The Role of Wireless Computing Technology in the Design of Schools.
ERIC Educational Resources Information Center
Nair, Prakash
2003-01-01
After briefly describing the educational advantages of wireless networks using mobile computers, discusses the technical, operational, financial aspects of wireless local area networks (WLAN). Provides examples of school facilities designed for the use of WLAN. Includes a glossary of WLAN-related terms. (Contains 12 references.)
Real time network traffic monitoring for wireless local area networks based on compressed sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.
Chung, Seungmin; Yi, Joohee
2013-01-01
Electromagnetic interference (EMI) can affect various medical devices. Herein, we report the case of EMI from wireless local area network (WLAN) on an electrocardiogram (ECG) monitoring system. A patient who had a prior myocardial infarction participated in the cardiac rehabilitation program in the sports medicine center of our hospital under the wireless ECG monitoring system. After WLAN was installed, wireless ECG monitoring system failed to show a proper ECG signal. ECG signal was distorted when WLAN was turned on, but it was normalized after turning off the WLAN. PMID:23613696
Wireless Networks: New Meaning to Ubiquitous Computing.
ERIC Educational Resources Information Center
Drew, Wilfred, Jr.
2003-01-01
Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…
The Brave New World of Wireless Technologies: A Primer for Educators.
ERIC Educational Resources Information Center
Boerner, Gerald L.
2002-01-01
Discusses the use of wireless local area networks (WLANs) on college campuses. Highlights include traditional wired networks; cost, speed, and reliability; wireless networking standards; mobility; installation speed, simplicity, and flexibility; reduced cost of ownership; scalability; security issues; and a glossary of WLAN terms. (LRW)
Wireless local area network security.
Bergeron, Bryan P
2004-01-01
Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.
Secure Wireless Networking at Simon Fraser University.
ERIC Educational Resources Information Center
Johnson, Worth
2003-01-01
Describes the wireless local area network (WLAN) at Simon Fraser University, British Columbia, Canada. Originally conceived to address computing capacity and reduce university computer space demands, the WLAN has provided a seamless computing environment for students and solved a number of other campus problems as well. (SLD)
Marine C2 in Support of HA/DR: Observations and Critical Assessments Following Super-Typhoon Haiyan
2014-06-01
farm (Figure 1), established Internet access over commercial satellite service 6 (Figure 2), and configured a wireless local area network ( WLAN ...included support for a larger diameter wireless local area network ( WLAN ), providing greater freedom of movement for users accessing the GATR...emerging commercial capabilities, both communications systems and handheld/user-access devices involves the establishment of a synergistic application
Exploiting Spatial Channel Occupancy Information in WLANs
2014-05-15
transmit signal UDP user datagram protocol WLAN wireless local area network ix Acknowledgements I owe a great debt of gratitude to my advisor, Professor...information. Unlike in wired networks , each node in a wireless network observes a different medium depending on its location. As a result, standard local... wireless LANs [15, 23, 29]. In [23], Li et. al. model the throughput of an 802.11 network using full spatial information. Their approach is from a
NASA Astrophysics Data System (ADS)
Xia, Weiwei; Shen, Lianfeng
We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.
Design and Implementation of Secure Area Expansion Scheme for Public Wireless LAN Services
NASA Astrophysics Data System (ADS)
Watanabe, Ryu; Tanaka, Toshiaki
Recently, wireless LAN (WLAN) technology has become a major wireless communication method. The communication bandwidth is increasing and speeds have attained rates exceeding 100 Mbps. Therefore, WLAN technology is regarded as one of the promising communication methods for future networks. In addition, public WLAN connection services can be used in many locations. However, the number of the access points (AP) is insufficient for seamless communication and it cannot be said that users can use the service ubiquitously. An ad-hoc network style connection can be used to expand the coverage area of a public WLAN service. By relaying the user messages among the user nodes, a node can obtain an Internet connection via an AP, even though the node is located outside the AP's direct wireless connection area. Such a coverage area extending technology has many advantages thanks to the feature that no additional infrastructure is required. Therefore, there is a strong demand for this technology as it allows the cost-effective construction of future networks. When a secure ad-hoc routing protocol is used for message exchange in the WLAN service, the message routes are protected from malicious behavior such as route forging and can be maintained appropriately. To do this, however, a new node that wants to join the WLAN service has to obtain information such as the public key certificate and IP address in order to start secure ad-hoc routing. In other words, an initial setup is required for every network node to join the WLAN service properly. Ordinarily, such information should be assigned from the AP. However, new nodes cannot always contact an AP directly. Therefore, there are problems about information delivery in the initial setup of a network node. These problems originate in the multi hop connection based on the ad-hoc routing protocols. In order to realize an expanded area WLAN service, in this paper, the authors propose a secure public key certificate and address provision scheme during the initial setup phase on mobile nodes for the service. The proposed scheme also considers the protection of user privacy. Accordingly, none of the user nodes has to reveal their unique and persistent information to other nodes. Instead of using such information, temporary values are sent by an AP to mobile nodes and used for secure ad-hoc routing operations. Therefore, our proposed scheme prevents tracking by malicious parties by avoiding the use of unique information. Moreover, a test bed was also implemented based on the proposal and an evaluation was carried out in order to confirm performance. In addition, the authors describe a countermeasure against denial of service (DoS) attacks based on the approach to privacy protection described in our proposal.
Wang, Xinheng
2008-01-01
Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.
Ubiquitous health monitoring system for multiple users using a ZigBee and WLAN dual-network.
Cha, Yong Dae; Yoon, Gilwon
2009-11-01
A ubiquitous health monitoring system for multiple users was developed based on a ZigBee and wireless local area network (WLAN) dual-network. A compact biosignal monitoring unit (BMU) for measuring electrocardiogram (ECG), photoplethysmogram (PPG), and temperature was also developed. A single 8-bit microcontroller operated the BMU including most of digital filtering and wireless communication. The BMU with its case was reduced to 55 x 35 x 15 mm and 33 g. In routine use, vital signs of 6 bytes/sec (heart rate, temperature, pulse transit time) per each user were transmitted through a ZigBee module even though all the real-time data were recorded in a secure digital memory of the BMU. In an emergency or when need arises, a channel of a particular user was switched to another ZigBee module, called the emergency module, that sent all ECG and PPG waveforms in real time. Each emergency ZigBee module handled up to a few users. Data from multiple users were wirelessly received by the ZigBee receiver modules in a controller called ZigBee-WLAN gateway, where the ZigBee modules were connected to a WLAN module. This WLAN module sent all data wirelessly to a monitoring center. Operating the dual modes of ZigBee/WLAN utilized an advantage of ZigBee by handling multiple users with minimum power consumption, and overcame the ZigBee limitation of low data rate. This dual-network system for LAN is economically competitive and reliable.
Propagation Characteristics of International Space Station Wireless Local Area Network
NASA Technical Reports Server (NTRS)
Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung
2005-01-01
This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.
NASA Astrophysics Data System (ADS)
Raitoharju, Matti; Nurminen, Henri; Piché, Robert
2015-12-01
Indoor positioning based on wireless local area network (WLAN) signals is often enhanced using pedestrian dead reckoning (PDR) based on an inertial measurement unit. The state evolution model in PDR is usually nonlinear. We present a new linear state evolution model for PDR. In simulated-data and real-data tests of tightly coupled WLAN-PDR positioning, the positioning accuracy with this linear model is better than with the traditional models when the initial heading is not known, which is a common situation. The proposed method is computationally light and is also suitable for smoothing. Furthermore, we present modifications to WLAN positioning based on Gaussian coverage areas and show how a Kalman filter using the proposed model can be used for integrity monitoring and (re)initialization of a particle filter.
Wireless local area network in a prehospital environment
Chen, Dongquan; Soong, Seng-jaw; Grimes, Gary J; Orthner, Helmuth F
2004-01-01
Background Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting. Methods We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined. Results The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed. Conclusions Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management. PMID:15339336
Wireless local area network in a prehospital environment.
Chen, Dongquan; Soong, Seng-jaw; Grimes, Gary J; Orthner, Helmuth F
2004-08-31
Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting. We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined. The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed. Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management.
Aspect Ratio of Receiver Node Geometry based Indoor WLAN Propagation Model
NASA Astrophysics Data System (ADS)
Naik, Udaykumar; Bapat, Vishram N.
2017-08-01
This paper presents validation of indoor wireless local area network (WLAN) propagation model for varying rectangular receiver node geometry. The rectangular client node configuration is a standard node arrangement in computer laboratories of academic institutes and research organizations. The model assists to install network nodes for the better signal coverage. The proposed model is backed by wide ranging real time received signal strength measurements at 2.4 GHz. The shadow fading component of signal propagation under realistic indoor environment is modelled with the dependency on varying aspect ratio of the client node geometry. The developed new model is useful in predicting indoor path loss for IEEE 802.11b/g WLAN. The new model provides better performance in comparison to well known International Telecommunication Union and free space propagation models. It is shown that the proposed model is simple and can be a useful tool for indoor WLAN node deployment planning and quick method for the best utilisation of the office space.
Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application
Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui
2016-01-01
Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954
Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.
Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui
2016-06-27
Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.
ERIC Educational Resources Information Center
Lee, Lisa
2007-01-01
Many universities in the UK have recently started offering their staff and students free wireless Internet access through Wireless Local Area Network (WLAN) technologies, such as Wi-Fi. Based on a small empirical study of WLAN deployment in a university setting, the article explores adoption processes of the new technology by both the organisation…
Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications
NASA Astrophysics Data System (ADS)
Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.
2016-12-01
A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.
Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut
2008-09-25
Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.
Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut
2008-01-01
Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854
Solar-Powered Airplane with Cameras and WLAN
NASA Technical Reports Server (NTRS)
Higgins, Robert G.; Dunagan, Steve E.; Sullivan, Don; Slye, Robert; Brass, James; Leung, Joe G.; Gallmeyer, Bruce; Aoyagi, Michio; Wei, Mei Y.; Herwitz, Stanley R.;
2004-01-01
An experimental airborne remote sensing system includes a remotely controlled, lightweight, solar-powered airplane (see figure) that carries two digital-output electronic cameras and communicates with a nearby ground control and monitoring station via a wireless local-area network (WLAN). The speed of the airplane -- typically <50 km/h -- is low enough to enable loitering over farm fields, disaster scenes, or other areas of interest to collect high-resolution digital imagery that could be delivered to end users (e.g., farm managers or disaster-relief coordinators) in nearly real time.
Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei
2015-01-01
Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization. PMID:26404274
Coexistence issues for a 2.4 GHz wireless audio streaming in presence of bluetooth paging and WLAN
NASA Astrophysics Data System (ADS)
Pfeiffer, F.; Rashwan, M.; Biebl, E.; Napholz, B.
2015-11-01
Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.
Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning
Brković, Milenko; Simić, Mirjana
2014-01-01
Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443
Abbas, Syed Muzahir; Ranga, Yogesh; Esselle, Karu P
2015-01-01
This paper presents electronically reconfigurable antenna options in healthcare applications. They are suitable for wireless body area network devices operating in the industrial, scientific, and medical (ISM) band at 2.45 GHz and IEEE 802.11 Wireless Local Area Network (WLAN) band at 5 GHz (5.15-5.35 GHz, 5.25-5.35 GHz). Two types of antennas are investigated: Antenna-I has a full ground plane and Antenna-II has a partial ground plane. The proposed antennas provide ISM operation in one mode while in another mode they support 5 GHz WLAN band. Their performance is assessed for body centric wireless communication using a simplified human body model. Antenna sensitivity to the gap between the antenna and the human body is investigated for both modes of each antenna. The proposed antennas exhibit a wide radiation pattern along the body surface to provide wide coverage and their small width (14 mm) makes them suitable for on-body communication in healthcare applications.
The Role of Wireless Computing Technology in the Design of Schools.
ERIC Educational Resources Information Center
Nair, Prakash
This document discusses integrating computers logically and affordably into a school building's infrastructure through the use of wireless technology. It begins by discussing why wireless networks using mobile computers are preferable to desktop machines in each classoom. It then explains the features of a wireless local area network (WLAN) and…
Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
Richter, Philipp; Toledano-Ayala, Manuel
2015-01-01
Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate. PMID:26370996
A highly linear baseband Gm—C filter for WLAN application
NASA Astrophysics Data System (ADS)
Lijun, Yang; Zheng, Gong; Yin, Shi; Zhiming, Chen
2011-09-01
A low voltage, highly linear transconductan—C (Gm—C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP3 is measured to be as high as 9.5 dBm. Fabricated in a 0.35 μm standard CMOS technology, the proposed filter chip occupies a 0.41 × 0.17 mm2 die area and consumes 3.36 mA from a 3.3-V power supply.
The Security Aspects of Wireless Local Area Network (WLAN)
2003-09-01
by wireless links to enable devices to communicate. In a Bluetooth network, mobile routers control the changing network topologies of these... Bluetooth Bluetooth is a simple peer-to-peer protocol created to connect multiple consumer mobile information devices (cellular phones, laptops...technology [Ref 2]. Bluetooth enables mobile devices to avoid interference from other signals by hopping to a new frequency after transmitting or
Joseph, Wout; Pareit, Daan; Vermeeren, Günter; Naudts, Dries; Verloock, Leen; Martens, Luc; Moerman, Ingrid
2013-01-01
Wireless Local Area Networks (WLANs) are commonly deployed in various environments. The WLAN data packets are not transmitted continuously but often worst-case exposure of WLAN is assessed, assuming 100% activity and leading to huge overestimations. Actual duty cycles of WLAN are thus of importance for time-averaging of exposure when checking compliance with international guidelines on limiting adverse health effects. In this paper, duty cycles of WLAN using Wi-Fi technology are determined for exposure assessment on large scale at 179 locations for different environments and activities (file transfer, video streaming, audio, surfing on the internet, etc.). The median duty cycle equals 1.4% and the 95th percentile is 10.4% (standard deviation SD = 6.4%). Largest duty cycles are observed in urban and industrial environments. For actual applications, the theoretical upper limit for the WLAN duty cycle is 69.8% and 94.7% for maximum and minimum physical data rate, respectively. For lower data rates, higher duty cycles will occur. Although counterintuitive at first sight, poor WLAN connections result in higher possible exposures. File transfer at maximum data rate results in median duty cycles of 47.6% (SD = 16%), while it results in median values of 91.5% (SD = 18%) at minimum data rate. Surfing and audio streaming are less intensively using the wireless medium and therefore have median duty cycles lower than 3.2% (SD = 0.5-7.5%). For a specific example, overestimations up to a factor 8 for electric fields occur, when considering 100% activity compared to realistic duty cycles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neighbor Discovery Algorithm in Wireless Local Area Networks Using Multi-beam Directional Antennas
NASA Astrophysics Data System (ADS)
Wang, Jin; Peng, Wei; Liu, Song
2017-10-01
Neighbor discovery is an important step for Wireless Local Area Networks (WLAN) and the use of multi-beam directional antennas can greatly improve the network performance. However, most neighbor discovery algorithms in WLAN, based on multi-beam directional antennas, can only work effectively in synchronous system but not in asynchro-nous system. And collisions at AP remain a bottleneck for neighbor discovery. In this paper, we propose two asynchrono-us neighbor discovery algorithms: asynchronous hierarchical scanning (AHS) and asynchronous directional scanning (ADS) algorithm. Both of them are based on three-way handshaking mechanism. AHS and ADS reduce collisions at AP to have a good performance in a hierarchical way and directional way respectively. In the end, the performance of the AHS and ADS are tested on OMNeT++. Moreover, it is analyzed that different application scenarios and the factors how to affect the performance of these algorithms. The simulation results show that AHS is suitable for the densely populated scenes around AP while ADS is suitable for that most of the neighborhood nodes are far from AP.
Characterization and Evaluation of a Commercial WLAN System for Human Provocation Studies.
Zentai, Norbert; Fiocchi, Serena; Parazzini, Marta; Trunk, Attila; Juhász, Péter; Ravazzani, Paolo; Hernádi, István; Thuróczy, György
2015-01-01
This work evaluates the complex exposure characteristics of Wireless Local Area Network (WLAN) technology and describes the design of a WLAN exposure system built using commercially available modular parts for the study of possible biological health effects due to WLAN exposure in a controlled environment. The system consisted of an access point and a client unit (CU) with router board cards types R52 and R52n with 18 dBm and 25 dBm peak power, respectively. Free space radiofrequency field (RF) measurements were performed with a field meter at a distance of 40 cm from the CU in order to evaluate the RF exposure at several signal configurations of the exposure system. Finally, the specific absorption rate (SAR) generated by the CU was estimated computationally in the head of two human models. Results suggest that exposure to RF fields of WLAN systems strongly depends on the sets of the router configuration: the stability of the exposure was more constant and reliable when both antennas were active and vertically positioned, with best signal quality obtained with the R52n router board at channel 9, in UDP mode. The maximum levels of peak SAR were far away from the limits of international guidelines with peak levels found over the skin.
Characterization and Evaluation of a Commercial WLAN System for Human Provocation Studies
Parazzini, Marta; Trunk, Attila; Juhász, Péter; Hernádi, István; Thuróczy, György
2015-01-01
This work evaluates the complex exposure characteristics of Wireless Local Area Network (WLAN) technology and describes the design of a WLAN exposure system built using commercially available modular parts for the study of possible biological health effects due to WLAN exposure in a controlled environment. The system consisted of an access point and a client unit (CU) with router board cards types R52 and R52n with 18 dBm and 25 dBm peak power, respectively. Free space radiofrequency field (RF) measurements were performed with a field meter at a distance of 40 cm from the CU in order to evaluate the RF exposure at several signal configurations of the exposure system. Finally, the specific absorption rate (SAR) generated by the CU was estimated computationally in the head of two human models. Results suggest that exposure to RF fields of WLAN systems strongly depends on the sets of the router configuration: the stability of the exposure was more constant and reliable when both antennas were active and vertically positioned, with best signal quality obtained with the R52n router board at channel 9, in UDP mode. The maximum levels of peak SAR were far away from the limits of international guidelines with peak levels found over the skin. PMID:26180791
DOT National Transportation Integrated Search
2010-09-01
Initial research studied the use of wireless local area networks (WLAN) protocols in Inter-Vehicle Communications : (IVC) environments. The protocols performance was evaluated in terms of measuring throughput, jitter time and : delay time. This re...
NASA Astrophysics Data System (ADS)
Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.
2012-05-01
The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.
Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin
2013-01-01
Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience. PMID:24193101
NASA Astrophysics Data System (ADS)
Bejuri, Wan Mohd Yaakob Wan; Mohamad, Mohd Murtadha
2014-11-01
This paper introduces a new grey-world-based feature detection and matching algorithm, intended for use with mobile positioning systems. This approach uses a combination of a wireless local area network (WLAN) and a mobile phone camera to determine positioning in an illumination environment using a practical and pervasive approach. The signal combination is based on retrieved signal strength from the WLAN access point and the image processing information from the building hallways. The results show our method can handle information better than Harlan Hile's method relative to the illumination environment, producing lower illumination error in five (5) different environments.
Analysis and Design of Complex Networks
2014-12-02
systems. 08-NOV-10, . : , Barlas Oguz, Venkat Anantharam. Long range dependent Markov chains with applications , Information Theory and Applications ...JUL-12, . : , Michael Krishnan, Ehsan Haghani, Avideh Zakhor. Packet Length Adaptation in WLANs with Hidden Nodes and Time-Varying Channels, IEEE... WLAN networks with multi-antenna beam-forming nodes. VII. Use of busy/idle signals for discovering optimum AP association VIII
Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks
NASA Astrophysics Data System (ADS)
Breskovic, Damir; Begusic, Dinko
2017-05-01
In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.
Access point selection game with mobile users using correlated equilibrium.
Sohn, Insoo
2015-01-01
One of the most important issues in wireless local area network (WLAN) systems with multiple access points (APs) is the AP selection problem. Game theory is a mathematical tool used to analyze the interactions in multiplayer systems and has been applied to various problems in wireless networks. Correlated equilibrium (CE) is one of the powerful game theory solution concepts, which is more general than the Nash equilibrium for analyzing the interactions in multiplayer mixed strategy games. A game-theoretic formulation of the AP selection problem with mobile users is presented using a novel scheme based on a regret-based learning procedure. Through convergence analysis, we show that the joint actions based on the proposed algorithm achieve CE. Simulation results illustrate that the proposed algorithm is effective in a realistic WLAN environment with user mobility and achieves maximum system throughput based on the game-theoretic formulation.
Access Point Selection Game with Mobile Users Using Correlated Equilibrium
Sohn, Insoo
2015-01-01
One of the most important issues in wireless local area network (WLAN) systems with multiple access points (APs) is the AP selection problem. Game theory is a mathematical tool used to analyze the interactions in multiplayer systems and has been applied to various problems in wireless networks. Correlated equilibrium (CE) is one of the powerful game theory solution concepts, which is more general than the Nash equilibrium for analyzing the interactions in multiplayer mixed strategy games. A game-theoretic formulation of the AP selection problem with mobile users is presented using a novel scheme based on a regret-based learning procedure. Through convergence analysis, we show that the joint actions based on the proposed algorithm achieve CE. Simulation results illustrate that the proposed algorithm is effective in a realistic WLAN environment with user mobility and achieves maximum system throughput based on the game-theoretic formulation. PMID:25785726
Design of band-notched antenna with DG-CEBG
NASA Astrophysics Data System (ADS)
Jaglan, Naveen; Kanaujia, Binod Kumar; Gupta, Samir Dev; Srivastava, Shweta
2018-01-01
Ultra-wideband (UWB) disc monopole antenna with crescent shaped slot for double band-notched features is presented. Planned antenna discards worldwide interoperability for microwave access (WiMAX) band (3.3-3.6 GHz) and wireless local area network (WLAN) band (5-6 GHz). Defected ground compact electromagnetic band gap (DG-CEBG) designs are used to accomplish band notches in WiMAX and WLAN bands. Defected ground planes are utilised to achieve compactness in electromagnetic band gap (EBG) structures. The proposed WiMAX and WLAN DG-CEBG designs show a compactness of around 46% and 50%, respectively, over mushroom EBG structures. Parametric analyses of DG-CEBG design factors are carried out to control the notched frequencies. Stepwise notch transition from upper to lower frequencies is presented with incremental inductance augmentation. The proposed antenna is made-up on low-cost FR-4 substrate of complete extents as (42 × 50 × 1.6) mm3.Fabricated sample antenna shows excellent consistency in simulated and measured outcomes.
Exposure assessment of microwave ovens and impact on total exposure in WLANs
Plets, David; Verloock, Leen; Van Den Bossche, Matthias; Tanghe, Emmeric; Joseph, Wout; Martens, Luc
2016-01-01
In situ exposure of electric fields of 11 microwave ovens is assessed in an occupational environment and in an office. Measurements as a function of distance without load and with a load of 275 ml of tap water were performed at distances of <1 m. The maximal measured field was 55.2 V m−1 at 5 cm from the oven (without load), which is 2.5 and 1.1 times below the International Commission on Non-Ionizing Radiation Protection reference level for occupational exposure and general public exposure, respectively. For exposure at distances of >1 m, a model of the electric field in a realistic environment is proposed. In an office scenario, switching on a microwave oven increases the median field strength from 91 to 145 mV m−1 (+91 %) in a traditional Wireless Local Area Network (WLAN) deployment and from 44 to 92 mV m−1 (+109 %) in an exposure-optimised WLAN deployment. PMID:25956787
Proactive AP Selection Method Considering the Radio Interference Environment
NASA Astrophysics Data System (ADS)
Taenaka, Yuzo; Kashihara, Shigeru; Tsukamoto, Kazuya; Yamaguchi, Suguru; Oie, Yuji
In the near future, wireless local area networks (WLANs) will overlap to provide continuous coverage over a wide area. In such ubiquitous WLANs, a mobile node (MN) moving freely between multiple access points (APs) requires not only permanent access to the Internet but also continuous communication quality during handover. In order to satisfy these requirements, an MN needs to (1) select an AP with better performance and (2) execute a handover seamlessly. To satisfy requirement (2), we proposed a seamless handover method in a previous study. Moreover, in order to achieve (1), the Received Signal Strength Indicator (RSSI) is usually employed to measure wireless link quality in a WLAN system. However, in a real environment, especially if APs are densely situated, it is difficult to always select an AP with better performance based on only the RSSI. This is because the RSSI alone cannot detect the degradation of communication quality due to radio interference. Moreover, it is important that AP selection is completed only on an MN, because we can assume that, in ubiquitous WLANs, various organizations or operators will manage APs. Hence, we cannot modify the APs for AP selection. To overcome these difficulties, in the present paper, we propose and implement a proactive AP selection method considering wireless link condition based on the number of frame retransmissions in addition to the RSSI. In the evaluation, we show that the proposed AP selection method can appropriately select an AP with good wireless link quality, i.e., high RSSI and low radio interference.
Using Technology to Enhance Science Inquiry in an Outdoor Classroom
ERIC Educational Resources Information Center
Cantrell, Pamela; Knudson, Mark S.
2006-01-01
Participants in a science professional development field experience were surveyed for their perceptions of the impacts of integrating a wireless local area network (WLAN), pocket PCs, and laptops as tools for enhancing science inquiry. Pocket PCs and laptops were used for data collection and analysis and for communication of research results to…
2009-09-01
boarding team, COTS, WLAN, smart antenna, OpenVPN application, wireless base station, OFDM, latency, point-to-point wireless link. 16. PRICE CODE 17...16 c. SSL/TLS .................................17 2. OpenVPN ......................................17 III. EXPERIMENT METHODOLOGY...network frame at Layer 2 has already been secured by encryption at a higher level. 2. OpenVPN OpenVPN is open source software that provides a VPN
Wireless Local Area Network (WLAN) Vulnerability Assessment and Security
2005-09-01
even that they have a Bluetooth device to begin with. Bluetooth attacks can permit network sniffing, device detection, data and services theft . Two...the Bluetooth v1.1 Foundation Specifications9. One major security issue is the fact that the Bluetooth standard allows a single device to communicate...simultaneously with multiple other devices . Many Bluetooth radios are embedded in devices and users often do not realize whether they are on or
Potential for Personal Digital Assistant interference with implantable cardiac devices.
Tri, Jeffrey L; Trusty, Jane M; Hayes, David L
2004-12-01
To determine whether the wireless local area network (WLAN) technology, specifically the Personal Digital Assistant (PDA), interferes with implantable cardiac pacemakers and defibrillators. Various pacemakers and defibrillators were tested in vitro at the Mayo Clinic in Rochester, Minn, between March 6 and July 30, 2003. These cardiac devices were exposed to an HP Compaq IPAQ PDA fitted with a Cisco Aironet WLAN card. Initial testing was designed to show whether the Aironet card radiated energy in a consistent pattern from the antenna of the PDA to ensure that subsequent cardiac device testing would not be affected by the orientation of the PDA to the cardiac device. Testing involved placing individual cardiac devices in a simulator and uniformly exposing each device at its most sensitive programmable value to the WLAN card set to maximum power. During testing with the Cisco WLAN Aironet card, all devices programmed to the unipolar or bipolar configuration single- or dual-chamber mode had normal pacing and sensing functions and exhibited no effects of electromagnetic interference except for 1 implantable cardioverter-defibrillator (ICD). This aberration was determined to relate to the design of the investigators' testing apparatus and not to the output of the PDA. The ICD device appropriately identified and labeled the electromagnetic aberration as "noise." We documented no electromagnetic interference caused by the WLAN technology by using in vitro testing of pacemakers and ICDs; however, testing ideally should be completed in vivo to confirm the lack of any clinically important interactions.
Forensic Carving of Network Packets and Associated Data Structures
2011-01-01
establishment of prior connection activity and services used; identification of other systems present on the system’s LAN or WLAN; geolocation of the...identification of other systems present on the system?s LAN or WLAN; geolocation of the host computer system; and cross-drive analysis. We show that network...Finally, our work in geolocation was assisted by geo- location databases created by companies such as Google (Google Mobile, 2011) and Skyhook
Toekomstige Radiocommunicatie in OVO (Soon-to-be Radiocommunication in OVG)
2004-12-01
Delft, The Netherlands Brassersplein 2, Delft, The Netherlands 33538 9 . SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/MONITORING...AGENCY REPORT NUMBER KCenGM Prins Bernhardkazeme, Barchman Wuytierslaan 198, Amersfoort, The Netherlands TD04-0463 11 . SUPPLEMENTARY NO TES Text in...perationeel-technische criteria ............................................................ 9 3. Wireless Local Area Networks (WLANs) en militaire
Wallin, Mats K E B; Marve, Therese; Hakansson, Peter K
2005-11-01
Hospitals rely on pagers and ordinary telephones to reach staff members in emergency situations. New telecommunication technologies such as General Packet Radio Service (GPRS), the third generation mobile phone system Universal Mobile Telecommunications System (UMTS), and Wireless Local Area Network (WLAN) might be able to replace hospital pagers if they are electromagnetically compatible with medical devices. In this study, we sought to determine if GPRS, UMTS (Wideband Code Division Multiple Access-Frequency Division Duplex [WCDMA FDD]), and WLAN (IEEE 802.11b) transmitted signals interfere with life-supporting equipment in the intensive care and operating room environment. According to United States standard, ANSI C63.18-1997, laboratory tests were performed on 76 medical devices. In addition, clinical tests during 11 operations and 100 h of intensive care were performed. UMTS and WLAN signals caused little interference. Devices using these technologies can be used safely in critical care areas and during operations, but direct contact between medical devices and wireless communication devices ought to be avoided. In the case of GPRS, at a distance of 50 cm, it caused an older infusion pump to alarm and stop infusing; the pump had to be reset. Also, 10 cases of interference with device displays occurred. GPRS can be used safely at a distance of 1 m. Terminals/cellular phones using these technologies should be allowed without restriction in public areas because the risk of interference is minimal.
A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.
Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S
2004-01-01
Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.
Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.
Park, Juyoung; Kang, Kyungtae
2014-09-01
Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology.
NASA Astrophysics Data System (ADS)
Morant, Maria; Llorente, Roberto
2017-01-01
In this work we propose and evaluate experimentally the performance of IEEE 802.11ac WLAN standard signals in radio-over-fiber (RoF) distributed-antenna systems based on multicore fiber (MCF) for in-building WLAN connectivity. The RoF performance of WLAN signals with different bandwidth is investigated considering up to IEEE 802.11ac maximum of 160 MHz per user. We evaluate experimentally the performance of WLAN signals employing different modulation and coding schemes achieving bitrates from 78 Mbps to 1404 Mbps per user in distances up to 300 m in a 4-core MCF. The performance of the wireless standard multiple-input multiple-output (MIMO) processing algorithms included in WLAN signals applied to the RoF transmission in MCF optical systems is also evaluated. The impact on the quality of the signal from one of the cores in the MIMO processing is investigated and compared with the results achieved with single-input single-output (SISO) transmission in each core. We measured the error vector magnitude (EVM) and the OFDM data burst information of the received WLAN signals after RoF transmission for different distributed-antenna systems with uni- and bi-directional MCF communication. Finally, we compare the received EVM of a single-antenna system (SISO arrangement) with WLAN systems using two antennas (2×2 MIMO) and four antennas (4×4 MIMO).
Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component
NASA Astrophysics Data System (ADS)
Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter
2004-09-01
A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.
A pervasive health monitoring service system based on ubiquitous network technology.
Lin, Chung-Chih; Lee, Ren-Guey; Hsiao, Chun-Chieh
2008-07-01
The phenomenon of aging society has derived problems such as shortage of medical resources and reduction of quality in healthcare services. This paper presents a system infrastructure for pervasive and long-term healthcare applications, i.e. a ubiquitous network composed of wireless local area network (WLAN) and cable television (CATV) network serving as a platform for monitoring physiological signals. Users can record vital signs including heart rate, blood pressure, and body temperature anytime either at home or at frequently visited public places in order to create a personal health file. The whole system was formally implemented in December 2004. Analysis of 2000 questionnaires indicates that 85% of users were satisfied with the provided community-wide healthcare services. Among the services provided by our system, health consultation services offered by family doctors was rated the most important service by 17.9% of respondents, and was followed by control of one's own health condition (16.4% of respondents). Convenience of data access was rated most important by roughly 14.3% of respondents. We proposed and implemented a long-term healthcare system integrating WLAN and CATV networks in the form of a ubiquitous network providing a service platform for physiological monitoring. This system can classify the health levels of the resident according to the variation tendency of his or her physiological signal for important reference of health management.
Design control system of telescope force actuators based on WLAN
NASA Astrophysics Data System (ADS)
Shuai, Xiaoying; Zhang, Zhenchao
2010-05-01
With the development of the technology of autocontrol, telescope, computer, network and communication, the control system of the modern large and extra lager telescope become more and more complicated, especially application of active optics. Large telescope based on active optics maybe contain enormous force actuators. This is a challenge to traditional control system based on wired networks, which result in difficult-to-manage, occupy signification space and lack of system flexibility. Wireless network can resolve these disadvantages of wired network. Presented control system of telescope force actuators based on WLAN (WFCS), designed the control system framework of WFCS. To improve the performance of real-time, we developed software of force actuators control system in Linux. Finally, this paper discussed improvement of WFCS real-time, conceived maybe improvement in the future.
Digital FMCW for ultrawideband spectrum sensing
NASA Astrophysics Data System (ADS)
Cheema, A. A.; Salous, S.
2016-08-01
An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.
Wireless Security Within Hastily Formed Networks
2006-09-01
WLAN DEVICES (STEP ONE) ............34 1. Personal Firewalls..............................................................................34 2. Anti ...includes client devices , access points, network infrastructure, network management, and delivery of mobility services to maintain network security and...Technology Special Publication 800-48, Wireless Network Security, 802.11, Bluetooth , and Handheld Devices . Available at http://csrc.nist.gov
RACOON: a multiuser QoS design for mobile wireless body area networks.
Cheng, Shihheng; Huang, Chingyao; Tu, Chun Chen
2011-10-01
In this study, Random Contention-based Resource Allocation (RACOON) medium access control (MAC) protocol is proposed to support the quality of service (QoS) for multi-user mobile wireless body area networks (WBANs). Different from existing QoS designs that focus on a single WBAN, a multiuser WBAN QoS should further consider both inter-WBAN interference and inter-WBAN priorities. Similar problems have been studied in both overlapped wireless local area networks (WLANs) and Bluetooth piconets that need QoS supports. However, these solutions are designed for non-medical transmissions that do not consider any priority scheme for medical applications. Most importantly, these studies focus on only static or low mobility networks. Network mobility of WBANs will introduce unnecessary inter-network collisions and energy waste, which are not considered by these solutions. The proposed multiuser-QoS protocol, RACOON, simultaneously satisfies the inter WBAN QoS requirements and overcomes the performance degradation caused by WBAN mobility. Simulation results verify that RACOON provides better latency and energy control, as compared with WBAN QoS protocols without considering the inter-WBAN requirements.
Investigation of RF Emissions From Wireless Networks as a Threat to Avionic Systems
NASA Technical Reports Server (NTRS)
Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)
2002-01-01
The paper focuses on understanding and obtaining preliminary measurements of radiated field (RF) emissions of laptop/wireless local area network (WLAN) systems. This work is part of a larger research project to measure radiated emissions of wireless devices to provide a better understanding for potential interference with crucial aircraft avionics systems. A reverberation chamber data collection process is included, as well as recommendations for additional tests. Analysis of measurements from devices under test (DUTs) proved inconclusive for addressing potential interference issues. Continued effort is expected to result in a complete easily reproducible test protocol. The data and protocol presented here are considered preliminary.
Stübig, Timo; Suero, Eduardo; Zeckey, Christian; Min, William; Janzen, Laura; Citak, Musa; Krettek, Christian; Hüfner, Tobias; Gaulke, Ralph
2013-01-01
Patient localization can improve workflow in outpatient settings, which might lead to lower costs. The existing wireless local area network (WLAN) architecture in many hospitals opens up the possibility of adopting real-time patient tracking systems for capturing and processing position data; once captured, these data can be linked with clinical patient data. To analyze the effect of a WLAN-based real-time patient localization system for tracking outpatients in our level I trauma center. Outpatients from April to August 2009 were included in the study, which was performed in two different stages. In phase I, patient tracking was performed with the real-time location system, but acquired data were not displayed to the personnel. In phase II tracking, the acquired data were automatically collected and displayed. Total treatment time was the primary outcome parameter. Statistical analysis was performed using multiple linear regression, with the significance level set at 0.05. Covariates included sex, age, type of encounter, prioritization, treatment team, number of residents, and radiographic imaging. 1045 patients were included in our study (540 in phase I and 505 in phase 2). An overall improvement of efficiency, as determined by a significantly decreased total treatment time (23.7%) from phase I to phase II, was noted. Additionally, significantly lower treatment times were noted for phase II patients even when other factors were considered (increased numbers of residents, the addition of imaging diagnostics, and comparison among various localization zones). WLAN-based real-time patient localization systems can reduce process inefficiencies associated with manual patient identification and tracking.
Radiofrequency exposure from wireless LANs utilizing Wi-Fi technology.
Foster, Kenneth R
2007-03-01
This survey measured radiofrequency (RF) fields from wireless local area networks (WLANs) using Wi-Fi technology against a background of RF fields in the environment over the frequency range 75 MHz-3 GHz. A total of 356 measurements were conducted at 55 sites (including private residences, commercial spaces, health care and educational institutions, and other public spaces) in four countries (U.S., France, Germany, Sweden). Measurements were conducted under conditions that would result in the higher end of exposures from such systems. Where possible, measurements were conducted in public spaces as close as practical to the Wi-Fi access points. Additional measurements were conducted at a distance of approximately 1 m from a laptop while it was uploading and downloading large files to the WLAN. This distance was chosen to allow a useful comparison of fields in the far-field of the antenna in the laptop, and give a representative measure of the exposure that a bystander might receive from the laptop. The exposure to the user, particularly if the antenna of the client card were placed against his or her body, would require different measurement techniques beyond the scope of this study. In all cases, the measured Wi-Fi signal levels were very far below international exposure limits (IEEE C95.1-2005 and ICNIRP) and in nearly all cases far below other RF signals in the same environments. An discusses technical aspects of the IEEE 802.11 standard on which WLANs operate that are relevant to determining the levels of RF energy exposure from WLANs. Important limiting factors are the low operating power of client cards and access points, and the low duty cycle of transmission that normally characterizes their operation.
