for different scenarios, differences not only in the spatial distribution of the tidal network but also in statistical characteristics after different dike removal actions. The new distribution of channels will have implications for the location of the tidal flats, flood patterns and thus biological environments within the tidal networks. These changes in the morphological properties are quantified with the new approach (Jiménez et al.,2014), which allows to highlight the changes that induce deep behavioral changes in the system. The importance of sea level rise in these behavioral changes is also assessed in the study. References: Jiménez, M., S. Castanedo, Z. Zhou, G.Coco, R. Medina, and I. Rodriguez-Iturbe (2014). Scaling properties of tidal networks, Water Resources Research., 50, doi:10.1002/2013WR015006.
Study of the wide area of a lake with remote sensing
NASA Astrophysics Data System (ADS)
Lazaridou, Maria A.; Karagianni, Aikaterini C.
2016-08-01
Water bodies are particularly important for environment and development issues. Their study requires multiple information. Remote sensing has been proven useful in the above study. This paper concerns the wide area of Lake Orestiada in the region of Western Macedonia in Greece. The area is of particular interest because Lake Orestiada is included in the Natura 2000 network and is surrounded by diverse landcovers as built up areas and agricultural land. Multispectral and thermal Landsat 5 satellite images of two time periods are being used. Their processing is being done by Erdas Imagine software. The general physiognomy of the area and the lake shore are examined after image enhancement techniques and image interpretation. Directions of the study concern geomorphological aspects, land covers, estimation of surface temperature as well as changes through time.
An efficient link prediction index for complex military organization
NASA Astrophysics Data System (ADS)
Fan, Changjun; Liu, Zhong; Lu, Xin; Xiu, Baoxin; Chen, Qing
2017-03-01
Quality of information is crucial for decision-makers to judge the battlefield situations and design the best operation plans, however, real intelligence data are often incomplete and noisy, where missing links prediction methods and spurious links identification algorithms can be applied, if modeling the complex military organization as the complex network where nodes represent functional units and edges denote communication links. Traditional link prediction methods usually work well on homogeneous networks, but few for the heterogeneous ones. And the military network is a typical heterogeneous network, where there are different types of nodes and edges. In this paper, we proposed a combined link prediction index considering both the nodes' types effects and nodes' structural similarities, and demonstrated that it is remarkably superior to all the 25 existing similarity-based methods both in predicting missing links and identifying spurious links in a real military network data; we also investigated the algorithms' robustness under noisy environment, and found the mistaken information is more misleading than incomplete information in military areas, which is different from that in recommendation systems, and our method maintained the best performance under the condition of small noise. Since the real military network intelligence must be carefully checked at first due to its significance, and link prediction methods are just adopted to purify the network with the left latent noise, the method proposed here is applicable in real situations. In the end, as the FINC-E model, here used to describe the complex military organizations, is also suitable to many other social organizations, such as criminal networks, business organizations, etc., thus our method has its prospects in these areas for many tasks, like detecting the underground relationships between terrorists, predicting the potential business markets for decision-makers, and so on.
The ISES: A non-intrusive medium for in-space experiments in on-board information extraction
NASA Technical Reports Server (NTRS)
Murray, Nicholas D.; Katzberg, Stephen J.; Nealy, Mike
1990-01-01
The Information Science Experiment System (ISES) represents a new approach in applying advanced systems technology and techniques to on-board information extraction in the space environment. Basically, what is proposed is a 'black box' attached to the spacecraft data bus or local area network. To the spacecraft the 'black box' appears to be just another payload requiring power, heat rejection, interfaces, adding weight, and requiring time on the data management and communication system. In reality, the 'black box' is a programmable computational resource which eavesdrops on the data network, taking and producing selectable, real-time science data back on the network. This paper will present a brief overview of the ISES Concept and will discuss issues related to applying the ISES to the polar platform and Space Station Freedom. Critical to the operation of ISES is the viability of a payload-like interface to the spacecraft data bus or local area network. Study results that address this question will be reviewed vis-a-vis the solar platform and the core space station. Also, initial results of processing science and other requirements for onboard, real-time information extraction will be presented with particular emphasis on the polar platform. Opportunities for a broader range of applications on the core space station will also be discussed.
High Resolution Sensing and Control of Urban Water Networks
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Wong, B. P.; Kerkez, B.
2016-12-01
We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.
The effect of brain lesions on sound localization in complex acoustic environments.
Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg
2014-05-01
Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.
Bréchignac, F; Alexakhin, R; Bollhöfer, A; Frogg, K E; Hardeman, F; Higley, K; Hinton, T G; Kapustka, L A; Kuhne, W; Leonard, K; Masson, O; Nanba, K; Smith, G; Smith, K; Strand, P; Vandenhove, H; Yankovich, T; Yoshida, S
2017-04-01
During the past decades, many specialised networks have formed to meet specific radioecological objectives, whether regional or sectorial (purpose-oriented). Regional networks deal with an array of radioecological issues related to their territories. Examples include the South Pacific network of radioecologists, and the European network of excellence in radioecology. The latter is now part of the European platform for radiation protection. Sectorial networks are more problem-oriented, often with wider international representativeness, but restricted to one specific issue, (e.g. radioactive waste, low-level atmospheric contamination, modelling). All such networks, while often working in relative isolation, contribute to a flow of scientific information which, through United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR's) efforts of synthesis, feeds into the radiation protection frameworks of protecting humans and the environment. The IUR has therefore prompted a co-construction process aimed at improving worldwide harmonisation of radioecology networks. An initiative based on an initial set of 15 networks, now called the IUR FORUM, was launched in June 2014. The IUR Forum agreed to build a framework for improved coordination of scientific knowledge, integration and consensus development relative to environmental radioactivity. Three objectives have been collectively assigned to the IUR FORUM: (1) coordination, (2) global integration and construction of consensus and (3) maintenance of expertise. One particular achievement of the FORUM was an improved description and common understanding of the respective roles and functions of the various networks within the overall scene of radioecology R&D. It clarifies how the various networks assembled within the IUR FORUM interface with UNSCEAR and other international regulatory bodies (IAEA, ICRP), and how consensus on the assessment of risk is constructed. All these agencies interact with regional networks covering different geographical areas, and with other networks which address specific topics within radiation protection. After holding its first Consensus Symposium in 2015, examining the possible ecological impact of radiation from environmental contamination, the IUR FORUM continues its work towards improved radiation protection of humans and the environment. We welcome new members. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
40 CFR 58.13 - Monitoring network completion.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...
40 CFR 58.13 - Monitoring network completion.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...
40 CFR 58.13 - Monitoring network completion.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...
Distributed computing testbed for a remote experimental environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butner, D.N.; Casper, T.A.; Howard, B.C.
1995-09-18
Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on themore » DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.« less
NASA Astrophysics Data System (ADS)
Watford, M.; DeCusatis, C.
2005-09-01
With the advent of new regulations governing the protection and recovery of sensitive business data, including the Sarbanes-Oxley Act, there has been a renewed interest in business continuity and disaster recovery applications for metropolitan area networks. Specifically, there has been a need for more efficient bandwidth utilization and lower cost per channel to facilitate mirroring of multi-terabit data bases. These applications have further blurred the boundary between metropolitan and wide area networks, with synchronous disaster recovery applications running up to 100 km and asynchronous solutions extending to 300 km or more. In this paper, we discuss recent enhancements in the Nortel Optical Metro 5200 Dense Wavelength Division Multiplexing (DWDM) platform, including features recently qualified for data communication applications such as Metro Mirror, Global Mirror, and Geographically Distributed Parallel Sysplex (GDPS). Using a 10 Gigabit/second (Gbit/s) backbone, this solution transports significantly more Fibre Channel protocol traffic with up to five times greater hardware density in the same physical package. This is also among the first platforms to utilize forward error correction (FEC) on the aggregate signals to improve bit error rate (BER) performance beyond industry standards. When combined with encapsulation into wide area network protocols, the use of FEC can compensate for impairments in BER across a service provider infrastructure without impacting application level performance. Design and implementation of these features will be discussed, including results from experimental test beds which validate these solutions for a number of applications. Future extensions of this environment will also be considered, including ways to provide configurable bandwidth on demand, mitigate Fibre Channel buffer credit management issues, and support for other GDPS protocols.
NY-uHMT: A dense hydro-meteorological network to characterize urban land-atmosphere interactions
NASA Astrophysics Data System (ADS)
Ramamurthy, P.; Lakhankar, T.; Khanbilvardi, R.; Devineni, N.
2016-12-01
Most people in the US live in large Metropolitan areas that have a dense urban core in the center, dominated by built surfaces and surrounded by residential/suburban areas that consist a mix of built, vegetated and permeable surfaces. This creates a gradient in the hydro-meteorological environment giving rise to complex land-atmosphere interactions. Current modeling platforms and observational techniques like tower measurements do not adequately account for the underlying heterogeneity. To address this critical gap in our understanding we have instituted a dense network of sensors in the New York Metropolitan area. This unique urban sensor network consists of instrumentation to monitor soil moisture at multiple depths along with air temperature, relative humidity and precipitation, with room to add additional sensors in the future. The network is autonomous and connected to a centralized server using cellular towers. Apart from describing the spatial variability in hydro-meteorological quantities the network will also aid in conducting high-resolution numerical simulations to study and forecast urban weather and climate. In one such simulation conducted to partition the influence of storage flux, wind pattern and circulation and soil moisture deficit on urban heat island intensity (UHI), we found that the daily variability in UHI in NYC was sensitive to available energy and wind pattern. The long-term trend in UHI was however related to soil moisture deficit. In fact a prolonged heat wave period witnessed during summer 2006 correlated well with an extended dry period and the daily UHI in NYC almost doubled. Moreover, the urban soils also suffered from high degree of dessication, owing to drier urban boundary layer.