Stübig, Timo; Suero, Eduardo; Zeckey, Christian; Min, William; Janzen, Laura; Citak, Musa; Krettek, Christian; Hüfner, Tobias; Gaulke, Ralph
2013-01-01
Background Patient localization can improve workflow in outpatient settings, which might lead to lower costs. The existing wireless local area network (WLAN) architecture in many hospitals opens up the possibility of adopting real-time patient tracking systems for capturing and processing position data; once captured, these data can be linked with clinical patient data. Objective To analyze the effect of a WLAN-based real-time patient localization system for tracking outpatients in our level I trauma center. Methods Outpatients from April to August 2009 were included in the study, which was performed in two different stages. In phase I, patient tracking was performed with the real-time location system, but acquired data were not displayed to the personnel. In phase II tracking, the acquired data were automatically collected and displayed. Total treatment time was the primary outcome parameter. Statistical analysis was performed using multiple linear regression, with the significance level set at 0.05. Covariates included sex, age, type of encounter, prioritization, treatment team, number of residents, and radiographic imaging. Results/discussion 1045 patients were included in our study (540 in phase I and 505 in phase 2). An overall improvement of efficiency, as determined by a significantly decreased total treatment time (23.7%) from phase I to phase II, was noted. Additionally, significantly lower treatment times were noted for phase II patients even when other factors were considered (increased numbers of residents, the addition of imaging diagnostics, and comparison among various localization zones). Conclusions WLAN-based real-time patient localization systems can reduce process inefficiencies associated with manual patient identification and tracking. PMID:23676246
Wireless Tactical Networks in Support of Undersea Research
2001-04-01
of 802.11 is to provide a radio capable of transmitting voice, video, and data standard set of operational rules so that WLAN products between its...networking in support of the network-centric [TFB-99] Trangeled A., Franchi P., Berni A., Data warfare concept, in which operational advantage is
Physical layer simulation study for the coexistence of WLAN standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howlader, M. K.; Keiger, C.; Ewing, P. D.
This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple accessmore » techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)« less
Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems
NASA Technical Reports Server (NTRS)
Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)
2004-01-01
An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.
Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong
2013-09-09
In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.
Tri-Band CPW-Fed Stub-Loaded Slot Antenna Design for WLAN/WiMAX Applications
NASA Astrophysics Data System (ADS)
Li, Jianxing; Guo, Jianying; He, Bin; Zhang, Anxue; Liu, Qing Huo
2016-11-01
A novel uniplanar CPW-fed tri-band stub-loaded slot antenna is proposed for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. Dual resonant modes were effectively excited in the upper band by using two identical pairs of slot stubs and parasitic slots symmetrically along the arms of a traditional CPW-fed slot dipole, achieving a much wider bandwidth. The middle band was realized by the fundamental mode of the slot dipole. To obtain the lower band, two identical inverted-L-shaped open-ended slots were symmetrically etched in the ground plane. A prototype was fabricated and measured, showing that tri-band operation with 10-dB return loss bandwidths of 150 MHz from 2.375 to 2.525 GHz, 725 MHz from 3.075 to 3.8 GHz, and 1.9 GHz from 5.0 to 6.9 GHz has been achieved. Details of the antenna design as well as the measured and simulated results are presented and discussed.
Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.
Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup
2011-10-01
The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.
Securing Wireless Local Area Networks with GoC PKI
2007-10-01
de réseau privé virtuel (RPV) sans fil sur un banc d’essai dans le laboratoire des Opérations d’information de réseau (OIR) pour des ...locaux sans fil (WLAN) dans les réseaux d’entreprise du gouvernement. Dans ce rapport, on présente les résultats de travaux complémentaires qui tirent...mutuelle, l’autorisation, la protection et l’intégrité des données, ainsi que la gestion et la diffusion des politiques sur les
Remote monitoring of electromagnetic signals and seismic events using smart mobile devices
NASA Astrophysics Data System (ADS)
Georgiadis, Pantelis; Cavouras, Dionisis; Sidiropoulos, Konstantinos; Ninos, Konstantinos; Nomicos, Constantine
2009-06-01
This study presents the design and development of a novel mobile wireless system to be used for monitoring seismic events and related electromagnetic signals, employing smart mobile devices like personal digital assistants (PDAs) and wireless communication technologies such as wireless local area networks (WLANs), general packet radio service (GPRS) and universal mobile telecommunications system (UMTS). The proposed system enables scientists to access critical data while being geographically independent of the sites of data sources, rendering it as a useful tool for preliminary scientific analysis.
Information infrastructure for emergency medical services.
Orthner, Helmuth; Mishra, Ninad; Terndrup, Thomas; Acker, Joseph; Grimes, Gary; Gemmill, Jill; Battles, Marcie
2005-01-01
The pre-hospital emergency medical and public safety information environment is nearing a threshold of significant change. The change is driven in part by several emerging technologies such as secure, high-speed wireless communication in the local and wide area networks (wLAN, 3G), Geographic Information Systems (GIS), Global Positioning Systems (GPS), and powerful handheld computing and communication services, that are of sufficient utility to be more widely adopted. We propose a conceptual model to enable improved clinical decision making in the pre-hospital environment using these change agents.
Utilising eduroam[TM] Architecture in Building Wireless Community Networks
ERIC Educational Resources Information Center
Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo
2008-01-01
Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…
Spectrum sharing between a surveillance radar and secondary Wi-Fi networks
NASA Astrophysics Data System (ADS)
Hessar, Farzad; Roy, Sumit
2016-06-01
Co-existence between unlicensed networks that share spectrum spatio-temporally with terrestrial (e.g. Air Traffic Control) and shipborne radars in 3-GHz band is attracting significant interest. Similar to every primary-secondary coexistence scenario, interference from unlicensed devices to a primary receiver must be within acceptable bounds. In this work, we formulate the spectrum sharing problem between a pulsed, search radar (primary) and 802.11 WLAN as the secondary. We compute the protection region for such a search radar for a) a single secondary user (initially) as well as b) a random spatial distribution of multiple secondary users. Furthermore, we also analyze the interference to the WiFi devices from the radar's transmissions to estimate the impact on achievable WLAN throughput as a function of distance to the primary radar.
A wireless PDA-based physiological monitoring system for patient transport.
Lin, Yuan-Hsiang; Jan, I-Chien; Ko, Patrick Chow-In; Chen, Yen-Yu; Wong, Jau-Min; Jan, Gwo-Jen
2004-12-01
This paper proposes a mobile patient monitoring system, which integrates current personal digital assistant (PDA) technology and wireless local area network (WLAN) technology. At the patient's location, a wireless PDA-based monitor is used to acquire continuously the patient's vital signs, including heart rate, three-lead electrocardiography, and SpO2. Through the WLAN, the patient's biosignals can be transmitted in real-time to a remote central management unit, and authorized medical staffs can access the data and the case history of the patient, either by the central management unit or the wireless devices. A prototype of this system has been developed and implemented. The system has been evaluated by technical verification, clinical test, and user survey. The evaluation of performance yields a high degree of satisfaction (mean = 4.64, standard deviation--SD = 0.53 in a five-point Likert scale) of users who used the PDA-based system for intrahospital transport. The results also show that the wireless PDA model is superior to the currently used monitors both in mobility and in usability, and is, therefore, better suited to patient transport.
A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection.
Syed, Avez; Aldhaheri, Rabah W
2016-01-01
A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9-13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1-5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications.
Power Saving Control for Battery-Powered Portable WLAN APs
NASA Astrophysics Data System (ADS)
Ogawa, Masakatsu; Hiraguri, Takefumi
This paper proposes a power saving control function for battery-powered portable wireless LAN (WLAN) access points (APs) to extend the battery life. The IEEE802.11 standard does not support power saving control for APs. To enable a sleep state for an AP, the AP forces the stations (STAs) to refrain from transmitting frames using the network allocation vector (NAV) while the AP is sleeping. Thus the sleep state for the AP can be employed without causing frame loss at the STAs. Numerical analysis and computer simulation reveal that the newly proposed control technique conserves power compared to the conventional control.
NASA Astrophysics Data System (ADS)
Aymen El Cafsi, Mohamed; Nedil, Mourad; Osman, Lotfi; Gharsallah, Ali
2015-11-01
A novel design of switched beam antenna (SBA) system based on Fabry-Perot cavity leaky-wave antenna (FPC LWA) is designed and fabricated for base station operating in the unlicensed ISM central frequency band at 5.8 GHz of the wireless local area network (WLAN) standard. The proposed SBA is designed with hexagonal shape of FPC LWA Arrays in order to get 360° of coverage. The single element of FPC LWA array is composed of a patch antenna and covered by a Partially Reflective Surface (PRS), which is composed of a Metal Strip Grating and printed on a high permittivity Superstrate. First, the Transmission Line Model of FPC LWA is introduced to analyse and calculate the far-field components in E- and H planes by using the Transverse Equivalent Network. This approach is then compared with other full wave's commercial software such as Ansoft HFSS and CST Microwave Studio. Second, a parametric study is performed to evaluate the effect of the angle formed by the two successive FPC LWA on the radiation efficiency of the activate sector. To examine the performance of the proposed SBA, experimental prototype was fabricated and measured. As a result, multiple orthogonal beams (six beams) of 10 dBi of gain with low Side Lobes Level and 360° of coverage are produced. This SBA structure is suitable for WLAN communication systems.
Cognitive Radio Networks for Tactical Wireless Communications
2014-12-01
exists. Instead, security is an evolving process, as we have seen in the context of WLANs and 2G / 3G networks. New system vulnerabilities continue to...in the network configuration and radio parameters take place due to mobility of platforms, and variation in other users of the RF environment. CRNs...dynamic spectrum access experimentally, and it represents the largest military Mobile Ad hoc Network (MANET) as of today. The WNaN demonstrator has been
ERIC Educational Resources Information Center
Winterbottom, Mark; Smith, Sarah; Hind, Sally; Haggard, Mark
2008-01-01
Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…
Public Exposure from Indoor Radiofrequency Radiation in the City of Hebron, West Bank-Palestine.
Lahham, Adnan; Sharabati, Afefeh; ALMasri, Hussien
2015-08-01
This work presents the results of measured indoor exposure levels to radiofrequency (RF) radiation emitting sources in one of the major cities in the West Bank-the city of Hebron. Investigated RF emitters include FM, TV broadcasting stations, mobile telephony base stations, cordless phones [Digital Enhanced Cordless Telecommunications (DECT)], and wireless local area networks (WLAN). Measurements of power density were conducted in 343 locations representing different site categories in the city. The maximum total power density found at any location was about 2.3 × 10 W m with a corresponding exposure quotient of about 0.01. This value is well below unity, indicating compliance with the guidelines of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The average total exposure from all RF sources was 0.08 × 10 W m. The relative contributions from different sources to the total exposure in terms of exposure quotient were evaluated and found to be 46% from FM radio, 26% from GSM900, 15% from DECT phones, 9% from WLAN, 3% from unknown sources, and 1% from TV broadcasting. RF sources located outdoors contribute about 73% to the population exposure indoors.
NASA Astrophysics Data System (ADS)
Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.
2018-04-01
A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.
A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection
Syed, Avez; Aldhaheri, Rabah W.
2016-01-01
A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9–13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1–5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications. PMID:27088125
Indoor Free Space Optic: a new prototype, realization and evaluation
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian
2008-08-01
The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.
ASSESSMENT OF PUBLIC EXPOSURE FORM WLANS IN THE WEST BANK-PALESTINE.
Lahham, Adnan; Sharabati, Afifeh; ALMasri, Hussein
2017-11-01
A total of 271 measurements were conducted at 69 different sites including homes, hospitals, educational institutions and other public places to assess the exposure to radiofrequency emission from wireless local area networks (WLANs). Measurements were conducted at different distances from 40 to 10 m from the access points (APs) in real life conditions using Narda SRM-3000 selective radiation meter. Three measurements modes were considered at 1 m distance from the AP which are transmit mode, idle mode, and from the client card (laptop computer). All measurements were conducted indoor in the West Bank environment. Power density levels from WLAN systems were found to vary from 0.001 to ~1.9 μW cm-2 with an average of 0.12 μW cm-2. Maximum value found was in university environment, while the minimum was found in schools. For one measurement case where the AP was 20 cm far while transmitting large files, the measured power density reached a value of ~4.5 μW cm-2. This value is however 221 times below the general public exposure limit recommended by the International Commission on Non-Ionizing Radiation Protection, which was not exceeded in any case. Measurements of power density at 1 m around the laptop resulted in less exposure than the AP in both transmit and idle modes as well. Specific absorption rate for the head of the laptop user was estimated and found to vary from 0.1 to 2 mW/kg. The frequency distribution of measured power densities follows a log-normal distribution which is generally typical in the assessment of exposure resulting from sources of radiofrequency emissions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Enhanced Handover Decision Algorithm in Heterogeneous Wireless Network
Abdullah, Radhwan Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Transferring a huge amount of data between different network locations over the network links depends on the network’s traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model. PMID:28708067
NASA Astrophysics Data System (ADS)
Morshed, M. N.; Khatun, S.; Kamarudin, L. M.; Aljunid, S. A.; Ahmad, R. B.; Zakaria, A.; Fakir, M. M.
2017-03-01
Spectrum saturation problem is a major issue in wireless communication systems all over the world. Huge number of users is joining each day to the existing fixed band frequency but the bandwidth is not increasing. These requirements demand for efficient and intelligent use of spectrum. To solve this issue, the Cognitive Radio (CR) is the best choice. Spectrum sensing of a wireless heterogeneous network is a fundamental issue to detect the presence of primary users' signals in CR networks. In order to protect primary users (PUs) from harmful interference, the spectrum sensing scheme is required to perform well even in low signal-to-noise ratio (SNR) environments. Meanwhile, the sensing period is usually required to be short enough so that secondary (unlicensed) users (SUs) can fully utilize the available spectrum. CR networks can be designed to manage the radio spectrum more efficiently by utilizing the spectrum holes in primary user's licensed frequency bands. In this paper, we have proposed an adaptive threshold detection method to detect presence of PU signal using free space path loss (FSPL) model in 2.4 GHz WLAN network. The model is designed for mobile sensors embedded in smartphones. The mobile sensors acts as SU while the existing WLAN network (channels) works as PU. The theoretical results show that the desired threshold range detection of mobile sensors mainly depends on the noise floor level of the location in consideration.
Dong, Jian; Li, Qianqian; Deng, Lianwen
2017-02-10
Ultrawideband (UWB) antennas, as core devices in high-speed wireless communication, are widely applied to mobile handsets, wireless sensor networks, and Internet of Things (IoT). A compact printed monopole antenna for UWB applications with triple band-notched characteristics is proposed in this paper. The antenna has a very compact size of 10 x 16 mm2 and is composed of a square slotted radiation patch and a narrow rectangular ground plane on the back of the substrate. First, by etching a pair of inverted T-shaped slots at the bottom of the radiation patch, one notched band at 5-6 GHz for rejecting the Wireless Local Area Network (WLAN) is generated. Then, by cutting a comb-shaped slot on the top of the radiation patch, a second notched band for rejecting 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) is obtained. Further, by cutting a pair of rectangular slots and a C-shaped slot as well as adding a pair of small square parasitic patches at the center of the radiating patch, two separate notched bands for rejecting 5.2 GHz lower WLAN and 5.8 GHz upper WLAN are realized, respectively. Additionally, by integrating the slotted radiation patch with the narrow rectangular ground plane, an enhanced impedance bandwidth can be achieved, especially at the higher band. The antenna consists of linear symmetrical sections only and is easy for fabrication and fine-tuning. The measured results show that the designed antenna provides a wide impedance bandwidth of 150% from 2.12 to 14.80 GHz for VSWR < 2, except for three notched bands of 3.36-4.16, 4.92-5.36, and 5.68-6.0 GHz. Additionally, the antenna exhibits nearly omnidirectional radiation characteristics, low gain at the stopbands, and flat group delay over the whole UWB except at the stopbands. Simulated and experimental results show that the proposed antenna can provide good frequency-domain and time-domain performances at desired UWB frequencies and be an attractive candidate for portable IoT applications.
Dong, Jian; Li, Qianqian; Deng, Lianwen
2017-01-01
Ultrawideband (UWB) antennas, as core devices in high-speed wireless communication, are widely applied to mobile handsets, wireless sensor networks, and Internet of Things (IoT). A compact printed monopole antenna for UWB applications with triple band-notched characteristics is proposed in this paper. The antenna has a very compact size of 10 × 16 mm2 and is composed of a square slotted radiation patch and a narrow rectangular ground plane on the back of the substrate. First, by etching a pair of inverted T-shaped slots at the bottom of the radiation patch, one notched band at 5–6 GHz for rejecting the Wireless Local Area Network (WLAN) is generated. Then, by cutting a comb-shaped slot on the top of the radiation patch, a second notched band for rejecting 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) is obtained. Further, by cutting a pair of rectangular slots and a C-shaped slot as well as adding a pair of small square parasitic patches at the center of the radiating patch, two separate notched bands for rejecting 5.2 GHz lower WLAN and 5.8 GHz upper WLAN are realized, respectively. Additionally, by integrating the slotted radiation patch with the narrow rectangular ground plane, an enhanced impedance bandwidth can be achieved, especially at the higher band. The antenna consists of linear symmetrical sections only and is easy for fabrication and fine-tuning. The measured results show that the designed antenna provides a wide impedance bandwidth of 150% from 2.12 to 14.80 GHz for VSWR < 2, except for three notched bands of 3.36–4.16, 4.92–5.36, and 5.68–6.0 GHz. Additionally, the antenna exhibits nearly omnidirectional radiation characteristics, low gain at the stopbands, and flat group delay over the whole UWB except at the stopbands. Simulated and experimental results show that the proposed antenna can provide good frequency-domain and time-domain performances at desired UWB frequencies and be an attractive candidate for portable IoT applications. PMID:28208633
Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks
Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok
2016-01-01
Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN). PMID:27907113
Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.
Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok
2016-01-01
Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).
A hybrid stochastic approach for self-location of wireless sensors in indoor environments.
Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro
2009-01-01
Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided.
A Hybrid Stochastic Approach for Self-Location of Wireless Sensors in Indoor Environments
Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro
2009-01-01
Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided. PMID:22412334
NASA Astrophysics Data System (ADS)
Arndt, Josua; Krystofiak, Lukas; Bonehi, Vahid; Wunderlich, Ralf; Heinen, Stefan
2017-09-01
Power consumption in wireless networks is crucial. In most scenarios the transmission time is short compared to the idle listening time for data transmission, the most power is consumed by the receiver. In low latency systems there is a need for low power wake-up receivers (WuRx) that reduce the power consumption when the node is idle, but keep it responsive. This work presents a WuRx designed out of commercial components to investigate the needs of a WuRx when it is embedded in a Wireless Personal Area Network (WPAN) system in a real environment setup including WLAN and LTE communication and considering interferer rejection. The calculation necessary for the attenuation of those interferers is explained in detail. Furthermore, a system design is presented that fulfills the requirements for this environment and is build from off-the-shelf components.
Using Vegetation Barriers to Improving Wireless Network Isolation and Security
NASA Astrophysics Data System (ADS)
Cuiñas, Iñigo; Gómez, Paula; Sánchez, Manuel García; Alejos, Ana Vázquez
The increasing number of wireless LANs using the same spectrum allocation could induce multiple interferences and it also could force the active LANs to continuously retransmit data in order to solve this problem: this solution overloads the spectrum bands as well as collapses the LAN transmission capacity. This upcoming problem can be mitigated by using different techniques, being site shielding one of them. If radio systems could be safeguarded against radiation from transmitters out of the specific network, the frequency reuse is improved and, as a consequence, the number of WLANs sharing the same area may increase maintaining the required quality standards. The proposal of this paper is the use of bushes as a hurdle to attenuate signals from other networks and, so that, to defend the own wireless system from outer interferences. A measurement campaign has been performed in order to test this application of vegetal elements. This campaign was focused on determining the attenuation induced by several specimens of seven different vegetal species. Then, the relation between the induced attenuation and the interference from adjacent networks has been computed in terms of separation between networks. The network protection against outer unauthorized access could be also improved by means of the proposed technique.
Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery.
Pawar, Pravin A; Edla, Damodar R; Edoh, Thierry; Shinde, Vijay; van Beijnum, Bert-Jan
2017-10-31
A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.
An Adaptive Handover Prediction Scheme for Seamless Mobility Based Wireless Networks
Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime
2014-01-01
We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches. PMID:25574490
An adaptive handover prediction scheme for seamless mobility based wireless networks.
Sadiq, Ali Safa; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime
2014-01-01
We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.
A highly linear power amplifier for WLAN
NASA Astrophysics Data System (ADS)
Jie, Jin; Jia, Shi; Baoli, Ai; Xuguang, Zhang
2016-02-01
A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. Project supported by the National Natural Science Foundation of China (No. 61201244) and the Natural Science Fund of SUES (No. E1-0501-14-0168).
Rothman, Brian S; Dexter, Franklin; Epstein, Richard H
2013-08-01
Tablet computers and smart phones have gained popularity in anesthesia departments for educational and patient care purposes. VigiVU(™) is an iOS application developed at Vanderbilt University for remote viewing of perioperative information, including text message notifications delivered via the Apple Push Notification (APN) service. In this study, we assessed the reliability of the APN service. Custom software was written to send a message every minute to iOS devices (iPad(®), iPod Touch(®), and iPhone(®)) via wireless local area network (WLAN) and cellular pathways 24 hours a day over a 4-month period. Transmission and receipt times were recorded and batched by days, with latencies calculated as their differences. The mean, SEM, and the exact 95% upper confidence limits for the percent of days with ≥1 prolonged (>100 seconds) latency were calculated. Acceptable performance was defined as mean latency <30 seconds and ≤0.5% of latencies >100 seconds. Testing conditions included fixed locations of devices in high signal strength locations. Mean latencies were <1 second for iPad and iPod devices (WLAN), and <4 seconds for iPhone (cellular). Among >173,000 iPad and iPod latencies, none were >100 seconds. For iPhone latencies, 0.03% ± 0.01% were >100 seconds. The 95% upper confidence limits of days with ≥1 prolonged latency were 42% (iPhone) and 5% to 8% (iPad, iPod). The APN service was reliable for all studied devices over WLAN and cellular pathways, and performance was better than third party paging systems using Internet connections previously investigated using the same criteria. However, since our study was a best-case assessment, testing is required at individual sites considering use of this technology for critical messaging. Furthermore, since the APN service may fail due to Internet or service provider disruptions, a backup paging system is recommended if the APN service were to be used for critical messaging.
Research of application mode for FTTX technology
NASA Astrophysics Data System (ADS)
Wang, Zhong; Yun, Xiang; Huang, Wei
2009-08-01
With rapid development of Internet and broadband access network, the technologies of xDSL, FTTx+LAN, WLAN have more applications, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. In this paper, technique theory of EPON is introduced at first. At the same time, MAC frame structure, automatic detection and ranging of MPCP, DBA,and multi-LLID of EPON is analyzed. Then, service development ability, cost advantage and maintenance superiority based on EPON technology are carried out. At last,with Cost comparison between FTTH / FTTB building model and the traditional model, FTTB + LAN mode which is suitable for the newadding residential users in general areas and FTTN + DSL mode which is suitable for the old city and rural access network transformation are built up in detail. And FTTN + DSL project of rural information in rural areas and FTTH broadband HOUSE project on service solutions program are analyzed. comparing to the traditional access technologies, EPON technology has the obvious advantages, such as distance transmission, high or wide band, saving line resources, service abilities, etc. These are the qualities which not only be served for home users, but solve more access problems for us effectively.
CMOS analog baseband circuitry for an IEEE 802.11 b/g/n WLAN transceiver
NASA Astrophysics Data System (ADS)
Zheng, Gong; Xiaojie, Chu; Qianqian, Lei; Min, Lin; Yin, Shi
2012-11-01
An analog baseband circuit for a direct conversion wireless local area network (WLAN) transceiver in a standard 0.13-μm CMOS occupying 1.26 mm2 is presented. The circuit consists of active-RC receiver (RX) 4th order elliptic lowpass filters(LPFs), transmit (PGAs) with DC offset cancellation (DCOC) servo loops, and on-chip output buffers. The RX baseband gain can be programmed in the range of -11 to 49 dB in 2 dB steps with 50-30.2 nV/√Hz input referred noise (IRN) and a 21 to -41 dBm in-band 3rd order interception point (IIP3). The RX/TX LPF cutoff frequencies can be switched between 5 MHz, 10 MHz, and 20 MHz to fulfill the multimode 802.11b/g/n requirements. The TX baseband gain of the I/Q paths are tuned separately from -1.6 to 0.9 dB in 0.1 dB steps to calibrate TX I/Q gain mismatches. By using an identical integrator based elliptic filter synthesis method together with global compensation applied to the LPF capacitor array, the power consumption of the RX LPF is considerably reduced and the proposed chip draws 26.8 mA/8 mA by the RX/TX baseband paths from a 1.2 V supply.
A signal strength priority based position estimation for mobile platforms
NASA Astrophysics Data System (ADS)
Kalgikar, Bhargav; Akopian, David; Chen, Philip
2010-01-01
Global Positioning System (GPS) products help to navigate while driving, hiking, boating, and flying. GPS uses a combination of orbiting satellites to determine position coordinates. This works great in most outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of 802.11 wireless LANs (WLAN) is beginning to appear on the market. In WLAN positioning the system either monitors propagation delays between wireless access points and wireless device users to apply trilateration techniques or it maintains the database of location-specific signal fingerprints which is used to identify the most likely match of incoming signal data with those preliminary surveyed and saved in the database. In this paper we investigate the issue of deploying WLAN positioning software on mobile platforms with typically limited computational resources. We suggest a novel received signal strength rank order based location estimation system to reduce computational loads with a robust performance. The proposed system performance is compared to conventional approaches.
Coexistence of Collocated IEEE 802.11 and Bluetooth Technologies in 2.4 GHz ISM Band
NASA Astrophysics Data System (ADS)
Xhafa, Ariton E.; Lu, Xiaolin; Shaver, Donald P.
In this paper, we investigate coexistence of collocated 802.11 and Bluetooth technologies in 2.4 GHz industrial, scientific, and medical (ISM) band. To that end, we show a time division multiplexing approach suffers from the “avalanche effect”. We then provide remedies to avoid this effect and improve the performance of the overall network. For example, it is shown that a simple request-to-send (RTS) / clear-to-send (CTS) frame handshake in WLAN can avoid “avalanche effect” and improve the performance of overall network.
Martínez-Búrdalo, M; Martín, A; Sanchis, A; Villar, R
2009-02-01
In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna. Copyright 2008 Wiley-Liss, Inc.
Routing architecture and security for airborne networks
NASA Astrophysics Data System (ADS)
Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato
2009-05-01
Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.
Portable Wireless Device Threat Assessment for Aircraft Navigation Radios
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.
2004-01-01
This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.
Beamforming transmission in IEEE 802.11ac under time-varying channels.
Yu, Heejung; Kim, Taejoon
2014-01-01
The IEEE 802.11ac wireless local area network (WLAN) standard has adopted beamforming (BF) schemes to improve spectral efficiency and throughput with multiple antennas. To design the transmit beam, a channel sounding process to feedback channel state information (CSI) is required. Due to sounding overhead, throughput increases with the amount of transmit data under static channels. Under practical channel conditions with mobility, however, the mismatch between the transmit beam and the channel at transmission time causes performance loss when transmission duration after channel sounding is too long. When the fading rate, payload size, and operating signal-to-noise ratio are given, the optimal transmission duration (i.e., packet length) can be determined to maximize throughput. The relationship between packet length and throughput is also investigated for single-user and multiuser BF modes.
Beamforming Transmission in IEEE 802.11ac under Time-Varying Channels
2014-01-01
The IEEE 802.11ac wireless local area network (WLAN) standard has adopted beamforming (BF) schemes to improve spectral efficiency and throughput with multiple antennas. To design the transmit beam, a channel sounding process to feedback channel state information (CSI) is required. Due to sounding overhead, throughput increases with the amount of transmit data under static channels. Under practical channel conditions with mobility, however, the mismatch between the transmit beam and the channel at transmission time causes performance loss when transmission duration after channel sounding is too long. When the fading rate, payload size, and operating signal-to-noise ratio are given, the optimal transmission duration (i.e., packet length) can be determined to maximize throughput. The relationship between packet length and throughput is also investigated for single-user and multiuser BF modes. PMID:25152927
Development of True Time Delay Circuits
2014-06-13
public release Distribution is unlimited DATA SHEET SKY65014-70LF: 0.1-7.0 GHz InGaP Cascadable Amplifier Applications • Wireless infrastructure: WLAN ...decoupling network out of band. For low frequency applications , R1 may be used to conveniently limit supply current on the Evaluation Board. The Evaluation...additional information, refer to the Skyworks Application Note, Solder Reflow Information, document number 200164. Care must be taken when attaching this
Design and first tests of a Macroseismic Sensor System
NASA Astrophysics Data System (ADS)
Brueckl, Ewald; Polydor, Stefan; Ableitinger, Klaus; Rafeiner-Magor, Walter; Kristufek, Werner; Mertl, Stefan; Lenhardt, Wolfgang
2017-04-01
Seismic observatories are located in remote, low-noise areas for good reason and do not probe areas of dense and sensitive infrastructure. Complementary macroseismic data provide dense, qualitative information on ground motion in populated areas. Motivated by the QCN (Quake Catcher Network), a new low-cost sensor system (Macroseismic Sensor System = MSS) has been developed to support the evaluation of macroseismic data with quantitative information on ground movement in populated and industrial areas. Scholars, alumni and teachers from a technical high school contributed substantially to this development within the Sparkling Science project Schools & Quakes and the Citizen Science project QuakeWatch Austria. The MSS uses horizontal 4.5 Hz geophones and 16Bit AD conversion, and 100 Hz sampling, formatting to MiniSeed, and continuous data transmission via LAN or WLAN to a server are controlled by an integrated microcomputer (Raspberry Pi). Real-time generation of shake and source maps (based on proxies of the PGV in successive time windows) allows for differentiation between local seismic events (e.g., traffic noise, shock close to the sensor) and signals from earthquakes or quarry blasts. The inherent noise of the MSS is about 1% of the PGV corresponding to the lower boundary of intensity I = 2, which is below the ambient noise level at stations in highly populated or industrial areas. The MSS is already being tested at locations around a quarry with regular production blasts. An expansion to a local network in the Vienna Basin will be the next step.
A Secure and Efficient Handover Authentication Protocol for Wireless Networks
Wang, Weijia; Hu, Lei
2014-01-01
Handover authentication protocol is a promising access control technology in the fields of WLANs and mobile wireless sensor networks. In this paper, we firstly review an efficient handover authentication protocol, named PairHand, and its existing security attacks and improvements. Then, we present an improved key recovery attack by using the linearly combining method and reanalyze its feasibility on the improved PairHand protocol. Finally, we present a new handover authentication protocol, which not only achieves the same desirable efficiency features of PairHand, but enjoys the provable security in the random oracle model. PMID:24971471
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
Experimental Optimization of Exposure Index and Quality of Service in Wlan Networks.
Plets, David; Vermeeren, Günter; Poorter, Eli De; Moerman, Ingrid; Goudos, Sotirios K; Luc, Martens; Wout, Joseph
2017-07-01
This paper presents the first real-life optimization of the Exposure Index (EI). A genetic optimization algorithm is developed and applied to three real-life Wireless Local Area Network scenarios in an experimental testbed. The optimization accounts for downlink, uplink and uplink of other users, for realistic duty cycles, and ensures a sufficient Quality of Service to all users. EI reductions up to 97.5% compared to a reference configuration can be achieved in a downlink-only scenario, in combination with an improved Quality of Service. Due to the dominance of uplink exposure and the lack of WiFi power control, no optimizations are possible in scenarios that also consider uplink traffic. However, future deployments that do implement WiFi power control can be successfully optimized, with EI reductions up to 86% compared to a reference configuration and an EI that is 278 times lower than optimized configurations under the absence of power control. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Next Generation Information Systems Architectures
2008-07-01
constraint, accessories such as bulk data storage, radio cards , and batteries also need to be accommodated. Some applications would require the...exhibition demonstrated a number of WLAN applications on an existing smartphone handset by using a WLAN card inserted into the SD card slot.4 Another...that only loose coupling is implemented. There are also less integrated methods, such as using a GPRS/WLAN PC card in a PC or PDA to allow it to use
Cmos spdt switch for wlan applications
NASA Astrophysics Data System (ADS)
Bhuiyan, M. A. S.; Reaz, M. B. I.; Rahman, L. F.; Minhad, K. N.
2015-04-01
WLAN has become an essential part of our today's life. The advancement of CMOS technology let the researchers contribute low power, size and cost effective WLAN devices. This paper proposes a single pole double through transmit/receive (T/R) switch for WLAN applications in 0.13 μm CMOS technology. The proposed switch exhibit 1.36 dB insertion loss, 25.3 dB isolation and 24.3 dBm power handling capacity. Moreover, it only dissipates 786.7 nW power per cycle. The switch utilizes only transistor aspect ratio optimization and resistive body floating technique to achieve such desired performance. In this design the use of bulky inductor and capacitor is avoided to evade imposition of unwanted nonlinearities to the communication signal.
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2015-07-29
A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a -10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane.
2005-09-01
consumption comparisons between 802.11 and 802.20 were conducted. The HP4700’s used a rechargeable 1800 mAh Lithium -ion internal battery and the expansion...jacket with 1840 mAh Lithium -ion internal rechargeable battery . The HP4700 has integrated WLAN 802.11b, Bluetooth®, Fast Infrared, IrDA, USB & Serial...weighs 1150 pounds and includes the weight of a 2 hour backup battery . [Ref 18] The power requirements for the RR are as follows: • +24VDC, -48VDC, 110
Information Transfer Ion Wireless Networks
2010-07-01
conferences with proceed- ings to be made available online in the IEEE Xplore database, namely IFIP Wireless Days (WD 2008) at Dubai, UAE, and the...Poland, May 2008, pp. 61-64, IEEE Xplore , DOI = 10.1109/INFTECH. 2008.4621591. 2. J. Konorski, IEEE 802.11 LAN Capacity: Incentives and Incentive...2008, Dubai, UAE, Nov. 2008, IEEE Xplore DOI = 10.1109/WD.2008.4812857. 4. J. Konorski, QoS Provision in an Ad Hoc IEEE 802.11 WLAN: A Bayesian War
Information Transfer in Wireless Networks
2010-07-01
conferences with proceed- ings to be made available online in the IEEE Xplore database, namely IFIP Wireless Days (WD 2008) at Dubai, UAE, and the...Poland, May 2008, pp. 61-64, IEEE Xplore , DOI = 10.1109/INFTECH. 2008.4621591. 2. J. Konorski, IEEE 802.11 LAN Capacity: Incentives and Incentive...2008, Dubai, UAE, Nov. 2008, IEEE Xplore DOI = 10.1109/WD.2008.4812857. 4. J. Konorski, QoS Provision in an Ad Hoc IEEE 802.11 WLAN: A Bayesian War
Fragility issues of medical video streaming over 802.11e-WLAN m-health environments.
Tan, Yow-Yiong Edwin; Philip, Nada; Istepanian, Robert H
2006-01-01
This paper presents some of the fragility issues of a medical video streaming over 802.11e-WLAN in m-health applications. In particular, we present a medical channel-adaptive fair allocation (MCAFA) scheme for enhanced QoS support for IEEE 802.11 (WLAN), as a modification for the standard 802.11e enhanced distributed coordination function (EDCF) is proposed for enhanced medical data performance. The medical channel-adaptive fair allocation (MCAFA) proposed extends the EDCF, by halving the contention window (CW) after zeta consecutive successful transmissions to reduce the collision probability when channel is busy. Simulation results show that MCAFA outperforms EDCF in-terms of overall performance relevant to the requirements of high throughput of medical data and video streaming traffic in 3G/WLAN wireless environments.
Coexistence: Threat to the Performance of Heterogeneous Network
NASA Astrophysics Data System (ADS)
Sharma, Neetu; Kaur, Amanpreet
2010-11-01
Wireless technology is gaining broad acceptance as users opt for the freedom that only wireless network can provide. Well-accepted wireless communication technologies generally operate in frequency bands that are shared among several users, often using different RF schemes. This is true in particular for WiFi, Bluetooth, and more recently ZigBee. These all three operate in the unlicensed 2.4 GHz band, also known as ISM band, which has been key to the development of a competitive and innovative market for wireless embedded devices. But, as with any resource held in common, it is crucial that those technologies coexist peacefully to allow each user of the band to fulfill its communication goals. This has led to an increase in wireless devices intended for use in IEEE 802.11 wireless local area networks (WLANs) and wireless personal area networks (WPANs), both of which support operation in the crowded 2.4-GHz industrial, scientific and medical (ISM) band. Despite efforts made by standardization bodies to ensure smooth coexistence it may occur that communication technologies transmitting for instance at very different power levels interfere with each other. In particular, it has been pointed out that ZigBee could potentially experience interference from WiFi traffic given that while both protocols can transmit on the same channel, WiFi transmissions usually occur at much higher power level. In this work, we considered a heterogeneous network and analyzed the impact of coexistence between IEEE 802.15.4 and IEEE 802.11b. To evaluate the performance of this network, measurement and simulation study are conducted and developed in the QualNet Network simulator, version 5.0.Model is analyzed for different placement models or topologies such as Random. Grid & Uniform. Performance is analyzed on the basis of characteristics such as throughput, average jitter and average end to end delay. Here, the impact of varying different antenna gain & shadowing model for this heterogeneous network is considered for the purpose of analysis.
NASA Astrophysics Data System (ADS)
Manodham, Thavisak; Loyola, Luis; Miki, Tetsuya
IEEE 802.11 wirelesses LANs (WLANs) have been rapidly deployed in enterprises, public areas, and households. Voice-over-IP (VoIP) and similar applications are now commonly used in mobile devices over wireless networks. Recent works have improved the quality of service (QoS) offering higher data rates to support various kinds of real-time applications. However, besides the need for higher data rates, seamless handoff and load balancing among APs are key issues that must be addressed in order to continue supporting real-time services across wireless LANs and providing fair services to all users. In this paper, we introduce a novel access point (AP) with two transceivers that improves network efficiency by supporting seamless handoff and traffic load balancing in a wireless network. In our proposed scheme, the novel AP uses the second transceiver to scan and find neighboring STAs in the transmission range and then sends the results to neighboring APs, which compare and analyze whether or not the STA should perform a handoff. The initial results from our simulations show that the novel AP module is more effective than the conventional scheme and a related work in terms of providing a handoff process with low latency and sharing traffic load with neighbor APs.