ERIC Educational Resources Information Center
Teske, Paul Robert-John
2014-01-01
Calls to virtually break down school walls through connected and blended learning environments are ubiquitous as of late as technologies in service of learning evolve and as schools are under pressure to change. Within the subject area of English Language Arts, there is a dearth of research or information on how to facilitate these new, digitally…
Karadağ, Teoman; Yüceer, Mehmet; Abbasov, Teymuraz
2016-01-01
The present study analyses the electric field radiating from the GSM/UMTS base stations located in central Malatya, a densely populated urban area in Turkey. The authors have conducted both instant and continuous measurements of high-frequency electromagnetic fields throughout their research by using non-ionising radiation-monitoring networks. Over 15,000 instant and 13,000,000 continuous measurements were taken throughout the process. The authors have found that the normal electric field radiation can increase ∼25% during daytime, depending on mobile communication traffic. The authors' research work has also demonstrated the fact that the electric field intensity values can be modelled for each hour, day or week with the results obtained from continuous measurements. The authors have developed an estimation model based on these values, including mobile communication traffic (Erlang) values obtained from mobile phone base stations and the temperature and humidity values in the environment. The authors believe that their proposed artificial neural network model and multivariable least-squares regression analysis will help predict the electric field intensity in an environment in advance. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
birgHPC: creating instant computing clusters for bioinformatics and molecular dynamics.
Chew, Teong Han; Joyce-Tan, Kwee Hong; Akma, Farizuwana; Shamsir, Mohd Shahir
2011-05-01
birgHPC, a bootable Linux Live CD has been developed to create high-performance clusters for bioinformatics and molecular dynamics studies using any Local Area Network (LAN)-networked computers. birgHPC features automated hardware and slots detection as well as provides a simple job submission interface. The latest versions of GROMACS, NAMD, mpiBLAST and ClustalW-MPI can be run in parallel by simply booting the birgHPC CD or flash drive from the head node, which immediately positions the rest of the PCs on the network as computing nodes. Thus, a temporary, affordable, scalable and high-performance computing environment can be built by non-computing-based researchers using low-cost commodity hardware. The birgHPC Live CD and relevant user guide are available for free at http://birg1.fbb.utm.my/birghpc.
Digital Identity Formation: Socially Being Real and Present on Digital Networks
ERIC Educational Resources Information Center
Bozkurt, Aras; Tu, Chih-Hsiung
2016-01-01
Social networks have become popular communication and interaction environments recently. As digital environments, so as ecosystems, they have potential in terms of networked learning as they fulfill some roles such as mediating an environment for digital identity formation and providing social and emotional presence. Based on this phenomenon, the…
Sociospace: A smart social framework based on the IP Multimedia Subsystem
NASA Astrophysics Data System (ADS)
Hasswa, Ahmed
Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart Spaces that can truly deliver adaptive services that enhance the users' overall experience, increase their satisfaction, and make the surroundings more beneficial and interesting to them.
Environmental versatility promotes modularity in genome-scale metabolic networks.
Samal, Areejit; Wagner, Andreas; Martin, Olivier C
2011-08-24
The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the environments we consider and to the number of reactions in a metabolic network. Because we observe this principle not just in one or few biological networks, but in large random samples of networks, we propose that it may be a generic principle of metabolic network organization.
NASA Astrophysics Data System (ADS)
Timonen, Jussi; Vankka, Jouko
2013-05-01
This paper presents a solution for information integration and sharing architecture, which is able to receive data simultaneously from multiple different sensor networks. Creating a Common Operational Picture (COP) object along with the base map of the building plays a key role in the research. The object is combined with desired map sources and then shared to the mobile devices worn by soldiers in the field. The sensor networks we used focus on location techniques indoors, and a simple set of symbols is created to present the information, as an addition to NATO APP6B symbols. A core element in this research is the MUSAS (Mobile Urban Situational Awareness System), a demonstration environment that implements central functionalities. Information integration of the system is handled by the Internet Connection Engine (Ice) middleware, as well as the server, which hosts COP information and maps. The entire system is closed, such that it does not need any external service, and the information transfer with the mobile devices is organized by a tactical 5 GHz WLAN solution. The demonstration environment is implemented using only commercial off-theshelf (COTS) products. We have presented a field experiment event in which the system was able to integrate and share real time information of a blue force tracking system, received signal strength indicator (RSSI) based intrusion detection system, and a robot using simultaneous location and mapping technology (SLAM), where all the inputs were based on real activities. The event was held in a training area on urban area warfare.
A study of IEEE 802.15.4 security framework for wireless body area networks.
Saleem, Shahnaz; Ullah, Sana; Kwak, Kyung Sup
2011-01-01
A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.
A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Networks
Saleem, Shahnaz; Ullah, Sana; Kwak, Kyung Sup
2011-01-01
A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN. PMID:22319358
Hiking trails and tourism impact assessment in protected area: Jiuzhaigou Biosphere Reserve, China.
Li, Wenjun; Ge, Xiaodong; Liu, Chunyan
2005-09-01
More and more visitors are attracted to protected areas nowadays, which not only bring about economic increase but also seriously adverse impacts on the ecological environment. In protected areas, trails are linkage between visitors and natural ecosystem, so they concentrate most of the adverse impacts caused by visitors. The trampling problems on the trails have been received attentions in the tremendous researches. However, few of them have correlated the environmental impacts to trail spatial patterns. In this project, the trails were selected as assessment objective, the trampling problems trail widening, multiple trail, and root exposure were taken as assessment indicators to assess ecological impacts in the case study area Jiuzhaigou Biosphere Reserve, and two spatial index, connectivity and circularity, were taken to indicate the trail network spatial patterns. The research results showed that the appearing frequency of the trampling problems had inverse correlation with the circularity and connectivity of the trail network, while the problem extent had no correlation with the spatial pattern. Comparing with the pristine trails, the artificial maintenance for the trails such as wooden trails and flagstone trails could prohibit vegetation root from exposure effectively. The research finds will be useful for the future trail design and tourism management.
47 CFR 54.518 - Support for wide area networks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Support for wide area networks. 54.518 Section... area networks. To the extent that states, schools, or libraries build or purchase a wide area network to provide telecommunications services, the cost of such wide area networks shall not be eligible for...
NASA Astrophysics Data System (ADS)
Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.
2017-09-01
Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.
Jail Mental Health Resourcing: A Conceptual and Empirical Study of Social Determinants.
Helms, Ronald; Gutierrez, Ricky S; Reeves-Gutierrez, Debra
2016-07-01
U.S. county jails hold large populations of mentally ill inmates but have rarely been researched quantitatively to assess their collective capacity for providing mental health treatment. This research uses ordinal logit and a partial parallel slopes model and a large sample of U.S. counties to assess conceptualized links between local institutional and structural indicators and jail mental health resourcing. Strong church networks and high rates of adult education completion are associated with enhanced jail mental health resourcing. Urbanized areas and areas with deep economic ties to manufacturing appear supportive of a strong jail mental health system. Conversely, conservative political environments and areas with strong medical and mental health networks based in the community are correlated with reduced jail mental health resourcing. Evidence from this research adds to a growing understanding of the need for enhanced community mental health service and diagnostic capabilities in our nation's jails, noting the characteristics and correlates of model program jurisdictions and jurisdictions where program enhancements are most likely in order. © The Author(s) 2015.
SmallTool - a toolkit for realizing shared virtual environments on the Internet
NASA Astrophysics Data System (ADS)
Broll, Wolfgang
1998-09-01
With increasing graphics capabilities of computers and higher network communication speed, networked virtual environments have become available to a large number of people. While the virtual reality modelling language (VRML) provides users with the ability to exchange 3D data, there is still a lack of appropriate support to realize large-scale multi-user applications on the Internet. In this paper we will present SmallTool, a toolkit to support shared virtual environments on the Internet. The toolkit consists of a VRML-based parsing and rendering library, a device library, and a network library. This paper will focus on the networking architecture, provided by the network library - the distributed worlds transfer and communication protocol (DWTP). DWTP provides an application-independent network architecture to support large-scale multi-user environments on the Internet.
NASA Astrophysics Data System (ADS)
Kavanagh, K.; Davis, A.; Gessler, P.; Hess, H.; Holden, Z.; Link, T. E.; Newingham, B. A.; Smith, A. M.; Robinson, P.
2011-12-01
Developing sensor networks that are robust enough to perform in the world's remote regions is critical since these regions serve as important benchmarks compared to human-dominated areas. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. We aim to overcome these challenges by developing a three-dimensional sensor network arrayed across a topoclimatic gradient (1100-1800 meters) in a wilderness area in central Idaho. Development of this sensor array builds upon advances in sensing, networking, and power supply technologies coupled with experiences of the multidisciplinary investigators in conducting research in remote mountainous locations. The proposed gradient monitoring network will provide near real-time data from a three-dimensional (3-D) array of sensors measuring biophysical parameters used in ecosystem process models. The network will monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, tree stem growth and leaf wetness at time intervals ranging from seconds to days. The long-term goal of this project is to realize a transformative integration of smart sensor networks adaptively communicating data in real-time to ultimately achieve a 3-D visualization of ecosystem processes within remote mountainous regions. Process models will be the interface between the visualization platforms and the sensor network. This will allow us to better predict how non-human dominated terrestrial and aquatic ecosystems function and respond to climate dynamics. Access to the data will be ensured as part of the Northwest Knowledge Network being developed at the University of Idaho, through ongoing Idaho NSF-funded cyber infrastructure initiatives, and existing data management systems funded by NSF, such as the CUAHSI Hydrologic Information System (HIS). These efforts will enhance cross-disciplinary understanding of natural and anthropogenic influences on ecosystem function and ultimately inform decision-making.
Enabling IPv6 at FZU - WLCG Tier2 in Prague
NASA Astrophysics Data System (ADS)
Kouba, Tomáš; Chudoba, Jiří; Eliáš, Marek
2014-06-01
The usage of the new IPv6 protocol in production is becoming reality in the HEP community and the Computing Centre of the Institute of Physics in Prague participates in many IPv6 related activities. Our contribution presents experience with monitoring in HEPiX distributed IPv6 testbed which includes 11 remote sites. We use Nagios to check availability of services and Smokeping for monitoring the network latency. Since it is not always trivial to setup DNS in a dual stack environment properly, we developed a Nagios plugin for checking whether a domain name is resolvable when using only IP protocol version 6 and only version 4. We will also present local area network monitoring and tuning related to IPv6 performance. One of the most important software for a grid site is a batch system for a job execution. We will present our experience with configuring and running Torque batch system in a dual stack environment. We also discuss the steps needed to run VO specific jobs in our IPv6 testbed.
de Miguel-Bilbao, Silvia; Aguirre, Erik; Lopez Iturri, Peio; Azpilicueta, Leire; Roldán, José; Falcone, Francisco; Ramos, Victoria
2015-01-01
In the last decade the number of wireless devices operating at the frequency band of 2.4 GHz has increased in several settings, such as healthcare, occupational, and household. In this work, the emissions from Wi-Fi transceivers applicable to context aware scenarios are analyzed in terms of potential interference and assessment on exposure guideline compliance. Near field measurement results as well as deterministic simulation results on realistic indoor environments are presented, providing insight on the interaction between the Wi-Fi transceiver and implantable/body area network devices as well as other transceivers operating within an indoor environment, exhibiting topological and morphological complexity. By following approaches (near field estimation/deterministic estimation), colocated body situations as well as large indoor emissions can be determined. The results show in general compliance with exposure levels and the impact of overall network deployment, which can be optimized in order to reduce overall interference levels while maximizing system performance.
de Miguel-Bilbao, Silvia; Aguirre, Erik; Lopez Iturri, Peio; Azpilicueta, Leire; Roldán, José; Falcone, Francisco; Ramos, Victoria
2015-01-01
In the last decade the number of wireless devices operating at the frequency band of 2.4 GHz has increased in several settings, such as healthcare, occupational, and household. In this work, the emissions from Wi-Fi transceivers applicable to context aware scenarios are analyzed in terms of potential interference and assessment on exposure guideline compliance. Near field measurement results as well as deterministic simulation results on realistic indoor environments are presented, providing insight on the interaction between the Wi-Fi transceiver and implantable/body area network devices as well as other transceivers operating within an indoor environment, exhibiting topological and morphological complexity. By following approaches (near field estimation/deterministic estimation), colocated body situations as well as large indoor emissions can be determined. The results show in general compliance with exposure levels and the impact of overall network deployment, which can be optimized in order to reduce overall interference levels while maximizing system performance. PMID:25632400
QoS-Oriented High Dynamic Resource Allocation in Vehicular Communication Networks
2014-01-01
Vehicular ad hoc networks (VANETs) are emerging as new research area and attracting an increasing attention from both industry and research communities. In this context, a dynamic resource allocation policy that maximizes the use of available resources and meets the quality of service (QoS) requirement of constraining applications is proposed. It is a combination of a fair packet scheduling policy and a new adaptive QoS oriented call admission control (CAC) scheme based on the vehicle density variation. This scheme decides whether the connection request is to be admitted into the system, while providing fair access and guaranteeing the desired throughput. The proposed algorithm showed good performance in testing in real world environment. PMID:24616639
A Risk Factor Analysis of West Nile Virus: Extraction of Relationships from a Neural-Network Model
NASA Astrophysics Data System (ADS)
Ghosh, Debarchana; Guha, Rajarshi
The West Nile Virus (WNV) is an infectious disease spreading rapidly throughout the United States, causing illness among thousands of birds, animals, and humans. The broad categories of risk factors underlying WNV incidences are: environmental, socioeconomic, built-environment, and existing mosquito abatement policies. Computational neural network (CNN) model was developed to understand the occurrence of WNV infected dead birds because of their ability to capture complex relationships with higher accuracy than linear models. In this paper, we describe a method to interpret a CNN model by considering the final optimized weights. The research was conducted in the Metropolitan area of Minnesota, which had experienced significant outbreaks from 2002 till present.
Economic model for QoS guarantee on the Internet
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wei, Jiaolong
2001-09-01
This paper describes a QoS guarantee architecture suited for best-effort environments, based on ideas from microeconomics and non-cooperative game theory. First, an analytic model is developed for the study of the resource allocation in the Internet. Then we show that with a simple pricing mechanism (from network implementation and users' points-of-view), we were able to provide QoS guarantee at per flow level without resource allocation or complicated scheduling mechanisms or maintaining per flow state in the core network. Unlike the previous work on this area, we extend the basic model to support inelastic applications which require minimum bandwidth guarantees for a given time period by introducing derivative market.
Constructing of Research-Oriented Learning Mode Based on Network Environment
ERIC Educational Resources Information Center
Wang, Ying; Li, Bing; Xie, Bai-zhi
2007-01-01
Research-oriented learning mode that based on network is significant to cultivate comprehensive-developing innovative person with network teaching in education for all-around development. This paper establishes a research-oriented learning mode by aiming at the problems existing in research-oriented learning based on network environment, and…
Low-Cost Sensor Units for Measuring Urban Air Quality
NASA Astrophysics Data System (ADS)
Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.
2010-12-01
Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.
Assessment of long-term spatio-temporal radiofrequency electromagnetic field exposure.
Aerts, Sam; Wiart, Joe; Martens, Luc; Joseph, Wout
2018-02-01
As both the environment and telecommunications networks are inherently dynamic, our exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) at an arbitrary location is not at all constant in time. In this study, more than a year's worth of measurement data collected in a fixed low-cost exposimeter network distributed over an urban environment was analysed and used to build, for the first time, a full spatio-temporal surrogate model of outdoor exposure to downlink Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) signals. Though no global trend was discovered over the measuring period, the difference in measured exposure between two instances could reach up to 42dB (a factor 12,000 in power density). Furthermore, it was found that, taking into account the hour and day of the measurement, the accuracy of the surrogate model in the area under study was improved by up to 50% compared to models that neglect the daily temporal variability of the RF signals. However, further study is required to assess the extent to which the results obtained in the considered environment can be extrapolated to other geographic locations. Copyright © 2017 Elsevier Inc. All rights reserved.
Hong, Sung-Ryong; Na, Wonshik; Kang, Jang-Mook
2010-01-01
This study suggests an approach to effective transmission of multimedia content in a rapidly changing Internet environment including smart-phones. Guaranteeing QoS in networks is currently an important research topic. When transmitting Assured Forwarding (AF) packets in a Multi-DiffServ network environment, network A may assign priority in an order AF1, AF2, AF3 and AF4; on the other hand, network B may reverse the order to a priority AF4, AF3, AF2 and AF1. In this case, the AF1 packets that received the best quality of service in network A will receive the lowest in network B, which may result in dropping of packets in network B and vice versa. This study suggests a way to guarantee QoS between hosts by minimizing the loss of AF packet class when one network transmits AF class packets to another network with differing principles. It is expected that QoS guarantees and their experimental value may be utilized as principles which can be applied to various mobile-web environments based on smart-phones.
Hong, Sung-Ryong; Na, Wonshik; Kang, Jang-Mook
2010-01-01
This study suggests an approach to effective transmission of multimedia content in a rapidly changing Internet environment including smart-phones. Guaranteeing QoS in networks is currently an important research topic. When transmitting Assured Forwarding (AF) packets in a Multi-DiffServ network environment, network A may assign priority in an order AF1, AF2, AF3 and AF4; on the other hand, network B may reverse the order to a priority AF4, AF3, AF2 and AF1. In this case, the AF1 packets that received the best quality of service in network A will receive the lowest in network B, which may result in dropping of packets in network B and vice versa. This study suggests a way to guarantee QoS between hosts by minimizing the loss of AF packet class when one network transmits AF class packets to another network with differing principles. It is expected that QoS guarantees and their experimental value may be utilized as principles which can be applied to various mobile-web environments based on smart-phones. PMID:22163453
LavaNet—Neural network development environment in a general mine planning package
NASA Astrophysics Data System (ADS)
Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.
2011-04-01
LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.
Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks.
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2013-06-01
Wireless body area networks (WBANs) are cyber-physical systems (CPS) that have emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance including depleting the energy of WBAN nodes more quickly, and even eventually jeopardize people's lives due to unreliable (caused by the interference) healthcare data collections. Therefore, It is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs due to their ignoring the social nature of WBANs. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people's social interaction information. Our major contributions include: (1) model the inter-WBANs interference, and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; (2) develop social interaction detection and prediction algorithms for people carrying WBANs; (3) develop a power control game based on the social interaction information to maximize the system's utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks.
Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2014-01-01
Wireless body area networks (WBANs) are cyber-physical systems (CPS) that have emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance including depleting the energy of WBAN nodes more quickly, and even eventually jeopardize people’s lives due to unreliable (caused by the interference) healthcare data collections. Therefore, It is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs due to their ignoring the social nature of WBANs. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people’s social interaction information. Our major contributions include: (1) model the inter-WBANs interference, and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; (2) develop social interaction detection and prediction algorithms for people carrying WBANs; (3) develop a power control game based on the social interaction information to maximize the system’s utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks. PMID:25436180
Low-power cryptographic coprocessor for autonomous wireless sensor networks
NASA Astrophysics Data System (ADS)
Olszyna, Jakub; Winiecki, Wiesław
2013-10-01
The concept of autonomous wireless sensor networks involves energy harvesting, as well as effective management of system resources. Public-key cryptography (PKC) offers the advantage of elegant key agreement schemes with which a secret key can be securely established over unsecure channels. In addition to solving the key management problem, the other major application of PKC is digital signatures, with which non-repudiation of messages exchanges can be achieved. The motivation for studying low-power and area efficient modular arithmetic algorithms comes from enabling public-key security for low-power devices that can perform under constrained environment like autonomous wireless sensor networks. This paper presents a cryptographic coprocessor tailored to the autonomous wireless sensor networks constraints. Such hardware circuit is aimed to support the implementation of different public-key cryptosystems based on modular arithmetic in GF(p) and GF(2m). Key components of the coprocessor are described as GEZEL models and can be easily transformed to VHDL and implemented in hardware.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.
2002-01-01
This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.
NASA Technical Reports Server (NTRS)
Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.
2006-01-01
Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.
A soil sampling intercomparison exercise for the ALMERA network.
Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas
2009-11-01
Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.