Collision Resolution Scheme with Offset for Improved Performance of Heterogeneous WLAN
NASA Astrophysics Data System (ADS)
Upadhyay, Raksha; Vyavahare, Prakash D.; Tokekar, Sanjiv
2016-03-01
CSMA/CA based DCF of 802.11 MAC layer employs best effort delivery model, in which all stations compete for channel access with same priority. Heterogeneous conditions result in unfairness among stations and degradation in throughput, therefore, providing different priorities to different applications for required quality of service in heterogeneous networks is challenging task. This paper proposes a collision resolution scheme with a novel concept of introducing offset, which is suitable for heterogeneous networks. Selection of random value by a station for its contention with offset results in reduced probability of collision. Expression for the optimum value of the offset is also derived. Results show that proposed scheme, when applied to heterogeneous networks, has improved throughput and fairness than conventional scheme. Results show that proposed scheme also exhibits higher throughput and fairness with reduced delay in homogeneous networks.
A Clock Fingerprints-Based Approach for Wireless Transmitter Identification
NASA Astrophysics Data System (ADS)
Zhao, Caidan; Xie, Liang; Huang, Lianfen; Yao, Yan
Cognitive radio (CR) was proposed as one of the promising solutions for low spectrum utilization. However, security problems such as the primary user emulation (PUE) attack severely limit its applications. In this paper, we propose a clock fingerprints-based authentication approach to prevent PUE attacks in CR networks with the help of curve fitting and classifier. An experimental setup was constructed using the WLAN cards and software radio devices, and the corresponding results show that satisfied identification can be achieved for wireless transmitters.
ERIC Educational Resources Information Center
Gerraughty, James F.; Shanafelt, Michael E.
2005-01-01
This prototype is a continuation of a series of wireless prototypes which began in August 2001 and was reported on again in August 2002. This is the final year of this prototype. This continuation allowed Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA) to refine the existing WLAN for the Saint…
WLAN Positioning Methods and Supporting Learning Technologies for Mobile Platforms
ERIC Educational Resources Information Center
Melkonyan, Arsen
2013-01-01
Location technologies constitute an essential component of systems design for autonomous operations and control. The Global Positioning System (GPS) works well in outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of…
Open-source telemedicine platform for wireless medical video communication.
Panayides, A; Eleftheriou, I; Pantziaris, M
2013-01-01
An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.
NASA Astrophysics Data System (ADS)
Barbieri, Ivano; Lambruschini, Paolo; Raggio, Marco; Stagnaro, Riccardo
2007-12-01
The increase in the availability of bandwidth for wireless links, network integration, and the computational power on fixed and mobile platforms at affordable costs allows nowadays for the handling of audio and video data, their quality making them suitable for medical application. These information streams can support both continuous monitoring and emergency situations. According to this scenario, the authors have developed and implemented the mobile communication system which is described in this paper. The system is based on ITU-T H.323 multimedia terminal recommendation, suitable for real-time data/video/audio and telemedical applications. The audio and video codecs, respectively, H.264 and G723.1, were implemented and optimized in order to obtain high performance on the system target processors. Offline media streaming storage and retrieval functionalities were supported by integrating a relational database in the hospital central system. The system is based on low-cost consumer technologies such as general packet radio service (GPRS) and wireless local area network (WLAN or WiFi) for lowband data/video transmission. Implementation and testing were carried out for medical emergency and telemedicine application. In this paper, the emergency case study is described.
Open-Source Telemedicine Platform for Wireless Medical Video Communication
Panayides, A.; Eleftheriou, I.; Pantziaris, M.
2013-01-01
An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings. PMID:23573082
NASA Astrophysics Data System (ADS)
Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim
2016-11-01
In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.
NASA Astrophysics Data System (ADS)
Gunantara, N.; Sudiarta, P. K.; Prasetya, AAN A. I.; Dharma, A.; Gde Antara, I. N.
2018-04-01
Access point (AP) is part of a Wireless Local Access Network (WLAN) with its communications using WiFi. AP is used to transmit and receive data to users/clients. The ability of AP to serve users/clients depends on many factors. Moreover, if AP is applied in conditions inside the building. In this study, AP is installed at two points inside the building and then measured in the form of the received signal level (RSL) and service coverage area. One AP measured its performance by 26 measurement points and the other AP measured its performance by 20 measurement points. When AP has measured its performance then another AP position is switched off. Based on the measurement result, the received signal level value is the highest value is about -47 dBm at a distance of 3.2 m, while the lowest is about -79 dBm at a 9.21 m because it is on barrier 2 walls. While based on service coverage area, the area which is far away from the AP then the quality of service becomes bad because the transmitted signal is weakening caused by the distance and the loss of the wall.
Ma, Lin; Xu, Yubin
2015-01-01
Green WLAN is a promising technique for accessing future indoor Internet services. It is designed not only for high-speed data communication purposes but also for energy efficiency. The basic strategy of green WLAN is that all the access points are not always powered on, but rather work on-demand. Though powering off idle access points does not affect data communication, a serious asymmetric matching problem will arise in a WLAN indoor positioning system due to the fact the received signal strength (RSS) readings from the available access points are different in their offline and online phases. This asymmetry problem will no doubt invalidate the fingerprint algorithm used to estimate the mobile device location. Therefore, in this paper we propose a green WLAN indoor positioning system, which can recover RSS readings and achieve good localization performance based on singular value thresholding (SVT) theory. By solving the nuclear norm minimization problem, SVT recovers not only the radio map, but also online RSS readings from a sparse matrix by sensing only a fraction of the RSS readings. We have implemented the method in our lab and evaluated its performances. The experimental results indicate the proposed system could recover the RSS readings and achieve good localization performance. PMID:25587977
A Network Selection Algorithm Considering Power Consumption in Hybrid Wireless Networks
NASA Astrophysics Data System (ADS)
Joe, Inwhee; Kim, Won-Tae; Hong, Seokjoon
In this paper, we propose a novel network selection algorithm considering power consumption in hybrid wireless networks for vertical handover. CDMA, WiBro, WLAN networks are candidate networks for this selection algorithm. This algorithm is composed of the power consumption prediction algorithm and the final network selection algorithm. The power consumption prediction algorithm estimates the expected lifetime of the mobile station based on the current battery level, traffic class and power consumption for each network interface card of the mobile station. If the expected lifetime of the mobile station in a certain network is not long enough compared the handover delay, this particular network will be removed from the candidate network list, thereby preventing unnecessary handovers in the preprocessing procedure. On the other hand, the final network selection algorithm consists of AHP (Analytic Hierarchical Process) and GRA (Grey Relational Analysis). The global factors of the network selection structure are QoS, cost and lifetime. If user preference is lifetime, our selection algorithm selects the network that offers longest service duration due to low power consumption. Also, we conduct some simulations using the OPNET simulation tool. The simulation results show that the proposed algorithm provides longer lifetime in the hybrid wireless network environment.
NASA Astrophysics Data System (ADS)
Timonen, Jussi; Vankka, Jouko
2013-05-01
This paper presents a solution for information integration and sharing architecture, which is able to receive data simultaneously from multiple different sensor networks. Creating a Common Operational Picture (COP) object along with the base map of the building plays a key role in the research. The object is combined with desired map sources and then shared to the mobile devices worn by soldiers in the field. The sensor networks we used focus on location techniques indoors, and a simple set of symbols is created to present the information, as an addition to NATO APP6B symbols. A core element in this research is the MUSAS (Mobile Urban Situational Awareness System), a demonstration environment that implements central functionalities. Information integration of the system is handled by the Internet Connection Engine (Ice) middleware, as well as the server, which hosts COP information and maps. The entire system is closed, such that it does not need any external service, and the information transfer with the mobile devices is organized by a tactical 5 GHz WLAN solution. The demonstration environment is implemented using only commercial off-theshelf (COTS) products. We have presented a field experiment event in which the system was able to integrate and share real time information of a blue force tracking system, received signal strength indicator (RSSI) based intrusion detection system, and a robot using simultaneous location and mapping technology (SLAM), where all the inputs were based on real activities. The event was held in a training area on urban area warfare.
NASA Astrophysics Data System (ADS)
Pahlavani, P.; Gholami, A.; Azimi, S.
2017-09-01
This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg-Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2015-01-01
A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a −10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane. PMID:28793474
Xu, Ziqiang
2013-01-01
A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984
Multi-Band Received Signal Strength Fingerprinting Based Indoor Location System
NASA Astrophysics Data System (ADS)
Sertthin, Chinnapat; Fujii, Takeo; Ohtsuki, Tomoaki; Nakagawa, Masao
This paper proposes a new multi-band received signal strength (MRSS) fingerprinting based indoor location system, which employs the frequency diversity on the conventional single-band received signal strength (RSS) fingerprinting based indoor location system. In the proposed system, the impacts of frequency diversity on the enhancements of positioning accuracy are analyzed. Effectiveness of the proposed system is proved by experimental approach, which was conducted in non line-of-sight (NLOS) environment under the area of 103m2 at Yagami Campus, Keio University. WLAN access points, which simultaneously transmit dual-band signal of 2.4 and 5.2GHz, are utilized as transmitters. Likewise, a dual-band WLAN receiver is utilized as a receiver. Signal distances calculated by both Manhattan and Euclidean were classified by K-Nearest Neighbor (KNN) classifier to illustrate the performance of the proposed system. The results confirmed that Frequency diversity attributions of multi-band signal provide accuracy improvement over 50% of the conventional single-band.
NASA Astrophysics Data System (ADS)
Tao, Tong; Baoyong, Chi; Ziqiang, Wang; Ying, Zhang; Hanjun, Jiang; Zhihua, Wang
2010-05-01
A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth in 0.35 μm CMOS is presented. The circuit consists of two variable gain amplifiers (VGA) in cascade and a Gm-C elliptic low-pass filter (LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption, the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application. Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN, 8.9 mW for WCDMA and only 6.5 mW for Bluetooth, all with a 3 V power supply. The analog baseband circuit could provide -10 to +40 dB variable gain, third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth, fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN, respectively.
Network architecture for global biomedical monitoring service.
Lopez-Casado, Carmen; Tejero-Calado, Juan; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Garcia, Eugenia
2005-01-01
Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.
Wlan-Based Indoor Localization Using Neural Networks
NASA Astrophysics Data System (ADS)
Saleem, Fasiha; Wyne, Shurjeel
2016-07-01
Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.
Saving energy for the data collection point in WBAN network
NASA Astrophysics Data System (ADS)
Nguyen-Duc, Toan; Kamioka, Eiji
2017-11-01
Wireless sensor networking (WSN) has been rapidly developed and become essential in various domains including health care systems. Such systems use WSN to collect real-time medical sensed data, aiming at improving the patient safety. For instance, patients suffered from adverse events, i.e., cardiac or respiratory arrests, are monitored so as to prevent them from getting harm. Sensors are placed on, in or near the patients' body to continuously collect sensing data such as the electrocardiograms, blood oxygenation, breathing, and heart rate. In this case, the sensors form a subcategory of WSN called wireless body area network (WBAN). In WBAN, sensing data are sent to one or more data collection points called personal server (PS). The role of PS is important since it forwards sensed data, to a medical server via a Bluetooth/WLAN connection in real time to support storage of information and real-time diagnosis, the device can also issue a notification of an emergency status. Since PS is a battery-based device, when its battery is empty, it will disconnect the sensed medical data with the rest network. To best of our knowledge, very few studies that focus on saving energy for the PS. To this end, this work investigates the trade-off between energy consumption for wireless communication and the amount of sensing data. An energy consumption model for wireless communication has been proposed based on direct measurement using real testbed. According to our findings, it is possible to save energy for the PS by selecting suitable wireless technology to be used based on the amount of data to be transmitted.
An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System
NASA Astrophysics Data System (ADS)
Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.
2013-06-01
Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.
Cyber-physical networking for wireless mesh infrastructures
NASA Astrophysics Data System (ADS)
Mannweiler, C.; Lottermann, C.; Klein, A.; Schneider, J.; Schotten, H. D.
2012-09-01
This paper presents a novel approach for cyber-physical network control. "Cyber-physical" refers to the inclusion of different parameters and information sources, ranging from physical sensors (e.g. energy, temperature, light) to conventional network information (bandwidth, delay, jitter, etc.) to logical data providers (inference systems, user profiles, spectrum usage databases). For a consistent processing, collected data is represented in a uniform way, analyzed, and provided to dedicated network management functions and network services, both internally and, through an according API, to third party services. Specifically, in this work, we outline the design of sophisticated energy management functionalities for a hybrid wireless mesh network (WLAN for both backhaul traffic and access, GSM for access only), disposing of autonomous energy supply, in this case solar power. Energy consumption is optimized under the presumption of fluctuating power availability and considerable storage constraints, thus influencing, among others, handover and routing decisions. Moreover, advanced situation-aware auto-configuration and self-adaptation mechanisms are introduced for an autonomous operation of the network. The overall objective is to deploy a robust wireless access and backbone infrastructure with minimal operational cost and effective, cyber-physical control mechanisms, especially dedicated for rural or developing regions.
Wideband Circularly Polarized Printed Ring Slot Antenna for 5 GHz – 6 GHz
NASA Astrophysics Data System (ADS)
Nasrun Osman, Mohamed; Rahim, Mohamad Helmi A.; Jusoh, Muzammil; Sabapathy, Thennarasan; Rahim, Mohamad Kamal A.; Norlyana Azemi, Saidatul
2018-03-01
This paper presents the design of circularly polarized printed slot antenna operating at 5 – 6 GHz. The proposed antenna consists of L-shaped feedline on the top of structure and circular ring slot positioned at the ground plane underneath the substrate as a radiator. A radial and narrow slot in the ground plane provides coupling between the L-shaped feedline and circular ring slot. The circular polarization is realized by implementing the slits perturbation located diagonally to perturb the current flow on the slot structure. The antenna prototype is fabricated on FR4 substrate. The simulated and measured results are compared and analyzed to demonstrate the performance of the antenna. Good measured of simulated results are obtained at the targeted operating frequency. The simulated -10dB reflection coefficient bandwidths and axial ratio are 750 MHz and 165 MHz, respectively. The investigation on the affect of the important parameters towards the reflection coefficient and axial are also presented. The proposed antenna is highly potential to be used for wireless local area network (WLAN) and wireless power transfer (WPT).
Distributed Fair Auto Rate Medium Access Control for IEEE 802.11 Based WLANs
NASA Astrophysics Data System (ADS)
Zhu, Yanfeng; Niu, Zhisheng
Much research has shown that a carefully designed auto rate medium access control can utilize the underlying physical multi-rate capability to exploit the time-variation of the channel. In this paper, we develop a simple analytical model to elucidate the rule that maximizes the throughput of RTS/CTS based multi-rate wireless local area networks. Based on the discovered rule, we propose two distributed fair auto rate medium access control schemes called FARM and FARM+ from the view-point of throughput fairness and time-share fairness, respectively. With the proposed schemes, after receiving a RTS frame, the receiver selectively returns the CTS frame to inform the transmitter the maximum feasible rate probed by the signal-to-noise ratio of the received RTS frame. The key feature of the proposed schemes is that they are capable of maintaining throughput/time-share fairness in asymmetric situation where the distribution of SNR varies with stations. Extensive simulation results show that the proposed schemes outperform the existing throughput/time-share fair auto rate schemes in time-varying channel conditions.
A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals
Castañón–Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo
2015-01-01
The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information. PMID:26633417
A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.
Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo
2015-12-02
The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.
Hardware platform for multiple mobile robots
NASA Astrophysics Data System (ADS)
Parzhuber, Otto; Dolinsky, D.
2004-12-01
This work is concerned with software and communications architectures that might facilitate the operation of several mobile robots. The vehicles should be remotely piloted or tele-operated via a wireless link between the operator and the vehicles. The wireless link will carry control commands from the operator to the vehicle, telemetry data from the vehicle back to the operator and frequently also a real-time video stream from an on board camera. For autonomous driving the link will carry commands and data between the vehicles. For this purpose we have developed a hardware platform which consists of a powerful microprocessor, different sensors, stereo- camera and Wireless Local Area Network (WLAN) for communication. The adoption of IEEE802.11 standard for the physical and access layer protocols allow a straightforward integration with the internet protocols TCP/IP. For the inspection of the environment the robots are equipped with a wide variety of sensors like ultrasonic, infrared proximity sensors and a small inertial measurement unit. Stereo cameras give the feasibility of the detection of obstacles, measurement of distance and creation of a map of the room.
A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.
Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao
2016-12-01
Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.
High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation
NASA Astrophysics Data System (ADS)
Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan
2016-07-01
Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).
Performance Evaluation of Telemedicine System based on multicasting over Heterogeneous Network.
Yun, H Y; Yoo, S K; Kim, D K; Rim Kim, Sung
2005-01-01
For appropriate diagnosis, medical image such as high quality image of patient's affected part and vital signal, patient information, and teleconferencing data for communication between specialists will be transmitted. After connecting patient and specialist the center, sender acquires patient data and transmits to the center through TCP/IP protocol. Data that is transmitted to center is retransmitted to each specialist side that accomplish connection after being copied according to listener's number from transmission buffer. At transmission of medical information data in network, transmission delay and loss occur by the change of buffer size, packet size, number of user and kind of networks. As there lies the biggest delay possibility in ADSL, buffer Size should be established by 1Mbytes first to minimize transmission regionalism and each packet's size must be set accordingly to MTU Size in order to improve network efficiency by maximum. Also, listener's number should be limited by less than 6 people. Data transmission consisted smoothly all in experiment result in common use network- ADSL, VDSL, WLAN, LAN-. But, possibility of delay appeared most greatly in ADSL that has the most confined bandwidth. To minimize the possibility of delay, some adjustment is needed such as buffer size, number of receiver, packet size.
A High Speed, Long-Range Mobile Communications Link for use in Polar Regions
NASA Astrophysics Data System (ADS)
Chalishazar, N.; Prescott, G.; Braaten, D.
2003-12-01
The Polar Radar for Ice Sheet Measurements (PRISM) project has developed a high bandwidth, wireless communications link between an autonomous rover and a manned vehicle deployed on a polar ice sheet to exchange real-time video, timing signals for a bistatic radar, and rover sensory data. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. While this wireless communications link is being developed to fill a need within the PRISM Project, the same technology will allow polar researchers separated by moderate distances ( ˜10 km) to exchange data. The communications link is based on a high data rate 802.11b wireless technology, and a prototype system has been tested and evaluated during field experiments conducted at the NorthGRIP ice core drilling camp in Greenland (75° 06\\'\\ N, 42° 20\\'\\ W) from June 23-July 17, 2003. The IEEE 802.11b standard works in the 2.4-2.483 GHz band and has been widely used for high-speed data transfer in a WLAN (Wireless Local Area Network). It typically has a range of a few hundred meters and theoretical data rates on the order of 11 Mbps. It has been used for a number of applications in home and office environments. We modified a 802.11b system to operate up to a maximum distance of about 8 km and investigated the radio propagation environment over the flat terrain of the Greenland ice sheet. We evaluated its performance along three different tracks of 8 km in length, and made throughput measurements at intervals of 0.5 km. We measured the received signal strength and noise level in 2-s intervals along these 8 km tracks. Also we conducted experiments for four different antenna heights (1, 2, 3 and 5 m) for developing a radio propagation model for WLAN communication over the ice sheet. We found that peer-to-peer communication between nodes on the ice had data rates varying from 4.5 Mbps at close range to 2.5 Mbps at a distance of 8 km from the base station. The design, propagation model, throughput and coverage of this peer-to-peer communications system in Greenland are presented in this paper. This WLAN system has numerous applications in polar field camps. We tested the transfer of real-time video segments across this link for our educational outreach efforts in the field. These video segments were subsequently uploaded using an Iridium-based Internet link, and sent back to the University of Kansas. The wireless Internet connectivity was also made available to members of the North Grip camp, who were able to access e-mail and the Internet from their tents and common areas. However, throughput for wireless access to the Internet was limited by the Iridium-based Internet connection that had a maximum bandwidth of 9.6 Kbps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
Location Based Services (LBS), context aware applications, and people and object tracking depend on the ability to locate mobile devices, also known as localization, in the wireless landscape. Localization enables a diverse set of applications that include, but are not limited to, vehicle guidance in an industrial environment, security monitoring, self-guided tours, personalized communications services, resource tracking, mobile commerce services, guiding emergency workers during fire emergencies, habitat monitoring, environmental surveillance, and receiving alerts. This paper presents a new neural network approach (LENSR) based on a competitive topological Counter Propagation Network (CPN) with k-nearest neighborhood vector mapping, for indoor location estimationmore » based on received signal strength. The advantage of this approach is both speed and accuracy. The tested accuracy of the algorithm was 90.6% within 1 meter and 96.4% within 1.5 meters. Several approaches for location estimation using WLAN technology were reviewed for comparison of results.« less
An FEC Adaptive Multicast MAC Protocol for Providing Reliability in WLANs
NASA Astrophysics Data System (ADS)
Basalamah, Anas; Sato, Takuro
For wireless multicast applications like multimedia conferencing, voice over IP and video/audio streaming, a reliable transmission of packets within short delivery delay is needed. Moreover, reliability is crucial to the performance of error intolerant applications like file transfer, distributed computing, chat and whiteboard sharing. Forward Error Correction (FEC) is frequently used in wireless multicast to enhance Packet Error Rate (PER) performance, but cannot assure full reliability unless coupled with Automatic Repeat Request forming what is knows as Hybrid-ARQ. While reliable FEC can be deployed at different levels of the protocol stack, it cannot be deployed on the MAC layer of the unreliable IEEE802.11 WLAN due to its inability to exchange ACKs with multiple recipients. In this paper, we propose a Multicast MAC protocol that enhances WLAN reliability by using Adaptive FEC and study it's performance through mathematical analysis and simulation. Our results show that our protocol can deliver high reliability and throughput performance.
NASA Astrophysics Data System (ADS)
Yu, Sun; Niansong, Mei; Bo, Lu; Yumei, Huang; Zhiliang, Hong
2010-10-01
A fully integrated VCO and divider implemented in SMIC 0.13-μm RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of—113 dBc @ 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOMT) of the VCO is -192.6 dBc/Hz.
NASA Astrophysics Data System (ADS)
Beigi, P.; Mohammadi, P.
2017-11-01
In this study a reconfigurable antenna for WiMAX, WLAN, C-bands and SHF applications has been presented. The main body of antenna includes rectangular and L-shaped slotted ground plane and a rectangular patch with slotted feed line, for impedance bandwidth enhancement. In the proposed antenna, a PIN diode is used to adjust the frequency band to SHF, WiMAX, WLAN and C-bands applications. When PIN diode is forward-biased, the antenna covers the 3.5-31 GHz frequency range (i.e. a 160% bandwidth) and when the PIN diode is in its off-state, it operates between 3.4-5.8 GHz. The designed antenna, with a very small size of 12 × 18 × 1.6 mm3, has been fabricated and tested. The radiation pattern is approximately omnidirectional. Simulations and experimental results are in a good agreement with each other and suggest good performance for the presented antenna.
iParking: An Intelligent Indoor Location-Based Smartphone Parking Service
Liu, Jingbin; Chen, Ruizhi; Chen, Yuwei; Pei, Ling; Chen, Liang
2012-01-01
Indoor positioning technologies have been widely studied with a number of solutions being proposed, yet substantial applications and services are still fairly primitive. Taking advantage of the emerging concept of the connected car, the popularity of smartphones and mobile Internet, and precise indoor locations, this study presents the development of a novel intelligent parking service called iParking. With the iParking service, multiple parties such as users, parking facilities and service providers are connected through Internet in a distributed architecture. The client software is a light-weight application running on a smartphone, and it works essentially based on a precise indoor positioning solution, which fuses Wireless Local Area Network (WLAN) signals and the measurements of the built-in sensors of the smartphones. The positioning accuracy, availability and reliability of the proposed positioning solution are adequate for facilitating the novel parking service. An iParking prototype has been developed and demonstrated in a real parking environment at a shopping mall. The demonstration showed how the iParking service could improve the parking experience and increase the efficiency of parking facilities. The iParking is a novel service in terms of cost- and energy-efficient solution. PMID:23202179
iParking: an intelligent indoor location-based smartphone parking service.
Liu, Jingbin; Chen, Ruizhi; Chen, Yuwei; Pei, Ling; Chen, Liang
2012-10-31
Indoor positioning technologies have been widely studied with a number of solutions being proposed, yet substantial applications and services are still fairly primitive. Taking advantage of the emerging concept of the connected car, the popularity of smartphones and mobile Internet, and precise indoor locations, this study presents the development of a novel intelligent parking service called iParking. With the iParking service, multiple parties such as users, parking facilities and service providers are connected through Internet in a distributed architecture. The client software is a light-weight application running on a smartphone, and it works essentially based on a precise indoor positioning solution, which fuses Wireless Local Area Network (WLAN) signals and the measurements of the built-in sensors of the smartphones. The positioning accuracy, availability and reliability of the proposed positioning solution are adequate for facilitating the novel parking service. An iParking prototype has been developed and demonstrated in a real parking environment at a shopping mall. The demonstration showed how the iParking service could improve the parking experience and increase the efficiency of parking facilities. The iParking is a novel service in terms of cost- and energy-efficient solution.
Trial of real-time locating and messaging system with Bluetooth low energy.
Arisaka, Naoya; Mamorita, Noritaka; Isonaka, Risa; Kawakami, Tadashi; Takeuchi, Akihiro
2016-09-14
Hospital real-time location systems (RTLS) are increasing efficiency and reducing operational costs, but room access tags are necessary. We developed three iPhone 5 applications for an RTLS and communications using Bluetooth low energy (BLE). The applications were: Peripheral device tags, Central beacons, and a Monitor. A Peripheral communicated with a Central using BLE. The Central communicated with a Monitor using sockets on TCP/IP (Transmission Control Protocol/Internet Protocol) via a WLAN (wireless local area network). To determine a BLE threshold level for the received signal strength indicator (RSSI), relationships between signal strength and distance were measured in our laboratory and on the terrace. The BLE RSSI threshold was set at -70 dB, about 10 m. While an individual with a Peripheral moved around in a concrete building, the Peripheral was captured in a few 10-sec units at about 10 m from a Central. The Central and Monitor showed and saved the approach events, location, and Peripheral's nickname sequentially in real time. Remote Centrals also interactively communicate with Peripherals by intermediating through Monitors that found the nickname in the event database. Trial applications using BLE on iPhones worked well for patient tracking, and messaging in indoor environments.
Design of WLAN microstrip antenna for 5.17 - 5.835 GHz
NASA Astrophysics Data System (ADS)
Bugaj, Jarosław; Bugaj, Marek; Wnuk, Marian
2017-04-01
This paper presents the project of miniaturized WLAN Antenna made in microstrip technique working at a frequency of 5.17 - 5.835 GHz in 802.11ac IEEE standard. This dual layer antenna is designed on RT/duroid 5870 ROGERS CORPORATION substrate with dielectric constant 2.33 and thickness of 3.175 mm. The antenna parameters such as return loss, VSWR, gain and directivity are simulated and optimized using commercial computer simulation technology microwave studio (CST MWS). The paper presents the results of discussed numerical analysis.
Khalid, M; Mee, T; Peyman, A; Addison, D; Calderon, C; Maslanyj, M; Mann, S
2011-12-01
The growing use of wireless local area networks (WLAN) in schools has prompted a study to investigate exposure to the radio frequency (RF) electromagnetic fields from Wi-Fi devices. International guidelines on limiting the adverse health effects of RF, such as those of ICNIRP, allow for time-averaging of exposure. Thus, as Wi-Fi signals consist of intermittent bursts of RF energy, it is important to consider the duty factors of devices in assessing the extent of exposure and compliance with guidelines. Using radio packet capture methods, the duty factor of Wi-Fi devices has been assessed in a sample of 6 primary and secondary schools during classroom lessons. For the 146 individual laptops investigated, the range of duty factors was from 0.02 to 0.91%, with a mean of 0.08% (SD 0.10%). The duty factors of access points from 7 networks ranged from 1.0% to 11.7% with a mean of 4.79% (SD 3.76%). Data gathered with transmit time measuring devices attached to laptops also showed similar results. Within the present limited sample, the range of duty factors from laptops and access points were found to be broadly similar for primary and secondary schools. Applying these duty factors to previously published results from this project, the maximum time-averaged power density from a laptop would be 220 μW m(-2), at a distance of 0.5 m and the peak localised SAR predicted in the torso region of a 10 year old child model, at 34 cm from the antenna, would be 80 μW kg(-1). Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Lung, Ildikó; Soran, Maria-Loredana; Opriş, Ocsana; Truşcă, Mihail Radu Cătălin; Niinemets, Ülo; Copolovici, Lucian
2016-11-01
Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, >17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. Copyright © 2016 Elsevier B.V. All rights reserved.
Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian
2014-09-15
Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.
Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian
2015-01-01
Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479
Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground
NASA Astrophysics Data System (ADS)
Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.
2018-04-01
A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.
Testing and reference model analysis of FTTH system
NASA Astrophysics Data System (ADS)
Feng, Xiancheng; Cui, Wanlong; Chen, Ying
2009-08-01
With rapid development of Internet and broadband access network, the technologies of xDSL, FTTx+LAN , WLAN have more applications, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network.. Fiber to the Home (FTTH) will be the goal of telecommunications cable broadband access. In accordance with the development trend of telecommunication services, to enhance the capacity of integrated access network, to achieve triple-play (voice, data, image), based on the existing optical Fiber to the curb (FTTC), Fiber To The Zone (FTTZ), Fiber to the Building (FTTB) user optical cable network, the optical fiber can extend to the FTTH system of end-user by using EPON technology. The article first introduced the basic components of FTTH system; and then explain the reference model and reference point for testing of the FTTH system; Finally, by testing connection diagram, the testing process, expected results, primarily analyze SNI Interface Testing, PON interface testing, Ethernet performance testing, UNI interface testing, Ethernet functional testing, PON functional testing, equipment functional testing, telephone functional testing, operational support capability testing and so on testing of FTTH system. ...
He, Longjun; Ming, Xing; Liu, Qian
2014-04-01
With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.
Bischof, F; Langer, J; Begall, K
2008-11-01
Every day life is detectably affected by manifold natural sources of electromagnetic fields (EMF), e. g. infrared radiation, light and the terrestrial magnetic field. However, there is still uncertainty about the consequences or hazards of artificial EMF, which emerge from mobile phone or wireless network (wireless local area network [WLAN]) services, for instance. Following recommendations of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) the German Commission on Radiation Protection (SSK) defined corresponding thresholds for high frequency electromagnetic fields (HF-EMF) in 2003. By observing those thresholds HF-EMF is thought to be innocent so far. However, there is still controversial discussion about induction of cancer or neurovegetative symptoms due to inconsistent study results. Patients with cochlea implants are of particular interest within the speciality of otorhinolaryngology due to specific hazards, which arise during mobile telephone use from the distance between brain and inductive metal implants (electrode) on the one hand and the electronic system of the cochlear implant and the source of HF-EMF on the other hand. Besides many studies about the impact of HF-EMF on common welfare, there are only very few surveys (n = 6) covering the effects on patients with cochlear implants. The purpose of this paper is to overview sources, thresholds and subsequently harmful or harmless effects of HFEMF. Due to the current state of knowledge about the impact of mobile phone use on health, we assume, that HF-EMF are harmless both for healthy people and patients with cochlea implants, provided that legal thresholds are observed.
Hellmers, Hendrik; Kasmi, Zakaria; Norrdine, Abdelmoumen; Eichhorn, Andreas
2018-01-04
In recent years, a variety of real-time applications benefit from services provided by localization systems due to the advent of sensing and communication technologies. Since the Global Navigation Satellite System (GNSS) enables localization only outside buildings, applications for indoor positioning and navigation use alternative technologies. Ultra Wide Band Signals (UWB), Wireless Local Area Network (WLAN), ultrasonic or infrared are common examples. However, these technologies suffer from fading and multipath effects caused by objects and materials in the building. In contrast, magnetic fields are able to pass through obstacles without significant propagation errors, i.e. in Non-Line of Sight Scenarios (NLoS). The aim of this work is to propose a novel indoor positioning system based on artificially generated magnetic fields in combination with Inertial Measurement Units (IMUs). In order to reach a better coverage, multiple coils are used as reference points. A basic algorithm for three-dimensional applications is demonstrated as well as evaluated in this article. The established system is then realized by a sensor fusion principle as well as a kinematic motion model on the basis of a Kalman filter. Furthermore, a pressure sensor is used in combination with an adaptive filtering method to reliably estimate the platform's altitude.
NASA Technical Reports Server (NTRS)
Nessel, James A.; Kory, Carol L.; Lambert, Kevin M.; Acosta, Roberto J.
2006-01-01
Short Backfire Antennas (SBAs) are widely utilized for mobile satellite communications, tracking, telemetry, and wireless local area network (WLAN) applications due to their compact structure and excellent radiation characteristics [1-3]. Typically, these SBA s consist of an excitation element (i.e., a half-wavelength dipole), a reflective bottom plane, a planar sub-reflector located above the "exciter", and an outer circular rim. This configuration is capable of achieving gains on the order of 13-15 dBi, but with relatively narrow bandwidths (approx.3%-5%), making it incompatible with the requirements of the next generation enhanced Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) array [1]. Several attempts have been made to enhance the bandwidth performance of the common dipole-fed SBA by employing various other feeding mechanisms (e.g., waveguide, slot) with moderate success [4-5]. In this paper, a novel method of using a microstrip patch is employed for the first time to excite an SBA. The patch element is fed via two H-shaped slots electromagnetically coupled to a broadband hybrid coupler to maintain a wide bandwidth, as well as provide for dual circular polarization capabilities.
Towards smart environments using smart objects.
Sedlmayr, Martin; Prokosch, Hans-Ulrich; Münch, Ulli
2011-01-01
Barcodes, RFID, WLAN, Bluetooth and many more technologies are used in hospitals. They are the technological bases for different applications such as patient monitoring, asset management and facility management. However, most of these applications exist side by side with hardly any integration and even interoperability is not guaranteed. Introducing the concept of smart objects inspired by the Internet of Things can improve the situation by separating the capabilities and functions of an object from the implementing technology such as RFID or WLAN. By aligning technological and business developments smart objects have the power to transform a hospital from an agglomeration of technologies into a smart environment.
A Novel Design of Frequency Reconfigurable Antenna for UWB Application
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao
2016-09-01
In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.
Adaptive threshold control for auto-rate fallback algorithm in IEEE 802.11 multi-rate WLANs
NASA Astrophysics Data System (ADS)
Wu, Qilin; Lu, Yang; Zhu, Xiaolin; Ge, Fangzhen
2012-03-01
The IEEE 802.11 standard supports multiple rates for data transmission in the physical layer. Nowadays, to improve network performance, a rate adaptation scheme called auto-rate fallback (ARF) is widely adopted in practice. However, ARF scheme suffers performance degradation in multiple contending nodes environments. In this article, we propose a novel rate adaptation scheme called ARF with adaptive threshold control. In multiple contending nodes environment, the proposed scheme can effectively mitigate the frame collision effect on rate adaptation decision by adaptively adjusting rate-up and rate-down threshold according to the current collision level. Simulation results show that the proposed scheme can achieve significantly higher throughput than the other existing rate adaptation schemes. Furthermore, the simulation results also demonstrate that the proposed scheme can effectively respond to the varying channel condition.
Design of modified pentagonal patch antenna on defective ground for Wi-Max/WLAN application
NASA Astrophysics Data System (ADS)
Rawat, Sanyog; Sharma, K. K.
2016-04-01
This paper presents the design and performance of a modified pentagonal patch antenna with defective ground plane. A pentagonal slot is inserted in the pentagonal patch and slot loaded ground through optimized dimensions is used in the antenna to resonate it at dual frequency. The geometry operates at two resonant frequencies (2.5 GHz and 5.58 GHz) and offers impedance bandwidth of 864 MHz and 554 MHz in the two bands of interest. The proposed antenna covers the lower band (2.45 to 2.484/2.495 to 2.695 GHz) and upper band (5.15 to 5.825 GHz/5.25 to 5.85 GHz) allocated for Wi-Max and WLAN communication systems.
NASA Astrophysics Data System (ADS)
Gu, Wenjun; Zhang, Weizhi; Wang, Jin; Amini Kashani, M. R.; Kavehrad, Mohsen
2015-01-01
Over the past decade, location based services (LBS) have found their wide applications in indoor environments, such as large shopping malls, hospitals, warehouses, airports, etc. Current technologies provide wide choices of available solutions, which include Radio-frequency identification (RFID), Ultra wideband (UWB), wireless local area network (WLAN) and Bluetooth. With the rapid development of light-emitting-diodes (LED) technology, visible light communications (VLC) also bring a practical approach to LBS. As visible light has a better immunity against multipath effect than radio waves, higher positioning accuracy is achieved. LEDs are utilized both for illumination and positioning purpose to realize relatively lower infrastructure cost. In this paper, an indoor positioning system using VLC is proposed, with LEDs as transmitters and photo diodes as receivers. The algorithm for estimation is based on received-signalstrength (RSS) information collected from photo diodes and trilateration technique. By appropriately making use of the characteristics of receiver movements and the property of trilateration, estimation on three-dimensional (3-D) coordinates is attained. Filtering technique is applied to enable tracking capability of the algorithm, and a higher accuracy is reached compare to raw estimates. Gaussian mixture Sigma-point particle filter (GM-SPPF) is proposed for this 3-D system, which introduces the notion of Gaussian Mixture Model (GMM). The number of particles in the filter is reduced by approximating the probability distribution with Gaussian components.
A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications
NASA Astrophysics Data System (ADS)
Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad
2017-03-01
A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.
Navigation studies based on the ubiquitous positioning technologies
NASA Astrophysics Data System (ADS)
Ye, Lei; Mi, Weijie; Wang, Defeng
2007-11-01
This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.
Wideband dual frequency modified ellipse shaped patch antenna for WLAN/Wi-MAX/UWB application
NASA Astrophysics Data System (ADS)
Jain, P. K.; Jangid, K. G.; R. Sharma, B.; Saxena, V. K.; Bhatnagar, D.
2018-05-01
This paper communicates the design and performance of microstrip line fed modified ellipses shaped radiating patch with defected ground structure. Wide impedance bandwidth performance is achieved by applying a pentagonal slot and T slot structure in ground plane. By inserting two semi ellipses shaped ring in ground, we obtained axial ratio bandwidth approx 600 MHz. The proposed antenna is simulated by utilizing CST Microwave Studio simulator 2014. This antenna furnishes wide impedance bandwidth approx. 4.23 GHz, which has spread into two bands 2.45 GHz - 5.73 GHz and 7.22 GHz - 8.17 GHz with nearly flat gain in operating frequency range. This antenna may be proved as a practicable structure for modern wireless communication systems including Wi-MAX, WLAN and lower band of UWB.
POTS to broadband ... cable modems.
Kabachinski, Jeff
2003-01-01
There have been 3 columns talking about broadband communications and now at the very end when it's time to compare using a telco or cableco, I'm asking does it really matter? So what if I can actually get the whole 30 Mbps with a cable network when the website I'm connecting to is running on an ISDN line at 128 Kbps? Broadband offers a lot more bandwidth than the connections many Internet servers have today. Except for the biggest websites, many servers connect to the Internet with a switched 56-Kbps, ISDN, or fractional T1 line. Even with the big websites, my home network only runs a 10 Mbps Ethernet connection to my cable modem. Maybe it doesn't matter that the cable lines are shared or that I can only get 8 Mbps from an ADSL line. Maybe the ISP that I use has a T1 line connection to the Internet so my new ADSL modem has a fatter pipe than my provider! (See table 1). It all makes me wonder what's in store for us in the future. PC technology has increased exponentially in the last 10 years with super fast processor speeds, hard disks of hundreds of gigabytes, and amazing video and audio. Internet connection speeds have failed to keep the same pace. Instead of hundreds of times better or faster--modem speeds are barely 10 times faster. Broadband connections offer some additional speed but still not comparable growth as broadband connections are still in their infancy. Rather than trying to make use of existing communication paths, maybe we need a massive infrastructure makeover of something new. How about national wireless access points so we can connect anywhere, anytime? To use the latest and fastest wireless technology you will simply need to buy another $9.95 WLAN card or download the latest super slick WLAN compression/encryption software. Perhaps it is time for a massive infra-restructuring. Consider the past massive infrastructure efforts. The telcos needed to put in their wiring infrastructure starting in the 1870s before telephones were useful to the masses. CATV was a minor player in the TV broadcast business before they installed their cabling infrastructure and went national. Even automobiles were fairly useless until roads were paved and the highway infrastructure was built!
NASA Astrophysics Data System (ADS)
Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal
2016-03-01
In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.
NASA Astrophysics Data System (ADS)
Niehoff, Wolfgang
Für die drahtlose Übertragung von Audiosignalen werden elektromagnetische Wellen als Trägersignale genutzt. Auch der Rundfunk bedient sich dieser Wellen auf unterschiedlichen Frequenzen, ebenso Kommunikationsdienste wie der Mobilfunk, WLAN, Bluetooth und andere Funkdienste (Abb. 19.1).
Antenna Design Considerations for the Advanced Extravehicular Mobility Unit
NASA Technical Reports Server (NTRS)
Bakula, Casey J.; Theofylaktos, Onoufrios
2015-01-01
NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.
NASA Astrophysics Data System (ADS)
Chan, S.; Sohn, G.
2012-06-01
The past few years have seen wide spread adoption of outdoor positioning services, mainly GPS, being incorporated into everyday devices such as smartphones and tablets. While outdoor positioning has been well received by the public, its indoor counterpart has been mostly limited to private use due to its higher costs and complexity for setting up the proper environment. The objective of this research is to provide an affordable mean for indoor localization using wireless local area network (WLAN) Wi-Fi technology. We combined two different Wi-Fi approaches to locate a user. The first method involves the use of matching the pre-recorded received signal strength (RSS) from nearby access points (AP), to the data transmitted from the user on the fly. This is commonly known as "fingerprint matching". The second approach is a distance-based trilateration approach using three known AP coordinates detected on the user's device to derive the position. The combination of the two steps enhances the accuracy of the user position in an indoor environment allowing location-based services (LBS) such as mobile augmented reality (MAR) to be deployed more effectively in the indoor environment. The mapping of the RSS map can also prove useful to IT planning personnel for covering locations with no Wi-Fi coverage (ie. dead spots). The experiments presented in this research helps provide a foundation for the integration of indoor with outdoor positioning to create a seamless transition experience for users.
Radiation Pattern of Chair Armed Microstrip Antenna
NASA Astrophysics Data System (ADS)
Mishra, Rabindra Kishore; Sahu, Kumar Satyabrat
2016-12-01
This work analyzes planar antenna conformable to chair arm shaped surfaces for WLAN application. Closed form expressions for its radiation pattern are developed and validated using measurements on prototype and commercial EM code at 2.4 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com; Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com
In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused onmore » achieving a dual band operation.« less
Behzadi, Kobra; Baghelani, Masoud
2014-05-01
This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.
Behzadi, Kobra; Baghelani, Masoud
2013-01-01
This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator. PMID:25685504
Sniffer Channel Selection for Monitoring Wireless LANs
NASA Astrophysics Data System (ADS)
Song, Yuan; Chen, Xian; Kim, Yoo-Ah; Wang, Bing; Chen, Guanling
Wireless sniffers are often used to monitor APs in wireless LANs (WLANs) for network management, fault detection, traffic characterization, and optimizing deployment. It is cost effective to deploy single-radio sniffers that can monitor multiple nearby APs. However, since nearby APs often operate on orthogonal channels, a sniffer needs to switch among multiple channels to monitor its nearby APs. In this paper, we formulate and solve two optimization problems on sniffer channel selection. Both problems require that each AP be monitored by at least one sniffer. In addition, one optimization problem requires minimizing the maximum number of channels that a sniffer listens to, and the other requires minimizing the total number of channels that the sniffers listen to. We propose a novel LP-relaxation based algorithm, and two simple greedy heuristics for the above two optimization problems. Through simulation, we demonstrate that all the algorithms are effective in achieving their optimization goals, and the LP-based algorithm outperforms the greedy heuristics.
PKI-based secure mobile access to electronic health services and data.
Kambourakis, G; Maglogiannis, I; Rouskas, A
2005-01-01
Recent research works examine the potential employment of public-key cryptography schemes in e-health environments. In such systems, where a Public Key Infrastructure (PKI) is established beforehand, Attribute Certificates (ACs) and public key enabled protocols like TLS, can provide the appropriate mechanisms to effectively support authentication, authorization and confidentiality services. In other words, mutual trust and secure communications between all the stakeholders, namely physicians, patients and e-health service providers, can be successfully established and maintained. Furthermore, as the recently introduced mobile devices with access to computer-based patient record systems are expanding, the need of physicians and nurses to interact increasingly with such systems arises. Considering public key infrastructure requirements for mobile online health networks, this paper discusses the potential use of Attribute Certificates (ACs) in an anticipated trust model. Typical trust interactions among doctors, patients and e-health providers are presented, indicating that resourceful security mechanisms and trust control can be obtained and implemented. The application of attribute certificates to support medical mobile service provision along with the utilization of the de-facto TLS protocol to offer competent confidentiality and authorization services is also presented and evaluated through experimentation, using both the 802.11 WLAN and General Packet Radio Service (GPRS) networks.
Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.
Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin
2017-02-01
Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y
2007-04-01
This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. (c) 2006 Wiley-Liss, Inc.
Real-time video streaming in mobile cloud over heterogeneous wireless networks
NASA Astrophysics Data System (ADS)
Abdallah-Saleh, Saleh; Wang, Qi; Grecos, Christos
2012-06-01
Recently, the concept of Mobile Cloud Computing (MCC) has been proposed to offload the resource requirements in computational capabilities, storage and security from mobile devices into the cloud. Internet video applications such as real-time streaming are expected to be ubiquitously deployed and supported over the cloud for mobile users, who typically encounter a range of wireless networks of diverse radio access technologies during their roaming. However, real-time video streaming for mobile cloud users across heterogeneous wireless networks presents multiple challenges. The network-layer quality of service (QoS) provision to support high-quality mobile video delivery in this demanding scenario remains an open research question, and this in turn affects the application-level visual quality and impedes mobile users' perceived quality of experience (QoE). In this paper, we devise a framework to support real-time video streaming in this new mobile video networking paradigm and evaluate the performance of the proposed framework empirically through a lab-based yet realistic testing platform. One particular issue we focus on is the effect of users' mobility on the QoS of video streaming over the cloud. We design and implement a hybrid platform comprising of a test-bed and an emulator, on which our concept of mobile cloud computing, video streaming and heterogeneous wireless networks are implemented and integrated to allow the testing of our framework. As representative heterogeneous wireless networks, the popular WLAN (Wi-Fi) and MAN (WiMAX) networks are incorporated in order to evaluate effects of handovers between these different radio access technologies. The H.264/AVC (Advanced Video Coding) standard is employed for real-time video streaming from a server to mobile users (client nodes) in the networks. Mobility support is introduced to enable continuous streaming experience for a mobile user across the heterogeneous wireless network. Real-time video stream packets are captured for analytical purposes on the mobile user node. Experimental results are obtained and analysed. Future work is identified towards further improvement of the current design and implementation. With this new mobile video networking concept and paradigm implemented and evaluated, results and observations obtained from this study would form the basis of a more in-depth, comprehensive understanding of various challenges and opportunities in supporting high-quality real-time video streaming in mobile cloud over heterogeneous wireless networks.
A concept for ubiquitous robotics in industrial environment
NASA Astrophysics Data System (ADS)
Sallinen, Mikko; Heilala, Juhani; Kivikunnas, Sauli
2007-09-01
In this paper a concept for industrial ubiquitous robotics is presented. The concept combines two different approaches to manage agile, adaptable production: firstly the human operator is strongly in the production loop and secondly, the robot workcell will be more autonomous and smarter to manage production. This kind of autonomous robot cell can be called production island. Communication to the human operator working in this kind of smart industrial environment can be divided into two levels: body area communication and operator-infrastructure communication including devices, machines and infra. Body area communication can be supportive in two directions: data is recorded by means of measuring physical actions, such as hand movements, body gestures or supportive when it will provide information to user such as guides or manuals for operation. Body area communication can be carried out using short range communication technologies such as NFC (Near Field communication) which is RFID type of communication. In the operator-infrastructure communication, WLAN or Bluetooth -communication can be used. Beyond the current Human Machine interaction HMI systems, the presented system concept is designed to fulfill the requirements for hybrid, knowledge intensive manufacturing in the future, where humans and robots operate in close co-operation.
NASA Astrophysics Data System (ADS)
Varma, Ruchi; Ghosh, Jayanta
2018-06-01
A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.
WLANs for the 21st Century Library
ERIC Educational Resources Information Center
Calamari, Cal
2009-01-01
As educational and research needs have changed, libraries have changed as well. They must meet ever-increasing demand for access to online media, subscriptions to archives, video, audio, and other content. The way a user/patron accesses this information has also changed. Gone are the days of a few hardwired desktops or computer carts. While…
Symmetric/Asymmetrical SIRs Dual-Band BPF Design for WLAN Applications
NASA Astrophysics Data System (ADS)
Ho, Min-Hua; Ho, Hao-Hung; Chen, Mingchih
This paper presents the dual-band bandpass filters (BPFs) design composed of λ/2 and symmetrically/asymmetrically paired λ/4 stepped impedance resonators (SIRs) for the WLAN applications. The filters cover both the operating frequencies of 2.45 and 5.2GHz. The dual-coupling mechanism is used in the filter design to provide alternative routes for signals of selected frequencies. A prototype filter is composed of λ/2 and symmetrical λ/4 SIRs. The enhanced wide-stopband filter is then developed from the filter with the symmetrical λ/4 SIRs replaced by the asymmetrical ones. The asymmetrical λ/4 SIRs have their higher resonances frequencies isolated from the adjacent I/O SIRs and extend the enhanced filter an upper stopband limit beyond ten time the fundamental frequency. Also, the filter might possess a cross-coupling structure which introduces transmission zeros by the passband edges to improve the signal selectivity. The tapped-line feed is adopted in this circuit to create additional attenuation poles for improving the stopband rejection levels. Experiments are conducted to verify the circuit performance.
Design and fabrication of pHEMT MMIC switches for IEEE 802.11.a/b/g WLAN applications
NASA Astrophysics Data System (ADS)
Mun, Jae Kyoung; Ji, Hong Gu; Ahn, Hyokyun; Kim, Haecheon; Park, Chong-Ook
2005-08-01
In this paper, we propose a channel structure for a promising switch pHEMT with excellent isolation characteristics based on the distribution of electric field intensity beneath the Schottky contact in the transistor. Using the proposed device channel structure, SPST and SPDT switches were designed and fabricated, applicable to 2.4 GHz and 5.8 GHz WLAN systems. We discuss the relationship between dc characteristics and switch parameters in this paper in detail. The developed SPST switch exhibits a low insertion loss of 0.26 dB and a high isolation of 34.3 dB with a control voltage of 0 V/-3 V at 5.8 GHz. The SPDT also shows a good performance of 0.85 dB insertion loss and 31.5 dB isolation under the same conditions. The measured power-handling capability at 2.4 GHz reveals that the SPDT has an output power of 27 dBm at the 1 dB compression point and a third-order intercept point of more than 46 dBm.
NASA Astrophysics Data System (ADS)
Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali
2017-06-01
We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.
Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin
2014-01-01
A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S11 < -10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.
3D-RTK Capability of Single Gnss Receivers
NASA Astrophysics Data System (ADS)
Stempfhuber, W.
2013-08-01
Small, aerial objects are now being utilised in many areas of civil object capture and monitoring. As a rule, the standard application of a simple GPS receiver with code solutions serves the 3D-positioning of the trajectories or recording positions. Without GPS correction information, these can be calculated at an accuracy of 10-20 metres. Corrected code solutions (DGPS) generally lie in the metre range. A precise 3D-positioning of the UAV (unmanned aerial vehicle) trajectories in the centimetre range provides significant improvements. In addition, the recording time of each sensor can be synchronized with the exact time stamp of the GNSS low-cost system. In recent years, increasing works on positioning from L1 GPS raw data have been published. Along with this, the carrier phase measurements with the established evaluation algorithms are analysed in the post processing method to centimetre-exact positions or to high-precision 3D trajectories [e.g. Schwieger and Gläser, 2005 or Korth and Hofmann 20011]. The use of reference information from local reference stations or a reference network serves the purpose of carrier phase ambiguity resolution. Furthermore, there are many activities worldwide in the area of PPP techniques (Precise Point Positioning). However, dual frequency receivers are primarily used in this instance. Moreover, very long initialisation times must be scheduled for this. A research project on the subject of low-cost RTK GNSS was developed for real-time applications at the Beuth Hochschule für Technik Berlin University of Applied Sciences [Stempfhuber 2012]. The overall system developed for the purpose of real-time applications with centimetre accuracy is modularly constructed and can be used for various applications (http://prof.beuthhochschule.de/stempfhuber/seite-publikation/). With hardware costing a few hundred Euro and a total weight of 500-800 g (including the battery), this system is ideally suited for UAV applications. In addition, the GNSS data processed with the RTK method can be provided in standardised NMEA format. Through the reduced shadowing effects of the aerial objects, GNSS external factors such as multipath cause few problems. With L1 carrier phase analysis, the baseline computation must nevertheless remain limited at the range of a few kilometres. With distances of more than 5 kilometres between the reference station and the rover station position, mistakes arise in the decimetre area. The overall modular system consists of a low-cost, single-frequency receiver (e.g. uBlox LEA4T or 6T receiver), a L1 antenna (e.g. the Trimble Bullet III), a developed data logger including an integrated WLAN communication module for storage and securing of the raw data as well as a power supply. Optimisation of the L1 antenna has shown that, in this instance, many problems relating to signal reception can be reduced. A calibration of the choke-ring adaptors for various antenna calibration facilities results in good and homogeneous antenna parameters. In this situation, the real-time algorithm from the Open Source project RTKLib [Takasu, 2010] generally runs on a small computer at the reference station. In this case, the data transfer from the L1 receiver to the PC is realisable through a serial cable. The rover station can transfer the raw data to the computing algorithm over a WLAN network or through a data radio. Of course, this computational algorithm can also be adapted to an integrated computing module for L1 carrier phase resolutions. The average time to first fix (TTFF) amounts to a few minutes depending on the satellite constellation. Different test series in movement simulators and in moving objects have shown that a stable, fixed solution is achieved with a normal satellite constellation. A test series with a Microdrones quadrocopter could also be conducted. In comparison of the RTK positions with a geodetic dual frequency receiver, differences are in millimetre ranges. In addition, reference systems (based on total stations) are present for the precise examination of the kinematically captured positioning [Eisenbeiss et al. 2009].
NASA Technical Reports Server (NTRS)
Mangieri, Mark
2005-01-01
ARED flight instrumentation software is associated with an overall custom designed resistive exercise system that will be deployed on the International Space Station (ISS). This innovative software application fuses together many diverse and new technologies into a robust and usable package. The software takes advantage of touchscreen user interface technology by providing a graphical user interface on a Windows based tablet PC, meeting a design constraint of keyboard-less interaction with flight crewmembers. The software interacts with modified commercial data acquisition (DAQ) hardware to acquire multiple channels of sensor measurment from the ARED device. This information is recorded on the tablet PC and made available, via International Space Station (ISS) Wireless LAN (WLAN) and telemetry subsystems, to ground based mission medics and trainers for analysis. The software includes a feature to accept electronically encoded prescriptions of exercises that guide crewmembers through a customized regimen of resistive weight training, based on personal analysis. These electronically encoded prescriptions are provided to the crew via ISS WLAN and telemetry subsystems. All personal data is securely associated with an individual crew member, based on a PIN ID mechanism.
AR.Drone: security threat analysis and exemplary attack to track persons
NASA Astrophysics Data System (ADS)
Samland, Fred; Fruth, Jana; Hildebrandt, Mario; Hoppe, Tobias; Dittmann, Jana
2012-01-01
In this article we illustrate an approach of a security threat analysis of the quadrocopter AR.Drone, a toy for augmented reality (AR) games. The technical properties of the drone can be misused for attacks, which may relate security and/or privacy aspects. Our aim is to sensitize for the possibility of misuses and the motivation for an implementation of improved security mechanisms of the quadrocopter. We focus primarily on obvious security vulnerabilities (e.g. communication over unencrypted WLAN, usage of UDP, live video streaming via unencrypted WLAN to the control device) of this quadrocopter. We could practically verify in three exemplary scenarios that this can be misused by unauthorized persons for several attacks: high-jacking of the drone, eavesdropping of the AR.Drones unprotected video streams, and the tracking of persons. Amongst other aspects, our current research focuses on the realization of the attack of tracking persons and objects with the drone. Besides the realization of attacks, we want to evaluate the potential of this particular drone for a "safe-landing" function, as well as potential security enhancements. Additionally, in future we plan to investigate an automatic tracking of persons or objects without the need of human interactions.
Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin
2014-01-01
A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S 11 < −10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices. PMID:24711732
Schmid, G; Lager, D; Preiner, P; Uberbacher, R; Cecil, S
2007-01-01
In order to estimate typical radio frequency exposures from indoor used wireless communication technologies applied in homes and offices, WLAN, Bluetooth and Digital Enhanced Cordless Telecommunications systems, as well as baby surveillance devices and wireless headphones for indoor usage, have been investigated by measurements and numerical computations. Based on optimised measurement methods, field distributions and resulting exposure were assessed on selected products and real exposure scenarios. Additionally, generic scenarios have been investigated on the basis of numerical computations. The obtained results demonstrate that under usual conditions the resulting spatially (over body dimensions) averaged and 6-min time-averaged exposure for persons in the radio frequency fields of the considered applications is below approximately 0.1% of the reference level for power density according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines published in 1998. Spatial and temporal peak values can be considerably higher by 2-3 orders of magnitude. In case of some transmitting devices operated in close proximity to the body (e.g. WLAN transmitters), local exposure can reach the same order of magnitude as the basic restriction; however, none of the devices considered in this study exceeded the limits according to the ICNIRP guidelines.
Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin
2016-01-01
With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053
A 0.9-V 12-bit 40-MSPS Pipeline ADC for Wireless Receivers
NASA Astrophysics Data System (ADS)
Ito, Tomohiko; Itakura, Tetsuro
A 0.9-V 12-bit 40-MSPS pipeline ADC with I/Q amplifier sharing technique is presented for wireless receivers. To achieve high linearity even at 0.9-V supply, the clock signals to sampling switches are boosted over 0.9V in conversion stages. The clock-boosting circuit for lifting these clocks is shared between I-ch ADC and Q-ch ADC, reducing the area penalty. Low supply voltage narrows the available output range of the operational amplifier. A pseudo-differential (PD) amplifier with two-gain-stage common-mode feedback (CMFB) is proposed in views of its wide output range and power efficiency. This ADC is fabricated in 90-nm CMOS technology. At 40MS/s, the measured SNDR is 59.3dB and the corresponding effective number of bits (ENOB) is 9.6. Until Nyquist frequency, the ENOB is kept over 9.3. The ADC dissipates 17.3mW/ch, whose performances are suitable for ADCs for mobile wireless systems such as WLAN/WiMAX.
NASA Astrophysics Data System (ADS)
Quemada, C.; Adin, I.; Bistue, G.; Berenguer, R.; Mendizabal, J.
2005-06-01
A 3.3V, fully integrated 3.2-GHz voltage-controlled oscillator (VCO) is designed in a 0.18μm CMOS technology for the IEE 802.11a/HiperLAN WLAN standard for the UNII band from 5.15 to 5.35 GHz. The VCO is tunable between 2.85 GHz and 3.31 GHz. NMOS architecture with self-biasing current of the tank source is chosen. A startup circuit has been employed to avoid zero initial current. Current variation is lower than 1% for voltage supply variations of 10%. The use of a self-biasing current source in the tank provides a greater safety in the transconductance value and allows running along more extreme point operation The designed VCO displays a phase noise and output power of -98dBc/Hz (at 100 KHz offset frequency) and 0dBm respectively. This phase noise has been obtained with inductors of 2.2nH and quality factor of 12 at 3.2 GHz, and P-N junction varactors whose quality factor is estimated to exceed 40 at 3.2 GHz. These passive components have been fabricated, measured and modeled previously. The core of the VCO consumes 33mW DC power.
Development of an RF-EMF Exposure Surrogate for Epidemiologic Research.
Roser, Katharina; Schoeni, Anna; Bürgi, Alfred; Röösli, Martin
2015-05-22
Exposure assessment is a crucial part in studying potential effects of RF-EMF. Using data from the HERMES study on adolescents, we developed an integrative exposure surrogate combining near-field and far-field RF-EMF exposure in a single brain and whole-body exposure measure. Contributions from far-field sources were modelled by propagation modelling and multivariable regression modelling using personal measurements. Contributions from near-field sources were assessed from both, questionnaires and mobile phone operator records. Mean cumulative brain and whole-body doses were 1559.7 mJ/kg and 339.9 mJ/kg per day, respectively. 98.4% of the brain dose originated from near-field sources, mainly from GSM mobile phone calls (93.1%) and from DECT phone calls (4.8%). Main contributors to the whole-body dose were GSM mobile phone calls (69.0%), use of computer, laptop and tablet connected to WLAN (12.2%) and data traffic on the mobile phone via WLAN (6.5%). The exposure from mobile phone base stations contributed 1.8% to the whole-body dose, while uplink exposure from other people's mobile phones contributed 3.6%. In conclusion, the proposed approach is considered useful to combine near-field and far-field exposure to an integrative exposure surrogate for exposure assessment in epidemiologic studies. However, substantial uncertainties remain about exposure contributions from various near-field and far-field sources.
Development of an RF-EMF Exposure Surrogate for Epidemiologic Research
Roser, Katharina; Schoeni, Anna; Bürgi, Alfred; Röösli, Martin
2015-01-01
Exposure assessment is a crucial part in studying potential effects of RF-EMF. Using data from the HERMES study on adolescents, we developed an integrative exposure surrogate combining near-field and far-field RF-EMF exposure in a single brain and whole-body exposure measure. Contributions from far-field sources were modelled by propagation modelling and multivariable regression modelling using personal measurements. Contributions from near-field sources were assessed from both, questionnaires and mobile phone operator records. Mean cumulative brain and whole-body doses were 1559.7 mJ/kg and 339.9 mJ/kg per day, respectively. 98.4% of the brain dose originated from near-field sources, mainly from GSM mobile phone calls (93.1%) and from DECT phone calls (4.8%). Main contributors to the whole-body dose were GSM mobile phone calls (69.0%), use of computer, laptop and tablet connected to WLAN (12.2%) and data traffic on the mobile phone via WLAN (6.5%). The exposure from mobile phone base stations contributed 1.8% to the whole-body dose, while uplink exposure from other people’s mobile phones contributed 3.6%. In conclusion, the proposed approach is considered useful to combine near-field and far-field exposure to an integrative exposure surrogate for exposure assessment in epidemiologic studies. However, substantial uncertainties remain about exposure contributions from various near-field and far-field sources. PMID:26006132
Polling-Based High-Bit-Rate Packet Transfer in a Microcellular Network to Allow Fast Terminals
NASA Astrophysics Data System (ADS)
Hoa, Phan Thanh; Lambertsen, Gaute; Yamada, Takahiko
A microcellular network will be a good candidate for the future broadband mobile network. It is expected to support high-bit-rate connection for many fast mobile users if the handover is processed fast enough to lessen its impact on QoS requirements. One of the promising techniques is believed to use for the wireless interface in such a microcellular network is the WLAN (Wireless LAN) technique due to its very high wireless channel rate. However, the less capability of mobility support of this technique must be improved to be able to expand its utilization for the microcellular environment. The reason of its less support mobility is large handover latency delay caused by contention-based handover to the new BS (base station) and delay of re-forwarding data from the old to new BS. This paper presents a proposal of multi-polling and dynamic LMC (Logical Macro Cell) to reduce mentioned above delays. Polling frame for an MT (Mobile Terminal) is sent from every BS belonging to the same LMC — a virtual single macro cell that is a multicast group of several adjacent micro-cells in which an MT is communicating. Instead of contending for the medium of a new BS during handover, the MT responds to the polling sent from that new BS to enable the transition. Because only one BS of the LMC receives the polling ACK (acknowledgement) directly from the MT, this ACK frame has to be multicast to all BSs of the same LMC through the terrestrial network to continue sending the next polling cycle at each BS. Moreover, when an MT hands over to a new cell, its current LMC is switched over to a newly corresponding LMC to prevent the future contending for a new LMC. By this way, an MT can do handover between micro-cells of an LMC smoothly because the redundant resource is reserved for it at neighboring cells, no need to contend with others. Our simulation results using the OMNeT++ simulator illustrate the performance achievements of the multi-polling and dynamic LMC scheme in eliminating handover latency, packet loss and keeping mobile users' throughput stable in the high traffic load condition though it causes somewhat overhead on the neighboring cells.
Luo, Junhai; Fu, Liang
2017-06-09
With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS), which is collected from Access Points (APs). The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA) is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC) algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML) estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.
Media Access Time-Rearrangement of Wireless LAN for a Multi-Radio Collocated Platform
NASA Astrophysics Data System (ADS)
Shin, Sang-Heon; Kim, Chul; Park, Sang Kyu
With the advent of new Radio Access Technologies (RATs), it is inevitable that several RATs will co-exist, especially in the license-exempt band. In this letter, we present an in-depth adaptation of the proactive time-rearrangement (PATRA) scheme for IEEE 802.11 WLAN. The PATRA is a time division approach for reducing interference from a multi-radio device. Because IEEE 802.11 is based on carrier sensing and contention mechanism, it is the most suitable candidate to adapt the PATRA.
Spontaneous Group Learning in Ambient Learning Environments
NASA Astrophysics Data System (ADS)
Bick, Markus; Jughardt, Achim; Pawlowski, Jan M.; Veith, Patrick
Spontaneous Group Learning is a concept to form and facilitate face-to-face, ad-hoc learning groups in collaborative settings. We show how to use Ambient Intelligence to identify, support, and initiate group processes. Learners' positions are determined by widely used technologies, e.g., Bluetooth and WLAN. As a second step, learners' positions, tasks, and interests are visualized. Finally, a group process is initiated supported by relevant documents and services. Our solution is a starting point to develop new didactical solutions for collaborative processes.
NASA Astrophysics Data System (ADS)
Ferragina, V.; Frassone, A.; Ghittori, N.; Malcovati, P.; Vigna, A.
2005-06-01
The behavioral analysis and the design in a 0.13 μm CMOS technology of a digital interpolator filter for wireless applications are presented. The proposed block is designed to be embedded in the baseband part of a reconfigurable transmitter (WLAN 802.11a, UMTS) to operate as a sampling frequency boost between the digital signal processor (DSP) and the digital-to-analog converter (DAC). In recent trends the DAC of such transmitters usually operates at high conversion frequencies (to allow a relaxed implementation of the following analog reconstruction filter), while the DSP output flows at low frequencies (typically Nyquist rate). Thus a block able to increase the digital data rate, like the one proposed, is needed before the DAC. For example, in the WLAN case, an interpolation factor of 4 has been used, allowing the digital data frequency to raise from 20 MHz to 80 MHz. Using a time-domain model of the TX chain, a behavioral analysis has been performed to determine the impact of the filter performance on the quality of the signal at the antenna. This study has led to the evaluation of the z-domain filter transfer function, together with the specifications concerning a finite precision implementation. A VHDL description has allowed an automatic synthesis of the circuit in a 0.13 μm CMOS technology (with a supply voltage of 1.2 V). Post-synthesis simulations have confirmed the effectiveness of the proposed study.
Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices
NASA Astrophysics Data System (ADS)
Becerra-Alvarez, Edwin C.; Sandoval-Ibarra, Federico; de la Rosa, José M.
2009-05-01
This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF<2.8dB, S21>13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band.
47 CFR 54.518 - Support for wide area networks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Support for wide area networks. 54.518 Section... area networks. To the extent that states, schools, or libraries build or purchase a wide area network to provide telecommunications services, the cost of such wide area networks shall not be eligible for...
Field and long-term demonstration of a wide area quantum key distribution network.
Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Li, Hong-Wei; He, De-Yong; Li, Yu-Hu; Zhou, Zheng; Song, Xiao-Tian; Li, Fang-Yi; Wang, Dong; Chen, Hua; Han, Yun-Guang; Huang, Jing-Zheng; Guo, Jun-Fu; Hao, Peng-Lei; Li, Mo; Zhang, Chun-Mei; Liu, Dong; Liang, Wen-Ye; Miao, Chun-Hua; Wu, Ping; Guo, Guang-Can; Han, Zheng-Fu
2014-09-08
A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective integration between point-to-point QKD techniques and networking schemes.
Human movement activity classification approaches that use wearable sensors and mobile devices
NASA Astrophysics Data System (ADS)
Kaghyan, Sahak; Sarukhanyan, Hakob; Akopian, David
2013-03-01
Cell phones and other mobile devices become part of human culture and change activity and lifestyle patterns. Mobile phone technology continuously evolves and incorporates more and more sensors for enabling advanced applications. Latest generations of smart phones incorporate GPS and WLAN location finding modules, vision cameras, microphones, accelerometers, temperature sensors etc. The availability of these sensors in mass-market communication devices creates exciting new opportunities for data mining applications. Particularly healthcare applications exploiting build-in sensors are very promising. This paper reviews different approaches of human activity recognition.
Wireless security in mobile health.
Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan
2012-12-01
Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.
Crist, Michele R.; Knick, Steven T.; Hanser, Steven E.
2015-09-08
The network of areas delineated in 11 Western States for prioritizing management of greater sage-grouse (Centrocercus urophasianus) represents a grand experiment in conservation biology and reserve design. We used centrality metrics from social network theory to gain insights into how this priority area network might function. The network was highly centralized. Twenty of 188 priority areas accounted for 80 percent of the total centrality scores. These priority areas, characterized by large size and a central location in the range-wide distribution, are strongholds for greater sage-grouse populations and also might function as sources. Mid-ranking priority areas may serve as stepping stones because of their location between large central and smaller peripheral priority areas. The current network design and conservation strategy has risks. The contribution of almost one-half (n = 93) of the priority areas combined for less than 1 percent of the cumulative centrality scores for the network. These priority areas individually are likely too small to support viable sage-grouse populations within their boundary. Without habitat corridors to connect small priority areas either to larger priority areas or as a clustered group within the network, their isolation could lead to loss of sage-grouse within these regions of the network.
78 FR 78769 - Medical Body Area Networks
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... Area Networks AGENCY: Federal Communications Commission. ACTION: Final rule; announcement of effective... of Medical Body Area Networks'' adopted in a First Report and Order, ET Docket No. 08-59 (FCC 12-54... for the Operation of Medical Body Area Networks rules contained in the Commission's First Report and...
Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin
2016-10-26
The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.
47 CFR 54.518 - Support for wide area networks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Support for wide area networks. 54.518 Section... area networks. To the extent that schools, libraries or consortia that include an eligible school or library build or purchase a wide area network to provide telecommunications services, the cost of such...
Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.
Rotaru, Mihai; Sykulski, Jan
2010-01-01
This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam
2017-01-01
A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.
Compact Electromagnetic Bandgap Structures for Notch Band in Ultra-Wideband Applications
Rotaru, Mihai; Sykulski, Jan
2010-01-01
This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15–5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied. PMID:22163430
Miniaturized Pi (Π) - Slit monopole antenna for 2.4/5.2/5.8 applications
NASA Astrophysics Data System (ADS)
Chandan, Bharti, Gagandeep; Bharti, Pradutt Kumar; Rai, B. S.
2018-04-01
In present paper, two - shaped slots are inserted in a rectangular patch of a monopole antenna for dual band operation. The antenna design is very simple, compact and light weight with overall dimension 29×38×0.8 mm3. Prototype of the proposed antenna is constructed and tested to verify its usefulness for 2.4/5.2/5.8 ghz wlan/wimax applications. It has been observed that both simulated and measured results have good agreement and measured peak gain and radiation pattern are suitable as per the need of application.
Research in network management techniques for tactical data communications networks
NASA Astrophysics Data System (ADS)
Boorstyn, R.; Kershenbaum, A.; Maglaris, B.; Sarachik, P.
1982-09-01
This is the final technical report for work performed on network management techniques for tactical data networks. It includes all technical papers that have been published during the control period. Research areas include Packet Network modelling, adaptive network routing, network design algorithms, network design techniques, and local area networks.
NASA Technical Reports Server (NTRS)
Gibson, Jim; Jordan, Joe; Grant, Terry
1990-01-01
Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.
Designing a Self-Contained Group Area Network for Ubiquitous Learning
ERIC Educational Resources Information Center
Chen, Nian-Shing; Kinshuk; Wei, Chun-Wang; Yang, Stephen J. H.
2008-01-01
A number of studies have evidenced that handheld devices are appropriate tools to facilitate face-to-face collaborative learning effectively because of the possibility of ample social interactions. Group Area Network, or GroupNet, proposed in this paper, uses handheld devices to fill the gap between Local Area Network and Body Area Network.…
Haney, James P.
1984-01-01
The essence of a local area network (LAN) is that the whole is greater than the sum of its parts. A local area network can save in hardware costs when expensive peripherals are shared; it can save time when large blocks of data are rapidly exchanged among users. The need for more cost-effective and capable communications has inspired the emergence of rapidly developing markets and technologies for local area networks. The purpose of this paper is to provide an understanding of the characteristics, components, costs, and implementation considerations of local area networks. The paper does not compare or define specific vendor offerings; however, recent IBM announcements regarding local area networks are summarized in the last section of the paper.
Crist, Michele R.; Knick, Steven T.; Hanser, Steven E.
2017-01-01
The delineation of priority areas in western North America for managing Greater Sage-Grouse (Centrocercus urophasianus) represents a broad-scale experiment in conservation biology. The strategy of limiting spatial disturbance and focusing conservation actions within delineated areas may benefit the greatest proportion of Greater Sage-Grouse. However, land use under normal restrictions outside priority areas potentially limits dispersal and gene flow, which can isolate priority areas and lead to spatially disjunct populations. We used graph theory, representing priority areas as spatially distributed nodes interconnected by movement corridors, to understand the capacity of priority areas to function as connected networks in the Bi-State, Central, and Washington regions of the Greater Sage-Grouse range. The Bi-State and Central networks were highly centralized; the dominant pathways and shortest linkages primarily connected a small number of large and centrally located priority areas. These priority areas are likely strongholds for Greater Sage-Grouse populations and might also function as refugia and sources. Priority areas in the Central network were more connected than those in the Bi-State and Washington networks. Almost 90% of the priority areas in the Central network had ≥2 pathways to other priority areas when movement through the landscape was set at an upper threshold (effective resistance, ER12). At a lower threshold (ER4), 83 of 123 priority areas in the Central network were clustered in 9 interconnected subgroups. The current conservation strategy has risks; 45 of 61 priority areas in the Bi-State network, 68 of 123 in the Central network, and all 4 priority areas in the Washington network had ≤1 connection to another priority area at the lower ER4threshold. Priority areas with few linkages also averaged greater environmental resistance to movement along connecting pathways. Without maintaining corridors to larger priority areas or a clustered group, isolation of small priority areas could lead to regional loss of Greater Sage-Grouse
Breaking Free with Wireless Networks.
ERIC Educational Resources Information Center
Fleischman, John
2002-01-01
Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…
Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design
Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi
2015-01-01
A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (ε r = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795
Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.
Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi
2015-01-01
A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.
Network and external perturbation induce burst synchronisation in cat cerebral cortex
NASA Astrophysics Data System (ADS)
Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.
2016-05-01
The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.
2008-02-01
FINAL ENVIRONMENTAL ASSESSMENT February 2008 Malmstrom ® AFB WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE...Wide Area Coverage Construct Land Mobile Network Communications Infrastructure Malmstrom Air Force Base, Montana 5a. CONTRACT NUMBER 5b. GRANT...SIGNIFICANT IMPACT WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE MALMSTROM AIR FORCE BASE, MONTANA The
Library Applications of a Wide Area Network: Promoting JANET to UK Academic Libraries.