In-Space Networking On NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David; Eddy, Wesley M.; Clark, Gilbert J., III; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios (SDRs) and a programmable flight computer. The purpose of the Testbed is to conduct inspace research in the areas of communication, navigation, and networking in support of NASA missions and communication infrastructure. Multiple reprogrammable elements in the end to end system, along with several communication paths and a semi-operational environment, provides a unique opportunity to explore networking concepts and protocols envisioned for the future Solar System Internet (SSI). This paper will provide a general description of the system's design and the networking protocols implemented and characterized on the testbed, including Encapsulation, IP over CCSDS, and Delay-Tolerant Networking (DTN). Due to the research nature of the implementation, flexibility and robustness are considered in the design to enable expansion for future adaptive and cognitive techniques. Following a detailed design discussion, lessons learned and suggestions for future missions and communication infrastructure elements will be provided. Plans for the evolving research on SCaN Testbed as it moves towards a more adaptive, autonomous system will be discussed.
Agerskov, Claus
2016-04-01
A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics.
Distributed simulation using a real-time shared memory network
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Mattern, Duane L.; Wong, Edmond; Musgrave, Jeffrey L.
1993-01-01
The Advanced Control Technology Branch of the NASA Lewis Research Center performs research in the area of advanced digital controls for aeronautic and space propulsion systems. This work requires the real-time implementation of both control software and complex dynamical models of the propulsion system. We are implementing these systems in a distributed, multi-vendor computer environment. Therefore, a need exists for real-time communication and synchronization between the distributed multi-vendor computers. A shared memory network is a potential solution which offers several advantages over other real-time communication approaches. A candidate shared memory network was tested for basic performance. The shared memory network was then used to implement a distributed simulation of a ramjet engine. The accuracy and execution time of the distributed simulation was measured and compared to the performance of the non-partitioned simulation. The ease of partitioning the simulation, the minimal time required to develop for communication between the processors and the resulting execution time all indicate that the shared memory network is a real-time communication technique worthy of serious consideration.
Advanced Environmental Monitoring and Control Program: Technology Development Requirements
NASA Technical Reports Server (NTRS)
Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)
1996-01-01
Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.
Wireless security in mobile health.
Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan
2012-12-01
Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.
Eriksson, Ulrika; Asplund, Kenneth; Sellström, Eva
2010-01-01
People are influenced by the neighborhood in which they live. The neighborhood may be particularly important for children's wellbeing because of the constraints it imposes on their patterns of daily activities. Furthermore, the neighborhood is a central context for social development, being a place where children form networks and learn social skills and values. The aim of this study was to describe how social capital in the neighborhood is perceived by children living in rural areas, and to reveal what this adds to their sense of wellbeing. The study had a descriptive research design with a qualitative approach. Seven single-sex focus group interviews were conducted with children the in 6th grade (aged 11-12 years). Data were analyzed using deductive content analysis. The children perceived a lack of social capital due to environmental and social constraints in their everyday lives. However, their wellbeing was enhanced by strong cohesion in the neighborhood. In addition, settings such as the school, the natural environment, and sporting associations were highly valued and emerged as crucial factors for enhancing the children's wellbeing. The spatial isolation that characterizes rural areas created a special context of social network structures, cohesion and trust, but was also a breeding ground for exclusion and social control. The stories revealed paradoxical feelings of living in a good and safe area that simultaneously felt isolated and restricted. From a rural perspective, this study reveals the complexity of the children's perceptions of their social environment, and the ways in which these perceptions have both positive and negative effects on wellbeing. The results highlight how important it is for health professionals in rural areas to consider the complex influence of bonding social capital on children's wellbeing, and to be aware that it can promote exclusion as well as cohesion.
Vehicle-network defensive aids suite
NASA Astrophysics Data System (ADS)
Rapanotti, John
2005-05-01
Defensive Aids Suites (DAS) developed for vehicles can be extended to the vehicle network level. The vehicle network, typically comprising four platoon vehicles, will benefit from improved communications and automation based on low latency response to threats from a flexible, dynamic, self-healing network environment. Improved DAS performance and reliability relies on four complementary sensor technologies including: acoustics, visible and infrared optics, laser detection and radar. Long-range passive threat detection and avoidance is based on dual-purpose optics, primarily designed for manoeuvring, targeting and surveillance, combined with dazzling, obscuration and countermanoeuvres. Short-range active armour is based on search and track radar and intercepting grenades to defeat the threat. Acoustic threat detection increases the overall robustness of the DAS and extends the detection range to include small calibers. Finally, detection of active targeting systems is carried out with laser and radar warning receivers. Synthetic scene generation will provide the integrated environment needed to investigate, develop and validate these new capabilities. Computer generated imagery, based on validated models and an acceptable set of benchmark vignettes, can be used to investigate and develop fieldable sensors driven by real-time algorithms and countermeasure strategies. The synthetic scene environment will be suitable for sensor and countermeasure development in hardware-in-the-loop simulation. The research effort focuses on two key technical areas: a) computing aspects of the synthetic scene generation and b) and development of adapted models and databases. OneSAF is being developed for research and development, in addition to the original requirement of Simulation and Modelling for Acquisition, Rehearsal, Requirements and Training (SMARRT), and is becoming useful as a means for transferring technology to other users, researchers and contractors. This procedure eliminates the need to construct ad hoc models and databases. The vehicle network can be modelled phenomenologically until more information is available. These concepts and approach will be discussed in the paper.
Out of focus - brain attention control deficits in adult ADHD.
Salmi, Juha; Salmela, Viljami; Salo, Emma; Mikkola, Katri; Leppämäki, Sami; Tani, Pekka; Hokkanen, Laura; Laasonen, Marja; Numminen, Jussi; Alho, Kimmo
2018-04-24
Modern environments are full of information, and place high demands on the attention control mechanisms that allow the selection of information from one (focused attention) or multiple (divided attention) sources, react to changes in a given situation (stimulus-driven attention), and allocate effort according to demands (task-positive and task-negative activity). We aimed to reveal how attention deficit hyperactivity disorder (ADHD) affects the brain functions associated with these attention control processes in constantly demanding tasks. Sixteen adults with ADHD and 17 controls performed adaptive visual and auditory discrimination tasks during functional magnetic resonance imaging (fMRI). Overlapping brain activity in frontoparietal saliency and default-mode networks, as well as in the somato-motor, cerebellar, and striatal areas were observed in all participants. In the ADHD participants, we observed exclusive activity enhancement in the brain areas typically considered to be primarily involved in other attention control functions: During auditory-focused attention, we observed higher activation in the sensory cortical areas of irrelevant modality and the default-mode network (DMN). DMN activity also increased during divided attention in the ADHD group, in turn decreasing during a simple button-press task. Adding irrelevant stimulation resulted in enhanced activity in the salience network. Finally, the irrelevant distractors that capture attention in a stimulus-driven manner activated dorsal attention networks and the cerebellum. Our findings suggest that attention control deficits involve the activation of irrelevant sensory modality, problems in regulating the level of attention on demand, and may encumber top-down processing in cases of irrelevant information. Copyright © 2018. Published by Elsevier B.V.
van Os, Jim; Rutten, Bart PF; Poulton, Richie
2008-01-01
Concern is building about high rates of schizophrenia in large cities, and among immigrants, cannabis users, and traumatized individuals, some of which likely reflects the causal influence of environmental exposures. This, in combination with very slow progress in the area of molecular genetics, has generated interest in more complicated models of schizophrenia etiology that explicitly posit gene-environment interactions (EU-GEI. European Network of Schizophrenia Networks for the Study of Gene Environment Interactions. Schizophrenia aetiology: do gene-environment interactions hold the key? [published online ahead of print April 25, 2008] Schizophr Res; S0920-9964(08) 00170–9). Although findings of epidemiological gene-environment interaction (G × E) studies are suggestive of widespread gene-environment interactions in the etiology of schizophrenia, numerous challenges remain. For example, attempts to identify gene-environment interactions cannot be equated with molecular genetic studies with a few putative environmental variables “thrown in”: G × E is a multidisciplinary exercise involving epidemiology, psychology, psychiatry, neuroscience, neuroimaging, pharmacology, biostatistics, and genetics. Epidemiological G × E studies using indirect measures of genetic risk in genetically sensitive designs have the advantage that they are able to model the net, albeit nonspecific, genetic load. In studies using direct molecular measures of genetic variation, a hypothesis-driven approach postulating synergistic effects between genes and environment impacting on a final common pathway, such as “sensitization” of mesolimbic dopamine neurotransmission, while simplistic, may provide initial focus and protection against the numerous false-positive and false-negative results that these investigations engender. Experimental ecogenetic approaches with randomized assignment may help to overcome some of the limitations of observational studies and allow for the additional elucidation of underlying mechanisms using a combination of functional enviromics and functional genomics. PMID:18791076
ERIC Educational Resources Information Center
Ergün, Esin; Usluel, Yasemin Koçak
2016-01-01
In this study, we assessed the communication structure in an educational online learning environment using social network analysis (SNA). The communication structure was examined with respect to time, and instructor's participation. The course was implemented using ELGG, a network learning environment, blended with face-to-face sessions over a…
NASA Astrophysics Data System (ADS)
Cayirci, Erdal; Rong, Chunming; Huiskamp, Wim; Verkoelen, Cor
Military/civilian education training and experimentation networks (ETEN) are an important application area for the cloud computing concept. However, major security challenges have to be overcome to realize an ETEN. These challenges can be categorized as security challenges typical to any cloud and multi-level security challenges specific to an ETEN environment. The cloud approach for ETEN is introduced and its security challenges are explained in this paper.
Monowar, Muhammad Mostafa; Bajaber, Fuad
2015-06-15
In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches.
Monowar, Muhammad Mostafa; Bajaber, Fuad
2015-01-01
In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches. PMID:26083228
Network-level accident-mapping: Distance based pattern matching using artificial neural network.