ERIC Educational Resources Information Center
MacColl, John A.
1990-01-01
Describes Project Jupiter, which was developed to promote the United Kingdom's Joint Academic Network (JANET) to its member libraries. Library uses of JANET are described, including online catalogs, commercial services, and electronic mail; the convergence of local area networks (LANs) and wide area networks (WANs) is discussed; and future…
A compact planar multi-broad band monopole antenna for mobile devices
NASA Astrophysics Data System (ADS)
Zhong, Xiaoqing; Yao, Bin; Zheng, Qinhong; Yang, Jikong; Cao, Xiangqi
2015-10-01
A Multiple-frequency broadband planar monopole antenna is proposed in this Paper. The antenna is stimulated and numerically optimized by HFSS13.0 (High Frequency Structure Simulator). The size of it is 39mm×22mm×1.7mm. The antenna resonates at many frequencies. The parameter S11<=-6dB means the proposed antenna matches well with its feed-line and covers many useful operation frequency bands, including 2G(DCS1800 and PCS1900), 3G(UMTS), 4G(LTE2300 and LTE2500), ISM, WLAN. It is quiet appropriate for the present ultra-thin smart phones
Multi-band phase shifter design using modified slotline configuration
NASA Astrophysics Data System (ADS)
Kulandhaisamy, Indhumathi; Rajendran, Dinesh Babu; Kanagasabai, Malathi; Gurusamy, Gunasekaran; Moorthy, Balaji; George, Jithila V.; Lawrance, Livya
2017-01-01
In this paper, an analog multiband phase shifter using slotline configuration is proposed. To implement the design, a pair of modified Split Ring Resonator (SRR) is employed. The periodic property of SRR provides multiband characteristics, whether the coupling slot gives the phase variations over the bands. The operation is well explained with an equivalent circuit model and its characteristics have been studied both in simulation and measurement. The prototype operates in 1.77-2.16, 3.5-3.97, 5.08-5.33, 6.43-6.93, and 8.01-8.59 GHz frequency bands which can be utilized for GSM, GPS, WLAN, C-band, and X-band applications, respectively.
Paksuniemi, M; Sorvoja, H; Alasaarela, E; Myllyla, R
2005-01-01
In the intensive care unit, or during anesthesia, patients are attached to monitors by cables. These cables obstruct nursing staff and hinder the patients from moving freely in the hospital. However, rapidly developing wireless technologies are expected to solve these problems. To this end, this study revealed problem areas in current patient monitoring and established the most important medical parameters to monitor. In addition, usable wireless techniques for short-range data transmission were explored and currently employed wireless applications in the hospital environment were studied. The most important parameters measured of the patient include blood pressures, electrocardiography, respiration rate, heart rate and temperature. Currently used wireless techniques in hospitals are based on the WMTS and WLAN standards. There are no viable solutions for short-range data transmission from patient sensors to patient monitors, but potentially usable techniques in the future are based on the WPAN standards. These techniques include Bluetooth, ZigBee and UWB. Other suitable techniques might be based on capacitive or inductive coupling. The establishing of wireless techniques depends on ensuring the reliability of data transmission, eliminating disturbance by other wireless devices, ensuring patient data security and patient safety, and lowering the power consumption and price.
The Human Immunodeficiency Virus Endemic: Maintaining Disease Transmission in At-Risk Urban Areas.
Rothenberg, Richard B; Dai, Dajun; Adams, Mary Anne; Heath, John Wesley
2017-02-01
A study of network relationships, geographic contiguity, and risk behavior was designed to test the hypothesis that all 3 are required to maintain endemicity of human immunodeficiency virus (HIV) in at-risk urban communities. Specifically, a highly interactive network, close geographic proximity, and compound risk (multiple high-risk activities with multiple partners) would be required. We enrolled 927 participants from two contiguous geographic areas in Atlanta, GA: a higher-risk area and lower-risk area, as measured by history of HIV reporting. We began by enrolling 30 "seeds" (15 in each area) who were comparable in their demographic and behavioral characteristics, and constructed 30 networks using a chain-link design. We assessed each individual's geographic range; measured the network characteristics of those in the higher and lower-risk areas; and measured compound risk as the presence of two or more (of 6) major risks for HIV. Among participants in the higher-risk area, the frequency of compound risk was 15%, compared with 5% in the lower-risk area. Geographic cohesion in the higher-risk group was substantially higher than that in the lower-risk group, based on comparison of geographic distance and social distance, and on the extent of overlap of personal geographic range. The networks in the 2 areas were similar: both areas show highly interactive networks with similar degree distributions, and most measures of network attributes were virtually the same. Our original hypothesis was supported in part. The higher and lower-risk groups differed appreciably with regard to risk and geographic cohesion, but were substantially the same with regard to network properties. These results suggest that a "minimum" network configuration may be required for maintenance of endemic transmission, but a particular prevalence level may be determined by factors related to risk, geography, and possibly other factors.
Networking CD-ROMs: The Decision Maker's Guide to Local Area Network Solutions.
ERIC Educational Resources Information Center
Elshami, Ahmed M.
In an era when patrons want access to CD-ROM resources but few libraries can afford to buy multiple copies, CD-ROM local area networks (LANs) are emerging as a cost-effective way to provide shared access. To help librarians make informed decisions, this manual offers information on: (1) the basics of LANs, a "local area network primer";…
Cognitive radio wireless sensor networks: applications, challenges and research trends.
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-08-22
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.
Multisector Health Policy Networks in 15 Large US Cities.
Harris, Jenine K; Leider, J P; Carothers, Bobbi J; Castrucci, Brian C; Hearne, Shelley
2016-01-01
Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks.
Multisector Health Policy Networks in 15 Large US Cities
Leider, J. P.; Carothers, Bobbi J.; Castrucci, Brian C.; Hearne, Shelley
2016-01-01
Context: Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. Design: We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. Setting/Participants: We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Outcome Measures: Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Results: Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Conclusion: Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks. PMID:26910868
Multistage Security Mechanism For Hybrid, Large-Scale Wireless Sensor Networks
2007-06-01
sensor network . Building on research in the areas of the wireless sensor networks (WSN) and the mobile ad hoc networks (MANET), this thesis proposes an...A wide area network consisting of ballistic missile defense satellites and terrestrial nodes can be viewed as a hybrid, large-scale mobile wireless
A network model for the propagation of Hepatitis C with HIV co-infection
NASA Astrophysics Data System (ADS)
Nucit, Arnaud; Randon-Furling, Julien
2017-05-01
We define and examine a model of epidemic propagation for a virus such as Hepatitis C (with HIV co-infection) on a network of networks, namely the network of French urban areas. One network level is that of the individual interactions inside each urban area. The second level is that of the areas themselves, linked by individuals travelling between these areas and potentially helping the epidemic spread from one city to another. We choose to encode the second level of the network as extra, special nodes in the first level. We observe that such an encoding leads to sensible results in terms of the extent and speed of propagation of an epidemic, depending on its source point.
NASA Technical Reports Server (NTRS)
Davies, Mark
1991-01-01
The enterprise network is currently a multivendor environment consisting of many defacto and proprietary standards. During the 1990s, these networks will evolve towards networks which are based on international standards in both Local Area Network (LAN) and Wide Area Network (WAN) space. Also, you can expect to see the higher level functions and applications begin the same transition. Additional information is given in viewgraph form.
Yu, Dantong; Katramatos, Dimitrios; Sim, Alexander; Shoshani, Arie
2014-04-22
A cross-domain network resource reservation scheduler configured to schedule a path from at least one end-site includes a management plane device configured to monitor and provide information representing at least one of functionality, performance, faults, and fault recovery associated with a network resource; a control plane device configured to at least one of schedule the network resource, provision local area network quality of service, provision local area network bandwidth, and provision wide area network bandwidth; and a service plane device configured to interface with the control plane device to reserve the network resource based on a reservation request and the information from the management plane device. Corresponding methods and computer-readable medium are also disclosed.
Local Area Networks and the Learning Lab of the Future.
ERIC Educational Resources Information Center
Ebersole, Dennis C.
1987-01-01
Considers educational applications of local area computer networks and discusses industry standards for design established by the International Standards Organization (ISO) and Institute of Electrical and Electronic Engineers (IEEE). A futuristic view of a learning laboratory using a local area network is presented. (Author/LRW)
Temporal reliability and lateralization of the resting-state language network.
Zhu, Linlin; Fan, Yang; Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.
Temporal Reliability and Lateralization of the Resting-State Language Network
Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability. PMID:24475058
Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-01-01
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152
High speed fiber optics local area networks: Design and implementation
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.
1988-01-01
The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.
Management Requirements of the 3COM Ethernet Local Area Network
1988-09-01
Management Information System . With the introduction of new technology comes the requirement to administer the network. This paper describes LAN services available on the network, management philosophies for the LAN services, and areas of LAN administration considered important to the successful operation and maintenance of a LAN. LAN administration problems identified by users are also addressed. Keywords included; Local area network (LAN); Lan management; Lan administration; 3COM ETHERNET LAN.
Frequency Reconfigurable Antenna for Deca-Band 5 G/LTE/WWAN Mobile Terminal Applications
NASA Astrophysics Data System (ADS)
Yang, Lingsheng; Cheng, Biyu; Jia, Hongting
2018-04-01
In this paper, a frequency reconfigurable antenna for 5 G/LTE/WWAN mobile terminal applications is presented. The proposed antenna consists of a radiation element which is folded on a dielectric cuboid. Four PIN diodes located on the antenna element are used for frequency reconfigration. By controlling the states of four PIN diodes with an 8-bit microcontroller, a broad band which can cover deca-band as LTE700/2300/2500, GSM850/900/1800/1900, UMTS 2100, WLAN2400 and the future 5 G or LTE3600 is obtained with a compacted size of 40×8×5mm3. The antenna gain, efficiency and radiation characteristics are also shown.
Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial
NASA Astrophysics Data System (ADS)
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2016-03-01
This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.
A Low Cost Micro-Computer Based Local Area Network for Medical Office and Medical Center Automation
Epstein, Mel H.; Epstein, Lynn H.; Emerson, Ron G.
1984-01-01
A Low Cost Micro-computer based Local Area Network for medical office automation is described which makes use of an array of multiple and different personal computers interconnected by a local area network. Each computer on the network functions as fully potent workstations for data entry and report generation. The network allows each workstation complete access to the entire database. Additionally, designated computers may serve as access ports for remote terminals. Through “Gateways” the network may serve as a front end for a large mainframe, or may interface with another network. The system provides for the medical office environment the expandability and flexibility of a multi-terminal mainframe system at a far lower cost without sacrifice of performance.
Kucyi, Aaron; Hove, Michael J.; Biederman, Joseph; Van Dijk, Koene R.A.; Valera, Eve M.
2015-01-01
Attention-deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain-network interactions. The default mode network (DMN), implicated in ADHD-linked behaviors including mind-wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within-network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age-, IQ-, and sex-matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole-brain between-group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between-group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of the cerebro-cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. PMID:26109476
Local Area Networks (The Printout).
ERIC Educational Resources Information Center
Aron, Helen; Balajthy, Ernest
1989-01-01
Describes the Local Area Network (LAN), a project in which students used LAN-based word processing and electronic mail software as the center of a writing process approach. Discusses the advantages and disadvantages of networking. (MM)
Fiber-Optic Terahertz Data-Communication Networks
NASA Technical Reports Server (NTRS)
Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.
1994-01-01
Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.
CD-ROM and Local Area Networks.
ERIC Educational Resources Information Center
Marks, Kenneth E.; And Others
1993-01-01
This special section on local area networks includes three articles: (1) a description of migration at Joyner Library, East Carolina University (North Carolina) to a new network server; (2) a discussion of factors to consider for network planning in school libraries; and (3) a directory of companies supplying cable, hardware, software, and…
NASA Astrophysics Data System (ADS)
Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.
2018-04-01
The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.
Coe, Jeffrey A.; Reid, Mark E.; Brien, Dainne L.; Michael, John A.
2011-01-01
To better understand controls on debris-flow entrainment and travel distance, we examined topographic and drainage network characteristics of initiation locations in two separate debris-flow prone areas located 700 km apart along the west coast of the U.S. One area was located in northern California, the other in southern Oregon. In both areas, debris flows mobilized from slides during large storms, but, when stratified by number of contributing initiation locations, median debris-flow travel distances in Oregon were 5 to 8 times longer than median distances in California. Debris flows in Oregon readily entrained channel material; entrainment in California was minimal. To elucidate this difference, we registered initiation locations to high-resolution airborne LiDAR, and then examined travel distances with respect to values of slope, upslope contributing area, planform curvature, distance from initiation locations to the drainage network, and number of initiation areas that contributed to flows. Results show distinct differences in the topographic and drainage network characteristics of debris-flow initiation locations between the two study areas. Slope and planform curvature of initiation locations (landslide headscarps), commonly used to predict landslide-prone areas, were not useful for predicting debris-flow travel distances. However, a positive, power-law relation exists between median debris-flow travel distance and the number of contributing debris-flow initiation locations. Moreover, contributing area and the proximity of the initiation locations to the drainage network both influenced travel distances, but proximity to the drainage network was the better predictor of travel distance. In both study areas, flows that interacted with the drainage network flowed significantly farther than those that did not. In California, initiation sites within 60 m of the network were likely to reach the network and generate longtraveled flows; in Oregon, the threshold was 80 m.
Zilles, Karl; Bacha-Trams, Maraike; Palomero-Gallagher, Nicola; Amunts, Katrin; Friederici, Angela D
2015-02-01
The language network is a well-defined large-scale neural network of anatomically and functionally interacting cortical areas. The successful language process requires the transmission of information between these areas. Since neurotransmitter receptors are key molecules of information processing, we hypothesized that cortical areas which are part of the same functional language network may show highly similar multireceptor expression pattern ("receptor fingerprint"), whereas those that are not part of this network should have different fingerprints. Here we demonstrate that the relation between the densities of 15 different excitatory, inhibitory and modulatory receptors in eight language-related areas are highly similar and differ considerably from those of 18 other brain regions not directly involved in language processing. Thus, the fingerprints of all cortical areas underlying a large-scale cognitive domain such as language is a characteristic, functionally relevant feature of this network and an important prerequisite for the underlying neuronal processes of language functions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zilles, Karl; Bacha-Trams, Maraike; Palomero-Gallagher, Nicola; Amunts, Katrin; Friederici, Angela D.
2015-01-01
The language network is a well-defined large-scale neural network of anatomically and functionally interacting cortical areas. The successful language process requires the transmission of information between these areas. Since neurotransmitter receptors are key molecules of information processing, we hypothesized that cortical areas which are part of the same functional language network may show highly similar multireceptor expression pattern (“receptor fingerprint”), whereas those that are not part of this network should have different fingerprints. Here we demonstrate that the relation between the densities of 15 different excitatory, inhibitory and modulatory receptors in eight language-related areas are highly similar and differ considerably from those of 18 other brain regions not directly involved in language processing. Thus, the fingerprints of all cortical areas underlying a large-scale cognitive domain such as language is a characteristic, functionally relevant feature of this network and an important prerequisite for the underlying neuronal processes of language functions. PMID:25243991
NASA Astrophysics Data System (ADS)
Mudigonda, Naga R.; Kacelenga, Ray; Edwards, Mark
2004-09-01
This paper evaluates the performance of a holographic neural network in comparison with a conventional feedforward backpropagation neural network for the classification of landmine targets in ground penetrating radar images. The data used in the study was acquired from four different test sites using the landmine detection system developed by General Dynamics Canada Ltd., in collaboration with the Defense Research and Development Canada, Suffield. A set of seven features extracted for each detected alarm is used as stimulus inputs for the networks. The recall responses of the networks are then evaluated against the ground truth to declare true or false detections. The area computed under the receiver operating characteristic curve is used for comparative purposes. With a large dataset comprising of data from multiple sites, both the holographic and conventional networks showed comparable trends in recall accuracies with area values of 0.88 and 0.87, respectively. By using independent validation datasets, the holographic network"s generalization performance was observed to be better (mean area = 0.86) as compared to the conventional network (mean area = 0.82). Despite the widely publicized theoretical advantages of the holographic technology, use of more than the required number of cortical memory elements resulted in an over-fitting phenomenon of the holographic network.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Tate-Brown, Judy M.
2009-01-01
Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.
Controllability of structural brain networks
NASA Astrophysics Data System (ADS)
Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.
2015-10-01
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
High-Speed Optical Wide-Area Data-Communication Network
NASA Technical Reports Server (NTRS)
Monacos, Steve P.
1994-01-01
Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.
2011-09-01
LAI Location Area Identity MANET Mobile Ad - hoc Network MCC Mobile Country Code MCD Mobile Communications Device MNC Mobile Network Code ...tower or present within a geographical area. These conditions relate directly to users who often operate with mobile ad - hoc networks. These types of...infrastructures. First responders can use these mobile base stations to set up their own networks on the fly, similar to mobile ad - hoc networks
Huang, Shu-Li; Lee, Ying-Chieh; Budd, William W; Yang, Min-Chia
2012-04-01
The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.
1989-08-01
Automatic Line Network Extraction from Aerial Imangery of Urban Areas Sthrough KnowledghBased Image Analysis N 04 Final Technical ReportI December...Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis Accesion For NTIS CRA&I DTIC TAB 0...paittern re’ognlition. blac’kboardl oriented symbollic processing, knowledge based image analysis , image understanding, aer’ial imsagery, urban area, 17
Computer interpretation of thallium SPECT studies based on neural network analysis
NASA Astrophysics Data System (ADS)
Wang, David C.; Karvelis, K. C.
1991-06-01
A class of artificial intelligence (Al) programs known as neural networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from "expert system" Al programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The "bullseye" images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of a trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging.
Organizational Application of Social Networking Information Technologies
ERIC Educational Resources Information Center
Reppert, Jeffrey R.
2012-01-01
The focus of this qualitative research study using the Delphi method is to provide a framework for leaders to develop their own social networks. By exploring concerns in four areas, leaders may be able to better plan, implement, and manage social networking systems in organizations. The areas addressed are: (a) social networking using…
New Abstraction Networks and a New Visualization Tool in Support of Auditing the SNOMED CT Content
Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan
2012-01-01
Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT. PMID:23304293
New abstraction networks and a new visualization tool in support of auditing the SNOMED CT content.
Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan
2012-01-01
Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT.
Designing marine reserve networks for both conservation and fisheries management.
Gaines, Steven D; White, Crow; Carr, Mark H; Palumbi, Stephen R
2010-10-26
Marine protected areas (MPAs) that exclude fishing have been shown repeatedly to enhance the abundance, size, and diversity of species. These benefits, however, mean little to most marine species, because individual protected areas typically are small. To meet the larger-scale conservation challenges facing ocean ecosystems, several nations are expanding the benefits of individual protected areas by building networks of protected areas. Doing so successfully requires a detailed understanding of the ecological and physical characteristics of ocean ecosystems and the responses of humans to spatial closures. There has been enormous scientific interest in these topics, and frameworks for the design of MPA networks for meeting conservation and fishery management goals are emerging. Persistent in the literature is the perception of an inherent tradeoff between achieving conservation and fishery goals. Through a synthetic analysis across these conservation and bioeconomic studies, we construct guidelines for MPA network design that reduce or eliminate this tradeoff. We present size, spacing, location, and configuration guidelines for designing networks that simultaneously can enhance biological conservation and reduce fishery costs or even increase fishery yields and profits. Indeed, in some settings, a well-designed MPA network is critical to the optimal harvest strategy. When reserves benefit fisheries, the optimal area in reserves is moderately large (mode ≈30%). Assessing network design principals is limited currently by the absence of empirical data from large-scale networks. Emerging networks will soon rectify this constraint.
Kucyi, Aaron; Hove, Michael J; Biederman, Joseph; Van Dijk, Koene R A; Valera, Eve M
2015-09-01
Attention-deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain-network interactions. The default mode network (DMN), implicated in ADHD-linked behaviors including mind-wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within-network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age-, IQ-, and sex-matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole-brain between-group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between-group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of cerebro-cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. © 2015 Wiley Periodicals, Inc.
Exploring 3D optimal channel networks by multiple organizing principles
NASA Astrophysics Data System (ADS)
Mason, Emanuele; Bizzi, Simone; Cominola, Andrea; Castelletti, Andrea; Paik, Kyungrock
2017-04-01
Catchment topography and flow networks are shaped by the interactions of water and sediment across various spatial and temporal scales. The complexity of these processes hinders the development of models able to assess the validity of general principles governing such phenomena. The theory of Optimal Channel Networks (OCNs) proved that it is possible to generate drainage networks statistically comparable to those observed in nature by minimizing the energy spent by the water flowing through them. So far, the OCN theory has been developed for planar 2D domains, assuming equal energy expenditure per unit area of channel and, correspondingly, a constant slope-discharge relationship. In this work, we apply the OCN theory to 3D problems by introducing a multi-principle minimization starting from an artificial digital elevation model of pyramidal shape. The OCN theory assumption of constant slope-area relationship is relaxed and embedded into a second-order principle. The modelled 3D channel networks achieve lower total energy expenditure corresponding to 2D sub-optimal OCNs bound to specific slope-area relationships. This is the first time we are able to explore accessible 3D OCNs starting from a general DEM. By contrasting the modelled 3D OCNs and natural river networks, we found statistical similarities of two indexes, namely the area exponent index and the profile concavity index. Among the wide range of alternative and sub-optimal river networks, a minimum degree of 3D network organization is found to guarantee the indexes values within the natural range. These networks simultaneously possess topological and topographic properties of real river networks. We found a pivotal functional link between slope-area relationship and accessible sub-optimal 2D river network paths, which suggests that geological and climate conditions producing slope-area relationships in natural basins co-determine the degree of optimality of accessible network paths.
Simulation studies of a wide area health care network.
McDaniel, J. G.
1994-01-01
There is an increasing number of efforts to install wide area health care networks. Some of these networks are being built to support several applications over a wide user base consisting primarily of medical practices, hospitals, pharmacies, medical laboratories, payors, and suppliers. Although on-line, multi-media telecommunication is desirable for some purposes such as cardiac monitoring, store-and-forward messaging is adequate for many common, high-volume applications. Laboratory test results and payment claims, for example, can be distributed using electronic messaging networks. Several network prototypes have been constructed to determine the technical problems and to assess the effectiveness of electronic messaging in wide area health care networks. Our project, Health Link, developed prototype software that was able to use the public switched telephone network to exchange messages automatically, reliably and securely. The network could be configured to accommodate the many different traffic patterns and cost constraints of its users. Discrete event simulations were performed on several network models. Canonical star and mesh networks, that were composed of nodes operating at steady state under equal loads, were modeled. Both topologies were found to support the throughput of a generic wide area health care network. The mean message delivery time of the mesh network was found to be less than that of the star network. Further simulations were conducted for a realistic large-scale health care network consisting of 1,553 doctors, 26 hospitals, four medical labs, one provincial lab and one insurer. Two network topologies were investigated: one using predominantly peer-to-peer communication, the other using client-server communication.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7949966
a Method for the Seamlines Network Automatic Selection Based on Building Vector
NASA Astrophysics Data System (ADS)
Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.
2018-04-01
In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.
Liu, Wen; Fu, Xiao; Deng, Zhongliang
2016-12-02
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.
Liu, Wen; Fu, Xiao; Deng, Zhongliang
2016-01-01
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means. PMID:27918454
Advanced local area network concepts
NASA Technical Reports Server (NTRS)
Grant, Terry
1985-01-01
Development of a good model of the data traffic requirements for Local Area Networks (LANs) onboard the Space Station is the driving problem in this work. A parameterized workload model is under development. An analysis contract has been started specifically to capture the distributed processing requirements for the Space Station and then to develop a top level model to simulate how various processing scenarios can handle the workload and what data communication patterns result. A summary of the Local Area Network Extendsible Simulator 2 Requirements Specification and excerpts from a grant report on the topological design of fiber optic local area networks with application to Expressnet are given.
Robinson, Jason L; Fordyce, James A
2017-01-01
Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have narrow geographic distributions, and are thus prone to future shifts away from the climatic conditions in these parks in current climates. In other cases, some parks are broadly similar to large geographic regions surrounding the park or have climatic envelopes that may persist into near-term climate change. Larger parks predict larger climatic envelopes, in current conditions, but on average the predicted area of climate envelopes are smaller in our single future conditions scenario. Individual units in a protected area network may vary in the potential for climate adaptation, and adaptive management strategies for the network should account for the landscape contexts of the geodiversity or climate diversity within individual units. Conservation strategies, including maintaining connectivity, assessing the feasibility of assisted migration and other landscape restoration or enhancements can be optimized using analysis methods to assess the spatial properties of protected area networks in biogeographic and macroecological contexts.
Use of Local Area Networks in Schools. ERIC Digest.
ERIC Educational Resources Information Center
Reinhold, Fran
The current status and apparent trends of local area networks (LANs) in school districts are explored in this short report. Results of a 1987-88 Quality Education Data survey are cited, indicating that 64% of 173 of the largest school districts in the country were already networking and 36% intended to be networking by 1990. The advantages of…
Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.; Priest, David G.
2000-12-01
Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.
Estrada, Alba; Real, Raimundo
2018-01-01
The evaluation of protected area networks on their capacity to preserve species distributions is a key topic in conservation biology. There are different types of protected areas, with National Parks those with highest level of protection. National Parks can be declared attending to many ecological features that include the presence of certain animal species. Here, we selected 37 vertebrate species that were highlighted as having relevant natural value for at least one of the 10 National Parks of mainland Spain. We modelled species distributions with the favourability function, and applied the Insecurity Index to detect the degree of protection of favourable areas for each species. Two metrics of Insecurity Index were defined for each species: the Insecurity Index in each of the cells, and the Overall Insecurity Index of a species. The former allows the identification of insecure areas for each species that can be used to establish spatial conservation priorities. The latter gives a value of Insecurity for each species, which we used to calculate the Representativeness of favourable areas for the species in the network. As expected, due to the limited extension of the National Park network, all species have high values of Insecurity; i.e., just a narrow proportion of their favourable areas are covered by a National Park. However, the majority of species favourable areas are well represented in the network, i.e., the percentage of favourable areas covered by the National Park network is higher than the percentage of mainland Spain covered by the network (result also supported by a randomization approach). Even if a reserve network only covers a low percentage of a country, the Overall Insecurity Index allows an objective assessment of its capacity to represent species. Beyond the results presented here, the Insecurity Index has the potential to be extrapolated to other areas and to cover a wide range of species.
Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.
Chan, Micaela Y; Alhazmi, Fahd H; Park, Denise C; Savalia, Neil K; Wig, Gagan S
2017-03-08
Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) subnetworks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20-89 years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes with relatively greater connections to nodes in their own functional system ("non-connector" nodes) exhibited greater activity than nodes with relatively greater connections to nodes in other systems ("connector" nodes). This "activation selectivity" was specific to those brain systems that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory for previous reports of the "dedifferentiation" in brain activity observed in aging. SIGNIFICANCE STATEMENT Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity patterns differ across individuals, we hypothesized that individual differences in network connectivity would relate to differences in brain activity. Using functional MRI in a group of individuals sampled across the adult life span (20-89 years), we measured correlations at rest and related the functional connectivity patterns to measurements of functional activity during two independent tasks. Brain activity varied in relation to connectivity patterns revealed by large-scale network analysis. This relationship tracked the differences in connectivity patterns accompanied by older age, providing important evidence for a link between the topology of areal connectivity measured at rest and the functional recruitment of these areas during task performance. Copyright © 2017 Chan et al.
Quantifying the extent of protected-area downgrading, downsizing, and degazettement in Australia.
Cook, Carly N; Valkan, Rebecca S; Mascia, Michael B; McGeoch, Melodie A
2017-10-01
The use of total area protected as the predominant indicator of progress in building protected area (PA) networks is receiving growing criticism. Documenting the full dynamics of PA networks, both in terms of the gains and losses in protection, provides a much more informative approach to tracking progress. To this end, documentation of PA downgrading, downsizing, and degazettement (PADDD) has increased. Studies of PADDD events generally fail to place these losses in the context of gains in protection; therefore, they omit important elements of PA network dynamics. To address this limitation, we used a spatially explicit approach to identify every parcel of land added to and excised from the Australian terrestrial PA network and PAs that had their level of protection changed over 17 years (1997-2014). By quantifying changes in the spatial configuration of the PA network with time-series data (spatial layers for nine separate time steps), ours is the first assessment of the dynamics (increases and decreases in area and level of protection) of a PA network and the first comprehensive assessment of PADDD in a developed country. We found that the Australian network was highly dynamic; there were 5233 changes in area or level of protection over 17 years. Against a background of enormous increases in area protected, we identified over 1500 PADDD events, which affected over one-third of the network, which were largely the result of widespread downgrading of protection. We believe our approach provides a mechanism for robust tracking of trends in the world's PAs through the use of data from the World Database on Protected Areas. However, this will require greater transparency and improved data standards in reporting changes to PAs. © 2017 Society for Conservation Biology.
Next generation information communication infrastructure and case studies for future power systems
NASA Astrophysics Data System (ADS)
Qiu, Bin
As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective is to shed the load in the limited area with minimum disturbance.
Networking Ethics: A Survey of Bioethics Networks Across the U.S.
Fausett, Jennifer Kleiner; Gilmore-Szott, Eleanor; Hester, D Micah
2016-06-01
Ethics networks have emerged over the last few decades as a mechanism for individuals and institutions over various regions, cities and states to converge on healthcare-related ethical issues. However, little is known about the development and nature of such networks. In an effort to fill the gap in the knowledge about such networks, a survey was conducted that evaluated the organizational structure, missions and functions, as well as the outcomes/products of ethics networks across the country. Eighteen established bioethics networks were identified via consensus of three search processes and were approached for participation. The participants completed a survey developed for the purposes of this study and distributed via SurveyMonkey. Responses were obtained from 10 of the 18 identified and approached networks regarding topic areas of: Network Composition and Catchment Areas; Network Funding and Expenses; Personnel; Services; and Missions and Accomplishments. Bioethics networks are designed primarily to bring ethics education and support to professionals and hospitals. They do so over specifically defined areas-states, regions, or communities-and each is concerned about how to stay financially healthy. At the same time, the networks work off different organizational models, either as stand-alone organizations or as entities within existing organizational structures.
Templin, W.E.; Smith, P.E.; DeBortoli, M.L.; Schluter, R.C.
1995-01-01
This report presents an evaluation of water- resources data-collection networks in the northern and coastal areas of Monterey County, California. This evaluation was done by the U.S. Geological Survey in cooperation with the Monterey County Flood Control and Water Conservation District to evaluate precipitation, surface water, and ground water monitoring networks. This report describes existing monitoring networks in the study areas and areas where possible additional data-collection is needed. During this study, 106 precipitation-quantity gages were identified, of which 84 were active; however, no precipitation-quality gages were identified in the study areas. The precipitaion-quantity gages were concentrated in the Monterey Peninsula and the northern part of the county. If the number of gages in these areas were reduced, coverage would still be adequate to meet most objectives; however, additional gages could improve coverage in the Tularcitos Creek basin and in the coastal areas south of Carmel to the county boundary. If collection of precipitation data were expanded to include monitoring precipitation quality, this expanded monitoring also could include monitoring precipitation for acid rain and pesticides. Eleven continuous streamflow-gaging stations were identified during this study, of which seven were active. To meet the objectives of the streamflow networks outlined in this report, the seven active stations would need to be continued, four stations would need to be reactivated, and an additional six streamflow-gaging stations would need to be added. Eleven stations that routinely were sampled for chemical constituents were identified in the study areas. Surface water in the lower Big Sur River basin was sampled annually for total coli- form and fecal coliform bacteria, and the Big Sur River was sampled monthly at 16 stations for these bacteria. Routine sampling for chemical constituents also was done in the Big Sur River basin. The Monterey County Flood Control and Water Conservation District maintained three networks in the study areas to measure ground-water levels: (1) the summer network, (2) the monthly network, and (3) the annual autumn network. The California American Water Company also did some ground-water-level monitoring in these areas. Well coverage for ground-water monitoring was dense in the seawater-intrusion area north of Moss Landing (possibly because of multiple overlying aquifers), but sparse in other parts of the study areas. During the study, 44 sections were identified as not monitored for ground-water levels. In an ideal ground-water-level network, wells would be evenly spaced, except where local conditions or correlations of wells make monitoring unnecessary. A total of 384 wells that monitor ground-water levels and/or ground-water quality were identified during this study. The Monterey County Flood Control and Water Conservation District sampled ground-water quality monthly during the irrigation season to monitor seawater intrusion. Once each year (during the summer), the wells in this network were monitored for chlorides, specific conductance, and nitrates. Additional samples were collected from each well once every 5 years for complete mineral analysis. The California Department of Health Services, the California American Water Company, the U.S. Army Health Service at Ford Ord, and the Monterey Peninsula Water Management District also monitored ground-water quality in wells in the study areas. Well coverage for the ground-water- quality networks was dense in the seawater- intrusion area north of Moss Landing, but sparse in the rest of the study areas. During this study, 54 sections were identified as not monitored for water quality.
Complementarity and Area-Efficiency in the Prioritization of the Global Protected Area Network.
Kullberg, Peter; Toivonen, Tuuli; Montesino Pouzols, Federico; Lehtomäki, Joona; Di Minin, Enrico; Moilanen, Atte
2015-01-01
Complementarity and cost-efficiency are widely used principles for protected area network design. Despite the wide use and robust theoretical underpinnings, their effects on the performance and patterns of priority areas are rarely studied in detail. Here we compare two approaches for identifying the management priority areas inside the global protected area network: 1) a scoring-based approach, used in recently published analysis and 2) a spatial prioritization method, which accounts for complementarity and area-efficiency. Using the same IUCN species distribution data the complementarity method found an equal-area set of priority areas with double the mean species ranges covered compared to the scoring-based approach. The complementarity set also had 72% more species with full ranges covered, and lacked any coverage only for half of the species compared to the scoring approach. Protected areas in our complementarity-based solution were on average smaller and geographically more scattered. The large difference between the two solutions highlights the need for critical thinking about the selected prioritization method. According to our analysis, accounting for complementarity and area-efficiency can lead to considerable improvements when setting management priorities for the global protected area network.
Shrestha, Bharat; Hossain, Ekram; Camorlinga, Sergio
2011-09-01
In wireless personal area networks, such as wireless body-area sensor networks, stations or devices have different bandwidth requirements and, thus, create heterogeneous traffics. For such networks, the IEEE 802.15.4 medium access control (MAC) can be used in the beacon-enabled mode, which supports guaranteed time slot (GTS) allocation for time-critical data transmissions. This paper presents a general discrete-time Markov chain model for the IEEE 802.15.4-based networks taking into account the slotted carrier sense multiple access with collision avoidance and GTS transmission phenomena together in the heterogeneous traffic scenario and under nonsaturated condition. For this purpose, the standard GTS allocation scheme is modified. For each non-identical device, the Markov model is solved and the average service time and the service utilization factor are analyzed in the non-saturated mode. The analysis is validated by simulations using network simulator version 2.33. Also, the model is enhanced with a wireless propagation model and the performance of the MAC is evaluated in a wheelchair body-area sensor network scenario.
Roost networks of northern myotis (Myotis septentrionalis) in a managed landscape
Johnson, J.B.; Mark, Ford W.; Edwards, J.W.
2012-01-01
Maternity groups of many bat species conform to fission-fusion models and movements among diurnal roost trees and individual bats belonging to these groups use networks of roost trees. Forest disturbances may alter roost networks and characteristics of roost trees. Therefore, at the Fernow Experimental Forest in West Virginia, we examined roost tree networks of northern myotis (Myotis septentrionalis) in forest stands subjected to prescribed fire and in unmanipulated control treatments in 2008 and 2009. Northern myotis formed social groups whose roost areas and roost tree networks overlapped to some extent. Roost tree networks largely resembled scale-free network models, as 61% had a single central node roost tree. In control treatments, central node roost trees were in early stages of decay and surrounded by greater basal area than other trees within the networks. In prescribed fire treatments, central node roost trees were small in diameter, low in the forest canopy, and surrounded by low basal area compared to other trees in networks. Our results indicate that forest disturbances, including prescribed fire, can affect availability and distribution of roosts within roost tree networks. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Cheng, Xiao; Feng, Lei; Zhou, Fanqin; Wei, Lei; Yu, Peng; Li, Wenjing
2018-02-01
With the rapid development of the smart grid, the data aggregation point (AP) in the neighborhood area network (NAN) is becoming increasingly important for forwarding the information between the home area network and wide area network. Due to limited budget, it is unable to use one-single access technology to meet the ongoing requirements on AP coverage. This paper first introduces the wired and wireless hybrid access network with the integration of long-term evolution (LTE) and passive optical network (PON) system for NAN, which allows a good trade-off among cost, flexibility, and reliability. Then, based on the already existing wireless LTE network, an AP association optimization model is proposed to make the PON serve as many APs as possible, considering both the economic efficiency and network reliability. Moreover, since the features of the constraints and variables of this NP-hard problem, a hybrid intelligent optimization algorithm is proposed, which is achieved by the mixture of the genetic, ant colony and dynamic greedy algorithm. By comparing with other published methods, simulation results verify the performance of the proposed method in improving the AP coverage and the performance of the proposed algorithm in terms of convergence.
A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.
Islam, M M; Faruque, M R I; Islam, M T
2014-01-01
A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.
Synchronous behaviour in network model based on human cortico-cortical connections.
Protachevicz, Paulo Ricardo; Borges, Rafael Ribaski; Reis, Adriane da Silva; Borges, Fernando da Silva; Iarosz, Kelly Cristina; Caldas, Ibere Luiz; Lameu, Ewandson Luiz; Macau, Elbert Einstein Nehrer; Viana, Ricardo Luiz; Sokolov, Igor M; Ferrari, Fabiano A S; Kurths, Jürgen; Batista, Antonio Marcos
2018-06-22
We consider a network topology according to the cortico-cortical connec- tion network of the human brain, where each cortical area is composed of a random network of adaptive exponential integrate-and-fire neurons. Depending on the parameters, this neuron model can exhibit spike or burst patterns. As a diagnostic tool to identify spike and burst patterns we utilise the coefficient of variation of the neuronal inter-spike interval. In our neuronal network, we verify the existence of spike and burst synchronisation in different cortical areas. Our simulations show that the network arrangement, i.e., its rich-club organisation, plays an important role in the transition of the areas from desynchronous to synchronous behaviours. © 2018 Institute of Physics and Engineering in Medicine.
An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay.
Gündoğdu, Köksal; Çalhan, Ali
2016-03-01
The rapid growth of wireless sensor networks has enabled the human health monitoring of patients using body sensor nodes that gather and evaluate human body parameters and movements. This study describes both simulation model and implementation of a new traffic sensitive wireless body area network by using non-preemptive priority queue discipline. A wireless body area network implementation employing TDMA is designed with three different priorities of data traffics. Besides, a coordinator node having the non-preemptive priority queue is performed in this study. We have also developed, modeled and simulated example network scenarios by using the Riverbed Modeler simulation software with the purpose of verifying the implementation results. The simulation results obtained under various network load conditions are consistent with the implementation results.
Measuring accessibility of sustainable transportation using space syntax in Bojonggede area
NASA Astrophysics Data System (ADS)
Suryawinata, B. A.; Mariana, Y.; Wijaksono, S.
2017-12-01
Changes in the physical structure of regional space as a result of the increase of planned and unplanned settlements in the Bojonggede area have an impact on the road network pattern system. Changes in road network patterns will have an impact on the permeability of the area. Permeability measures the extent to which road network patterns provide an option in traveling. If the permeability increases the travel distance decreases and the route of travel choice increases, permeability like this can create an easy access system and physically integrated. This study aims to identify the relationship of physical characteristics of residential area and road network pattern to the level of space permeability in Bojonggede area. By conducting this research can be a reference for the arrangement of circulation, accessibility, and land use in the vicinity of Bojonggede. This research uses quantitative method and space syntax method to see global integration and local integration on the region which become the parameter of permeability level. The results showed that the level of permeability globally and locally high in Bojonggede physical area is the physical characteristics of the area that has a grid pattern of road network grid.
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph
1990-01-01
The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.
ERIC Educational Resources Information Center
Marks, Kenneth E.; Nielsen, Steven
1991-01-01
Discusses cabling that is needed in local area networks (LANs). Types of cables that may be selected are described, including twisted pair, coaxial cables (or ethernet), and fiber optics; network topologies, the manner in which the cables are laid out, are considered; and cable installation issues are discussed. (LRW)
ERIC Educational Resources Information Center
Dessy, Raymond E.
1982-01-01
Local area networks are common communication conduits allowing various terminals, computers, discs, printers, and other electronic devices to intercommunicate over short distances. Discusses the vocabulary of such networks including RS-232C point-to-point and IEEE-488 multidrop protocols; error detection; message packets; multiplexing; star, ring,…
Building a School District's Wide Area Network.
ERIC Educational Resources Information Center
Mastel, Vern L.
1996-01-01
Describes the development of a wide area network (WAN) in the Bismarck Public School District (North Dakota). Topics include design goals, network infrastructure, implementing library access, sharing resources across platforms, electronic mail, dial-in access, Internet access, adhering to software licenses, shareware and freeware, and monitoring…
Defense strategies for cloud computing multi-site server infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; He, Fei
We consider cloud computing server infrastructures for big data applications, which consist of multiple server sites connected over a wide-area network. The sites house a number of servers, network elements and local-area connections, and the wide-area network plays a critical, asymmetric role of providing vital connectivity between them. We model this infrastructure as a system of systems, wherein the sites and wide-area network are represented by their cyber and physical components. These components can be disabled by cyber and physical attacks, and also can be protected against them using component reinforcements. The effects of attacks propagate within the systems, andmore » also beyond them via the wide-area network.We characterize these effects using correlations at two levels using: (a) aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual site or network, and (b) first-order differential conditions on system survival probabilities that characterize the component-level correlations within individual systems. We formulate a game between an attacker and a provider using utility functions composed of survival probability and cost terms. At Nash Equilibrium, we derive expressions for the expected capacity of the infrastructure given by the number of operational servers connected to the network for sum-form, product-form and composite utility functions.« less
Bus network redesign for inner southeast suburbs of Melbourne, Australia
NASA Astrophysics Data System (ADS)
Pandangwati, S. T.; Milyanab, N. A.
2017-06-01
Public transport is the most effective mode of transport in the era of climate change and oil depletion. It can address climate change issues by reducing urban greenhouse gas emission and oil consumption while at the same time improving mobility. However, many public transport networks are not effective and instead create high operating costs with low frequencies and occupancy. Melbourne is one example of a metropolitan area that faces this problem. Even though the city has well-integrated train and tram networks, Melbourne’s bus network still needs to be improved. This study used network planning approach to redesign the bus network in the City of Glen Eira, a Local Government Area (LGA) in the southeastern part of Metropolitan Melbourne. The study area is the area between Gardenvale North and Oakleigh Station, as well as between Caulfield and Patterson Stations. This area needs network improvement mainly because of the meandering bus routes that run within it. This study aims to provide recommendations for improving the performance of bus services by reducing meandering routes, improving transfer point design and implementing coordinated timetables. The recommendations were formulated based on a ‘ready-made’ concept to increase bus occupancy. This approach can be implemented in other cities with similar problems and characteristics including those in Indonesia.
Weinlich, Michael; Kurz, Peter; Blau, Melissa B; Walcher, Felix; Piatek, Stefan
2018-01-01
When patients are disorientated or experience language barriers, it is impossible to activate the emergency response system. In these cases, the delay for receiving appropriate help can extend to several hours. A worldwide emergency call support system (ECSS), including geolocation of modern smartphones (GPS, WLAN and LBS), was established referring to E911 and eCall systems. The system was tested for relevance in quickly forwarding abroad emergency calls to emergency medical services (EMS). To verify that geolocation data from smartphones are exact enough to be used for emergency cases, the accuracy of GPS (global positioning system), Wi-Fi (wireless LAN network) and LBS (location based system) was tested in eleven different countries and compared to actual location. The main objective was analyzed by simulation of emergencies in different countries. The time delay in receiving help in unsuccessful emergency call cases by using the worldwide emergency call support system (ECSS) was measured. GPS is the gold standard to locate patients with an average accuracy of 2.0 ± 3.3 m. Wi-Fi can be used within buildings with an accuracy of 7.0 ± 24.1 m. Using ECSS, the emergency call leads to a successful activation of EMS in 22.8 ± 10.8 min (Median 21 min). The use of a simple app with one button to touch did never cause any delay. The worldwide emergency call support system (ECSS) significantly improves the emergency response in cases of disorientated patients or language barriers. Under circumstances without ECSS, help can be delayed by 2 or more hours and might have relevant lifesaving effects. This is the first time that Wi-Fi geolocation could prove to be a useful improvement in emergencies to enhance GPS, especially within or close to buildings.
Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti
2017-02-01
We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.
Real-Time Data Filtering and Compression in Wide Area Simulation Networks
1992-10-02
Area Simulation Networks Achieving the real-time linkage among multiple , geographically-distant, local area networks that support distributed...November 1989, pp. 52-61. [IEEE85] IEEE/ANSI Standard 8802/3 "Carrier sense multiple access with collision detection (CSMA/CD) access method and...decoding/encoding of multiple bits. The hardware is programmable, easily adaptable and yields a high compression rate. A prototype 2-micron VLSI chip
Language, gesture, and handedness: Evidence for independent lateralized networks.
Häberling, Isabelle S; Corballis, Paul M; Corballis, Michael C
2016-09-01
Language, gesture, and handedness are in most people represented in the left cerebral hemisphere. To explore the relations among these attributes, we collected fMRI images in a large sample of left- and right-handers while they performed language tasks and watched action sequences. Regions of interest included the frontal and parietal areas previously identified as comprising an action-observation network, and the frontal and temporal areas comprising the primary areas for language production and comprehension. All of the language areas and most of the action-observation areas showed an overall left-hemispheric bias, despite the participation of equal numbers of left- and right-handers. A factor analysis of the laterality indices derived from the different areas during the tasks indicated three independent networks, one associated with language, one associated with handedness, and one representing action observation independent of handedness. Areas 44 and 45, which together make up Broca's area, were part of the language and action-observation networks, but were not included in the part of the action observation network that was related to handedness, which in turn was strongly linked to areas in the parietal lobe. These results suggest an evolutionary scenario in which the primate mirror neuron system (MNS) became increasingly lateralized, and later fissioned onto subsystems with one mediating language and the other mediating the execution and observation of manual actions. The second network is further subdivided into one dependent on hand preference and one that is not, providing new insight into the tripartite system of language, handedness, and praxis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fat fractal scaling of drainage networks from a random spatial network model
Karlinger, Michael R.; Troutman, Brent M.
1992-01-01
An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.
Hybrid architecture for building secure sensor networks
NASA Astrophysics Data System (ADS)
Owens, Ken R., Jr.; Watkins, Steve E.
2012-04-01
Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.
Wireless Wide Area Networks for School Districts.
ERIC Educational Resources Information Center
Nair, Prakash
This paper considers a basic question that many schools districts face in attempting to develop affordable, expandable district-wide computer networks that are resistant to obsolescence: Should these wide area networks (WANs) employ wireless technology, stick to venerable hard-wired solutions, or combine both. This publication explores the…
NASA Astrophysics Data System (ADS)
Biedron, William S.
1995-11-01
Since 1990 there has been a rapid increase in the demand for communication services, especially local and wide area network (LAN/WAN) oriented services. With the introduction of the DFB laser transmitter, hybrid-fiber-coax (HFC) cable plant designs, ATM transport technologies and rf modems, new LAN/WAN services can now be defined and marketed to residential and business customers over existing cable TV systems. The term metropolitan area network (MAN) can be used to describe this overall network. This paper discusses the technical components needed to provision these services as well as provides some perspectives on integration issues. Architecture at the headend and in the backbone is discussed, as well as specific service definitions and the technology issues associated with each. The TCP/IP protocol is suggested as a primary protocol to be used throughout the MAN.
NASA Astrophysics Data System (ADS)
Weng, Lingyan; Han, Xugao
2018-01-01
Understanding the spatial-temporal distribution pattern of fog and haze is the base to deal with them by adjusting measures to local conditions. Taking 31 provinces in China mainland as the research areas, this paper collected data from Baidu index on the network attention of fog and haze in relevant areas from 2011 to 2016, and conducted an analysis of their spatial-temporal distribution pattern by using autocorrelation analysis. The results show that the network attention of fog and haze has an overall spatial distribution pattern of “higher in the eastern and central, lower in the western China”. There are regional differences in different provinces in terms of network attention. Network attention of fog and haze indicates an obvious geographical agglomeration phenomenon, which is a gradual enlargement of the agglomeration area of higher value with a slight shrinking of those lower value agglomeration areas.
Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H
2014-05-01
Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.
Analysing Local Sparseness in the Macaque Brain Network
Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.
2015-01-01
Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077
Wireless Local Area Networks: The Next Evolutionary Step.
ERIC Educational Resources Information Center
Wodarz, Nan
2001-01-01
The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…
Personal Area Networks in Tactical Mobile Devices
2014-08-01
TECHNICAL DOCUMENT 2047 August 2014 Personal Area Networks in Tactical Mobile Devices Brian Visser...Tactical Mobile Devices Brian Visser Approved for public release. SSC Pacific San Diego, CA 92152-5001 SB...consistent power source, which is normally not available to patrols. In addition to the lack of computer resources, robust network infrastructure
On Real-Time Systems Using Local Area Networks.
1987-07-01
87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in
Gateway design specification for fiber optic local area networks
NASA Technical Reports Server (NTRS)
1985-01-01
This is a Design Specification for a gateway to interconnect fiber optic local area networks (LAN's). The internetworking protocols for a gateway device that will interconnect multiple local area networks are defined. This specification serves as input for preparation of detailed design specifications for the hardware and software of a gateway device. General characteristics to be incorporated in the gateway such as node address mapping, packet fragmentation, and gateway routing features are described.
Gibson, Crystal; Perley, Lauren; Bailey, Jonathan; Barbour, Russell; Kershaw, Trace
2015-01-01
Social network and area level characteristics have been linked to substance use. We used snowball sampling to recruit 90 predominantly African American emerging adult men who provided typical locations visited (n=510). We used generalized estimating equations to examine social network and area level predictors of substance use. Lower social network quality was associated with days of marijuana use (B=-0.0037, p<0.0001) and problem alcohol use (B=-0.0050, p=0.0181). The influence of area characteristics on substance use differed between risky and non-risky spaces. Peer and area influences are important for substance use among men, and may differ for high and low risk places. PMID:26176810
NASA Astrophysics Data System (ADS)
Ferrandiz, Ana; Scallan, Gavin
1995-10-01
The available bit rate (ABR) service allows connections to exceed their negotiated data rates during the life of the connections when excess capacity is available in the network. These connections are subject to flow control from the network in the event of network congestion. The ability to dynamically adjust the data rate of the connection can provide improved utilization of the network and be a valuable service to end users. ABR type service is therefore appropriate for the transmission of bursty LAN traffic over a wide area network in a manner that is more efficient and cost effective than allocating bandwdith at the peak cell rate. This paper describes the ABR service and discusses if it is realistic to operate a LAN like service over a wide area using ABR.
The Study on the Communication Network of Wide Area Measurement System in Electricity Grid
NASA Astrophysics Data System (ADS)
Xiaorong, Cheng; Ying, Wang; Yangdan, Ni
Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.
Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.
2014-01-01
The principal goal of protected area networks is biodiversity preservation, but efficacy of such networks is directly linked to animal movement within and outside area boundaries. We examined wetland selection patterns of mallards (Anas platyrhynchos) during non-breeding periods from 2010 to 2012 to evaluate the utility of protected areas to migratory waterfowl in North America. We tracked 33 adult females using global positioning system (GPS) satellite transmitters and implemented a use-availability resource selection design to examine mallard use of wetlands under varying degrees of protection. Specifically, we examined effects of proximities to National Wildlife Refuges, private land, state wildlife management areas, Wetland Reserve Program easements (WRP), and waterfowl sanctuaries on mallard wetland selection. In addition, we included landscape-level variables that measured areas of sanctuary and WRP within the surrounding landscape of each used and available wetland. We developed 8 wetland selection models according to season (autumn migration, winter, spring migration), hunting season (present, absent), and time period (diurnal, nocturnal). Model averaged parameter estimates indicated wetland selection patterns varied across seasons and time periods, but ducks consistently selected wetlands with greater areas of sanctuary and WRP in the surrounding landscape. Consequently, WRP has the potential to supplement protected area networks in the midcontinent region. Additionally, seasonal variation in wetland selection patterns indicated considering the effects of habitat management and anthropogenic disturbances on migratory waterfowl during the non-breeding period is essential in designing protected area networks.
Zhang, Yizhen; Chen, Gang; Wen, Haiguang; Lu, Kun-Han; Liu, Zhongming
2017-12-06
Musical imagery is the human experience of imagining music without actually hearing it. The neural basis of this mental ability is unclear, especially for musicians capable of engaging in accurate and vivid musical imagery. Here, we created a visualization of an 8-minute symphony as a silent movie and used it as real-time cue for musicians to continuously imagine the music for repeated and synchronized sessions during functional magnetic resonance imaging (fMRI). The activations and networks evoked by musical imagery were compared with those elicited by the subjects directly listening to the same music. Musical imagery and musical perception resulted in overlapping activations at the anterolateral belt and Wernicke's area, where the responses were correlated with the auditory features of the music. Whereas Wernicke's area interacted within the intrinsic auditory network during musical perception, it was involved in much more complex networks during musical imagery, showing positive correlations with the dorsal attention network and the motor-control network and negative correlations with the default-mode network. Our results highlight the important role of Wernicke's area in forming vivid musical imagery through bilateral and anti-correlated network interactions, challenging the conventional view of segregated and lateralized processing of music versus language.
Prioritizing conservation areas for coastal plant diversity under increasing urbanization.
Doxa, Aggeliki; Albert, Cécile Hélène; Leriche, Agathe; Saatkamp, Arne
2017-10-01
Coastal urban expansion will continue to drive further biodiversity losses, if conservation targets for coastal ecosystems are not defined and met. Prioritizing areas for future protected area networks is thus an urgent task in such urbanization-threatened ecosystems. Our aim is to quantify past and future losses of coastal vegetation priority areas due to urbanization and assess the effectiveness of the existing protected area network for conservation. We conduct a prioritization analysis, based on 82 coastal plants, including common and IUCN red list species, in a highly-urbanized but biotically diverse region, in South-Eastern France. We evaluate the role of protected areas, by taking into account both strict and multi-use areas. We assess the impact of past and future urbanization on high priority areas, by combining prioritization analyses and urbanization models. We show that half of the highly diverse areas have already been lost due to urbanization. Remaining top priority areas are also among the most exposed to future urban expansion. The effectiveness of the existing protected area (PA) network is only partial. While strict PAs coincide well with top priority areas, they only represent less than one third of priority areas. The effectiveness of multi-use PAs, such as the Natura 2000 network, also remains limited. Our approach highlights the impact of urbanization on plant conservation targets. By modelling urbanization, we manage to identify those areas where protection could be more efficient to limit further losses. We suggest to use our approach in the future to expand the PA network in order to achieve the 2020 Aichi biodiversity targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Management of the Space Station Freedom onboard local area network
NASA Technical Reports Server (NTRS)
Miller, Frank W.; Mitchell, Randy C.
1991-01-01
An operational approach is proposed to managing the Data Management System Local Area Network (LAN) on Space Station Freedom. An overview of the onboard LAN elements is presented first, followed by a proposal of the operational guidelines by which management of the onboard network may be effected. To implement the guidelines, a recommendation is then presented on a set of network management parameters which should be made available in the onboard Network Operating System Computer Software Configuration Item and Fiber Distributed Data Interface firmware. Finally, some implications for the implementation of the various network management elements are discussed.
Black Holes as Brains: Neural Networks with Area Law Entropy
NASA Astrophysics Data System (ADS)
Dvali, Gia
2018-04-01
Motivated by the potential similarities between the underlying mechanisms of the enhanced memory storage capacity in black holes and in brain networks, we construct an artificial quantum neural network based on gravity-like synaptic connections and a symmetry structure that allows to describe the network in terms of geometry of a d-dimensional space. We show that the network possesses a critical state in which the gapless neurons emerge that appear to inhabit a (d-1)-dimensional surface, with their number given by the surface area. In the excitations of these neurons, the network can store and retrieve an exponentially large number of patterns within an arbitrarily narrow energy gap. The corresponding micro-state entropy of the brain network exhibits an area law. The neural network can be described in terms of a quantum field, via identifying the different neurons with the different momentum modes of the field, while identifying the synaptic connections among the neurons with the interactions among the corresponding momentum modes. Such a mapping allows to attribute a well-defined sense of geometry to an intrinsically non-local system, such as the neural network, and vice versa, it allows to represent the quantum field model as a neural network.
Capacity Limit, Link Scheduling and Power Control in Wireless Networks
ERIC Educational Resources Information Center
Zhou, Shan
2013-01-01
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…
Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs
NASA Astrophysics Data System (ADS)
Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.
2010-10-01
The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.
Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.
Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J B
2010-10-01
The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.
Hyperbolicity measures democracy in real-world networks
NASA Astrophysics Data System (ADS)
Borassi, Michele; Chessa, Alessandro; Caldarelli, Guido
2015-09-01
In this work, we analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. We provide two improvements in our understanding of this quantity: first of all, in our interpretation, a hyperbolic network is "aristocratic", since few elements "connect" the system, while a non-hyperbolic network has a more "democratic" structure with a larger number of crucial elements. The second contribution is the introduction of the average hyperbolicity of the neighbors of a given node. Through this definition, we outline an "influence area" for the vertices in the graph. We show that in real networks the influence area of the highest degree vertex is small in what we define "local" networks (i.e., social or peer-to-peer networks), and large in "global" networks (i.e., power grid, metabolic networks, or autonomous system networks).
Face Patch Resting State Networks Link Face Processing to Social Cognition
Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.
2015-01-01
Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613
Price, Charles A; Knox, Sarah-Jane C; Brodribb, Tim J
2013-01-01
Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.
Speedy routing recovery protocol for large failure tolerance in wireless sensor networks.
Lee, Joa-Hyoung; Jung, In-Bum
2010-01-01
Wireless sensor networks are expected to play an increasingly important role in data collection in hazardous areas. However, the physical fragility of a sensor node makes reliable routing in hazardous areas a challenging problem. Because several sensor nodes in a hazardous area could be damaged simultaneously, the network should be able to recover routing after node failures over large areas. Many routing protocols take single-node failure recovery into account, but it is difficult for these protocols to recover the routing after large-scale failures. In this paper, we propose a routing protocol, referred to as ARF (Adaptive routing protocol for fast Recovery from large-scale Failure), to recover a network quickly after failures over large areas. ARF detects failures by counting the packet losses from parent nodes, and upon failure detection, it decreases the routing interval to notify the neighbor nodes of the failure. Our experimental results indicate that ARF could provide recovery from large-area failures quickly with less packets and energy consumption than previous protocols.
XUNET experimental high-speed network testbed CRADA 1136, DOE TTI No. 92-MULT-020-B2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, R.E.
1996-04-01
XUNET is a research program with AT&T and other partners to study high-speed wide area communication between local area networks over a backbone using Asynchronous Transfer Mode (ATM) switches. Important goals of the project are to develop software techniques for network control and management, and applications for high-speed networks. The project entails building a testbed between member sites to explore performance issues for mixed network traffic such as congestion control, multimedia communications protocols, segmentation and reassembly of ATM cells, and overall data throughput rates.
Integration of the White Sands Complex into a Wide Area Network
NASA Technical Reports Server (NTRS)
Boucher, Phillip Larry; Horan, Sheila, B.
1996-01-01
The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.
Networks: A Review of Their Technology, Architecture, and Implementation.
ERIC Educational Resources Information Center
Learn, Larry L.
1988-01-01
This overview of network-related technologies covers network elements, analog and digital signals, transmission media and their characteristics, equipment certification, multiplexing, network types, access technologies, network architectures local-area network technologies and attributes, protocols, internetworking, fiber optics versus satellites,…
Autapse-Induced Spiral Wave in Network of Neurons under Noise
Qin, Huixin; Ma, Jun; Wang, Chunni; Wu, Ying
2014-01-01
Autapse plays an important role in regulating the electric activity of neuron by feedbacking time-delayed current on the membrane of neuron. Autapses are considered in a local area of regular network of neurons to investigate the development of spatiotemporal pattern, and emergence of spiral wave is observed while it fails to grow up and occupy the network completely. It is found that spiral wave can be induced to occupy more area in the network under optimized noise on the network with periodical or no-flux boundary condition being used. The developed spiral wave with self-sustained property can regulate the collective behaviors of neurons as a pacemaker. To detect the collective behaviors, a statistical factor of synchronization is calculated to investigate the emergence of ordered state in the network. The network keeps ordered state when self-sustained spiral wave is formed under noise and autapse in local area of network, and it independent of the selection of periodical or no-flux boundary condition. The developed stable spiral wave could be helpful for memory due to the distinct self-sustained property. PMID:24967577
Autapse-induced spiral wave in network of neurons under noise.
Qin, Huixin; Ma, Jun; Wang, Chunni; Wu, Ying
2014-01-01
Autapse plays an important role in regulating the electric activity of neuron by feedbacking time-delayed current on the membrane of neuron. Autapses are considered in a local area of regular network of neurons to investigate the development of spatiotemporal pattern, and emergence of spiral wave is observed while it fails to grow up and occupy the network completely. It is found that spiral wave can be induced to occupy more area in the network under optimized noise on the network with periodical or no-flux boundary condition being used. The developed spiral wave with self-sustained property can regulate the collective behaviors of neurons as a pacemaker. To detect the collective behaviors, a statistical factor of synchronization is calculated to investigate the emergence of ordered state in the network. The network keeps ordered state when self-sustained spiral wave is formed under noise and autapse in local area of network, and it independent of the selection of periodical or no-flux boundary condition. The developed stable spiral wave could be helpful for memory due to the distinct self-sustained property.
Decentralized sensor fusion for Ubiquitous Networking Robotics in Urban Areas.
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T J
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.
Ramirez-Mahaluf, Juan P; Perramon, Joan; Otal, Begonya; Villoslada, Pablo; Compte, Albert
2018-06-04
The regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. The sharp contrast between successive tasks was designed to enhance the separability of emotional and cognitive networks and reveal areas that regulate the flow of information between them (hubs). By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one dorsal and one ventral, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.
Information flow in the auditory cortical network
Hackett, Troy A.
2011-01-01
Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network. PMID:20116421
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Ilia N.; Simpson, John T.
A method of preparing a network comprises disposing a solution comprising particulate materials in a solvent onto a superhydrophobic surface comprising a plurality of superhydrophobic features and interfacial areas between the superhydrophobic features. The plurality of superhydrophobic features has a water contact angle of at least about 150.degree.. The method of preparing the network also comprises removing the solvent from the solution of the particulate materials, and forming a network of the particulate materials in the interfacial areas, the particulate materials receding to the interfacial areas as the solvent is removed.
A Framework for Managing Inter-Site Storage Area Networks using Grid Technologies
NASA Technical Reports Server (NTRS)
Kobler, Ben; McCall, Fritz; Smorul, Mike
2006-01-01
The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.
2014-09-18
Converter AES Advance Encryption Standard ANN Artificial Neural Network APS Application Support AUC Area Under the Curve CPA Correlation Power Analysis ...Importance WGN White Gaussian Noise WPAN Wireless Personal Area Networks XEnv Cross-Environment XRx Cross-Receiver xxi ADVANCES IN SCA AND RF-DNA...based tool called KillerBee was released in 2009 that increases the exposure of ZigBee and other IEEE 802.15.4-based Wireless Personal Area Networks
Macaluso, Emiliano
2015-01-01
Abstract Several methods are available for the identification of functional networks of brain areas using functional magnetic resonance imaging (fMRI) time‐series. These typically assume a fixed relationship between the signal of the areas belonging to the same network during the entire time‐series (e.g., positive correlation between the areas belonging to the same network), or require a priori information about when this relationship may change (task‐dependent changes of connectivity). We present a fully data‐driven method that identifies transient network configurations that are triggered by the external input and that, therefore, include only regions involved in stimulus/task processing. Intersubject synchronization with short sliding time‐windows was used to identify if/when any area showed stimulus/task‐related responses. Next, a first clustering step grouped together areas that became engaged concurrently and repetitively during the time‐series (stimulus/task‐related networks). Finally, for each network, a second clustering step grouped together all the time‐windows with the same BOLD signal. The final output consists of a set of network configurations that show stimulus/task‐related activity at specific time‐points during the fMRI time‐series. We label these configurations: “brain modes” (bModes). The method was validated using simulated datasets and a real fMRI experiment with multiple tasks and conditions. Future applications include the investigation of brain functions using complex and naturalistic stimuli. Hum Brain Mapp 36:3404–3425, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26095530
Reserve networks based on richness hotspots and representation vary with scale.
Shriner, Susan A; Wilson, Kenneth R; Flather, Curtis H
2006-10-01
While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap Analysis Programs (GAP) to produce 1-km2, 100-kmn2, 625-km2, 2500-km2, and 10,000-km2 grid cell resolution distribution maps. We used these distribution maps to generate species richness and hotspot (95th quantile) maps for each taxon in each state. Species composition information at each grain size was used to develop two types of representation networks using the reserve selection software MARXAN. Reserve selection analyses were restricted to Arizona birds due to considerable computation requirements. We used MARXAN to create best reserve networks based on the minimum area required to represent each species at least once and equal area networks based on irreplaceability values. We also measured the median area of each species' distribution included in hotspot (mammals and birds of Arizona and New Mexico) and irreplaceability (Arizona birds) networks across all species. Mean area overlap between richness hotspot reserves identified at the five grain sizes was 29% (grand mean for four within-taxon/state comparisons), mean overlap for irreplaceability reserve networks was 32%, and mean overlap for best reserve networks was 53%. Hotspots for mammals and birds showed low overlap with a mean of 30%. Comparison of hotspots and irreplaceability networks showed very low overlap with a mean of 13%. For hotspots, median species distribution area protected within reserves declined monotonically from a high of 11% for 1-km2 networks down to 6% for 10,000-km2 networks. Irreplaceability networks showed a similar, but more variable, pattern of decline. This work clearly shows that map resolution has a profound effect on conservation planning outcomes and that hotspot and representation outcomes may be strikingly dissimilar. Thus, conservation planning is scale dependent, such that reserves developed using coarse-grained data do not subsume fine-grained reserves. Moreover, preserving both full species representation and species rich areas may require combined reserve design strategies.
Designing application software in wide area network settings
NASA Technical Reports Server (NTRS)
Makpangou, Mesaac; Birman, Ken
1990-01-01
Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described.
MSFC institutional area network and ATM technology
NASA Technical Reports Server (NTRS)
Amin, Ashok T.
1994-01-01
The New Institutional Area Network (NEWIAN) at Marshall supports over 5000 end users with access to 26 file servers providing work presentation services. It is comprised of some 150 Ethernet LAN's interconnected by bridges/routers which are in turn connected to servers over two dual FDDI rings. The network supports various higher level protocols such as IP, IPX, AppleTalk (AT), and DECNet. At present IPX and AT protocols packets are routed, and IP protocol packets are bridged; however, work is in progress to route all IP packets. The impact of routing IP packets on network operation is examined. Broadband Integrated Services Data Network (BISDN), presently at various stages of development, is intended to provide voice, video, and data transfer services over a single network. BISDN will use asynchronous transfer mode (ATM) as a data transfer technique which provides for transmission, multiplexing, switching, and relaying of small size data units called cells. Limited ATM Wide Area Network (WAN) services are offered by Wiltel, AT&T, Sprint, and others. NASA is testing a pilot ATM WAN with a view to provide Program Support Communication Network services using ATM. ATM supports wide range of data rates and quality of service requirements. It is expected that ATM switches will penetrate campus networks as well. However, presently products in these areas are at various stages of development and standards are not yet complete. We examine development of ATM to help assess its role in the evolution of NEWIAN.
Implicit Block ACK Scheme for IEEE 802.11 WLANs
Sthapit, Pranesh; Pyun, Jae-Young
2016-01-01
The throughput of IEEE 802.11 standard is significantly bounded by the associated Medium Access Control (MAC) overhead. Because of the overhead, an upper limit exists for throughput, which is bounded, including situations where data rates are extremely high. Therefore, an overhead reduction is necessary to achieve higher throughput. The IEEE 802.11e amendment introduced the block ACK mechanism, to reduce the number of control messages in MAC. Although the block ACK scheme greatly reduces overhead, further improvements are possible. In this letter, we propose an implicit block ACK method that further reduces the overhead associated with IEEE 802.11e’s block ACK scheme. The mathematical analysis results are presented for both the original protocol and the proposed scheme. A performance improvement of greater than 10% was achieved with the proposed implementation.
A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators
Islam, M. M.; Faruque, M. R. I.; Islam, M. T.
2014-01-01
A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379
Low-SAR metamaterial-inspired printed monopole antenna
NASA Astrophysics Data System (ADS)
Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.
2017-01-01
In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.
Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A.
2016-01-01
Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving “live partial-area taxonomies” is demonstrated. PMID:27345947
Emerging Trends in Healthcare Adoption of Wireless Body Area Networks.
Rangarajan, Anuradha
2016-01-01
Real-time personal health monitoring is gaining new ground with advances in wireless communications. Wireless body area networks (WBANs) provide a means for low-powered sensors, affixed either on the human body or in vivo, to communicate with each other and with external telecommunication networks. The healthcare benefits of WBANs include continuous monitoring of patient vitals, measuring postacute rehabilitation time, and improving quality of medical care provided in medical emergencies. This study sought to examine emerging trends in WBAN adoption in healthcare. To that end, a systematic literature survey was undertaken against the PubMed database. The search criteria focused on peer-reviewed articles that contained the keywords "wireless body area network" and "healthcare" or "wireless body area network" and "health care." A comprehensive review of these articles was performed to identify adoption dimensions, including underlying technology framework, healthcare subdomain, and applicable lessons-learned. This article benefits healthcare technology professionals by identifying gaps in implementation of current technology and highlighting opportunities for improving products and services.
Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A
2016-08-01
Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.
A common functional neural network for overt production of speech and gesture.
Marstaller, L; Burianová, H
2015-01-22
The perception of co-speech gestures, i.e., hand movements that co-occur with speech, has been investigated by several studies. The results show that the perception of co-speech gestures engages a core set of frontal, temporal, and parietal areas. However, no study has yet investigated the neural processes underlying the production of co-speech gestures. Specifically, it remains an open question whether Broca's area is central to the coordination of speech and gestures as has been suggested previously. The objective of this study was to use functional magnetic resonance imaging to (i) investigate the regional activations underlying overt production of speech, gestures, and co-speech gestures, and (ii) examine functional connectivity with Broca's area. We hypothesized that co-speech gesture production would activate frontal, temporal, and parietal regions that are similar to areas previously found during co-speech gesture perception and that both speech and gesture as well as co-speech gesture production would engage a neural network connected to Broca's area. Whole-brain analysis confirmed our hypothesis and showed that co-speech gesturing did engage brain areas that form part of networks known to subserve language and gesture. Functional connectivity analysis further revealed a functional network connected to Broca's area that is common to speech, gesture, and co-speech gesture production. This network consists of brain areas that play essential roles in motor control, suggesting that the coordination of speech and gesture is mediated by a shared motor control network. Our findings thus lend support to the idea that speech can influence co-speech gesture production on a motoric level. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Networking DEC and IBM computers
NASA Technical Reports Server (NTRS)
Mish, W. H.
1983-01-01
Local Area Networking of DEC and IBM computers within the structure of the ISO-OSI Seven Layer Reference Model at a raw signaling speed of 1 Mops or greater are discussed. After an introduction to the ISO-OSI Reference Model nd the IEEE-802 Draft Standard for Local Area Networks (LANs), there follows a detailed discussion and comparison of the products available from a variety of manufactures to perform this networking task. A summary of these products is presented in a table.
Kelaher, Brendan P.; Coleman, Melinda A.; Broad, Allison; Rees, Matthew J.; Jordan, Alan; Davis, Andrew R.
2014-01-01
Networks of no-take marine reserves and partially-protected areas (with limited fishing) are being increasingly promoted as a means of conserving biodiversity. We examined changes in fish assemblages across a network of marine reserves and two different types of partially-protected areas within a marine park over the first 5 years of its establishment. We used Baited Remote Underwater Video (BRUV) to quantify fish communities on rocky reefs at 20–40 m depth between 2008–2011. Each year, we sampled 12 sites in 6 no-take marine reserves and 12 sites in two types of partially-protected areas with contrasting levels of protection (n = 4 BRUV stations per site). Fish abundances were 38% greater across the network of marine reserves compared to the partially-protected areas, although not all individual reserves performed equally. Compliance actions were positively associated with marine reserve responses, while reserve size had no apparent relationship with reserve performance after 5 years. The richness and abundance of fishes did not consistently differ between the two types of partially-protected areas. There was, therefore, no evidence that the more regulated partially-protected areas had additional conservation benefits for reef fish assemblages. Overall, our results demonstrate conservation benefits to fish assemblages from a newly established network of temperate marine reserves. They also show that ecological monitoring can contribute to adaptive management of newly established marine reserve networks, but the extent of this contribution is limited by the rate of change in marine communities in response to protection. PMID:24454934
Van Overwalle, Frank; Heleven, Elien; Ma, Ning; Mariën, Peter
2017-01-01
This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.
Batllori, Enric; Parisien, Marc-André; Parks, Sean A; Moritz, Max A; Miller, Carol
2017-08-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Networking CD-ROMs: A Tutorial Introduction.
ERIC Educational Resources Information Center
Perone, Karen
1996-01-01
Provides an introduction to CD-ROM networking. Highlights include LAN (local area network) architectures for CD-ROM networks, peer-to-peer networks, shared file and dedicated file servers, commercial software/vendor solutions, problems, multiple hardware platforms, and multimedia. Six figures illustrate network architectures and a sidebar contains…
Larsen, Frank Wugt; Petersen, Anders Højgård; Strange, Niels; Lund, Mette Palitzsch; Rahbek, Carsten
2008-05-01
Denmark has committed itself to the European 2010 target to halt the loss of biodiversity. Currently, Denmark is in the process of designating larger areas as national parks, and 7 areas (of a possible 32 larger nature areas) have been selected for pilot projects to test the feasibility of establishing national parks. In this article, we first evaluate the effectiveness of the a priori network of national parks proposed through expert and political consensus versus a network chosen specifically for biodiversity through quantitative analysis. Second, we analyze the potential synergy between preserving biodiversity in terms of species representation and recreational values in selecting a network of national parks. We use the actual distribution of 973 species within these 32 areas and 4 quantitative measures of recreational value. Our results show that the 7 pilot project areas are not significantly more effective in representing species than expected by chance and that considerably more efficient networks can be selected. Moreover, it is possible to select more-effective networks of areas that combine high representation of species with high ranking in terms of recreational values. Therefore, our findings suggest possible synergies between outdoor recreation and biodiversity conservation when selecting networks of national parks. Overall, this Danish case illustrates that data-driven analysis can not only provide valuable information to guide the decision-making process of designating national parks, but it can also be a means to identify solutions that simultaneously fulfill several goals (biodiversity preservation and recreational values).
Top-down alpha oscillatory network interactions during visuospatial attention orienting.
Doesburg, Sam M; Bedo, Nicolas; Ward, Lawrence M
2016-05-15
Neuroimaging and lesion studies indicate that visual attention is controlled by a distributed network of brain areas. The covert control of visuospatial attention has also been associated with retinotopic modulation of alpha-band oscillations within early visual cortex, which are thought to underlie inhibition of ignored areas of visual space. The relation between distributed networks mediating attention control and more focal oscillatory mechanisms, however, remains unclear. The present study evaluated the hypothesis that alpha-band, directed, network interactions within the attention control network are systematically modulated by the locus of visuospatial attention. We localized brain areas involved in visuospatial attention orienting using magnetoencephalographic (MEG) imaging and investigated alpha-band Granger-causal interactions among activated regions using narrow-band transfer entropy. The deployment of attention to one side of visual space was indexed by lateralization of alpha power changes between about 400ms and 700ms post-cue onset. The changes in alpha power were associated, in the same time period, with lateralization of anterior-to-posterior information flow in the alpha-band from various brain areas involved in attention control, including the anterior cingulate cortex, left middle and inferior frontal gyri, left superior temporal gyrus, and right insula, and inferior parietal lobule, to early visual areas. We interpreted these results to indicate that distributed network interactions mediated by alpha oscillations exert top-down influences on early visual cortex to modulate inhibition of processing for ignored areas of visual space. Copyright © 2016. Published by Elsevier Inc.