Deka, Lipika; Quddus, Mohammed
2014-04-01
The objective of an accident-mapping algorithm is to snap traffic accidents onto the correct road segments. Assigning accidents onto the correct segments facilitate to robustly carry out some key analyses in accident research including the identification of accident hot-spots, network-level risk mapping and segment-level accident risk modelling. Existing risk mapping algorithms have some severe limitations: (i) they are not easily 'transferable' as the algorithms are specific to given accident datasets; (ii) they do not perform well in all road-network environments such as in areas of dense road network; and (iii) the methods used do not perform well in addressing inaccuracies inherent in and type of road environment. The purpose of this paper is to develop a new accident mapping algorithm based on the common variables observed in most accident databases (e.g. road name and type, direction of vehicle movement before the accident and recorded accident location). The challenges here are to: (i) develop a method that takes into account uncertainties inherent to the recorded traffic accident data and the underlying digital road network data, (ii) accurately determine the type and proportion of inaccuracies, and (iii) develop a robust algorithm that can be adapted for any accident set and road network of varying complexity. In order to overcome these challenges, a distance based pattern-matching approach is used to identify the correct road segment. This is based on vectors containing feature values that are common in the accident data and the network data. Since each feature does not contribute equally towards the identification of the correct road segments, an ANN approach using the single-layer perceptron is used to assist in "learning" the relative importance of each feature in the distance calculation and hence the correct link identification. The performance of the developed algorithm was evaluated based on a reference accident dataset from the UK confirming that the accuracy is much better than other methods. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Climate change, coral reef ecosystems, and management options for marine protected areas.
Keller, Brian D; Gleason, Daniel F; McLeod, Elizabeth; Woodley, Christa M; Airamé, Satie; Causey, Billy D; Friedlander, Alan M; Grober-Dunsmore, Rikki; Johnson, Johanna E; Miller, Steven L; Steneck, Robert S
2009-12-01
Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more "traditional" stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.
The Ontario Benthos Biomonitoring Network
Chris Jones; Brian Craig; Nicole Dmytrow
2006-01-01
Canadaâs Ontario Ministry of the Environment and Environment Canada (Ecological Monitoring and Assessment Network) are developing an aquatic macroinvertebrate biomonitoring network for Ontarioâs lakes, streams, and wetlands. We are building the program, called the Ontario Benthos Biomonitoring Network (OBBN), on the principles of partnership, free data sharing, and...
Use of a wireless local area network in an orthodontic clinic.
Mupparapu, Muralidhar; Binder, Robert E; Cummins, John M
2005-06-01
Radiographic images and other patient records, including medical histories, demographics, and health insurance information, can now be stored digitally and accessed via patient management programs. However, digital image acquisition and diagnosis and treatment planning are independent tasks, and each is time consuming, especially when performed at different computer workstations. Networking or linking the computers in an office enhances access to imaging and treatment planning tools. Access can be further enhanced if the entire network is wireless. Thanks to wireless technology, stand-alone, desk-bound personal computers have been replaced with mobile, hand-held devices that can communicate with each other and the rest of the world via the Internet. As with any emerging technology, some issues should be kept in mind when adapting to the wireless environment. Foremost is network security. Second is the choice of mobile hardware devices that are used by the orthodontist, office staff, and patients. This article details the standards and choices in wireless technology that can be implemented in an orthodontic clinic and suggests how to select suitable mobile hardware for accessing or adding data to a preexisting network. The network security protocols discussed comply with HIPAA regulations and boost the efficiency of a modern orthodontic clinic.
Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks
Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio
2008-01-01
Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941
Toward controlling perturbations in robotic sensor networks
NASA Astrophysics Data System (ADS)
Banerjee, Ashis G.; Majumder, Saikat R.
2014-06-01
Robotic sensor networks (RSNs), which consist of networks of sensors placed on mobile robots, are being increasingly used for environment monitoring applications. In particular, a lot of work has been done on simultaneous localization and mapping of the robots, and optimal sensor placement for environment state estimation1. The deployment of RSNs, however, remains challenging in harsh environments where the RSNs have to deal with significant perturbations in the forms of wind gusts, turbulent water flows, sand storms, or blizzards that disrupt inter-robot communication and individual robot stability. Hence, there is a need to be able to control such perturbations and bring the networks to desirable states with stable nodes (robots) and minimal operational performance (environment sensing). Recent work has demonstrated the feasibility of controlling the non-linear dynamics in other communication networks like emergency management systems and power grids by introducing compensatory perturbations to restore network stability and operation2. In this paper, we develop a computational framework to investigate the usefulness of this approach for RSNs in marine environments. Preliminary analysis shows promising performance and identifies bounds on the original perturbations within which it is possible to control the networks.
Co-occurrence correlations of heavy metals in sediments revealed using network analysis.
Liu, Lili; Wang, Zhiping; Ju, Feng; Zhang, Tong
2015-01-01
In this study, the correlation-based study was used to identify the co-occurrence correlations among metals in marine sediment of Hong Kong, based on the long-term (from 1991 to 2011) temporal and spatial monitoring data. 14 stations out of the total 45 marine sediment monitoring stations were selected from three representative areas, including Deep Bay, Victoria Harbour and Mirs Bay. Firstly, Spearman's rank correlation-based network analysis was conducted as the first step to identify the co-occurrence correlations of metals from raw metadata, and then for further analysis using the normalized metadata. The correlations patterns obtained by network were consistent with those obtained by the other statistic normalization methods, including annual ratios, R-squared coefficient and Pearson correlation coefficient. Both Deep Bay and Victoria Harbour have been polluted by heavy metals, especially for Pb and Cu, which showed strong co-occurrence with other heavy metals (e.g. Cr, Ni, Zn and etc.) and little correlations with the reference parameters (Fe or Al). For Mirs Bay, which has better marine sediment quality compared with Deep Bay and Victoria Harbour, the co-occurrence patterns revealed by network analysis indicated that the metals in sediment dominantly followed the natural geography process. Besides the wide applications in biology, sociology and informatics, it is the first time to apply network analysis in the researches of environment pollutions. This study demonstrated its powerful application for revealing the co-occurrence correlations among heavy metals in marine sediments, which could be further applied for other pollutants in various environment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Background Investigations into knowledge about food and medicinal plants in a certain geographic area or within a specific group are an important element of ethnobotanical research. This knowledge is context specific and dynamic due to changing ecological, social and economic circumstances. Migration processes affect food habits and the knowledge and use of medicinal plants as a result of adaptations that have to be made to new surroundings and changing environments. This study analyses and compares the different dynamics in the transmission of knowledge about food and medicinal plants among Tyrolean migrants in Australia, Brazil and Peru. Methods A social network approach was used to collect data on personal networks of knowledge about food and medicinal plants among Tyroleans who have migrated to Australia, Brazil and Peru and their descendants. A statistical analysis of the personal network maps and a qualitative analysis of the narratives were combined to provide insight into the process of transmitting knowledge about food and medicinal plants. Results 56 personal networks were identified in all (food: 30; medicinal plants: 26) across all the field sites studied here. In both sets of networks, the main source of knowledge is individual people (food: 71%; medicinal plants: 68%). The other sources mentioned are print and audiovisual media, organisations and institutions. Personal networks of food knowledge are larger than personal networks of medicinal plant knowledge in all areas of investigation. Relatives play a major role as transmitters of knowledge in both domains. Conclusions Human sources, especially relatives, play an important role in knowledge transmission in both domains. Reference was made to other sources as well, such as books, television, the internet, schools and restaurants. By taking a personal network approach, this study reveals the mode of transmission of knowledge about food and medicinal plants within a migrational context. PMID:24398225
Haselmair, Ruth; Pirker, Heidemarie; Kuhn, Elisabeth; Vogl, Christian R
2014-01-07
Investigations into knowledge about food and medicinal plants in a certain geographic area or within a specific group are an important element of ethnobotanical research. This knowledge is context specific and dynamic due to changing ecological, social and economic circumstances. Migration processes affect food habits and the knowledge and use of medicinal plants as a result of adaptations that have to be made to new surroundings and changing environments. This study analyses and compares the different dynamics in the transmission of knowledge about food and medicinal plants among Tyrolean migrants in Australia, Brazil and Peru. A social network approach was used to collect data on personal networks of knowledge about food and medicinal plants among Tyroleans who have migrated to Australia, Brazil and Peru and their descendants. A statistical analysis of the personal network maps and a qualitative analysis of the narratives were combined to provide insight into the process of transmitting knowledge about food and medicinal plants. 56 personal networks were identified in all (food: 30; medicinal plants: 26) across all the field sites studied here. In both sets of networks, the main source of knowledge is individual people (food: 71%; medicinal plants: 68%). The other sources mentioned are print and audiovisual media, organisations and institutions. Personal networks of food knowledge are larger than personal networks of medicinal plant knowledge in all areas of investigation. Relatives play a major role as transmitters of knowledge in both domains. Human sources, especially relatives, play an important role in knowledge transmission in both domains. Reference was made to other sources as well, such as books, television, the internet, schools and restaurants. By taking a personal network approach, this study reveals the mode of transmission of knowledge about food and medicinal plants within a migrational context.
Doctor, Henry V; Olatunji, Alabi; Jumare, Abdul'azeez
2012-01-01
Maternal and child health indicators are generally poor in Nigeria with the northern part of the country having the worst indicators than the southern part. Efforts to address maternal and health challenges in Nigeria include, among others, improvement in health and management information systems. We report on the experience of mobile phone technology in supporting the activities of a health and demographic surveillance system in northern Nigeria. Our experience calls for the need for the Nigerian Government, the mobile network companies, and the international community at large to consolidate their efforts in addressing the mobile network coverage and power supply challenges in order to create an enabling environment for socio-economic development particularly in rural and disadvantaged areas. Unless power and mobile network challenges are addressed, health interventions that rely on mobile phone technology will not have a significant impact in improving maternal and child health.
Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks
Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco
2016-01-01
In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles. PMID:27399709
Decentralized Multisensory Information Integration in Neural Systems.
Zhang, Wen-Hao; Chen, Aihua; Rasch, Malte J; Wu, Si
2016-01-13
How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. Copyright © 2016 Zhang et al.
Decentralized Multisensory Information Integration in Neural Systems
Zhang, Wen-hao; Chen, Aihua
2016-01-01
How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. SIGNIFICANCE STATEMENT To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. PMID:26758843
Battlefield Medical Network: Biosensors In A Tactical Environment
2016-03-01
MEDICAL NETWORK: BIOSENSORS IN A TACTICAL ENVIRONMENT by Ralph R. Montgomery Yekaterina L. Anderson March 2016 Thesis Advisor: Alex...2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE BATTLEFIELD MEDICAL NETWORK: BIOSENSORS IN A TACTICAL ENVIRONMENT 5...School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/ A 10
Enhancing the Reliability of Head Nodes in Underwater Sensor Networks
Min, Hong; Cho, Yookun; Heo, Junyoung
2012-01-01
Underwater environments are quite different from terrestrial environments in terms of the communication media and operating conditions associated with those environments. In underwater sensor networks, the probability of node failure is high because sensor nodes are deployed in harsher environments than ground-based networks. The sensor nodes are surrounded by salt water and moved around by waves and currents. Many studies have focused on underwater communication environments in an effort to improve the data transmission throughput. In this paper, we present a checkpointing scheme for the head nodes to quickly recover from a head node failure. Experimental results show that the proposed scheme enhances the reliability of the networks and makes them more efficient in terms of energy consumption and the recovery latency compared to the previous scheme without checkpointing. PMID:22438707
Statistical Model Applied to NetFlow for Network Intrusion Detection
NASA Astrophysics Data System (ADS)
Proto, André; Alexandre, Leandro A.; Batista, Maira L.; Oliveira, Isabela L.; Cansian, Adriano M.
The computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application.
Scaffolding in Connectivist Mobile Learning Environment
ERIC Educational Resources Information Center
Ozan, Ozlem
2013-01-01
Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: (1) to learn in a networked environment; (2) to manage their…
Ocean Networks Canada's "Big Data" Initiative
NASA Astrophysics Data System (ADS)
Dewey, R. K.; Hoeberechts, M.; Moran, K.; Pirenne, B.; Owens, D.
2013-12-01
Ocean Networks Canada operates two large undersea observatories that collect, archive, and deliver data in real time over the Internet. These data contribute to our understanding of the complex changes taking place on our ocean planet. Ocean Networks Canada's VENUS was the world's first cabled seafloor observatory to enable researchers anywhere to connect in real time to undersea experiments and observations. Its NEPTUNE observatory is the largest cabled ocean observatory, spanning a wide range of ocean environments. Most recently, we installed a new small observatory in the Arctic. Together, these observatories deliver "Big Data" across many disciplines in a cohesive manner using the Oceans 2.0 data management and archiving system that provides national and international users with open access to real-time and archived data while also supporting a collaborative work environment. Ocean Networks Canada operates these observatories to support science, innovation, and learning in four priority areas: study of the impact of climate change on the ocean; the exploration and understanding the unique life forms in the extreme environments of the deep ocean and below the seafloor; the exchange of heat, fluids, and gases that move throughout the ocean and atmosphere; and the dynamics of earthquakes, tsunamis, and undersea landslides. To date, the Ocean Networks Canada archive contains over 130 TB (collected over 7 years) and the current rate of data acquisition is ~50 TB per year. This data set is complex and diverse. Making these "Big Data" accessible and attractive to users is our priority. In this presentation, we share our experience as a "Big Data" institution where we deliver simple and multi-dimensional calibrated data cubes to a diverse pool of users. Ocean Networks Canada also conducts extensive user testing. Test results guide future tool design and development of "Big Data" products. We strive to bridge the gap between the raw, archived data and the needs and experience of a diverse user community, each requiring tailored data visualization and integrated products. By doing this we aim to design tools that maximize exploitation of the data.
Formation Flying for Satellites and Unmanned Aerial Vehicles
NASA Technical Reports Server (NTRS)
Merrill, Garrick
2015-01-01
The shrinking size of satellites and unmanned aerial vehicles (UAVs) is enabling lower cost missions. As sensors and electronics continue to downsize, the next step is multiple vehicles providing different perspectives or variations for more precise measurements. While flying a single satellite or UAV autonomously is a challenge, flying multiple vehicles in a precise formation is even more challenging. The goal of this project is to develop a scalable mesh network between vehicles (satellites or UAVs) to share real-time position data and maintain formations autonomously. Newly available low-cost, commercial off-the-shelf credit card size computers will be used as the basis for this network. Mesh networking techniques will be used to provide redundant links and a flexible network. The Small Projects Rapid Integration and Test Environment Lab will be used to simulate formation flying of satellites. UAVs built by the Aero-M team will be used to demonstrate the formation flying in the West Test Area. The ability to test in flight on NASA-owned UAVs allows this technology to achieve a high Technology Readiness Level (TRL) (TRL-4 for satellites and TRL-7 for UAVs). The low cost of small UAVs and the availability of a large test range (West Test Area) dramatically reduces the expense of testing. The end goal is for this technology to be ready to use on any multiple satellite or UAV mission.
ERIC Educational Resources Information Center
Cohen, Moshe; And Others
Electronic networks provide new opportunities to create functional learning environments which allow students in many different locations to carry out joint educational activities. A set of participant observation studies was conducted in the context of a cross-cultural, cross-language network called the Intercultural Learning Network in order to…
Evolution of regulatory networks towards adaptability and stability in a changing environment
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
Testing the ability of a semidistributed hydrological model to simulate contributing area
NASA Astrophysics Data System (ADS)
Mengistu, S. G.; Spence, C.
2016-06-01
A dry climate, the prevalence of small depressions, and the lack of a well-developed drainage network are characteristics of environments with extremely variable contributing areas to runoff. These types of regions arguably present the greatest challenge to properly understanding catchment streamflow generation processes. Previous studies have shown that contributing area dynamics are important for streamflow response, but the nature of the relationship between the two is not typically understood. Furthermore, it is not often tested how well hydrological models simulate contributing area. In this study, the ability of a semidistributed hydrological model, the PDMROF configuration of Environment Canada's MESH model, was tested to determine if it could simulate contributing area. The study focused on the St. Denis Creek watershed in central Saskatchewan, Canada, which with its considerable topographic depressions, exhibits wide variation in contributing area, making it ideal for this type of investigation. MESH-PDMROF was able to replicate contributing area derived independently from satellite imagery. Daily model simulations revealed a hysteretic relationship between contributing area and streamflow not apparent from the less frequent remote sensing observations. This exercise revealed that contributing area extent can be simulated by a semi-distributed hydrological model with a scheme that assumes storage capacity distribution can be represented with a probability function. However, further investigation is needed to determine if it can adequately represent the complex relationship between streamflow and contributing area that is such a key signature of catchment behavior.
Requirements for a network storage service
NASA Technical Reports Server (NTRS)
Kelly, Suzanne M.; Haynes, Rena A.
1991-01-01
Sandia National Laboratories provides a high performance classified computer network as a core capability in support of its mission of nuclear weapons design and engineering, physical sciences research, and energy research and development. The network, locally known as the Internal Secure Network (ISN), comprises multiple distributed local area networks (LAN's) residing in New Mexico and California. The TCP/IP protocol suite is used for inter-node communications. Scientific workstations and mid-range computers, running UNIX-based operating systems, compose most LAN's. One LAN, operated by the Sandia Corporate Computing Computing Directorate, is a general purpose resource providing a supercomputer and a file server to the entire ISN. The current file server on the supercomputer LAN is an implementation of the Common File Server (CFS). Subsequent to the design of the ISN, Sandia reviewed its mass storage requirements and chose to enter into a competitive procurement to replace the existing file server with one more adaptable to a UNIX/TCP/IP environment. The requirements study for the network was the starting point for the requirements study for the new file server. The file server is called the Network Storage Service (NSS) and its requirements are described. An application or functional description of the NSS is given. The final section adds performance, capacity, and access constraints to the requirements.
A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems
Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling
2015-01-01
The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598
A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.
Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling
2015-12-12
The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.
NASA Astrophysics Data System (ADS)
Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.
2015-05-01
In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the simulated results, the proposed approach was found to simulate floodings closer to the survey records than other approaches because the physical rainfall-runoff phenomena in urban environment were better reflected.
Program Helps Simulate Neural Networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
Green wireless body area nanonetworks: energy management and the game of survival.
Misra, Sudip; Islam, Nabiul; Mahapatro, Judhistir; Rodrigues, Joel Jose P C
2014-03-01
In this paper, we envisage the architecture of Green Wireless Body Area Nanonetwork (GBAN) as a collection of nanodevices, in which each device is capable of communicating in both the molecular and wireless electromagnetic communication modes. The term green refers to the fact that the nanodevices in such a network can harvest energy from their surrounding environment, so that no nanodevice gets old solely due to the reasons attributed to energy depletion. However, the residual energy of a nanodevice can deplete substantially with the lapse of time, if the rate of energy consumption is not comparable with the rate of energy harvesting. It is observed that the rate of energy harvesting is nonlinear and sporadic in nature. So, the management of energy of the nanodevices is fundamentally important. We specifically address this problem in a ubiquitous healthcare monitoring scenario and formulate it as a cooperative Nash Bargaining game. The optimal strategy obtained from the Nash equilibrium solution provides improved network performance in terms of throughput and delay.
Local area networks in an imaging environment.
Noz, M E; Maguire, G Q; Erdman, W A
1986-01-01
There is great interest at present in incorporating image-management systems popularly referred to as picture archiving and communication systems (PACS) into imaging departments. This paper will describe various aspects of local area networks (LANs) for medical images and will give a definition of terms and classification of devices by describing a possible system which links various digital image sources through a high-speed data link and a common image format, allows for viewing and processing of all images produced within the complex, and eliminates the transport of films. The status of standards governing LAN and particularly PACS systems along with a proposed image exchange format will be given. Prototype systems, particularly a system for nuclear medicine images, will be presented, as well as the prospects for the immediate future in terms of installations started and commercial products available. A survey of the many questions that arise in the development of a PACS for medical images and also a survey of the presently suggested/adopted answers will be given.
Persistent neural activity in head direction cells
NASA Technical Reports Server (NTRS)
Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)
2003-01-01
Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.
A network-based distributed, media-rich computing and information environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, R.L.
1995-12-31
Sunrise is a Los Alamos National Laboratory (LANL) project started in October 1993. It is intended to be a prototype National Information Infrastructure development project. A main focus of Sunrise is to tie together enabling technologies (networking, object-oriented distributed computing, graphical interfaces, security, multi-media technologies, and data-mining technologies) with several specific applications. A diverse set of application areas was chosen to ensure that the solutions developed in the project are as generic as possible. Some of the application areas are materials modeling, medical records and image analysis, transportation simulations, and K-12 education. This paper provides a description of Sunrise andmore » a view of the architecture and objectives of this evolving project. The primary objectives of Sunrise are three-fold: (1) To develop common information-enabling tools for advanced scientific research and its applications to industry; (2) To enhance the capabilities of important research programs at the Laboratory; (3) To define a new way of collaboration between computer science and industrially-relevant research.« less
Crist, Michele R.; Knick, Steven T.; Hanser, Steven E.
2015-09-08
The network of areas delineated in 11 Western States for prioritizing management of greater sage-grouse (Centrocercus urophasianus) represents a grand experiment in conservation biology and reserve design. We used centrality metrics from social network theory to gain insights into how this priority area network might function. The network was highly centralized. Twenty of 188 priority areas accounted for 80 percent of the total centrality scores. These priority areas, characterized by large size and a central location in the range-wide distribution, are strongholds for greater sage-grouse populations and also might function as sources. Mid-ranking priority areas may serve as stepping stones because of their location between large central and smaller peripheral priority areas. The current network design and conservation strategy has risks. The contribution of almost one-half (n = 93) of the priority areas combined for less than 1 percent of the cumulative centrality scores for the network. These priority areas individually are likely too small to support viable sage-grouse populations within their boundary. Without habitat corridors to connect small priority areas either to larger priority areas or as a clustered group within the network, their isolation could lead to loss of sage-grouse within these regions of the network.
Application of ERTS-1-data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S.; Feinberg, E. B.; Mairs, R. L. (Principal Investigator); Woodward, D.; Thibault, D. A.; Macomber, R. T.
1973-01-01
The author has identified the following significant results. New Jersey's planned, regionalized network of sewage disposal facilities has been plotted on an ERTS-1 mosaic and circulation parameters for each of the planned outfall locations have been analyzed using the ERTS-1 imagery and comparative aircraft photography. Work is continuing on the circulation and dispersion of barge-dumped wastes in the New York Bight area. One of the largest remote sensing experiments ever attempted in this country was completed on April 7, 1973 during the ERTS-1 overpass. The test area included the northern portion of New Jersey and the Raritan Bay - New York Harbor area. Three NASA aircraft, two helicopters, nine surface vessels, 40 ground team personnel, and numerous oceanographic, radiometric, and meteorological equipment were deployed in an effort to characterize the surface and near-surface circulation dynamics in this 600 square mile area, during an entire tidal cycle. The analyses of these data in concert with all previous ERTS-1 overpasses will provide information that can lead to a better and more rational use of the nearshore marine environment. The data will be utilized to plan future outfall locations, regulating offshore disposal of wastes, etc.
Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.; ...
2016-03-26
In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.
In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less
Evans, B M
2003-02-01
The physiological mechanisms that underlie consciousness and unconsciousness are the sleep/wake mechanisms. Deep sleep is a state of physiological reversible unconsciousness. The change from that state to wakefulness is mediated by the reticular activating mechanism. The reverse change from wakefulness to sleep is also an active process effected by an arousal inhibitory mechanism based on a partial blockade of the thalamus and upper brain stem, associated with thalamic sleep spindles and also with cortical sub-delta activity (<1 Hz). The deactivation of the thalamus has been demonstrated both electrically and by positron emission tomography during deep sleep. Normally, wakefulness is associated with instant awareness (defined as the ability to integrate all sensory information from the external environment and the internal environment of the body). Awareness may be a function of the thalamo-cortical network in the cerebral hemispheres, which forms the final path of the sleep/wake mechanism. Anatomical and physiological studies suggest that there may be a double thalamo-cortical network; one relating to cortical and thalamic areas with specific functions and the other global, involving all cortical areas and so-called 'non-specific' thalamic nuclei. The global system might function as a cortical integrating mechanism permitting the spread of information between the specific cortical areas and thus underlying awareness. The global system may also be responsible for much of the spontaneous and evoked electrical activity of the brain. The cognitive change between sleep and wakefulness is accompanied by changes in the autonomic system, the cerebral blood flow and cerebral metabolism. Awareness is an essential component of total consciousness (defined as continuous awareness of the external and internal environment, both past and present, together with the emotions arising from it). In addition to awareness, full consciousness requires short-term and explicit memory and intact emotional responses.
A Framework for Integrating Multiple Biological Networks to Predict MicroRNA-Disease Associations.
Peng, Wei; Lan, Wei; Yu, Zeng; Wang, Jianxin; Pan, Yi
2017-03-01
MicroRNAs have close relationship with human diseases. Therefore, identifying disease related MicroRNAs plays an important role in disease diagnosis, prognosis and therapy. However, designing an effective computational method which can make good use of various biological resources and correctly predict the associations between MicroRNA and disease is still a big challenge. Previous researchers have pointed out that there are complex relationships among microRNAs, diseases and environment factors. There are inter-relationships between microRNAs, diseases or environment factors based on their functional similarity or phenotype similarity or chemical structure similarity and so on. There are also intra-relationships between microRNAs and diseases, microRNAs and environment factors, diseases and environment factors. Moreover, functionally similar microRNAs tend to associate with common diseases and common environment factors. The diseases with similar phenotypes are likely caused by common microRNAs and common environment factors. In this work, we propose a framework namely ThrRWMDE which can integrate these complex relationships to predict microRNA-disease associations. In this framework, microRNA similarity network (MFN), disease similarity network (DSN) and environmental factor similarity network (ESN) are constructed according to certain biological properties. Then, an unbalanced three random walking algorithm is implemented on the three networks so as to obtain information from neighbors in corresponding networks. This algorithm not only can flexibly infer information from different levels of neighbors with respect to the topological and structural differences of the three networks, but also in the course of working the functional information will be transferred from one network to another according to the associations between the nodes in different networks. The results of experiment show that our method achieves better prediction performance than other state-of-the-art methods.
ERIC Educational Resources Information Center
Casquero, Oskar; Ovelar, Ramón; Romo, Jesús; Benito, Manuel; Alberdi, Mikel
2016-01-01
The main objective of this paper is to analyse the effect of the affordances of a virtual learning environment and a personal learning environment (PLE) in the configuration of the students' personal networks in a higher education context. The results are discussed in light of the adaptation of the students to the learning network made up by two…
You, Ilsun; Sharma, Vishal; Atiquzzaman, Mohammed; Choo, Kim-Kwang Raymond
2016-01-01
With a more Internet-savvy and sophisticated user base, there are more demands for interactive applications and services. However, it is a challenge for existing radio access networks (e.g. 3G and 4G) to cope with the increasingly demanding requirements such as higher data rates and wider coverage area. One potential solution is the inter-collaborative deployment of multiple radio devices in a 5G setting designed to meet exacting user demands, and facilitate the high data rate requirements in the underlying networks. These heterogeneous 5G networks can readily resolve the data rate and coverage challenges. Networks established using the hybridization of existing networks have diverse military and civilian applications. However, there are inherent limitations in such networks such as irregular breakdown, node failures, and halts during speed transmissions. In recent years, there have been attempts to integrate heterogeneous 5G networks with existing ad hoc networks to provide a robust solution for delay-tolerant transmissions in the form of packet switched networks. However, continuous connectivity is still required in these networks, in order to efficiently regulate the flow to allow the formation of a robust network. Therefore, in this paper, we present a novel network formation consisting of nodes from different network maneuvered by Unmanned Aircraft (UA). The proposed model utilizes the features of a biological aspect of genomes and forms a delay tolerant network with existing network models. This allows us to provide continuous and robust connectivity. We then demonstrate that the proposed network model has an efficient data delivery, lower overheads and lesser delays with high convergence rate in comparison to existing approaches, based on evaluations in both real-time testbed and simulation environment.
GDTN: Genome-Based Delay Tolerant Network Formation in Heterogeneous 5G Using Inter-UA Collaboration
2016-01-01
With a more Internet-savvy and sophisticated user base, there are more demands for interactive applications and services. However, it is a challenge for existing radio access networks (e.g. 3G and 4G) to cope with the increasingly demanding requirements such as higher data rates and wider coverage area. One potential solution is the inter-collaborative deployment of multiple radio devices in a 5G setting designed to meet exacting user demands, and facilitate the high data rate requirements in the underlying networks. These heterogeneous 5G networks can readily resolve the data rate and coverage challenges. Networks established using the hybridization of existing networks have diverse military and civilian applications. However, there are inherent limitations in such networks such as irregular breakdown, node failures, and halts during speed transmissions. In recent years, there have been attempts to integrate heterogeneous 5G networks with existing ad hoc networks to provide a robust solution for delay-tolerant transmissions in the form of packet switched networks. However, continuous connectivity is still required in these networks, in order to efficiently regulate the flow to allow the formation of a robust network. Therefore, in this paper, we present a novel network formation consisting of nodes from different network maneuvered by Unmanned Aircraft (UA). The proposed model utilizes the features of a biological aspect of genomes and forms a delay tolerant network with existing network models. This allows us to provide continuous and robust connectivity. We then demonstrate that the proposed network model has an efficient data delivery, lower overheads and lesser delays with high convergence rate in comparison to existing approaches, based on evaluations in both real-time testbed and simulation environment. PMID:27973618
A High-Resolution Sensor Network for Monitoring Glacier Dynamics
NASA Astrophysics Data System (ADS)
Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.
2013-12-01
Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the adoption of beacon based time division multiple access (tdma). In-house single-epoch GNSS processing software provides 1-2 cm coordinate time-series capable of detecting a major calving event during the 2012 pilot study. These data can be synthesised with other remotely sensed data e.g. airborne lidar, oblique photogrammetry and TanDEM-X satellite imagery derived DEMs giving an opportunity to fine-tune glacial models delivering a deeper understanding of the contribution to sea-level rise made by tidewater glaciers such as Helheim. The flexibility of our network would make it suitable for deployment in other extreme environments such as areas at risk from earthquakes and landslides.
IBM PC/IX operating system evaluation plan
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Granier, Martin; Hall, Philip P.; Triantafyllopoulos, Spiros
1984-01-01
An evaluation plan for the IBM PC/IX Operating System designed for IBM PC/XT computers is discussed. The evaluation plan covers the areas of performance measurement and evaluation, software facilities available, man-machine interface considerations, networking, and the suitability of PC/IX as a development environment within the University of Southwestern Louisiana NASA PC Research and Development project. In order to compare and evaluate the PC/IX system, comparisons with other available UNIX-based systems are also included.
RF Environment Sensing Using Transceivers in Motion
2014-05-02
NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 02-05-2014 3-Aug-2012 2-Aug...Crossing Information in Wireless Networks, 2013 IEEE Global Conference on Signal and Information Processing. 03-DEC-13, . : , Dustin Maas, Joey Wilson...transceivers may be required to cover the entire monitored area. Second, and very importantly, there may not be sufficient time to deploy a large number of
Responses of Roadside Soil Cation Pools to Vehicular Emission Deposition in Southern California
NASA Astrophysics Data System (ADS)
Rossi, R.; Bain, D. J.; Jenerette, D.; Clarke, L. W.; Wilson, K.
2013-12-01
Roadside soils are heavily loaded with NO3- due to vehicular emissions. This deposition likely acidifies these soils, potentially mobilizing cationic species from soil exchange sites. Acidification driven mobilization is well documented in forest soils, but poorly understood in roadside soils. Metal concentrations in park and garden soils collected from Southern California were examined across gradients of soil chemistry, road network density, climate, and geology to examine cation mobilization effects. In our samples, soil pH is not clearly related to distance from the roadside or underlying geology. However, the depletion of several elements (Al, K) is clearly observed in near-road environments. These depletion trends occur despite contrary trends, including increased soil surface areas and soil organic matter in near-road environments. Additionally, inputs from the weathering of road building materials appear to affect soil chemistry. For example, soil Ca patterns remain relatively consistent relative to roads, suggesting Ca bearing weathering products replenish soil Ca pools in near-road areas. Simple mixing models constructed using elemental ratios are consistent with road material Ca source contributions. Observed near-road patterns in soil chemistry likely influence local ecological function, shifting plant communities and soil functions. Clear understanding of these shifts is essential to the effective use of green infrastructure and other strategies utilized to control road-sourced nutrients. This analytical framework can be applied globally as road networks continue to expand and affect larger ecosystems.
Distributed run of a one-dimensional model in a regional application using SOAP-based web services
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard
This article describes the setup of a distributed computing system in Perl. It facilitates the parallel run of a one-dimensional environmental model on a number of simple network PC hosts. The system uses Simple Object Access Protocol (SOAP) driven web services offering the model run on remote hosts and a multi-thread environment distributing the work and accessing the web services. Its application is demonstrated in a regional run of a process-oriented biogenic emission model for the area of Germany. Within a network consisting of up to seven web services implemented on Linux and MS-Windows hosts, a performance increase of approximately 400% has been reached compared to a model run on the fastest single host.
Space station data system analysis/architecture study. Task 3: Trade studies, DR-5, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
The primary objective of Task 3 is to provide additional analysis and insight necessary to support key design/programmatic decision for options quantification and selection for system definition. This includes: (1) the identification of key trade study topics; (2) the definition of a trade study procedure for each topic (issues to be resolved, key inputs, criteria/weighting, methodology); (3) conduct tradeoff and sensitivity analysis; and (4) the review/verification of results within the context of evolving system design and definition. The trade study topics addressed in this volume include space autonomy and function automation, software transportability, system network topology, communications standardization, onboard local area networking, distributed operating system, software configuration management, and the software development environment facility.
78 FR 78769 - Medical Body Area Networks
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... Area Networks AGENCY: Federal Communications Commission. ACTION: Final rule; announcement of effective... of Medical Body Area Networks'' adopted in a First Report and Order, ET Docket No. 08-59 (FCC 12-54... for the Operation of Medical Body Area Networks rules contained in the Commission's First Report and...
Delay and Disruption Tolerant Networking MACHETE Model
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.; Gao, Jay L.
2011-01-01
To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity, the ability to take advantage of scheduled and opportunistic connectivity, and late binding of names to addresses.
Volcanic Supersites as cross-disciplinary laboratories
NASA Astrophysics Data System (ADS)
Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe
2017-04-01
Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth surface between the top of the vegetation and the rock matrix in active volcanic areas and Volcanic Supersites.
Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin
2016-10-26
The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.
Neural bases of enhanced attentional control: Lessons from action video game players.
Föcker, Julia; Cole, Daniel; Beer, Anton L; Bavelier, Daphne
2018-06-19
The ability to resist distraction and focus on-task-relevant information while being responsive to changes in the environment is fundamental to goal-directed behavior. Such attentional control abilities are regulated by a constant interplay between previously characterized bottom-up and top-down attentional networks. Here we ask about the neural changes within these two attentional networks that may mediate enhanced attentional control. To address this question, we contrasted action video game players (AVGPs) and nonvideo game players (NVGPs) in a Posner-cueing paradigm, building on studies documenting enhanced attentional control in AVGPs. Behavioral results indicated a trend for more efficient target processing in AVGPs, and better suppression in rare catch trials for which responses had to be withheld. During the cue period, AVGPs recruited the top-down network less than NVGPs, despite showing comparable validity effects, in line with a greater efficiency of that network in AVGPs. During target processing, as previously shown, recruitment of top-down areas correlated with greater processing difficulties, but only in NVGPs. AVGPs showed no such effect, but rather greater activation across the two networks. In particular, the right temporoparietal junction, middle frontal gyrus, and superior parietal cortex predicted better task performance in catch trials. A functional connectivity analysis revealed enhanced correlated activity in AVGPs compared to NVGPs between parietal and visual areas. These results point to dynamic functional reconfigurations of top-down and bottom-up attentional networks in AVGPs as attentional demands vary. Aspects of this functional reconfiguration that may act as key signatures of high attentional control are discussed. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
47 CFR 54.518 - Support for wide area networks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Support for wide area networks. 54.518 Section... area networks. To the extent that schools, libraries or consortia that include an eligible school or library build or purchase a wide area network to provide telecommunications services, the cost of such...
A Neural Network Model to Learn Multiple Tasks under Dynamic Environments
NASA Astrophysics Data System (ADS)
Tsumori, Kenji; Ozawa, Seiichi
When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.
Resilient Localization for Sensor Networks in Outdoor Environments
2004-06-01
Sensor Networks in Outdoor Environments by YoungMin Kwon, Kirill Mechitov, Sameer Sundresh, Wooyoung Kim and Gul Agha June 2004 Report...Environments YoungMin Kwon, Kirill Mechitov, Sameer Sundresh, Wooyoung Kim and Gul Agha Department of Computer Science University of Illinois at Urbana
Generating realistic environments for cyber operations development, testing, and training
NASA Astrophysics Data System (ADS)
Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.
2012-06-01
Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.
Duque Domingo, Jaime; Cerrada, Carlos; Valero, Enrique; Cerrada, Jose A
2017-10-20
This work presents an Indoor Positioning System to estimate the location of people navigating in complex indoor environments. The developed technique combines WiFi Positioning Systems and depth maps , delivering promising results in complex inhabited environments, consisting of various connected rooms, where people are freely moving. This is a non-intrusive system in which personal information about subjects is not needed and, although RGB-D cameras are installed in the sensing area, users are only required to carry their smart-phones. In this article, the methods developed to combine the above-mentioned technologies and the experiments performed to test the system are detailed. The obtained results show a significant improvement in terms of accuracy and performance with respect to previous WiFi-based solutions as well as an extension in the range of operation.
Scientific Visualization in High Speed Network Environments
NASA Technical Reports Server (NTRS)
Vaziri, Arsi; Kutler, Paul (Technical Monitor)
1997-01-01
In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.
Self-organizing network services with evolutionary adaptation.
Nakano, Tadashi; Suda, Tatsuya
2005-09-01
This paper proposes a novel framework for developing adaptive and scalable network services. In the proposed framework, a network service is implemented as a group of autonomous agents that interact in the network environment. Agents in the proposed framework are autonomous and capable of simple behaviors (e.g., replication, migration, and death). In this paper, an evolutionary adaptation mechanism is designed using genetic algorithms (GAs) for agents to evolve their behaviors and improve their fitness values (e.g., response time to a service request) to the environment. The proposed framework is evaluated through simulations, and the simulation results demonstrate the ability of autonomous agents to adapt to the network environment. The proposed framework may be suitable for disseminating network services in dynamic and large-scale networks where a large number of data and services need to be replicated, moved, and deleted in a decentralized manner.
Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.
Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems. PMID:28809957
Research in network management techniques for tactical data communications networks
NASA Astrophysics Data System (ADS)
Boorstyn, R.; Kershenbaum, A.; Maglaris, B.; Sarachik, P.
1982-09-01
This is the final technical report for work performed on network management techniques for tactical data networks. It includes all technical papers that have been published during the control period. Research areas include Packet Network modelling, adaptive network routing, network design algorithms, network design techniques, and local area networks.
Dyson, Kate; Kruger, Estie; Tennant, Marc
2012-12-01
This study examines the cost effectiveness of a model of remote area oral health service. Retrospective financial analysis. Rural and remote primary health services. Clinical activity data and associated cost data relating to the provision of a networked visiting oral health service by the Centre for Rural and Remote Oral Health formed the basis of the study data frameset. The cost-effectiveness of the Centre's model of service provision at five rural and remote sites in Western Australia during the calendar years 2006, 2008 and 2010 was examined in the study. Calculations of the service provision costs and value of care provided were made using data records and the Fee Schedule of Dental Services for Dentists. The ratio of service provision costs to the value of care provided was determined for each site and was benchmarked against the equivalent ratios applicable to large scale government sector models of service provision. The use of networked models have been effective in other disciplines but this study is the first to show a networked hub and spoke approach of five spokes to one hub is cost efficient in remote oral health care. By excluding special cost-saving initiatives introduced by the Centre, the study examines easily translatable direct service provision costs against direct clinical care outcomes in some of Australia's most challenging locations. This study finds that networked hub and spoke models of care can be financially efficient arrangements in remote oral health care. © 2012 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.