A conservation planning approach to mitigate the impacts of leakage from protected area networks.
Bode, Michael; Tulloch, Ayesha I T; Mills, Morena; Venter, Oscar; Ando, Amy W
2015-06-01
Protected area networks are designed to restrict anthropogenic pressures in areas of high biodiversity. Resource users respond by seeking to replace some or all of the lost resources from locations elsewhere in the landscape. Protected area networks thereby perturb the pattern of human pressures by displacing extractive effort from within protected areas into the broader landscape, a process known as leakage. The negative effects of leakage on conservation outcomes have been empirically documented and modeled using homogeneous descriptions of conservation landscapes. Human resource use and biodiversity vary greatly in space, however, and a theory of leakage must describe how this heterogeneity affects the magnitude, pattern, and biodiversity impacts of leakage. We combined models of household utility, adaptive human foraging, and biodiversity conservation to provide a bioeconomic model of leakage that accounts for spatial heterogeneity. Leakage had strong and divergent impacts on the performance of protected area networks, undermining biodiversity benefits but mitigating the negative impacts on local resource users. When leakage was present, our model showed that poorly designed protected area networks resulted in a substantial net loss of biodiversity. However, the effects of leakage can be mitigated if they are incorporated ex-ante into the conservation planning process. If protected areas are coupled with nonreserve policy instruments such as market subsidies, our model shows that the trade-offs between biodiversity and human well-being can be further and more directly reduced. © 2014 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Siejka, Zbigniew
2017-09-01
GNSS systems are currently the basic tools for determination of the highest precision station coordinates (e.g. basic control network stations or stations used in the networks for geodynamic studies) as well as for land, maritime and air navigation. All of these tasks are carried out using active, large scale, satellite geodetic networks which are complex, intelligent teleinformatic systems offering post processing services along with corrections delivered in real-time for kinematic measurements. Many countries in the world, also in Europe, have built their own multifunctional networks and enhance them with their own GNSS augmentation systems. Nowadays however, in the era of international integration, there is a necessity to consider collective actions in order to build a unified system, covering e.g. the whole Europe or at least some of its regions. Such actions have already been undertaken in many regions of the world. In Europe such an example is the development for EUPOS which consists of active national networks built in central eastern European countries. So far experience and research show, that the critical areas for connecting these networks are border areas, in which the positioning accuracy decreases (Krzeszowski and Bosy, 2011). This study attempts to evaluate the border area compatibility of Polish ASG-EUPOS (European Position Determination System) reference stations and Ukrainian GeoTerrace system reference stations in the context of their future incorporation into the EUPOS. The two networks analyzed in work feature similar hardware parameters. In the ASG-EUPOS reference stations network, during the analyzed period, 2 stations (WLDW and CHEL) used only one system (GPS), while, in the GeoTerrace network, all the stations were equipped with both GPS and GLONASS receivers. The ASG EUPOS reference station network (95.6%) has its average completeness greater by about 6% when compared to the GeoTerrace network (89.8%).
Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927
Specific needs for telestroke networks for thrombolytic therapy in Japan.
Imai, Takeshi; Sakurai, Kenzo; Hagiwara, Yuta; Mizukami, Heisuke; Hasegawa, Yasuhiro
2014-01-01
The concept of telestroke networks has been proposed to overcome regional disparities in stroke treatment. Such networks do not yet operate in Japan. We aimed to determine the specific needs for telestroke networks and to estimate the effects on the number of thrombolytic therapies. Five of the 47 Japanese prefectures with various population densities to estimate the nationwide effect of telestroke networks were selected. The questionnaire survey was administered at hospitals in these prefectures that are authorized to admit patients with acute stroke. Low-volume hospitals that annually treated fewer than 12 patients with acute stroke had never used tissue plasminogen activator (tPA). The number of days when telestroke support might have been needed varied depending on the size of the population aged 65 years or older within a 30-minute-driving-time area of a hospital and the annual number of patients treated within 3 hours of onset. The geographic information system analysis showed that .6%-8.3% of the population lived in areas where they could not reach a hospital for acute stroke treatment within 60 minutes. If 24/7 full telestroke support was introduced to the existing hospitals, 6.8-69.3 more patients could be treated by intravenous (IV) tPA annually. These numbers exceeded the estimated annual increases of .8-13.7 more patients if a drip-and-ship telestroke network was introduced into an underserved area outside the 60-minute-driving-time area. This study uncovered that many Japanese stroke hospitals, especially low-volume facilities located in rural areas, do not perform IV tPA therapy in 24/7 fashion and telestroke support to these hospitals may be highly effective compared with the drip-and-ship network in an underserved area. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Expanding the vision of the Experimental Forest and Range network to urban areas
J. Morgan Grove
2014-01-01
After 100 years, the USDA Forest Service has emerging opportunities to expand the Experimental Forest and Range (EFR) network to urban areas. The purpose of this expansion would be to broaden the types of ecosystems studied, interdisciplinary approaches used, and relevance to society of the EFR network through long-term and large-scale social-ecological projects in...
ERIC Educational Resources Information Center
Murakami, Takenobu; Restle, Julia; Ziemann, Ulf
2012-01-01
A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…
Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph
NASA Astrophysics Data System (ADS)
Feng, Lv; Chunlin, Gao; Kaiyang, Ma
2017-05-01
With rapid development of computer performance and distributed technology, P2P-based resource sharing mode plays important role in Internet. P2P network users continued to increase so the high dynamic characteristics of the system determine that it is difficult to obtain the load of other nodes. Therefore, a dynamic load balance strategy based on hypergraph is proposed in this article. The scheme develops from the idea of hypergraph theory in multilevel partitioning. It adopts optimized multilevel partitioning algorithms to partition P2P network into several small areas, and assigns each area a supernode for the management and load transferring of the nodes in this area. In the case of global scheduling is difficult to be achieved, the priority of a number of small range of load balancing can be ensured first. By the node load balance in each small area the whole network can achieve relative load balance. The experiments indicate that the load distribution of network nodes in our scheme is obviously compacter. It effectively solves the unbalanced problems in P2P network, which also improve the scalability and bandwidth utilization of system.
Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view
NASA Astrophysics Data System (ADS)
Sobral-Souza, Thadeu; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Lima-Ribeiro, Matheus S.
2018-02-01
The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.
A Fuzzy analytical hierarchy process approach in irrigation networks maintenance
NASA Astrophysics Data System (ADS)
Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i
2017-11-01
Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameme, Dan Selorm Kwami; Guttromson, Ross
This report characterizes communications network latency under various network topologies and qualities of service (QoS). The characterizations are probabilistic in nature, allowing deeper analysis of stability for Internet Protocol (IP) based feedback control systems used in grid applications. The work involves the use of Raspberry Pi computers as a proxy for a controlled resource, and an ns-3 network simulator on a Linux server to create an experimental platform (testbed) that can be used to model wide-area grid control network communications in smart grid. Modbus protocol is used for information transport, and Routing Information Protocol is used for dynamic route selectionmore » within the simulated network.« less
78 FR 69520 - Designation of the Primary Freight Network
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... NFN may fit into a multimodal National Freight System; and (5) suggestions for an urban-area route... Nation, to include goods movement in urban areas. Urban areas of 200,000 and above include a freight... Consideration for Critical Urban Freight Routes in the National Freight Network The DOT recognizes that many...
NC truck network model development research.
DOT National Transportation Integrated Search
2008-09-01
This research develops a validated prototype truck traffic network model for North Carolina. The model : includes all counties and metropolitan areas of North Carolina and major economic areas throughout the : U.S. Geographic boundaries, population a...
Broca’s area network in language function: a pooling-data connectivity study
Bernal, Byron; Ardila, Alfredo; Rosselli, Monica
2015-01-01
Background and Objective: Modern neuroimaging developments have demonstrated that cognitive functions correlate with brain networks rather than specific areas. The purpose of this paper was to analyze the connectivity of Broca’s area based on language tasks. Methods: A connectivity modeling study was performed by pooling data of Broca’s activation in language tasks. Fifty-seven papers that included 883 subjects in 84 experiments were analyzed. Analysis of Likelihood Estimates of pooled data was utilized to generate the map; thresholds at p < 0.01 were corrected for multiple comparisons and false discovery rate. Resulting images were co-registered into MNI standard space. Results: A network consisting of 16 clusters of activation was obtained. Main clusters were located in the frontal operculum, left posterior temporal region, supplementary motor area, and the parietal lobe. Less common clusters were seen in the sub-cortical structures including the left thalamus, left putamen, secondary visual areas, and the right cerebellum. Conclusion: Broca’s area-44-related networks involved in language processing were demonstrated utilizing a pooling-data connectivity study. Significance, interpretation, and limitations of the results are discussed. PMID:26074842
Functional Topology of Evolving Urban Drainage Networks
NASA Astrophysics Data System (ADS)
Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.
2017-11-01
We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs (<2 km2), length-area scales linearly (h ˜ 1), but power law scaling (h ˜ 0.6) emerges as the UDNs grow. While P>(A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.
Socially Aware Heterogeneous Wireless Networks
Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos
2015-01-01
The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402
NASA Astrophysics Data System (ADS)
Abramov, E. Y.; Sopov, V. I.
2017-10-01
In a given research using the example of traction network area with high asymmetry of power supply parameters, the sequence of comparative assessment of power losses in DC traction network with parallel and traditional separated operating modes of traction substation feeders was shown. Experimental measurements were carried out under these modes of operation. The calculation data results based on statistic processing showed the power losses decrease in contact network and the increase in feeders. The changes proved to be critical ones and this demonstrates the significance of potential effects when converting traction network areas into parallel feeder operation. An analytical method of calculation the average power losses for different feed schemes of the traction network was developed. On its basis, the dependences of the relative losses were obtained by varying the difference in feeder voltages. The calculation results showed unreasonableness transition to a two-sided feed scheme for the considered traction network area. A larger reduction in the total power loss can be obtained with a smaller difference of the feeders’ resistance and / or a more symmetrical sectioning scheme of contact network.
Is U.S. climatic diversity well represented within the existing federal protection network?
Batllori, Enric; Miller, Carol; Parisien, Marc-Andre; Parks, Sean A; Moritz, Max A
Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans. The conterminous United States of America (CONUS) has an extensive system of protected areas managed by federal agencies, but a comprehensive assessment of how this network represents CONUS climate is lacking. We present a quantitative classification of the climate space that is independent from the geographic locations to evaluate the climatic representation of the existing protected area network. We use this classification to evaluate the coverage of each agency's jurisdiction and to identify current conservation deficits. Our findings reveal that the existing network poorly represents CONUS climatic diversity. Although rare climates are generally well represented by the network, the most common climates are particularly underrepresented. Overall, 83% of the area of the CONUS corresponds to climates underrepresented by the network. The addition of some currently unprotected federal lands to the network would enhance the coverage of CONUS climates. However, to fully palliate current conservation deficits, large-scale private-land conservation initiatives will be critical.
Extending the multimedia patient record across the wide area network.
Dayhoff, R. E.; Kuzmak, P. M.; Frank, S. A.; Kirin, G.; Saddler, C.
1996-01-01
The Dept. of Veterans Affairs is developing and testing a wide area medical network with multimedia capabilities for coordination and consolidation of medical services across locations. The system is composed of multimedia information systems at individual medical centers connected by a high speed wide area network. The DHCP Imaging System, which has been in clinical use for six years, provides storage management and workstation acquisition and display of the multimedia data. Teleconsulting capability using a variety of mechanisms' is being prototyped and tested to meet medical staffing and consultation needs. PMID:8947747
Extending the multimedia patient record across the wide area network.
Dayhoff, R E; Kuzmak, P M; Frank, S A; Kirin, G; Saddler, C
1996-01-01
The Dept. of Veterans Affairs is developing and testing a wide area medical network with multimedia capabilities for coordination and consolidation of medical services across locations. The system is composed of multimedia information systems at individual medical centers connected by a high speed wide area network. The DHCP Imaging System, which has been in clinical use for six years, provides storage management and workstation acquisition and display of the multimedia data. Teleconsulting capability using a variety of mechanisms' is being prototyped and tested to meet medical staffing and consultation needs.
NASA Astrophysics Data System (ADS)
Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.
2006-01-01
We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.
Characterisation of Network Objects in Natural and Anthropic Environments
NASA Astrophysics Data System (ADS)
Harris, B.; McDougall, K.; Barry, M.
2014-11-01
Networks are structures that organise component objects, and they are extensive and recognisable across a range of environments. Estimating lengths of networks objects and their relationships to areas contiguous to them could assist provide owners with additional knowledge of their assets. There is currently some understanding of the way in which networks (such as waterways) relate and respond to their natural and anthropogenic environments. Despite this knowledge, there is no straight forward formula, method or model that can be applied to assess these relationships to a sufficient level of detail. Whilst waterway networks and their structures are well understood from the work of Horton and Strahler, relatively little attention has been paid to how (or if) these properties and behaviours can inform the understanding of other, unrelated, networks. Analysis of existing natural and built network objects exhibited how relationships derived from waterway networks can be applied in new areas of interest. We create a predictive approach to associate dissimilar objects such as pipe networks to assess if using the model established for waterway networks and their relationships can be functional in other areas. Using diversity of inputs we create data to assist with the creation of a predictive model. This work provides a clean theoretical connection between a formula applied to evaluate waterways and their environments, and other natural and anthropogenic network objects. It fills a key knowledge gap in the assessment and application of approaches used to measure natural and built networks.
NASA Astrophysics Data System (ADS)
Wahyuningsih, Retno; Rintis Hadiani, RR; Sobriyah
2017-01-01
Cau irrigation area located in Madiun district, East Java Province, irrigates 1.232 Ha of land which covers Cau primary channel irrigation network, Wungu Secondary channel irrigation network, and Grape secondary channel irrigation network. The problems in Cau irrigation area are limited availability of water especially during the dry season (planting season II and III) and non-compliance to cropping patterns. The evaluation of irrigation system performance of Cau irrigation area needs to be done in order to know how far the irrigation system performance is, especially based on planting productivity aspect. The improvement of irrigation network performance through cropping pattern optimization is based on the increase of water necessity fulfillment (k factor), the realization of planting area and rice productivity. The research method of irrigation system performance is by analyzing the secondary data based on the Regulation of Ministry of Public Work and State Minister for Public Housing Number: 12/PRT/M/2015. The analysis of water necessity fulfillment (k factor) uses Public Work Plan Criteria Method. The performance level of planting productivity aspect in existing condition is 87.10%, alternative 1 is 93.90% dan alternative 2 is 96.90%. It means that the performance of the irrigation network from productivity aspect increases 6.80% for alternative 1 and 9.80% for alternative 2.
NASA Astrophysics Data System (ADS)
Tselentis, G.-A.; Sokos, E.
2012-01-01
In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.
NASA Technical Reports Server (NTRS)
2001-01-01
Terabeam has developed a Fiberless Optical(TM) Network that transmits broadband data from office buildings to the nation's wide-area networks (WANs), without digging up the streets. A key component of Terabeam's Fiberless Network is Large Aperture Holographic Optic technology, developed by Ralcon Development Lab, of Paradise, Utah. Ralcon developed the Holographic Optical Element (HOE) technology with assistance from a NASA Goddard Space Flight Center Small Business Innovation Research (SBIR) contract. Terabeam further developed the HOE technology and incorporated it into its Fiberless Optical Network-sending an immeasurable amount of information soaring overhead. Terabeam developed its Fiberless Optical Network using a proprietary HOE to transmit data. The unit is mounted near an office window and has the ability to beam safe, low-power, invisible data through the air at gigabits-per-second speeds to anywhere in the service area. Gigabits-per-second speeds are thousands of times faster than the speeds of current broadband transmissions. This allows businesses to connect to local-area networks (LANs) as well as WANs, in a quick and affordable manner.
Synthesis of platinum nanowire networks using a soft template.
Song, Yujiang; Garcia, Robert M; Dorin, Rachel M; Wang, Haorong; Qiu, Yan; Coker, Eric N; Steen, William A; Miller, James E; Shelnutt, John A
2007-12-01
Platinum nanowire networks have been synthesized by chemical reduction of a platinum complex using sodium borohydride in the presence of a soft template formed by cetyltrimethylammonium bromide in a two-phase water-chloroform system. The interconnected polycrystalline nanowires possess the highest surface area (53 +/- 1 m2/g) and electroactive surface area (32.4 +/- 3.6 m2/g) reported for unsupported platinum nanomaterials; the high surface area results from the small average diameter of the nanowires (2.2 nm) and the 2-10 nm pores determined by nitrogen adsorption measurements. Synthetic control over the network was achieved simply by varying the stirring rate and reagent concentrations, in some cases leading to other types of nanostructures including wormlike platinum nanoparticles. Similarly, substitution of a palladium complex for platinum gives palladium nanowire networks. A mechanism of formation of the metal nanowire networks is proposed based on confined metal growth within a soft template consisting of a network of swollen inverse wormlike micelles.
A CoAP-Based Network Access Authentication Service for Low-Power Wide Area Networks: LO-CoAP-EAP.
Garcia-Carrillo, Dan; Marin-Lopez, Rafael; Kandasamy, Arunprabhu; Pelov, Alexander
2017-11-17
The Internet-of-Things (IoT) landscape is expanding with new radio technologies. In addition to the Low-Rate Wireless Personal Area Network (LR-WPAN), the recent set of technologies conforming the so-called Low-Power Wide Area Networks (LP-WAN) offers long-range communications, allowing one to send small pieces of information at a reduced energy cost, which promotes the creation of new IoT applications and services. However, LP-WAN technologies pose new challenges since they have strong limitations in the available bandwidth. In general, a first step prior to a smart object being able to gain access to the network is the process of network access authentication. It involves authentication, authorization and key management operations. This process is of vital importance for operators to control network resources. However, proposals for managing network access authentication in LP-WAN are tailored to the specifics of each technology, which could introduce interoperability problems in the future. In this sense, little effort has been put so far into providing a wireless-independent solution for network access authentication in the area of LP-WAN. To fill this gap, we propose a service named Low-Overhead CoAP-EAP (LO-CoAP-EAP), which is based on previous work designed for LR-WPAN. LO-CoAP-EAP integrates the use of Authentication, Authorization and Accounting (AAA) infrastructures and the Extensible Authentication Protocol (EAP) protocol. For this integration, we use the Constrained Application Protocol (CoAP) to design a network authentication service independent of the type of LP-WAN technology. LO-CoAP-EAP represents a trade-off between flexibility, wireless technology independence, scalability and performance in LP-WAN.
A CoAP-Based Network Access Authentication Service for Low-Power Wide Area Networks: LO-CoAP-EAP
Garcia-Carrillo, Dan; Marin-Lopez, Rafael; Kandasamy, Arunprabhu; Pelov, Alexander
2017-01-01
The Internet-of-Things (IoT) landscape is expanding with new radio technologies. In addition to the Low-Rate Wireless Personal Area Network (LR-WPAN), the recent set of technologies conforming the so-called Low-Power Wide Area Networks (LP-WAN) offers long-range communications, allowing one to send small pieces of information at a reduced energy cost, which promotes the creation of new IoT applications and services. However, LP-WAN technologies pose new challenges since they have strong limitations in the available bandwidth. In general, a first step prior to a smart object being able to gain access to the network is the process of network access authentication. It involves authentication, authorization and key management operations. This process is of vital importance for operators to control network resources. However, proposals for managing network access authentication in LP-WAN are tailored to the specifics of each technology, which could introduce interoperability problems in the future. In this sense, little effort has been put so far into providing a wireless-independent solution for network access authentication in the area of LP-WAN. To fill this gap, we propose a service named Low-Overhead CoAP-EAP (LO-CoAP-EAP), which is based on previous work designed for LR-WPAN. LO-CoAP-EAP integrates the use of Authentication, Authorization and Accounting (AAA) infrastructures and the Extensible Authentication Protocol (EAP) protocol. For this integration, we use the Constrained Application Protocol (CoAP) to design a network authentication service independent of the type of LP-WAN technology. LO-CoAP-EAP represents a trade-off between flexibility, wireless technology independence, scalability and performance in LP-WAN. PMID:29149040
Siddiqui, Fariha Masood; Akram, Muhammad; Noureen, Nighat; Noreen, Zobia; Bokhari, Habib
2015-03-01
To determine antibiotic resistance patterns and virulence potential of Campylobacter jejuni (C. jejuni) isolates from clinical human diarrheal infections, cattle and healthy broilers. Antibiotic sensitivity patterns of C. jejuni isolates were determined by Kirby Bauer Disc Diffusion assay. These isolates were then subjected to virulence profiling for the detection of mapA (membrane-associated protein), cadF (fibronectin binding protein), wlaN (beta-l,3-galactosyltransferase) and neuAB (sialic acid biosynthesis gene). Further C. jejuni isolates were grouped by random amplification of polymorphic DNA (RAPD) profiling. A total of 436 samples from poultry (n=88), cattle (n=216) and humans (n=132) from different locations were collected. Results revealed percentage of C. jejuni isolates were 35.2% (31/88), 25.0% (54/216) and 11.3% (15/132) among poultry, cattle and clinical human samples respectively. Antibiotic susceptibility results showed that similar resistance patterns to cephalothin was ie. 87.0%, 87.1% and 89%among humans, poultry and cattle respectively, followed by sulfamethoxazole+trimethoprim 40.0%, 38.7% and 31.0% in humans, poultry and cattle and Ampicillin 40%, 32% and 20% in humans, poultry and cattle respectively. Beta-lactamase activity was detected in 40.00% humans, 20.37% cattle and 32.25% in poultry C. jejuni isolates. CadF and mapA were present in all poultry, cattle and human C. jejuni isolates, wlaN was not detected in any isolate and neuAB was found in 9/31 (36%) poultry isolates. RAPD profiling results suggested high diversity of C. jejuni isolates. Detection of multidrug resistant C. jejuni strains from poultry and cattle is alarming as they can be potential hazard to humans. Moreover, predominant association of virulence factors, cadF and mapA (100% each) in C. jejuni isolates from all sources and neuAB (36%) with poultry isolates suggest the potential source of transmission of diverse types of C. jejuni to humans. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Experimental high-speed network
NASA Astrophysics Data System (ADS)
McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.
1993-09-01
Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.
Scaling the PuNDIT project for wide area deployments
NASA Astrophysics Data System (ADS)
McKee, Shawn; Batista, Jorge; Carcassi, Gabriele; Dovrolis, Constantine; Lee, Danny
2017-10-01
In today’s world of distributed scientific collaborations, there are many challenges to providing reliable inter-domain network infrastructure. Network operators use a combination of active monitoring and trouble tickets to detect problems, but these are often ineffective at identifying issues that impact wide-area network users. Additionally, these approaches do not scale to wide area inter-domain networks due to unavailability of data from all the domains along typical network paths. The Pythia Network Diagnostic InfrasTructure (PuNDIT) project aims to create a scalable infrastructure for automating the detection and localization of problems across these networks. The project goal is to gather and analyze metrics from existing perfSONAR monitoring infrastructures to identify the signatures of possible problems, locate affected network links, and report them to the user in an intuitive fashion. Simply put, PuNDIT seeks to convert complex network metrics into easily understood diagnoses in an automated manner. We present our progress in creating the PuNDIT system and our status in developing, testing and deploying PuNDIT. We report on the project progress to-date, describe the current implementation architecture and demonstrate some of the various user interfaces it will support. We close by discussing the remaining challenges and next steps and where we see the project going in the future.
Manolache, Steluta; Nita, Andreea; Ciocanea, Cristiana M; Popescu, Viorel D; Rozylowicz, Laurentiu
2018-04-15
Successful management of complex social-ecological landscapes overlapping Natura 2000 sites requires collaboration between various actors such as law enforcement agencies, NGOs and enterprises. Natura 2000 governance is stimulated by central actors (e.g., Natura 2000 administrators), with successes and failures of management activities depending on the capacity of the network leader to implement a collaborative approach to environmental governance. By using social network analysis, we analysed the cooperation, information flow and capacity for collective action within Natura 2000 governance networks within two Romanian protected areas: Lower Siret Floodplain and Iron Gates Natural Park. The two networks represent protected areas managed by different types of organisations (i.e., Lower Siret Floodplain - by an NGO, Iron Gates Natural Park - by a public entity). Taking into consideration that NGOs may favour an adaptive co-management, while the public bodies may take a top-down management approach, we hypothesize that Lower Siret Floodplain will have a more cohesive and collaborating network compared to Iron Gates Natural Park, and that there will be a greater representation of private and NGO sector in the network coordinated by Lower Siret Floodplain. Contrary to our expectations, the results show that collaboration patterns are similar in the two networks, although they are governed by two different types of institutions, both being less participative than expected, with low involvement of NGOs and private stakeholders. Furthermore, Lower Siret Floodplain network is surprisingly more centralized around a small number of public authorities, and the pre-existing power of public bodies likely inhibit the capacity of the NGO to collaborate with private stakeholders. We also found lower collaboration levels between actors in the network periphery with other organisations from the same cluster, denoting a clear top-down approach of the management in both networks. Our findings suggest that delegating the protected areas administration to NGOs, a solution to increase the use of co-management in protected areas, does not solve the poor representation of private stakeholders. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laven, Daniel N; Krymkowski, Daniel H; Ventriss, Curtis L; Manning, Robert E; Mitchell, Nora J
2010-08-01
National Heritage Areas (NHAs) are an alternative and increasingly popular form of protected area management in the United States. NHAs seek to integrate environmental objectives with community and economic objectives at regional or landscape scales. NHA designations have increased rapidly in the last 20 years, generating a substantial need for evaluative information about (a) how NHAs work; (b) outcomes associated with the NHA process; and (c) the costs and benefits of investing public moneys into the NHA approach. Qualitative evaluation studies recently conducted at three NHAs have identified the importance of understanding network structure and function in the context of evaluating NHA management effectiveness. This article extends these case studies by examining quantitative network data from each of the sites. The authors analyze these data using both a descriptive approach and a statistically more robust approach known as exponential random graph modeling. Study findings indicate the presence of transitive structures and the absence of three-cycle structures in each of these networks. This suggests that these networks are relatively ''open,'' which may be desirable, given the uncertainty of the environments in which they operate. These findings also suggest, at least at the sites reported here, that the NHA approach may be an effective way to activate and develop networks of intersectoral organizational partners. Finally, this study demonstrates the utility of using quantitative network analysis to better understand the effectiveness of protected area management models that rely on partnership networks to achieve their intended outcomes.
BOULDER AREA SUSTAINABILITY INFORMATION NETWORK (BASIN)
The primary goal of the Boulder Area Sustainability Information Network (BASIN) is to help citizens make meaningful connections between environmental data and their day-to-day activities and facilitate involvement in public policy development. Objectives include:
Human Behavior Modeling in Network Science
2010-03-01
in Network Science bringing three distinct research areas together, communication networks, information networks, and social /cognitive networks. The...researchers. A critical part of the social /cognitive network effort is the modeling of human behavior. The modeling efforts range from organizational...behavior to social cognitive trust to explore and refine the theoretical and applied network relationships between and among the human
[Delineation of ecological security pattern based on ecological network].
Fu, Qiang; Gu, Chao Lin
2017-03-18
Ecological network can be used to describe and assess the relationship between spatial organization of landscapes and species survival under the condition of the habitat fragmentation. Taking Qingdao City as the research area, woodland and wetland ecological networks in 2005 were simulated based on least cost path method, and the ecological networks were classified by their corridors' cumulative cost value. We made importance distinction of ecological network structure elements such as patches and corridors using betweenness centrality index and correlation length-percentage of importance of omitted patches index, and then created the structure system of ecological network. Considering the effects brought by the newly-added construction land from 2005 to 2013, we proposed the ecological security pattern for construction land change of Qingdao City. The results showed that based on ecological network framework, graph theory based methods could be used to quantify both attributes of specific ecological land (e.g., the area of an ecological network patch) and functional connection between ecological lands. Between 2005 and 2013, large area of wetlands had been destroyed by newly-added construction land, while the role of specific woodland and wetland played in the connection of the whole network had not been considered. The delineation of ecological security pattern based on ecological network could optimize regional ecological basis, provide accurate spatial explicit decision for ecological conservation and restoration, and meanwhile provide scientific and reasonable space guidance for urban spatial expansion.
Continuous Seismic Threshold Monitoring
1992-05-31
Continuous threshold monitoring is a technique for using a seismic network to monitor a geographical area continuously in time. The method provides...area. Two approaches are presented. Site-specific monitoring: By focusing a seismic network on a specific target site, continuous threshold monitoring...recorded events at the site. We define the threshold trace for the network as the continuous time trace of computed upper magnitude limits of seismic
Quantitative metrics that describe river deltas and their channel networks
NASA Astrophysics Data System (ADS)
Edmonds, Douglas A.; Paola, Chris; Hoyal, David C. J. D.; Sheets, Ben A.
2011-12-01
Densely populated river deltas are losing land at an alarming rate and to successfully restore these environments we must understand the details of their morphology. Toward this end we present a set of five metrics that describe delta morphology: (1) the fractal dimension, (2) the distribution of island sizes, (3) the nearest-edge distance, (4) a synthetic distribution of sediment fluxes at the shoreline, and (5) the nourishment area. The nearest-edge distance is the shortest distance to channelized or unchannelized water from a given location on the delta and is analogous to the inverse of drainage density in tributary networks. The nourishment area is the downstream delta area supplied by the sediment coming through a given channel cross section and is analogous to catchment area in tributary networks. As a first step, we apply these metrics to four relatively simple, fluvially dominated delta networks. For all these deltas, the average nearest-edge distances are remarkably constant moving down delta suggesting that the network organizes itself to maintain a consistent distance to the nearest channel. Nourishment area distributions can be predicted from a river mouth bar model of delta growth, and also scale with the width of the channel and with the length of the longest channel, analogous to Hack's law for drainage basins. The four delta channel networks are fractal, but power laws and scale invariance appear to be less pervasive than in tributary networks. Thus, deltas may occupy an advantageous middle ground between complete similarity and complete dissimilarity, where morphologic differences indicate different behavior.
A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.
Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud
2016-09-01
Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree-Based', 'Cross-Layer', 'Opportunistic', and 'Medium Access Control'. We, then, provide a full description of the statistical analysis of each category in relation to all papers, current hybrid protocols, and the type of simulators used in each paper. Next, we analyze the distribution of papers in each category during various years. Moreover, for each category, the advantages and disadvantages as well as the number of issued papers in different years are given. We also analyze the type of layer and deployment of mathematical models or algorithmic techniques in each category. Finally, after introducing certain important protocols for each category, the goals, advantages, and disadvantages of the protocols are discussed and compared with each other.
Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Chen, Guowei; Itoh, Kenichi; Sato, Takuro
Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.
Research and development of a NYNEX switched multi-megabit data service prototype system
NASA Astrophysics Data System (ADS)
Maman, K. H.; Haines, Robert; Chatterjee, Samir
1991-02-01
Switched Multi-megabit Data Service (SMDS) is a proposed high-speed packet-switched service which will support broadband applications such as Local Area Network (LAN) interconnections across a metropolitan area and beyond. This service is designed to take advantage of evolving Metropolitan Area Network (MAN) standards and technology which will provide customers with 45-mbps and 1 . 5-mbps access to high-speed public data communications networks. This paper will briefly discuss SMDS and review its architecture including the Subscriber Network Interface (SNI) and the SMDS Interface Protocol (SIP). It will review the fundamental features of SMDS such as address screening addressing scheme and access classes. Then it will describe the SMDS prototype system developed in-house by NYNEX Science Technology.
Curvature-processing network in macaque visual cortex
Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.
2014-01-01
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328
The spatial scaling of species interaction networks.
Galiana, Nuria; Lurgi, Miguel; Claramunt-López, Bernat; Fortin, Marie-Josée; Leroux, Shawn; Cazelles, Kevin; Gravel, Dominique; Montoya, José M
2018-05-01
Species-area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network-area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world.
Characterization of the Network of Protected Areas in Puerto Rico
J. Castro-Prieto; Maya Quinones; William Gould
2016-01-01
Our goal was to describe the biodiversity and associated landscape diversity and forest cover characteristics within the network of terrestrial protected areas in Puerto Rico. We conducted spatial analysis to quantify different indicators of diversity at these sites. We found that protected areas in Puerto Rico overlap the most species-rich regions on the island,...
Granko, Robert P; Wolfe, Adam S; Kelley, Lindsey R; Morton, Carolyn S; Delgado, Osmel
2015-01-15
The self-development potential of pharmacy management practitioners related to self-management, team development, and network management was assessed. A survey instrument consisting of 12 self-assessment questions and 11 questions about demographics was distributed to pharmacy management practitioners to assess their abilities to manage themselves, their teams, and their networks. The tool was distributed by e-mail hyperlink to 190 potential respondents. Only surveys from respondents who had a pharmacy degree and direct supervisory capacity were analyzed. Respondents rated their progress toward meeting the three imperatives on a scale of 1-5. Responses to the questions were analyzed as ordinal data, with median responses used for assessment. A total of 160 responses were received via e-mail, 149 (93%) of which met the inclusion criteria. About half of all respondents were practicing at institutions of 600 beds or more and supervised at least five employees. The majority of respondents identified their abilities to manage themselves, their teams, and their networks as areas of strength but also acknowledged that using all three of these skills on a daily basis was an area of opportunity. Respondents generally identified management of their network as an area needing work. The majority of survey respondents identified their skills in self-, team, and network management as areas of strength. Respondents generally identified management of their network as an area needing work. Respondents also identified the use of all three imperatives on a daily basis as an area of opportunity for improvement. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg
2016-08-15
The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks.
Beyond the FFA: The Role of the Ventral Anterior Temporal Lobes in Face Processing
Collins, Jessica A.; Olson, Ingrid R.
2014-01-01
Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge. PMID:24937188
Effects of cost metric on cost-effectiveness of protected-area network design in urban landscapes.
Burkhalter, J C; Lockwood, J L; Maslo, B; Fenn, K H; Leu, K
2016-04-01
A common goal in conservation planning is to acquire areas that are critical to realizing biodiversity goals in the most cost-effective manner. The way monetary acquisition costs are represented in such planning is an understudied but vital component to realizing cost efficiencies. We sought to design a protected-area network within a forested urban region that would protect 17 birds of conservation concern. We compared the total costs and spatial structure of the optimal protected-area networks produced using three acquisition-cost surrogates (area, agricultural land value, and tax-assessed land value). Using the tax-assessed land values there was a 73% and 78% cost savings relative to networks derived using area or agricultural land value, respectively. This cost reduction was due to the considerable heterogeneity in acquisition costs revealed in tax-assessed land values, especially for small land parcels, and the corresponding ability of the optimization algorithm to identify lower-cost parcels for inclusion that had equal value to our target species. Tax-assessed land values also reflected the strong spatial differences in acquisition costs (US$0.33/m(2)-$55/m(2)) and thus allowed the algorithm to avoid inclusion of high-cost parcels when possible. Our results add to a nascent but growing literature that suggests conservation planners must consider the cost surrogate they use when designing protected-area networks. We suggest that choosing cost surrogates that capture spatial- and size-dependent heterogeneity in acquisition costs may be relevant to establishing protected areas in urbanizing ecosystems. © 2015 Society for Conservation Biology.
Key areas for wintering North American herons
Mikuska, T.; Kushlan, J.A.; Hartley, S.
1998-01-01
Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as 'key areas.' These forty-three areas constitute a network of areas that hold sites that likely are important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.
SDN architecture for optical packet and circuit integrated networks
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Miyazawa, Takaya
2016-02-01
We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.
2016-01-01
Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540
NASA Astrophysics Data System (ADS)
Pribičević, Boško; Medak, Damir; ÄApo, Almin
2010-05-01
The Geodynamic GPS-Network of the City of Zagreb represents the longest and the most intensive research effort in the field of geodynamics in Croatia. Since the establishment of the Network in 1997, several series of precise GPS measurements have been conducted on specially stabilized points of Geodynamical Network of City of Zagreb with purpose of investigation of tectonic movements and related seismic activity of the wider area of the City of Zagreb. The Network has been densified in 2005 in the most active region of northeastern Mount Medvednica. Since then, several GPS campaigns have been conducted including the last in summer 2009. The paper presents latest results of geodynamic movements of the network points.
Routing Protocols in Wireless Sensor Networks
Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco
2009-01-01
The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks. PMID:22291515
SFTP: A Secure and Fault-Tolerant Paradigm against Blackhole Attack in MANET
NASA Astrophysics Data System (ADS)
KumarRout, Jitendra; Kumar Bhoi, Sourav; Kumar Panda, Sanjaya
2013-02-01
Security issues in MANET are a challenging task nowadays. MANETs are vulnerable to passive attacks and active attacks because of a limited number of resources and lack of centralized authority. Blackhole attack is an attack in network layer which degrade the network performance by dropping the packets. In this paper, we have proposed a Secure Fault-Tolerant Paradigm (SFTP) which checks the Blackhole attack in the network. The three phases used in SFTP algorithm are designing of coverage area to find the area of coverage, Network Connection algorithm to design a fault-tolerant model and Route Discovery algorithm to discover the route and data delivery from source to destination. SFTP gives better network performance by making the network fault free.
Fault-Tolerant Local-Area Network
NASA Technical Reports Server (NTRS)
Morales, Sergio; Friedman, Gary L.
1988-01-01
Local-area network (LAN) for computers prevents single-point failure from interrupting communication between nodes of network. Includes two complete cables, LAN 1 and LAN 2. Microprocessor-based slave switches link cables to network-node devices as work stations, print servers, and file servers. Slave switches respond to commands from master switch, connecting nodes to two cable networks or disconnecting them so they are completely isolated. System monitor and control computer (SMC) acts as gateway, allowing nodes on either cable to communicate with each other and ensuring that LAN 1 and LAN 2 are fully used when functioning properly. Network monitors and controls itself, automatically routes traffic for efficient use of resources, and isolates and corrects its own faults, with potential dramatic reduction in time out of service.
Routing protocols in wireless sensor networks.
Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco
2009-01-01
The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks.
Information network architectures
NASA Technical Reports Server (NTRS)
Murray, N. D.
1985-01-01
Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.
Flux quantization in periodic networks containing tiles with irrational ratio of areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanam, P.; Chi, C.C.; Molzen, W.W.
1988-02-01
We report measurements of the superconducting-normal transition boundary T/sub c/(H) of two-dimensional periodic networks with two different space-group symmetries in a magnetic field. Each network is a mixture of squares and equilateral triangles. In both cases, we observe maxima in T/sub c/(H) with one major period, which does not correspond to the area of either the square or the triangle. We interpret the results in terms of flux configurations whose energies are sensitive to the geometry of a given network.
Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.
2012-01-01
While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270
Jeffrey V. Wells; Daniel K. Niven; John Cecil
2005-01-01
The Important Bird Area (IBA) program is an international effort to identify, conserve, and monitor a network of sites that provide essential habitat for bird populations. BirdLife International began the IBA program in Europe in 1985. Since that time, BirdLife partners in more than 100 countries have joined together to build the global IBA network. Audubon (BirdLife...
NASA Astrophysics Data System (ADS)
Caselle, Jennifer E.; Rassweiler, Andrew; Hamilton, Scott L.; Warner, Robert R.
2015-09-01
Oceans currently face a variety of threats, requiring ecosystem-based approaches to management such as networks of marine protected areas (MPAs). We evaluated changes in fish biomass on temperate rocky reefs over the decade following implementation of a network of MPAs in the northern Channel Islands, California. We found that the biomass of targeted (i.e. fished) species has increased consistently inside all MPAs in the network, with an effect of geography on the strength of the response. More interesting, biomass of targeted fish species also increased outside MPAs, although only 27% as rapidly as in the protected areas, indicating that redistribution of fishing effort has not severely affected unprotected populations. Whether the increase outside of MPAs is due to changes in fishing pressure, fisheries management actions, adult spillover, favorable environmental conditions, or a combination of all four remains unknown. We evaluated methods of controlling for biogeographic or environmental variation across networks of protected areas and found similar performance of models incorporating empirical sea surface temperature versus a simple geographic blocking term based on assemblage structure. The patterns observed are promising indicators of the success of this network, but more work is needed to understand how ecological and physical contexts affect MPA performance.
Caselle, Jennifer E.; Rassweiler, Andrew; Hamilton, Scott L.; Warner, Robert R.
2015-01-01
Oceans currently face a variety of threats, requiring ecosystem-based approaches to management such as networks of marine protected areas (MPAs). We evaluated changes in fish biomass on temperate rocky reefs over the decade following implementation of a network of MPAs in the northern Channel Islands, California. We found that the biomass of targeted (i.e. fished) species has increased consistently inside all MPAs in the network, with an effect of geography on the strength of the response. More interesting, biomass of targeted fish species also increased outside MPAs, although only 27% as rapidly as in the protected areas, indicating that redistribution of fishing effort has not severely affected unprotected populations. Whether the increase outside of MPAs is due to changes in fishing pressure, fisheries management actions, adult spillover, favorable environmental conditions, or a combination of all four remains unknown. We evaluated methods of controlling for biogeographic or environmental variation across networks of protected areas and found similar performance of models incorporating empirical sea surface temperature versus a simple geographic blocking term based on assemblage structure. The patterns observed are promising indicators of the success of this network, but more work is needed to understand how ecological and physical contexts affect MPA performance. PMID:26373803
A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.
Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying
2018-06-13
The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.
A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.
Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi
2017-09-21
Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.
The Semi-Planned LAN: Prototyping a Local Area Network.
ERIC Educational Resources Information Center
True, John F.; Rosenwald, Judah
1986-01-01
Five administrative user departments at San Francisco State University discovered that they had common requirements for office automation and data manipulation that could be addressed with microcomputers. The results of a local area network project are presented. (Author/MLW)
Ultra-wideband radar sensors and networks
Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C
2013-08-06
Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.
Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas
2012-01-01
Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489
Frequency Reconfigurable Quasi-Yagi Antenna with a Novel Balun Loading Four PIN Diodes
NASA Astrophysics Data System (ADS)
Xie, Peng; Wang, Guang-Ming; Li, Hai-Peng; Wen, Tong; Kong, Xiangxin
2018-04-01
A novel frequency reconfigurable Quasi-Yagi antenna is proposed. The antenna has two dipoles on different layers of the substrate and they are fed by two coplanar striplines. Four PIN diodes, loading inside the coplanar striplines, are used as the switches. By switching the states of the four diodes, the antenna can work in three modes with different working bands around 3.5 GHz (cover the band of WiMAX), 5.2 GHz (cover the band of WLAN) and 7 GHz respectively. In addition, the working bands can be independently tuned by adjusting several parameters of the antenna. A prototype antenna was fabricated and tested. Good agreement between the simulation and the measurement is achieved. The results prove that the antenna can realize frequency reconfiguration effectively while maintaining the pattern characteristic of Yagi antenna at all frequency.
NASA Astrophysics Data System (ADS)
Jiang, Tao; Wang, Yanyan; Li, Yingsong
2017-07-01
In this paper, a triple stop-band filter with a ratioed periodical defected microstrip structure is proposed for wireless communication applications. The proposed ratioed periodical defected microstrip structures are spiral slots, which are embedded into a 50 Ω microstrip line to obtain multiple stop-bands. The performance of the proposed triple stop-band filter is investigated numerically and experimentally. Moreover, the equivalent circuit model of the proposed filter is also established and discussed. The results are given to verify that the proposed triple stop-band filter has three stop bands at 3.3 GHz, 5.2 GHz, 6.8 GHz to reject the unwanted signals, which is promising for integrating into UWB communication systems to efficiently prevent the potential interferences from unexpected narrowband signals such as WiMAX, WLAN and RFID communication systems.
Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator
NASA Astrophysics Data System (ADS)
Xu, Jin
2016-01-01
This paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.
NASA Astrophysics Data System (ADS)
Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita
2016-11-01
In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.
Fractal Based Triple Band High Gain Monopole Antenna
NASA Astrophysics Data System (ADS)
Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.
2017-10-01
A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.
A. Kumar; Bruce Marcot; G. Talukdar
2010-01-01
We studied vegetation and land cover characteristics within the existing array of protected areas (PAs) in South Garo Hills of Meghalaya, northeast India and introduce the concept of protected area network (PAN) and methods to determine linkages of forests among existing PAs. We describe and analyze potential elements of a PAN, including PAs, reserved forests,...
Influences of brain development and ageing on cortical interactive networks.
Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao
2011-02-01
To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Efficient large-scale graph data optimization for intelligent video surveillance
NASA Astrophysics Data System (ADS)
Shang, Quanhong; Zhang, Shujun; Wang, Yanbo; Sun, Chen; Wang, Zepeng; Zhang, Luming
2017-08-01
Society is rapidly accepting the use of a wide variety of cameras Location and applications: site traffic monitoring, parking Lot surveillance, car and smart space. These ones here the camera provides data every day in an analysis Effective way. Recent advances in sensor technology Manufacturing, communications and computing are stimulating.The development of new applications that can change the traditional Vision system incorporating universal smart camera network. This Analysis of visual cues in multi camera networks makes wide Applications ranging from smart home and office automation to large area surveillance and traffic surveillance. In addition, dense Camera networks, most of which have large overlapping areas of cameras. In the view of good research, we focus on sparse camera networks. One Sparse camera network using large area surveillance. As few cameras as possible, most cameras do not overlap Each other’s field of vision. This task is challenging Lack of knowledge of topology Network, the specific changes in appearance and movement Track different opinions of the target, as well as difficulties Understanding complex events in a network. In this review in this paper, we present a comprehensive survey of recent studies Results to solve the problem of topology learning, Object appearance modeling and global activity understanding sparse camera network. In addition, some of the current open Research issues are discussed.
NASA Astrophysics Data System (ADS)
Hopkins, Charlotte Rachael; Bailey, David Mark; Potts, Tavis
2018-07-01
As international pressure for marine protection has increased, Scotland has increased spatial protection through the development of a Marine Protected Area (MPA) network. Few MPA networks to date have included specific considerations of climate change in the design, monitoring or management of the network. The Scottish MPA network followed a feature-led approach to identify a series of MPAs across the Scottish marine area and incorporated the diverse views of many different stakeholders. This feature led approach has led to wide ranging opinions and understandings regarding the success of the MPA network. Translating ideas of success into a policy approach whilst also considering how climate change may affect these ideas of success is a complex challenge. This paper presents the results of a Delphi process that aimed to facilitate clear communication between academics, policy makers and stakeholders in order to identify specific climate change considerations applicable to the Scottish MPA network. This study engaged a group of academic and non-academic stakeholders to discuss potential options that could be translated into an operational process for management of the MPA network. The results of Delphi process discussion are presented with the output of a management matrix tool, which could aid in future decisions for MPA management under scenarios of climate change.
Providing Access to CD-ROM Databases in a Campus Setting. Part II: Networking CD-ROMs via a LAN.
ERIC Educational Resources Information Center
Koren, Judy
1992-01-01
The second part of a report on CD-ROM networking in libraries describes LAN (local area network) technology; networking software and towers; gateway software for connecting to campuswide networks; Macintosh LANs; and network licenses. Several product and software reviews are included, and a sidebar lists vendor addresses. (NRP)
NASA Astrophysics Data System (ADS)
Zheng, Jun; Ansari, Nirwan
2005-06-01
Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis
NASA Astrophysics Data System (ADS)
Zheng, Jun; Ansari, Nirwan; Jersey Inst Ansari, New; Jersey Inst, New
2005-04-01
Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis
NASA Astrophysics Data System (ADS)
Zheng, Jun; Ansari, Nirwan
2005-05-01
Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis
Spatiotemporal responses of dengue fever transmission to the road network in an urban area.
Li, Qiaoxuan; Cao, Wei; Ren, Hongyan; Ji, Zhonglin; Jiang, Huixian
2018-07-01
Urbanization is one of the important factors leading to the spread of dengue fever. Recently, some studies found that the road network as an urbanization factor affects the distribution and spread of dengue epidemic, but the study of relationship between the distribution of dengue epidemic and road network is limited, especially in highly urbanized areas. This study explores the temporal and spatial spread characteristics of dengue fever in the distribution of road network by observing a dengue epidemic in the southern Chinese cities. Geographic information technology is used to extract the spatial location of cases and explore the temporal and spatial changes of dengue epidemic and its spatial relationship with road network. The results showed that there was a significant "severe" period in the temporal change of dengue epidemic situation, and the cases were mainly concentrated in the vicinity of narrow roads, the spread of the epidemic mainly along the high-density road network area. These results show that high-density road network is an important factor to the direction and scale of dengue epidemic. This information may be helpful to the development of related epidemic prevention and control strategies. Copyright © 2018. Published by Elsevier B.V.
Unobstructive Body Area Networks (BAN) for efficient movement monitoring.
Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António
2012-01-01
The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.
Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans
Devauchelle, Anne-Dominique; Béranger, Benoît; Tallon-Baudry, Catherine
2018-01-01
Resting-state networks offer a unique window into the brain’s functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. PMID:29561263
Intelligent Resource Management for Local Area Networks: Approach and Evolution
NASA Technical Reports Server (NTRS)
Meike, Roger
1988-01-01
The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.
NASA Astrophysics Data System (ADS)
Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E.
2018-06-01
The seismic hazard assessment in the area of Greece is attempted by studying the earthquake network structure, such as small-world and random. In this network, a node represents a seismic zone in the study area and a connection between two nodes is given by the correlation of the seismic activity of two zones. To investigate the network structure, and particularly the small-world property, the earthquake correlation network is compared with randomized ones. Simulations on multivariate time series of different length and number of variables show that for the construction of randomized networks the method randomizing the time series performs better than methods randomizing directly the original network connections. Based on the appropriate randomization method, the network approach is applied to time series of earthquakes that occurred between main shocks in the territory of Greece spanning the period 1999-2015. The characterization of networks on sliding time windows revealed that small-world structure emerges in the last time interval, shortly before the main shock.
NASA Astrophysics Data System (ADS)
Wang, Xiao Juan; Guo, Shi Ze; Jin, Lei; Chen, Mo
We study the structural robustness of the scale free network against the cascading failure induced by overload. In this paper, a failure mechanism based on betweenness-degree ratio distribution is proposed. In the cascading failure model we built the initial load of an edge which is proportional to the node betweenness of its ends. During the edge random deletion, we find a phase transition. Then based on the phase transition, we divide the process of the cascading failure into two parts: the robust area and the vulnerable area, and define the corresponding indicator to measure the performance of the networks in both areas. From derivation, we find that the vulnerability of the network is determined by the distribution of betweenness-degree ratio. After that we use the connection between the node ability coefficient and distribution of betweenness-degree ratio to explain the cascading failure mechanism. In simulations, we verify the correctness of our derivations. By changing connecting preferences, we find scale free networks with a slight assortativity, which performs better both in robust area and vulnerable area.
Neuhaeuser, Jakob; D'Angelo, Lorenzo T
2013-01-01
The goal of the concept and of the device presented in this contribution is to be able to collect sensor data from wearable sensors directly, automatically and wirelessly and to make them available over a wired local area network. Several concepts in e-health and telemedicine make use of portable and wearable sensors to collect movement or activity data. Usually these data are either collected via a wireless personal area network or using a connection to the user's smartphone. However, users might not carry smartphones on them while inside a residential building such as a nursing home or a hospital, but also within their home. Also, in such areas the use of other wireless communication technologies might be limited. The presented system is an embedded server which can be deployed in several rooms in order to ensure live data collection in bigger buildings. Also, the collection of data batches recorded out of range, as soon as a connection is established, is also possible. Both, the system concept and the realization are presented.
Development of a general method for obtaining the geometry of microfluidic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razavi, Mohammad Sayed, E-mail: m.sayedrazavi@gmail.com; Salimpour, M. R.; Shirani, Ebrahim
2014-01-15
In the present study, a general method for geometry of fluidic networks is developed with emphasis on pressure-driven flows in the microfluidic applications. The design method is based on general features of network's geometry such as cross-sectional area and length of channels. Also, the method is applicable to various cross-sectional shapes such as circular, rectangular, triangular, and trapezoidal cross sections. Using constructal theory, the flow resistance, energy loss and performance of the network are optimized. Also, by this method, practical design strategies for the fabrication of microfluidic networks can be improved. The design method enables rapid prediction of fluid flowmore » in the complex network of channels and is very useful for improving proper miniaturization and integration of microfluidic networks. Minimization of flow resistance of the network of channels leads to universal constants for consecutive cross-sectional areas and lengths. For a Y-shaped network, the optimal ratios of consecutive cross-section areas (A{sub i+1}/A{sub i}) and lengths (L{sub i+1}/L{sub i}) are obtained as A{sub i+1}/A{sub i} = 2{sup −2/3} and L{sub i+1}/L{sub i} = 2{sup −1/3}, respectively. It is shown that energy loss in the network is proportional to the volume of network. It is also seen when the number of channels is increased both the hydraulic resistance and the volume occupied by the network are increased in a similar manner. Furthermore, the method offers that fabrication of multi-depth and multi-width microchannels should be considered as an integral part of designing procedures. Finally, numerical simulations for the fluid flow in the network have been performed and results show very good agreement with analytic results.« less
Key areas for wintering North American herons
Mikuska, T.; Kushlan, J.A.; Hartley, S.
1998-01-01
Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as "key areas." These forty-three areas constitute a network of areas that hold sites that likely are important to wintering North American herons. Within each area, we identify specific sites that are potentially important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.
ERIC Educational Resources Information Center
Microcomputers for Information Management, 1995
1995-01-01
Provides definitions for 71 terms related to the Internet, including Archie, bulletin board system, cyberspace, e-mail (electronic mail), file transfer protocol, gopher, hypertext, integrated services digital network, local area network, listserv, modem, packet switching, server, telnet, UNIX, WAIS (wide area information servers), and World Wide…
Modeling soil erosion processes on a hillslope with dendritic rill network
NASA Astrophysics Data System (ADS)
Chen, L.; Wu, S.
2017-12-01
The effect of planform of dendritic rill network on hillslope rainfall-runoff and soil erosion processes was usually neglected in previous studies, which, however, could dramatically alter the mechanisms of the hydrologic and geomorphic processes. In the present study, the interrill areas were treated as two-dimensional (2D), while the complicated rill network was represented by a piecewise one-dimensional (1D) rill retaining the characteristic of rill network (the rill density and average rill deflection angle). Based on a 2D diffusive wave overland flow model, and the WEPP erosion theory, the 1D and 2D coupling model was developed to simulate the hillslope runoff and soil erosion on both the interrill areas and the representative rill. The rill number and rill inclination angle were introduced in the model to reflect the actual rill density, rill length, rill slope gradient, and confluence processes from the interrill areas to the rill. The excess rainfall and sediment load coming into the representative rill were not only from the two lateral interrill areas but also from the upstream interrill areas. The model was successfully tested against experimental data obtained from a hillslope with complicated rill network. Comparison of the results obtained from the present model with WEPP indicates that WEPP calculated the hillslope runoff yield accurately but overestimated the amount of rill erosion. Moreover, the effects of rill deflection angle and rill number distribution on both interrill and rill erosions were examined and found neglecting the planar characteristic of rill network has a considerable impact on soil erosion prediction. It is expected that the model can extend the scope of WEPP application and predict more accurately the runoff and erosion yield on a hillslope with complicated rill network.
NASA Astrophysics Data System (ADS)
Kortström, Jari; Tiira, Timo; Kaisko, Outi
2016-03-01
The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.
Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).
Iqbal, Sajid; Ghani, M Usman; Saba, Tanzila; Rehman, Amjad
2018-04-01
A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun
2018-01-01
At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.
Urban MEMS based seismic network for post-earthquakes rapid disaster assessment
NASA Astrophysics Data System (ADS)
D'Alessandro, A.; Luzio, D.; D'Anna, G.
2014-09-01
In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system.
Fuller, Daniel; Gauvin, Lise; Kestens, Yan
2013-02-01
Few studies have examined potential disparities in access to transportation infrastructures, an important determinant of population health. To examine individual- and area-level disparities in access to the road network, public transportation system, and a public bicycle share program in Montreal, Canada. Examining associations between sociodemographic variables and access to the road network, public transportation system, and a public bicycle share program, 6,495 adult respondents (mean age, 48.7 years; 59.0 % female) nested in 33 areas were included in a multilevel analysis. Individuals with lower incomes lived significantly closer to public transportation and the bicycle share program. At the area level, the interaction between low-education and low-income neighborhoods showed that these areas were significantly closer to public transportation and the bicycle share program controlling for individual and urbanicity variables. More deprived areas of the Island of Montreal have better access to transportation infrastructure than less-deprived areas.
NASA Astrophysics Data System (ADS)
Bramhe, V. S.; Ghosh, S. K.; Garg, P. K.
2018-04-01
With rapid globalization, the extent of built-up areas is continuously increasing. Extraction of features for classifying built-up areas that are more robust and abstract is a leading research topic from past many years. Although, various studies have been carried out where spatial information along with spectral features has been utilized to enhance the accuracy of classification. Still, these feature extraction techniques require a large number of user-specific parameters and generally application specific. On the other hand, recently introduced Deep Learning (DL) techniques requires less number of parameters to represent more abstract aspects of the data without any manual effort. Since, it is difficult to acquire high-resolution datasets for applications that require large scale monitoring of areas. Therefore, in this study Sentinel-2 image has been used for built-up areas extraction. In this work, pre-trained Convolutional Neural Networks (ConvNets) i.e. Inception v3 and VGGNet are employed for transfer learning. Since these networks are trained on generic images of ImageNet dataset which are having very different characteristics from satellite images. Therefore, weights of networks are fine-tuned using data derived from Sentinel-2 images. To compare the accuracies with existing shallow networks, two state of art classifiers i.e. Gaussian Support Vector Machine (SVM) and Back-Propagation Neural Network (BP-NN) are also implemented. Both SVM and BP-NN gives 84.31 % and 82.86 % overall accuracies respectively. Inception-v3 and VGGNet gives 89.43 % of overall accuracy using fine-tuned VGGNet and 92.10 % when using Inception-v3. The results indicate high accuracy of proposed fine-tuned ConvNets on a 4-channel Sentinel-2 dataset for built-up area extraction.
2010-01-01
Background Although the number of studies on anti-smoking interventions has increased, studies focused on identifying social contextual factors in rural areas are scarce. The purpose of this study was to explore the role of social support and social networks in smoking behavior among middle and older aged people living in rural areas of South Korea. Methods The study employed a cross-sectional design. Participants included 1,057 adults, with a mean age of 60.7 years, residing in rural areas. Information on participants' tobacco use, stress, social support, and social networks was collected using structured questionnaires. The chi-square test, the t-test, ANOVA, and logistic regression were used for data analysis. Results The overall smoking prevalence in the study was 17.4% (men, 38.8%; women, 5.1%). Overall, stress was high among women, and social support was high among men. Smokers had high levels of social support (t = -2.90, p = .0038) and social networks (t = -2.22, p = .0271), as compared to non- and former smokers. Those in the high social support group were likely to be smokers (AOR = 2.21, 95% CI 1.15-4.26). Women with moderate social ties were less likely to smoke (AOR = 0.18, 95% CI 0.05-0.61). Conclusion There was a protective role of a moderate social network level among women, and a high level of social support was associated with smoking behaviors in rural areas. Findings suggest the need for a comprehensive understanding of the functions and characteristics of social contextual factors including social support and social networks in order to conduct more effective anti-smoking interventions in rural areas. PMID:20167103
Regional and local networks of horizontal control, Cerro Prieto geothermal area
Massey, B.L.
1979-01-01
The Cerro Prieto geothermal area in the Mexicali Valley 30 km southeast of Mexicali, Baja California, is probably deforming due to (1) the extraction of large volumes of steam and hot water, and (2) active tectonism. Two networks of precise horizontal control were established in Mexicali Valley by the U.S. Geological Survey in 1977 - 1978 to measure both types of movement as they occur. These networks consisted of (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from survey stations on an existing U.S. Geological Survey crustal-strain network north of the international border, and (2) a local net tied to stations in the regional net and encompassing the area of present and planned geothermal production. Survey lines in this net were selected to span areas of probable ground-surface movements in and around the geothermal area. Electronic distance measuring (EDM) instruments, operating with a modulated laser beam, were used to measure the distances between stations in both networks. The regional net was run using a highly precise long-range EDM instrument, helicopters for transportation of men and equipment to inaccessible stations on mountain peaks, and a fixed wing airplane flying along the line of sight. Precision of measurements with this complex long-range system approached 0-2 ppm of line length. The local net was measured with a medium-range EDM instrument requiring minimal ancillary equipment. Precision of measurements with this less complex system approached 3 ppm for the shorter line lengths. The detection and analysis of ground-surface movements resulting from tectonic strains or induced by geothermal fluid withdrawal is dependent on subsequent resurveys of these networks. ?? 1979.
Medina, K.D.; Tasker, Gary D.
1985-01-01
The surface water data network in Kansas was analyzed using generalized least squares regression for its effectiveness in providing regional streamflow information. The correlation and time-sampling error of the streamflow characteristic are considered in the generalized least squares method. Unregulated medium-flow, low-flow and high-flow characteristics were selected to be representative of the regional information that can be obtained from streamflow gaging station records for use in evaluating the effectiveness of continuing the present network stations, discontinuing some stations; and/or adding new stations. The analysis used streamflow records for all currently operated stations that were not affected by regulation and discontinued stations for which unregulated flow characteristics , as well as physical and climatic characteristics, were available. The state was divided into three network areas, western, northeastern, and southeastern Kansas, and analysis was made for three streamflow characteristics in each area, using three planning horizons. The analysis showed that the maximum reduction of sampling mean square error for each cost level could be obtained by adding new stations and discontinuing some of the present network stations. Large reductions in sampling mean square error for low-flow information could be accomplished in all three network areas, with western Kansas having the most dramatic reduction. The addition of new stations would be most beneficial for man- flow information in western Kansas, and to lesser degrees in the other two areas. The reduction of sampling mean square error for high-flow information would benefit most from the addition of new stations in western Kansas, and the effect diminishes to lesser degrees in the other two areas. Southeastern Kansas showed the smallest error reduction in high-flow information. A comparison among all three network areas indicated that funding resources could be most effectively used by discontinuing more stations in northeastern and southeastern Kansas and establishing more new stations in western Kansas. (Author 's abstract)
Zséli, Györgyi; Vida, Barbara; Martinez, Anais; Lechan, Ronald M; Khan, Arshad M; Fekete, Csaba
2016-10-01
We hypothesized that brain regions showing neuronal activation after refeeding comprise major nodes in a satiety network, and tested this hypothesis with two sets of experiments. Detailed c-Fos mapping comparing fasted and refed rats was performed to identify candidate nodes of the satiety network. In addition to well-known feeding-related brain regions such as the arcuate, dorsomedial, and paraventricular hypothalamic nuclei, lateral hypothalamic area, parabrachial nucleus (PB), nucleus of the solitary tract and central amygdalar nucleus, other refeeding activated regions were also identified, such as the parastrial and parasubthalamic nuclei. To begin to understand the connectivity of the satiety network, the interconnectivity of PB with other refeeding-activated neuronal groups was studied following administration of anterograde or retrograde tracers into the PB. After allowing for tracer transport time, the animals were fasted and then refed before sacrifice. Refeeding-activated neurons that project to the PB were found in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamic area; arcuate, paraventricular, and dorsomedial hypothalamic nuclei; lateral hypothalamic area; parasubthalamic nucleus; central amygdalar nucleus; area postrema; and nucleus of the solitary tract. Axons originating from the PB were observed to closely associate with refeeding-activated neurons in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamus; paraventricular, arcuate, and dorsomedial hypothalamic nuclei; lateral hypothalamic area; central amygdalar nucleus; parasubthalamic nucleus; ventral posterior thalamic nucleus; area postrema; and nucleus of the solitary tract. These data indicate that the PB has bidirectional connections with most refeeding-activated neuronal groups, suggesting that short-loop feedback circuits exist in this satiety network. J. Comp. Neurol. 524:2803-2827, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Aycrigg, Jocelyn L.; Davidson, Anne; Svancara, Leona K.; Gergely, Kevin J.; McKerrow, Alexa; Scott, J. Michael
2013-01-01
If conservation of biodiversity is the goal, then the protected areas network of the continental US may be one of our best conservation tools for safeguarding ecological systems (i.e., vegetation communities). We evaluated representation of ecological systems in the current protected areas network and found insufficient representation at three vegetation community levels within lower elevations and moderate to high productivity soils. We used national-level data for ecological systems and a protected areas database to explore alternative ways we might be able to increase representation of ecological systems within the continental US. By following one or more of these alternatives it may be possible to increase the representation of ecological systems in the protected areas network both quantitatively (from 10% up to 39%) and geographically and come closer to meeting the suggested Convention on Biological Diversity target of 17% for terrestrial areas. We used the Landscape Conservation Cooperative framework for regional analysis and found that increased conservation on some private and public lands may be important to the conservation of ecological systems in Western US, while increased public-private partnerships may be important in the conservation of ecological systems in Eastern US. We have not assessed the pros and cons of following the national or regional alternatives, but rather present them as possibilities that may be considered and evaluated as decisions are made to increase the representation of ecological systems in the protected areas network across their range of ecological, geographical, and geophysical occurrence in the continental US into the future. PMID:23372754
Aycrigg, Jocelyn L.; Davidson, Anne; Svancara, Leona K.; Gergely, Kevin J.; McKerrow, Alexa; Scott, J. Michael
2013-01-01
If conservation of biodiversity is the goal, then the protected areas network of the continental US may be one of our best conservation tools for safeguarding ecological systems (i.e., vegetation communities). We evaluated representation of ecological systems in the current protected areas network and found insufficient representation at three vegetation community levels within lower elevations and moderate to high productivity soils. We used national-level data for ecological systems and a protected areas database to explore alternative ways we might be able to increase representation of ecological systems within the continental US. By following one or more of these alternatives it may be possible to increase the representation of ecological systems in the protected areas network both quantitatively (from 10% up to 39%) and geographically and come closer to meeting the suggested Convention on Biological Diversity target of 17% for terrestrial areas. We used the Landscape Conservation Cooperative framework for regional analysis and found that increased conservation on some private and public lands may be important to the conservation of ecological systems in Western US, while increased public-private partnerships may be important in the conservation of ecological systems in Eastern US. We have not assessed the pros and cons of following the national or regional alternatives, but rather present them as possibilities that may be considered and evaluated as decisions are made to increase the representation of ecological systems in the protected areas network across their range of ecological, geographical, and geophysical occurrence in the continental US into the future.
NASA Astrophysics Data System (ADS)
Zheng, Jun; Ansari, Nirwan
2005-03-01
Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to:
Multilayer motif analysis of brain networks
NASA Astrophysics Data System (ADS)
Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito
2017-04-01
In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.
A Hospital Local Area Communication Network—The First Year's Experience
Simborg, D. W.; Chadwick, M.; Whiting-O'Keefe, Q. E.; Tolchin, S. G.; Stewart, R. L.; Kahn, S. A.; Bergan, E. S.; Gafke, G. P.
1982-01-01
A local area communications network has been implemented at the University of California, San Francisco Hospital to integrate major components of the hospital's information system. This microprocessor-based network technology was developed by The Applied Physics Laboratory of the Johns Hopkins University. The first year's experience has demonstrated the basic feasibility of this technology in simplifying the integration of diverse hardware and software systems. Four minicomputer-based UCSF systems now use the network to synchronize key patient identification and registration information among the systems. Clinical uses of the network will begin during the second year of the project.
DOT National Transportation Integrated Search
1980-11-01
The purpose of the Application Area Definition task is to define the travel demands and guideway networks for a set of representative AGT system deployments. These demands and networks, when combined with detailed descriptions of the systems and thei...
ERIC Educational Resources Information Center
Nasatir, Marilyn; And Others
1990-01-01
Four papers discuss LANs (local area networks) and library applications: (1) "Institute for Electrical and Electronic Engineers Standards..." (Charles D. Brown); (2) "Facilities Planning for LANs..." (Gail Persky); (3) "Growing up with the Alumni Library: LAN..." (Russell Buchanan); and (4) "Implementing a LAN...at the Health Sciences Library"…
The Technology Transfer and Support Division of the EPA Office of Research and Development's (ORD's) National Risk Management Laboratory in conjunction with the Boulder Area Sustainability Information Network (BASIN) has developed a "how-to" handbook to allow other community orga...
Assessment of air pollution impacts on vegetation in South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botha, A.T.
1989-01-01
Field surveys and biomonitoring network experiments were conducted in selected areas in South Africa to assess possible air pollution damage to vegetation. During field surveys, atmospheric fluoride was identified as an important pollutant that damaged vegetation in residential areas north of Cape Town. Gaseous air pollutants, including acid deposition and acidic mist, probably play a major role in the development of characteristic air pollution injury symptoms observed on pine trees in the Eastern Transvaal area. The impact of urban air pollution in the Cape Town area was evaluated by exposing bio-indicator plants in a network of eight biomonitoring network stationsmore » from June 1985 to May 1988. Sensitive Freesia and Gladiolus cultivars were used to biomonitor atmospheric fluoride, while a green bean cultivar was used as a biomonitor of atmospheric sulfur dioxide and ozone. At one location, bio-indicator plants were simultaneously exposed in a biomonitoring network station, open-top chambers, as well as in open plots. The responses of plants grown under these different conditions were compared.« less
Visual analysis of large heterogeneous social networks by semantic and structural abstraction.
Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina
2006-01-01
Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.
The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey
Costa, Daniel G.; Guedes, Luiz Affonso
2010-01-01
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651
Social Network Assessments and Interventions for Health Behavior Change: A Critical Review.
Latkin, Carl A; Knowlton, Amy R
2015-01-01
Social networks provide a powerful approach for health behavior change. This article documents how social network interventions have been successfully used for a range of health behaviors, including HIV risk practices, smoking, exercise, dieting, family planning, bullying, and mental health. We review the literature that suggests the relationship between health behaviors and social network attributes demonstrates a high degree of specificity. The article then examines hypothesized social influence mechanisms including social norms, modeling, and social rewards and the factors of social identity and social rewards that can be employed to sustain social network interventions. Areas of future research avenues are highlighted, including the need to examine and to adjust analytically for contamination and social diffusion, social influence versus differential affiliation, and network change. Use and integration of mhealth and face-to-face networks for promoting health behavior change are also critical research areas.
Upgrading a CD-ROM Network for Multimedia Applications.
ERIC Educational Resources Information Center
Sylvia, Margaret
1995-01-01
Addresses issues to consider when upgrading library CD-ROM networks for multimedia applications. Topics includes security issues; workstation requirements such as soundboards and monitors; local area network configurations that avoid bottlenecks: Asynchronous Transfer Mode, Ethernet, and Integrated Services Digital Network; server performance…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cree, Johnathan Vee; Delgado-Frias, Jose
Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configuremore » the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.« less
Teachers' Motives for Learning in Networks: Costs, Rewards and Community Interest
ERIC Educational Resources Information Center
van den Beemt, Antoine; Ketelaar, Evelien; Diepstraten, Isabelle; de Laat, Maarten
2018-01-01
Background: This paper discusses teachers' perspectives on learning networks and their motives for participating in these networks. Although it is widely held that teachers' learning may be developed through learning networks, not all teachers participate in such networks. Purpose: The theme of reciprocity, central to studies in the area of…
Metcalfe, Kristian; Vaughan, Gregory; Vaz, Sandrine; Smith, Robert J
2015-12-01
Marine protected areas (MPAs) are the cornerstone of most marine conservation strategies, but the effectiveness of each one partly depends on its size and distance to other MPAs in a network. Despite this, current recommendations on ideal MPA size and spacing vary widely, and data are lacking on how these constraints might influence the overall spatial characteristics, socio-economic impacts, and connectivity of the resultant MPA networks. To address this problem, we tested the impact of applying different MPA size constraints in English waters. We used the Marxan spatial prioritization software to identify a network of MPAs that met conservation feature targets, whilst minimizing impacts on fisheries; modified the Marxan outputs with the MinPatch software to ensure each MPA met a minimum size; and used existing data on the dispersal distances of a range of species found in English waters to investigate the likely impacts of such spatial constraints on the region's biodiversity. Increasing MPA size had little effect on total network area or the location of priority areas, but as MPA size increased, fishing opportunity cost to stakeholders increased. In addition, as MPA size increased, the number of closely connected sets of MPAs in networks and the average distance between neighboring MPAs decreased, which consequently increased the proportion of the planning region that was isolated from all MPAs. These results suggest networks containing large MPAs would be more viable for the majority of the region's species that have small dispersal distances, but dispersal between MPA sets and spill-over of individuals into unprotected areas would be reduced. These findings highlight the importance of testing the impact of applying different MPA size constraints because there are clear trade-offs that result from the interaction of size, number, and distribution of MPAs in a network. © 2015 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Guerrero-Higueras, Ángel Manuel; López, Laura; Merino, Andrés; Sánchez, José Luis; Matía, Pedro; Lorente, José Manuel; Hermida, Lucía; Nafría, David; Ortiz de Galisteo, José Pablo; Marcos, José Luis; García-Ortega, Eduardo
2013-04-01
The location of Castilla y León within the Iberian Peninsula and its territorial extension make its meteorological risks diverse. The integration of various observation networks, both public and private, in the Observation Network of Castilla y León, allows us to follow the risks in real-time. One of the most frequent risks in the winter season is snow precipitation. In the present paper, we compared WRF numerical model predictions of snowfall for Castilla y León with data from the meteorological observation network and observations from the MSG satellite. Furthermore, frosts were more frequent in the area, to the point that there are parts of the study area with frost during the entire year. Thus, the data from the network allows us to determine the area where frost was registered. Finally, the situations with fog, especially with advective and radiative characteristics, are frequent in the center and south of the plateau, especially in the winter season. Additionally, the Observation Network allows us to know the areas with fog in real-time. The Observation Network is managed using a new platform, developed by Group for Atmospheric Physics, known as MeteoNet, which allows for the prompt extraction of a concrete parameter in a specific location, or, the spatial representation of a parameter determined for the entire study area. Furthermore, the management system developed for the data allows for the total representation of data from the WRF prediction model, with satellite images, observation network, radar data, etc., which is converted into a very useful tool for following risks and validating algorithms in Castilla y León. Acknowledgements The authors would like to thank the Regional Government of Castilla y León for its financial support through the project LE220A11-2.
Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg
2016-01-01
The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks. DOI: http://dx.doi.org/10.7554/eLife.15719.001 PMID:27525488
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
The Device Centric Communication System for 5G Networks
NASA Astrophysics Data System (ADS)
Biswash, S. K.; Jayakody, D. N. K.
2017-01-01
The Fifth Generation Communication (5G) networks have several functional features such as: Massive Multiple Input and Multiple Output (MIMO), Device centric data and voice support, Smarter-device communications, etc. The objective for 5G networks is to gain the 1000x more throughput, 10x spectral efficiency, 100 x more energy efficiency than existing technologies. The 5G system will provide the balance between the Quality of Experience (QoE) and the Quality of Service (QoS), without compromising the user benefit. The data rate has been the key metric for wireless QoS; QoE deals with the delay and throughput. In order to realize a balance between the QoS and QoE, we propose a cellular Device centric communication methodology for the overlapping network coverage area in the 5G communication system. The multiple beacon signals mobile tower refers to an overlapping network area, and a user must be forwarded to the next location area. To resolve this issue, we suggest the user centric methodology (without Base Station interface) to handover the device in the next area, until the users finalize the communication. The proposed method will reduce the signalling cost and overheads for the communication.
NASA Astrophysics Data System (ADS)
Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh
2016-09-01
Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.
Regular Topologies for Gigabit Wide-Area Networks. Volume 1
NASA Technical Reports Server (NTRS)
Shacham, Nachum; Denny, Barbara A.; Lee, Diane S.; Khan, Irfan H.; Lee, Danny Y. C.; McKenney, Paul
1994-01-01
In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source code of all software developed under CATE.
Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China
Li, Haifeng; Chen, Wenbo; He, Wei
2015-01-01
Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a “one river and two banks, north and south twin cities” ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan’s ecological network has higher connectivity, but Changbei’s ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved. PMID:26501298
Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China.
Li, Haifeng; Chen, Wenbo; He, Wei
2015-10-15
Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a "one river and two banks, north and south twin cities" ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan's ecological network has higher connectivity, but Changbei's ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved.