Sample records for area protein patterning

  1. Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks.

    PubMed

    Ramakrishnan, Saminathan; Subramaniam, Sivaraman; Stewart, A Francis; Grundmeier, Guido; Keller, Adrian

    2016-11-16

    DNA origami has become a widely used method for synthesizing well-defined nanostructures with promising applications in various areas of nanotechnology, biophysics, and medicine. Recently, the possibility to transfer the shape of single DNA origami nanostructures into different materials via molecular lithography approaches has received growing interest due to the great structural control provided by the DNA origami technique. Here, we use ordered monolayers of DNA origami nanostructures with internal cavities on mica surfaces as molecular lithography masks for the fabrication of regular protein patterns over large surface areas. Exposure of the masked sample surface to negatively charged proteins results in the directed adsorption of the proteins onto the exposed surface areas in the holes of the mask. By controlling the buffer and adsorption conditions, the protein coverage of the exposed areas can be varied from single proteins to densely packed monolayers. To demonstrate the versatility of this approach, regular nanopatterns of four different proteins are fabricated: the single-strand annealing proteins Redβ and Sak, the iron-storage protein ferritin, and the blood protein bovine serum albumin (BSA). We furthermore demonstrate the desorption of the DNA origami mask after directed protein adsorption, which may enable the fabrication of hierarchical patterns composed of different protein species. Because selectivity in adsorption is achieved by electrostatic interactions between the proteins and the exposed surface areas, this approach may enable also the large-scale patterning of other charged molecular species or even nanoparticles.

  2. Nanoscale observation of local bound charges of patterned protein arrays by scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Y. J.; Jo, W.; Kim, S.; Park, S.; Kim, Y. S.

    2008-09-01

    A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 µm, and the 90° rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 µm2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection.

  3. Protein patterning in polycarbonate microfluidic channels

    NASA Astrophysics Data System (ADS)

    Thomson, David A.; Hayes, Jason P.; Thissen, Helmut

    2004-03-01

    In this work protein patterning has been achieved within a polycarbonate microfluidic device. Channel structures were first coated with plasma polymerized allylamine (ALAPP) followed by the "cloud point" deposition of polyethylene oxide (PEO), a protein repellent molecule. Excimer laser micromachining was used to pattern the PEO to control protein localization. Subsequent removal of a sacrificial layer of polycarbonate resulted in the patterned polymer coating only in the channels of a simple fluidic device. Following a final diffusion bonding fabrication step the devices were filled with a buffer containing Streptavidin conjugated with fluorescein, and visualized under a confocal fluorescent microscope. This confirmed that protein adhesion occurred only in laser patterned areas. The ability to control protein adhesion in microfludic channels leads to the possibility of generating arrays of proteins or cells within polymer microfludics for cheap automated biosensors and synthesis systems.

  4. Color pattern specific proteins in black scales in developing wings ofPrecis coenia Hübner (Nymphalidae, Lepidoptera).

    PubMed

    Koch, P Bernhardt; Nijhout, H Frederik

    1990-05-01

    A set of stage specific proteins of approximally 86 to 90 kDal are synthesized by isolated wings ofPrecis coenia on day 5 of the pupal stage. They are named "B proteins". They are synthesized in presumptive black wing areas in higher amounts than in presumptive white wing areas and are the major proteins synthesized on day 5. Wings from 5 days old pupae, which were incubated with 35 S-methionine for 2 or 4 hours, incorporate radiolabel into presumptive black pattern elements. This is probably due to the localized synthesis of the above mentioned proteins. Injection of 35 S-methionine into whole pupae on day 5 resulted in the labelling of the mature black and grey scales but not white scales. This radiolabel incorporation pattern corresponds exactly to the incorporation of the melanin precursor 14 C-tyrosine into the scales. The results indicate that the "B proteins" are specifically related to the formation of black and grey portions of thePrecis wing pattern. Injection of 35 S-methionine into whole pupae on day 6 resulted in the labelling of the mature red scales probably due to labelling of "R proteins", which may be involved in the formation of red pattern elements.

  5. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC-MS/MS. 1. Preparation of more than 4000 native protein maps.

    PubMed

    Jin, Ya; Zhang, Jun; Yuan, Qi; Manabe, Takashi; Tan, Wen

    2015-08-01

    Soluble proteins of human bronchial smooth muscle cells (HBSMC) were separated by nondenaturing micro 2DE and a 30 mm × 40 mm area of the CBB-stained slab gel (1.0 mm thick) was cut into 1.1 mm × 1.1 mm squares, then the proteins in the 972 gel pieces (squares) were applied to quantitative LC-MS/MS. Grid-cutting of the gel was employed to; (i) ensure the total analysis of the proteins in the area, (ii) standardize the conditions of analysis by LC-MS/MS, (iii) reconstruct the protein distribution patterns from the quantity data [1]. Totally 4323 proteins were identified in successfully analyzed 967 squares and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The quantity of the proteins distributed from 3.6% to 1 × 10(-5) % of the total protein quantity in the grid area. Each protein map was characterized by several features, including the position of quantity peak square, number of detected squares, and degree of concentration (focused or dispersed). About 4% of the proteins were detected in 100 or more squares, suggesting that they might be ubiquitous and interacting with other proteins. In contrast, many proteins showed more concentrated quantity distribution and the quantity peak positions of 565 proteins with a defined degree of concentration were summarized into a quantity peak map. These results for the first time visualized the distribution patterns of cellular proteins on a nondenaturing 2D gel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silk protein nanowires patterned using electron beam lithography.

    PubMed

    Pal, Ramendra K; Yadavalli, Vamsi K

    2018-08-17

    Nanofabrication approaches to pattern proteins at the nanoscale are useful in applications ranging from organic bioelectronics to cellular engineering. Specifically, functional materials based on natural polymers offer sustainable and environment-friendly substitutes to synthetic polymers. Silk proteins (fibroin and sericin) have emerged as an important class of biomaterials for next generation applications owing to excellent optical and mechanical properties, inherent biocompatibility, and biodegradability. However, the ability to precisely control their spatial positioning at the nanoscale via high throughput tools continues to remain a challenge. In this study electron beam lithography (EBL) is used to provide nanoscale patterning using methacrylate conjugated silk proteins that are photoreactive 'photoresists' materials. Very low energy electron beam radiation can be used to pattern silk proteins at the nanoscale and over large areas, whereby such nanostructure fabrication can be performed without specialized EBL tools. Significantly, using conducting polymers in conjunction with these silk proteins, the formation of protein nanowires down to 100 nm is shown. These wires can be easily degraded using enzymatic degradation. Thus, proteins can be precisely and scalably patterned and doped with conducting polymers and enzymes to form degradable, organic bioelectronic devices.

  7. Miki (Mitotic Kinetics Regulator) Immunoexpression in Normal Liver, Cirrhotic Areas and Hepatocellular Carcinomas: a Preliminary Study with Clinical Relevance.

    PubMed

    Fernández-Vega, Iván; Santos-Juanes, Jorge; Camacho-Urkaray, Emma; Lorente-Gea, Laura; García, Beatriz; Gutiérrez-Corres, Francisco Borja; Quirós, Luis M; Guerra-Merino, Isabel; Aguirre, José Javier

    2018-02-12

    Hepatocellular carcinoma (HCC) is the most common type of primary malignant tumor in the liver. One of the main features of cancer survival is the generalized loss of growth control exhibited by cancer cells, and Miki is a protein related to the immunoglobulin superfamily that plays an important role in mitosis. We aim to study protein expression levels of Miki in non-tumoral liver and 20 HCCs recruited from a Pathology Department. Clinical information was also obtained. A tissue microarray was performed, and immunohistochemical techniques applied to study protein expression levels of Miki. In normal liver, Miki was weakly expressed, showing nuclear staining in the hepatocytes. Cirrhotic areas and HCCs showed a variety of staining patterns. Most HCC samples showed positive expression, with three different staining patterns being discernible: nuclear, cytoplasmic and mixed. Statistical analysis showed a significant association between grade of differentiation, Ki-67 proliferative index, survival rates and staining patterns. This study has revealed the positive expression of Miki in normal liver, cirrhotic areas and HCCs. Three different staining patterns of Miki expression with clinical relevance were noted in HCCs.

  8. From Monochrome to Technicolor: Simple Generic Approaches to Multicomponent Protein Nanopatterning Using Siloxanes with Photoremovable Protein-Resistant Protecting Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Zubir, Osama; Xia, Sijing; Ducker, Robert E.

    We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, itmore » is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy.« less

  9. From Monochrome to Technicolor: Simple Generic Approaches to Multicomponent Protein Nanopatterning Using Siloxanes with Photoremovable Protein-Resistant Protecting Groups

    DOE PAGES

    El Zubir, Osama; Xia, Sijing; Ducker, Robert E.; ...

    2017-05-27

    We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, itmore » is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy.« less

  10. Light-induced quantitative microprinting of biomolecules

    NASA Astrophysics Data System (ADS)

    Strale, Pierre-Olivier; Azioune, Ammar; Bugnicourt, Ghislain; Lecomte, Yohan; Chahid, Makhlad; Studer, Vincent

    2017-02-01

    Printing of biomolecules on substrates has developed tremendously in the past few years. The existing methods either rely on slow serial writing processes or on parallelized photolithographic techniques where cumbersome mask alignment procedures usually impair the ability to generate multi-protein patterns. We recently developed a new technology allowing for high resolution multi protein micro-patterning. This technology named "Light-Induced Molecular Adsorption of Proteins (LIMAP)" is based on a water-soluble photo-initiator able to reverse the antifouling property of polymer brushes when exposed to UV light. We developed a wide-field pattern projection system based on a DMD coupled to a conventional microscope which permits to generate arbitrary grayscale patterns of UV light at the micron scale. Interestingly, the density of adsorbed molecules scales with the dose of UV light thus allowing the quantitative patterning of biomolecules. The very low non specific background of biomolecules outside of the UV-exposed areas allows for the sequential printing of multiple proteins without alignment procedures. Protein patterns ranging from 500 nm up to 1 mm can be performed within seconds, as well as gradients of arbitrary shapes. The range of applications of the LIMAP approach extends from the single molecule up to the multicellular scale with an exquisite control over local protein density. We show that it can be used to generate complex protein landscapes useful to study protein-protein, cell-cell and cell-matrix interactions.

  11. Microgravity

    NASA Image and Video Library

    2001-06-06

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  12. Protein-resistant cross-linked poly(vinyl alcohol) micropatterns via photolithography using removable polyoxometalate photocatalyst.

    PubMed

    Pavli, Pagona; Petrou, Panagiota S; Douvas, Antonios M; Dimotikali, Dimitra; Kakabakos, Sotirios E; Argitis, Panagiotis

    2014-10-22

    In the last years, there has been an increasing interest in controlling the protein adsorption properties of surfaces because this control is crucial for the design of biomaterials. On the other hand, controlled immobilization of proteins is also important for their application as solid surfaces in immunodiagnostics and biosensors. Herein we report a new protein patterning method where regions of the substrate are covered by a hydrophilic film that minimizes protein adsorption. Particularly, poly(vinyl alcohol) (PVA) cross-linked structures created by an especially developed photolithographic process are proved to prevent protein physisorption and they are used as a guide for selective protein adsorption on the uncovered areas of a protein adsorbing substrate such as polystyrene. The PVA cross-linking is induced by photo-oxidation using, as a catalyst, polyoxometalate (H3PW12O40 or α-(NH4)6P2W18O62), which is removed using a methyl alcohol/water mixed solvent as the developer. We demonstrate that the polystyrene and the cross-linked PVA exhibit dramatically different performances in terms of protein physisorption. In particular, the polystyrene areas presented up to 130 times higher protein binding capacity than the PVA ones, whereas the patterning resolution could easily reach dimensions of a few micrometers. The proposed approach can be applied on any substrate where PVA films can be coated for controlling protein adsorption onto surface areas custom defined by the user.

  13. Native protein mapping and visualization of protein interactions in the area of human plasma high-density lipoprotein by combining nondenaturing micro 2DE and quantitative LC-MS/MS.

    PubMed

    Jin, Ya; Bu, Shujie; Zhang, Jun; Yuan, Qi; Manabe, Takashi; Tan, Wen

    2014-07-01

    A human plasma sample was subjected to nondenaturing micro 2DE and a gel area (5 mm × 18 mm) that includes high-density lipoprotein (HDL) was cut into 1 mm × 1 mm squares, then the proteins in the 90 gel pieces were analyzed by quantitative LC-MS/MS. Grid-cutting of the gel was employed to; (i) ensure the total analysis of the proteins in the area, (ii) standardize the conditions of analysis by LC-MS/MS, (iii) reconstruct the protein distribution patterns from the quantity data. Totally 154 proteins were assigned in the 90 gel pieces and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The map of apolipoprotein (Apo) A-I showed a wide apparent mass distribution characteristic to HDL and was compared with the maps of the other 153 proteins. Eleven proteins showed maps of wide distribution that overlapped with the map of Apo A-I, and all have been reported to be the components of HDL. Further, seven minor proteins associated with HDL were detected at the gel positions of high Apo A-I quantity. These results for the first time visualized the localization of HDL apolipoproteins on a nondenaturing 2DE gel and strongly suggested their interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  15. The carnegie protein trap library: a versatile tool for Drosophila developmental studies.

    PubMed

    Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D; Nystul, Todd G; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E; Murphy, Terence D; Levis, Robert W; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A; Spradling, Allan C

    2007-03-01

    Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600-900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions.

  16. Biopatterning of Silk Proteins for Soft Micro-optics.

    PubMed

    Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2015-04-29

    Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.

  17. Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarisation at the micron scale

    PubMed Central

    Gautrot, Julien E.; Trappmann, Britta; Oceguera-Yanez, Fabian; Connelly, John; He, Ximin; Watt, Fiona M.; Huck, Wilhelm T.S.

    2010-01-01

    The control of the cell microenvironment on model patterned substrates allows the systematic study of cell biology in well defined conditions, potentially using automated systems. The extreme protein resistance of poly(oligo(ethylene glycol methacrylate)) (POEGMA) brushes is exploited to achieve high fidelity patterning of single cells. These coatings can be patterned by soft lithography on large areas (a microscope slide) and scale (substrates were typically prepared in batches of 200). The present protocol relies on the adsorption of extra-cellular matrix (ECM) proteins on unprotected areas using simple incubation and washing steps. The stability of POEGMA brushes, as examined via ellipsometry and SPR, is found to be excellent, both during storage and cell culture. The impact of substrate treatment, brush thickness and incubation protocol on ECM deposition, both for ultra-thin gold and glass substrates, is investigated via fluorescence microscopy and AFM. Optimised conditions result in high quality ECM patterns at the micron scale, even on glass substrates, that are suitable for controlling cell spreading and polarisation. These patterns are compatible with state-of-the-art technologies (fluorescence microscopy, FRET) used for live cell imaging. This technology, combined with single cell analysis methods, provides a platform for exploring the mechanisms that regulate cell behaviour. PMID:20347135

  18. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  19. Seroprevalence and specificity of human responses to the Plasmodium falciparum rhoptry protein Rhop-3 determined by using a C-terminal recombinant protein.

    PubMed Central

    Yang, J C; Blanton, R E; King, C L; Fujioka, H; Aikawa, M; Sam-Yellowe, T Y

    1996-01-01

    Rhoptry proteins participate in invasion of erythrocytes by malaria parasites. Antibodies to some of these proteins can inhibit invasion and partially protect monkeys from disease. To examine human serological responses to the 110-kDa component (Rhop-3) of the high-molecular-weight rhoptry protein complex, two cDNA clones corresponding to Rhop-3 were identified by immunologic screening. A recombinant protein representing the C-terminal one-third of the Rhop-3 was used to assess the seroprevalence to this protein in geographically isolated populations with different patterns of malaria transmission. The immunoglobulin G (IgG) positivity rate for the recombinant Rhop-3 in an enzyme-linked immunosorbent assay was 30% in an area of Papua New Guinea where malaria is holoendemic. In Kenya, the prevalence rates were 43 and 36%, respectively, in an area of hyperendemicity and an area of seasonal transmission. By contrast, rates of IgG seroprevalence to an extract of Gambian strain of Plasmodium falciparum were 48, 90, and 97% respectively, in these populations. In these areas, the pattern of antibody recognition of Rhop-3 is more similar (1.7-fold maximum difference) than the parasite extract (5-fold difference). The difference in seroresponses may represent antigenic polymorphism in different parasite strains, while their similarity for the Rhop-3 fragment may represent conservation of this protein. Recombinant- and parasite extract-specific IgG was not found in individuals infected only with Plasmodium vivax. Cross-reactivity was seen in the IgM assay. In Mombasa (Kenya), maternal and cord Rhop-3-specific IgG activities were similar. Fetal antigen-specific IgM reactivity was generally undetectable for all antigens. PMID:8751903

  20. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by high to very high ratios. Such density trends may correspond to differential representation of corticocortically (and corticosubcortically) projecting neurons at several functional steps in the integration of the visual stimuli. In this context, it is possible that neurofilament protein is crucial for the unique capacity of certain subsets of neurons to perform the highly precise mapping functions of the monkey visual system.

  1. The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies

    PubMed Central

    Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D.; Nystul, Todd G.; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E.; Murphy, Terence D.; Levis, Robert W.; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A.; Spradling, Allan C.

    2007-01-01

    Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600–900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions. PMID:17194782

  2. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  3. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    NASA Astrophysics Data System (ADS)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  4. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  5. Characterization of seed storage protein patterns of Heliotropium digynum.

    PubMed

    Alwhibi, Mona Soliman

    2017-09-01

    Heliotropium digynum , is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8) software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir'iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  6. The immunohistochemical detection of involucrin in denture induced fibrous inflammatory hyperplasia of oral mucous membrane.

    PubMed

    Thomas, G A

    1991-01-01

    Involucrin is a major structural protein specific to the cross-linked cell envelope found in the stratum corneum of stratified squamous epithelium. This protein is considered to be an excellent immunohistochemical marker of normal squamous differentiation. Detection of variations to the patterns of immunostaining for involucrin may also be of value in the differential diagnosis between benign and malignant lesions. Previous studies of involucrin expression in oral mucosa have failed to clarify the effect of chronic inflammatory change upon the patterns of immunoreactivity. This study investigated involucrin staining patterns in fibrous inflammatory hyperplasia of oral mucous membrane (FIH). The results suggest that in FIH an altered pattern of involucrin immunostain occurs in areas of severe inflammatory change. This may reflect changes to the pattern of squamous differentiation in this tissue.

  7. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone.

    PubMed

    Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde

    2011-12-01

    In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.

  8. High fidelity nanopatterning of proteins onto well-defined surfaces through subtractive contact printing

    PubMed Central

    García, José R.; Singh, Ankur; García, Andrés J.

    2016-01-01

    In the pursuit to develop enhanced technologies for cellular bioassays as well as understand single cell interactions with its underlying substrate, the field of biotechnology has extensively utilized lithographic techniques to spatially pattern proteins onto surfaces in user-defined geometries. Microcontact printing (μCP) remains an incredibly useful patterning method due to its inexpensive nature, scalability, and the lack of considerable use of specialized clean room equipment. However, as new technologies emerge that necessitate various nano-sized areas of deposited proteins, traditional microcontact printing methods may not be able to supply users with the needed resolution size. Recently, our group developed a modified “subtractive microcontact printing” method which still retains many of the benefits offered by conventional μCP. Using this technique, we have been able to reach resolution sizes of fibronectin as small as 250 nm in largely spaced arrays for cell culture. In this communication, we present a detailed description of our subtractive μCP procedure that expands on many of the little tips and tricks that together make this procedure an easy and effective method for controlling protein patterning. PMID:24439290

  9. A Versatile Method of Patterning Proteins and Cells.

    PubMed

    Shrirao, Anil B; Kung, Frank H; Yip, Derek; Firestein, Bonnie L; Cho, Cheul H; Townes-Anderson, Ellen

    2017-02-26

    Substrate and cell patterning techniques are widely used in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This article describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. This method enables researchers to pattern multiple substrates including fibronectin, collagen, antibodies (Sal-1), poly-D-lysine (PDL), and laminin. Patterning of substrates allows one to indirectly pattern a variety of cells. We have tested C2C12 myoblasts, the PC12 neuronal cell line, embryonic rat cortical neurons, and amphibian retinal neurons. In addition, we demonstrate that this technique can directly pattern fibroblasts in microfluidic channels via brief application of a low vacuum on cell suspensions. The low vacuum does not significantly decrease cell viability as shown by cell viability assays. Modifications are discussed for application of the method to different cell and substrate types. This technique allows researchers to pattern cells and proteins in specific patterns without the need for exotic materials or equipment and can be done in any laboratory with a vacuum.

  10. Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex.

    PubMed

    Pinto, Joshua G A; Jones, David G; Murphy, Kathryn M

    2013-01-01

    Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the cortical areas.

  11. Protein and cell micropatterning and its integration with micro/nanoparticles assembly.

    PubMed

    Yap, F L; Zhang, Y

    2007-01-15

    Micropatterning of proteins and cells has become very popular over the past decade due to its importance in the development of biosensors, microarrays, tissue engineering and cellular studies. This article reviews the techniques developed for protein and cell micropatterning and its biomedical applications. The prospect of integrating micro and nanoparticles with protein and cell micropatterning is discussed. The micro/nanoparticles are assembled into patterns and form the substrate for proteins and cell attachment. The assembled particles create a micro or nanotopography, depending on the size of the particles employed. The nonplanar structure can increase the surface area for biomolecules attachment and therefore enhance the sensitivity for detection in biosensors. Furthermore, a nanostructured substrate can influence the conformation and functionality of protein attached to it, while cellular response in terms of morphology, adhesion, proliferation, differentiation, etc. can be affected by a surface expressing micro or nanoscale structures. Proteins and cells tend to lose their normal functions upon attachment to substrate. By recognizing the types of topography that are favourable for preserving proteins and cell behaviour, and integrating it with micropattering will lead to the development of functional protein and cell patterns.

  12. Prediction protein structural classes with pseudo-amino acid composition: approximate entropy and hydrophobicity pattern.

    PubMed

    Zhang, Tong-Liang; Ding, Yong-Sheng; Chou, Kuo-Chen

    2008-01-07

    Compared with the conventional amino acid (AA) composition, the pseudo-amino acid (PseAA) composition as originally introduced for protein subcellular location prediction can incorporate much more information of a protein sequence, so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, based on the concept of PseAA composition, the approximate entropy and hydrophobicity pattern of a protein sequence are used to characterize the PseAA components. Also, the immune genetic algorithm (IGA) is applied to search the optimal weight factors in generating the PseAA composition. Thus, for a given protein sequence sample, a 27-D (dimensional) PseAA composition is generated as its descriptor. The fuzzy K nearest neighbors (FKNN) classifier is adopted as the prediction engine. The results thus obtained in predicting protein structural classification are quite encouraging, indicating that the current approach may also be used to improve the prediction quality of other protein attributes, or at least can play a complimentary role to the existing methods in the relevant areas. Our algorithm is written in Matlab that is available by contacting the corresponding author.

  13. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Ungerleider, L. G.; Webster, M. J.; Gattass, R.; Adams, M. M.; Sailstad, C. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    Previous studies of the primate cerebral cortex have shown that neurofilament protein is present in pyramidal neuron subpopulations displaying specific regional and laminar distribution patterns. In order to characterize further the neurochemical phenotype of the neurons furnishing feedforward and feedback pathways in the visual cortex of the macaque monkey, we performed an analysis of the distribution of neurofilament protein in corticocortical projection neurons in areas V1, V2, V3, V3A, V4, and MT. Injections of the retrogradely transported dyes Fast Blue and Diamidino Yellow were placed within areas V4 and MT, or in areas V1 and V2, in 14 adult rhesus monkeys, and the brains of these animals were processed for immunohistochemistry with an antibody to nonphosphorylated epitopes of the medium and heavy molecular weight subunits of the neurofilament protein. Overall, there was a higher proportion of neurons projecting from areas V1, V2, V3, and V3A to area MT that were neurofilament protein-immunoreactive (57-100%), than to area V4 (25-36%). In contrast, feedback projections from areas MT, V4, and V3 exhibited a more consistent proportion of neurofilament protein-containing neurons (70-80%), regardless of their target areas (V1 or V2). In addition, the vast majority of feedback neurons projecting to areas V1 and V2 were located in layers V and VI in areas V4 and MT, while they were observed in both supragranular and infragranular layers in area V3. The laminar distribution of feedforward projecting neurons was heterogeneous. In area V1, Meynert and layer IVB cells were found to project to area MT, while neurons projecting to area V4 were particularly dense in layer III within the foveal representation. In area V2, almost all neurons projecting to areas MT or V4 were located in layer III, whereas they were found in both layers II-III and V-VI in areas V3 and V3A. These results suggest that neurofilament protein identifies particular subpopulations of corticocortically projecting neurons with distinct regional and laminar distribution in the monkey visual system. It is possible that the preferential distribution of neurofilament protein within feedforward connections to area MT and all feedback projections is related to other distinctive properties of these corticocortical projection neurons.

  14. High fidelity nanopatterning of proteins onto well-defined surfaces through subtractive contact printing.

    PubMed

    García, José R; Singh, Ankur; García, Andrés J

    2014-01-01

    In the pursuit to develop enhanced technologies for cellular bioassays as well as understand single cell interactions with its underlying substrate, the field of biotechnology has extensively utilized lithographic techniques to spatially pattern proteins onto surfaces in user-defined geometries. Microcontact printing (μCP) remains an incredibly useful patterning method due to its inexpensive nature, scalability, and the lack of considerable use of specialized clean room equipment. However, as new technologies emerge that necessitate various nano-sized areas of deposited proteins, traditional μCP methods may not be able to supply users with the needed resolution size. Recently, our group developed a modified "subtractive μCP" method which still retains many of the benefits offered by conventional μCP. Using this technique, we have been able to reach resolution sizes of fibronectin as small as 250 nm in largely spaced arrays for cell culture. In this communication, we present a detailed description of our subtractive μCP procedure that expands on many of the little tips and tricks that together make this procedure an easy and effective method for controlling protein patterning. © 2014 Elsevier Inc. All rights reserved.

  15. Subcellular localisations of the CPTI collection of YFP-tagged proteins in Drosophila embryos

    PubMed Central

    Lye, Claire M.; Naylor, Huw W.; Sanson, Bénédicte

    2014-01-01

    A key challenge in the post-genomic area is to identify the function of the genes discovered, with many still uncharacterised in all metazoans. A first step is transcription pattern characterisation, for which we now have near whole-genome coverage in Drosophila. However, we have much more limited information about the expression and subcellular localisation of the corresponding proteins. The Cambridge Protein Trap Consortium generated, via piggyBac transposition, over 600 novel YFP-trap proteins tagging just under 400 Drosophila loci. Here, we characterise the subcellular localisations and expression patterns of these insertions, called the CPTI lines, in Drosophila embryos. We have systematically analysed subcellular localisations at cellularisation (stage 5) and recorded expression patterns at stage 5, at mid-embryogenesis (stage 11) and at late embryogenesis (stages 15-17). At stage 5, 31% of the nuclear lines (41) and 26% of the cytoplasmic lines (67) show discrete localisations that provide clues on the function of the protein and markers for organelles or regions, including nucleoli, the nuclear envelope, nuclear speckles, centrosomes, mitochondria, the endoplasmic reticulum, Golgi, lysosomes and peroxisomes. We characterised the membranous/cortical lines (102) throughout stage 5 to 10 during epithelial morphogenesis, documenting their apico-basal position and identifying those secreted in the extracellular space. We identified the tricellular vertices as a specialized membrane domain marked by the integral membrane protein Sidekick. Finally, we categorised the localisation of the membranous/cortical proteins during cytokinesis. PMID:25294944

  16. Miscibility of binary monolayers at the air-water interface and interaction of protein with immobilized monolayers by surface plasmon resonance technique.

    PubMed

    Wang, Yuchun; Du, Xuezhong

    2006-07-04

    The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).

  17. [The mechanism of root hair development and molecular regulation in plants].

    PubMed

    Wang, Yue-Ping; Li, Ying-Hui; Guan, Rong-Xia; Liu, Zhang-Xiong; Chen, Xiong-Ting; Chang, Ru-Zhen; Qiu, Li-Juan

    2007-04-01

    The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. Root hair increases the root surface area and effectively increases the root diameter, so root hair is thought to aid plants in nutrient uptake, anchorage and microbe interactions. The determination of root hair development has two types, lateral inhibition with feedback and position-dependent pattern of cell differentiation. The initiation and development of root hair in Arabidopsis provide a simple and efficacious model for the study of cell fate determination in plants. Molecular genetic studies identify a suite of putative transcription factors which regulate the epidermal cell pattern. The homeodomain protein GLABRA2 (GL2), R2R3 MYB-type transcription factor WEREWOLF (WER) and WD-repeat protein TRANSPARENTT TESTA GLABRA (TTG) are required for specification of non-hair cell type. The CAPRICE (CPC) and TRYPTICHON (TRY) are involved in specifying the hair cell fate.

  18. GlycoPP: A Webserver for Prediction of N- and O-Glycosites in Prokaryotic Protein Sequences

    PubMed Central

    Chauhan, Jagat S.; Bhat, Adil H.; Raghava, Gajendra P. S.; Rao, Alka

    2012-01-01

    Glycosylation is one of the most abundant post-translational modifications (PTMs) required for various structure/function modulations of proteins in a living cell. Although elucidated recently in prokaryotes, this type of PTM is present across all three domains of life. In prokaryotes, two types of protein glycan linkages are more widespread namely, N- linked, where a glycan moiety is attached to the amide group of Asn, and O- linked, where a glycan moiety is attached to the hydroxyl group of Ser/Thr/Tyr. For their biologically ubiquitous nature, significance, and technology applications, the study of prokaryotic glycoproteins is a fast emerging area of research. Here we describe new Support Vector Machine (SVM) based algorithms (models) developed for predicting glycosylated-residues (glycosites) with high accuracy in prokaryotic protein sequences. The models are based on binary profile of patterns, composition profile of patterns, and position-specific scoring matrix profile of patterns as training features. The study employ an extensive dataset of 107 N-linked and 116 O-linked glycosites extracted from 59 experimentally characterized glycoproteins of prokaryotes. This dataset includes validated N-glycosites from phyla Crenarchaeota, Euryarchaeota (domain Archaea), Proteobacteria (domain Bacteria) and validated O-glycosites from phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria (domain Bacteria). In view of the current understanding that glycosylation occurs on folded proteins in bacteria, hybrid models have been developed using information on predicted secondary structures and accessible surface area in various combinations with training features. Using these models, N-glycosites and O-glycosites could be predicted with an accuracy of 82.71% (MCC 0.65) and 73.71% (MCC 0.48), respectively. An evaluation of the best performing models with 28 independent prokaryotic glycoproteins confirms the suitability of these models in predicting N- and O-glycosites in potential glycoproteins from aforementioned organisms, with reasonably high confidence. A web server GlycoPP, implementing these models is available freely at http:/www.imtech.res.in/raghava/glycopp/. PMID:22808107

  19. Albumin (BSA) adsorption onto graphite stepped surfaces

    NASA Astrophysics Data System (ADS)

    Rubio-Pereda, Pamela; Vilhena, J. G.; Takeuchi, Noboru; Serena, Pedro A.; Pérez, Rubén

    2017-06-01

    Nanomaterials are good candidates for the design of novel components with biomedical applications. For example, nano-patterned substrates may be used to immobilize protein molecules in order to integrate them in biosensing units. Here, we perform long MD simulations (up to 200 ns) using an explicit solvent and physiological ion concentrations to characterize the adsorption of bovine serum albumin (BSA) onto a nano-patterned graphite substrate. We have studied the effect of the orientation and step size on the protein adsorption and final conformation. Our results show that the protein is stable, with small changes in the protein secondary structure that are confined to the contact area and reveal the influence of nano-structuring on the spontaneous adsorption, protein-surface binding energies, and protein mobility. Although van der Waals (vdW) interactions play a dominant role, our simulations reveal the important role played by the hydrophobic lipid-binding sites of the BSA molecule in the adsorption process. The complex structure of these sites, that incorporate residues with different hydrophobic character, and their flexibility are crucial to understand the influence of the ion concentration and protein orientation in the different steps of the adsorption process. Our study provides useful information for the molecular engineering of components that require the immobilization of biomolecules and the preservation of their biological activity.

  20. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays.

    PubMed

    Hahm, Jong-in

    2014-08-26

    Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein-surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein-surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format.

  1. The impact of spatial and temporal patterns on multi-cellular behavior

    NASA Astrophysics Data System (ADS)

    Nikolic, Djordje L.

    What makes a fruit fly a fruit fly? Essentially this question stems from one of the most fascinating problems in biology: how a single cell (fertilized egg) can give rise to a fully grown animal. To be able to answer this question, the importance to how spatial and temporal patterns of gene and protein expression influence the development of an organism must be understood. After all, fruit fly larvae are segmented, while fertilized eggs are not. Pattern formation is fundamental to establishing this organization of the developing embryo with the ultimate goal being the precise arrangements of specialized cells and tissues within each organ in an adult organism. The research presented here showcases the examples of studies that assess the impact spatial and temporal protein patterns have on the behavior of a collection of cells. By introducing new experimental, non-traditional techniques we developed model systems that allowed us to examine the dependence of the strength of adhesion of cells on the protein organization on sub-cellular, micron length scales, and to investigate how epithelial cell sheets coordinate their migration incorporating individual cell locomotion, molecular signal propagation and different boundary conditions. The first part of this dissertation presents a photolithography-based silanization patterning technique that allowed us to homogeneously pattern large areas with high precision. This method is then applied to organizing cell adhesion-promoting proteins on surfaces for the purposes of studying and manipulating cell behavior. We show how the strength of adhesion is dependent on high local density of an adhesive extracellular matrix protein fibronectin. The varied appeal of this technique is exhibited by showing its applicability to pattern stretched DNA, too. The second part of this dissertation focuses on the impact of spatial and temporal propagation of a molecular signal (ERK 1/2 MAPK) in migrating epithelial sheets during wound healing. By tracking the motion of individual cells within the sheet under the three constructed conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet in accordance with the activation of ERK 1/2 MAPK.

  2. Urban-rural difference in the determinants of dietary and energy intake patterns: A case study in West Java, Indonesia.

    PubMed

    Kosaka, Satoko; Suda, Kazuhiro; Gunawan, Budhi; Raksanagara, Ardini; Watanabe, Chiho; Umezaki, Masahiro

    2018-01-01

    Few studies have explored differences in the determinants of individual dietary/energy intake patterns between urban and rural areas. To examine whether the associations between individual characteristics and dietary/energy intake patterns differ between urban and rural areas in West Java, Indonesia. A 3-day weighed food record, interviews, and anthropometric measurements were conducted in Bandung (urban area; n = 85) and Sumedang (rural area; n = 201). Total energy intake and intake from protein, fat, and carbohydrates were calculated. Food items were grouped into dietary categories based on the main ingredients to calculate their share of total energy intake. The associations between individual characteristics and dietary/energy intake were examined by fitting regression models. Models that also included education and body mass index (BMI) were fitted to adult samples only. In Sumedang, the total energy intake and energy intake from carbohydrates, fat, and grain/tubers were significantly associated with age and occupation. In Bandung, energy intake from grain/tubers and vegetables/legumes was related to sex and occupation, while other indicators showed no associations. Among adults, BMI was associated with the total energy intake and educational level was associated with energy intake from vegetables/legumes (both only in Sumedang). The relationship between demographic and socioeconomic factors and dietary/energy intake patterns differs in rural versus urban areas in West Java. These results suggest that different strategies are needed in rural and urban areas to identify and aid populations at risk of diet-related diseases.

  3. Effect of intake of different dietary protein sources on plasma amino acid profiles at rest and after exercise.

    PubMed

    Burke, Louise M; Winter, Julie A; Cameron-Smith, David; Enslen, Marc; Farnfield, Michelle; Decombaz, Jacques

    2012-12-01

    The authors undertook 2 crossover-designed studies to characterize plasma amino acid (AA) responses to the intake of 20 g of protein. In Study 1, 15 untrained and overnight-fasted subjects consumed 20 g protein from skim milk, soy milk, beefsteak, boiled egg, and a liquid meal supplement. In Study 2, 10 fasted endurance-trained subjects consumed 20 g protein from a protein-rich sports bar at rest and after a 60-min submaximal ride. Plasma AA concentrations were measured immediately before and for 180 min after food ingestion using a gas-chromatography flame-ionization detection technique. A pharmacokinetic analysis was undertaken for profiles of total AAs (TAA), essential AAs, branched-chain AAs (BCAA), and leucine. Although area-under-the-curve values for plasma TAA were similar across protein sources, the pattern of aminoacidemia showed robust differences between foods, with liquid forms of protein achieving peak concentrations twice as quickly after ingestion as solid protein-rich foods (e.g., ~50 min vs ~100 min) and skim milk achieving a significantly faster peak leucine concentration than all other foods (~25 min). Completing exercise before ingesting protein sources did not cause statistically significant changes in the pattern of delivery of key AAs, BCAAs, and leucine apart from a 20-40% increase in the rate of elimination. These results may be useful to plan the type and timing of intake of protein-rich foods to maximize the protein synthetic response to various stimuli such as exercise.

  4. Automated Interpretation of Subcellular Patterns in Fluorescence Microscope Images for Location Proteomics

    PubMed Central

    Chen, Xiang; Velliste, Meel; Murphy, Robert F.

    2010-01-01

    Proteomics, the large scale identification and characterization of many or all proteins expressed in a given cell type, has become a major area of biological research. In addition to information on protein sequence, structure and expression levels, knowledge of a protein’s subcellular location is essential to a complete understanding of its functions. Currently subcellular location patterns are routinely determined by visual inspection of fluorescence microscope images. We review here research aimed at creating systems for automated, systematic determination of location. These employ numerical feature extraction from images, feature reduction to identify the most useful features, and various supervised learning (classification) and unsupervised learning (clustering) methods. These methods have been shown to perform significantly better than human interpretation of the same images. When coupled with technologies for tagging large numbers of proteins and high-throughput microscope systems, the computational methods reviewed here enable the new subfield of location proteomics. This subfield will make critical contributions in two related areas. First, it will provide structured, high-resolution information on location to enable Systems Biology efforts to simulate cell behavior from the gene level on up. Second, it will provide tools for Cytomics projects aimed at characterizing the behaviors of all cell types before, during and after the onset of various diseases. PMID:16752421

  5. [Evaluation of dietary pattern and nutritional status of residents in southeast coastal area].

    PubMed

    Lü, Na; Shen, Minghao; Huang, Yixiang; Lu, Lijuan; Zheng, Shangpin; Chen, Kai

    2012-05-01

    To evaluate the dietary pattern and nutritional status of urban residents in southeast coastal area. A dietary survey concerning 1332 persons aged 18 and over was carried out with dietary inquiry and 24-hour recall methods from August to December in 2009. The intakes of cereal, meat, eggs, seafood were enough. The consumption of milk and dairy products, vegetables, fruits was insufficient while the amount of oil was too high. Among them, the intake of milk and dairy products was only 1/3 of suggested values in Dietary Guideline and Balanced Diet Pagoda for Chinese Residents. The intakes of protein, retinol, iron and selenium were sufficient, while those of calcium, thiamine, riboflavin, ascorbic acid were too less than the dietary reference intakes (DRIs). The dietary pattern of urban residents in Ningbo was not reasonable. Nutrition education should be strengthened to guide residents for planning reasonable and balanced diets.

  6. Fundamentals of Nanoscale Polymer–Protein Interactions and Potential Contributions to Solid-State Nanobioarrays

    PubMed Central

    2015-01-01

    Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein–surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein–surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format. PMID:24456577

  7. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  8. Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond

    PubMed Central

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth. PMID:24664111

  9. A biomolecule friendly photolithographic process for fabrication of protein microarrays on polymeric films coated on silicon chips.

    PubMed

    Petrou, Panagiota S; Chatzichristidi, Margarita; Douvas, Antonios M; Argitis, Panagiotis; Misiakos, Konstantinos; Kakabakos, Sotirios E

    2007-04-15

    The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures

  10. 3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning.

    PubMed

    Tsougeni, Katerina; Ellinas, Kosmas; Koukouvinos, George; Petrou, Panagiota S; Tserepi, Angeliki; Kakabakos, Sotirios E; Gogolides, Evangelos

    2018-01-01

    Plasma micro-nanotexturing is a generic technology for topographical and chemical modification of surfaces and their implementation in microfluidics and microarrays. Nanotextured surfaces with desirable chemical functionality (and wetting behavior) have shown excellent biomolecule immobilization and cell adhesion. Specifically, nanotextured hydrophilic areas show (a) strong binding of biomolecules and (b) strong adhesion of cells, while nanotextured superhydrophobic areas show null adsorption of (a) proteins and (b) cells. Here we describe the protocols for (a) biomolecule adsorption control on nanotextured surfaces for microarray fabrication and (b) cell adhesion on such surfaces. 3D plasma nanotextured® substrates are commercialized through Nanoplasmas private company, a spin-off of the National Centre for Scientific Research Demokritos.

  11. Expression pattern of Anosmin-1 during pre- and postnatal rat brain development.

    PubMed

    Clemente, Diego; Esteban, Pedro F; Del Valle, Ignacio; Bribián, Ana; Soussi-Yanicostas, Nadia; Silva, Augusto; De Castro, Fernando

    2008-09-01

    Anosmin-1 participates in the development of the olfactory and GnRH systems. Defects in this protein are responsible for both the anosmia and the hypogonadotrophic hypogonadism found in Kallmann's syndrome patients. Sporadically, these patients also manifest some neurological symptoms that are not explained in terms of the developmental defects in the olfactory system. We describe the pattern of Anosmin-1 expression in the central nervous system during rat development using a novel antibody raised against Anosmin-1 (Anos1). The areas with Anos1-stained neurons and glial cells were classified into three groups: (1) areas with immunoreactivity from embryonic day 16 to postnatal day (P) 15; (2) areas with Anosmin-1 expression only at postnatal development; (3) nuclei with immunoreactivity only at P15. Our data show that Anos1 immunoreactivity is detected in projecting neurons and interneurons within areas of the brain that may be affected in patients with Kallmann's syndrome that develop both the principal as well as sporadic symptoms.

  12. Network based approaches reveal clustering in protein point patterns

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  13. Tungstate-induced color-pattern modifications of butterfly wings are independent of stress response and ecdysteroid effect.

    PubMed

    Otaki, Joji M; Ogasawara, Tsuyoshi; Yamamoto, Haruhiko

    2005-06-01

    Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.

  14. Major dietary patterns in relation to stunting among children in Tehran, Iran.

    PubMed

    Esfarjani, Fatemeh; Roustaee, Roshanak; Mohammadi-Nasrabadi, Fatemeh; Esmaillzadeh, Ahmad

    2013-06-01

    To the best of our knowledge, no information is available to link major dietary patterns to stunting during childhood, although dietary patterns are associated with chronic diseases. This study was conducted to determine the relationship between major dietary patterns and stunting in the first grade pupils of Tehran in 2009. In this case-control study, 86 stunted children (defined as height-for-age of less than the 5th percentile of CDC2000 cutoff points) were enrolled from among 3,147 first grade pupils of Tehran, selected using a multistage cluster random-sampling method. Participants for the control group (n=308) were selected randomly from non-stunted children (height-for-age more than the 5th percentile of CDC2000 cutoff points), after matching for age, sex, and area of residence. Dietary data were collected using two 24-hour dietary recalls through face-to-face interview with mothers. Factor analysis was used for identifying major dietary patterns. Mean consumption of dairy products (308 +/- 167 vs 382 +/- 232 g/day, p < 0.05), dried fruits and nuts (2.5819 vs 7.15 +/- 26 g/day, p < 0.05) were significantly lower among stunted children than those in the control group. Three major dietary patterns were identified: 'traditional dietary pattern' that was dominated by bread, potato, fats, eggs, flavours, vegetables other than leafy ones, sugar, drinks, and fast food; 'mixed dietary pattern' that was dominated by leafy vegetables, fast foods, nuts, fats, cereals other than bread, fruits, legumes, visceral meats, sugars, eggs, and vegetables other than leafy vegetables; and 'carbohydrate-protein pattern' that was dominated by sweets and desserts, poultry, dairy, fruits, legumes, and visceral meats. No significant relationships were found between traditional and mixed dietary patterns and stunting. Individuals in the third quartile of carbohydrate-protein dietary pattern were less likely to be stunted compared to those in the bottom quartile (OR: 0.31, 95% CI 0.13-0.78, p < 0.05). Adherence to dietary patterns high in protein (e.g. dairy, legumes, and meat products) and carbohydrates (e.g. fruits, sweets, and desserts) might be associated with reduced odds of being stunted among children.

  15. Dietary patterns of obese and normal-weight women of reproductive age in urban slum areas in Central Jakarta.

    PubMed

    Yulia; Khusun, Helda; Fahmida, Umi

    2016-07-01

    Developing countries including Indonesia imperatively require an understanding of factors leading to the emerging problem of obesity, especially within low socio-economic groups, whose dietary pattern may contribute to obesity. In this cross-sectional study, we compared the dietary patterns and food consumption of 103 obese and 104 normal-weight women of reproductive age (19-49 years) in urban slum areas in Central Jakarta. A single 24-h food recall was used to assess energy and macronutrient intakes (carbohydrate, protein and fat) and calculate energy density. A principal component analysis was used to define the dietary patterns from the FFQ. Obese women had significantly higher intakes of energy (8436·6 (sd 2358·1) v. 7504·4 (sd 1887·8) kJ (2016·4 (sd 563·6) v. 1793·6 (sd 451·2) kcal)), carbohydrate (263·9 (sd 77·0) v. 237·6 (sd 63·0) g) and fat (83·11 (sd 31·3) v. 70·2 (sd 26·1) g) compared with normal-weight women; however, their protein intake (59·4 (sd 19·1) v. 55·9 (sd 18·5) g) and energy density (8·911 (sd 2·30) v. 8·58 (sd 1·88) kJ/g (2·13 (sd 0·55) v. 2·05 (sd 0·45) kcal/g)) did not differ significantly. Two dietary patterns were revealed and subjectively named 'more healthy' and 'less healthy'. The 'less healthy' pattern was characterised by the consumption of fried foods (snacks, soyabean and roots and tubers) and meat and poultry products, whereas the more healthy pattern was characterised by the consumption of seafood, vegetables, eggs, milk and milk products and non-fried snacks. Subjects with a high score for the more healthy pattern had a lower obesity risk compared with those with a low score. Thus, obesity is associated with high energy intake and unhealthy dietary patterns characterised by consumption of oils and fats through fried foods and snacks.

  16. PROTERAN: animated terrain evolution for visual analysis of patterns in protein folding trajectory.

    PubMed

    Zhou, Ruhong; Parida, Laxmi; Kapila, Kush; Mudur, Sudhir

    2007-01-01

    The mechanism of protein folding remains largely a mystery in molecular biology, despite the enormous effort from many groups in the past decades. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates such as the fraction of native contacts, the radius of gyration and so on. In this paper, we present an integrated approach towards understanding the folding process via visual analysis of patterns of these reaction coordinates. The three disparate processes (1) protein folding simulation, (2) pattern elicitation and (3) visualization of patterns, work in tandem. Thus as the protein folds, the changing landscape in the pattern space can be viewed via the visualization tool, PROTERAN, a program we developed for this purpose. We first present an incremental (on-line) trie-based pattern discovery algorithm to elicit the patterns and then describe the terrain metaphor based visualization tool. Using two example small proteins, a beta-hairpin and a designed protein Trp-cage, we next demonstrate that this combined pattern discovery and visualization approach extracts crucial information about protein folding intermediates and mechanism.

  17. A Graph Approach to Mining Biological Patterns in the Binding Interfaces.

    PubMed

    Cheng, Wen; Yan, Changhui

    2017-01-01

    Protein-RNA interactions play important roles in the biological systems. Searching for regular patterns in the Protein-RNA binding interfaces is important for understanding how protein and RNA recognize each other and bind to form a complex. Herein, we present a graph-mining method for discovering biological patterns in the protein-RNA interfaces. We represented known protein-RNA interfaces using graphs and then discovered graph patterns enriched in the interfaces. Comparison of the discovered graph patterns with UniProt annotations showed that the graph patterns had a significant overlap with residue sites that had been proven crucial for the RNA binding by experimental methods. Using 200 patterns as input features, a support vector machine method was able to classify protein surface patches into RNA-binding sites and non-RNA-binding sites with 84.0% accuracy and 88.9% precision. We built a simple scoring function that calculated the total number of the graph patterns that occurred in a protein-RNA interface. That scoring function was able to discriminate near-native protein-RNA complexes from docking decoys with a performance comparable with that of a state-of-the-art complex scoring function. Our work also revealed possible patterns that might be important for binding affinity.

  18. Control of adhesion of human induced pluripotent stem cells to plasma-patterned polydimethylsiloxane coated with vitronectin and γ-globulin.

    PubMed

    Yamada, Ryotaro; Hattori, Koji; Tachikawa, Saoko; Tagaya, Motohiro; Sasaki, Toru; Sugiura, Shinji; Kanamori, Toshiyuki; Ohnuma, Kiyoshi

    2014-09-01

    Human induced pluripotent stem cells (hiPSCs) are a promising source of cells for medical applications. Recently, the development of polydimethylsiloxane (PDMS) microdevices to control the microenvironment of hiPSCs has been extensively studied. PDMS surfaces are often treated with low-pressure air plasma to facilitate protein adsorption and cell adhesion. However, undefined molecules present in the serum and extracellular matrix used to culture cells complicate the study of cell adhesion. Here, we studied the effects of vitronectin and γ-globulin on hiPSC adhesion to plasma-treated and untreated PDMS surfaces under defined culture conditions. We chose these proteins because they have opposite properties: vitronectin mediates hiPSC attachment to hydrophilic siliceous surfaces, whereas γ-globulin is adsorbed by hydrophobic surfaces and does not mediate cell adhesion. Immunostaining showed that, when applied separately, vitronectin and γ-globulin were adsorbed by both plasma-treated and untreated PDMS surfaces. In contrast, when PDMS surfaces were exposed to a mixture of the two proteins, vitronectin was preferentially adsorbed onto plasma-treated surfaces, whereas γ-globulin was adsorbed onto untreated surfaces. Human iPSCs adhered to the vitronectin-rich plasma-treated surfaces but not to the γ-globulin-rich untreated surfaces. On the basis of these results, we used perforated masks to prepare plasma-patterned PDMS substrates, which were then used to pattern hiPSCs. The patterned hiPSCs expressed undifferentiated-cell markers and did not escape from the patterned area for at least 7 days. The patterned PDMS could be stored for up to 6 days before hiPSCs were plated. We believe that our results will be useful for the development of hiPSC microdevices. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Virus-based surface patterning of biological molecules, probes, and inorganic materials.

    PubMed

    Ahn, Suji; Jeon, Seongho; Kwak, Eun-A; Kim, Jong-Man; Jaworski, Justyn

    2014-10-01

    An essential requirement for continued technological advancement in many areas of biology, physics, chemistry, and materials science is the growing need to generate custom patterned materials. Building from recent achievements in the site-specific modification of virus for covalent surface tethering, we show in this work that stable 2D virus patterns can be generated in custom geometries over large area glass surfaces to yield templates of biological, biochemical, and inorganic materials in high density. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with interesting properties, owing to their ease of genetic and chemical modification. By utilizing un-natural amino acids generated at specific locations on the filamentous fd bacteriophage protein coat, surface immobilization is carried out on APTES patterned glass resulting in precise geometries of covalently linked virus material. This technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Self-organization principles of intracellular pattern formation.

    PubMed

    Halatek, J; Brauns, F; Frey, E

    2018-05-26

    Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.

  1. Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach.

    PubMed

    Núñez-Vivanco, Gabriel; Valdés-Jiménez, Alejandro; Besoaín, Felipe; Reyes-Parada, Miguel

    2016-01-01

    Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility of Geomfinder, which was able to discriminate between similar and different 3D patterns related to binding sites of common substrates in a range of diverse proteins. Geomfinder allows detecting similar 3D patterns between any two pair of protein structures, regardless of the divergency among their amino acids sequences. Although the software is not intended for simultaneous multiple comparisons in a large number of proteins, it can be particularly useful in cases such as the structure-based design of multitarget drugs, where a detailed analysis of 3D patterns similarities between a few selected protein targets is essential.

  2. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: expression site of the estrogen receptor in the benign and neoplastic gland.

    PubMed

    Rago, V; Romeo, F; Giordano, F; Ferraro, A; Carpino, A

    2016-01-01

    Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements. © 2015 American Society of Andrology and European Academy of Andrology.

  3. Dual-labeling method for electron microscopy to characterize synaptic connectivity using genetically encoded fluorescent reporters in Drosophila

    PubMed Central

    Tanaka, Nobuaki K.; Dye, Louis; Stopfer, Mark

    2010-01-01

    Light and electron microscopy (LM and EM) both offer important advantages for characterizing neuronal circuitry in intact brains: LM can reveal the general patterns neurons trace between brain areas, and EM can confirm synaptic connections between identified neurons within a small area. In a few species, genetic labeling with fluorescent proteins has been used with LM to visualize many kinds of neurons and to analyze their morphologies and projection patterns. However, combining these large-scale patterns with the fine detail available in EM analysis has been a technical challenge. To analyze the synaptic connectivity of neurons expressing fluorescent markers with EM, we developed a dual-labeling method for use with pre-embedded brains. In Drosophila expressing genetic labels and also injected with markers we visualized synaptic connections among two populations of neurons in the AL, one of which has been shown to mediate a specific function, odor evoked neural oscillation. PMID:21074556

  4. The melatonin action on stromal stem cells within pericryptal area in colon cancer model under constant light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannen, Vinicius, E-mail: kannen71@yahoo.com.br; Marini, Tassiana; Zanette, Dalila L.

    Research highlights: {yields} We investigated melatonin against the malignant effects of constant light. {yields} Melatonin supplementation increased its serum levels and its receptor expression. {yields} Melatonin decreased cancer stem cells and dysplastic injuries in colon tissue. {yields} Melatonin controlled proliferative process and apoptosis induction. -- Abstract: Constant light (LL) is associated with high incidence of colon cancer. MLT supplementation was related to the significant control of preneoplastic patterns. We sought to analyze preneoplastic patterns in colon tissue from animals exposed to LL environment (14 days; 300 lx), MLT-supplementation (10 mg/kg/day) and DMH-treatment (1,2 dimethylhydrazine; 125 mg/kg). Rodents were sacrificed andmore » MLT serum levels were measured by radioimmunoassay. Our results indicated that LL induced ACF development (p < 0.001) with a great potential to increase the number of CD133(+) and CD68(+) cells (p < 0.05 and p < 0.001). LL also increased the proliferative process (PCNA-Li; p < 0.001) as well as decreased caspase-3 protein (p < 0.001), related to higher COX-2 protein expression (p < 0.001) within pericryptal colonic stroma (PCCS). However, MLT-supplementation controlled the development of dysplastic ACF (p < 0.001) diminishing preneoplastic patterns into PCCS as CD133 and CD68 (p < 0.05 and p < 0.001). These events were relative to decreased PCNA-Li index and higher expression of caspase-3 protein. Thus, MLT showed a great potential to control the preneoplastic patterns induced by LL.« less

  5. Multicolor microcontact printing of proteins on nanoporous surface for patterned immunoassay

    NASA Astrophysics Data System (ADS)

    Ng, Elaine; Gopal, Ashwini; Hoshino, Kazunori; Zhang, Xiaojing

    2011-07-01

    The large scale patterning of therapeutic proteins is a key to the efficient design, characterization, and production of biologics for cost effective, high throughput, and point-of-care detection and analysis system. We demonstrate an efficient method for protein deposition and adsorption on nanoporous silica substrates in specific patterns using a method called "micro-contact printing". Multiple color-tagged proteins can be printed through sequential application of such micro-patterning technique. Two groups of experiments were performed. In the first group, the protein stamp was aligned precisely with the printing sites, where the stamp was applied multiple times. Optimal conditions were identified for protein transfer and adsorption using the pore size of 4 nm and thickness of 30 nm porous silica thin film. In the second group, we demonstrate the patterning of two-color rabbit immunoglobin labeled with fluorescein isothiocyanate and tetramethyl rhodamine iso-thiocyanate on porous silica substrates that have a pore size 4 nm, porosity 57% and thickness of the porous layer 30 nm. A pair of protein stamps, with corresponding alignment markings and coupled patterns, were aligned and used to produce a two-colored stamp pattern of proteins on porous silica. Different colored proteins can be applied to exemplify the diverse protein composition within a sample. This method of multicolor microcontact printing can be used to perform a fluorescence-based patterned enzyme-linked immunosorbent assay to detect the presence of various proteins within a sample.

  6. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    NASA Astrophysics Data System (ADS)

    Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees

    2015-08-01

    The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

  7. Two-Dimensional Raman Correlation Analysis of Diseased Esophagus in a Rat

    NASA Astrophysics Data System (ADS)

    Takanezawa, Sota; Morita, Shin-ichi; Maruyama, Atsushi; Murakami, Takurou N.; Kawashima, Norimichi; Endo, Hiroyuki; Iijima, Katsunori; Asakura, Tohru; Shimosegawa, Tooru; Sato, Hidetoshi

    2010-07-01

    Generalized two-dimensional (2D) Raman correlation analysis effectively distinguished a benign tumor from normal tissue. Line profiling Raman spectra of a rat esophagus, including a benign tumor, were measured and the generalized 2D synchronous and asynchronous spectra were calculated. In the autocorrelation area of the amide I band of proteins in the asynchronous map, a cross-like pattern was observed. A simulation study indicated that the pattern was caused by a sharp band component in the amide I band region. We considered that the benign tumor corresponded to the sharp component.

  8. Recanalization and flow regulate venous thrombus resolution and Matrix metalloproteinases expression in vivo

    PubMed Central

    Chabasse, Christine; Siefert, Suzanne A.; Chaudry, Mohammed; Hoofnagle, Mark H.; Lal, Brajesh K.; Sarkar, Rajabrata

    2016-01-01

    Objective We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. Design of study In CD1 mice, we performed surgical inferior vena cava (IVC) ligation (stasis thrombosis), stenosis (thrombosis with recanalization) or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution, and quantified the mRNA and protein levels of Membrane-Type Matrix Metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at day 4, 8 and 12 post-surgery. Results Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8, and 12.57% at day 12, as compared with stasis thrombosis (ligation model). Immunoblot and real-time PCR demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P=.03 and P=.006 respectively), as well as a difference in MT2-MMP gene expression at day 8 (P=.044) and day 12 (P=0.03) and MT1-MMP protein expression at day 4 (P=.021). Histological analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared to the ligation model, as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Conclusions Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo, and are associated with distinct patterns of MT1- and MT3-MMP expression and macrophages localization in areas of intra-thrombus recanalization. PMID:26993683

  9. Recanalization and flow regulate venous thrombus resolution and matrix metalloproteinase expression in vivo.

    PubMed

    Chabasse, Christine; Siefert, Suzanne A; Chaudry, Mohammed; Hoofnagle, Mark H; Lal, Brajesh K; Sarkar, Rajabrata

    2015-01-01

    We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. In CD1 mice, we performed surgical inferior vena cava ligation (stasis thrombosis), stenosis (thrombosis with recanalization), or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution and quantified the messenger RNA and protein levels of membrane-type matrix metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at days 4, 8, and 12 after surgery. Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8 and 12.57% at day 12 compared with stasis thrombosis (ligation model). Immunoblot and real-time polymerase chain reaction analysis demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P = .03 and P = .006, respectively) as well as a difference in MT2-MMP gene expression at day 8 (P = .044) and day 12 (P = .03) and MT1-MMP protein expression at day 4 (P = .021). Histologic analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared with the ligation model as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo and are associated with distinct patterns of MT1-MMP and MT3-MMP expression and macrophage localization in areas of intrathrombus recanalization. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  10. Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain.

    PubMed

    Guidolin, D; Zunarelli, E; Genedani, S; Trentini, G P; De Gaetani, C; Fuxe, K; Benegiamo, C; Agnati, L F

    2008-06-01

    In an autopsy series of 19 individuals, age-ranged 24-94, a relatively age-spared region, the anterior-ventral thalamus, was analyzed by immunohistochemical techniques to visualize neurons (neurofilament protein), astrocytes (glial fibrillary acidic protein), microglial cells (CD68) and amyloid precursor protein. The pattern of immunoreactivity was determined by surface fractal dimension and lacunarity, the size by the field area (FA) and the spatial uniformity by the uniformity index. From the normalized FA values of immunoreactivity for the four markers studied, a global parameter was defined to give an overall characterization of the age-dependent changes in the glio-neuronal networks. A significant exponential decline of the GP was observed with increasing age. This finding suggests that early in life (age<50 years) an adaptive response might be triggered, involving the glio-neuronal networks in plastic adaptive adjustments to cope with the environmental challenges and the continuous wearing off of the neuronal structures. The slow decay of the GP observed in a later phase (age>70 years) could be due to the non-trophic reserve still available.

  11. Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Bat, Erhan; Lee, Juneyoung; Lau, Uland Y.; Maynard, Heather D.

    2015-03-01

    Direct-write patterning of multiple proteins on surfaces is of tremendous interest for a myriad of applications. Precise arrangement of different proteins at increasingly smaller dimensions is a fundamental challenge to apply the materials in tissue engineering, diagnostics, proteomics and biosensors. Herein, we present a new resist that protects proteins during electron-beam exposure and its application in direct-write patterning of multiple proteins. Polymers with pendant trehalose units are shown to effectively crosslink to surfaces as negative resists, while at the same time providing stabilization to proteins during the vacuum and electron-beam irradiation steps. In this manner, arbitrary patterns of several different classes of proteins such as enzymes, growth factors and immunoglobulins are realized. Utilizing the high-precision alignment capability of electron-beam lithography, surfaces with complex patterns of multiple proteins are successfully generated at the micrometre and nanometre scale without requiring cleanroom conditions.

  12. Evidence for nucleolar subcompartments in Dictyostelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, Andrew, E-mail: acatalano@ccny.cuny.edu; O’Day, Danton H., E-mail: danton.oday@utoronto.ca; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5

    2015-01-24

    Highlights: • Two nucleolar subcompartments (NoSC1, NoSC2) were found in Dictyostelium. • Specific nucleolar proteins localize to different nucleolar subcompartments. • Specific proteins exit NoSC1 and NoSC2 differently upon Actinomycin D treatment. • KRKR appears to function as an NoSC2 nucleolar subcompartment localization signal. - Abstract: The nucleolus is a multifunctional nuclear compartment usually consisting of two to three subcompartments which represent stages of ribosomal biogenesis. It is linked to several human diseases including viral infections, cancer, and neurodegeneration. Dictyostelium is a model eukaryote for the study of fundamental biological processes as well as several human diseases however comparatively littlemore » is known about its nucleolus. Unlike most nucleoli it does not possess visible subcompartments at the ultrastructural level. Several recently identified nucleolar proteins in Dictyostelium leave the nucleolus after treatment with the rDNA transcription inhibitor actinomycin-D (AM-D). Different proteins exit in different ways, suggesting that previously unidentified nucleolar subcompartments may exist. The identification of nucleolar subcompartments would help to better understand the nucleolus in this model eukaryote. Here, we show that Dictyostelium nucleolar proteins nucleomorphin isoform NumA1 and Bud31 localize throughout the entire nucleolus while calcium-binding protein 4a localizes to only a portion, representing nucleolar subcompartment 1 (NoSC1). SWI/SNF complex member Snf12 localizes to a smaller area within NoSC1 representing a second nucleolar subcompartment, NoSC2. The nuclear/nucleolar localization signal KRKR from Snf12 localized GFP to NoSC2, and thus also appears to function as a nucleolar subcompartment localization signal. FhkA localizes to the nucleolar periphery displaying a similar pattern to that of Hsp32. Similarities between the redistribution patterns of Dictyostelium nucleolar proteins during nucleolar disruption as a result of either AM-D treatment or mitosis support these subcompartments. A model for the AM-D-induced redistribution patterns is proposed.« less

  13. Easy Fabrication of Thin Membranes with Through Holes. Application to Protein Patterning

    PubMed Central

    Arasi, Bakya; Gauthier, Nils; Viasnoff, Virgile

    2012-01-01

    Since protein patterning on 2D surfaces has emerged as an important tool in cell biology, the development of easy patterning methods has gained importance in biology labs. In this paper we present a simple, rapid and reliable technique to fabricate thin layers of UV curable polymer with through holes. These membranes are as easy to fabricate as microcontact printing stamps and can be readily used for stencil patterning. We show how this microfabrication scheme allows highly reproducible and highly homogeneous protein patterning with micron sized resolution on surfaces as large as 10 cm2. Using these stencils, fragile proteins were patterned without loss of function in a fully hydrated state. We further demonstrate how intricate patterns of multiple proteins can be achieved by stacking the stencil membranes. We termed this approach microserigraphy. PMID:22952944

  14. On-Plate Self-Desalting and Matrix-Free LDI MS Analysis of Peptides With a Surface Patterned Sample Support

    NASA Astrophysics Data System (ADS)

    Zeng, Zhoufang; Wang, Yandong; Guo, Xinhua; Wang, Ling; Lu, Nan

    2014-05-01

    A hydrophobic-hydrophilic-hydrophobic pattern has been produced on the surface of a silicon substrate for selective enrichment, self-desalting, and matrix-free analysis of peptides in a single step. Upon sample application, the sample solution is first confined in a small area by a hydrophobic F-SAM outer area, after which salt contaminants and peptides are selectively enriched in the hydrophilic and hydrophobic areas, respectively. Simultaneously, matrix background noise is significantly reduced or eliminated because of immobilization of matrix molecules. As a result, the detection sensitivity is enhanced 20-fold compared with that obtained using the usual MALDI plate, and interference-free detection is achieved in the low m/z range. In addition, peptide ions can be identified unambiguously in the presence of NH4HCO3 (100 mM), urea (1 M), and NaCl (1 M). When the device was applied to the analysis of BSA digests, the peptide recovery and protein identification confidence were greatly improved.

  15. Automation in clinical microbiology: a new approach to identifying micro-organisms by automated pattern matching of proteins labelled with 35S-methionine.

    PubMed Central

    Tabaqchali, S; Silman, R; Holland, D

    1987-01-01

    A new rapid automated method for the identification and classification of microorganisms is described. It is based on the incorporation of 35S-methionine into cellular proteins and subsequent separation of the radiolabelled proteins by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The protein patterns produced were species specific and reproducible, permitting discrimination between the species. A large number of Gram negative and Gram positive aerobic and anaerobic organisms were successfully tested. Furthermore, there were sufficient differences within species between the protein profiles to permit subdivision of the species. New typing schemes for Clostridium difficile, coagulase negative staphylococci, and Staphylococcus aureus, including the methicillin resistant strains, could thus be introduced; this has provided the basis for useful epidemiological studies. To standardise and automate the procedure an automated electrophoresis system and a two dimensional scanner were developed to scan the dried gels directly. The scanner is operated by a computer which also stores and analyses the scan data. Specific histograms are produced for each bacterial species. Pattern recognition software is used to construct databases and to compare data obtained from different gels: in this way duplicate "unknowns" can be identified. Specific small areas showing differences between various histograms can also be isolated and expanded to maximise the differences, thus providing differentiation between closely related bacterial species and the identification of differences within the species to provide new typing schemes. This system should be widely applied in clinical microbiology laboratories in the near future. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 PMID:3312300

  16. FRAP to Characterize Molecular Diffusion and Interaction in Various Membrane Environments.

    PubMed

    Pincet, Frédéric; Adrien, Vladimir; Yang, Rong; Delacotte, Jérôme; Rothman, James E; Urbach, Wladimir; Tareste, David

    2016-01-01

    Fluorescence recovery after photobleaching (FRAP) is a standard method used to study the dynamics of lipids and proteins in artificial and cellular membrane systems. The advent of confocal microscopy two decades ago has made quantitative FRAP easily available to most laboratories. Usually, a single bleaching pattern/area is used and the corresponding recovery time is assumed to directly provide a diffusion coefficient, although this is only true in the case of unrestricted Brownian motion. Here, we propose some general guidelines to perform FRAP experiments under a confocal microscope with different bleaching patterns and area, allowing the experimentalist to establish whether the molecules undergo Brownian motion (free diffusion) or whether they have restricted or directed movements. Using in silico simulations of FRAP measurements, we further indicate the data acquisition criteria that have to be verified in order to obtain accurate values for the diffusion coefficient and to be able to distinguish between different diffusive species. Using this approach, we compare the behavior of lipids in three different membrane platforms (supported lipid bilayers, giant liposomes and sponge phases), and we demonstrate that FRAP measurements are consistent with results obtained using other techniques such as Fluorescence Correlation Spectroscopy (FCS) or Single Particle Tracking (SPT). Finally, we apply this method to show that the presence of the synaptic protein Munc18-1 inhibits the interaction between the synaptic vesicle SNARE protein, VAMP2, and its partner from the plasma membrane, Syn1A.

  17. High-Resolution, High-Throughput, Positive-Tone Patterning of Poly(ethylene glycol) by Helium Beam Exposure through Stencil Masks

    PubMed Central

    Cacao, Eliedonna E.; Nasrullah, Azeem; Sherlock, Tim; Kemper, Steven; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E.; Willson, Richard C.

    2013-01-01

    In this work, a collimated helium beam was used to activate a thiol-poly(ethylene glycol) (SH-PEG) monolayer on gold to selectively capture proteins in the exposed regions. Protein patterns were formed at high throughput by exposing a stencil mask placed in proximity to the PEG-coated surface to a broad beam of helium particles, followed by incubation in a protein solution. Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (ATR–FTIR) spectra showed that SH-PEG molecules remain attached to gold after exposure to beam doses of 1.5–60 µC/cm2 and incubation in PBS buffer for one hour, as evidenced by the presence of characteristic ether and methoxy peaks at 1120 cm−1 and 2870 cm−1, respectively. X-ray Photoelectron Spectroscopy (XPS) spectra showed that increasing beam doses destroy ether (C–O) bonds in PEG molecules as evidenced by the decrease in carbon C1s peak at 286.6 eV and increased alkyl (C–C) signal at 284.6 eV. XPS spectra also demonstrated protein capture on beam-exposed PEG regions through the appearance of a nitrogen N1s peak at 400 eV and carbon C1s peak at 288 eV binding energies, while the unexposed PEG areas remained protein-free. The characteristic activities of avidin and horseradish peroxidase were preserved after attachment on beam-exposed regions. Protein patterns created using a 35 µm mesh mask were visualized by localized formation of insoluble diformazan precipitates by alkaline phosphatase conversion of its substrate bromochloroindoyl phosphate-nitroblue tetrazolium (BCIP-NBT) and by avidin binding of biotinylated antibodies conjugated on 100 nm gold nanoparticles (AuNP). Patterns created using a mask with smaller 300 nm openings were detected by specific binding of 40 nm AuNP probes and by localized HRP-mediated deposition of silver nanoparticles. Corresponding BSA-passivated negative controls showed very few bound AuNP probes and little to no enzymatic formation of diformazan precipitates or silver nanoparticles. PMID:23717382

  18. Ontogenetic stage, plant vigor and sex mediate herbivory loads in a dioecious understory herb

    NASA Astrophysics Data System (ADS)

    Selaković, Sara; Vujić, Vukica; Stanisavljević, Nemanja; Jovanović, Živko; Radović, Svetlana; Cvetković, Dragana

    2017-11-01

    Plant-herbivore interactions can be mediated by plant apparency, defensive and nutritional quality traits that change through plant ontogeny, resulting in age-specific herbivory. In dioecious species, opposing allocation patterns in defense may lead to sex-biased herbivory. Here, we examine how onto stage and plant sex determine levels of herbivore damage in understory herb Mercurialis perennis under field conditions. We analyzed variation in plant size (height, total leaf area), physical (specific leaf area) and chemical (total phenolic and condensed tannins contents) defense, and nutritional quality (total water, soluble protein and nonstructural carbohydrate contents) during the shift from reproductive to post-reproductive stage. Furthermore, we explored correlations between the analyzed traits and levels of foliar damage. Post-reproductive plants had lower levels of chemical defense, and larger leaf area removed, in spite of having lower nutritive quality. Opposing patterns of intersexual differences were detected in protein and phenolic contents during reproductive stage, while in post-reproductive stage total leaf area was sexually dimorphic. Female-biased herbivory was apparent only after reproduction. Plant size parameters combined with condensed tannins content determined levels of foliar damage during post-reproductive stage, while the only trait covarying with herbivory in reproductive stage was total nonstructural carbohydrate content. Our results support claims of optimal defense theory - sensitive stage of reproduction was better defended. We conclude that different combinations of plant traits mediated interactions with herbivores in mature stages. Differences in reproductive allocation between the sexes may not immediately translate into different levels of damage, stressing the need for considering different ontogenetic stages when exploring sex bias in herbivory.

  19. Mining sequential patterns for protein fold recognition.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2008-02-01

    Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.

  20. Computational mining for hypothetical patterns of amino acid side chains in protein data bank (PDB)

    NASA Astrophysics Data System (ADS)

    Ghani, Nur Syatila Ab; Firdaus-Raih, Mohd

    2018-04-01

    The three-dimensional structure of a protein can provide insights regarding its function. Functional relationship between proteins can be inferred from fold and sequence similarities. In certain cases, sequence or fold comparison fails to conclude homology between proteins with similar mechanism. Since the structure is more conserved than the sequence, a constellation of functional residues can be similarly arranged among proteins of similar mechanism. Local structural similarity searches are able to detect such constellation of amino acids among distinct proteins, which can be useful to annotate proteins of unknown function. Detection of such patterns of amino acids on a large scale can increase the repertoire of important 3D motifs since available known 3D motifs currently, could not compensate the ever-increasing numbers of uncharacterized proteins to be annotated. Here, a computational platform for an automated detection of 3D motifs is described. A fuzzy-pattern searching algorithm derived from IMagine an Amino Acid 3D Arrangement search EnGINE (IMAAAGINE) was implemented to develop an automated method for searching of hypothetical patterns of amino acid side chains in Protein Data Bank (PDB), without the need for prior knowledge on related sequence or structure of pattern of interest. We present an example of the searches, which is the detection of a hypothetical pattern derived from known structural motif of C2H2 structural pattern from zinc fingers. The conservation of particular patterns of amino acid side chains in unrelated proteins is highlighted. This approach can act as a complementary method for available structure- and sequence-based platforms and may contribute in improving functional association between proteins.

  1. Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population.

    PubMed

    Gavelle, Erwan de; Huneau, Jean-François; Mariotti, François

    2018-02-17

    Protein food intake appears to partially structure dietary patterns, as most current emergent diets (e.g., vegetarian and flexitarian) can be described according to their levels of specific protein sources. However, few data are available on dietary protein patterns in the general population and their association with nutrient adequacy. Based on protein food intake data concerning 1678 adults from a representative French national dietary survey, and non-negative-matrix factorization followed by cluster analysis, we were able to identify distinctive dietary protein patterns and compare their nutrient adequacy (using PANDiet probabilistic scoring). The findings revealed eight patterns that clearly discriminate protein intakes and were characterized by the intakes of one or more specific protein foods: 'Processed meat', 'Poultry', 'Pork', 'Traditional', 'Milk', 'Take-away', 'Beef' and 'Fish'. 'Fish eaters' and 'Milk drinkers' had the highest overall nutrient adequacy, whereas that of 'Pork' and 'Take-away eaters' was the lowest. Nutrient adequacy could often be accounted for by the characteristics of the food contributing to protein intake: 'Meat eaters' had high probability of adequacy for iron and zinc, for example. We concluded that protein patterns constitute strong elements in the background structure of the dietary intake and are associated with the nutrient profile that they convey.

  2. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    PubMed Central

    Nederlof, Igor; van Genderen, Eric; Li, Yao-Wang; Abrahams, Jan Pieter

    2013-01-01

    When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e− Å−2), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins. PMID:23793148

  3. DAILY PATTERNS OF CLOCK AND COGNITION-RELATED FACTORS ARE MODIFIED IN THE HIPPOCAMPUS OF VITAMIN A-DEFICIENT RATS

    PubMed Central

    Golini, Rebeca S.; Delgado, Silvia M.; Navigatore Fonzo, Lorena S.; Ponce, Ivana T.; Lacoste, María G.; Anzulovich, Ana C.

    2012-01-01

    The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area. PMID:22434687

  4. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    PubMed Central

    Haraszti, Reka A.; Didiot, Marie-Cecile; Sapp, Ellen; Leszyk, John; Shaffer, Scott A.; Rockwell, Hannah E.; Gao, Fei; Narain, Niven R.; DiFiglia, Marian; Kiebish, Michael A.; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types. PMID:27863537

  5. [Electrophoretic patterns of cell wall protein as a criterion for the identification and classification of Corynebacteria].

    PubMed

    Mykhal's'kyĭ, L O; Furtat, I M; Dem'ianenko, F P; Kostiuchyk, A A

    2001-01-01

    Electrophoretic patterns of cell wall protein of three industrial strains, that were used for production of lysin, and eight collection strains from the genus Corynevacterium were studied to analyze their similarity as well as to estimate an opportunity of using this parameter as an additional criterion for identification and classification of corynebacteria. Similarity coefficient of cell wall overall and main protein electrophoretic patterns were determined by a specially created computer program. Electrophoretic analysis showed that every specie had an individual protein profile. There were determined biopolymers common for the specie, genus and individual among the overall majors and minors. The obtained results showed, that the patterns of main proteins were more conservative and informative in comparison with those ones of overall proteins. The definition of similarity coefficient by the main protein patterns has correlated with the protein profile characteristics of every analyzed strain, and it managed to distribute them into the separate groups. The similarity coefficient of preparations by the main protein patterns allows to separate one specie or a strain from another, and that gives us a chance to claim that this parameter could be used as an additional criterion for differentiation and referring the corynebacteria to a certain taxonomic group.

  6. Heavy Metal Accumulation is Associated with Molecular and Pathological Perturbations in Liver of Variola louti from the Jeddah Coast of Red Sea.

    PubMed

    Mohamed, Saleh A; Elshal, Mohamed F; Kumosani, Taha A; Mal, Ahmad O; Ahmed, Youssri M; Almulaiky, Yaaser Q; Asseri, Amer H; Zamzami, Mazin A

    2016-03-21

    Large amounts of waste water are discharged daily from the Jeddah Metropolitan Area into the Red Sea. Sewage draining into the Red Sea causes widespread chemical pollution that is toxic to aquatic ecosystems. The objective of this study was to investigate the extent of pollution and assess the presence of heavy metals in fish tissue and study their association with biological and biochemical alterations. The average concentrations of heavy metals found in hepatic tissues of Variola louti fish from the polluted area, namely Cd, Cr, Cu, Fe and Zn, were 1.74, 9.69, 47.48, 4020.01 and 229.47 µg/g liver, respectively, that were significantly higher than that of samples taken from reference area (0.24, 1.98, 20.12, 721.93, 129.21 µg/g liver, respectively). The fold change of heavy metals in fish from the polluted area with respect of that of the reference area followed the order Cd > Fe > Cr > Cu > Zn. Analysis of nuclear DNA revealed that hepatic tissues of fish samples from the polluted area showed a significant increase in apoptotic cells as detected by flow cytometry and formation DNA-ladder. In addition, hepatic sections from polluted area fishes showed more fibrotic changes and collagen deposition by hematoxylin-eosin staining and Masson's trichrome staining, respectively, compared to samples taken from the reference area. Moreover, the electrophoretic patterns of proteins of liver of fishes caught at the polluted area showed different patterns of proteins from that of the reference with bands at 42, 130 and 140 kDa, which is in a good agreement with the molecular weight of collagen type III. In conclusion, there were significant changes in the tissues of fishes in the polluted area at the cellular and the molecular levels that may be associated with an accumulation of heavy metals. Assessment of fishes as a sensitive biomonitor for the pollution of surface waters that may affect general health of human and wild life is conceivable.

  7. Omics Profiling in Precision Oncology*

    PubMed Central

    Yu, Kun-Hsing; Snyder, Michael

    2016-01-01

    Cancer causes significant morbidity and mortality worldwide, and is the area most targeted in precision medicine. Recent development of high-throughput methods enables detailed omics analysis of the molecular mechanisms underpinning tumor biology. These studies have identified clinically actionable mutations, gene and protein expression patterns associated with prognosis, and provided further insights into the molecular mechanisms indicative of cancer biology and new therapeutics strategies such as immunotherapy. In this review, we summarize the techniques used for tumor omics analysis, recapitulate the key findings in cancer omics studies, and point to areas requiring further research on precision oncology. PMID:27099341

  8. Dating of Traumatic Brain Injury in Forensic Cases Using Immunohistochemical Markers (I): Neurofilaments and β-Amyloid Precursor Protein.

    PubMed

    Romero Tirado, María de Los Ángeles; Blanco Pampin, José Manuel; Gallego Gómez, Rosalía

    2018-06-13

    Studies about head trauma are experimental or have a clinical or prognosis purpose. In this study, we used samples from human autopsies to answer common medical-legal questions.We studied 21 problem cases and 4 controls. Samples were obtained directly from the injured area, fixed in 10% formalin during 24 hours and then preserved in 70% ethanol. This procedure optimizes the immunohistochemical technique.The neurofilament antibody shows beaded axons since the first moment; over time, they increase their density and diameter as survival time also increases. These changes begin in the gray matter, 2 hours after trauma can be seen around vessels and in hemorrhagic areas. At 24 hours, beaded axons appear in the white mater, which finally loses its structure and cellular density.On the other hand, the β-amyloid precursor protein marker begins to be weakly seen 2 hours after injury. At 24 hours, a diffuse pattern can appear, suggesting primary traumatic injury. The marker reading keeps increasing until day 26, when a "Z" pattern appears in the white matter, suggesting secondary hypoxic injury.All these chronologic changes could be useful to approach the date of trauma. They let us to distinguish between long surviving cases from those whose death was immediate (within the first 30 minutes).

  9. A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations

    PubMed Central

    Mah, In Kyoung

    2017-01-01

    For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here, we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements—a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis. PMID:29068314

  10. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  11. Protein intake distribution pattern does not affect anabolic response, lean body mass, muscle strength or function over 8 weeks in older adults: A randomized-controlled trial.

    PubMed

    Kim, Il-Young; Schutzler, Scott; Schrader, Amy M; Spencer, Horace J; Azhar, Gohar; Wolfe, Robert R; Ferrando, Arny A

    2018-04-01

    In our recent acute metabolic study, we found no differences in the anabolic response to differing patterns of dietary protein intake. To confirm this in a chronic study, we investigated the effects of protein distribution pattern on functional outcomes and protein kinetics in older adults over 8 weeks. To determine chronic effects of protein intake pattern at 1.1 g protein/kg/day in mixed meals on lean body mass (LBM), functional outcomes, whole body protein kinetics and muscle protein fractional synthesis rate (MPS) over 8-week respective dietary intervention, fourteen older subjects were randomly divided into either EVEN or UNVEN group. The UNEVEN group (n = 7) consumed the majority of dietary protein with dinner (UNEVEN, 15/20/65%; breakfast, lunch, dinner), while the EVEN group (n = 7) consumed dietary protein evenly throughout the day (EVEN: 33/33/33%). We found no significant differences in LBM, muscle strength, and other functional outcomes between EVEN and UNEVEN before and after 8-week intervention. Consistent with these functional outcomes, we did not find significant differences in the 20-h integrated whole body protein kinetics [net protein balance (NB), protein synthesis (PS), and breakdown (PB)] above basal states and MPS between EVEN and UNEVEN intake patterns. We conclude that over an 8-week intervention period, the protein intake distribution pattern in mixed meals does not play an important role in determining anabolic response, muscle strength, or functional outcomes. This trial is registered at https://ClinicalTrials.gov as NCT02787889. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. EPO-cyclosporine combination therapy reduced brain infarct area in rat after acute ischemic stroke: role of innate immune-inflammatory response, micro-RNAs and MAPK family signaling pathway.

    PubMed

    Yuen, Chun-Man; Yeh, Kuo-Ho; Wallace, Christopher Glenn; Chen, Kuan-Hung; Lin, Hung-Sheng; Sung, Pei-Hsun; Chai, Han-Tan; Chen, Yung-Lung; Sun, Cheuk-Kwan; Chen, Chih-Hung; Kao, Gour-Shenq; Ko, Sheung-Fat; Yip, Hon-Kan

    2017-01-01

    This study tested the hypothesis that erythropoietin (EPO) and cyclosporine (CsA) could effectively reduce brain infarct area (BIA) in rat after acute ischemic stroke (AIS) through regulating inflammation, oxidative stress, MAPK family signaling and microRNA (miR-223/miR-30a/miR-383). Adult male Sprague-Dawley rats (n = 48) were equally divided into group 1 (sham control), group 2 (AIS), group 3 [AIS+EPO (5,000 IU/kg at 0.5/24/48 h, subcutaneous)] and group 4 [AIS+CsA (20.0 mg/kg at 0.5/24/48 h, intra-peritoneal)]. By 72 h, histopathology showed that BIA was largest in group 2 and smallest in group 1, and significantly larger in group 4 than group 3 (all P<0.0001). The three microRNAs expressed were higher in group 2 than in the other three groups (all P<0.04); between these three latter groups there were no significant differences. The protein expressions of MAPK family [phosphorylated (p)-ERK1/2, p-p38/p-JNK], inflammatory (iNOS/MMP-9/TNF-α/NF-κB/IL-12/MIP-1α/CD14/CD68/Ly6g), apoptotic (caspase-3/PARP/mitochondrial-Bax), oxidative-stress (NOX-1/NOX-2/oxidized protein) and mitochondrial-damaged (cytosolic cytochrome-C) biomarkers exhibited an identical pattern to BIA findings (all P<0.0001). The cellular expressions of brain edema (AQP4+), inflammation (CD11+/glial-fibrillary-acid protein+), and cellular damage (TUNEL assay/positive Periodic acid-Schiff stain) biomarkers exhibited an identical pattern, whereas the cellular-integrity markers (neuN+/MAP2+/doublecorin+) exhibited an opposite pattern to BIA (all P value <0.001). EPO-CsA therapy markedly reduced BIA mainly by suppressing the innate immune response to inflammation, oxidative stress, microRNAs (miR-223/miR-30a/miR-383) and MAPK family signaling.

  13. Keratin pattern of acanthosis nigricans in syndromelike association with polythelia, polycystic kidneys, and syndactyly.

    PubMed

    Bonnekoh, B; Wevers, A; Spangenberger, H; Mahrle, G; Krieg, T

    1993-09-01

    Acanthosis nigricans (AN) comprises a broad spectrum of etiologic subtypes. The underlying pathomechanisms have not yet been completely clarified. We present a patient affected with a syndromelike AN subtype including disturbed epidermopoiesis as evidenced by immunohistologic findings and in situ hybridization. A 54-year-old white man contracted AN during childhood. There were connate malformations consisting of webbed toes II/III on the right side and a supernumerary left mammilla. As an adult he developed psoriasis vulgaris, obesity, and latent diabetes mellitus, polycystic kidney and liver disease. With regard to keratin 6 mRNA, and the protein expression of keratin 6/16, KI-67, and proliferating cell nuclear antigen, the AN lesion showed moderate hyperproliferation. A much higher degree of hyperproliferation was evident in psoriatic areas of the patient's skin. In contrast to psoriatic tissue, basal keratinocytes of the AN showed an unusually high expression of keratin 18 and 19 protein. The observation thus deals with a unique, syndromelike constellation of AN characterized by a particular epidermal pattern of moderate hyperproliferation. A further dysregulation of protein expression in the epidermis is indicated by the demonstration of the rare keratins 18 and 19 in basal keratinocytes of the AN lesion.

  14. Nanobiotechnology: soft lithography.

    PubMed

    Mele, Elisa; Pisignano, Dario

    2009-01-01

    An entirely new scientific and technological area has been born from the combination of nanotechnology and biology: nanobiotechnology. Such a field is primed especially by the strong potential synergy enabled by the integration of technologies, protocols, and investigation methods, since, while biomolecules represent functional nanosystems interesting for nanotechnology, micro- and nano-devices can be very useful instruments for studying biological materials. In particular, the research of new approaches for manipulating matter and fabricating structures with micrometre- and sub-micrometre resolution has determined the development of soft lithography, a new set of non-photolithographic patterning techniques applied to the realization of selective proteins and cells attachment, microfluidic circuits for protein and DNA chips, and 3D scaffolds for tissue engineering. Today, soft lithographies have become an asset of nanobiotechnology. This Chapter examines the biological applications of various soft lithographic techniques, with particular attention to the main general features of soft lithography and of materials commonly employed with these methods. We present approaches particularly suitable for biological materials, such as microcontact printing (muCP) and microfluidic lithography, and some key micro- and nanobiotechnology applications, such as the patterning of protein and DNA microarrays and the realization of microfluidic-based analytical devices.

  15. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.

    PubMed

    Chiva, M; Saperas, N; Ribes, E

    2011-12-01

    In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Reverse and forward engineering of protein pattern formation.

    PubMed

    Kretschmer, Simon; Harrington, Leon; Schwille, Petra

    2018-05-26

    Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Escherichia coli Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  17. Sequence patterns mediating functions of disordered proteins.

    PubMed

    Exarchos, Konstantinos P; Kourou, Konstantina; Exarchos, Themis P; Papaloukas, Costas; Karamouzis, Michalis V; Fotiadis, Dimitrios I

    2015-01-01

    Disordered proteins lack specific 3D structure in their native state and have been implicated with numerous cellular functions as well as with the induction of severe diseases, e.g., cardiovascular and neurodegenerative diseases as well as diabetes. Due to their conformational flexibility they are often found to interact with a multitude of protein molecules; this one-to-many interaction which is vital for their versatile functioning involves short consensus protein sequences, which are normally detected using slow and cumbersome experimental procedures. In this work we exploit information from disorder-oriented protein interaction networks focused specifically on humans, in order to assemble, by means of overrepresentation, a set of sequence patterns that mediate the functioning of disordered proteins; hence, we are able to identify how a single protein achieves such functional promiscuity. Next, we study the sequential characteristics of the extracted patterns, which exhibit a striking preference towards a very limited subset of amino acids; specifically, residues leucine, glutamic acid, and serine are particularly frequent among the extracted patterns, and we also observe a nontrivial propensity towards alanine and glycine. Furthermore, based on the extracted patterns we set off to infer potential functional implications in order to verify our findings and potentially further extrapolate our knowledge regarding the functioning of disordered proteins. We observe that the extracted patterns are primarily involved with regulation, binding and posttranslational modifications, which constitute the most prominent functions of disordered proteins.

  18. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg.

  19. Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins

    PubMed Central

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-01-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg. PMID:24603469

  20. Protein classification using sequential pattern mining.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2006-01-01

    Protein classification in terms of fold recognition can be employed to determine the structural and functional properties of a newly discovered protein. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. One of the most efficient SPM algorithms, cSPADE, is employed for protein primary structure analysis. Then a classifier uses the extracted sequential patterns for classifying proteins of unknown structure in the appropriate fold category. The proposed methodology exhibited an overall accuracy of 36% in a multi-class problem of 17 candidate categories. The classification performance reaches up to 65% when the three most probable protein folds are considered.

  1. Endogenous contributions to egg protein formation in lesser scaup Aythya affinis

    USGS Publications Warehouse

    Cutting, Kyle A.; Hobson, Keith A.; Rotella, Jay J.; Warren, Jeffrey M.; Wainwright-de la Cruz, Susan E.; Takekawa, John Y.

    2011-01-01

    Lesser scaup Aythya affinis populations have declined throughout the North American continent for the last three decades. It has been hypothesized that the loss and degradation of staging habitats has resulted in reduced female body condition on the breeding grounds and a concomitant decline in productivity. We explored the importance of body (endogenous) reserves obtained prior to arrival on the breeding ground in egg protein formation in southwestern Montana during 2006–2008 using stable-carbon (δ13C) and nitrogen (δ15N) isotope analyses of scaup egg components, female tissue, and local prey items. From arrival on the breeding grounds through the egg-laying period, δ15N values of scaup red blood cells decreased while δ13C values became less variable; a pattern consistent with endogenous tissues equilibrating with local (freshwater) dietary sources. In 2006 and 2008, isotopic values for egg albumen and yolk protein indicated that most (>90%) protein used to produce these components was obtained on the breeding grounds. However, in 2007, a year with an exceptionally warm and dry spring, endogenous reserves contributed on average 41% of yolk and 29% of albumen. Results from this study suggest that female scaup can meet the protein needs of egg production largely from local dietary food sources. This highlights the importance of providing high-quality breeding habitats for scaup. Whether this pattern holds in areas with similar breeding season lengths but longer migration routes, such as those found in the western boreal forest, should be investigated.

  2. Apparatus for detecting and recognizing analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Vsevolodov, Nikolai N.; Elliott, Adam

    2010-12-14

    The invention contemplates apparatuses for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization patterns") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. Changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. Also, changes in the crystallization patterns, as well as the character of such changes, can be used as recognition elements in analysis of protein molecules.

  3. Generation of 3D templates of active sites of proteins with rigid prosthetic groups.

    PubMed

    Nebel, Jean-Christophe

    2006-05-15

    With the increasing availability of protein structures, the generation of biologically meaningful 3D patterns from the simultaneous alignment of several protein structures is an exciting prospect: active sites could be better understood, protein functions and protein 3D structures could be predicted more accurately. Although patterns can already be generated at the fold and topological levels, no system produces high-resolution 3D patterns including atom and cavity positions. To address this challenge, our research focuses on generating patterns from proteins with rigid prosthetic groups. Since these groups are key elements of protein active sites, the generated 3D patterns are expected to be biologically meaningful. In this paper, we present a new approach which allows the generation of 3D patterns from proteins with rigid prosthetic groups. Using 237 protein chains representing proteins containing porphyrin rings, our method was validated by comparing 3D templates generated from homologues with the 3D structure of the proteins they model. Atom positions were predicted reliably: 93% of them had an accuracy of 1.00 A or less. Moreover, similar results were obtained regarding chemical group and cavity positions. Results also suggested our system could contribute to the validation of 3D protein models. Finally, a 3D template was generated for the active site of human cytochrome P450 CYP17, the 3D structure of which is unknown. Its analysis showed that it is biologically meaningful: our method detected the main patterns of the cytochrome P450 superfamily and the motifs linked to catalytic reactions. The 3D template also suggested the position of a residue, which could be involved in a hydrogen bond with CYP17 substrates and the shape and location of a cavity. Comparisons with independently generated 3D models comforted these hypotheses. Alignment software (Nestor3D) is available at http://www.kingston.ac.uk/~ku33185/Nestor3D.html

  4. Relationship between perceived stress and dietary and activity patterns in older adults participating in the Boston Puerto Rican Health Study.

    PubMed

    Laugero, Kevin D; Falcon, Luis M; Tucker, Katherine L

    2011-02-01

    Previous research supports a relationship between psychological stress and chronic disease in Puerto Rican adults living in the Boston, Massachusetts area. Stress may affect health by influencing dietary and physical activity patterns. Therefore, perceived stress and two hypothesized mediators of stress-related food intake, insulin and cortisol, were examined for possible associations with dietary and activity patterns in >1300 Puerto Ricans (aged 45-75 years; 70% women) living in the Boston, Massachusetts area. Data were analyzed using multiple linear regression and ANCOVA. Greater perceived stress was associated with lower fruit, vegetable, and protein intake, greater consumption of salty snacks, and lower participation in physical activity. Stress was associated with higher intake of sweets, particularly in those with type 2 diabetes. Cortisol and stress were positively associated in those without diabetes. Cortisol was associated with higher intake of saturated fat and, in those with diabetes, sweet foods. Independent of diabetes, perceived stress was associated with higher circulating insulin and BMI. Our findings support a link between stress, cortisol, and dietary and activity patterns in this population. For high-sugar foods, this relationship may be particularly important in those with type 2 diabetes. Longitudinal research to determine causal pathways for these identified associations is warranted. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Relationship between perceived stress and dietary and activity patterns in older adults participating in the Boston Puerto Rican Health Study☆,☆☆

    PubMed Central

    Laugero, Kevin D.; Falcon, Luis M.; Tucker, Katherine L.

    2016-01-01

    Previous research supports a relationship between psychological stress and chronic disease in Puerto Rican adults living in the Boston, Massachusetts area. Stress may affect health by influencing dietary and physical activity patterns. Therefore, perceived stress and two hypothesized mediators of stress-related food intake, insulin and cortisol, were examined for possible associations with dietary and activity patterns in >1300 Puerto Ricans (aged 45–75 years; 70% women) living in the Boston, Massachusetts area. Data were analyzed using multiple linear regression and ANCOVA. Greater perceived stress was associated with lower fruit, vegetable, and protein intake, greater consumption of salty snacks, and lower participation in physical activity. Stress was associated with higher intake of sweets, particularly in those with type 2 diabetes. Cortisol and stress were positively associated in those without diabetes. Cortisol was associated with higher intake of saturated fat and, in those with diabetes, sweet foods. Independent of diabetes, perceived stress was associated with higher circulating insulin and BMI. Our findings support a link between stress, cortisol, and dietary and activity patterns in this population. For high-sugar foods, this relationship may be particularly important in those with type 2 diabetes. Longitudinal research to determine causal pathways for these identified associations is warranted. PMID:21070827

  6. Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats.

    PubMed

    Lunde, Ida G; Anton, Siobhan L; Bruusgaard, Jo C; Rana, Zaheer A; Ellefsen, Stian; Gundersen, Kristian

    2011-03-15

    Exercise influences muscle phenotype by the specific pattern of action potentials delivered to the muscle, triggering intracellular signalling pathways. PO2 can be reduced by an order of magnitude in working muscle. In humans, carriers of a hyperactive polymorphism of the transcription factor hypoxia inducible factor 1α (HIF-1α) have 50% more fast fibres, and this polymorphism is prevalent among strength athletes. We have investigated the putative role of HIF-1α in mediating activity changes in muscle.When rat muscles were stimulated with short high frequency bursts of action potentials known to induce a fast muscle phenotype, HIF-1α increased by about 80%. In contrast, a pattern consisting of long low frequency trains known to make fast muscles slow reduced the HIF-1α level of the fast extensor digitorum longus (EDL) muscle by 44%. Nuclear protein extracts from normal EDL contained 2.3-fold more HIF-1α and 4-fold more HIF-1β than the slow soleus muscle, while von-Hippel-Lindau protein was 4.8-fold higher in slow muscles. mRNA displayed a reciprocal pattern; thus FIH-1 mRNA was almost 2-fold higher in fast muscle, while the HIF-1α level was half, and consequently protein/mRNA ratio for HIF-1α was more than 4-fold higher in the fast muscle, suggesting that HIF-1α is strongly suppressed post-transcriptionally in slow muscles.When HIF-1α was overexpressed for 14 days after somatic gene transfer in adult rats, a slow-to-fast transformation was observed, encompassing an increase in fibre cross sectional area, oxidative enzyme activity and myosin heavy chain. The latter was shown to be regulated at the mRNA level in C2C12 myotubes.

  7. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification?

    PubMed

    Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin

    2014-01-01

    Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.

  8. Expression pattern of neuronal intermediate filament α-internexin in anterior pituitary gland and related tumors.

    PubMed

    Schult, D; Hölsken, A; Buchfelder, M; Schlaffer, S-M; Siegel, S; Kreitschmann-Andermahr, I; Fahlbusch, R; Buslei, R

    2015-08-01

    α-Internexin (INA) is a class IV neuronal intermediate filament protein that maintains the morphogenesis of neurons. It is expressed in developing neuroblasts and represents the major component of the cytoskeleton in cerebellar granule cells of adult central nervous system tissue. Data concerning INA expression in the human frontal pituitary lobe and related adenomas (PA) is missing. Using immunohistochemistry we examined the distribution pattern of INA in a large cohort of 152 PA, 11 atypical PA, 4 pituitary carcinomas and 20 normal pituitaries (overall n = 187). Quantity of INA protein expression was semi-quantitatively evaluated and grouped into five categories (0 = 0%; 1 = >0-5%; 2 = >5-35%; 3 = >35-80%; 4 = >80% of cells). Cellular staining intensity of INA appeared significantly higher in gonadotropinomas (Go, n = 62), null cell adenomas (NC, n = 7) and thyrotropinomas (TSHomas, n = 7) compared to the other tumor subtypes (p ≤ 0.001). Furthermore, Go and NC showed a peculiar pseudorosette-like staining pattern surrounding blood vessels in 85.5% (59/69) of cases. Interestingly, areas exhibiting homogenous INA staining were often associated with oncocytic cell changes and decreased immunohistochemically detectable hormone expression. Only 8.5% (8/94) of other PA showed a comparable INA distribution (p ≤ 0.001). Go, NC as well as TSHomas exhibit high levels of intracellular INA protein indicating neuronal transdifferentiation. A possible impact on pathogenesis and endocrine activity needs further investigation.

  9. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean.

    PubMed

    Wu, Jing; Wang, Lanfen; Wang, Shumin

    2016-09-07

    Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized. In the present study, 86 putative NAC TF proteins were identified from the common bean genome database and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily. These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns of the 20 drought-related NAC genes. Based on the common bean genome sequence, we analyzed the structural characteristics, genome distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes. Our results provide useful information for the functional characterization of common bean NAC genes and rich resources and opportunities for understanding common bean drought stress tolerance mechanisms.

  10. Thyroid hormone affects secretory activity and uncoupling protein-3 expression in rat harderian gland.

    PubMed

    Chieffi Baccari, Gabriella; Monteforte, Rossella; de Lange, Pieter; Raucci, Franca; Farina, Paola; Lanni, Antonia

    2004-07-01

    The effects of T(3) administration on the rat Harderian gland were examined at morphological, biochemical, and molecular levels. T(3) induced hypertrophy of the two cell types (A and B) present in the glandular epithelium. In type A cells, the hypertrophy was mainly due to an increase in the size of the lipid compartment. The acinar lumina were filled with lipoproteic substances, and the cells often showed an olocrine secretory pattern. In type B cells, the hypertrophy largely consisted of a marked proliferation of mitochondria endowed with tightly packed cristae, the mitochondrial number being nearly doubled (from 62 to 101/100 microm(2)). Although the average area of individual mitochondria decreased by about 50%, the total area of the mitochondrial compartment increased by about 80% (from 11 to 19/100 microm(2)). This could be ascribed to T(3)-induced mitochondrial proliferation. The morphological and morphometric data correlated well with our biochemical results, which indicated that mitochondrial respiratory activity is increased in hyperthyroid rats. T(3), by influencing the metabolic function of the mitochondrial compartment, induces lipogenesis and the release of secretory product by type A cells. Mitochondrial uncoupling proteins 2 and 3 were expressed at both mRNA and protein levels in the euthyroid rat Harderian gland. T(3) treatment increased the mRNA levels of both uncoupling protein 2 (UCP2) and UCP3, but the protein level only of UCP3. A possible role for these proteins in the Harderian gland is discussed.

  11. LocSigDB: a database of protein localization signals

    PubMed Central

    Negi, Simarjeet; Pandey, Sanjit; Srinivasan, Satish M.; Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    LocSigDB (http://genome.unmc.edu/LocSigDB/) is a manually curated database of experimental protein localization signals for eight distinct subcellular locations; primarily in a eukaryotic cell with brief coverage of bacterial proteins. Proteins must be localized at their appropriate subcellular compartment to perform their desired function. Mislocalization of proteins to unintended locations is a causative factor for many human diseases; therefore, collection of known sorting signals will help support many important areas of biomedical research. By performing an extensive literature study, we compiled a collection of 533 experimentally determined localization signals, along with the proteins that harbor such signals. Each signal in the LocSigDB is annotated with its localization, source, PubMed references and is linked to the proteins in UniProt database along with the organism information that contain the same amino acid pattern as the given signal. From LocSigDB webserver, users can download the whole database or browse/search for data using an intuitive query interface. To date, LocSigDB is the most comprehensive compendium of protein localization signals for eight distinct subcellular locations. Database URL: http://genome.unmc.edu/LocSigDB/ PMID:25725059

  12. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. The patterned substrates presenting neurotransmitter precursors selectively capture membrane-associated receptors. These advances provide new avenues for fabricating small-molecule arrays. Furthermore, a novel strategy based on a conventional microcontact printing, called chemical lift-off lithography, was invented to overcome the micrometer-scale resolution limits of molecular ink diffusion in soft lithography. Self-assembled monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive stamping process with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are believed to be responsible for removing not only alkanethiol molecules but also a monolayer of gold atoms from the substrates. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAMs acted as resists for etching exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.

  13. The Involvement of Thaumatin-Like Proteins in Plant Food Cross-Reactivity: A Multicenter Study Using a Specific Protein Microarray

    PubMed Central

    Palacín, Arantxa; Rivas, Luis A.; Gómez-Casado, Cristina; Aguirre, Jacobo; Tordesillas, Leticia; Bartra, Joan; Blanco, Carlos; Carrillo, Teresa; Cuesta-Herranz, Javier; Bonny, José A. Cumplido; Flores, Enrique; García-Alvarez-Eire, Mar G.; García-Nuñez, Ignacio; Fernández, Francisco J.; Gamboa, Pedro; Muñoz, Rosa; Sánchez-Monge, Rosa; Torres, Maria; Losada, Susana Varela; Villalba, Mayte; Vega, Francisco; Parro, Victor; Blanca, Miguel; Salcedo, Gabriel; Díaz-Perales, Araceli

    2012-01-01

    Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited >50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy. PMID:22970164

  14. A Novel Technique for Micro-patterning Proteins and Cells on Polyacrylamide Gels

    PubMed Central

    Tang, Xin; Ali, M. Yakut; Saif, M. Taher A.

    2012-01-01

    Spatial patterning of proteins (extracellular matrix, ECM) for living cells on polyacrylamide (PA) hydrogels has been technically challenging due to the compliant nature of the hydrogels and their aqueous environment. Traditional micro-fabrication process is not applicable. Here we report a simple, novel and general method to pattern a variety of commonly used cell adhesion molecules, i.e. Fibronectin (FN), Laminin (LN) and Collagen I (CN), etc. on PA gels. The pattern is first printed on a hydrophilic glass using polydimethylsiloxane (PDMS) stamp and micro-contact printing (μCP). Pre-polymerization solution is applied on the patterned glass and is then sandwiched by a functionalized glass slide, which covalently binds to the gel. The hydrophilic glass slide is then peeled off from the gel when the protein patterns detach from the glass, but remain intact with the gel. The pattern is thus transferred to the gel. The mechanism of pattern transfer is studied in light of interfacial mechanics. It is found that hydrophilic glass offers strong enough adhesion with ECM proteins such that a pattern can be printed, but weak enough adhesion such that they can be completely peeled off by the polymerized gel. This balance is essential for successful pattern transfer. As a demonstration, lines of FN, LN and CN with widths varying from 5–400 μm are patterned on PA gels. Normal fibroblasts (MKF) are cultured on the gel surfaces. The cell attachment and proliferation are confined within these patterns. The method avoids the use of any toxic chemistry often used to pattern different proteins on gel surfaces. PMID:23002394

  15. Modularity in protein structures: study on all-alpha proteins.

    PubMed

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  16. Patterning of supported lipid bilayers and proteins using material selective nitrodopamine-mPEG.

    PubMed

    Spycher, Philipp R; Hall, Heike; Vogel, Viola; Reimhult, Erik

    2015-01-01

    We present a generic patterning process by which biomolecules in a passivated background are patterned directly from physiological buffer to microfabricated surfaces without the need for further processing. First, nitrodopamine-mPEG is self-assembled to selectively render TiO2 patterns non-fouling to biomolecule adsorption on hydrophilic and adhesive glass surfaces. After the controlled TiO2 passivation, the biomolecules can be directly adsorbed from solution in a single step creating large scale micropatterned and highly homogeneous arrays of biomolecules with very high pattern definition. We demonstrate the formation of fluid supported lipid bilayers (SLBs) down to the single μm-level limited only by the photolithographic process. Non-specific adsorption of lipid vesicles to the TiO2 background was found to be almost completely suppressed. The SLB patterns can be further selectively functionalized with retained mobility, which we demonstrate through biotin-streptavidin coupling. We envision this single step patterning approach to be very beneficial for membrane-based biosensors and for pattering of cells on a passivated background with complex, sub-cellular geometries; in each application the adherent areas have a tunable mobility of interaction sites controlled by the fluidity of the membrane.

  17. Helium beam shadowing for high spatial resolution patterning of antibodies on microstructured diagnostic surfaces

    PubMed Central

    Cacao, Eliedonna; Sherlock, Tim; Nasrullah, Azeem; Kemper, Steven; Knoop, Jennifer; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E; Atmar, Robert L; Willson, Richard C

    2013-01-01

    Abstract We have developed a technique for the high-resolution, self-aligning, and high-throughput patterning of antibody binding functionality on surfaces by selectively changing the reactivity of protein-coated surfaces in specific regions of a workpiece with a beam of energetic helium particles. The exposed areas are passivated with bovine serum albumin (BSA) and no longer bind the antigen. We demonstrate that patterns can be formed (1) by using a stencil mask with etched openings that forms a patterned exposure, or (2) by using angled exposure to cast shadows of existing raised microstructures on the surface to form self-aligned patterns. We demonstrate the efficacy of this process through the patterning of anti-lysozyme, anti-Norwalk virus, and anti-Escherichia coli antibodies and the subsequent detection of each of their targets by the enzyme-mediated formation of colored or silver deposits, and also by binding of gold nanoparticles. The process allows for the patterning of three-dimensional structures by inclining the sample relative to the beam so that the shadowed regions remain unaltered. We demonstrate that the resolution of the patterning process is of the order of hundreds of nanometers, and that the approach is well-suited for high throughput patterning. PMID:24706125

  18. Proteomics analysis reveals a dynamic diurnal pattern of photosynthesis-related pathways in maize leaves.

    PubMed

    Feng, Dan; Wang, Yanwei; Lu, Tiegang; Zhang, Zhiguo; Han, Xiao

    2017-01-01

    Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level.

  19. Selective memory generalization by spatial patterning of protein synthesis

    PubMed Central

    O’Donnell, Cian; Sejnowski, Terrence J.

    2014-01-01

    Summary Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings we proposed a novel two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. PMID:24742462

  20. Selective memory generalization by spatial patterning of protein synthesis.

    PubMed

    O'Donnell, Cian; Sejnowski, Terrence J

    2014-04-16

    Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels

    NASA Astrophysics Data System (ADS)

    Deforest, Cole A.; Tirrell, David A.

    2015-05-01

    Although biochemically patterned hydrogels are capable of recapitulating many critical aspects of the heterogeneous cellular niche, exercising spatial and temporal control of the presentation and removal of biomolecular signalling cues in such systems has proved difficult. Here, we demonstrate a synthetic strategy that exploits two bioorthogonal photochemistries to achieve reversible immobilization of bioactive full-length proteins with good spatial and temporal control within synthetic, cell-laden biomimetic scaffolds. A photodeprotection-oxime-ligation sequence permits user-defined quantities of proteins to be anchored within distinct subvolumes of a three-dimensional matrix, and an ortho-nitrobenzyl ester photoscission reaction facilitates subsequent protein removal. By using this approach to pattern the presentation of the extracellular matrix protein vitronectin, we accomplished reversible differentiation of human mesenchymal stem cells to osteoblasts in a spatially defined manner. Our protein-patterning approach should provide further avenues to probe and direct changes in cell physiology in response to dynamic biochemical signalling.

  2. Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valley, Cary T.; Porter, Douglas F.; Qiu, Chen

    2012-06-28

    mRNA control hinges on the specificity and affinity of proteins for their RNA binding sites. Regulatory proteins must bind their own sites and reject even closely related noncognate sites. In the PUF [Pumilio and fem-3 binding factor (FBF)] family of RNA binding proteins, individual proteins discriminate differences in the length and sequence of binding sites, allowing each PUF to bind a distinct battery of mRNAs. Here, we show that despite these differences, the pattern of RNA interactions is conserved among PUF proteins: the two ends of the PUF protein make critical contacts with the two ends of the RNA sites.more » Despite this conserved 'two-handed' pattern of recognition, the RNA sequence is flexible. Among the binding sites of yeast Puf4p, RNA sequence dictates the pattern in which RNA bases are flipped away from the binding surface of the protein. Small differences in RNA sequence allow new modes of control, recruiting Puf5p in addition to Puf4p to a single site. This embedded information adds a new layer of biological meaning to the connections between RNA targets and PUF proteins.« less

  3. Computation of repetitions and regularities of biologically weighted sequences.

    PubMed

    Christodoulakis, M; Iliopoulos, C; Mouchard, L; Perdikuri, K; Tsakalidis, A; Tsichlas, K

    2006-01-01

    Biological weighted sequences are used extensively in molecular biology as profiles for protein families, in the representation of binding sites and often for the representation of sequences produced by a shotgun sequencing strategy. In this paper, we address three fundamental problems in the area of biologically weighted sequences: (i) computation of repetitions, (ii) pattern matching, and (iii) computation of regularities. Our algorithms can be used as basic building blocks for more sophisticated algorithms applied on weighted sequences.

  4. Sex- and Age-Related Differences in Ribosomal Proteins L17 and L37, as well as Androgen Receptor Protein, in the Song Control System of Zebra Finches

    PubMed Central

    Tang, Yu Ping; Wade, Juli

    2010-01-01

    The zebra finch song system is sexually dimorphic – only males sing, and the morphology of forebrain regions controlling the learning and production of this song is greatly enhanced in males compared to females. Masculinization appears to involve effects of steroid hormones as well as other factors, perhaps including the expression of sex chromosome genes (males: ZZ, females: ZW). The present study investigated three proteins – two encoded by Z-linked genes, ribosomal proteins L17 and L37 (RPL 17 and RPL37), including their co-localization with androgen receptor (AR), from post-hatching day 25 to adulthood. Extensive co-expression of AR with the ribosomal proteins was detected in the three song nuclei investigated (HVC, RA, and Area X) across these ages. In general, more cells expressed each of these proteins in males compared to females, and the sex differences increased as animals matured. Specific patterns differed across regions and between RPL17 and RPL37, which suggest potential roles of one or both of these proteins in the incorporation and/or differentiation of song system cells. PMID:20933575

  5. A Review on Potential of Proteins as an Excipient for Developing a Nano-Carrier Delivery System.

    PubMed

    Chakraborty, Amrita; Dhar, Pubali

    2017-01-01

    In neo-age research, nano-materials have emerged as potential tools for the revolution of diagnostic and therapeutic field because of their nano-scale effects, increased surface area-volume ratio, and other beneficial properties. For the last few decades, protein has been regarded as the most attractive and versatile natural bio-macromolecule among all of the available biopolymers. Protein is largely exploited as a nano-carrier system in the pharmaceutical industry due to its low cytotoxocity, biocompatibility, biodegradability, abundant renewable sources, significant attaching ability, clinically useful targeting, and site-specific efficient uptake. This review mainly emphasizes on the latest development and progress achieved in the utilization of protein as a nano-vehicle for a large number of therapeutics such as drugs, genes, hormones, enzymse, nutraceuticals, antibodies, peptides, etc. We also discuss the sources of protein materials, fabrication aspects, advantages, constraints, in vivo and in vitro studies and provide a comparative analysis between the different types of proteins as nano-carriers. The variation of the release pattern and molecular mechanism of the encapsulated molecule with respect to different protein types and various nano-structures are also highlighted here to explore the enormous promises of this novel approach.

  6. iDBPs: a web server for the identification of DNA binding proteins.

    PubMed

    Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2010-03-01

    The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. http://idbps.tau.ac.il/

  7. Changes in the pattern of protein synthesis during zoospore germination in Blastocladiella emersonii.

    PubMed Central

    Silva, A M; Maia, J C; Juliani, M H

    1987-01-01

    Using two-dimensional gel electrophoresis, we analyzed the pattern of proteins synthesized during Blastocladiella emersonii zoospore germination in an inorganic solution, in both the presence and absence of actinomycin D. During the transition from zoospore to round cells (the first 25 min), essentially no qualitative differences were noticeable, indicating that the earliest stages of germination are entirely preprogrammed with stored RNA. Later in germination (after 25 min), however, changes in the pattern of protein synthesis were found. Some of these proteins (a total of 6 polypeptides) correspond possibly to a selective translation of stored messages, whereas the majority of the changed proteins (22 polypeptides) corresponds to newly synthesized mRNA. Thus, multiple levels of protein synthesis regulation seem to occur during zoospore germination, involving both transcriptional and translational controls. We also analyzed the pattern of protein synthesis during germination in a nutrient medium; synthesis of specific polypeptides occurred during late germination. During early germination posttranslational control was also observed, several labeled proteins from zoospores being specifically degraded or charge modified. Images PMID:3571161

  8. Amino acid pair- and triplet-wise groupings in the interior of α-helical segments in proteins.

    PubMed

    de Sousa, Miguel M; Munteanu, Cristian R; Pazos, Alejandro; Fonseca, Nuno A; Camacho, Rui; Magalhães, A L

    2011-02-21

    A statistical approach has been applied to analyse primary structure patterns at inner positions of α-helices in proteins. A systematic survey was carried out in a recent sample of non-redundant proteins selected from the Protein Data Bank, which were used to analyse α-helix structures for amino acid pairing patterns. Only residues more than three positions apart from both termini of the α-helix were considered as inner. Amino acid pairings i, i+k (k=1, 2, 3, 4, 5), were analysed and the corresponding 20×20 matrices of relative global propensities were constructed. An analysis of (i, i+4, i+8) and (i, i+3, i+4) triplet patterns was also performed. These analysis yielded information on a series of amino acid patterns (pairings and triplets) showing either high or low preference for α-helical motifs and suggested a novel approach to protein alphabet reduction. In addition, it has been shown that the individual amino acid propensities are not enough to define the statistical distribution of these patterns. Global pair propensities also depend on the type of pattern, its composition and orientation in the protein sequence. The data presented should prove useful to obtain and refine useful predictive rules which can further the development and fine-tuning of protein structure prediction algorithms and tools. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Surface-directed capillary system; theory, experiments and applications.

    PubMed

    Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques

    2005-08-01

    We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.

  10. R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation.

    PubMed

    Kocer, Ayhan; Pinheiro, Iris; Pannetier, Maëlle; Renault, Lauriane; Parma, Pietro; Radi, Orietta; Kim, Kyung-Ah; Camerino, Giovanna; Pailhoux, Eric

    2008-04-02

    Up to now, two loci have been involved in XX sex-reversal in mammals following loss-of-function mutations, PIS (Polled Intersex Syndrome) in goats and R-spondin1 (RSPO1) in humans. Here, we analyze the possible interaction between these two factors during goat gonad development. Furthermore, since functional redundancy between different R-spondins may influence gonad development, we also studied the expression patterns of RSPO2, 3 and 4. Similarly to the mouse, RSPO1 shows a sex-dimorphic expression pattern during goat gonad development with higher levels in the ovaries. Interestingly, the PIS mutation does not seem to influence its level of expression. Moreover, using an RSPO1 specific antibody, the RSPO1 protein was localized in the cortical area of early differentiating ovaries (36 and 40 dpc). This cortical area contains the majority of germ cell that are surrounded by FOXL2 negative somatic cells. At latter stages (50 and 60 dpc) RSPO1 protein remains specifically localized on the germ cell membranes. Interestingly, a time-specific relocation of RSPO1 on the germ cell membrane was noticed, moving from a uniform distribution at 40 dpc to a punctuated staining before and during meiosis (50 and 60 dpc respectively). Interestingly, also RSPO2 and RSPO4 show a sex-dimorphic expression pattern with higher levels in the ovaries. Although RSPO4 was found to be faintly and belatedly expressed, the expression of RSPO2 increases at the crucial 36 dpc stage, as does that of FOXL2. Importantly, RSPO2 expression appears dramatically decreased in XX PIS-/- gonads at all three tested stages (36, 40 and 50 dpc). During goat ovarian development, the pattern of expression of RSPO1 is in agreement with its possible anti-testis function but is not influenced by the PIS mutation. Moreover, our data suggest that RSPO1 may be associated with germ cell development and meiosis. Interestingly, another RSPO gene, RSPO2 shows a sex-dimorphic pattern of expression that is dramatically influenced by the PIS mutation.

  11. R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation

    PubMed Central

    Kocer, Ayhan; Pinheiro, Iris; Pannetier, Maëlle; Renault, Lauriane; Parma, Pietro; Radi, Orietta; Kim, Kyung-Ah; Camerino, Giovanna; Pailhoux, Eric

    2008-01-01

    Background Up to now, two loci have been involved in XX sex-reversal in mammals following loss-of-function mutations, PIS (Polled Intersex Syndrome) in goats and R-spondin1 (RSPO1) in humans. Here, we analyze the possible interaction between these two factors during goat gonad development. Furthermore, since functional redundancy between different R-spondins may influence gonad development, we also studied the expression patterns of RSPO2, 3 and 4. Results Similarly to the mouse, RSPO1 shows a sex-dimorphic expression pattern during goat gonad development with higher levels in the ovaries. Interestingly, the PIS mutation does not seem to influence its level of expression. Moreover, using an RSPO1 specific antibody, the RSPO1 protein was localized in the cortical area of early differentiating ovaries (36 and 40 dpc). This cortical area contains the majority of germ cell that are surrounded by FOXL2 negative somatic cells. At latter stages (50 and 60 dpc) RSPO1 protein remains specifically localized on the germ cell membranes. Interestingly, a time-specific relocation of RSPO1 on the germ cell membrane was noticed, moving from a uniform distribution at 40 dpc to a punctuated staining before and during meiosis (50 and 60 dpc respectively). Interestingly, also RSPO2 and RSPO4 show a sex-dimorphic expression pattern with higher levels in the ovaries. Although RSPO4 was found to be faintly and belatedly expressed, the expression of RSPO2 increases at the crucial 36 dpc stage, as does that of FOXL2. Importantly, RSPO2 expression appears dramatically decreased in XX PIS-/- gonads at all three tested stages (36, 40 and 50 dpc). Conclusion During goat ovarian development, the pattern of expression of RSPO1 is in agreement with its possible anti-testis function but is not influenced by the PIS mutation. Moreover, our data suggest that RSPO1 may be associated with germ cell development and meiosis. Interestingly, another RSPO gene, RSPO2 shows a sex-dimorphic pattern of expression that is dramatically influenced by the PIS mutation. PMID:18384673

  12. Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development.

    PubMed

    Shi, Lu; Li, Lingyun; Wang, Ding; Li, Shu; Chen, Zhi; An, Zhengwen

    2016-06-01

    Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues.

  13. Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins

    PubMed Central

    Handfield, Louis-François; Chong, Yolanda T.; Simmons, Jibril; Andrews, Brenda J.; Moses, Alan M.

    2013-01-01

    Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images. PMID:23785265

  14. Composition and immunoreactivity of the A60 complex and other cell fractions from Mycobacterium bovis BCG.

    PubMed

    Cocito, C; Vanlinden, F

    1995-02-01

    Surface static cultures of Mycobacterium bovis BCG contained cells embedded in an extracellular matrix, whose mechanical removal yielded free cells that were pressure disrupted and fractionated into cytoplasm and walls. Cell envelopes were either mechanically disrupted or extracted with detergents. Intracellular and extracellular fractions were analysed for proteins, polysaccharides, and antigen 6O (A60), a major complex immunodominant in tuberculosis. A60 was present in extracellular matrix, cytoplasm and walls: it represented a substantial portion of the proteins and polysaccharides of these fractions. While the protein/polysaccharide ratio varied according to the origin of A60 preparations, the electrophoretic patterns of A60 proteins (which accounted for the immunogenicity of the complex) remained unchanged. Western blots pointed to the proteins present within the 29-45 kDa range as the A60 components endowed with the highest immunogenicity level. Since the most heavily stained protein bands in SDS-PAGE patterns were located outside the region best recognized by antisera, a striking discordance was found between concentration and immunogenicity patterns of A60 proteins. The electrophoretic patterns of A60- and non-A60-proteins from cytoplasm were also different. A60 complexes in dot blots and some electrophoresed A60 proteins reacted with monoclonal antibodies directed against lipoarabinomannan (LAM), a highly immunogenic polymer of cell envelope. This contaminating compound was removed from A60 with organic solvents and detergents. SDS-PAGE and Western blot patterns of proteins from delipidated A60 were similar to those of native A60 proteins.

  15. Sequence and Structure Analysis of Distantly-Related Viruses Reveals Extensive Gene Transfer between Viruses and Hosts and among Viruses

    PubMed Central

    Caprari, Silvia; Metzler, Saskia; Lengauer, Thomas; Kalinina, Olga V.

    2015-01-01

    The origin and evolution of viruses is a subject of ongoing debate. In this study, we provide a full account of the evolutionary relationships between proteins of significant sequence and structural similarity found in viruses that belong to different classes according to the Baltimore classification. We show that such proteins can be found in viruses from all Baltimore classes. For protein families that include these proteins, we observe two patterns of the taxonomic spread. In the first pattern, they can be found in a large number of viruses from all implicated Baltimore classes. In the other pattern, the instances of the corresponding protein in species from each Baltimore class are restricted to a few compact clades. Proteins with the first pattern of distribution are products of so-called viral hallmark genes reported previously. Additionally, this pattern is displayed by the envelope glycoproteins from Flaviviridae and Bunyaviridae and helicases of superfamilies 1 and 2 that have homologs in cellular organisms. The second pattern can often be explained by horizontal gene transfer from the host or between viruses, an example being Orthomyxoviridae and Coronaviridae hemagglutinin esterases. Another facet of horizontal gene transfer comprises multiple independent introduction events of genes from cellular organisms into otherwise unrelated viruses. PMID:26492264

  16. Application areas of 3D bioprinting.

    PubMed

    Ozbolat, Ibrahim T; Peng, Weijie; Ozbolat, Veli

    2016-08-01

    Three dimensional (3D) bioprinting has been a powerful tool in patterning and precisely placing biologics, including living cells, nucleic acids, drug particles, proteins and growth factors, to recapitulate tissue anatomy, biology and physiology. Since the first time of cytoscribing cells demonstrated in 1986, bioprinting has made a substantial leap forward, particularly in the past 10 years, and it has been widely used in fabrication of living tissues for various application areas. The technology has been recently commercialized by several emerging businesses, and bioprinters and bioprinted tissues have gained significant interest in medicine and pharmaceutics. This Keynote review presents the bioprinting technology and covers a first-time comprehensive overview of its application areas from tissue engineering and regenerative medicine to pharmaceutics and cancer research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Underdevelopment and the political economy of malnutrition and ill health.

    PubMed

    Chossudovsky, M

    1983-01-01

    This article applies Marx's abstract subdivision of social consumption to the prevailing patterns of capital accumulation in the Third World. Built-in scarcities in the availability of necessary consumer goods, alongside patterns of overconsumption and social waste by the upper-income groups, are conducive to conditions of mass poverty, malnutrition, and disease that coexist with small pockets of social privilege and affluence. Malnutrition and ill health must be understood and analyzed in relation to the dual and divided structure of social consumption: necessities of life as opposed to luxury and semi-luxury goods. The relationship between capital accumulation, the distribution of money income, and patterns of malnutrition and ill health is analyzed. It is shown that patterns of malnutrition and ill health are socially differentiated, and the core disease pattern in Third World social formations is discussed in relation to the material and social conditions of life which generate ill health and which underlie particular patterns of peripheral capital accumulation. The study focuses on empirical procedures for analyzing the relationship between levels of money income and levels of calorie and protein intake. An appendix outlines a methodology for estimating undernourishment in urban areas from household budget surveys.

  18. [Classification of cardiac amyloidosis: an immunohistochemical analysis].

    PubMed

    Li, L; Duan, X J; Sun, Y; Lu, Y; Xu, H Y; Wang, Q Z; Wang, H Y

    2018-02-08

    Objective: To evaluate the sensitivity and specificity of immunohistochemistry (IHC) in the classification of cardiac amyloidosis on endomyocardial biopsy (EMB) and heart allograft. Methods: Twenty cardiac tissues from 19 patients at Fuwai Hospital from January, 1990 to April, 2017 with histopathologic features of amyloidosis and Congo red staining positivity were included. IHC was performed with monoclonal antibodies against AA amyloid and polyclonal antibodies against transthyretin (ATTR), λ-light chain (AL-λ), κ-light chain (AL-κ), ApoAⅠ, ApoAⅡ, ApoA Ⅳ and β(2)-microglobin. The extent of interstitial staining was evaluated by light microscopy, and three patterns were recognized; these included diffuse pericellular pattern, discrete pericellular pattern, and nodular pattern. Two patterns of vascular deposition were also noted, including arterial pattern and venous pattern. Endocardial involvement was also assessed and recorded. Results: Nineteen cases were divided into three groups according to the pattern of proteins expression in specimens. The first group (5 cases) only showed single protein expression on EMB. The second group (6 cases) showed more than one protein expression, but one of them was intensely stained or any staining of any protein together with ApoA Ⅳ co-staining. The third group (8 cases) also showed more than one protein expression and all of them had intense staining. Amyloid deposits were successfully subtyped as AL-λ, ATTR, AL-κ and ApoAⅠby IHC in the former two groups with the sensitivity of 11/19. In the third group, amyloid deposits could not be subtyped by immunohistochemistry due to their poor specificity. The pericellular pattern tended to favor AL over ATTR amyloidosis and vascular deposition tended to favor ATTR. Conclusions: Amyloid deposits can be reliably subtyped in diagnostic cardiac specimens using IHC. The co-deposition of chaperon proteins, the distribution of amyloid proteins and clinical features are also auxiliary to subtype cardiac amyloidosis.

  19. Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA.

    PubMed

    Ons, Sheila; Martí, Octavi; Armario, Antonio

    2004-06-01

    Arc is an effector immediate early gene whose expression is induced in situations of increased neuronal activity. However, there is no report on the influence of stress on Arc expression. Here, we compared the induction of both c-fos and Arc mRNAs in the brain of rats exposed to one of three different stressful situations: novel environment, forced swimming and immobilization. An absent or weak c-fos mRNA signal was observed in control rats, whereas those exposed to one of three stressors showed enhanced c-fos expression in a wide range of brain areas. Constitutive Arc expression was observed in some areas such as cortex, striatum, hippocampus, reticular thalamic nucleus and cerebellar cortex. In response to stressors, a strong induction of Arc was observed, but the pattern was different from that of c-fos. For instance, activation of Arc but not c-fos was observed in the nucleus accumbens after immobilization and in the hippocampus after novel environment. No Arc induction was observed in diencephalic and brainstem areas. The present data show that Arc has a neuroanatomically restricted pattern of induction in the brain after emotional stress. Telencephalic activation suggests that a more intense induction of synaptic plasticity is occurring in this area after exposure to emotional stressors.

  20. Generation of Viable Cell and Biomaterial Patterns by Laser Transfer

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2001-03-01

    In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.

  1. Protein patterns of black fungi under simulated Mars-like conditions

    NASA Astrophysics Data System (ADS)

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-05-01

    Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.

  2. Protein patterns of black fungi under simulated Mars-like conditions

    PubMed Central

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-01-01

    Two species of microcolonial fungi – Cryomyces antarcticus and Knufia perforans - and a species of black yeasts–Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure. PMID:24870977

  3. Protein patterns of black fungi under simulated Mars-like conditions.

    PubMed

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-05-29

    Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.

  4. Proteomics analysis reveals a dynamic diurnal pattern of photosynthesis-related pathways in maize leaves

    PubMed Central

    Lu, Tiegang; Zhang, Zhiguo

    2017-01-01

    Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level. PMID:28732011

  5. Immunoblot analysis of immunoglobulin G response to the Lyme disease agent (Borrelia burgdorferi) in experimentally and naturally exposed dogs.

    PubMed Central

    Greene, R T; Walker, R L; Nicholson, W L; Heidner, H W; Levine, J F; Burgess, E C; Wyand, M; Breitschwerdt, E B; Berkhoff, H A

    1988-01-01

    Immunoblots were used to study the immunoglobulin G response to Borrelia burgdorferi in experimentally and naturally exposed dogs. Adsorption studies confirmed that the antibodies were specific for B. burgdorferi. Experimentally exposed dogs were asymptomatic. Naturally exposed dogs included both asymptomatic animals and animals showing signs compatible with Lyme disease. Naturally exposed dogs were from four geographic regions of the country. No differences were detected between immunoblot patterns of naturally exposed symptomatic or asymptomatic dogs from different areas of the country. The immunoblot patterns obtained with sera from experimentally exposed dogs were different from those obtained with sera from naturally exposed dogs and were characterized by reactivity to fewer and different protein bands. Immunoblot analysis using an OspA-protein-producing Escherichia coli recombinant showed that experimentally exposed dogs produced antibodies to OspA, whereas naturally exposed dogs did not. Modifications of the immune response over time, different routes of antigen presentation, and strain variation are factors postulated to account for the observed differences. Images PMID:3366860

  6. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  7. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings

    PubMed Central

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-01-01

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds. PMID:23015764

  8. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    PubMed

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  9. Predicting permanent and transient protein-protein interfaces.

    PubMed

    La, David; Kong, Misun; Hoffman, William; Choi, Youn Im; Kihara, Daisuke

    2013-05-01

    Protein-protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. Copyright © 2013 Wiley Periodicals, Inc.

  10. Further consideration of the clonal nature of Salmonella typhi: evaluation of molecular and clinical characteristics of strains from Indonesia and Peru.

    PubMed Central

    Franco, A; Gonzalez, C; Levine, O S; Lagos, R; Hall, R H; Hoffman, S L; Moechtar, M A; Gotuzzo, E; Levine, M M; Hone, D M

    1992-01-01

    We examined envelope protein profiles, chromosomal restriction endonuclease digest patterns, and immune responses to envelope proteins for collections of Salmonella typhi strains isolated in Peru and Indonesia. Only minor differences in envelope protein patterns were apparent among strains. Strains from 7 of 20 Indonesian patients had a distinct chromosomal digest pattern compared with patterns of Peruvian and other Indonesian strains. Strains with this pattern carried the gene for the j flagellar antigen (H1-j); differences in response to envelope proteins of j and d strains were noted on immunoblot analysis. Our data suggest that there are genotypic and phenotypic differences among S. typhi strains. The clinical importance of these differences remains to be fully evaluated; however, in this study it was not possible to show a clear correlation between strain characteristics and disease severity. Images PMID:1500532

  11. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    NASA Astrophysics Data System (ADS)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  12. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    PubMed Central

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-01-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. PMID:21974603

  13. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    PubMed

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics

  14. Comparative proteomic analysis of fluoride treated rat bone provides new insights into the molecular mechanisms of fluoride toxicity.

    PubMed

    Wei, Yan; Zeng, Beibei; Zhang, Hua; Chen, Cheng; Wu, Yanli; Wang, Nanlan; Wu, Yanqiu; Zhao, Danqing; Zhao, Yuxi; Iqbal, Javed; Shen, Liming

    2018-07-01

    Long-term excessive intake of fluoride (F) could lead to chronic fluorosis. To explore the underlying molecular mechanisms, present study is designed to elucidate the effect of fluoride on proteome expression of bone in sodium fluoride (NaF)-treated SD rats. Hematoxylin and eosin (H&E) staining was used to determine the severity of osteofluorosis, and bone samples were submitted for iTRAQ analysis. The results showed that the cortical thickness and trabecular area of femur bone in medium- and high-dose groups were higher than in control group. Contrary to this, trabecular area was reduced in the low-dose group, indicating that the bone mass was increased in medium- and high-dose groups, and decreased in the low-dose group. Thirteen (13), 35, and 34 differentially expressed proteins were identified in low-, medium-, and high-dose group, respectively. The medium- and high-dose groups shared a more similar protein expression pattern. These proteins were mainly associated with collagen metabolism, proteoglycans (PGs), matrix metalloproteinases (MMPs), etc. The results suggested that the effect of NaF on SD rats is in a dose-dependent manner. Some key proteins found here may be involved in affecting the bone tissues and bone marrow or muscle, and account for the complex pathology and clinical symptoms of fluorosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The potentiality of Trichoderma harzianum in alleviation the adverse effects of salinity in faba bean plants.

    PubMed

    Abd El-Baki, G K; Mostafa, Doaa

    2014-12-01

    The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.

  16. A novel Amoeba proteus 120 kDa actin-binding protein with only 1 filamin repeat and a coiled-coil region.

    PubMed

    Sobczak, Magdalena; Kocik, Elzbieta; Redowicz, Maria Jolanta

    2007-02-01

    A novel 120 kDa actin-binding protein (ApABP-F1) was found in Amoeba proteus. It was distributed throughout the cytoplasm, mainly in the subplasma membrane and perinuclear-nuclear areas, enriched in actin. The full-length cDNA of ApABP consisted of 2672 nucleotides with an open reading frame of 878 amino acids, giving a ~95 kDa protein with a theoretical pI value of 5.11. It had a novel domain organization pattern: the N terminus (residues 1-104) contained 1 calponin-homology (CH) domain, followed by only 1 region that was homologous to the filamin repeat (FR, residues 209-324), and a central region (residues 344-577) exhibiting a very high probability of coiled-coil formation, probably engaged in the observed protein dimerization. A phylogenetic tree constructed for CH domains from 25 various proteins revealed that the CH domain of ApABP was most related to that of the hypothetical mouse KIAA0903-like protein, whereas not much relationship to either filamins or the gelation factor (ABP-120) of Dictyostelium discoideum and Entamoeba histolytica was found.

  17. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution

    NASA Astrophysics Data System (ADS)

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-01

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed.

  18. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences.

    PubMed

    Ye, Kai; Kosters, Walter A; Ijzerman, Adriaan P

    2007-03-15

    Pattern discovery in protein sequences is often based on multiple sequence alignments (MSA). The procedure can be computationally intensive and often requires manual adjustment, which may be particularly difficult for a set of deviating sequences. In contrast, two algorithms, PRATT2 (http//www.ebi.ac.uk/pratt/) and TEIRESIAS (http://cbcsrv.watson.ibm.com/) are used to directly identify frequent patterns from unaligned biological sequences without an attempt to align them. Here we propose a new algorithm with more efficiency and more functionality than both PRATT2 and TEIRESIAS, and discuss some of its applications to G protein-coupled receptors, a protein family of important drug targets. In this study, we designed and implemented six algorithms to mine three different pattern types from either one or two datasets using a pattern growth approach. We compared our approach to PRATT2 and TEIRESIAS in efficiency, completeness and the diversity of pattern types. Compared to PRATT2, our approach is faster, capable of processing large datasets and able to identify the so-called type III patterns. Our approach is comparable to TEIRESIAS in the discovery of the so-called type I patterns but has additional functionality such as mining the so-called type II and type III patterns and finding discriminating patterns between two datasets. The source code for pattern growth algorithms and their pseudo-code are available at http://www.liacs.nl/home/kosters/pg/.

  19. Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification.

    PubMed

    Lu, Tzong-Shi; Yiao, Szu-Yu; Lim, Kenneth; Jensen, Roderick V; Hsiao, Li-Li

    2010-07-01

    The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. MATERIAL #ENTITYSTARTX00026; Differential protein expression patterns was assessed by western blot following protein quantification by the Lowry and Bradford methods. We have observed significant variations in protein concentrations following assessment with the Lowry versus Bradford methods, using identical samples. Greater variations in protein concentration readings were observed over time and in samples with higher concentrations, with the Bradford method. Identical samples quantified using both methods yielded significantly different expression patterns on Western blot. We show for the first time that methodical variations observed in these protein assay techniques, can potentially translate into differential protein expression patterns, that can be falsely taken to be biologically significant. Our study therefore highlights the pivotal need to carefully consider methodical approaches to protein quantification in techniques that report quantitative differences.

  20. Identification of clinical target areas in the brainstem of prion‐infected mice

    PubMed Central

    Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian

    2015-01-01

    Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251

  1. Protein functional features are reflected in the patterns of mRNA translation speed.

    PubMed

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  2. PIPE: a protein–protein interaction passage extraction module for BioCreative challenge

    PubMed Central

    Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian

    2016-01-01

    Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. Database URL: PMID:27524807

  3. Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells.

    PubMed

    Recouvreux, Pierre; Sokolowski, Thomas R; Grammoustianou, Aristea; ten Wolde, Pieter Rein; Dogterom, Marileen

    2016-02-16

    Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.

  4. Holographic Photolysis for Multiple Cell Stimulation in Mouse Hippocampal Slices

    PubMed Central

    Papagiakoumou, Eirini; Ventalon, Cathie; Angulo, María Cecilia; Emiliani, Valentina

    2010-01-01

    Background Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. Methods/Principal Findings The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. Conclusions/Significance We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically encoded photoactivatable proteins, photoactivatable fluorescent proteins, and voltage-sensitive dyes. PMID:20195547

  5. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.

    PubMed

    Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P

    2018-06-05

    Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.

  6. Sex- and age-related differences in ribosomal proteins L17 and L37, as well as androgen receptor protein, in the song control system of zebra finches.

    PubMed

    Tang, Y P; Wade, J

    2010-12-29

    The zebra finch song system is sexually dimorphic--only males sing, and the morphology of forebrain regions controlling the learning and production of this song is greatly enhanced in males compared to females. Masculinization appears to involve effects of steroid hormones as well as other factors, perhaps including the expression of sex chromosome genes (males: ZZ, females: ZW). The present study investigated three proteins--two encoded by Z-linked genes, ribosomal proteins L17 and L37 (RPL17 and RPL37), including their co-localization with androgen receptor (AR), from post-hatching day 25 to adulthood. Extensive co-expression of AR with the ribosomal proteins was detected in the three song nuclei investigated (HVC, robust nucleus of the arcopallium (RA), and Area X) across these ages. In general, more cells expressed each of these proteins in males compared to females, and the sex differences increased as animals matured. Specific patterns differed across regions and between RPL17 and RPL37, which suggest potential roles of one or both of these proteins in the incorporation and/or differentiation of song system cells. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. iDBPs: a web server for the identification of DNA binding proteins

    PubMed Central

    Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2010-01-01

    Summary: The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. Availability: http://idbps.tau.ac.il/ Contact: NirB@tauex.tau.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20089514

  8. Intrafocal heterogeneity of ERG protein expression and gene fusion pattern in prostate cancer.

    PubMed

    Suh, Ja Hee; Park, Jeong Hwan; Lee, Cheol; Moon, Kyung Chul

    2017-10-01

    Prostate cancer is considered to be highly heterogeneous, with various morphologic features and biologic behaviors. The TMPRSS2-ERG gene fusion is the most frequently observed genetic aberration in prostate cancer. The aim of this study was to elucidate the intrafocal heterogeneity of ERG gene fusion status. ERG immunohistochemistry (IHC) was performed in samples from 168 prostate cancer patients who had undergone radical prostatectomy, and 40 cases showing ERG-positive IHC staining were selected for tissue microarray (TMA) construction. Two to six representative cores were selected from each tumor focus. In the cases with heterogeneous ERG IHC staining intensity, the areas showing different intensities were separately selected. Using the TMA blocks, IHC and fluorescence in situ hybridization (FISH) were conducted to evaluate the heterogeneity of ERG protein expression and ERG fusion gene patterns, respectively, in a single tumor focus. Heterogeneity of ERG IHC staining was defined as the simultaneous presence of negative and positive cores in the same tumor focus. Heterogeneity of ERG FISH was defined by the presence of cores with positive and negative FISH signals or cores with break-apart and interstitial deletion FISH signals in the same tumor focus. A total of 202 TMA cores were isolated from 40 ERG-positive cases. Of the 202 total cores, 19 were negative for ERG IHC staining, and 46 showed 1+, 52 showed 2+, and 85 showed 3+ ERG staining intensity. Eleven cores were negative for ERG FISH signal, 119 cores showed ERG break-apart FISH signals, and the remaining 72 cores revealed interstitial deletion. Intrafocal heterogeneity of ERG IHC staining was found in 20% (8/40) of cases, and intrafocal heterogeneity of ERG gene fusion pattern was found in 32.5% (13/40) of cases. In summary, this study showed significantly frequent intrafocal heterogeneity of ERG protein expression, gene fusion status and fusion pattern. This heterogeneity can be caused by the development of subclones during cancer progression or the intermingling of different tumors. © 2017 Wiley Periodicals, Inc.

  9. Detection and recognition of analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA

    2008-05-06

    The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.

  10. Pattern formation by curvature-inducing proteins on spherical membranes

    NASA Astrophysics Data System (ADS)

    Agudo-Canalejo, Jaime; Golestanian, Ramin

    2017-12-01

    Spatial organisation is a hallmark of all living cells, and recreating it in model systems is a necessary step in the creation of synthetic cells. It is therefore of both fundamental and practical interest to better understand the basic mechanisms underlying spatial organisation in cells. In this work, we use a continuum model of membrane and protein dynamics to study the behaviour of curvature-inducing proteins on membranes of spherical shape, such as living cells or lipid vesicles. We show that the interplay between curvature energy, entropic forces, and the geometric constraints on the membrane can result in the formation of patterns of highly-curved/protein-rich and weakly-curved/protein-poor domains on the membrane. The spontaneous formation of such patterns can be triggered either by an increase in the average density of curvature-inducing proteins, or by a relaxation of the geometric constraints on the membrane imposed by the membrane tension or by the tethering of the membrane to a rigid cell wall or cortex. These parameters can also be tuned to select the size and number of the protein-rich domains that arise upon pattern formation. The very general mechanism presented here could be related to protein self-organisation in many biological processes, ranging from (proto)cell division to the formation of membrane rafts.

  11. Orthogonal chemical functionalization of patterned gold on silica surfaces

    PubMed Central

    Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane

    2015-01-01

    Summary Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge. PMID:26734519

  12. Immobilization, stabilization and patterning techniques for enzyme based sensor systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flounders, A.W.; Carichner, S.C.; Singh, A.K.

    1997-01-01

    Sandia National Laboratories has recently opened the Chemical and Radiation Detection Laboratory (CRDL) in Livermore CA to address the detection needs of a variety of government agencies (e.g., Department of Energy, Environmental Protection Agency, Department of Agriculture) as well as provide a fertile environment for the cooperative development of new industrial technologies. This laboratory consolidates a variety of existing chemical and radiation detection efforts and enables Sandia to expand into the novel area of biochemically based sensors. One aspect of this biosensor effort is further development and optimization of enzyme modified field effect transistors (EnFETs). Recent work has focused uponmore » covalent attachment of enzymes to silicon dioxide and silicon nitride surfaces for EnFET fabrication. They are also investigating methods to pattern immobilized proteins; a critical component for development of array-based sensor systems. Novel enzyme stabilization procedures are key to patterning immobilized enzyme layers while maintaining enzyme activity. Results related to maximized enzyme loading, optimized enzyme activity and fluorescent imaging of patterned surfaces will be presented.« less

  13. The Differential Expression of Sucrose Synthase in Relation to Diverse Patterns of Carbon Partitioning in Developing Cotton Seed.

    PubMed Central

    Ruan, Y. L.; Chourey, P. S.; Delmer, D. P.; Perez-Grau, L.

    1997-01-01

    Developing cotton (Gossypium hirsutum L.) seed exhibits complex patterns of carbon allocation in which incoming sucrose (Suc) is partitioned to three major sinks: the fibers, seed coat, and cotyledons, which synthesize cellulose, starch, and storage proteins or oils, respectively. In this study we investigated the role of Suc synthase (SuSy) in the mobilization of Suc into such sinks. Assessments of SuSy gene expression at various levels led to the surprising conclusion that, in contrast to that found for other plants, SuSy does not appear to play a role in starch synthesis in the cotton seed. However, our demonstration of functional symplastic connections between the phloem-unloading area and the fiber cells, as well as the SuSy expression pattern in fibers, indicates a major role of SuSy in partitioning carbon to fiber cellulose synthesis. SuSy expression is also high in transfer cells of the seed coat facing the cotyledons. Such high levels of SuSy could contribute to the synthesis of the thickened cell walls and to the energy generation for Suc efflux to the seed apoplast. The expression of SuSy in cotyledons also suggests a role in protein and lipid synthesis. In summary, the developing cotton seed provides an excellent example of the diverse roles played by SuSy in carbon metabolism. PMID:12223814

  14. Patterns of food abundance for breeding waterbirds in the san luis valley of Colorado

    USGS Publications Warehouse

    Gammonley, J.H.; Laubhan, M.K.

    2002-01-01

    We measured the amount and distribution of macroinvertebrates and seeds in four wetland habitats (short emergent, seasonal open water, semipermanent/permanent open water, and saltgrass [Distichlis spicata]) used by breeding ducks and shorebirds at a wetland complex in the San Luis Valley, Colorado, USA. Density of macroinvertebrates did not differ among habitats or sampling periods (P = 0.45), but dry mass, crude protein, and gross energy production were greater (P < 0.05) in short emergent than in other habitats. These differences were largely due to the greater dry mass of gastropods in short emergent than in other habitats. Total seed density, dry mass, crude protein, and gross energy differed among habitats and periods with interaction effects (P <0.01). Although seed abundance varied among habitats and sampling periods, abundance was greatest in short emergent during all sampling periods. Breeding waterbirds consumed a variety of macroinvertebrates and seeds on the study area. Patterns of abundance among habitats of macroinvertebrates and seeds consumed by six waterbird species were not consistent with patterns of foraging habitat use by most ducks and shorebirds at this wetland complex. Our results indicate that estimates of food or nutrient abundance are useful in assessing the functional role of broad habitat types, but factors other than food abundance also influence avian selection of wetland foraging habitats. ?? 2002, The Society of Wetland Scientists.

  15. MicroRNA networks in mouse lung organogenesis.

    PubMed

    Dong, Jie; Jiang, Guoqian; Asmann, Yan W; Tomaszek, Sandra; Jen, Jin; Kislinger, Thomas; Wigle, Dennis A

    2010-05-26

    MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.

  16. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.

    PubMed

    Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia

    2011-01-18

    The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.

  17. The 3of5 web application for complex and comprehensive pattern matching in protein sequences.

    PubMed

    Seiler, Markus; Mehrle, Alexander; Poustka, Annemarie; Wiemann, Stefan

    2006-03-16

    The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with the ability to find all solutions, without compromising the user friendliness of regular expression terms.

  18. Nutrient Content And Acceptability Of Snakehead-Fish (Ophiocephalus Striatus) And Pumpkin (Cucurbita Moschata) Based Complementary Foods

    NASA Astrophysics Data System (ADS)

    Ratna Noer, Etika; Candra, Aryu; Panunggal, Binar

    2017-02-01

    Poor nutrient-dense complementary foods is one of the common factors contributed for decline growth pattern in children. Snakehead-fish and Pumpkin Complementary Feeding (SPCF) base on locally food can help to reduce child malnutrition. Specifically, high protein and vitamin A in SPCF may improve immunity and nutrition status of malnutrition children. This study aimed to formulate low-cost, nutritive value and acceptable of SPCF on malnutrition children in coastal area. Carbohydrate content was determined by difference, protein by Kjeldahl, betacaroten by spectofotometri and sensory evaluation using a five point hedonic scale. Fe and zinc was determined by AAS. There is an effect of the substitution of snake-head fish flour and yellow pumpkin flour toward the nutrient content and the acceptability

  19. Skeletal muscle proteins: a new approach to delimitate the time since death.

    PubMed

    Foditsch, Elena Esra; Saenger, Alexandra Maria; Monticelli, Fabio Carlo

    2016-03-01

    Skeletal muscle tissue is proposed as a forensic model tissue with strong potential, as it is easily accessible and its true-to-life state structure and function is well known. Despite this strong potential, skeletal muscle degradation studies are rare. The aim of this study was to test if a skeletal muscle-based protein analysis is applicable to delimitate the time since death. Under standard conditions, two pigs were stored either at 22 °C for 5 days or 4 °C for 21 days. Their Mm. biceps femori were sampled periodically for analyses of ten skeletal muscle proteins postmortem. All analyzed proteins can serve as markers for a delimitation of the time since death. Desmin, nebulin, titin, and SERCA 1 displayed distinct protein patterns at certain points of time. The other five proteins, α-actinin, calsequestrin-1, laminin, troponin T-C, and SERCA 2, showed no degradation patterns within the analyzed postmortem time frame. Referring to specific skeletal muscle proteins, results showed short-term stabilities for just a minority of analyzed proteins, while the majority of investigated proteins displayed characteristics as long-term markers. Due to specific patterns and the possibility to determine definite constraints of the presence, absence, or pattern alterations of single proteins, the feasibility of porcine skeletal muscle as forensic model tissue is outlined and the potential of skeletal muscle as forensic model tissue is underlined, especially with respect to later postmortem phases, which so far lack feasible methods to delimitate the time since death.

  20. Distinctive Behaviors of Druggable Proteins in Cellular Networks

    PubMed Central

    Workman, Paul; Al-Lazikani, Bissan

    2015-01-01

    The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/. PMID:26699810

  1. Chemical composition, starch digestibility and antioxidant capacity of tortilla made with a blend of quality protein maize and black bean.

    PubMed

    Grajales-García, Eva M; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H; Bello-Pérez, Luis A

    2012-01-01

    Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics.

  2. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72hmore » functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.« less

  3. Pattern Recognition of Adsorbing HP Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew S.; Shi, Guangjie; Wüst, Thomas; Landau, David P.; Schmid, Friederike

    2015-03-01

    Protein adsorption is relevant in fields ranging from medicine to industry, and the qualitative behavior exhibited by course-grained models could shed insight for further research in such fields. Our study on the selective adsorption of lattice proteins utilizes the Wang-Landau algorithm to simulate the Hydrophobic-Polar (H-P) model with an efficient set of Monte Carlo moves. Each substrate is modeled as a square pattern of 9 lattice sites which attract either H or P monomers, and are located on an otherwise neutral surface. The fully enumerated set of 102 unique surfaces is simulated with each protein sequence. A collection of 27-monomer sequences is used- each of which is non-degenerate and protein-like. Thermodynamic quantities such as the specific heat and free energy are calculated from the density of states, and are used to investigate the adsorption of lattice proteins on patterned substrates. Research supported by NSF.

  4. Significant association between renal function and area of amyloid deposition in kidney biopsy specimens in both AA amyloidosis associated with rheumatoid arthritis and AL amyloidosis.

    PubMed

    Kuroda, Takeshi; Tanabe, Naohito; Hasegawa, Eriko; Wakamatsu, Ayako; Nozawa, Yukiko; Sato, Hiroe; Nakatsue, Takeshi; Wada, Yoko; Ito, Yumi; Imai, Naofumi; Ueno, Mitsuhiro; Nakano, Masaaki; Narita, Ichiei

    2017-06-01

    The kidney is a major target organ for systemic amyloidosis, which results in proteinuria and an elevated serum creatinine level. The clinical manifestations and precursor proteins of amyloid A (AA) and light-chain (AL) amyloidosis are different, and the renal damage due to amyloid deposition also seems to differ. The purpose of this study was to clarify haw the difference in clinical features between AA and AL amyloidosis are explained by the difference in the amount and distribution of amyloid deposition in the renal tissues. A total of 119 patients participated: 58 patients with an established diagnosis of AA amyloidosis (AA group) and 61 with AL amyloidosis (AL group). We retrospectively investigated the correlation between clinical data, pathological manifestations, and the area occupied by amyloid in renal biopsy specimens. In most of the renal specimens the percentage area occupied by amyloid was less than 10%. For statistical analyses, the percentage area of amyloid deposition was transformed to a common logarithmic value (Log 10 %amyloid). The results of sex-, age-, and Log 10 %amyloid-adjusted analyses showed that systolic blood pressure (SBP) was higher in the AA group. In terms of renal function parameters, serum creatinine, creatinine clearance (Ccr) and estimated glomerular filtration rate (eGFR) indicated significant renal impairment in the AA group, whereas urinary protein indicated significant renal impairment in the AL group. Pathological examinations revealed amyloid was predominantly deposited at glomerular basement membrane (GBM) and easily transferred to the mesangial area in the AA group, and it was predominantly deposited at in the AL group. The degree of amyloid deposition in the glomerular capillary was significantly more severe in AL group. The frequency of amyloid deposits in extraglomerular mesangium was not significantly different between the two groups, but in AA group, the degree amyloid deposition was significantly more severe, and the deposition pattern in the glomerulus was nodular. Nodular deposition in extraglomerular mesangium leads to renal impairment in AA group. There are significant differences between AA and AL amyloidosis with regard to the renal function, especially in terms of Ccr, eGFR and urinary protein, even after Log10%amyloid was adjusted; showing that these inter-group differences in renal function would not be depend on the amount of renal amyloid deposits. These differences could be explained by the difference in distribution and morphological pattern of amyloid deposition in the renal tissue.

  5. Abrupt loss of MLH1 and PMS2 expression in endometrial carcinoma: molecular and morphologic analysis of 6 cases.

    PubMed

    Pai, Rish K; Plesec, Thomas P; Abdul-Karim, Fadi W; Yang, Bin; Marquard, Jessica; Shadrach, Bonnie; Roma, Andres R

    2015-07-01

    Given that endometrial cancer (EC) is often the sentinel cancer for female Lynch syndrome patients, we have successfully implemented universal screening of ECs and have previously shown that this is the preferred method to identify these patients. However, during the course of universal screening of EC, we encountered 6 cases with an unusual pattern of mismatch-repair protein immunohistochemistry that has not been previously described in this setting. In these 6 cases, there was an abrupt loss of MLH1 and PMS2 expression in a portion of the tumor. In 3 cases, marked histologic differences were identified between the areas of the tumor with retained expression and areas with loss of expression. In 2 cases, the areas with loss of expression were of higher grade (1 demonstrated solid growth and the other demonstrated increased nuclear atypia with diffuse p53 expression). In 4 tumors, histologic features associated with microsatellite instability (MSI) were present, including increased intraepithelial lymphocytes. The areas with loss of and retained MLH1/PMS2 expression were separately microdissected and assessed for MSI and MLH1 promoter methylation. The areas with loss of MLH1 and PMS2 more commonly demonstrated MSI compared with the areas with intact expression (83% vs. 33%). MLH1 promoter methylation analysis demonstrated heterogenous hypermethylation, as all areas with loss of MLH1/PMS2 expression had more extensive methylation of MLH1 compared with those areas with retained expression. In summary, we describe the histologic and molecular features of 6 cases of EC with abrupt loss of MLH1 and PMS2 expression and demonstrate that heterogenous methylation of the MLH1 promoter results in this distinct and unusual pattern of immunohistochemical expression.

  6. Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine

    USGS Publications Warehouse

    Guerreiro, Isabel; Nunes, Andreia; Woltering, Joost M.; Casaca, Ana; Nóvoa, Ana; Vinagre, Tânia; Hunter, Margaret E.; Duboule, Denis; Mallo, Moisés

    2013-01-01

    Patterning of the vertebrate skeleton requires the coordinated activity of Hox genes. In particular, Hox10 proteins are essential to set the transition from thoracic to lumbar vertebrae because of their rib-repressing activity. In snakes, however, the thoracic region extends well into Hox10-expressing areas of the embryo, suggesting that these proteins are unable to block rib formation. Here, we show that this is not a result of the loss of rib-repressing properties by the snake proteins, but rather to a single base pair change in a Hox/Paired box (Pax)-responsive enhancer, which prevents the binding of Hox proteins. This polymorphism is also found in Paenungulata, such as elephants and manatees, which have extended rib cages. In vivo, this modified enhancer failed to respond to Hox10 activity, supporting its role in the extension of rib cages. In contrast, the enhancer could still interact with Hoxb6 and Pax3 to promote rib formation. These results suggest that a polymorphism in the Hox/Pax-responsive enhancer may have played a role in the evolution of the vertebrate spine by differently modulating its response to rib-suppressing and rib-promoting Hox proteins.

  7. Human Genomic Signatures of Brain Oscillations During Memory Encoding.

    PubMed

    Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve

    2018-05-01

    Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.

  8. Recent advances in inkjet dispensing technologies: applications in drug discovery.

    PubMed

    Zhu, Xiangcheng; Zheng, Qiang; Yang, Hu; Cai, Jin; Huang, Lei; Duan, Yanwen; Xu, Zhinan; Cen, Peilin

    2012-09-01

    Inkjet dispensing technology is a promising fabrication methodology widely applied in drug discovery. The automated programmable characteristics and high-throughput efficiency makes this approach potentially very useful in miniaturizing the design patterns for assays and drug screening. Various custom-made inkjet dispensing systems as well as specialized bio-ink and substrates have been developed and applied to fulfill the increasing demands of basic drug discovery studies. The incorporation of other modern technologies has further exploited the potential of inkjet dispensing technology in drug discovery and development. This paper reviews and discusses the recent developments and practical applications of inkjet dispensing technology in several areas of drug discovery and development including fundamental assays of cells and proteins, microarrays, biosensors, tissue engineering, basic biological and pharmaceutical studies. Progression in a number of areas of research including biomaterials, inkjet mechanical systems and modern analytical techniques as well as the exploration and accumulation of profound biological knowledge has enabled different inkjet dispensing technologies to be developed and adapted for high-throughput pattern fabrication and miniaturization. This in turn presents a great opportunity to propel inkjet dispensing technology into drug discovery.

  9. Evolution of reproductive proteins from animals and plants.

    PubMed

    Clark, Nathaniel L; Aagaard, Jan E; Swanson, Willie J

    2006-01-01

    Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.

  10. A Robust and Engineerable Self-Assembling Protein Template for the Synthesis and Patterning of Ordered Nanoparticle Arrays

    NASA Technical Reports Server (NTRS)

    McMillan, R. Andrew; Howard, Jeanie; Zaluzec, Nestor J.; Kagawa, Hiromi K.; Li, Yi-Fen; Paavola, Chad D.; Trent, Jonathan D.

    2004-01-01

    Self-assembling biomolecules that form highly ordered structures have attracted interest as potential alternatives to conventional lithographic processes for patterning materials. Here we introduce a general technique for patterning materials on the nanoscale using genetically modified protein cage structures called chaperonins that self-assemble into crystalline templates. Constrained chemical synthesis of transition metal nanoparticles is specific to templates genetically functionalized with poly-Histidine sequences. These arrays of materials are ordered by the nanoscale structure of the crystallized protein. This system may be easily adapted to pattern a variety of materials given the rapidly growing list of peptide sequences selected by screening for specificity for inorganic materials.

  11. [Applications of 2D and 3D landscape pattern indices in landscape pattern analysis of mountainous area at county level].

    PubMed

    Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na

    2012-05-01

    Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.

  12. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape of binding sites between concave and convex further, we discover that patterns {arg, glu, asp} and {arg, ser, asp} on the concave shape of binding sites in a protein more frequently (i.e. higher probability) make contact with {lys} or {arg} on the convex shape of binding sites in another protein. Thus, we can confidently achieve a rate of at least 78%. On the other hand {val, gly, lys} on the convex surface of binding sites in proteins is more frequently in contact with {asp} on the concave site of another protein, and the confidence achieved is over 81%. Applying data mining in biology can reveal more facts that may otherwise be ignored or not easily discovered by the naked eye. Furthermore, we can discover more relationships among AAs on binding sites by appropriately rotating these residues on binding sites from a three-dimension to two-dimension perspective. We designed a circular grid to deposit the data, which total to 463 records consisting of AAs. Then we used the association rules to mine these records for discovering relationships. The proposed method in this paper provides an insight into the characteristics of binding sites for recognition complexes. PMID:21464838

  13. Modeling the Hydration Layer around Proteins: Applications to Small- and Wide-Angle X-Ray Scattering

    PubMed Central

    Virtanen, Jouko Juhani; Makowski, Lee; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Small-/wide-angle x-ray scattering (SWAXS) experiments can aid in determining the structures of proteins and protein complexes, but success requires accurate computational treatment of solvation. We compare two methods by which to calculate SWAXS patterns. The first approach uses all-atom explicit-solvent molecular dynamics (MD) simulations. The second, far less computationally expensive method involves prediction of the hydration density around a protein using our new HyPred solvation model, which is applied without the need for additional MD simulations. The SWAXS patterns obtained from the HyPred model compare well to both experimental data and the patterns predicted by the MD simulations. Both approaches exhibit advantages over existing methods for analyzing SWAXS data. The close correspondence between calculated and observed SWAXS patterns provides strong experimental support for the description of hydration implicit in the HyPred model. PMID:22004761

  14. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  15. Proteomic analyses of signalling complexes associated with receptor tyrosine kinase identify novel members of fibroblast growth factor receptor 3 interactome.

    PubMed

    Balek, Lukas; Nemec, Pavel; Konik, Peter; Kunova Bosakova, Michaela; Varecha, Miroslav; Gudernova, Iva; Medalova, Jirina; Krakow, Deborah; Krejci, Pavel

    2018-01-01

    Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. In Silico Pattern-Based Analysis of the Human Cytomegalovirus Genome

    PubMed Central

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T.; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-01-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/). PMID:12634390

  17. Expression of c-Fes protein isoforms correlates with differentiation in myeloid leukemias.

    PubMed

    Carlson, Anne; Berkowitz, Jeanne McAdara; Browning, Damaris; Slamon, Dennis J; Gasson, Judith C; Yates, Karen E

    2005-05-01

    The cellular fes gene encodes a 93-kilodalton protein-tyrosine kinase (p93) that is expressed in both normal and neoplastic myeloid cells. Increased c-Fes expression is associated with differentiation in normal myeloid cells and cell lines. Our hypothesis was that primary leukemia cells would show a similar pattern of increased expression in more differentiated cells. Therefore, we compared c-Fes expression in cells with an undifferentiated, blast phenotype (acute myelogenous leukemia--AML) to cells with a differentiated phenotype (chronic myelogenous leukemia--CML). Instead of differences in p93 expression levels, we found complex patterns of c-Fes immunoreactive proteins that corresponded with differentiation in normal and leukemic myeloid cells. The "blast" pattern consisted of c-Fes immunoreactive proteins p93, p74, and p70; the "differentiated" pattern showed two additional c-Fes immunoreactive proteins, p67 and p62. Using mRNA from mouse and human cell lines, we found deletion of one or more exons in the c-fes mRNA. Those deletions predicted truncation of conserved domains (CDC15/FCH and SH2) involved in protein-protein interactions. No deletions were found, however, within the kinase domain. We infer that alternative splicing generates a family of c-Fes proteins. This may be a mechanism to direct the c-Fes kinase domain to different subcellular locations and/or substrates at specific stages of myeloid cell differentiation.

  18. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns.

    PubMed

    Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun

    2013-04-05

    To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species.

  19. In silico pattern-based analysis of the human cytomegalovirus genome.

    PubMed

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-04-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/).

  20. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    PubMed Central

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-01-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main. PMID:26553411

  1. [Parallel analysis of c-Fos protein and interleukin-2 expression in hypothalamic cells under different influence].

    PubMed

    Barabanova, S V; Artiukhina, Z E; Ovchinnikova, K T; Abramova, T V; Kazakova, T B; Khavinson, V Kh; Malinin, V V; Korneva, E A

    2007-02-01

    The objective of this work was to perform a parallel analysis of activation of the rat anterior hypothalamus cells as judged by c-Fos protein expression, and of the expression of interleukin-2 (IL-2) under different influences, i. e., mild stress (handling) and adaptation to it, and intranasal administration of saline and the peptides Vilon (Lys-Glu) and Epithalon (Ala-Glu-Asp-Gly). Changes in the counts of cells positive for c-Fos- and IL-2 proteins were studied in structures of the lateral (LHA) area, anterior (AHN), supraoptic (SO) and paraventricular (PVH) nuclei of Wistar rat hypothalamus. Quantity of the interleukin-2-positive and c-Fos-positive cells was calculated. The findings were: a negative correlation between the activation of cells and the amount of IL-2 in the cells in the hypothalamic structures under study, and the specific patterns of changes in the counts of cells positive for c-Fos and IL-2 under stress and adaptation to stress.

  2. The TALE face of Hox proteins in animal evolution.

    PubMed

    Merabet, Samir; Galliot, Brigitte

    2015-01-01

    Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom.

  3. The TALE face of Hox proteins in animal evolution

    PubMed Central

    Merabet, Samir; Galliot, Brigitte

    2015-01-01

    Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom. PMID:26347770

  4. SPLASH: structural pattern localization analysis by sequential histograms.

    PubMed

    Califano, A

    2000-04-01

    The discovery of sparse amino acid patterns that match repeatedly in a set of protein sequences is an important problem in computational biology. Statistically significant patterns, that is patterns that occur more frequently than expected, may identify regions that have been preserved by evolution and which may therefore play a key functional or structural role. Sparseness can be important because a handful of non-contiguous residues may play a key role, while others, in between, may be changed without significant loss of function or structure. Similar arguments may be applied to conserved DNA patterns. Available sparse pattern discovery algorithms are either inefficient or impose limitations on the type of patterns that can be discovered. This paper introduces a deterministic pattern discovery algorithm, called Splash, which can find sparse amino or nucleic acid patterns matching identically or similarly in a set of protein or DNA sequences. Sparse patterns of any length, up to the size of the input sequence, can be discovered without significant loss in performances. Splash is extremely efficient and embarrassingly parallel by nature. Large databases, such as a complete genome or the non-redundant SWISS-PROT database can be processed in a few hours on a typical workstation. Alternatively, a protein family or superfamily, with low overall homology, can be analyzed to discover common functional or structural signatures. Some examples of biologically interesting motifs discovered by Splash are reported for the histone I and for the G-Protein Coupled Receptor families. Due to its efficiency, Splash can be used to systematically and exhaustively identify conserved regions in protein family sets. These can then be used to build accurate and sensitive PSSM or HMM models for sequence analysis. Splash is available to non-commercial research centers upon request, conditional on the signing of a test field agreement. acal@us.ibm.com, Splash main page http://www.research.ibm.com/splash

  5. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution.

    PubMed

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-15

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nutritional Status and Daytime Pattern of Protein Intake on Match, Post-Match, Rest and Training Days in Senior Professional and Youth Elite Soccer Players.

    PubMed

    Bettonviel A, E O; Brinkmans N, Y J; Russcher, Kris; Wardenaar, Floris C; Witard, Oliver C

    2016-06-01

    The nutritional status of elite soccer players across match, postmatch, training and rest days has not been defined. Recent evidence suggests the pattern of dietary protein intake impacts the daytime turnover of muscle proteins and, as such, influences muscle recovery. We assessed the nutritional status and daytime pattern of protein intake in senior professional and elite youth soccer players and compared findings against published recommendations. Fourteen senior professional (SP) and 15 youth elite (YP) soccer players from the Dutch premier division completed nutritional assessments using a 24-hr web-based recall method. Recall days consisted of a match, postmatch, rest, and training day. Daily energy intake over the 4-day period was similar between SP (2988 ± 583 kcal/day) and YP (2938 ± 465 kcal/day; p = .800). Carbohydrate intake over the combined 4-day period was lower in SP (4.7 ± 0.7 g·kg-1 BM·day-1) vs. YP (6.0 ± 1.5 g·kg-1 BM·day-1, p = .006) and SP failed to meet recommended carbohydrate intakes on match and training days. Conversely, recommended protein intakes were met for SP (1.9 ± 0.3 g·kg-1 BM·day-1) and YP (1.7 ± 0.4 g·kg-1 BM·day-1), with no differences between groups (p = .286). Accordingly, both groups met or exceeded recommended daily protein intakes on individual match, postmatch, rest and training days. A similar "balanced" daytime pattern of protein intake was observed in SP and YP. To conclude, SP increased protein intake on match and training days to a greater extent than YP, however at the expense of carbohydrate intake. The daytime distribution of protein intake for YP and SP aligned with current recommendations of a balanced protein meal pattern.

  7. Within-day protein distribution does not influence body composition responses during weight loss in resistance-training adults who are overweight.

    PubMed

    Hudson, Joshua L; Kim, Jung Eun; Paddon-Jones, Douglas; Campbell, Wayne W

    2017-11-01

    Background: Emerging research suggests that redistributing total protein intake from 1 high-protein meal/d to multiple moderately high-protein meals improves 24-h muscle protein synthesis. Over time, this may promote positive changes in body composition. Objective: We sought to assess the effects of within-day protein intake distribution on changes in body composition during dietary energy restriction and resistance training. Design: In a randomized parallel-design study, 41 men and women [mean ± SEM age: 35 ± 2 y; body mass index (in kg/m 2 ): 31.5 ± 0.5] consumed an energy-restricted diet (750 kcal/d below the requirement) for 16 wk while performing resistance training 3 d/wk. Subjects consumed 90 g protein/d (1.0 ± 0.03 g · kg -1 · d -1 , 125% of the Recommended Dietary Allowance, at intervention week 1) in either a skewed (10 g at breakfast, 20 g at lunch, and 60 g at dinner; n = 20) or even (30 g each at breakfast, lunch, and dinner; n = 21) distribution pattern. Body composition was measured pre- and postintervention. Results: Over time, whole-body mass (least-squares mean ± SE: -7.9 ± 0.6 kg), whole-body lean mass (-1.0 ± 0.2 kg), whole-body fat mass (-6.9 ± 0.5 kg), appendicular lean mass (-0.7 ± 0.1 kg), and appendicular fat mass (-2.6 ± 0.2 kg) each decreased. The midthigh muscle area (0 ± 1 cm 2 ) did not change over time, whereas the midcalf muscle area decreased (-3 ± 1 cm 2 ). Within-day protein distribution did not differentially affect these body-composition responses. Conclusion: The effectiveness of dietary energy restriction combined with resistance training to improve body composition is not influenced by the within-day distribution of protein when adequate total protein is consumed. This trial was registered at clinicaltrials.gov as NCT02066948. © 2017 American Society for Nutrition.

  8. Inheritance patterns of enzymes and serum proteins of mallard-black duck hybrids

    USGS Publications Warehouse

    Morgan, R.P.; Meritt, D.W.; Block, S.B.; Cole, M.

    1984-01-01

    From 1974 to 1976, a breeding program was used to produce hybrids of black ducks and mallards for the evaluation of inheritance patterns of serum proteins and serum, liver and muscle enzymes. In addition to the crosses designed to produce hybrids, a series of matings in 1975 and 1976 were designed to evaluate inheritance patterns of a hybrid with either a black duck or mallard. At the F1 level, hybrids were easily distinguished using serum proteins. However, once a hybrid was crossed back to either a mallard or black duck, only 12-23% of the progeny were distinguishable from black ducks or mallards using serum proteins and 23-39% using esterases. Muscle, serum and liver enzymes were similar between the two species.

  9. Inheritance patterns of enzymes and serum proteins of mallard-black duck hybrids

    USGS Publications Warehouse

    Morgan, R.P.; Meritt, D.W.; Block, S.B.; Cole, M.A.; Sulkin, S.T.; Lee, F.B.; Henny, C.J.

    1984-01-01

    From 1974 to 1976, a breeding program was used to produce hybrids of black ducks and mallards for the evaluation of inheritance patterns of serum proteins and serum, liver and muscle enzymes. In addition to the crosses designed to produce hybrids, a series of matings in 1975 and 1976 were designed to evaluate inheritance patterns of a hybrid with either a black duck or mallard. At the F1 level, hybrids were easily distinguished using serum proteins. However, once a hybrid was crossed back to either a mallard or black duck, only 12?23% of the progeny were distinguishable from black ducks or mallards using serum proteins and 23?39% using esterases. Muscle, serum and liver enzymes were similar between the two species.

  10. Expanding protein universe and its origin from the biological Big Bang.

    PubMed

    Dokholyan, Nikolay V; Shakhnovich, Boris; Shakhnovich, Eugene I

    2002-10-29

    The bottom-up approach to understanding the evolution of organisms is by studying molecular evolution. With the large number of protein structures identified in the past decades, we have discovered peculiar patterns that nature imprints on protein structural space in the course of evolution. In particular, we have discovered that the universe of protein structures is organized hierarchically into a scale-free network. By understanding the cause of these patterns, we attempt to glance at the very origin of life.

  11. [Dietary patterns in college freshmen and its relation to bone mineral density].

    PubMed

    Wang, Sufang; Mu, Min; Zhao, Yan; Wang, Xiaoqin; Shu, Long; Li, Qingyan; Li, Yingchun

    2012-07-01

    In order to investigate the bone density of freshmen, and to analyze the association between dietary pattern and bone mineral density (BMD). A questionnaire survey on the situation of dietary pattern was conducted in 1414 freshmen. Effective dietary survey questionnaires and bone mineral density measurements were completed for 1319 participants. Bone mass was assessed by using an Ultrasound Bone Densitometer on the right calcaneus (CM-200, Furuno Electric Corporation, Japan), and the speed of sound (SOS, m/s) was used as an indicator for bone density. Factor analysis with varimax rotation was used to identify the dietary patterns. After adjusting for confounders, covariance with Bonferroni's was used to further examine the associations between dietary patterns and bone mineral density (BMD). (1) Four major dietary patterns were noticed. Western food pattern (high consumption in hamburger, fried food, nuts, biscuit, chocolate, cola, coffee, sugars). Animal protein pattern (high consumption in pork, mutton, beef, poultry meat, animal liver). Calcium pattern (high consumption in fresh fruits, eggs, fish and shrimps, kelp laver and sea fish, milk and dairy products, beans and bean products). Traditional Chinese pattern (high consumption in rice and grain, fresh fruits, fresh vegetables, pork). (2) No association was observed between the western food pattern and bone mineral density. High animal protein pattern showed lower SOS value compared with low animal protein pattern. High calcium pattern showed higher SOS value compared with low calcium pattern. High traditional Chinese pattern showed higher SOS value compared with the low traditional Chinese pattern. Dietary patterns are closely related with bone mineral density (BMD) of freshmen.

  12. Fos and FRA protein expression in rat nucleus paragigantocellularis lateralis during different space flight conditions.

    PubMed

    d'Ascanio, Paola; Centini, Claudia; Pompeiano, Maria; Pompeiano, Ottavio; Balaban, Evan

    2002-10-15

    The nucleus paragigantocellularis lateralis (LPGi) exerts a prominent excitatory influence over locus coeruleus (LC) neurons, which respond to gravity signals. We investigated whether adult albino rats exposed to different gravitational fields during the NASA Neurolab Mission (STS-90) showed changes in Fos and Fos-related antigen (FRA) protein expression in the LPGi and related cardiovascular, vasomotor, and respiratory areas. Fos and FRA proteins are induced rapidly by external stimuli and return to basal levels within hours (Fos) or days (FRA) after stimulation. Exposure to a light pulse (LP) 1 h prior to sacrifice led to increased Fos expression in subjects maintained for 2 weeks in constant gravity (either at approximately 0 or 1 G). Within 24 h of a gravitational change (launch or landing), the Fos response to LP was abolished. A significant Fos response was also induced by gravitational stimuli during landing, but not during launch. FRA responses to LP showed a mirror image pattern, with significant responses 24 h after launch and landing, but no responses after 2 weeks at approximately 0 or 1 G. There were no direct FRA responses to gravity changes. The juxtafacial and retrofacial parts of the LPGi, which integrate somatosensory/acoustic and autonomic signals, respectively, also showed gravity-related increases in LP-induced FRA expression 24 h after launch and landing. The neighboring nucleus ambiguus (Amb) showed completely different patterns of Fos and FRA expression, demonstrating the anatomical specificity of these results. Immediate early gene expression in the LPGi and related cardiovascular vasomotor and ventral respiratory areas may be directly regulated by excitatory afferents from vestibular gravity receptors. These structures could play an important role in shaping cardiovascular and respiratory function during adaptation to altered gravitational environments encountered during space flight and after return to earth. Copyright 2002 Elsevier Science Inc.

  13. Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus.

    PubMed

    Roldán; Perrotta; Cortey; Pla

    2000-10-05

    The systematic status and the evolutionary biology of chub mackerel (Scomber japonicus) in the South West Atlantic Ocean is confusing with an unknown degree of genetic differentiation and reproductive isolation between units. Simultaneous genetic and morphologic analyses were made on 227 fish collected from two areas of the South West Atlantic Ocean and one from the Mediterranean Sea. The genetic analysis was based on 36 protein-coding loci, 16 of which were variable. The morphologic analyses include six morphometric length measurements and a meristic character. Correspondence between genetic and morphologic variability patterns indicates isolated Mediterranean and Southwest Atlantic subgroups of S. japonicus and, less clearly, possible additional divergence in two regional stocks within the latter group. The most conservative approach to management is to manage the stocks independently of one another.

  14. Identification of Biomarkers Associated with the Healing of Chronic Wounds

    DTIC Science & Technology

    2015-11-01

    The analysis of the wound fluid began with a broad survey tool Kinex™ Antibody Microarray (KAM) a single dye , non-competitive sample binding...signaling proteins. Lysate protein from each sample was covalently labeled with a fluorescent dye combination. Free dye molecules were then...patterned structures is controlled by varying their pattern geometry. The biodegradation of micro-patterned structures is modeled geometrically based on

  15. Leucine-rich Repeats of Bacterial Surface Proteins Serve as Common Pattern Recognition Motifs of Human Scavenger Receptor gp340*

    PubMed Central

    Loimaranta, Vuokko; Hytönen, Jukka; Pulliainen, Arto T.; Sharma, Ashu; Tenovuo, Jorma; Strömberg, Nicklas; Finne, Jukka

    2009-01-01

    Scavenger receptors are innate immune molecules recognizing and inducing the clearance of non-host as well as modified host molecules. To recognize a wide pattern of invading microbes, many scavenger receptors bind to common pathogen-associated molecular patterns, such as lipopolysaccharides and lipoteichoic acids. Similarly, the gp340/DMBT1 protein, a member of the human scavenger receptor cysteine-rich protein family, displays a wide ligand repertoire. The peptide motif VEVLXXXXW derived from its scavenger receptor cysteine-rich domains is involved in some of these interactions, but most of the recognition mechanisms are unknown. In this study, we used mass spectrometry sequencing, gene inactivation, and recombinant proteins to identify Streptococcus pyogenes protein Spy0843 as a recognition receptor of gp340. Antibodies against Spy0843 are shown to protect against S. pyogenes infection, but no function or host receptor have been identified for the protein. Spy0843 belongs to the leucine-rich repeat (Lrr) family of eukaryotic and prokaryotic proteins. Experiments with truncated forms of the recombinant proteins confirmed that the Lrr region is needed in the binding of Spy0843 to gp340. The same motif of two other Lrr proteins, LrrG from the Gram-positive S. agalactiae and BspA from the Gram-negative Tannerella forsythia, also mediated binding to gp340. Moreover, inhibition of Spy0843 binding occurred with peptides containing the VEVLXXXXW motif, but also peptides devoid of the XXXXW motif inhibited binding of Lrr proteins. These results thus suggest that the conserved Lrr motif in bacterial proteins serves as a novel pattern recognition motif for unique core peptides of human scavenger receptor gp340. PMID:19465482

  16. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease.

    PubMed

    Garcia-Esparcia, Paula; Hernández-Ortega, Karina; Koneti, Anusha; Gil, Laura; Delgado-Morales, Raul; Castaño, Ester; Carmona, Margarita; Ferrer, Isidre

    2015-12-01

    Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell sorter (FACS)-isolated nuclei in the frontal cortex in PD. Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.

  17. Fractal symmetry of protein interior: what have we learned?

    PubMed

    Banerji, Anirban; Ghosh, Indira

    2011-08-01

    The application of fractal dimension-based constructs to probe the protein interior dates back to the development of the concept of fractal dimension itself. Numerous approaches have been tried and tested over a course of (almost) 30 years with the aim of elucidating the various facets of symmetry of self-similarity prevalent in the protein interior. In the last 5 years especially, there has been a startling upsurge of research that innovatively stretches the limits of fractal-based studies to present an array of unexpected results on the biophysical properties of protein interior. In this article, we introduce readers to the fundamentals of fractals, reviewing the commonality (and the lack of it) between these approaches before exploring the patterns in the results that they produced. Clustering the approaches in major schools of protein self-similarity studies, we describe the evolution of fractal dimension-based methodologies. The genealogy of approaches (and results) presented here portrays a clear picture of the contemporary state of fractal-based studies in the context of the protein interior. To underline the utility of fractal dimension-based measures further, we have performed a correlation dimension analysis on all of the available non-redundant protein structures, both at the level of an individual protein and at the level of structural domains. In this investigation, we were able to separately quantify the self-similar symmetries in spatial correlation patterns amongst peptide-dipole units, charged amino acids, residues with the π-electron cloud and hydrophobic amino acids. The results revealed that electrostatic environments in the interiors of proteins belonging to 'α/α toroid' (all-α class) and 'PLP-dependent transferase-like' domains (α/β class) are highly conducive. In contrast, the interiors of 'zinc finger design' ('designed proteins') and 'knottins' ('small proteins') were identified as folds with the least conducive electrostatic environments. The fold 'conotoxins' (peptides) could be unambiguously identified as one type with the least stability. The same analyses revealed that peptide-dipoles in the α/β class of proteins, in general, are more correlated to each other than are the peptide-dipoles in proteins belonging to the all-α class. Highly favorable electrostatic milieu in the interiors of TIM-barrel, α/β-hydrolase structures could explain their remarkably conserved (evolutionary) stability from a new light. Finally, we point out certain inherent limitations of fractal constructs before attempting to identify the areas and problems where the implementation of fractal dimension-based constructs can be of paramount help to unearth latent information on protein structural properties.

  18. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    PubMed

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  19. Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA.

    PubMed

    Ikeya, Teppei; Terauchi, Tsutomu; Güntert, Peter; Kainosho, Masatsune

    2006-07-01

    Recently we have developed the stereo-array isotope labeling (SAIL) technique to overcome the conventional molecular size limitation in NMR protein structure determination by employing complete stereo- and regiospecific patterns of stable isotopes. SAIL sharpens signals and simplifies spectra without the loss of requisite structural information, thus making large classes of proteins newly accessible to detailed solution structure determination. The automated structure calculation program CYANA can efficiently analyze SAIL-NOESY spectra and calculate structures without manual analysis. Nevertheless, the original SAIL method might not be capable of determining the structures of proteins larger than 50 kDa or membrane proteins, for which the spectra are characterized by many broadened and overlapped peaks. Here we have carried out simulations of new SAIL patterns optimized for minimal relaxation and overlap, to evaluate the combined use of SAIL and CYANA for solving the structures of larger proteins and membrane proteins. The modified approach reduces the number of peaks to nearly half of that observed with uniform labeling, while still yielding well-defined structures and is expected to enable NMR structure determinations of these challenging systems.

  20. Boltzmann Energy-based Image Analysis Demonstrates that Extracellular Domain Size Differences Explain Protein Segregation at Immune Synapses

    PubMed Central

    Burroughs, Nigel J.; Köhler, Karsten; Miloserdov, Vladimir; Dustin, Michael L.; van der Merwe, P. Anton; Davis, Daniel M.

    2011-01-01

    Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell) or KIR (NK cell). However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D) and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell∶cell communication and cell signalling, governing protein interactions and protein aggregation. PMID:21829338

  1. Patterns of Expression in the Matrix Proteins Responsible for Nucleation and Growth of Aragonite Crystals in Flat Pearls of Pinctada fucata

    PubMed Central

    Xiang, Liang; Su, Jingtan; Zheng, Guilan; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2013-01-01

    The initial growth of the nacreous layer is crucial for comprehending the formation of nacreous aragonite. A flat pearl method in the presence of the inner-shell film was conducted to evaluate the role of matrix proteins in the initial stages of nacre biomineralization in vivo. We examined the crystals deposited on a substrate and the expression patterns of the matrix proteins in the mantle facing the substrate. In this study, the aragonite crystals nucleated on the surface at 5 days in the inner-shell film system. In the film-free system, the calcite crystals nucleated at 5 days, a new organic film covered the calcite, and the aragonite nucleated at 10 days. This meant that the nacre lamellae appeared in the inner-shell film system 5 days earlier than that in the film-free system, timing that was consistent with the maximum level of matrix proteins during the first 20 days. In addition, matrix proteins (Nacrein, MSI60, N19, N16 and Pif80) had similar expression patterns in controlling the sequential morphologies of the nacre growth in the inner-film system, while these proteins in the film-free system also had similar patterns of expression. These results suggest that matrix proteins regulate aragonite nucleation and growth with the inner-shell film in vivo. PMID:23776687

  2. Expression and regulation of Sef, a novel signaling inhibitor of receptor tyrosine kinases-mediated signaling in the nervous system.

    PubMed

    Grothe, Claudia; Claus, Peter; Haastert, Kirsten; Lutwak, Ela; Ron, Dina

    2008-01-01

    Fibroblast growth factors (FGFs) signal via four distinct high affinity cell surface tyrosine kinase receptors, termed FGFR1-FGFR4 (FGFR-FGF-receptor). Recently, a new modulator of the FGF signaling pathway, the transmembrane protein 'similar expression to FGF genes' (Sef), has been identified in zebrafish and subsequently in mammals. Sef from mouse and human inhibits FGF mitogenic activity. In the present study, we analyzed the expression of Sef in distinct rat brain areas, in the spinal cord and in peripheral nerves and spinal ganglia using semi-quantitative RT-PCR. Furthermore, we studied the cellular expression pattern of Sef in intact spinal ganglia and sciatic nerves and, in addition, after crush lesion, using in situ hybridization and immunohistochemistry. Sef transcripts were expressed in all brain areas evaluated and in the spinal cord. A neuronal expression was found in both intact and injured spinal ganglia. Intact sciatic nerves, however, showed little or no Sef expression. Seven days after injury, high Sef expression was concentrated to the crush site, and Schwann cells seemed to be the source of Sef. The labeling pattern of up-regulated Sef was complementary to the patterns of FGF-2 and FGFR1-3, which were localized proximal and distal to the crush site. These results suggest an involvement of Sef during the nerve regeneration process, possibly by fine-tuning the effects of FGF signaling.

  3. Aggrecan-based extracellular matrix shows unique cortical features and conserved subcortical principles of mammalian brain organization in the Madagascan lesser hedgehog tenrec (Echinops telfairi Martin, 1838).

    PubMed

    Morawski, M; Brückner, G; Jäger, C; Seeger, G; Künzle, H; Arendt, T

    2010-02-03

    The Madagascan tenrecs (Afrotheria), an ancient mammalian clade, are characterized by unique brain anatomy. Striking features are an expanded paleocortex but a small and poorly differentiated neocortex devoid of a distinct granular layer IV. To investigate the organization of cortical areas we analyzed extracellular matrix components in perineuronal nets (PNs) using antibodies to aggrecan, lectin staining and hyaluronan-binding protein. Selected subcortical regions were studied to correlate the cortical patterns with features in evolutionary conserved systems. In the neocortex, paleocortex and hippocampus PNs were associated with nonpyramidal neurons. Quantitative analysis in the cerebral cortex revealed area-specific proportions and laminar distribution patterns of neurons ensheathed by PNs. Cortical PNs showed divergent structural phenotypes. Diffuse PNs forming a cotton wool-like perisomatic rim were characteristic of the paleocortex. These PNs were associated with a dense pericellular plexus of calretinin-immunoreactive fibres. Clearly contoured PNs were devoid of a calretinin-positive plexus and predominated in the neocortex and hippocampus. The organization of the extracellular matrix in subcortical nuclei followed the widely distributed mammalian type. We conclude that molecular properties of the aggrecan-based extracellular matrix are conserved during evolution of mammals; however, the matrix scaffold is adapted to specific wiring patterns of cortical and subcortical neuronal networks. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Protein subcellular location pattern classification in cellular images using latent discriminative models.

    PubMed

    Li, Jieyue; Xiong, Liang; Schneider, Jeff; Murphy, Robert F

    2012-06-15

    Knowledge of the subcellular location of a protein is crucial for understanding its functions. The subcellular pattern of a protein is typically represented as the set of cellular components in which it is located, and an important task is to determine this set from microscope images. In this article, we address this classification problem using confocal immunofluorescence images from the Human Protein Atlas (HPA) project. The HPA contains images of cells stained for many proteins; each is also stained for three reference components, but there are many other components that are invisible. Given one such cell, the task is to classify the pattern type of the stained protein. We first randomly select local image regions within the cells, and then extract various carefully designed features from these regions. This region-based approach enables us to explicitly study the relationship between proteins and different cell components, as well as the interactions between these components. To achieve these two goals, we propose two discriminative models that extend logistic regression with structured latent variables. The first model allows the same protein pattern class to be expressed differently according to the underlying components in different regions. The second model further captures the spatial dependencies between the components within the same cell so that we can better infer these components. To learn these models, we propose a fast approximate algorithm for inference, and then use gradient-based methods to maximize the data likelihood. In the experiments, we show that the proposed models help improve the classification accuracies on synthetic data and real cellular images. The best overall accuracy we report in this article for classifying 942 proteins into 13 classes of patterns is about 84.6%, which to our knowledge is the best so far. In addition, the dependencies learned are consistent with prior knowledge of cell organization. http://murphylab.web.cmu.edu/software/.

  5. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  6. Extraction of consensus protein patterns in regions containing non-proline cis peptide bonds and their functional assessment.

    PubMed

    Exarchos, Konstantinos P; Exarchos, Themis P; Rigas, Georgios; Papaloukas, Costas; Fotiadis, Dimitrios I

    2011-05-10

    In peptides and proteins, only a small percentile of peptide bonds adopts the cis configuration. Especially in the case of amide peptide bonds, the amount of cis conformations is quite limited thus hampering systematic studies, until recently. However, lately the emerging population of databases with more 3D structures of proteins has produced a considerable number of sequences containing non-proline cis formations (cis-nonPro). In our work, we extract regular expression-type patterns that are descriptive of regions surrounding the cis-nonPro formations. For this purpose, three types of pattern discovery are performed: i) exact pattern discovery, ii) pattern discovery using a chemical equivalency set, and iii) pattern discovery using a structural equivalency set. Afterwards, using each pattern as predicate, we search the Eukaryotic Linear Motif (ELM) resource to identify potential functional implications of regions with cis-nonPro peptide bonds. The patterns extracted from each type of pattern discovery are further employed, in order to formulate a pattern-based classifier, which is used to discriminate between cis-nonPro and trans-nonPro formations. In terms of functional implications, we observe a significant association of cis-nonPro peptide bonds towards ligand/binding functionalities. As for the pattern-based classification scheme, the highest results were obtained using the structural equivalency set, which yielded 70% accuracy, 77% sensitivity and 63% specificity.

  7. Developmental Differences in Embryos of High and Low Protein Wheat Seeds during Germination 1

    PubMed Central

    Ching, Te May; Rynd, Lori

    1978-01-01

    Developmental patterns of embryos from high and low protein wheat (Triticum aestivum) grain produced under varied fertilizer conditions were compared. High protein grain produced seedlings 25% heavier with 25% more total RNA, 30% more DNA, 40% more amino acids, 60% more ribosomes, and 80% more soluble protein content than that of low protein seed. Consistently higher glutamine synthetase and α-amylase and lower acid phosphatase activities were observed in high protein seeds, though the isozyme pattern of α-amylase was not different in the two kinds of seeds. The high total ribosomes and particularly, polysome content observed in high protein seeds may be responsible for the rapid growth and high yield of these seeds. PMID:16660627

  8. Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    PubMed

    Lewis, Jada; Dickson, Dennis W

    2016-01-01

    Tau is a microtubule-associated protein and a key regulator of microtubule stabilization as well as the main component of neurofibrillary tangles-a principle neuropathological hallmark of Alzheimer's disease (AD)-as well as pleomorphic neuronal and glial inclusions in neurodegenerative tauopathies. Cross-sectional studies of neurofibrillary pathology in AD reveal a stereotypic spatiotemporal pattern of neuronal vulnerability that correlates with disease severity; however, the relationship of this pattern to disease progression is less certain and exceptions to the typical pattern have been described in a subset of AD patients. The basis for the selective vulnerability of specific populations of neurons to tau pathology and cell death is largely unknown, although there have been a number of hypotheses based upon shared properties of vulnerable neurons (e.g., degree of axonal myelination or synaptic plasticity). A recent hypothesis for selective vulnerability takes into account the emerging science of functional connectivity based upon resting state functional magnetic resonance imaging, where subsets of neurons that fire synchronously define patterns of degeneration similar to specific neurodegenerative disorders, including various tauopathies. In the past 6 years, the concept of tau propagation has emerged from numerous studies in cell and animal models suggesting that tau moves from cell-to-cell and that this may trigger aggregation and region-to-region spread of tau pathology within the brain. How the spread of tau pathology relates to functional connectivity is an area of active investigation. Observations of templated folding and propagation of tau have prompted comparisons of tau to prions, the pathogenic proteins in transmissible spongiform encephalopathies. In this review, we discuss the most compelling studies in the field, discuss their shortcomings and consider their implications with respect to human tauopathies as well as the controversy that tauopathies may be prion-like disorders.

  9. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning.

    PubMed

    Lee, M M; Schiefelbein, J

    1999-11-24

    The formation of the root epidermis of Arabidopsis provides a simple and elegant model for the analysis of cell patterning. A novel gene, WEREWOLF (WER), is described here that is required for position-dependent patterning of the epidermal cell types. The WER gene encodes a MYB-type protein and is preferentially expressed within cells destined to adopt the non-hair fate. Furthermore, WER is shown to regulate the position-dependent expression of the GLABRA2 homeobox gene, to interact with a bHLH protein, and to act in opposition to the CAPRICE MYB. These results suggest a simple model to explain the specification of the two root epidermal cell types, and they provide insight into the molecular mechanisms used to control cell patterning.

  10. Sensing disease and danger: A survey of vertebrate PRRs and their origins

    USGS Publications Warehouse

    Hansen, John D.; Vojtech, Lucia N.; Laing, Kerry J.

    2011-01-01

    A key facet of the innate immune response lays in its ability to recognize and respond to invading microorganisms and cellular disturbances. Through the use of germ-line encoded PRRs, the innate immune system is capable of detecting invariant pathogen motifs termed pathogen-associated molecular patterns (PAMPS) that are distinct from host encoded proteins or products released from dying cells, which are known as damage-associated molecular patterns (DAMPs). PAMPs and DAMPs include both protein and nucleic acids for the detection and response to pathogens and metabolic "danger" signals. This is by far one of the most active areas of research as recent studies have shown retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs) and Toll-like receptors (TLRs) and the recently described AIM-like receptors (ALRs) are responsible for initiating interferon production or the assembly and activation of the inflammasome, ultimately resulting in the release of bioactive IL-1 family members. Overall, the vertebrate PRR recognition machinery consists of seven domains (e.g., Death, NACHT, CARD, TIR, LRR, PYD, helicase), most of which can be traced to the very origins of the deuterostomes. This review is intended to provide an overview of the basic components that are used by vertebrates to detect and respond to pathogens, with an emphasis on these receptors in fish as well as a brief note on their likely origins.

  11. Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques

    PubMed Central

    Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.

    2012-01-01

    Next generation sequencing technology is advancing genome sequencing at an unprecedented level. By unravelling the code within a pathogen’s genome, every possible protein (prior to post-translational modifications) can theoretically be discovered, irrespective of life cycle stages and environmental stimuli. Now more than ever there is a great need for high-throughput ab initio gene finding. Ab initio gene finders use statistical models to predict genes and their exon-intron structures from the genome sequence alone. This paper evaluates whether existing ab initio gene finders can effectively predict genes to deduce proteins that have presently missed capture by laboratory techniques. An aim here is to identify possible patterns of prediction inaccuracies for gene finders as a whole irrespective of the target pathogen. All currently available ab initio gene finders are considered in the evaluation but only four fulfil high-throughput capability: AUGUSTUS, GeneMark_hmm, GlimmerHMM, and SNAP. These gene finders require training data specific to a target pathogen and consequently the evaluation results are inextricably linked to the availability and quality of the data. The pathogen, Toxoplasma gondii, is used to illustrate the evaluation methods. The results support current opinion that predicted exons by ab initio gene finders are inaccurate in the absence of experimental evidence. However, the results reveal some patterns of inaccuracy that are common to all gene finders and these inaccuracies may provide a focus area for future gene finder developers. PMID:23226328

  12. ICPD-a new peak detection algorithm for LC/MS.

    PubMed

    Zhang, Jianqiu; Haskins, William

    2010-12-01

    The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.

  13. Plant pattern recognition receptor complexes at the plasma membrane.

    PubMed

    Monaghan, Jacqueline; Zipfel, Cyril

    2012-08-01

    A key feature of innate immunity is the ability to recognize and respond to potential pathogens in a highly sensitive and specific manner. In plants, the activation of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) elicits a defense programme known as PAMP-triggered immunity (PTI). Although only a handful of PAMP-PRR pairs have been defined, all known PRRs are modular transmembrane proteins containing ligand-binding ectodomains. It is becoming clear that PRRs do not act alone but rather function as part of multi-protein complexes at the plasma membrane. Recent studies describing the molecular interactions and protein modifications that occur between PRRs and their regulatory proteins have provided important mechanistic insight into how plants avoid infection and achieve immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: a prospective cohort study1234

    PubMed Central

    Bao, Wei; Bowers, Katherine; Tobias, Deirdre K; Olsen, Sjurdur F; Chavarro, Jorge; Vaag, Allan; Kiely, Michele; Zhang, Cuilin

    2014-01-01

    Background: Low-carbohydrate diets (LCDs) have been vastly popular for weight loss. The association between a low-carbohydrate dietary pattern and risk of gestational diabetes mellitus (GDM) remains unknown. Objective: We aimed to prospectively examine the association of 3 prepregnancy low-carbohydrate dietary patterns with risk of GDM. Design: We included 21,411 singleton pregnancies in the Nurses’ Health Study II. Prepregnancy LCD scores were calculated from validated food-frequency questionnaires, including an overall LCD score on the basis of intakes of carbohydrate, total protein, and total fat; an animal LCD score on the basis of intakes of carbohydrate, animal protein, and animal fat; and a vegetable LCD score on the basis of intakes of carbohydrate, vegetable protein, and vegetable fat. A higher score reflected a higher intake of fat and protein and a lower intake of carbohydrate, and it indicated closer adherence to a low-carbohydrate dietary pattern. RRs and 95% CIs were estimated by using generalized estimating equations with log-binomial models. Results: We documented 867 incident GDM pregnancies during 10 y follow-up. Multivariable-adjusted RRs (95% CIs) of GDM for comparisons of highest with lowest quartiles were 1.27 (1.06, 1.51) for the overall LCD score (P-trend = 0.03), 1.36 (1.13, 1.64) for the animal LCD score (P-trend = 0.003), and 0.84 (0.69, 1.03) for the vegetable LCD score (P-trend = 0.08). Associations between LCD scores and GDM risk were not significantly modified by age, parity, family history of diabetes, physical activity, or overweight status. Conclusions: A prepregnancy low-carbohydrate dietary pattern with high protein and fat from animal-food sources is positively associated with GDM risk, whereas a prepregnancy low-carbohydrate dietary pattern with high protein and fat from vegetable food sources is not associated with the risk. Women of reproductive age who follow a low-carbohydrate dietary pattern may consider consuming vegetable rather than animal sources of protein and fat to minimize their risk of GDM. PMID:24717341

  15. Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice.

    PubMed

    Rozhdestvensky, Timofey S; Robeck, Thomas; Galiveti, Chenna R; Raabe, Carsten A; Seeger, Birte; Wolters, Anna; Gubar, Leonid V; Brosius, Jürgen; Skryabin, Boris V

    2016-02-05

    Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.

  16. A multi-perspective view of genetic variation in Cameroon.

    PubMed

    Coia, V; Brisighelli, F; Donati, F; Pascali, V; Boschi, I; Luiselli, D; Battaggia, C; Batini, C; Taglioli, L; Cruciani, F; Paoli, G; Capelli, C; Spedini, G; Destro-Bisol, G

    2009-11-01

    In this study, we report the genetic variation of autosomal and Y-chromosomal microsatellites in a large Cameroon population dataset (a total of 11 populations) and jointly analyze novel and previous genetic data (mitochondrial DNA and protein coding loci) taking geographic and cultural factors into consideration. The complex pattern of genetic variation of Cameroon can in part be described by contrasting two geographic areas (corresponding to the northern and southern part of the country), which differ substantially in environmental, biological, and cultural aspects. Northern Cameroon populations show a greater within- and among-group diversity, a finding that reflects the complex migratory patterns and the linguistic heterogeneity of this area. A striking reduction of Y-chromosomal genetic diversity was observed in some populations of the northern part of the country (Podokwo and Uldeme), a result that seems to be related to their demographic history rather than to sampling issues. By exploring patterns of genetic, geographic, and linguistic variation, we detect a preferential correlation between genetics and geography for mtDNA. This finding could reflect a female matrimonial mobility that is less constrained by linguistic factors than in males. Finally, we apply the island model to mitochondrial and Y-chromosomal data and obtain a female-to-male migration Nnu ratio that was more than double in the northern part of the country. The combined effect of the propensity to inter-populational admixture of females, favored by cultural contacts, and of genetic drift acting on Y-chromosomal diversity could account for the peculiar genetic pattern observed in northern Cameroon.

  17. Hypothesis on interactions of macromolecules based on molecular vibration patterns in cells and tissues.

    PubMed

    Jaross, Werner

    2018-01-01

    The molecular vibration patterns of structure-forming macromolecules in the living cell create very specific electromagnetic frequency patterns which might be used for information on spatial position in the three-dimensional structure as well as the chemical characteristics. Chemical change of a molecule results in a change of the vibration pattern and thus in a change of the emitted electromagnetic frequency pattern. These patterns have to be received by proteins responsible for the necessary interactions and functions. Proteins can function as resonators for frequencies in the range of 1013-1015 Hz. The individual frequency pattern is defined by the amino acid sequence and the polarity of every amino acid caused by their functional groups. If the arriving electromagnetic signal pattern and the emitted pattern of the absorbing protein are matched in relevant parts and in opposite phase, photon energy in the characteristic frequencies can be transferred resulting in a conformational change of that molecule and respectively in an increase of its specific activity. The electromagnetic radiation is very weak. The possibilities to overcome intracellular distances are shown. The motor-driven directed transport of macromolecules starts in the Golgi apparatus. The relevance of molecular interactions based on this signaling for the induction and navigation in the intracellular transport is discussed.

  18. Topical application of nitrosonifedipine, a novel radical scavenger, ameliorates ischemic skin flap necrosis in a mouse model.

    PubMed

    Fukunaga, Yutaka; Izawa-Ishizawa, Yuki; Horinouchi, Yuya; Sairyo, Eriko; Ikeda, Yasumasa; Ishizawa, Keisuke; Tsuchiya, Koichiro; Abe, Yoshiro; Hashimoto, Ichiro; Tamaki, Toshiaki

    2017-04-01

    Ischemic skin flap necrosis can occur in random pattern flaps. An excess amount of reactive oxygen species is generated and causes necrosis in the ischemic tissue. Nitrosonifedipine (NO-NIF) has been demonstrated to possess potent radical scavenging ability. However, there has been no study on the effects of NO-NIF on ischemic skin flap necrosis. Therefore, they evaluated the potential of NO-NIF in ameliorating ischemic skin flap necrosis in a mouse model. A random pattern skin flap (1.0 × 3.0 cm) was elevated on the dorsum of C57BL/6 mice. NO-NIF was administered by topical injection immediately after surgery and every 24 hours thereafter. Flap survival was evaluated on postoperative day 7. Tissue samples from the skin flaps were harvested on postoperative days 1 and 3 to analyze oxidative stress, apoptosis and endothelial dysfunction. The viable area of the flap in the NO-NIF group was significantly increased (78.30 ± 7.041%) compared with that of the control group (47.77 ± 6.549%, p < 0.01). NO-NIF reduced oxidative stress, apoptosis and endothelial dysfunction, which were evidenced by the decrease of malondialdehyde, p22phox protein expression, number of apoptotic cells, phosphorylated p38 MAPK protein expression, and vascular cell adhesion molecule-1 protein expression while endothelial nitric oxide synthase protein expression was increased. In conclusion, they demonstrated that NO-NIF ameliorated ischemic skin flap necrosis by reducing oxidative stress, apoptosis, and endothelial dysfunction. NO-NIF is considered to be a candidate for the treatment of ischemic flap necrosis. © 2017 by the Wound Healing Society.

  19. Tenotomy of m.soleus antagonists prevents the changes in fiber type characteristics and sarcomeric cytoskeletal proteins in unloaded rats

    NASA Astrophysics Data System (ADS)

    Moukhina, Alexandra; Ardabievskaya, Anna; Vikhlyantsev, Ivan; Podlubnaya, Zoya; Nemirovskaya, Tatiana; Shenkman, Boris

    2005-08-01

    It is known that activity of postural extensors (m. soleus) decreases and activity of flexors (m. tibialis anterior) increases under unloading conditions. We have tested the hypothesis supposing that increased flexor activities during unloading exert suppressive influence on postural extensor activities and thus lead to dramatic changes in fiber size, MHC expression, sarcomeric proteins content in m.soleus. We have inactivated hindlimb flexor muscles (m.soleus antagonists) by bilateral tenotomy. 20 male Wistar rats were divided on 3 groups: cage control (C), hindlimb suspension for 14 days (HS), tenotomy of hindlimb flexor muscles with 14 days hindlimb suspension afterwards (HST). Several soleus muscle fiber characteristics decreased significantly in HS group (p<0.05) as compared with C group: cross sectional area (CSA) of type I muscle fibers, titin/MyHC ratio and nebulin/MyHC ratio. MyHC isoform pattern shifted slow-to-fast significantly. NFATc1 content increased in nuclear protein extract of m. soleus in HS group. None of these parameters was significantly different in HST group from those of C group. It has been concluded that the tenotomy of flexors under hindlimb suspension prevents atrophy of type I muscle fibers, decrease the degradation of titin and nebulin and prevent slow-to-fast shift of fiber MyHC isoform pattern, possibly through prevention of increase NFATc1 content in muscle fiber nuclear protein extract. Therefore, suppressive influence of increased flexor activity could be one of mechanisms that lead to the changes in m. soleus under unloading conditions. The work was supported by RFBR grants: 02-04-50025, 03- 04-48487 and the special program of RAS "Integration mechanisms of functional control in the living system".

  20. Rheumatoid arthritis antigens homocitrulline and citrulline are generated by local myeloperoxidase and peptidyl arginine deiminases 2, 3 and 4 in rheumatoid nodule and synovial tissue.

    PubMed

    Turunen, Sanna; Huhtakangas, Johanna; Nousiainen, Tomi; Valkealahti, Maarit; Melkko, Jukka; Risteli, Juha; Lehenkari, Petri

    2016-10-20

    Seropositive rheumatoid arthritis (RA) is characterized by autoantibodies binding to citrullinated and homocitrullinated proteins. We wanted to study the expression patterns of these disease-associated protein forms and if the rheumatoid nodule and synovial tissue itself contain biologically active levels of citrullinating peptidyl arginine deiminases 2, 3 and 4 and homocitrullination-facilitating neutrophil enzyme myeloperoxidase. Total of 195 synovial samples from metatarsal joints from five ACPA/RF-positive RA patients (n = 77), synovial samples from knees of eight seropositive RA (n = 60), seven seronegative RA (n = 33) and five osteoarthritis (n = 25) patients were analyzed for citrulline and homocitrulline contents using HPLC. The location of citrulline- and homocitrulline-containing proteins, PAD 2, 3, 4 and myeloperoxidase were shown by immunostaining. Myeloperoxidase and citrulline- or homocitrulline-containing proteins were stained on Western blot. Overall, necrosis was frequent in metatarsals of seropositive RA and absent in seronegative RA and osteoarthritis patients. In histological analysis, there was a significant local patterning and variation in the citrulline and homocitrulline content and it was highest in metatarsal synovial tissues of seropositive RA patients. We found peptidyl arginine deiminase 2, 3 and 4 in the lining and sublining layers of intact synovial tissue. Myeloperoxidase was found locally around necrotic areas. The tissues with necrosis contained the highest levels of citrulline and homocitrulline. Rheumatoid nodules and synovia contain significant amount of PAD2, 3 and 4 and myeloperoxidase enzymes. These enzymes could explain the levels of citrulline and homocitrulline in seropositive RA synovial and rheumatoid nodule tissues especially around necrotic tissue.

  1. Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system

    PubMed Central

    Balaram, Pooja; Hackett, Troy A.; Kaas, Jon H.

    2013-01-01

    Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). PMID:23524295

  2. Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system.

    PubMed

    Balaram, Pooja; Hackett, Troy A; Kaas, Jon H

    2013-05-01

    Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Biophysical models of protein evolution: Understanding the patterns of evolutionary sequence divergence

    PubMed Central

    Echave, Julian; Wilke, Claus O.

    2018-01-01

    For decades, rates of protein evolution have been interpreted in terms of the vague concept of “functional importance”. Slowly evolving proteins or sites within proteins were assumed to be more functionally important and thus subject to stronger selection pressure. More recently, biophysical models of protein evolution, which combine evolutionary theory with protein biophysics, have completely revolutionized our view of the forces that shape sequence divergence. Slowly evolving proteins have been found to evolve slowly because of selection against toxic misfolding and misinteractions, linking their rate of evolution primarily to their abundance. Similarly, most slowly evolving sites in proteins are not directly involved in function, but mutating them has large impacts on protein structure and stability. Here, we review the studies of the emergent field of biophysical protein evolution that have shaped our current understanding of sequence divergence patterns. We also propose future research directions to develop this nascent field. PMID:28301766

  4. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K.; Chubb, C.; Huberman, E.

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteinsmore » were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.« less

  5. An immunohistochemical study of APG-2 protein in the rat hippocampus after transient forebrain ischemia.

    PubMed

    Lee, Mun-Yong; Choi, Yun-Sik; Choi, Jeong-Sun; Min, Do Sik; Chun, Myung-Hoon; Kim, Ok Nyu; Lee, Sang Bok; Kim, Seong Yun

    2002-01-11

    The cellular localization and spatiotemporal expression pattern of APG-2 protein, a member of the heat shock protein 110 family, were investigated in the rat hippocampus after transient forebrain ischemia. The spatiotemporal patterns of immunoreactivity of both APG-2 and glial fibrillary acidic protein were very similar, indicating that reactive astrocytes express APG-2, which was confirmed by double immunofluorescence histochemistry. Colocalization of APG-2 and a neuronal marker NeuN in the neurons of the CA2 and CA3 subfields was also confirmed.

  6. Predicting network modules of cell cycle regulators using relative protein abundance statistics.

    PubMed

    Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J

    2017-02-28

    Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.

  7. Glial-released proteins in clonal cultures and their modulation by hydrocortisone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenander, A.T.; de Vellis, J.

    Rat glial C6 cells release into the culture medium a reproducible spectrum of soluble proteins of 12 major peaks over a broad molecular weight range as determined by fractionation on SDS-gel electrophoresis. Exposing C6 monolayers to hydrocortisone (HC) results in a selective alteration in the pattern of glial-released protein (GRP). The selective HC-induced increase or decrease in GRP peaks is specific to HC in that 17 ..beta..-estradiol, dibutyryl cyclic AMP, isoproterenol, and melatonin exert either no detectable or a qualitatively different influence on the GRP pattern. The HC influence is dose dependent over a physiological range of concentrations from 10/supmore » -9/ to 10/sup -6/ M. Differences in culture age and in subclones of C6 can influence both the normal and the HC-induced pattern of GRP. The origin of the GRP is unknown, but pattern reproducibility, viability tests, surface labelling studies, and metabolic labelling studies of soluble and particulate compartment proteins and glycoproteins support the position that cell lysis is not an important source of GRP. More importantly, these studies indicate that GRP and HC-induced changes in GRP pattern are physiologically significant aspects of glial cell behavior.« less

  8. Automethylation of Protein Arginine Methyltransferase 8 (PRMT8) Regulates Activity by Impeding S-Adenosylmethionine Sensitivity*

    PubMed Central

    Dillon, Myles B. C.; Rust, Heather L.; Thompson, Paul R.; Mowen, Kerri A.

    2013-01-01

    Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet. PMID:23946480

  9. Recent developments on polyphenol–protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system.

    PubMed

    Bandyopadhyay, Prasun; Ghosh, Amit K; Ghosh, Chandrasekhar

    2012-06-01

    Tea and coffee are widely consumed beverages across the world and they are rich sources of various polyphenols. Polyphenols are responsible for the bitterness and astringency of beverages and are also well known to impart antioxidant properties which is beneficial against several oxidative stress related diseases like cancer, cardiovascular diseases, and aging. On the other hand, proteins are also known to display many important roles in several physiological activities. Polyphenols can interact with proteins through hydrophobic or hydrophilic interactions, leading to the formation of soluble or insoluble complexes. According to recent studies, this complex formation can affect the bioavailability and beneficiary properties of both the individual components, in either way. For example, polyphenol-protein complex formation can reduce or enhance the antioxidant activity of polyphenols; similarly it can also affect the digestion ability of several digestive enzymes present in our body. Surprisingly, no review article has been published recently which has focused on the progress in this area, despite numerous articles having appeared in this field. This review summarizes the recent trends and patterns (2005 onwards) in polyphenol-protein interaction studies focusing on the characterization of the complex, the effect of this complex formation on tea and coffee taste, antioxidant properties and the digestive system.

  10. A Bioenergetics Systems Evaluation of Ketogenic Diet Liver Effects

    PubMed Central

    Hutfles, Lewis J.; Wilkins, Heather M.; Koppel, Scott J.; Weidling, Ian W.; Selfridge, J. Eva; Tan, Eephie; Thyfault, John P.; Slawson, Chad; Fenton, Aron W.; Zhu, Hao; Swerdlow, Russell H.

    2018-01-01

    Ketogenic diets induce hepatocyte fatty acid oxidation and ketone body production. To further evaluate how ketogenic diets affect hepatocyte bioenergetic infrastructure, we analyzed livers from C57Bl/6J male mice maintained for one month on a ketogenic or standard chow diet. Compared to the standard diet, the ketogenic diet increased cytosolic and mitochondrial protein acetylation and also altered protein succinylation patterns. SIRT3 protein decreased while SIRT5 protein increased, and gluconeogenesis, oxidative phosphorylation, and mitochondrial biogenesis pathway proteins were variably and likely strategically altered. The pattern of changes observed can be used to inform a broader systems overview of how ketogenic diets affect liver bioenergetics. PMID:28514599

  11. A bioenergetics systems evaluation of ketogenic diet liver effects.

    PubMed

    Hutfles, Lewis J; Wilkins, Heather M; Koppel, Scott J; Weidling, Ian W; Selfridge, J Eva; Tan, Eephie; Thyfault, John P; Slawson, Chad; Fenton, Aron W; Zhu, Hao; Swerdlow, Russell H

    2017-09-01

    Ketogenic diets induce hepatocyte fatty acid oxidation and ketone body production. To further evaluate how ketogenic diets affect hepatocyte bioenergetic infrastructure, we analyzed livers from C57Bl/6J male mice maintained for 1 month on a ketogenic or standard chow diet. Compared with the standard diet, the ketogenic diet increased cytosolic and mitochondrial protein acetylation and also altered protein succinylation patterns. SIRT3 protein decreased while SIRT5 protein increased, and gluconeogenesis, oxidative phosphorylation, and mitochondrial biogenesis pathway proteins were variably and likely strategically altered. The pattern of changes observed can be used to inform a broader systems overview of how ketogenic diets affect liver bioenergetics.

  12. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics.

    PubMed

    Dahlström, Käthe M; Salminen, Tiina A

    2015-12-07

    Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Toxicogenomic analysis of N-nitrosomorpholine induced changes in rat liver: Comparison of genomic and proteomic responses and anchoring to histopathological parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberemm, A., E-mail: axel.oberemm@bfr.bund.d; Ahr, H.-J.; Bannasch, P.

    2009-12-01

    A common animal model of chemical hepatocarcinogenesis was used to examine the utility of transcriptomic and proteomic data to identify early biomarkers related to chemically induced carcinogenesis. N-nitrosomorpholine, a frequently used genotoxic model carcinogen, was applied via drinking water at 120 mg/L to male Wistar rats for 7 weeks followed by an exposure-free period of 43 weeks. Seven specimens of each treatment group (untreated control and 120 mg/L N-nitrosomorpholine in drinking water) were sacrificed at nine time points during and after N-nitrosomorpholine treatment. Individual samples from the liver were prepared for histological and toxicogenomic analyses. For histological detection of preneoplasticmore » and neoplastic tissue areas, sections were stained using antibodies against the placental form of glutathione-S-transferase (GST-P). Gene and protein expression profiles of liver tissue homogenates were analyzed using RG-U34A Affymetrix rat gene chips and two-dimensional gel electrophoresis-based proteomics, respectively. In order to compare results obtained by histopathology, transcriptomics and proteomics, GST-P-stained liver sections were evaluated morphometrically, which revealed a parallel time course of the area fraction of preneoplastic lesions and gene plus protein expression patterns. On the transcriptional level, an increase of hepatic GST-P expression was detectable as early as 3 weeks after study onset. Comparing deregulated genes and proteins, eight species were identified which showed a corresponding expression profile on both expression levels. Functional analysis suggests that these genes and corresponding proteins may be useful as biomarkers of early hepatocarcinogenesis.« less

  14. Biosurface engineering through ink jet printing.

    PubMed

    Khan, Mohidus Samad; Fon, Deniece; Li, Xu; Tian, Junfei; Forsythe, John; Garnier, Gil; Shen, Wei

    2010-02-01

    The feasibility of thermal ink jet printing as a robust process for biosurface engineering was demonstrated. The strategy investigated was to reconstruct a commercial printer and take advantage of its colour management interface. High printing resolution was achieved by formulating bio-inks of viscosity and surface tension similar to those of commercial inks. Protein and enzyme denaturation during thermal ink jet printing was shown to be insignificant. This is because the time spent by the biomolecules in the heating zone of the printer is negligible; in addition, the air and substrate of high heat capacity absorb any residual heat from the droplet. Gradients of trophic/tropic factors can serve as driving force for cell growth or migration for tissue regeneration. Concentration gradients of proteins were printed on scaffolds to show the capability of ink jet printing. The printed proteins did not desorb upon prolonged immersion in aqueous solutions, thus allowing printed scaffold to be used under in vitro and in vivo conditions. Our group portrait was ink jet printed with a protein on paper, illustrating that complex biopatterns can be printed on large area. Finally, patterns of enzymes were ink jet printed within the detection and reaction zones of a paper diagnostic.

  15. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions

    PubMed Central

    Kim, Young Kyung; Gu, Li-sha; Bryan, Thomas E.; Kim, Jong Ryul; Chen, Liang; Liu, Yan; Yoon, James C.; Breschi, Lorenzo; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    The complex morphologies of mineralised collagen fibrils are regulated through interactions between the collagen matrix and non-collagenous extracellular proteins. In the present study, polyvinylphosphonic acid, a biomimetic analogue of matrix phosphoproteins, was synthesised and confirmed with FTIR and NMR. Biomimetic mineralisation of reconstituted collagen fibrils devoid of natural non-collagenous proteins was demonstrated with TEM using a Portland cement-containing resin composite and a phosphate-containing fluid in the presence of polyacrylic acid as sequestration, and polyvinylphosphonic acid as templating matrix protein analogues. In the presence of these dual biomimetic analogues in the mineralisation medium, intrafibrillar and extrafibrillar mineralisation via bottom-up nanoparticle assembly based on the nonclassical crystallisation pathway could be identified. Conversely, only large mineral spheres with no preferred association with collagen fibrils were observed in the absence of biomimetic analogues in the medium. Mineral phases were evident within the collagen fibrils as early as 4 hours after the initially-formed amorphous calcium phosphate nanoprecursors were transformed into apatite nanocrystals. Selected area electron diffraction patterns of highly mineralised collagen fibrils were nearly identical to those of natural bone, with apatite crystallites preferentially aligned along the collagen fibril axes. PMID:20621767

  16. Chemical Composition, Starch Digestibility and Antioxidant Capacity of Tortilla Made with a Blend of Quality Protein Maize and Black Bean

    PubMed Central

    Grajales-García, Eva M.; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H.; Bello-Pérez, Luis A.

    2012-01-01

    Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics. PMID:22312252

  17. Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging

    NASA Astrophysics Data System (ADS)

    Song, Wei; Mao, Zhu; Liu, Xiaojuan; Lu, Yong; Li, Zhishi; Zhao, Bing; Lu, Lehui

    2012-03-01

    The detection of metabolites is very important for the estimation of the health of human beings. Latent fingerprint contains many constituents and specific contaminants, which give much information of the individual, such as health status, drug abuse etc. For a long time, many efforts have been focused on visualizing latent fingerprints, but little attention has been paid to the detection of such substances at the same time. In this article, we have devised a versatile approach for the ultra-sensitive detection and identification of specific biomolecules deposited within fingerprints via a large-area SERS imaging technique. The antibody bound to the Raman probe modified silver nanoparticles enables the binding to specific proteins within the fingerprints to afford high-definition SERS images of the fingerprint pattern. The SERS spectra and images of Raman probes indirectly provide chemical information regarding the given proteins. By taking advantage of the high sensitivity and the capability of SERS technique to obtain abundant vibrational signatures of biomolecules, we have successfully detected minute quantities of protein present within a latent fingerprint. This technique provides a versatile and effective model to detect biomarkers within fingerprints for medical diagnostics, criminal investigation and other fields.

  18. Diversity and population structure of Plasmodium falciparum in Thailand based on the spatial and temporal haplotype patterns of the C-terminal 19-kDa domain of merozoite surface protein-1.

    PubMed

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Siripoon, Napaporn; Seugorn, Aree; Kaewthamasorn, Morakot; Butcher, Robert D J; Harnyuttanakorn, Pongchai

    2014-02-12

    The 19-kDa C-terminal region of the merozoite surface protein-1 of the human malaria parasite Plasmodium falciparum (PfMSP-119) constitutes the major component on the surface of merozoites and is considered as one of the leading candidates for asexual blood stage vaccines. Because the protein exhibits a level of sequence variation that may compromise the effectiveness of a vaccine, the global sequence diversity of PfMSP-119 has been subjected to extensive research, especially in malaria endemic areas. In Thailand, PfMSP-119 sequences have been derived from a single parasite population in Tak province, located along the Thailand-Myanmar border, since 1995. However, the extent of sequence variation and the spatiotemporal patterns of the MSP-119 haplotypes along the Thai borders with Laos and Cambodia are unknown. Sixty-three isolates of P. falciparum from five geographically isolated populations along the Thai borders with Myanmar, Laos and Cambodia in three transmission seasons between 2002 and 2008 were collected and culture-adapted. The msp-1 gene block 17 was sequenced and analysed for the allelic diversity, frequency and distribution patterns of PfMSP-119 haplotypes in individual populations. The PfMSP-119 haplotype patterns were then compared between parasite populations to infer the population structure and genetic differentiation of the malaria parasite. Five conserved polymorphic positions, which accounted for five distinct haplotypes, of PfMSP-119 were identified. Differences in the prevalence of PfMSP-119 haplotypes were detected in different geographical regions, with the highest levels of genetic diversity being found in the Kanchanaburi and Ranong provinces along the Thailand-Myanmar border and Trat province located at the Thailand-Cambodia border. Despite this variability, the distribution patterns of individual PfMSP-119 haplotypes seemed to be very similar across the country and over the three malarial transmission seasons, suggesting that gene flow may operate between parasite populations circulating in Thailand and the three neighboring countries. The major MSP-119 haplotypes of P. falciparum populations in all endemic populations during three transmission seasons in Thailand were identified, providing basic information on the common haplotypes of MSP-119 that is of use for malaria vaccine development and inferring the population structure of P. falciparum populations in Thailand.

  19. Immunity to community: what can immune pathways tell us about disease patterns in corals?

    NASA Astrophysics Data System (ADS)

    Mydlarz, L. D.; Fuess, L.; Pinzon, J. C.; Weil, E.

    2016-02-01

    Predicting species composition and abundances is one of the most fundamental questions in ecology. This question is even more pressing in marine ecology and coral reefs since communities are changing at a rapid pace due to climate-related changes. Increases in disease prevalence and severity are just some of the consequences of these environmental changes. Particularly in coral reef ecosystems, diseases are increasing and driving region-wide population collapses. It has become clear, however, that not all reefs or coral species are affected by disease equally. In fact, the Caribbean is a concentrated area for diseases. The patterns in which disease manifests itself on an individual reef are also proving interesting, as not all coral species are affected by disease equally. Some species are host to different diseases, but seem to successfully fight them reducing mortality. Other species are disproportionately infected on any given reef and experience high mortality due to disease. We are interested in the role immunity can play in directing these patterns and are evaluating coral immunity using several novel approaches. We exposed 4 species of corals with different disease susceptibilities to immune stimulators and quantified of coral immunity using a combination of full transcriptome sequencing and protein activity assays for gene to phenotype analysis. We also mapped gene expression changes onto immune pathways (i.e. melanin-cascade, antimicrobial peptide synthesis, complement cascade, lectin-opsonization) to evaluate expression of immune pathways between species. In our preliminary data we found many immune genes in the disease susceptible Orbicella faveolata underwent changes in gene expression opposite of the predictions and may disply `dysfunctional' patterns of expression. We will present expression data for 4 species of coral and assess how these transcriptional and protein immune responses are related to disease susceptibility in nature, thus scaling up from immune pathway to natural patterns of disease.

  20. An efficient way of layout processing based on calibre DRC and pattern matching for defects inspection application

    NASA Astrophysics Data System (ADS)

    Li, Helen; Lee, Robben; Lee, Tyzy; Xue, Teddy; Liu, Hermes; Wu, Hall; Wan, Qijian; Du, Chunshan; Hu, Xinyi; Liu, Zhengfang

    2018-03-01

    As technology advances, escalating layout design complexity and chip size make defect inspection becomes more challenging than ever before. The YE (Yield Enhancement) engineers are seeking for an efficient strategy to ensure accuracy without suffering running time. A smart way is to set different resolutions for different pattern structures, for examples, logic pattern areas have a higher scan resolution while the dummy areas have a lower resolution, SRAM area may have another different resolution. This can significantly reduce the scan processing time meanwhile the accuracy does not suffer. Due to the limitation of the inspection equipment, the layout must be processed in order to output the Care Area marker in line with the requirement of the equipment, for instance, the marker shapes must be rectangle and the number of the rectangle shapes should be as small as possible. The challenge is how to select the different Care Areas by pattern structures, merge the areas efficiently and then partition them into pieces of rectangle shapes. This paper presents a solution based on Calibre DRC and Pattern Matching. Calibre equation-based DRC is a powerful layout processing engine and Calibre Pattern Matching's automated visual capture capability enables designers to define these geometries as layout patterns and store them in libraries which can be re-used in multiple design layouts. Pattern Matching simplifies the description of very complex relationships between pattern shapes efficiently and accurately. Pattern matching's true power is on display when it is integrated with normal DRC deck. In this application of defects inspection, we first run Calibre DRC to get rule based Care Area then use Calibre Pattern Matching's automated pattern capture capability to capture Care Area shapes which need a higher scan resolution with a tune able pattern halo. In the pattern matching step, when the patterns are matched, a bounding box marker will be output to identify the high resolution area. The equation-based DRC and Pattern Matching effectively work together for different scan phases.

  1. Exposures of Sus scrofa to a TASER(®) conducted electrical weapon: no effects on 2-dimensional gel electrophoresis patterns of plasma proteins.

    PubMed

    Jauchem, James R; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L

    2014-12-01

    In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER (®) C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures.

  2. Self-organization and positioning of bacterial protein clusters

    NASA Astrophysics Data System (ADS)

    Murray, Seán M.; Sourjik, Victor

    2017-10-01

    Many cellular processes require proteins to be precisely positioned within the cell. In some cases this can be attributed to passive mechanisms such as recruitment by other proteins in the cell or by exploiting the curvature of the membrane. However, in bacteria, active self-positioning is likely to play a role in multiple processes, including the positioning of the future site of cell division and cytoplasmic protein clusters. How can such dynamic clusters be formed and positioned? Here, we present a model for the self-organization and positioning of dynamic protein clusters into regularly repeating patterns based on a phase-locked Turing pattern. A single peak in the concentration is always positioned at the midpoint of the model cell, and two peaks are positioned at the midpoint of each half. Furthermore, domain growth results in peak splitting and pattern doubling. We argue that the model may explain the regular positioning of the highly conserved structural maintenance of chromosomes complexes on the bacterial nucleoid and that it provides an attractive mechanism for the self-positioning of dynamic protein clusters in other systems.

  3. Evolution-Based Functional Decomposition of Proteins

    PubMed Central

    Rivoire, Olivier; Reynolds, Kimberly A.; Ranganathan, Rama

    2016-01-01

    The essential biological properties of proteins—folding, biochemical activities, and the capacity to adapt—arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment—a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  4. Dietary, Nutrient Patterns and Blood Essential Elements in Chinese Children with ADHD.

    PubMed

    Zhou, Fankun; Wu, Fengyun; Zou, Shipu; Chen, Ying; Feng, Chang; Fan, Guangqin

    2016-06-08

    Dietary or nutrient patterns represent the combined effects of foods or nutrients, and elucidate efficaciously the impact of diet on diseases. Because the pharmacotherapy on attention deficit hyperactivity disorder (ADHD) was reported be associated with certain side effects, and the etiology of ADHD is multifactorial, this study investigated the association of dietary and nutrient patterns with the risk of ADHD. We conducted a case-control study with 592 Chinese children including ADHD (n = 296) and non-ADHD (n = 296) aged 6-14 years old, matched by age and sex. Dietary and nutrient patterns were identified using factor analysis and a food frequency questionnaire. Blood essential elements levels were measured using atomic absorption spectrometry. A fish-white meat dietary pattern rich in shellfish, deep water fish, white meat, freshwater fish, organ meat and fungi and algae was inversely associated with ADHD (p = 0.006). Further analysis found that a mineral-protein nutrient pattern rich in zinc, protein, phosphorus, selenium, calcium and riboflavin was inversely associated with ADHD (p = 0.014). Additionally, the blood zinc was also negatively related to ADHD (p = 0.003). In conclusion, the fish-white meat dietary pattern and mineral-protein nutrient pattern may have beneficial effects on ADHD in Chinese children, and blood zinc may be helpful in distinguishing ADHD in Chinese children.

  5. Dietary, Nutrient Patterns and Blood Essential Elements in Chinese Children with ADHD

    PubMed Central

    Zhou, Fankun; Wu, Fengyun; Zou, Shipu; Chen, Ying; Feng, Chang; Fan, Guangqin

    2016-01-01

    Dietary or nutrient patterns represent the combined effects of foods or nutrients, and elucidate efficaciously the impact of diet on diseases. Because the pharmacotherapy on attention deficit hyperactivity disorder (ADHD) was reported be associated with certain side effects, and the etiology of ADHD is multifactorial, this study investigated the association of dietary and nutrient patterns with the risk of ADHD. We conducted a case-control study with 592 Chinese children including ADHD (n = 296) and non-ADHD (n = 296) aged 6–14 years old, matched by age and sex. Dietary and nutrient patterns were identified using factor analysis and a food frequency questionnaire. Blood essential elements levels were measured using atomic absorption spectrometry. A fish-white meat dietary pattern rich in shellfish, deep water fish, white meat, freshwater fish, organ meat and fungi and algae was inversely associated with ADHD (p = 0.006). Further analysis found that a mineral-protein nutrient pattern rich in zinc, protein, phosphorus, selenium, calcium and riboflavin was inversely associated with ADHD (p = 0.014). Additionally, the blood zinc was also negatively related to ADHD (p = 0.003). In conclusion, the fish-white meat dietary pattern and mineral-protein nutrient pattern may have beneficial effects on ADHD in Chinese children, and blood zinc may be helpful in distinguishing ADHD in Chinese children. PMID:27338457

  6. PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank.

    PubMed

    Sehnal, David; Pravda, Lukáš; Svobodová Vařeková, Radka; Ionescu, Crina-Maria; Koča, Jaroslav

    2015-07-01

    Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Closely related dermatophyte species produce different patterns of secreted proteins.

    PubMed

    Giddey, Karin; Favre, Bertrand; Quadroni, Manfredo; Monod, Michel

    2007-02-01

    Dermatophytes are the most common infectious agents responsible for superficial mycosis in humans and animals. Various species in this group of fungi show overlapping characteristics. We investigated the possibility that closely related dermatophyte species with different behaviours secrete distinct proteins when grown in the same culture medium. Protein patterns from culture filtrates of several strains of the same species were very similar. In contrast, secreted protein profiles from various species were different, and so a specific signature could be associated with each of the six analysed species. In particular, protein patterns were useful to distinguish Trichophyton tonsurans from Trichophyton equinum, which cannot be differentiated by ribosomal DNA sequencing. The secreted proteases Sub2, Sub6 and Sub7 of the subtilisin family, as well as Mep3 and Mep4 of the fungalisin family were identified. SUB6, SUB7, MEP3 and MEP4 genes were cloned and sequenced. Although the protein sequence of each protease was highly conserved across species, their level of secretion by the various species was not equivalent. These results suggest that a switch of habitat could be related to a differential expression of genes encoding homologous secreted proteins.

  8. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo.

    PubMed

    Törmä, Hans; Lindberg, Magnus; Berne, Berit

    2008-05-01

    Detergents are skin irritants affecting keratinocytes. In this study, healthy volunteers were exposed to water (vehicle) and 1% sodium lauryl sulfate (SLS) under occlusive patch tests for 24 hours. The messenger RNA (mRNA) expression of keratinocyte differentiation markers and of enzymes involved in corneodesmosome degradation was examined in skin biopsies (n=8) during the repair phase (6 hours to 7 days postexposure) using real-time reverse-transcription PCR. It was found that the expression of involucrin was increased at 6 hours, but then rapidly normalized. The expression of transglutaminase 1 exhibited a twofold increase after 24 hours in the SLS-exposed skin. Profilaggrin was decreased after 6 hours. Later (4-7 days), the expression in SLS-exposed areas was >50% above than in control areas. An increased and altered immunofluorescence pattern of involucrin, transglutaminase 1, and filaggrin was also found (n=4). At 6 hours post-SLS exposure, the mRNA expression of kallikrein-7 (KLK-7) and kallikrein-5 (KLK-5) was decreased by 50 and 75%, respectively, as compared with control and water-exposed areas. Thereafter, the expression pattern of KLK-7 and KLK-5 was normalized. Changes in protein expression of KLK-5 were also found. In conclusion, SLS-induced skin barrier defects induce altered mRNA expression of keratinocyte differentiation markers and enzymes degrading corneodesmosomes.

  9. Protein profile and protein interaction network of Moniliophthora perniciosa basidiospores.

    PubMed

    Mares, Joise Hander; Gramacho, Karina Peres; Dos Santos, Everton Cruz; Santiago, André da Silva; Silva, Edson Mário de Andrade; Alvim, Fátima Cerqueira; Pirovani, Carlos Priminho

    2016-06-24

    Witches' broom, a disease caused by the basidiomycete Moniliophthora perniciosa, is considered to be the most important disease of the cocoa crop in Bahia, an area in the Brazilian Amazon, and also in the other countries where it is found. M. perniciosa germ tubes may penetrate into the host through intact or natural openings in the cuticle surface, in epidermis cell junctions, at the base of trichomes, or through the stomata. Despite its relevance to the fungal life cycle, basidiospore biology has not been extensively investigated. In this study, our goal was to optimize techniques for producing basidiospores for protein extraction, and to produce the first proteomics analysis map of ungerminated basidiospores. We then presented a protein interaction network by using Ustilago maydis as a model. The average pileus area ranged from 17.35 to 211.24 mm(2). The minimum and maximum productivity were 23,200 and 6,666,667 basidiospores per basidiome, respectively. The protein yield in micrograms per million basidiospores were approximately 0.161; 2.307, and 3.582 for germination times of 0, 2, and 4 h after germination, respectively. A total of 178 proteins were identified through mass spectrometry. These proteins were classified according to their molecular function and their involvement in biological processes such as cellular energy production, oxidative metabolism, stress, protein synthesis, and protein folding. Furthermore, to better understand the expression pattern, signaling, and interaction events of spore proteins, we presented an interaction network using orthologous proteins from Ustilago maydis as a model. Most of the orthologous proteins that were identified in this study were not clustered in the network, but several of them play a very important role in hypha development and branching. The quantities of basidiospores 7 × 10(9); 5.2 × 10(8), and 6.7 × 10(8) were sufficient to obtain enough protein mass for the three 2D-PAGE replicates, for the 0, 2, and 4 h-treatments, respectively. The protein extraction method that is based on sedimentation, followed by sonication with SDS-dense buffer, and phenolic extraction, which was utilized in this study, was effective, presenting a satisfactory resolution and reproducibility for M. perniciosa basidiospores. This report constitutes the first comprehensive study of protein expression during the ungerminated stage of the M. perniciosa basidiospore. Identification of the spots observed in the reference gel enabled us to know the main molecular interactions involved in the initial metabolic processes of fungal development.

  10. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed

    Rothwell, Patrick E

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.

  11. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed Central

    Rothwell, Patrick E.

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction. PMID:26903789

  12. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

    PubMed Central

    Miotto, Olivo; Almagro-Garcia, Jacob; Manske, Magnus; MacInnis, Bronwyn; Campino, Susana; Rockett, Kirk A; Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Anderson, Jennifer M; Duong, Socheat; Nguon, Chea; Chuor, Char Meng; Saunders, David; Se, Youry; Lon, Chantap; Fukuda, Mark M; Amenga-Etego, Lucas; Hodgson, Abraham VO; Asoala, Victor; Imwong, Mallika; Takala-Harrison, Shannon; Nosten, Francois; Su, Xin-zhuan; Ringwald, Pascal; Ariey, Frédéric; Dolecek, Christiane; Hien, Tran Tinh; Boni, Maciej F; Thai, Cao Quang; Amambua-Ngwa, Alfred; Conway, David J; Djimdé, Abdoulaye A; Doumbo, Ogobara K; Zongo, Issaka; Ouedraogo, Jean-Bosco; Alcock, Daniel; Drury, Eleanor; Auburn, Sarah; Koch, Oliver; Sanders, Mandy; Hubbart, Christina; Maslen, Gareth; Ruano-Rubio, Valentin; Jyothi, Dushyanth; Miles, Alistair; O’Brien, John; Gamble, Chris; Oyola, Samuel O; Rayner, Julian C; Newbold, Chris I; Berriman, Matthew; Spencer, Chris CA; McVean, Gilean; Day, Nicholas P; White, Nicholas J; Bethell, Delia; Dondorp, Arjen M; Plowe, Christopher V; Fairhurst, Rick M; Kwiatkowski, Dominic P

    2013-01-01

    We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination. PMID:23624527

  13. Analysis of acute-phase proteins, AHSG, C3, CLI, HP and SAA, reveals distinctive expression patterns associated with breast, colorectal and lung cancer.

    PubMed

    Dowling, Paul; Clarke, Colin; Hennessy, Kim; Torralbo-Lopez, Beatriz; Ballot, Jo; Crown, John; Kiernan, Ingrid; O'Byrne, Kenneth J; Kennedy, M John; Lynch, Vincent; Clynes, Martin

    2012-08-15

    Early detection, clinical management and disease recurrence monitoring are critical areas in cancer treatment in which specific biomarker panels are likely to be very important in each of these key areas. We have previously demonstrated that levels of alpha-2-heremans-schmid-glycoprotein (AHSG), complement component C3 (C3), clusterin (CLI), haptoglobin (HP) and serum amyloid A (SAA) are significantly altered in serum from patients with squamous cell carcinoma of the lung. Here, we report the abundance levels for these proteins in serum samples from patients with advanced breast cancer, colorectal cancer (CRC) and lung cancer compared to healthy controls (age and gender matched) using commercially available enzyme-linked immunosorbent assay kits. Logistic regression (LR) models were fitted to the resulting data, and the classification ability of the proteins was evaluated using receiver-operating characteristic curve and leave-one-out cross-validation (LOOCV). The most accurate individual candidate biomarkers were C3 for breast cancer [area under the curve (AUC) = 0.89, LOOCV = 73%], CLI for CRC (AUC = 0.98, LOOCV = 90%), HP for small cell lung carcinoma (AUC = 0.97, LOOCV = 88%), C3 for lung adenocarcinoma (AUC = 0.94, LOOCV = 89%) and HP for squamous cell carcinoma of the lung (AUC = 0.94, LOOCV = 87%). The best dual combination of biomarkers using LR analysis were found to be AHSG + C3 (AUC = 0.91, LOOCV = 83%) for breast cancer, CLI + HP (AUC = 0.98, LOOCV = 92%) for CRC, C3 + SAA (AUC = 0.97, LOOCV = 91%) for small cell lung carcinoma and HP + SAA for both adenocarcinoma (AUC = 0.98, LOOCV = 96%) and squamous cell carcinoma of the lung (AUC = 0.98, LOOCV = 84%). The high AUC values reported here indicated that these candidate biomarkers have the potential to discriminate accurately between control and cancer groups both individually and in combination with other proteins. Copyright © 2011 UICC.

  14. Canine serum protein patterns using high-resolution electrophoresis (HRE).

    PubMed

    Abate, O; Zanatta, R; Malisano, T; Dotta, U

    2000-03-01

    Serum protein values were determined in 26 healthy dogs using agarose gel electrophoresis (SPE), splitting the electrophoretic separation into six regions: albumin, alpha(1), alpha(2), beta(1), beta(2)and gamma globulins. High-resolution electrophoresis (HRE) was used to separate single proteins. Serum proteins from dogs (26 healthy and 20 affected by various diseases) were then characterized by electrophoretic immunofixation (IFE) and Sudan black staining on HRE film. Haemoglobin and normal canine plasma and serum were used to identify haptoglobin and fibrinogen, respectively. In the standard pattern, determined by HRE, the following proteins were identified: albumin, alpha(1)-lipoprotein (alpha(1)-region), haptoglobin and alpha(2)-macroglobulin (alpha(2)-region), beta -lipoprotein and C3 (beta(1)-region), transferrin and IgM (beta(2)-region), IgG (mostly in gamma -region and partly in beta(2)-region). The HRE pattern shown by healthy dogs could be compared with those of dogs affected by various diseases to obtain clinical information. Copyright 2000 Harcourt Publishers Ltd.

  15. A simple approach to patterned protein immobilization on silicon via electrografting from diazonium salt solutions.

    PubMed

    Flavel, Benjamin S; Gross, Andrew J; Garrett, David J; Nock, Volker; Downard, Alison J

    2010-04-01

    A highly versatile method utilizing diazonium salt chemistry has been developed for the fabrication of protein arrays. Conventional ultraviolet mask lithography was used to pattern micrometer sized regions into a commercial photoresist on a highly doped p-type silicon (100) substrate. These patterned regions were used as a template for the electrochemical grafting of the in situ generated p-aminobenzenediazonium cation to form patterns of aminophenyl film on silicon. Immobilization of biomolecules was demonstrated by coupling biotin to the aminophenyl regions followed by reaction with fluorescently labeled avidin and visualization with fluorescence microscopy. This simple patterning strategy is promising for future application in biosensor devices.

  16. ICPD-A New Peak Detection Algorithm for LC/MS

    PubMed Central

    2010-01-01

    Background The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. Results In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. Conclusions The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods. PMID:21143790

  17. Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns.

    PubMed

    Craig, Jeffrey M; Earle, Elizabeth; Canham, Paul; Wong, Lee H; Anderson, Melissa; Choo, K H Andy

    2003-12-01

    We have examined the metaphase chromosomal localization of 15 proteins that have previously been described as involved in mammalian chromatin modification and/or transcriptional modulation. Immunofluorescence data indicate that all the proteins localize to human and mouse centromeres, a neocentromere, and the active centromere of a dicentric chromosome, with six of these proteins (Sin3A, PCAF, MYST, MBD2, ORC2, P300/CBP) being demonstrated at mammalian centromeres for the first time. Most of these proteins fall into two distinct chromosomal distribution patterns: (a) kinetochore-associated proteins (Sin3A, PCAF, MYST and BAF180), which colocalize with metaphase kinetochores, but not any of the pericentric and other major heterochromatic regions; and (b) heterochromatin-associated proteins (MeCP2, MBD1, MBD2, ATRX, HP1alpha, HDAC1, HDAC2, DNMT1 and DNMT3b), which colocalize with centromeric/pericentric heterochromatin and all other major heterochromatic sites. A heterogeneous third group (c) consists of the origin recognition complex subunit ORC2 and the histone acetyltransferase P300/CBP, which associate generally with kinetochores in humans and centromeric/pericentric heterochromatin in mouse, with some minor differences in localization. These observations indicate an extensive sharing of protein components involved in chromatin modification at gene loci, centromeres and various chromosomal heterochromatic landmarks. The definition of distinct patterns of chromosomal distribution for these proteins provides a useful basis for the further investigation of the broad-ranging roles of these proteins.

  18. Hyaluronan and Hyaluronan-Binding Proteins Accumulate in Both Human Type 1 Diabetic Islets and Lymphoid Tissues and Associate With Inflammatory Cells in Insulitis

    PubMed Central

    Bogdani, Marika; Johnson, Pamela Y.; Potter-Perigo, Susan; Nagy, Nadine; Day, Anthony J.; Bollyky, Paul L.

    2014-01-01

    Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that is present in pancreatic islets, but little is known about its involvement in the development of human type 1 diabetes (T1D). We have evaluated whether pancreatic islets and lymphoid tissues of T1D and nondiabetic organ donors differ in the amount and distribution of HA and HA-binding proteins (hyaladherins), such as inter-α-inhibitor (IαI), versican, and tumor necrosis factor–stimulated gene-6 (TSG-6). HA was dramatically increased both within the islet and outside the islet endocrine cells, juxtaposed to islet microvessels in T1D. In addition, HA was prominent surrounding immune cells in areas of insulitis. IαI and versican were present in HA-rich areas of islets, and both molecules accumulated in diabetic islets and regions exhibiting insulitis. TSG-6 was observed within the islet endocrine cells and in inflammatory infiltrates. These patterns were only observed in tissues from younger donors with disease duration of <10 years. Furthermore, HA and IαI amassed in follicular germinal centers and in T-cell areas in lymph nodes and spleens in T1D patients compared with control subjects. Our observations highlight potential roles for HA and hyaladherins in the pathogenesis of diabetes. PMID:24677718

  19. Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis.

    PubMed

    Joubert, D Albert; de Lorenzo, Giulia; Vivier, Melané A

    2013-03-01

    Regulation of defense in plants is a complex process mediated by various signaling pathways. Promoter analysis of defense-related genes is useful to understand these signaling pathways involved in regulation. To this end, the regulation of the polygalacturonase-inhibiting protein encoding gene from Vitis vinifera L. (Vvpgip1) was analyzed with regard to expression pattern and induction profile as well as the promoter in terms of putative regulatory elements present, core promoter size and the start of transcription. Expression of Vvpgip1 is tissue-specific and developmentally regulated. Vvpgip1 expression was induced in response to auxin, salicylic acid and sugar treatment, wounding and pathogen infection. The start of transcription was mapped to 17 bp upstream of the ATG and the core promoter was mapped to the 137 bp upstream of the ATG. Fructose- and Botrytis responsiveness were identified in the region between positions -3.1 and -1.5 kb. The analyses showed induction in water when the leaves were submersed and this response and the response to wounding mapped to the region between positions -1.1 and -0.1 kb. In silico analyses revealed putative cis-acting elements in these areas that correspond well to the induction stimuli tested.

  20. Engineering invitro cellular microenvironment using polyelectrolyte multilayer films to control cell adhesion and for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kidambi, Srivatsan

    Over the past decades, the development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion has generated lots of interest. These films could lead to significant advances in the fields of tissue engineering, drug delivery and biosensors which have become increasingly germane areas of research in the field of chemical engineering. The ionic layer-by-layer (LbL) assembly technique called "Polyelectrolyte Multilayers (PEMs)", introduced by Decher in 1991, has emerged as a versatile and inexpensive method of constructing polymeric thin films, with nanometer-scale control of ionized species. PEMs have long been utilized in such applications as sensors, eletrochromics, and nanomechanical thin films but recently they have also been shown to be excellent candidates for biomaterial applications. In this thesis, we engineered these highly customizable PEM thin films to engineer in vitro cellular microenvironments to control cell adhesion and for drug delivery applications. PEM films were engineered to control the adhesion of primary hepatocytes and primary neurons without the aid of adhesive proteins/ligands. We capitalized upon the differential cell attachment and spreading of primary hepatocytes and neurons on poly(diallyldimethylammoniumchloride) (PDAC) and sulfonated polystyrene (SPS) surfaces to make patterned co-cultures of primary hepatocytes/fibroblasts and primary neurons/astrocytes on the PEM surfaces. In addition, we developed self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto PEMs. The created m-dPEG acid monolayer patterns on PEMs acted as resistive templates, and thus prevented further deposits of consecutive poly(anion)/poly(cation) pairs of charged particles and resulted in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. These new patterned and structured surfaces have potential applications in microelectronic devices and electro-optical and biochemical sensors. The PEG patterns developed are tunable at certain salt conditions and be removed from the PEM surface without affecting the PEM layers underneath the patterns. These removable surfaces provide an alternative method to form patterns of multiple particles, proteins and cells. This new approach provides an environmentally friendly and biocompatible route to designing versatile salt tunable surfaces. Finally, we illustrate the use of PEM films to engineer aptamer and siRNA based drug delivery systems.

  1. Frustration in Condensed Matter and Protein Folding

    NASA Astrophysics Data System (ADS)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  2. Nutritional status, functional capacity and exercise rehabilitation in end-stage renal disease.

    PubMed

    Mercer, T H; Koufaki, P; Naish, P F

    2004-05-01

    A significant percentage of patients with end-stage renal disease are malnourished and/or muscle wasted. Uremia is associated with decreased protein synthesis and increased protein degradation. Fortunately, nutritional status has been shown to be a modifiable risk factor in the dialysis population. It has long been proposed that exercise could positively alter the protein synthesis-degradation balance. Resistance training had been considered as the only form of exercise likely to induce anabolism in renal failure patients. However, a small, but growing, body of evidence indicates that for some dialysis patients, favourable improvements in muscle atrophy and fibre hypertrophy can be achieved via predominantly aerobic exercise training. Moreover, some studies tentatively suggest that nutritional status, as measured by SGA, can also be modestly improved by modes and patterns of exercise training that have been shown to also increase muscle fibre cross-sectional area and improve functional capacity. Functional capacity tests can augment the information content of basic nutritional status assessments of dialysis patients and as such are recommended for routine inclusion as a feature of all nutritional status assessments.

  3. Molecular Recognition Profiles and Clinical Patterns of PR-10 Sensitization in a Birch-Free Mediterranean Area.

    PubMed

    Scala, Enrico; Abeni, Damiano; Cecchi, Lorenzo; Guerra, Emma Cristina; Locanto, Maria; Pirrotta, Lia; Giani, Mauro; Asero, Riccardo

    2017-01-01

    The order Fagales represents an important cause of tree-pollen allergy in northern countries. We investigated the IgE recognition profiles, mutual relationships, and association with clinical symptoms of a panel of allergens belonging to the PR-10 family, the main proteins responsible for Fagales allergy (Act d 8, Aln g 1, Api g 1, Ara h 8, Bet v 1, Cor a 1.0101, Cor a 1.0401, Gly m 4, Mal d 1, and Pru p 1). A total of 526 PR-10-reactive subjects living in central and southern Italy were studied by ImmunoCAP-ISAC-112 microarray analysis. Overall, Bet v 1 reactivity was the most commonly (74%) observed among PR-10 proteins, but Cor a 1.0101 was the most prevalent in participants aged <6 years, and between 15 and 65 years. Overall, 26% of the PR-10-reactive persons were Bet v 1 negative, whilst 93.6% of the PR-10 polyreactive individuals were Bet v 1 positive. Among the 10 PR-10s evaluated, 100 combinations were recorded. The strongest association was observed between molecules with the highest sequence identities (Bet v 1 and Cor a 1.0101, Cor a 1.0401 or Aln g 1; Mal d 1 and Pru p 1). Bet v 1-, Cor a 1.0101-, and Aln g 1-specific IgE recognition was associated with respiratory symptoms, whilst Ara h 8, Cor a 1.0401, Gly m 4, Mal d 1, and Pru p 1 were selectively linked to an oral allergic syndrome. Testing IgE reactivity to a panel of PR-10s in a birch-free area discloses peculiar relationships between clinical phenotypes and sensitization profiles, allowing the identification of novel cluster patterns. © 2017 S. Karger AG, Basel.

  4. Distribution of cellular HSV-1 receptor expression in human brain.

    PubMed

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  5. Glucose Transporter Expression in an Avian Nectarivore: The Ruby-Throated Hummingbird (Archilochus colubris)

    PubMed Central

    Welch, Kenneth C.; Allalou, Amina; Sehgal, Prateek; Cheng, Jason; Ashok, Aarthi

    2013-01-01

    Glucose transporter (GLUT) proteins play a key role in the transport of monosaccharides across cellular membranes, and thus, blood sugar regulation and tissue metabolism. Patterns of GLUT expression, including the insulin-responsive GLUT4, have been well characterized in mammals. However, relatively little is known about patterns of GLUT expression in birds with existing data limited to the granivorous or herbivorous chicken, duck and sparrow. The smallest avian taxa, hummingbirds, exhibit some of the highest fasted and fed blood glucose levels and display an unusual ability to switch rapidly and completely between endogenous fat and exogenous sugar to fuel energetically expensive hovering flight. Despite this, nothing is known about the GLUT transporters that enable observed rapid rates of carbohydrate flux. We examined GLUT (GLUT1, 2, 3, & 4) expression in pectoralis, leg muscle, heart, liver, kidney, intestine and brain from both zebra finches (Taeniopygia guttata) and ruby-throated hummingbirds (Archilochus colubris). mRNA expression of all four transporters was probed using reverse-transcription PCR (RT-PCR). In addition, GLUT1 and 4 protein expression were assayed by western blot and immunostaining. Patterns of RNA and protein expression of GLUT1-3 in both species agree closely with published reports from other birds and mammals. As in other birds, and unlike in mammals, we did not detect GLUT4. A lack of GLUT4 correlates with hyperglycemia and an uncoupling of exercise intensity and relative oxidation of carbohydrates in hummingbirds. The function of GLUTs present in hummingbird muscle tissue (e.g. GLUT1 and 3) remain undescribed. Thus, further work is necessary to determine if high capillary density, and thus surface area across which cellular-mediated transport of sugars into active tissues (e.g. muscle) occurs, rather than taxon-specific differences in GLUT density or kinetics, can account for observed rapid rates of sugar flux into these tissues. PMID:24155916

  6. Size-dependent protein segregation at membrane interfaces

    NASA Astrophysics Data System (ADS)

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.

    2016-07-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  7. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane

    PubMed Central

    Saka, Sinem K.; Honigmann, Alf; Eggeling, Christian; Hell, Stefan W.; Lang, Thorsten; Rizzoli, Silvio O.

    2014-01-01

    Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity. PMID:25060237

  8. The respective roles of polar/nonpolar binary patterns and amino acid composition in protein regular secondary structures explored exhaustively using hydrophobic cluster analysis.

    PubMed

    Rebehmed, Joseph; Quintus, Flavien; Mornon, Jean-Paul; Callebaut, Isabelle

    2016-05-01

    Several studies have highlighted the leading role of the sequence periodicity of polar and nonpolar amino acids (binary patterns) in the formation of regular secondary structures (RSS). However, these were based on the analysis of only a few simple cases, with no direct mean to correlate binary patterns with the limits of RSS. Here, HCA-derived hydrophobic clusters (HC) which are conditioned binary patterns whose positions fit well those of RSS, were considered. All the HC types, defined by unique binary patterns, which were commonly observed in three-dimensional (3D) structures of globular domains, were analyzed. The 180 HC types with preferences for either α-helices or β-strands distinctly contain basic binary units typical of these RSS. Therefore a general trend supporting the "binary pattern preference" assumption was observed. HC for which observed RSS are in disagreement with their expected behavior (discordant HC) were also examined. They were separated in HC types with moderate preferences for RSS, having "weak" binary patterns and versatile RSS and HC types with high preferences for RSS, having "strong" binary patterns and then displaying nonpolar amino acids at the protein surface. It was shown that in both cases, discordant HC could be distinguished from concordant ones by well-differentiated amino acid compositions. The obtained results could, thus, help to complement the currently available methods for the accurate prediction of secondary structures in proteins from the only information of a single amino acid sequence. This can be especially useful for characterizing orphan sequences and for assisting protein engineering and design. © 2016 Wiley Periodicals, Inc.

  9. Oligoclonal Pattern/Abnormal Protein Bands in Post-Treatment Plasma Cell Myeloma Patients: Implications for Protein Electrophoresis and Serum Free Light Chain Assay Results.

    PubMed

    Singh, Gurmukh

    2017-08-01

    The impact of autologous stem cell transplantation (ASCT) in plasma cell myeloma patients on the frequency, quality, and timing of oligoclonal pattern in serum protein electrophoresis/immunofixation electrophoresis (SPEP/SIFE) and serum free light chain assay (SFLCA) was evaluated. Laboratory results and clinical data for 251 patients with plasma cell myeloma, who had SPEP/SIFE and/or SFLCA performed between January 2010 and December 2016 were reviewed. The results for SPEP/SIFE and SFLCA were compared in patients with ASCT to those without ASCT. The implications of oligoclonal pattern in interpretation of SPEP/SIFE and SFLCA - κ/λ ratio were addressed. In 251 patients, a total of 3,134 observations, of either SPEP/SIFE and/or SFLCA, were reviewed. One hundred fifty-nine patients received ASCT. The incidence of oligoclonal patterns was significantly higher after ASCT. More than half of the oligoclonal patterns developed in the first year after transplantation. In 13 of the 84 patients with lambda chain restricted plasma cell myeloma, the κ/λ ratio was kappa dominant in the presence of oligoclonal pattern. There was no reversal of κ/λ ratio in patients with kappa chain restricted plasma cell myelomas. ASCT is associated with significantly higher incidence of oligoclonal patterns than with chemotherapy alone. The presence of oligoclonal patterns has the potential to interfere with the interpretation of SPEP/SIFE and ascertainment of complete remission. At a minimum, the oligoclonal pattern caused an incorrect kappa dominant κ/λ ratio in 15.5% of patients with lambda chain restricted plasma cell myeloma. If a similar rate were to be applied to the 167 kappa chain myeloma patients, about 26 of these would have displayed an erroneous kappa chain dominant κ/λ ratio. The presence of oligoclonal pattern further degrades the performance of already dubious SFLCA. The need for recording the location of monoclonal spike in SPEP/SIFE and higher resolution protein electrophoresis methods are highlighted.

  10. sc-PDB-Frag: a database of protein-ligand interaction patterns for Bioisosteric replacements.

    PubMed

    Desaphy, Jérémy; Rognan, Didier

    2014-07-28

    Bioisosteric replacement plays an important role in medicinal chemistry by keeping the biological activity of a molecule while changing either its core scaffold or substituents, thereby facilitating lead optimization and patenting. Bioisosteres are classically chosen in order to keep the main pharmacophoric moieties of the substructure to replace. However, notably when changing a scaffold, no attention is usually paid as whether all atoms of the reference scaffold are equally important for binding to the desired target. We herewith propose a novel database for bioisosteric replacement (scPDBFrag), capitalizing on our recently published structure-based approach to scaffold hopping, focusing on interaction pattern graphs. Protein-bound ligands are first fragmented and the interaction of the corresponding fragments with their protein environment computed-on-the-fly. Using an in-house developed graph alignment tool, interaction patterns graphs can be compared, aligned, and sorted by decreasing similarity to any reference. In the herein presented sc-PDB-Frag database ( http://bioinfo-pharma.u-strasbg.fr/scPDBFrag ), fragments, interaction patterns, alignments, and pairwise similarity scores have been extracted from the sc-PDB database of 8077 druggable protein-ligand complexes and further stored in a relational database. We herewith present the database, its Web implementation, and procedures for identifying true bioisosteric replacements based on conserved interaction patterns.

  11. Assessment of IgE binding to native and hydrolyzed soy protein in serum obtained from dogs with experimentally induced soy protein hypersensitivity.

    PubMed

    Serra, Montserrat; Brazís, Pilar; Fondati, Alessandra; Puigdemont, Anna

    2006-11-01

    To assess binding of IgE to native, whole hydrolyzed, and separated hydrolyzed fractions of soy protein in serum obtained from dogs with experimentally induced soy protein hypersensitivity. 8 naïve Beagles (6 experimentally sensitized to native soy protein and 2 control dogs). 6 dogs were sensitized against soy protein by administration of allergens during a 90-day period. After the sensitization protocol was completed, serum concentrations of soy-specific IgE were measured and intradermal skin tests were performed in all 6 dogs to confirm that the dogs were sensitized against soy protein. Serum samples from each sensitized and control dog underwent western blot analysis to assess the molecular mass band pattern of the different allergenic soy fractions and evaluate reactivities to native and hydrolyzed soy protein. In sera from sensitized dogs, a characteristic band pattern with 2 major bands (approx 75 and 50 kd) and 2 minor bands (approx 31 and 20 kd) was detected, whereas only a diffuse band pattern associated with whole hydrolyzed soy protein was detected in the most reactive dog. Reactivity was evident only for the higher molecular mass peptide fraction. In control dogs, no IgE reaction to native or hydrolyzed soy protein was detected. Data suggest that the binding of soy-specific IgE to the hydrolyzed soy protein used in the study was significantly reduced, compared with binding of soy-specific IgE to the native soy protein, in dogs with experimentally induced soy hypersensitivity.

  12. Light-patterning of synthetic tissues with single droplet resolution.

    PubMed

    Booth, Michael J; Restrepo Schild, Vanessa; Box, Stuart J; Bayley, Hagan

    2017-08-24

    Synthetic tissues can be generated by forming networks of aqueous droplets in lipid-containing oil. Each droplet contains a cell-free expression system and is connected to its neighbor through a lipid bilayer. In the present work, we have demonstrated precise external control of such networks by activating protein expression within single droplets, by using light-activated DNA to encode either a fluorescent or a pore-forming protein. By controlling the extent of activation, synthetic tissues were generated with graded levels of protein expression in patterns of single droplets. Further, we have demonstrated reversible activation within individual compartments in synthetic tissues by turning a fluorescent protein on-and-off. This is the first example of the high-resolution patterning of droplet networks, following their formation. Single-droplet control will be essential to power subsets of compartments within synthetic tissues or to stimulate subsets of cells when synthetic tissues are interfaced with living tissues.

  13. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    PubMed

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015 Institute of Food Technologists®

  14. qPMS9: An Efficient Algorithm for Quorum Planted Motif Search

    NASA Astrophysics Data System (ADS)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2015-01-01

    Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.

  15. Gold patterned biochips for on-chip immuno-MALDI-TOF MS: SPR imaging coupled multi-protein MS analysis.

    PubMed

    Kim, Young Eun; Yi, So Yeon; Lee, Chang-Soo; Jung, Yongwon; Chung, Bong Hyun

    2012-01-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of immuno-captured target protein efficiently complements conventional immunoassays by offering rich molecular information such as protein isoforms or modifications. Direct immobilization of antibodies on MALDI solid support enables both target enrichment and MS analysis on the same plate, allowing simplified and potentially multiplexing protein MS analysis. Reliable on-chip immuno-MALDI-TOF MS for multiple biomarkers requires successful adaptation of antibody array biochips, which also must accommodate consistent reaction conditions on antibody arrays during immuno-capture and MS analysis. Here we developed a facile fabrication process of versatile antibody array biochips for reliable on-chip MALDI-TOF-MS analysis of multiple immuno-captured proteins. Hydrophilic gold arrays surrounded by super-hydrophobic surfaces were formed on a gold patterned biochip via spontaneous chemical or protein layer deposition. From antibody immobilization to MALDI matrix treatment, this hydrophilic/phobic pattern allowed highly consistent surface reactions on each gold spot. Various antibodies were immobilized on these gold spots both by covalent coupling or protein G binding. Four different protein markers were successfully analyzed on the present immuno-MALDI biochip from complex protein mixtures including serum samples. Tryptic digests of captured PSA protein were also effectively detected by on-chip MALDI-TOF-MS. Moreover, the present MALDI biochip can be directly applied to the SPR imaging system, by which antibody and subsequent antigen immobilization were successfully monitored.

  16. Extracorporeal shock wave markedly alleviates radiation-induced chronic cystitis in rat

    PubMed Central

    Chen, Yen-Ta; Chen, Kuan-Hung; Sung, Pei-Hsun; Yang, Chih-Chao; Cheng, Ben-Chung; Chen, Chih-Hung; Chang, Chia-Lo; Sheu, Jiunn-Jye; Lee, Fan-Yen; Shao, Pei-Lin; Sun, Cheuk-Kwan; Yip, Hon-Kan

    2018-01-01

    This study tested the hypothesis that extracorporeal shock wave (ECSW) treatment can effectively inhibit radiation-induced chronic cystitis (CC). Adult male Sprague-Dawley (SD) rats (n = 24) were randomly divided into group 1 (normal control), group 2 (CC induced by radiation with 300 cGy twice with a four-hour interval to the urinary bladder), group 3 [CC with ECSW treatment (0.2 mJ/mm2/120 impulses/at days 1, 7, and 14 after radiation)]. Bladder specimens were harvested by day 28 after radiation. By day 28 after radiation, the degree of detrusor contraction impairment was significantly higher in group 2 than that in groups 1 and 3, and significantly higher in group 3 than that in group 1 (P<0.0001). The urine albumin concentration expressed an opposite pattern compared to that of detrusor function among the three groups (P<0.0001). The bladder protein expressions of inflammatory (TLR-2/TLR-4/IL-6/IL-12/MMP-9/TNF-α/NF-κB/RANTES/iNOS) and oxidative-stress (NOX-1/NOX-2/oxidized protein) biomarkers exhibited a pattern identical to that of urine albumin in all groups (all P<0.0001). The cellular expressions of inflammatory (CD14+/CD68+/CD74+/COX-2/MIF+/substance P+) and cytokeratin (CK13+/HMW CK+/CK+17/CK+18/CK+19) biomarkers, and collagen-deposition/fibrotic areas as well as epithelial-damaged score displayed an identical pattern compared to that of urine albumin among the three groups (all P<0.0001). In conclusion, ECSW treatment effectively protected urinary bladder from radiation-induced CC. PMID:29636892

  17. Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers

    PubMed Central

    Tseng, Peter; Pushkarsky, Ivan; Di Carlo, Dino

    2014-01-01

    Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials. PMID:25153326

  18. Diagnostic utility and limitations of glutamine synthetase and serum amyloid-associated protein immunohistochemistry in the distinction of focal nodular hyperplasia and inflammatory hepatocellular adenoma.

    PubMed

    Joseph, Nancy M; Ferrell, Linda D; Jain, Dhanpat; Torbenson, Michael S; Wu, Tsung-Teh; Yeh, Matthew M; Kakar, Sanjay

    2014-01-01

    Inflammatory hepatocellular adenoma can show overlapping histological features with focal nodular hyperplasia, including inflammation, fibrous stroma, and ductular reaction. Expression of serum amyloid-associated protein in inflammatory hepatocellular adenoma and map-like pattern of glutamine synthetase in focal nodular hyperplasia can be helpful in this distinction, but the pitfalls and limitations of these markers have not been established. Morphology and immunohistochemistry were analyzed in 54 inflammatory hepatocellular adenomas, 40 focal nodular hyperplasia, and 3 indeterminate lesions. Morphological analysis demonstrated that nodularity, fibrous stroma, dystrophic blood vessels, and ductular reaction were more common in focal nodular hyperplasia, while telangiectasia, hemorrhage, and steatosis were more common in inflammatory hepatocellular adenoma, but there was frequent overlap of morphological features. The majority of inflammatory hepatocellular adenomas demonstrated perivascular and/or patchy glutamine synthetase staining (73.6%), while the remaining cases had diffuse (7.5%), negative (3.8%), or patchy pattern of staining (15%) that showed subtle differences from the classic map-like staining pattern and was designated as pseudo map-like staining. Positive staining for serum amyloid-associated protein was seen in the majority of inflammatory hepatocellular adenomas (92.6%) and in the minority of focal nodular hyperplasia (17.5%). The glutamine synthetase staining pattern was map-like in 90% of focal nodular hyperplasia cases, with the remaining 10% of cases showing pseudo map-like staining. Three cases were labeled as indeterminate and showed focal nodular hyperplasia-like morphology but lacked map-like glutamine synthetase staining pattern; these cases demonstrated a patchy pseudo map-like glutamine synthetase pattern along with the expression of serum amyloid-associated protein. Our results highlight the diagnostic errors that can be caused by variant patterns of staining with glutamine synthetase and serum amyloid-associated protein in inflammatory hepatocellular adenoma and focal nodular hyperplasia.

  19. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites.

    PubMed

    Fang, Chun; Noguchi, Tamotsu; Yamana, Hayato

    2014-10-01

    Evolutionary conservation information included in position-specific scoring matrix (PSSM) has been widely adopted by sequence-based methods for identifying protein functional sites, because all functional sites, whether in ordered or disordered proteins, are found to be conserved at some extent. However, different functional sites have different conservation patterns, some of them are linear contextual, some of them are mingled with highly variable residues, and some others seem to be conserved independently. Every value in PSSMs is calculated independently of each other, without carrying the contextual information of residues in the sequence. Therefore, adopting the direct output of PSSM for prediction fails to consider the relationship between conservation patterns of residues and the distribution of conservation scores in PSSMs. In order to demonstrate the importance of combining PSSMs with the specific conservation patterns of functional sites for prediction, three different PSSM-based methods for identifying three kinds of functional sites have been analyzed. Results suggest that, different PSSM-based methods differ in their capability to identify different patterns of functional sites, and better combining PSSMs with the specific conservation patterns of residues would largely facilitate the prediction.

  20. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.

    PubMed

    Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten

    2015-10-05

    Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.

  1. Automated Solid-Phase Protein Modification with Integrated Enzymatic Digest for Reaction Validation: Application of a Compartmented Microfluidic Reactor for Rapid Optimization and Analysis of Protein Biotinylation

    PubMed Central

    Fraas, Regina; Diehm, Juliane; Franzreb, Matthias

    2017-01-01

    Protein modification by covalent coupling of small ligands or markers is an important prerequisite for the use of proteins in many applications. Well-known examples are the use of proteins with fluorescent markers in many in vivo experiments or the binding of biotinylated antibodies via biotin–streptavidin coupling in the frame of numerous bioassays. Multiple protocols were established for the coupling of the respective molecules, e.g., via the C and N-terminus, or via cysteines and lysines exposed at the protein surface. Still, in most cases the conditions of these standard protocols are only an initial guess. Optimization of the coupling parameters like reagent concentrations, pH, or temperature may strongly increase coupling yield and the biological activity of the modified protein. In order to facilitate the process of optimizing coupling conditions, a method was developed which uses a compartmented microfluidic reactor for the rapid screening of different coupling conditions. In addition, the system allows for the integration of an enzymatic digest of the modified protein directly after modification. In combination with a subsequent MALDI-TOF analysis of the resulting fragments, this gives a fast and detailed picture not only of the number and extent of the generated modifications but also of their position within the protein sequence. The described process was demonstrated for biotinylation of green fluorescent protein. Different biotin-excesses and different pH-values were tested in order to elucidate the influence on the modification extent and pattern. In addition, the results of solid-phase based modifications within the microfluidic reactor were compared to modification patterns resulting from coupling trials with unbound protein. As expected, modification patterns of immobilized proteins showed clear differences to the ones of dissolved proteins. PMID:29181376

  2. Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model.

    PubMed

    Dahirel, Vincent; Jardat, Marie; Dufrêche, Jean-François; Turq, Pierre

    2007-09-07

    Monte Carlo simulations are used to calculate the exact potential of mean force between charged globular proteins in aqueous solution. The aim of the present paper is to study the influence of the ions of the added salt on the effective interaction between these nanoparticles. The charges of the model proteins, either identical or opposite, are either central or distributed on a discrete pattern. Contrarily to Poisson-Boltzmann predictions, attractive, and repulsive direct forces between proteins are not screened similarly. Moreover, it has been shown that the relative orientations of the charge patterns strongly influence salt-mediated interactions. More precisely, for short distances between the proteins, ions enhance the difference of the effective forces between (i) like-charged and oppositely charged proteins, (ii) attractive and repulsive relative orientations of the proteins, which may affect the selectivity of protein/protein recognition. Finally, such results observed with the simplest models are applied to a more elaborate one to demonstrate their generality.

  3. The polarized distribution of poly(A+)-mRNA-induced functional ion channels in the Xenopus oocyte plasma membrane is prevented by anticytoskeletal drugs.

    PubMed

    Peter, A B; Schittny, J C; Niggli, V; Reuter, H; Sigel, E

    1991-08-01

    Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.

  4. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    PubMed

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  5. SALAD database: a motif-based database of protein annotations for plant comparative genomics

    PubMed Central

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2010-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209 529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named ‘SALAD on ARRAYs’ to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis. PMID:19854933

  6. SALAD database: a motif-based database of protein annotations for plant comparative genomics.

    PubMed

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2010-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209,529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named 'SALAD on ARRAYs' to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis.

  7. An isotopic assessment of protein from diet and endogenous stores: Effects on egg production and incubation behaviour of geese

    USGS Publications Warehouse

    Schmutz, J.A.; Hobson, K.A.; Morse, J.A.

    2006-01-01

    Little empirical information exists to assess to what degree geese use a capital versus income breeding strategy for investing nutrients into eggs. We used stable isotope methods to directly estimate the sources of protein deposited into egg yolks of Brent Branta bernicla and Emperor Geese Anser canagicus on the Yukon-Kuskokwim Delta, Alaska, USA. Approximately 59 and 45% of protein in egg yolks of Brent and Emperor Geese, respectively, was derived from exogenous sources (i.e. food plants on the local breeding area). Within clutches of Brent Goose eggs, first-laid eggs exhibited slightly higher contributions from endogenous reserves than last-laid eggs. This pattern was less clear for Emperor Geese, which may have been a consequence of possibly analyzing eggs that were laid by intraspecific nest parasites rather than by hosts. For both these species, individuals exhibited large variability in the percent contribution of exogenous versus endogenous stores to eggs, and future studies should identify ecological factors related to this variation. Those Emperor Geese in poor body condition incubated their nests less constantly, and based on δ13C values, they fed on terrestrial foods while off their nests. Although not a pure capital breeder, Emperor Geese used nutrients garnered on spring staging areas to fuel virtually all their own maintenance during incubation and to contribute half or more of the nutrients in eggs. These results highlight the ecological importance of these spring staging habitats to geese.

  8. Differential effects of stress and amphetamine administration on Fos-like protein expression in corticotropin releasing factor-neurons of the rat brain.

    PubMed

    Rotllant, David; Nadal, Roser; Armario, Antonio

    2007-05-01

    Corticotropin releasing factor (CRF) appears to be critical for the control of important aspects of the behavioral and physiological response to stressors and drugs of abuse. However, the extent to which the different brain CRF neuronal populations are similarly activated after stress and drug administration is not known. We then studied, using double immunohistochemistry for CRF and Fos protein, stress and amphetamine-induced activation of CRF neurons in cortex, central amygdala (CeA), medial parvocellular dorsal, and submagnocellular parvocellular regions of the paraventricular nucleus of the hypothalamus (PVNmpd and PVNsm, respectively) and Barrington nucleus (Bar). Neither exposure to a novel environment (hole-board, HB) nor immobilization (IMO) increased Fos-like immunoreactivity (FLI) in the CeA, but they did to the same extent in cortical regions. In other regions only IMO increased FLI. HB and IMO both failed to activate CRF+ neurons in cortical areas, but after IMO, some neurons expressing FLI in the PVNsm and most of them in the PVNmpd and Bar were CRF+. Amphetamine administration increased FLI in cortical areas and CeA (with some CRF+ neurons expressing FLI), whereas the number of CRF+ neurons increased only in the PVNsm, in contrast to the effects of IMO. The present results indicate that stress and amphetamine elicited a distinct pattern of brain Fos-like protein expression and differentially activated some of the brain CRF neuronal populations, despite similar levels of overall FLI in the case of IMO and amphetamine.

  9. Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice

    PubMed Central

    Rozhdestvensky, Timofey S.; Robeck, Thomas; Galiveti, Chenna R.; Raabe, Carsten A.; Seeger, Birte; Wolters, Anna; Gubar, Leonid V.; Brosius, Jürgen; Skryabin, Boris V.

    2016-01-01

    Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5′HPRT-LoxP-NeoR cassette (5′LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScrp−/m5′LoxP), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScrp−/m5′LoxP mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScrp−/m5′LoxP mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases. PMID:26848093

  10. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells

    NASA Astrophysics Data System (ADS)

    Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

    2013-02-01

    Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (Kd = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.

  11. DASS: efficient discovery and p-value calculation of substructures in unordered data.

    PubMed

    Hollunder, Jens; Friedel, Maik; Beyer, Andreas; Workman, Christopher T; Wilhelm, Thomas

    2007-01-01

    Pattern identification in biological sequence data is one of the main objectives of bioinformatics research. However, few methods are available for detecting patterns (substructures) in unordered datasets. Data mining algorithms mainly developed outside the realm of bioinformatics have been adapted for that purpose, but typically do not determine the statistical significance of the identified patterns. Moreover, these algorithms do not exploit the often modular structure of biological data. We present the algorithm DASS (Discovery of All Significant Substructures) that first identifies all substructures in unordered data (DASS(Sub)) in a manner that is especially efficient for modular data. In addition, DASS calculates the statistical significance of the identified substructures, for sets with at most one element of each type (DASS(P(set))), or for sets with multiple occurrence of elements (DASS(P(mset))). The power and versatility of DASS is demonstrated by four examples: combinations of protein domains in multi-domain proteins, combinations of proteins in protein complexes (protein subcomplexes), combinations of transcription factor target sites in promoter regions and evolutionarily conserved protein interaction subnetworks. The program code and additional data are available at http://www.fli-leibniz.de/tsb/DASS

  12. NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer.

    PubMed

    Chen, Hsin-Hsiung; Fan, Ping; Chang, Szu-Wei; Tsao, Yeou-Ping; Huang, Hsiang-Po; Chen, Show-Li

    2017-03-28

    Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer.

  13. NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer

    PubMed Central

    Tsao, Yeou-Ping; Huang, Hsiang-Po; Chen, Show-Li

    2017-01-01

    Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer. PMID:28212551

  14. [Identification and genetic variability of annatto genotypes (Bixa orellana L.) by means of hydrosoluble proteins and isoenzymes].

    PubMed

    Medina, A M; Michelangeli, C; Ramis, C; Díaz, A

    2001-01-01

    In order to identify and to determine the genetic variability of 36 annatto genotypes (Bixa orellana L.) collected in five Venezuelan regions (Oriente, Centro, Llanos, Andes and Amazonas) and in Brazil, hydrosoluble protein patterns as well as specific isozyme patterns (alpha-esterase, beta-esterase and peroxidase) were studied using extracts of germinated annatto seeds with radicles of 10 to 15 mm long. Each electrophoretic system allowed genotype discrimination by means of unique banding patterns: both the hydrosoluble protein and the electrophoretic system of beta-esterase with nine banding patterns each; whilst alpha-esterase and peroxidase discriminated eight and three genotypes, respectively. On the other hand, a combination of all the systems permitted a greater discrimination since 34 out of 36 genotypes could be distinguished. Eight mayor groups were formed that showed high levels of genetic diversity (40 to 60%) with no association between geographic and genetic distances, probably because of human influence in the aleatory distribution of this crop. Results obtained indicated that using electrophoretic banding patterns, a classification system could be established for identification and genetic variability purposes in this species.

  15. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist

    PubMed Central

    Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-01-01

    Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678

  16. Spatial patterns of giant sequoia (Sequoiadendron giganteum) in two sequoia groves in Sequoia National Park, California

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1993-01-01

    Although Muir Grove and Castle Creek Grove are similar in area, elevation, and number of giant sequoias, various spatial pattern analysis techniques showed that they had dissimilar spatial patterns for similar-sized trees. Two-dimensional and transect two-term local quadrat variance techniques detected general trends in the spatial patterns of different-sized trees, detected multiple-scale patterns within individual size classes, and provided information on the scale and intensity of patches of individual size classes of trees in Muir and Castle Creek groves. In Muir Grove, midsized sequoias (1.5 to 2.4 m DBH classes) had major pattern scales 350–450 m in diameter, whereas the same-sized trees in Castle Creek Grove had pattern scales >1000 m in diameter. Many size classes of trees had minor patches superimposed on larger scale patterns in both groves. There may be different recruitment patterns in core (i.e., central) areas compared with peripheral areas of sequoia groves; core areas of both groves had more small live sequoias and dead sequoias than peripheral areas of the groves. Higher densities of sequoias and, perhaps, more rapid turnover of individuals in core areas may indicate (i) differences in disturbance histories and favorability of microsites in the core and peripheral areas of groves; (ii) different responses to disturbance due to shifts in the species composition of the stand and thus, the relative influences of intra- to inter-specific competition; or (iii) slower growth or lower survivorship rates in marginal habitat (i.e., peripheral areas).

  17. Glycobiology simplified: diverse roles of glycan recognition in inflammation

    PubMed Central

    Schnaar, Ronald L.

    2016-01-01

    Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (writers) with specific and limited biosynthetic capabilities into a tractable and increasingly accessible number of potential glycan patterns that are functionally read by several dozen human glycan-binding proteins (readers). Nowhere is the importance of glycan recognition better understood than in infection and immunity, and knowledge in this area has already led to glycan mimetic anti-infective and anti-inflammatory drugs. This review includes a brief tutorial on human glycobiology and a limited number of specific examples of glycan-binding protein-glycan interactions that initiate and regulate inflammation. Examples include representatives from different glycan-binding protein families, including the C-type lectins (E-selectin, P-selectin, dectin-1, and dectin-2), sialic acid-binding immunoglobulin-like lectins (sialic acid-binding immunoglobulin-like lectins 8 and 9), galectins (galectin-1, galectin-3, and galectin-9), as well as hyaluronic acid-binding proteins. As glycoscience technologies advance, opportunities for enhanced understanding of glycans and their roles in leukocyte cell biology provide increasing opportunities for discovery and therapeutic intervention. PMID:27004978

  18. Carbohydrate (CHO), protein and fat intake of healthy Pakistani school children in a 24 hour period.

    PubMed

    Aziz, Sina; Hosain, Kehkashan

    2014-11-01

    To determine the frequency pattern of CHO, protein and fat intake in 24 hours by Pakistani school children of different socioeconomic and cultural backgrounds) 6 to 16 years of age. The cross-sectional study was a multistage stratified sampling, done in a part of nationwide survey funded by the Higher Education Commission, Pakistan (HEC, Ref no: 20-441/R&D/2008). Sample collection of the study was done from 2006-2009, and growth centile charts have already been published (JPMA 2012; 62:367-77). This is the final paper of the completed project and includes data on only the nutritional status. Final statistical analysis of the nutrition aspect was done from 2012 to 2013 and comprised assessment of quality and quantity of CHO, protein and fats consumed by healthy schoolchildren in a 24 hrs recall (breakfast, brunch, lunch, tea time, dinner and bed time). Food records of 11, 237 school children were subjected to United States Department of Agriculture food exchange list. SPSS 18 was used for statistical analysis. The age range of the study subjects was 6-16 years, and they represented different areas of Pakistan. The consumption of CHO was high (range: 60-74%) compared to protein (10-12%) and fat (18-32%). Schoolchildren in Pakistan were found to be taking a deficient amount of protein and fat in their daily diet, while. CHO intake was higher than normal.

  19. Immunoproteomic analysis of Plasmodium falciparum antigens using sera from patients with clinical history of imported malaria

    PubMed Central

    2013-01-01

    Background The malaria caused by Plasmodium falciparum remains a serious public health problem in the world, due largely to the absence of an effective vaccine. There is a lack of information on the structural properties and antigens capable of activating the immunological mechanisms for the induction of protective immunity. Therefore, the objective of this study is to evaluate the serological reactivity of sera from individuals with imported malaria and identify major immunogenic proteins. Methods The study was conducted in 227 individuals with imported malaria and 23 healthy individuals who had never been in areas endemic for malaria. The determination of anti-P. falciparum IgG antibodies was performed by an ELISA validated and optimized for this study. Sera showing higher reactivity to anti-P. falciparum by ELISA were analysed by immunoblotting and immunogenic proteins were identified by mass spectroscopy. Results The results of anti-P. falciparum antibodies research by ELISA indicates 78 positive, 137 negative and 12 indeterminate sera. Analysis of immunoblotting demonstrated a consistent pattern with respect to immunoreactivity of antigens with molecular weights in the range of 40 to 60 kDa. Between 40 and 60 kDa six immunogenic proteins were identified: elongation factor-1 alpha (EF-1α), protein disulphide isomerase (PDI); phosphoglycerate kinase (PGK); 78 kDa glucose-regulated protein homologue (GRP-78); rhoptry-associated protein 2 (RAP-2) and rhoptry-associated protein 3 (RAP-3). Conclusions It was identified immunogenic proteins essential for parasite survival in the host, two of which (RAP-2 and RAP-3) are already described in the literature as proteins that play an important role in the invasion of erythrocytes by extracellular merozoites. PMID:23506095

  20. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria.

    PubMed

    Jaimes-Becerra, Adrian; Chung, Ray; Morandini, André C; Weston, Andrew J; Padilla, Gabriel; Gacesa, Ranko; Ward, Malcolm; Long, Paul F; Marques, Antonio C

    2017-10-01

    Cnidarians are probably the oldest group of animals to be venomous, yet our current picture of cnidarian venom evolution is highly imbalanced due to limited taxon sampling. High-throughput tandem mass spectrometry was used to determine venom composition of the scyphozoan Chrysaora lactea and two cubozoans Tamoya haplonema and Chiropsalmus quadrumanus. Protein recruitment patterns were then compared against 5 other cnidarian venom proteomes taken from the literature. A total of 28 putative toxin protein families were identified, many for the first time in Cnidaria. Character mapping analysis revealed that 17 toxin protein families with predominantly cytolytic biological activities were likely recruited into the cnidarian venom proteome before the lineage split between Anthozoa and Medusozoa. Thereafter, venoms of Medusozoa and Anthozoa differed during subsequent divergence of cnidarian classes. Recruitment and loss of toxin protein families did not correlate with accepted phylogenetic patterns of Cnidaria. Selective pressures that drive toxin diversification independent of taxonomic positioning have yet to be identified in Cnidaria and now warrant experimental consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Protein Adsorption to In-Line Filters of Intravenous Administration Sets.

    PubMed

    Besheer, Ahmed

    2017-10-01

    Ensuring compatibility of administered therapeutic proteins with intravenous administration sets is an important regulatory requirement. A low-dose recovery during administration of low protein concentrations is among the commonly observed incompatibilities, and it is mainly due to adsorption to in-line filters. To better understand this phenomenon, we studied the adsorption of 4 different therapeutic proteins (2 IgG1s, 1 IgG4, and 1 Fc fusion protein) diluted to 0.01 mg/mL in 5% glucose (B. Braun EcoFlac; B. Braun Melsungen AG, Melsungen, Germany) or 0.9% sodium chloride (NaCl; Freeflex; Fresenius Kabi, Friedberg, Germany) solutions to 8 in-line filters (5 positively charged and 3 neutral filters made of different polymers and by different suppliers). The results show certain patterns of protein adsorption, which depend to a large extent on the dilution solution and filter material, and to a much lower extent on the proteins' biophysical properties. Investigation of the filter membranes' zeta potential showed a correlation between the observed adsorption pattern in 5% glucose solution and the filter's surface charge, with higher protein adsorption for the strongly negatively charged membranes. In 0.9% NaCl solution, the surface charges are masked, leading to different adsorption patterns. These results contribute to the general understanding of the protein adsorption to IV infusion filters and allow the design of more efficient compatibility studies. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Reduced miR-512 and the Elevated Expression of Its Targets cFLIP and MCL1 Localize to Neurons With Hyperphosphorylated Tau Protein in Alzheimer Disease.

    PubMed

    Mezache, Louisa; Mikhail, Madison; Garofalo, Michela; Nuovo, Gerard J

    2015-10-01

    The cause for the neurofibrillary tangles and plaques in Alzheimer disease likely relates to an abnormal accumulation of their key components, which include β-amyloid and hyperphosphorylated tau protein. We segregated Alzheimer brain sections from people with end-stage disease into those with abundant hyperphosphorylated tau protein and those without and compared each to normal brains for global microRNA patterns. A significant reduced expression of several microRNAs, including miR-512, was evident in the Alzheimer brain sections with abundant hyperphosphorylated tau. Immunohistochemistry documented that 2 known targets of microRNA-512, cFLIP and MCL1, were significantly over expressed and each colocalized to neurons with the abnormal tau protein. Analysis for apoptosis including activated caspase-3, increased caspase-4 and caspase-8, apoptosis initiating factor, APAF-1 activity, and the TUNEL assay was negative in the areas where neurons showed hyperphosphorylated tau. MCM2 expression, a marker of neuroprogenitor cells, was significantly reduced in the Alzheimer sections that contained the hyperphosphorylated tau. These results suggest that a basic defect in Alzheimer disease may be the reduced microRNA-driven increased expression of proteins that may alter the apoptotic/antiapoptotic balance of neurons. This, in turn, could lead to the accumulation of key Alzheimer proteins such as hyperphosphorylated tau that ultimately prevent normal neuronal function and lead to disease symptomatology.

  3. The effect of colloid osmotic pressure in human spermatozoa exposed to hypoosmotic conditions.

    PubMed

    Correa-Pérez, J R; Fernández-Pelegrina, R; Zarmakoupis-Zavos, P N; Zavos, P M

    2003-04-01

    The use of a protein source such as serum and albumin had been extensively employed as supplements of culture media for handling and culture of gametes and embryos. Protein molecules behave as colloids in solution and contribute to the osmotic pressure of fluids. The interaction of proteins in solution and spermatozoa needs to be assessed in order to determine their possible role in osmoregulation. The aim of this study was to assess possible osmoregulatory mechanisms of protein supplementation against exposure to hypoosmotic conditions by assessing the sperm's response to those environments. A stock hypoosmotic solution (HOS) was prepared by using a mixture of fructose and sodium citrate and adjusted to an osmotic pressure of 150 mOsm l-1. Another stock solution was prepared by diluting a preparation of synthetic serum supplement [SSS; 6% (v/v) total protein] with distilled water to obtain an osmotic pressure of 150 mOsm l-1 (hypoosmotic SSS or H-SSS). Three additional solutions were prepared by mixing the stock HOS and H-SSS solutions in the following proportions (v/v): (i) 75% H-SSS/25% HOS, (ii) 50% H-SSS/50% HOS and (iii) 25% H-SSS/75% HOS. Aliquots of washed spermatozoa from 18 men were diluted 1 : 10 (v/v) with each of the testing solutions and incubated for 60 min. Specimens were assessed on wet mounts for total and specific swelling patterns. Swelling patterns were classified as maximal (>50% tail length swollen) and minimal (<50% tail length swollen) swelling with or without associated sperm motility. The major finding of this study was that increasing the concentration of protein supplementation resulted in a decrease in the proportion of maximal sperm tail swelling patterns and an increase in the proportion of minimal tail swelling patterns. A proportion of spermatozoa which exhibited minimal swelling patterns were still motile in all solutions tested, and the percentage of those spermatozoa increased as the protein supplementation was also increased in the testing solutions. Incorporation of protein supplementation as described in this study delays the effect of sperm swelling in hypoosmotic conditions.

  4. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  5. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis.

    PubMed

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used : SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis : CS, TCMs: Traditional Chinese medicines.

  6. Prediction of G-protein-coupled receptor classes in low homology using Chou's pseudo amino acid composition with approximate entropy and hydrophobicity patterns.

    PubMed

    Gu, Q; Ding, Y S; Zhang, T L

    2010-05-01

    We use approximate entropy and hydrophobicity patterns to predict G-protein-coupled receptors. Adaboost classifier is adopted as the prediction engine. A low homology dataset is used to validate the proposed method. Compared with the results reported, the successful rate is encouraging. The source code is written by Matlab.

  7. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society.

  8. From cheminformatics to structure-based design: Web services and desktop applications based on the NAOMI library.

    PubMed

    Bietz, Stefan; Inhester, Therese; Lauck, Florian; Sommer, Kai; von Behren, Mathias M; Fährrolfes, Rainer; Flachsenberg, Florian; Meyder, Agnes; Nittinger, Eva; Otto, Thomas; Hilbig, Matthias; Schomburg, Karen T; Volkamer, Andrea; Rarey, Matthias

    2017-11-10

    Nowadays, computational approaches are an integral part of life science research. Problems related to interpretation of experimental results, data analysis, or visualization tasks highly benefit from the achievements of the digital era. Simulation methods facilitate predictions of physicochemical properties and can assist in understanding macromolecular phenomena. Here, we will give an overview of the methods developed in our group that aim at supporting researchers from all life science areas. Based on state-of-the-art approaches from structural bioinformatics and cheminformatics, we provide software covering a wide range of research questions. Our all-in-one web service platform ProteinsPlus (http://proteins.plus) offers solutions for pocket and druggability prediction, hydrogen placement, structure quality assessment, ensemble generation, protein-protein interaction classification, and 2D-interaction visualization. Additionally, we provide a software package that contains tools targeting cheminformatics problems like file format conversion, molecule data set processing, SMARTS editing, fragment space enumeration, and ligand-based virtual screening. Furthermore, it also includes structural bioinformatics solutions for inverse screening, binding site alignment, and searching interaction patterns across structure libraries. The software package is available at http://software.zbh.uni-hamburg.de. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging.

    PubMed

    Song, Wei; Mao, Zhu; Liu, Xiaojuan; Lu, Yong; Li, Zhishi; Zhao, Bing; Lu, Lehui

    2012-04-07

    The detection of metabolites is very important for the estimation of the health of human beings. Latent fingerprint contains many constituents and specific contaminants, which give much information of the individual, such as health status, drug abuse etc. For a long time, many efforts have been focused on visualizing latent fingerprints, but little attention has been paid to the detection of such substances at the same time. In this article, we have devised a versatile approach for the ultra-sensitive detection and identification of specific biomolecules deposited within fingerprints via a large-area SERS imaging technique. The antibody bound to the Raman probe modified silver nanoparticles enables the binding to specific proteins within the fingerprints to afford high-definition SERS images of the fingerprint pattern. The SERS spectra and images of Raman probes indirectly provide chemical information regarding the given proteins. By taking advantage of the high sensitivity and the capability of SERS technique to obtain abundant vibrational signatures of biomolecules, we have successfully detected minute quantities of protein present within a latent fingerprint. This technique provides a versatile and effective model to detect biomarkers within fingerprints for medical diagnostics, criminal investigation and other fields. This journal is © The Royal Society of Chemistry 2012

  10. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.

    PubMed

    Song, Jiangning; Yuan, Zheng; Tan, Hao; Huber, Thomas; Burrage, Kevin

    2007-12-01

    Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide

  11. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles.

    PubMed

    Ambily Nath, I V; Loka Bharathi, P A

    2011-03-01

    Extremophiles occur in a diverse range of habitats, from the frigid waters of Antarctic to the superheated plumes of hydrothermal vents. Their in-depth study could provide important insights into the biochemical, ecological and evolutionary aspects of marine microbes. The cellular machinery of such extreme-lovers could be highly flexible to cope with such harsh environments. Extreme conditions of temperature, pressure, salinity, pH, oxidative stress, radiation, etc., above the physiological tolerance level can disrupt the natural conformation of proteins in the cell. The induction of stress proteins (heat/cold shock proteins/salt stress proteins/pressure-induced proteins) plays a vital role in the acclimatization of extremophiles. The present review focuses on the in vitro studies conducted on the transcripts and translational pattern of stress proteins in extremophiles. Though some proteins are unique, a commonality in stress resistance mechanism has been observed, for example, the universal occurrence of HSP60, 70 and the expression of metabolic and DNA repair proteins. The review highlights that among all the stressful conditions, salt/osmotic stress evokes the expression of highest number of transcripts/proteins while psychrophilic condition the least.

  12. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon.

    PubMed

    Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador

    2016-07-01

    In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.

  13. Structural classification of small, disulfide-rich protein domains.

    PubMed

    Cheek, Sara; Krishna, S Sri; Grishin, Nick V

    2006-05-26

    Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.

  14. Regulation of Microbe-Associated Molecular Pattern-Induced Hypersensitive Cell Death, Phytoalexin Production, and Defense Gene Expression by Calcineurin B-Like Protein-Interacting Protein Kinases, OsCIPK14/15, in Rice Cultured Cells1[W][OA

    PubMed Central

    Kurusu, Takamitsu; Hamada, Jumpei; Nokajima, Hiroshi; Kitagawa, Youichiro; Kiyoduka, Masahiro; Takahashi, Akira; Hanamata, Shigeru; Ohno, Ryoko; Hayashi, Teruyuki; Okada, Kazunori; Koga, Jinichiro; Hirochika, Hirohiko; Yamane, Hisakazu; Kuchitsu, Kazuyuki

    2010-01-01

    Although cytosolic free Ca2+ mobilization induced by microbe/pathogen-associated molecular patterns is postulated to play a pivotal role in innate immunity in plants, the molecular links between Ca2+ and downstream defense responses still remain largely unknown. Calcineurin B-like proteins (CBLs) act as Ca2+ sensors to activate specific protein kinases, CBL-interacting protein kinases (CIPKs). We here identified two CIPKs, OsCIPK14 and OsCIPK15, rapidly induced by microbe-associated molecular patterns, including chitooligosaccharides and xylanase (Trichoderma viride/ethylene-inducing xylanase [TvX/EIX]), in rice (Oryza sativa). Although they are located on different chromosomes, they have over 95% nucleotide sequence identity, including the surrounding genomic region, suggesting that they are duplicated genes. OsCIPK14/15 interacted with several OsCBLs through the FISL/NAF motif in yeast cells and showed the strongest interaction with OsCBL4. The recombinant OsCIPK14/15 proteins showed Mn2+-dependent protein kinase activity, which was enhanced both by deletion of their FISL/NAF motifs and by combination with OsCBL4. OsCIPK14/15-RNAi transgenic cell lines showed reduced sensitivity to TvX/EIX for the induction of a wide range of defense responses, including hypersensitive cell death, mitochondrial dysfunction, phytoalexin biosynthesis, and pathogenesis-related gene expression. On the other hand, TvX/EIX-induced cell death was enhanced in OsCIPK15-overexpressing lines. Our results suggest that OsCIPK14/15 play a crucial role in the microbe-associated molecular pattern-induced defense signaling pathway in rice cultured cells. PMID:20357140

  15. [Preliminary study on correlation between diversity of soluble proteins and producing area of Cordyceps sinensis].

    PubMed

    Ren, Yan; Qiu, Yi; Wan, De-Guang; Lu, Xian-Ming; Guo, Jin-Lin

    2013-05-01

    To analyze the content and type of soluble proteins in Cordyceps sinensis from different producing areas and processed with different methods with bradford method and 2-DE technology, in order to discover significant differences in soluble proteins in C. sinensis processed with different methods and from different producing areas. The preliminary study indicated that the content and diversity of soluble proteins were related to producing areas and processing methods to some extent.

  16. Patterns of protein synthesis in oocytes and early embryos of Rana esculenta complex.

    PubMed

    Chen, P S; Stumm-Zollinger, E

    1986-01-01

    We have used isotopic labelling and both one-and two-dimensional electrophoretic procedures to analyse the protien synthesis patterns in oocytes and early embryos of three phenotypes of the European green frogs. The results demonstrated that protein patterns of Rana ridibunda and R. esculenta are identical, but that they differ from those of R. lessonae. Progeny of the lethal cross R. esculenta × R. esculenta showed a distinct delay in the appearance of stage-specific proteins during early embryogenesis. The heat-shock response of R. ridibunda and R. esculenta oocytes was found to be identical, but different from that of Xenopus laevis. The implications of these findings, with respect to hybridogenesis in R. esculenta complex and variations in the regulations of heat shock genes in different amphibian species, are discussed.

  17. Assembly of Oriented Virus Arrays by Chemo-Selective Ligation Methods and Nanolithography Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarero, J A; Cheung, C L; Lin, T

    2002-12-02

    The present work describes our ongoing efforts towards the creation of nano-scaled ordered arrays of protein/virus covalently attached to site-specific chemical linkers patterned by different nanolithograpy techniques. We will present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto gold and silicon-based surfaces. Furthermore, these modified thiols have been used to create nanometric patterns by using different nanolithography techniques. We will show that these patterns can react chemoselectively with proteins and/or virus which have been chemically or recombinantly modified to contain complementary chemical groupsmore » at specific positions thus resulting in the oriented attachment of the protein or virus to the surface.« less

  18. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia.

    PubMed

    Romero, Juan Ignacio; Hanschmann, Eva-Maria; Gellert, Manuela; Eitner, Susanne; Holubiec, Mariana Inés; Blanco-Calvo, Eduardo; Lillig, Christopher Horst; Capani, Francisco

    2015-06-01

    Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion. We have analyzed the regulation and potential functions of Trx family proteins during hypoxia/ischemia and reoxygenation of the developing brain in both an animal and a cellular model of perinatal asphyxia. We have analyzed the distribution of 14 Trx family and related proteins in the cerebellum, striatum, and hippocampus, three areas of the rat brain that are especially susceptible to hypoxia. Using SH-SY5Y cells subjected to hypoxia and reoxygenation, we have analyzed the functions of some redoxins suggested by the animal experiment. We have described/discovered a complex, cell-type and tissue-specific expression pattern following the hypoxia/ischemia and reoxygenation. Particularly, Grx2 and Trx1 showed distinct changes during tissue recovery following hypoxia/ischemia and reoxygenation. Silencing of these proteins in SH-SY5Y cells subjected to hypoxia-reoxygenation confirmed that these proteins are required to maintain the normal neuronal phenotype. These findings demonstrate the significance of redox signaling in cellular pathways. Grx2 and Trx1 contribute significantly to neuronal integrity and could be clinically relevant in neuronal damage following perinatal asphyxia and other neuronal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    NASA Astrophysics Data System (ADS)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  20. Multi-port valve

    DOEpatents

    Lewin, Keith F.

    1997-04-15

    A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.

  1. Multi-port valve

    DOEpatents

    Lewin, K.F.

    1997-04-15

    A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.

  2. Genotypic variability and persistence of Legionella pneumophila PFGE patterns in 34 cooling towers from two different areas.

    PubMed

    Sanchez, Inma; Garcia-Nuñez, Marian; Ragull, Sonia; Sopena, Nieves; Pedro-Botet, Maria Luisa; Estere, Maria; Rey-Joly, Celestino; Sabria, Miquel; Esteve, Maria

    2008-02-01

    Genotypic variability and clonal persistence are important concepts in molecular epidemiology as they facilitate the search for the source of sporadic cases or outbreaks of legionellosis. We studied the genotypic variability and persistence of Legionella pulsed-field gel electrophoresis (PFGE) patterns over time (period > 6 months) in 34 positive cooling towers from two different areas. In area A, radius of 70 km, 52 indistinguishable PFGE patterns were differentiated among the 27 cooling towers. In 13 cooling towers we observed >or= 2 PFGE patterns. Each cooling tower had its own indistinguishable Legionella PFGE pattern which was not shared with any other cooling tower. In area B, radius of 1 km, 10 indistinguishable PFGE patterns were obtained from the seven cooling towers. In four, we observed >or= 2 PFGE patterns. Three of these 10 indistinguishable PFGE patterns were shared by more than one cooling tower. In 27 of 34 cooling towers the same PFGE pattern was recovered after 6 months to up to 5 years of follow-up. The large genotypic diversity of Legionella observed in the cooling towers aids in the investigation of community outbreaks of Legionnaires' disease. However, shared patterns in small areas may confound the epidemiological investigation. The persistence of some PFGE patterns in cooling towers makes the recovery of the Legionella isolate causing the outbreak possible over time.

  3. Northern refugia and recent expansion in the North Sea: the case of the wrasse Symphodus melops (Linnaeus, 1758)

    PubMed Central

    Robalo, Joana I; Castilho, Rita; Francisco, Sara M; Almada, Frederico; Knutsen, Halvor; Jorde, Per E; Pereira, Ana M; Almada, Vitor C

    2012-01-01

    Pleistocene climate changes have imposed extreme conditions to intertidal rocky marine communities, forcing many species to significant range shifts in their geographical distributions. Phylogeographic analyses based on both mitochondrial and nuclear genetic markers provide a useful approach to unravel phylogeographic patterns and processes of species after this time period, to gain general knowledge of how climatic changes affect shifts in species distributions. We analyzed these patterns on the corkwing wrasse (Symphodus melops, Labridae), a rocky shore species inhabiting North Sea waters and temperate northeastern Atlantic Ocean from Norway to Morocco including the Azores, using a fragment of the mitochondrial control region and the first intron of the nuclear S7 ribosomal protein gene. We found that S. melops shows a clear differentiation between the Atlantic and the Scandinavian populations and a sharp contrast in the genetic diversity, high in the south and low in the north. Within each of these main geographic areas there is little or no genetic differentiation. The species may have persisted throughout the last glacial maximum in the southern areas as paleotemperatures were not lower than they are today in North Scandinavia. The North Sea recolonization most likely took place during the current interglacial and is dominated by a haplotype absent from the south of the study area, but present in Plymouth and Belfast. The possibility of a glacial refugium in or near the English Channel is discussed. PMID:22408733

  4. Terminal sequence importance of de novo proteins from binary-patterned library: stable artificial proteins with 11- or 12-amino acid alphabet.

    PubMed

    Okura, Hiromichi; Takahashi, Tsuyoshi; Mihara, Hisakazu

    2012-06-01

    Successful approaches of de novo protein design suggest a great potential to create novel structural folds and to understand natural rules of protein folding. For these purposes, smaller and simpler de novo proteins have been developed. Here, we constructed smaller proteins by removing the terminal sequences from stable de novo vTAJ proteins and compared stabilities between mutant and original proteins. vTAJ proteins were screened from an α3β3 binary-patterned library which was designed with polar/ nonpolar periodicities of α-helix and β-sheet. vTAJ proteins have the additional terminal sequences due to the method of constructing the genetically repeated library sequences. By removing the parts of the sequences, we successfully obtained the stable smaller de novo protein mutants with fewer amino acid alphabets than the originals. However, these mutants showed the differences on ANS binding properties and stabilities against denaturant and pH change. The terminal sequences, which were designed just as flexible linkers not as secondary structure units, sufficiently affected these physicochemical details. This study showed implications for adjusting protein stabilities by designing N- and C-terminal sequences.

  5. Investigation of protein expression profiles of erythritol-producing Candida magnoliae in response to glucose perturbation.

    PubMed

    Kim, Hyo Jin; Lee, Hyeong-Rho; Kim, Chang Sup; Jin, Yong-Su; Seo, Jin-Ho

    2013-08-15

    Protein expression patterns of an erythritol-producing yeast, Candida magnoliae, were analyzed to identify differentially expressed proteins in response to glucose perturbation. Specifically, wild type C. magnoliae was grown under high and low glucose conditions and the cells were harvested at both mid-exponential and erythritol production phases for proteomic studies. In order to analyze intracellular protein abundances from the harvested cells quantitatively, total intracellular proteins were extracted and applied to two-dimensional gel electrophoresis for separation and visualization of individual proteins. Among the proteins distributed in the range of pI 4-7 and molecular weight 29-97kDa, five osmo-responsive proteins were drastically changed in response to glucose perturbation. Hsp60 (Heat-shock protein 60), transaldolase and NADH:quinone oxidoreductase were down-regulated under the high glucose condition and Bro1 (BCK1-like Resistance to Osmotic shock) and Eno1 (enolase1) were up-regulated. These proteins are directly or indirectly related with cellular stress response. Importantly, protein expression patterns of Hsp60, Bro1 and Eno1 were strongly correlated with previous studies identifying the proteins perturbed by osmotic stress for other organisms including Saccharomyces cerevisiae. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Immunohistochemical differentiation of atypical hyperplasia vs. carcinoma in situ of the breast.

    PubMed

    Masood, S; Sim, S J; Lu, L

    1992-01-01

    The distinction between atypical hyperplasia and carcinoma in situ in breast lesions can be difficult. The identification of myoepithelial cell layers may be helpful in establishing a diagnosis of proliferative breast disease vs. intraepithelial neoplasia. We reviewed pathologic material on 20 cases of atypical hyperplasia and 29 cases of carcinoma in situ. Immunohistochemical stains were employed against muscle-specific actin, S-100 protein, and cytokeratin to identify myoepithelial cells and to recognize different staining patterns. In atypical hyperplasia, muscle-specific actin staining identified myoepithelial cells in fine branching fibrovascular layers or as scattered cells between other proliferating cells. This pattern was absent in carcinoma in situ. S-100 protein showed more positive staining in atypical hyperplasia than in carcinoma in situ with patterns distinct from muscle-specific actin. Immunostaining for cytokeratin demonstrated distinctly different patterns between the two lesions. This study suggests that muscle-specific actin, S-100 protein, and cytokeratin in combination may assist in distinguishing proliferative breast disease with atypia from carcinoma in situ.

  7. Pattern formation in mass conserving reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Brauns, Fridtjof; Halatek, Jacob; Frey, Erwin

    We present a rigorous theoretical framework able to generalize and unify pattern formation for quantitative mass conserving reaction-diffusion models. Mass redistribution controls chemical equilibria locally. Separation of diffusive mass redistribution on the level of conserved species provides a general mathematical procedure to decompose complex reaction-diffusion systems into effectively independent functional units, and to reveal the general underlying bifurcation scenarios. We apply this framework to Min protein pattern formation and identify the mechanistic roles of both involved protein species. MinD generates polarity through phase separation, whereas MinE takes the role of a control variable regulating the existence of MinD phases. Hence, polarization and not oscillations is the generic core dynamics of Min proteins in vivo. This establishes an intrinsic mechanistic link between the Min system and a broad class of intracellular pattern forming systems based on bistability and phase separation (wave-pinning). Oscillations are facilitated by MinE redistribution and can be understood mechanistically as relaxation oscillations of the polarization direction.

  8. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.

    PubMed

    Raschka, Sebastian; Wolf, Alex J; Bemister-Buffington, Joseph; Kuhn, Leslie A

    2018-04-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  9. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes

    NASA Astrophysics Data System (ADS)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.

    2018-02-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  10. Kangaroo – A pattern-matching program for biological sequences

    PubMed Central

    2002-01-01

    Background Biologists are often interested in performing a simple database search to identify proteins or genes that contain a well-defined sequence pattern. Many databases do not provide straightforward or readily available query tools to perform simple searches, such as identifying transcription binding sites, protein motifs, or repetitive DNA sequences. However, in many cases simple pattern-matching searches can reveal a wealth of information. We present in this paper a regular expression pattern-matching tool that was used to identify short repetitive DNA sequences in human coding regions for the purpose of identifying potential mutation sites in mismatch repair deficient cells. Results Kangaroo is a web-based regular expression pattern-matching program that can search for patterns in DNA, protein, or coding region sequences in ten different organisms. The program is implemented to facilitate a wide range of queries with no restriction on the length or complexity of the query expression. The program is accessible on the web at http://bioinfo.mshri.on.ca/kangaroo/ and the source code is freely distributed at http://sourceforge.net/projects/slritools/. Conclusion A low-level simple pattern-matching application can prove to be a useful tool in many research settings. For example, Kangaroo was used to identify potential genetic targets in a human colorectal cancer variant that is characterized by a high frequency of mutations in coding regions containing mononucleotide repeats. PMID:12150718

  11. Evaluating, Comparing, and Interpreting Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups is important for investigating evolutionary history, for speeding up web-based similarity searches, for identifying sequence determinants of protein function, and for genome annotation. However, whether or not a particular hierarchy is optimal is often unclear, and independently constructed hierarchies for the same domain can often differ significantly. This article describes methods for statistically evaluating specific aspects of a hierarchy, for probing the criteria underlying its construction and for direct comparisons between hierarchies. Information theoretical notions are used to quantify the contributions of specific hierarchical features to the underlying statistical model. Such features include subhierarchies, sequence subgroups, individual sequences, and subgroup-associated signature patterns. Underlying properties are graphically displayed in plots of each specific feature's contributions, in heat maps of pattern residue conservation, in “contrast alignments,” and through cross-mapping of subgroups between hierarchies. Together, these approaches provide a deeper understanding of protein domain functional divergence, reveal uncertainties caused by inconsistent patterns of sequence conservation, and help resolve conflicts between competing hierarchies. PMID:24559108

  12. Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.

    PubMed

    Petricoin, Emanuel F; Ornstein, David K; Liotta, Lance A

    2004-01-01

    The science of proteomics comprises much more than simply generating lists of proteins that change in expression as a cause of or consequence of pathophysiology. The goal of proteomics should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. Serum proteomic pattern diagnostics is a new type of proteomic concept in which patterns of ion signatures generated from high dimensional mass spectrometry data are used as diagnostic classifiers. This recent approach has exciting potential for clinical utility of diagnostic patterns because low molecular weight metabolites, peptides, and protein fragments may have higher accuracy than traditional biomarkers of cancer detection. Intriguingly, we now have discovered that this diagnostic information exists in a bound state, complexed with circulating highly abundant carrier proteins. These diagnostic fragments may one day be harvested by circulating nanoparticles, designed to absorb, enrich, and amplify the repertoire of diagnostic biomarkers generated-even at the critical, initial stages of carcinogenesis. Copyright 2004 Elsevier Inc.

  13. Urban-rural differences in the gene expression profiles of Ghanaian children.

    PubMed

    Amoah, A S; Obeng, B B; May, L; Kruize, Y C; Larbi, I A; Kabesch, M; Wilson, M D; Hartgers, F C; Boakye, D A; Yazdanbakhsh, M

    2014-01-01

    Recent studies indicate that urbanization is having a pronounced effect on disease patterns in developing countries. To understand the immunological basis of this, we examined mRNA expression in whole blood of genes involved in immune activation and regulation in 151 children aged 5-13 years attending rural, urban low socioeconomic status (SES) and urban high-SES schools in Ghana. Samples were also collected to detect helminth and malaria infections. Marked differences in gene expression were observed between the rural and urban areas as well as within the urban area. The expression of both interleukin (IL)-10 and programmed cell death protein 1 increased significantly across the schools from urban high SES to urban low SES to rural (P-trend <0.001). Although IL-10 gene expression was significantly elevated in the rural compared with the urban schools (P<0.001), this was not associated with parasitic infection. Significant differences in the expression of toll-like receptors (TLRs) and their signaling genes were seen between the two urban schools. Genetic differences could not fully account for the gene expression profiles in the different groups as shown by analysis of IL-10, TLR-2 and TLR-4 gene polymorphisms. Immune gene expression patterns are strongly influenced by environmental determinants and may underlie the effects of urbanization seen on health outcomes.

  14. Improved method for predicting protein fold patterns with ensemble classifiers.

    PubMed

    Chen, W; Liu, X; Huang, Y; Jiang, Y; Zou, Q; Lin, C

    2012-01-27

    Protein folding is recognized as a critical problem in the field of biophysics in the 21st century. Predicting protein-folding patterns is challenging due to the complex structure of proteins. In an attempt to solve this problem, we employed ensemble classifiers to improve prediction accuracy. In our experiments, 188-dimensional features were extracted based on the composition and physical-chemical property of proteins and 20-dimensional features were selected using a coupled position-specific scoring matrix. Compared with traditional prediction methods, these methods were superior in terms of prediction accuracy. The 188-dimensional feature-based method achieved 71.2% accuracy in five cross-validations. The accuracy rose to 77% when we used a 20-dimensional feature vector. These methods were used on recent data, with 54.2% accuracy. Source codes and dataset, together with web server and software tools for prediction, are available at: http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.

  15. Protein recognition by a pattern-generating fluorescent molecular probe.

    PubMed

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  16. Electric-field-stimulated protein mechanics

    PubMed Central

    Hekstra, Doeke R.; White, K. Ian; Socolich, Michael A.; Henning, Robert W.; Šrajer, Vukica; Ranganathan, Rama

    2017-01-01

    The internal mechanics of proteins—the coordinated motions of amino acids and the pattern of forces constraining these motions—connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function. PMID:27926732

  17. Protein recognition by a pattern-generating fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  18. Oligoclonal Pattern/Abnormal Protein Bands in Post-Treatment Plasma Cell Myeloma Patients: Implications for Protein Electrophoresis and Serum Free Light Chain Assay Results

    PubMed Central

    Singh, Gurmukh

    2017-01-01

    Background The impact of autologous stem cell transplantation (ASCT) in plasma cell myeloma patients on the frequency, quality, and timing of oligoclonal pattern in serum protein electrophoresis/immunofixation electrophoresis (SPEP/SIFE) and serum free light chain assay (SFLCA) was evaluated. Methods Laboratory results and clinical data for 251 patients with plasma cell myeloma, who had SPEP/SIFE and/or SFLCA performed between January 2010 and December 2016 were reviewed. The results for SPEP/SIFE and SFLCA were compared in patients with ASCT to those without ASCT. The implications of oligoclonal pattern in interpretation of SPEP/SIFE and SFLCA - κ/λ ratio were addressed. Results In 251 patients, a total of 3,134 observations, of either SPEP/SIFE and/or SFLCA, were reviewed. One hundred fifty-nine patients received ASCT. The incidence of oligoclonal patterns was significantly higher after ASCT. More than half of the oligoclonal patterns developed in the first year after transplantation. In 13 of the 84 patients with lambda chain restricted plasma cell myeloma, the κ/λ ratio was kappa dominant in the presence of oligoclonal pattern. There was no reversal of κ/λ ratio in patients with kappa chain restricted plasma cell myelomas. Conclusions ASCT is associated with significantly higher incidence of oligoclonal patterns than with chemotherapy alone. The presence of oligoclonal patterns has the potential to interfere with the interpretation of SPEP/SIFE and ascertainment of complete remission. At a minimum, the oligoclonal pattern caused an incorrect kappa dominant κ/λ ratio in 15.5% of patients with lambda chain restricted plasma cell myeloma. If a similar rate were to be applied to the 167 kappa chain myeloma patients, about 26 of these would have displayed an erroneous kappa chain dominant κ/λ ratio. The presence of oligoclonal pattern further degrades the performance of already dubious SFLCA. The need for recording the location of monoclonal spike in SPEP/SIFE and higher resolution protein electrophoresis methods are highlighted. PMID:28725315

  19. Updated US Department of Agriculture Food Patterns meet goals of the 2010 dietary guidelines.

    PubMed

    Britten, Patricia; Cleveland, Linda E; Koegel, Kristin L; Kuczynski, Kevin J; Nickols-Richardson, Sharon M

    2012-10-01

    The US Department of Agriculture Food Patterns were updated for the 2010 Dietary Guidelines for Americans to meet new nutrition goals and incorporate results of food pattern modeling requested by the Dietary Guidelines Advisory Committee. The purpose of this article is to describe the process used and changes in the updated patterns. Changes include renaming the Meat and Beans and Milk Groups to the Protein Foods and Dairy Groups, respectively, to be more encompassing of foods in each. Vegetable subgroups now provide more achievable intake recommendations. Calcium-fortified soymilk is now included in the Dairy Group because of its similarity to foods in that group. Increased amounts of seafoods are recommended in the Protein Foods Group, balanced by decreased amounts of meat and poultry. A limit on calories from solid fats and added sugars is included, replacing the previous discretionary calorie allowance and emphasizing the need to choose nutrient-dense forms of foods. Lacto-ovo vegetarian and vegan patterns that meet nutrition goals were created by making substitutions in the Protein Foods Group, and for vegan patterns, in the Dairy Group. Patterns identify food choices that meet nutritional needs within energy allowances and encourage choosing a variety of foods. They rely on foods in nutrient-dense forms, including a limited amount of calories from solid fats and added sugars. The Food Patterns provide a useful template for educating consumers about healthful food choices while highlighting a large gap between choices many Americans make and healthy eating patterns. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  20. Ordering Transitions in Liquid Crystals Permit Imaging of Spatial and Temporal Patterns Formed by Proteins Penetrating into Lipid-Laden Interfaces

    PubMed Central

    Daschner De Tercero, Maren; Abbott, Nicholas L.

    2013-01-01

    Recent studies have reported that full monolayers of L-α-dilaurylphosphatidylcholine (L-DLPC) and D-α-dipalmitoylphosphatidylcholine (D-DPPC) formed at interfaces between thermotropic liquid crystals (LCs) and aqueous phases lead to homeotropic (perpendicular) orientations of nematic LCs and that specific binding of proteins to these interfaces (such as phospholipase A2 binding to D-DPPC) can trigger orientational ordering transitions in the liquid crystals. We report on the nonspecific interactions of proteins with aqueous-LC interfaces decorated with partial monolayer coverage of L-DLPC. Whereas nonspecific interactions of four proteins (cytochrome c, bovine serum albumin,immunoglobulins, and neutravidin) do not perturb the ordering of the LC when a full monolayer of L-DLPC is assembled at the aqueous-LC interface, we observe patterned orientational transitions in the LC that reflect penetration of proteins into the interface of the LC with partial monolayer coverage of L-DLPC. The spatial patterns formed by the proteins and lipids at the interface are surprisingly complex, and in some cases the protein domains are found to compartmentalize lipid within the interfaces. These results suggest that phospholipid-decorated interfaces between thermotropic liquid crystals and aqueous phases offer the basis of a simple and versatile tool to study the spatial organization and dynamics ofprotein networks formed at mobile, lipid-decorated interfaces. PMID:23671353

  1. Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Chen, Angela M.; Tsuruda, Jennifer M.; Cornel, Anthon J.; Debboun, Mustapha; Leal, Walter S.

    2004-09-01

    Four antennae-specific proteins (AaegOBP1, AaegOBP2, AaegOBP3, and AaegASP1) were isolated from the yellow fever mosquito, Aedes aegypti and their full-length cDNAs were cloned. RT-PCR indicated that they are expressed in female and, to a lesser extent, in male antennae, but not in control tissues (legs). AaegOBP1 and AaegOBP3 showed significant similarity to previously identified mosquito odorant-binding proteins (OBPs) in cysteine spacing pattern and sequence. Two of the isolated proteins have a total of eight cysteine residues. The similarity of the spacing pattern of the cysteine residues and amino acid sequence to those of previously identified olfactory proteins suggests that one of the cysteine-rich proteins (AaegOBP2) is an OBP. The other (AaegASP1) did not belong to any group of known OBPs. Structural analyses indicate that six of the cysteine residues in AaegOBP2 are linked in a similar pattern to the previously known cysteine pairing in OBPs, i.e., Cys-24 Cys-55, Cys-51 Cys-104, Cys-95 Cys-113. The additional disulfide bridge, Cys-38 Cys-125, knits the extended C-terminal segment of the protein to a predicted α2-helix. As indicated by circular dichroism (CD) spectra, the extra rigidity seems to prevent the predicted formation of a C-terminal α-helix at low pH.

  2. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures

    PubMed Central

    Tesei, Donatella; Marzban, Gorji; Zakharova, Kristina; Isola, Daniela; Selbmann, Laura; Sterflinger, Katja

    2012-01-01

    Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi – Coniosporium perforans, Exophiala jeanselmei – and of the extremophilic fungus – Friedmanniomyces endolithicus – were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum. PMID:22862921

  3. Patterns of IgE responses to multiple allergen components and clinical symptoms at age 11 years

    PubMed Central

    Simpson, Angela; Lazic, Nevena; Belgrave, Danielle C.M.; Johnson, Phil; Bishop, Christopher; Mills, Clare; Custovic, Adnan

    2015-01-01

    Background The relationship between sensitization to allergens and disease is complex. Objective We sought to identify patterns of response to a broad range of allergen components and investigate associations with asthma, eczema, and hay fever. Methods Serum specific IgE levels to 112 allergen components were measured by using a multiplex array (Immuno Solid-phase Allergen Chip) in a population-based birth cohort. Latent variable modeling was used to identify underlying patterns of component-specific IgE responses; these patterns were then related to asthma, eczema, and hay fever. Results Two hundred twenty-one of 461 children had IgE to 1 or more components. Seventy-one of the 112 components were recognized by 3 or more children. By using latent variable modeling, 61 allergen components clustered into 3 component groups (CG1, CG2, and CG3); protein families within each CG were exclusive to that group. CG1 comprised 27 components from 8 plant protein families. CG2 comprised 7 components of mite allergens from 3 protein families. CG3 included 27 components of plant, animal, and fungal origin from 12 protein families. Each CG included components from different biological sources with structural homology and also nonhomologous proteins arising from the same biological source. Sensitization to CG3 was most strongly associated with asthma (odds ratio [OR], 8.20; 95% CI, 3.49-19.24; P < .001) and lower FEV1 (P < .001). Sensitization to CG1 was associated with hay fever (OR, 12.79; 95% CI, 6.84-23.90; P < .001). Sensitization to CG2 was associated with both asthma (OR, 3.60; 95% CI, 2.05-6.29) and hay fever (OR, 2.52; 95% CI, 1.38-4.61). Conclusions Latent variable modeling with a large number of allergen components identified 3 patterns of IgE responses, each including different protein families. In 11-year-old children the pattern of response to components of multiple allergens appeared to be associated with current asthma and hay fever but not eczema. PMID:25935108

  4. CELLULAR AND SECRETORY PROTEINS OF THE SALIVARY GLANDS OF SCIARA COPROPHILA DURING THE LARVAL-PUPAL TRANSFORMATION

    PubMed Central

    Been, Anita C.; Rasch, Ellen M.

    1972-01-01

    The cellular and secretory proteins of the salivary gland of Sciara coprophila during the stages of the larval-pupal transformation were examined by electrophoresis in 0.6 mm sheets of polyacrylamide gel with both SDS-continuous and discontinuous buffer systems. After SDS-electrophoresis, all electrophoretograms of both reduced and nonreduced proteins from single glands stained with Coomassie brilliant blue revealed a pattern containing the same 25 bands during the stages of the larval-pupal transformation. With the staining procedures used in this study, qualitative increases and decreases were detected in existing proteins and enzymes. There was no evidence, however, for the appearance of new protein species that could be correlated with the onset of either pupation or gland histolysis. Electrophoretograms of reduced samples of anterior versus posterior gland parts indicated that no protein in the basic pattern of 25 bands was unique to either the anterior or posterior gland part. Electrophoretograms of reduced samples of secretion collected from either actively feeding or "cocoon"-building animals showed an electrophoretic pattern containing up to six of the 25 protein fractions detected in salivary gland samples, with varied amounts of these same six proteins in electrophoretograms of secretion samples from a given stage. Zymograms of non-specific esterases in salivary gland samples revealed a progressive increase in the amount of esterase reaction produce in one major band and some decrease in the second major band during later stages of the larval-pupal transformation. PMID:4116523

  5. General theory for integrated analysis of growth, gene, and protein expression in biofilms.

    PubMed

    Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S

    2013-01-01

    A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques.

  6. Cocaine- and amphetamine-regulated transcript peptide and calcium binding proteins immunoreactivity in the deep layers of the superior colliculus of the guinea pig: Implications for multisensory and visuomotor processing.

    PubMed

    Najdzion, Janusz

    2018-03-01

    The superior colliculus (SC) of mammals is a midbrain center, that can be subdivided into the superficial (SCs) and deep layers (SCd). In contrast to the visual SCs, the SCd are involved in multisensory and motor processing. This study investigated the pattern of distribution and colocalization of cocaine- and amphetamine-regulated transcript peptide (CART) and three calcium-binding proteins (CaBPs) i.e. calbindin (CB), calretinin (CR) and parvalbumin (PV) in the SCd of the guinea pig. CART labeling was seen almost exclusively in the neuropil and fibers, which differed in regard to morphology and location. CART-positive neurons were very rare and restricted to a narrow area of the SCd. The most intense CART immunoreactivity was observed in the most dorsally located sublayer of the SCd, which is anatomically and functionally connected with the SCs. CART immunoreactivity in the remaining SCd was less intensive, but still relatively high. This characteristic pattern of immunoreactivity indicates that CART as a putative neurotransmitter or neuromodulator may play an important role in processing of visual information, while its involvement in the auditory and visuomotor processing is less significant, but still possible. CaBPs-positive neurons were morphologically diverse and widely distributed throughout all SCd. From studied CaBPs, CR showed a markedly different distribution compared to CB and PV. Overall, the patterns of distribution of CB and PV were similar in the entire SCd. Consequently, the complementarity of these patterns in the guinea pig was very weak. Double immunostaining revealed that CART did not colocalize with either CaBPs, which suggested that these neurochemical substances might not coexist in the multisensory and visuomotor parts of the SC. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Vibrational Stark effect spectroscopy reveals complementary electrostatic fields created by protein-protein binding at the interface of Ras and Ral.

    PubMed

    Walker, David M; Hayes, Ellen C; Webb, Lauren J

    2013-08-07

    Electrostatic fields at the interface of the GTPase H-Ras (Ras) docked with the Ras binding domain of the protein Ral guanine nucleoside dissociation stimulator (Ral) were measured with vibrational Stark effect (VSE) spectroscopy. Nine residues on the surface of Ras that participate in the protein-protein interface were systematically mutated to cysteine and subsequently converted to cyanocysteine in order to introduce a nitrile VSE probe into the protein-protein interface. The absorption energy of the nitrile was measured both on the surface of Ras in its monomeric state, then after incubation with the Ras binding domain of Ral to form the docked complex. Boltzmann-weighted structural snapshots of the nitrile-labeled Ras protein were generated both in monomeric and docked configurations from molecular dynamics simulations using enhanced sampling of the cyanocysteine side chain's χ2 dihedral angle. These snapshots were used to determine that on average, most of the nitrile probes were aligned along the Ras surface, parallel to the Ras-Ral interface. The average solvent-accessible surface areas (SASA) of the cyanocysteine side chain were found to be <60 Å(2) for all measured residues, and was not significantly different whether the nitrile was on the surface of the Ras monomer or immersed in the docked complex. Changes in the absorption energy of the nitrile probe at nine positions along the Ras-Ral interface were compared to results of a previous study examining this interface with Ral-based probes, and found a pattern of low electrostatic field in the core of the interface surrounded by a ring of high electrostatic field around the perimeter of the interface. These data are used to rationalize several puzzling features of the Ras-Ral interface.

  8. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death.

    PubMed

    Balakrishnan, Meenakshi P; Cilenti, Lucia; Mashak, Zineb; Popat, Paiyal; Alnemri, Emad S; Zervos, Antonis S

    2009-08-01

    Omi/HtrA2 is a mitochondrial serine protease that has a dual function: while confined in the mitochondria, it promotes cell survival, but when released into the cytoplasm, it participates in caspase-dependent as well as caspase-independent cell death. To investigate the mechanism of Omi/HtrA2's function, we set out to isolate and characterize novel substrates for this protease. We have identified Thanatos-associated protein 5 (THAP5) as a specific interactor and substrate of Omi/HtrA2 in cells undergoing apoptosis. This protein is an uncharacterized member of the THAP family of proteins. THAP5 has a unique pattern of expression and is found predominantly in the human heart, although a very low expression is also seen in the human brain and muscle. THAP5 protein is localized in the nucleus and, when ectopically expressed, induces cell cycle arrest. During apoptosis, THAP5 protein is degraded, and this process can be blocked using a specific Omi/HtrA2 inhibitor, leading to reduced cell death. In patients with coronary artery disease, THAP5 protein levels substantially decrease in the myocardial infarction area, suggesting a potential role of this protein in human heart disease. This work identifies human THAP5 as a cardiac-specific nuclear protein that controls cell cycle progression. Furthermore, during apoptosis, THAP5 is cleaved and removed by the proapoptotic Omi/HtrA2 protease. Taken together, we provide evidence to support that THAP5 and its regulation by Omi/HtrA2 provide a new link between cell cycle control and apoptosis in cardiomyocytes.

  9. Differential Protein Expression in the Hemolymph of Bithynia siamensis goniomphalos Infected with Opisthorchis viverrini

    PubMed Central

    Suwannatrai, Kulwadee; Suwannatrai, Apiporn; Tabsripair, Pairat; Welbat, Jariya Umka; Tangkawattana, Sirikachorn; Cantacessi, Cinzia; Mulvenna, Jason; Tesana, Smarn; Loukas, Alex

    2016-01-01

    Bithynia siamensis goniomphalos is a freshwater snail that serves as the first intermediate host of the human liver fluke Opisthorchis viverrini. This parasite is a major public health problem in different countries throughout the Greater Mekong sub-region (Thailand, southern Vietnam, Lao PDR and Cambodia). Chronic O. viverrini infection also results in a gradual increase of fibrotic tissues in the biliary tract that are associated with hepatobiliary diseases and contribute to cholangiocarcinoma (a fatal type of bile duct cancer). Infectivity of the parasite in the snail host is strongly correlated with destruction of helminths by the snail’s innate immune system, composed of cellular (hemocyte) and humoral (plasma) defense factors. To better understand this important host-parasite interface we applied sequential window acquisition of all theoretical spectra mass spectrometry (SWATH-MS) to identify and quantify the proteins from the hemolymph of B. siamensis goniomphalos experimentally infected with O. viverrini and compare them to non-infected snails (control group). A total of 362 and 242 proteins were identified in the hemocytes and plasma, respectively. Of these, 145 and 117 proteins exhibited significant differences in expression upon fluke infection in hemocytes and plasma, respectively. Among the proteins with significantly different expression patterns, we found proteins related to immune response (up-regulated in both hemocyte and plasma of infected snails) and proteins belonging to the structural and motor group (mostly down-regulated in hemocytes but up-regulated in plasma of infected snails). The proteins identified and quantified in this work will provide important information for the understanding of the factors involved in snail defense against O. viverrini and might facilitate the development of new strategies to control O. viverrini infection in endemic areas. PMID:27893749

  10. Rapid bio-patterning method based on the fabrication of PEG microstructures and layer-by-layer polymeric thin film

    NASA Astrophysics Data System (ADS)

    Shim, Hyun-Woo; Lee, Ji-Hye; Choi, Chang-Hyoung; Song, Hwan-Moon; Kim, Bo-Yeol; Kim, Dong-Pyo; Lee, Chang-Soo

    2007-12-01

    The patterning of biomolecules in well-defined microstructures is critical issue for the development of biosensors and biochips. However, the fabrication of microstructures with well-ordered and spatially discrete forms to provide the patterned surface for the immobilization of biomolecules is difficult because of the lack of distinct physical and chemical barriers separating patterns. This study present rapid biomolecule patterning using micromolding in capillaries (MIMIC), soft-lithographic fabrication of PEG microstructures for prevention of nonspecific binding as a biological barrier, and self assembled polymeric thin film for efficient immobilization of proteins or cells. For the proof of concept, protein (FITC-BSA), bacteria (E.coli BL21-pET23b-GFP) were used for biomolecules patterning on polyelectrolyte coated surface within PEG microstructures. The novel approach of MIMIC combined with LbL coating provides a general platform for patterning a broad range of materials because it can be easily applied to various substrates such as glass, silicon, silicon dioxide, and polymers.

  11. Cell-free protein synthesis and assembly on a biochip

    NASA Astrophysics Data System (ADS)

    Heyman, Yael; Buxboim, Amnon; Wolf, Sharon G.; Daube, Shirley S.; Bar-Ziv, Roy H.

    2012-06-01

    Biologically active complexes such as ribosomes and bacteriophages are formed through the self-assembly of proteins and nucleic acids. Recapitulating these biological self-assembly processes in a cell-free environment offers a way to develop synthetic biodevices. To visualize and understand the assembly process, a platform is required that enables simultaneous synthesis, assembly and imaging at the nanoscale. Here, we show that a silicon dioxide grid, used to support samples in transmission electron microscopy, can be modified into a biochip to combine in situ protein synthesis, assembly and imaging. Light is used to pattern the biochip surface with genes that encode specific proteins, and antibody traps that bind and assemble the nascent proteins. Using transmission electron microscopy imaging we show that protein nanotubes synthesized on the biochip surface in the presence of antibody traps efficiently assembled on these traps, but pre-assembled nanotubes were not effectively captured. Moreover, synthesis of green fluorescent protein from its immobilized gene generated a gradient of captured proteins decreasing in concentration away from the gene source. This biochip could be used to create spatial patterns of proteins assembled on surfaces.

  12. Expression of bovine non-classical major histocompatibility complex class 1 proteins in mouse P815 and human K562 cells

    USDA-ARS?s Scientific Manuscript database

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-class...

  13. 76 FR 35801 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ..., 1219-AB73 Examinations of Work Areas in Underground Coal Mines and Pattern of Violations AGENCY: Mine... public hearings on the Agency's proposed rules for Examinations of Work Areas in Underground Coal Mines... Underground Coal Mines' submissions, and with ``RIN 1219-AB73'' for Pattern of Violations' submissions...

  14. Two-dimensional analysis of human lymphocyte proteins. III. Preliminary report on a marker for the early detection and diagnosis of infectious mononucleosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, K.E.

    1982-04-01

    Two-dimensional gel electrophoretic patterns of human peripheral blood leukocytes from 12 patients with infectious mononucleosis were prepared by use of the ISO-DALT system. Before the two-dimensional separation, the leukocytes were purified by Ficoll-Paque gradient centrifugation and labeled overnight with (/sup 35/S) methionine. Quantitative increases in two proteins were detected in the patterns of infected leukocytes from the patients as compared with controls. Fluorescence-activated cell sorting of leukocytes from normal human peripheral blood before subsequent two-dimensional gel analysis revealed that the dramatic increase in one of these proteins (Inmono:2) could be due to shifts in the population ratios of lymphocytes, monocytes,more » and granulocytes. In contrast, the appearance in the infected leukocytes of a second protein, Inmono:1, could not be accounted for by cell-population shifts. Increased amounts of these two proteins have been found in every patient studied who had clinically detectable infectious mononucleosis. In addition, a patient who displayed symptoms of infectious mononucleosis but who did not have a positive result in the MONOSPOT test (Ortho) until three weeks after our analysis also demonstrated increased relative amounts of these proteins in his leukocyte pattern.« less

  15. Measuring and comparing structural fluctuation patterns in large protein datasets.

    PubMed

    Fuglebakk, Edvin; Echave, Julián; Reuter, Nathalie

    2012-10-01

    The function of a protein depends not only on its structure but also on its dynamics. This is at the basis of a large body of experimental and theoretical work on protein dynamics. Further insight into the dynamics-function relationship can be gained by studying the evolutionary divergence of protein motions. To investigate this, we need appropriate comparative dynamics methods. The most used dynamical similarity score is the correlation between the root mean square fluctuations (RMSF) of aligned residues. Despite its usefulness, RMSF is in general less evolutionarily conserved than the native structure. A fundamental issue is whether RMSF is not as conserved as structure because dynamics is less conserved or because RMSF is not the best property to use to study its conservation. We performed a systematic assessment of several scores that quantify the (dis)similarity between protein fluctuation patterns. We show that the best scores perform as well as or better than structural dissimilarity, as assessed by their consistency with the SCOP classification. We conclude that to uncover the full extent of the evolutionary conservation of protein fluctuation patterns, it is important to measure the directions of fluctuations and their correlations between sites. Nathalie.Reuter@mbi.uib.no Supplementary data are available at Bioinformatics Online.

  16. Temporal pattern changes in duodenal protein tyrosine nitration events in response to Eimeria acervulina infection in chickens

    USDA-ARS?s Scientific Manuscript database

    Intracellular generation of nitric oxide (NO) and superoxide anion (SOA) can result in the formation of 3'-nitrotyrosine proteins (NTp). Nitrated proteins usually are associated with significant perturbation in protein function, apoptosis, and cell death. We undertook the present study to establis...

  17. Patterns of oribatid mite species diversity: testing the effects of elevation, area and sampling effort.

    PubMed

    Mumladze, Levan; Murvanidze, Maka; Maraun, Mark

    2017-07-01

    Elevational gradients in species diversity and species area relationships are two well established patterns that are not mutually exclusive in space and time. Elevation and area are both considered as good proxies to detect and characterize the patterns of species diversity distribution. However, such studies are hampered by the incomplete biodiversity data available for ecologists, which may affect the pattern perceptions. Using the large dataset of oribatid mite communities sampled in Georgia, we tested the effects of altitude and area on species distribution using various approaches, while explicitly considering the biases from sampling effort. Our results showed that elevation and area are strongly correlated (with increasing absolute elevation, land area decreases) and both have strong linear effects on species diversity distribution when studied separately. Approaches based on multiple regression and direct removal of co-varied factors, indicated that the effect of area can actually override the effect of elevation in describing the oribatid species diversity distribution along with elevation. On the other hand, the bias of sampling proved significant in perception of elevational species richness pattern with less effect on elevational species area relationship. We suggest that the sampling alone may be responsible for patterns observed and thus should be considered in ecological studies when eligible.

  18. INTERSPIA: a web application for exploring the dynamics of protein-protein interactions among multiple species.

    PubMed

    Kwon, Daehong; Lee, Daehwan; Kim, Juyeon; Lee, Jongin; Sim, Mikang; Kim, Jaebum

    2018-05-09

    Proteins perform biological functions through cascading interactions with each other by forming protein complexes. As a result, interactions among proteins, called protein-protein interactions (PPIs) are not completely free from selection constraint during evolution. Therefore, the identification and analysis of PPI changes during evolution can give us new insight into the evolution of functions. Although many algorithms, databases and websites have been developed to help the study of PPIs, most of them are limited to visualize the structure and features of PPIs in a chosen single species with limited functions in the visualization perspective. This leads to difficulties in the identification of different patterns of PPIs in different species and their functional consequences. To resolve these issues, we developed a web application, called INTER-Species Protein Interaction Analysis (INTERSPIA). Given a set of proteins of user's interest, INTERSPIA first discovers additional proteins that are functionally associated with the input proteins and searches for different patterns of PPIs in multiple species through a server-side pipeline, and second visualizes the dynamics of PPIs in multiple species using an easy-to-use web interface. INTERSPIA is freely available at http://bioinfo.konkuk.ac.kr/INTERSPIA/.

  19. Dietary Patterns and Fitness Level in Mexican Teenagers.

    PubMed

    Estrada-Reyes, César; Tlatempa-Sotelo, Patricia; Valdés-Ramos, Roxana; Cabañas-Armesilla, María; Manjarrez-Montes-de-Oca, Rafael

    2018-01-01

    Nowadays, the term "physical fitness" has evolved from sports performance to health status, and it has been considered a strong predictor of cardiovascular disease. In this sense, test batteries have been developed to evaluate physical fitness such as the ALPHA-FIT battery. On the other hand, the analysis of dietary patterns has emerged as an alternative method to study the relationship between diet and chronic noncommunicable diseases. However, the association between dietary patterns and the physical fitness level has not been evaluated in both adults and adolescents. This association is most important in adolescents due to the fact that establishing healthy dietary behaviors and a favorable nutritional profile in early stages of life prevents various chronic-degenerative diseases. To analyze the association between dietary patterns and the level of fitness in Mexican teenagers. We analyzed the relationship between dietary patterns and the fitness level of 42 teenage students in Toluca, Mexico. Students were weighed and measured, and their food intake was recorded for 2 weekdays and one weekend day. Dietary patterns were obtained by factorial analysis. The ALPHA-FIT battery was used to measure the fitness level. Fifty percent of the students were found to have a low fitness level (62.1% men; 37.9% women). There was no association ( X 2 = 0.83) between the dietary patterns "high in fat and sugar," "high in protein", and "low in fat and protein" and the level of physical condition in teens. In this study, all of teenagers with a very low level of fitness obtained a high dietary pattern in protein; however, 40% with a high level of physical condition resulted in the same pattern; that is why we did not find a relationship between the fitness level and the patterns investigated in this study.

  20. Activities pattern of planned settlement’s residence and its influence toward settlement design

    NASA Astrophysics Data System (ADS)

    Nirfalini Aulia, Dwira

    2018-03-01

    Everyday activity of residents in a housing area will create activities pattern. Utilization of public spaces in a housing area with repeating activities pattern will affect the design of public spaces. Changes in public space usage in a housing area happen as a result of residents’ activities pattern. The goal of this paper is to identify residents’ activity pattern and connect its influence towards public spaces utilization in planned housing in micro and urban area in macro. Housing residents classified into four respondent groups based on marriage status which is unmarried, single parents, the family without child and family with a child. The method used in this research is the qualitative descriptive approach. Research finding showed that housing area with housing facilities capable of creating happiness and convenience for its residents doing their activities in public spaces.

  1. Study on induced strain in direct nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenta; Iida, Tatsuya; Yasuda, Masaaki; Kawata, Hiroaki; Hirai, Yoshihiko

    2018-06-01

    The induced shear strain distribution in a polymer film is investigated by computational study in a direct nanoimprint process. The effects of the polymer thickness, mold pattern shape such as rectangular, triangular or overcut pattern shape, and the coefficient of friction between the mold and the polymer are studied by computational work. As the coefficient of friction increases, the induced shear strain increases along the mold surface. Depending on the polymer thickness, the shear strain is induced in the residual and/or pattern area. In the triangular pattern, the strain is induced in the pattern central area. The results suggest that shear stress remains in the triangular pattern area in the direct nanoimprint process. On the other hand, the rectangular pattern is suitable for suppressing the induced strain inside the pattern.

  2. Automated classification of immunostaining patterns in breast tissue from the human protein atlas.

    PubMed

    Swamidoss, Issac Niwas; Kårsnäs, Andreas; Uhlmann, Virginie; Ponnusamy, Palanisamy; Kampf, Caroline; Simonsson, Martin; Wählby, Carolina; Strand, Robin

    2013-01-01

    The Human Protein Atlas (HPA) is an effort to map the location of all human proteins (http://www.proteinatlas.org/). It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA) are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples. The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM) features, complex wavelet co-occurrence matrix (CWCM) features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM)-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM) and linear discriminant analysis (LDA) classifier). Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue. We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert. Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for quantification of staining patterns in histopathology have many applications, ranging from antibody quality control to tumor grading.

  3. Western blotting: an introduction.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    Western blotting is an important procedure for the immunodetection of proteins, particularly proteins that are of low abundance. This process involves the transfer of protein patterns from gel to microporous membrane. Electrophoretic as well as non-electrophoretic transfer of proteins to membranes was first described in 1979. Protein blotting has evolved greatly since the inception of this protocol, allowing protein transfer to be accomplished in a variety of ways.

  4. Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees.

    PubMed

    Talei, Daryush; Valdiani, Alireza; Maziah, Mahmood; Sagineedu, Sreenivasa Rao; Abiri, Rambod

    2015-01-01

    Andrographis paniculata is a multifunctional medicinal plant and a potent source of bioactive compounds. Impact of environmental stresses such as salinity on protein diversification, as well as the consequent changes in the photosynthetic parameters and andrographolide content (AG) of the herb, has not yet been thoroughly investigated. The present study showed that the salinity affects the protein pattern, and subsequently, it decreased the photosynthetic parameters, protein content, total dry weight, and total crude extract. Exceptionally, the AG content was increased (p ≤ 0.01). Moreover, it was noticed that the salinity at 12 dS m(-1) led to the maximum increase in AG content in all accessions. Interestingly, the leaf protein analysis revealed that the two polymorphic protein bands as low- and medium-sized of 17 and 45 kDa acted as the activator agents for the photosynthetic parameters and AG content. Protein sequencing and proteomic analysis can be conducted based on the present findings in the future.

  5. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Patterned layers of adsorbed extracellular matrix proteins: influence on mammalian cell adhesion.

    PubMed

    Dupont-Gillain, C C; Alaerts, J A; Dewez, J L; Rouxhet, P G

    2004-01-01

    Three patterned systems aiming at the control of mammalian cell behavior are presented. The determinant feature common to these systems is the spatial distribution of extracellular matrix (ECM) proteins (mainly collagen) on polymer substrates. This distribution differs from one system to another with respect to the scale at which it is affected, from the supracellular to the supramolecular scale, and with respect to the way it is produced. In the first system, the surface of polystyrene was oxidized selectively to form micrometer-scale patterns, using photolithography. Adsorption of ECM proteins in presence of a competitor was enhanced on the oxidized domains, allowing selective cell adhesion to be achieved. In the second system, electron beam lithography was used to engrave grooves (depth and width approximately 1 microm) on a poly(methyl methacrylate) (PMMA) substratum. No modification of the surface chemistry associated to the created topography could be detected. Cell orientation along the grooves was only observed when collagen was preadsorbed on the substratum. In the third system, collagen adsorbed on PMMA was dried in conditions ensuring the formation of a nanometer-scale pattern. Cell adhesion was enhanced on such patterned collagen layers compared to smooth collagen layers.

  7. Nutrient Distribution and Absorption in the Colonial Hydroid Podocoryna carnea Is Sequentially Diffusive and Directional.

    PubMed

    Buss, Leo W; Anderson, Christopher P; Perry, Elena K; Buss, Evan D; Bolton, Edward W

    2015-01-01

    The distribution and absorption of ingested protein was characterized within a colony of Podocoryna carnea when a single polyp was fed. Observations were conducted at multiple spatial and temporal scales at three different stages of colony ontogeny with an artificial food item containing Texas Red conjugated albumin. Food pellets were digested and all tracer absorbed by digestive cells within the first 2-3 hours post-feeding. The preponderance of the label was located in the fed polyp and in a transport-induced diffusion pattern surrounding the fed polyp. After 6 hours post-feeding particulates re-appeared in the gastrovascular system and their absorption increased the area over which the nutrients were distributed, albeit still in a pattern that was centered on the fed polyp. At later intervals, tracer became concentrated in some stolon tips, but not in others, despite the proximity of these stolons either to the fed polyp or to adjacent stolons receiving nutrients. Distribution and absorption of nutrients is sequentially diffusive and directional.

  8. Delineation of Stenotrophomonas maltophilia isolates from cystic fibrosis patients by fatty acid methyl ester profiles and matrix-assisted laser desorption/ionization time-of-flight mass spectra using hierarchical cluster analysis and principal component analysis.

    PubMed

    Vidigal, Pedrina Gonçalves; Mosel, Frank; Koehling, Hedda Luise; Mueller, Karl Dieter; Buer, Jan; Rath, Peter Michael; Steinmann, Joerg

    2014-12-01

    Stenotrophomonas maltophilia is an opportunist multidrug-resistant pathogen that causes a wide range of nosocomial infections. Various cystic fibrosis (CF) centres have reported an increasing prevalence of S. maltophilia colonization/infection among patients with this disease. The purpose of this study was to assess specific fingerprints of S. maltophilia isolates from CF patients (n = 71) by investigating fatty acid methyl esters (FAMEs) through gas chromatography (GC) and highly abundant proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to compare them with isolates obtained from intensive care unit (ICU) patients (n = 20) and the environment (n = 11). Principal component analysis (PCA) of GC-FAME patterns did not reveal a clustering corresponding to distinct CF, ICU or environmental types. Based on the peak area index, it was observed that S. maltophilia isolates from CF patients produced significantly higher amounts of fatty acids in comparison with ICU patients and the environmental isolates. Hierarchical cluster analysis (HCA) based on the MALDI-TOF MS peak profiles of S. maltophilia revealed the presence of five large clusters, suggesting a high phenotypic diversity. Although HCA of MALDI-TOF mass spectra did not result in distinct clusters predominantly composed of CF isolates, PCA revealed the presence of a distinct cluster composed of S. maltophilia isolates from CF patients. Our data suggest that S. maltophilia colonizing CF patients tend to modify not only their fatty acid patterns but also their protein patterns as a response to adaptation in the unfavourable environment of the CF lung. © 2014 The Authors.

  9. Colonization Pattern of the Biocontrol Strain Pseudomonas chlororaphis MA 342 on Barley Seeds Visualized by Using Green Fluorescent Protein

    PubMed Central

    Tombolini, Riccardo; van der Gaag, Dirk Jan; Gerhardson, Berndt; Jansson, Janet K.

    1999-01-01

    Pseudomonas chlororaphis MA 342 is a potent biocontrol agent that can be used against several seed-borne diseases of cereal crops, including net blotch of barley caused by the fungus Drechslera teres. In this study, strain MA 342 was tagged with the gfp gene (encoding the green fluorescent protein) in order to study the fate of cells after seed inoculation. The gfp-tagged strain, MA 342G2, had the same biocontrol efficacy as the wild type when it was applied at high cell concentrations to seeds but was less effective at lower cell concentrations. By comparing cell counts determined by microscopy to the number of CFU, we found that the number of culturable cells was significantly lower than the total number of bacteria on seeds which were inoculated and dried for 20 h. Confocal microscopy and epifluorescence stereomicroscopy were used to determine the pattern of MA 342G2 colonization and cell aggregation on barley seeds. Immediately after inoculation of seeds, bacteria were found mainly under the seed glume, and there was no particular aggregation pattern. However, after the seeds were sown, irregularly distributed areas of bacterial aggregation were found, which reflected epiphytic colonization of glume cells. There was a trend towards bacterial aggregation near the embryo but never within the embryo. Bacterial aggregates were regularly found in the groove of each seed formed by the base of the coleoptile and the scutellum. Based on these results, we suggest that MA 342 colocalizes with the pathogen D. teres, which facilitates the action of the fungistatic compound(s) produced by this strain. PMID:10427065

  10. Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction.

    PubMed

    Sun, Cheuk-Kwan; Zhen, Yen-Yi; Leu, Steve; Tsai, Tzu-Hsien; Chang, Li-Teh; Sheu, Jiunn-Jye; Chen, Yung-Lung; Chua, Sarah; Chai, Han-Tan; Lu, Hung-I; Chang, Hsueh-Wen; Lee, Fan-Yen; Yip, Hon-Kan

    2014-05-15

    This study tested whether adipose-derived mesenchymal stem cells (ADMSC) embedded in platelet-rich fibrin (PRF) scaffold is superior to direct ADMSC implantation in improving left ventricular (LV) performance and reducing LV remodeling in a rat acute myocardial infarction (AMI) model of left anterior descending coronary artery (LAD) ligation. Twenty-eight male adult Sprague Dawley rats equally divided into group 1 [sham control], group 2 (AMI only), group 3 (AMI+direct ADMSC implantation), and group 4 (AMI+PRF-embedded autologous ADMSC) were sacrificed on day 42 after AMI. LV systolic and diastolic dimensions and volumes, and infarct/fibrotic areas were highest in group 2, lowest in group 1 and significantly higher in group 3 than in group 4, whereas LV performance and LV fractional shortening exhibited a reversed pattern (p<0.005). Protein expressions of inflammation (oxidative stress, IL-1β, MMP-9), apoptosis (mitochondrial Bax, cleaved PARP), fibrosis (Smad3, TGF-β), and pressure-overload biomarkers (BNP, MHC-β) displayed a pattern similar to that of LV dimensions, whereas anti-inflammatory (IL-10), anti-apoptotic (Bcl-2), and anti-fibrotic (Smad1/5, BMP-2) indices showed a pattern similar to that of LV performance among the four groups (all p<0.05). Angiogenesis biomarkers at protein (CXCR4, SDF-1α, VEGF), cellular (CD31+, CXCR4+, SDF-1α+), and immunohistochemical (small vessels) levels, and cardiac stem cell markers (C-kit+, Sca-1+) in infarct myocardium were highest in group 4, lowest in group 1, and significantly higher in group 3 than in group 2 (all p<0.005). PRF-embedded ADMSC is superior to direct ADMSC implantation in preserving LV function and attenuating LV remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. [FOXP2: from the specific disorder to the molecular biology of language. I. Aetiological, neuroanatomical, neurophysiological and molecular aspects].

    PubMed

    Benítez-Burraco, A

    The task of cloning the genes whose products are involved in the organisation and functioning of the nerve centres that enable language tasks to be executed must necessarily start with the identification and the cognitive, linguistic, neuroanatomical and neurophysiological analysis of individuals with hereditary (specific) language impairment (SLI). The first of these genes to be characterised in this way--a gene called FOXP2--codes for a regulating factor that acts as a transcriptional repressor in the central nervous system. It is expressed in neuronal populations mainly situated in the basal ganglia, but also in the cortex, cerebellum and the thalamus, which are presumably involved in the development and/or functioning of the thalamic-cortical-striatal circuits associated with motor planning and learning. The protein FOXP2 shows several structural patterns that, when altered in other proteins, also give rise to different disorders in the central nervous system. The pattern of expression of the gene is preserved phylogenetically, although this does not happen in the case of the pattern of mRNA maturation. In individuals with a mutated version of FOXP2, morphological and functional anomalies are detected in those areas in which the gene is expressed. These abnormalities can be correlated satisfactorily with the phenotypic characteristics of the disorder, which are at the same time of both a motor and linguistic nature. The fact that other variations of SLI are not linked to the FOXP2 gene raises the need for further research into the genetic bases of the disorder, while also suggesting that it would be advisable to reassess the phenotypic scope of the variant associated to the mutation of this gene.

  12. Chemical Patterning by Mechanical Removal of Aqueous Polymers

    NASA Astrophysics Data System (ADS)

    Barnett, Katherine; Knoebel, Jodi; Davis, Robert C.

    2006-10-01

    We are developing a new method for micro and nanoscale patterning of lipids and proteins on solid surfaces. A layer of polyethylene glycol (PEG) teminated polyallyl amine (PAA) was initially applied to a mica surface. The PEG surface is a low adhesion surface for proteins. Following polymer deposition an Atomic Force Microscope (AFM) tip was used to remove the polymer layer in desired regions. AFM imaging of the surface after mechanical polymer removal shows squares of exposed MICA surrounded by the PEG surface. The clean mica regions are now available for specific adsorption of lipid or protein layers.

  13. Biocompatible patterning of proteins on wettability gradient surface by thermo-transfer printing.

    PubMed

    Kim, Sungho; Ryu, Yong-Sang; Suh, Jeng-Hun; Keum, Chang-Min; Sohn, Youngjoo; Lee, Sin-Doo

    2014-08-01

    We develop a simple and biocompatible method of patterning proteins on a wettability gradient surface by thermo-transfer printing. The wettability gradient is produced on a poly(dimethylsiloxane) (PDMS)-modified glass substrate through the temperature gradient during thermo-transfer printing. The water contact angle on the PDMS-modified surface is found to gradually increase along the direction of the temperature gradient from a low to a high temperature region. Based on the wettability gradient, the gradual change in the adsorption and immobilization of proteins (cholera toxin B subunit) is achieved in a microfluidic cell with the PDMS-modified surface.

  14. Efficient generation of transgenic reporter strains and analysis of expression patterns in Caenorhabditis elegans using Library MosSCI

    PubMed Central

    Kaymak, Ebru; Farley, Brian M.; Hay, Samantha A.; Li, Chihua; Ho, Samantha; Hartman, Daniel J.; Ryder, Sean P.

    2016-01-01

    Background In C. elegans, germline development and early embryogenesis rely on post-transcriptional regulation of maternally transcribed mRNAs. In many cases, the 3′UTR is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3′UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. Results In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RBPs that control the expression pattern of five different maternal mRNAs. Conclusions The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. PMID:27294288

  15. Action of Bacterial Growth on the Sarcoplasmic and Urea-Soluble Proteins from Muscle

    PubMed Central

    Hasegawa, T.; Pearson, A. M.; Price, J. F.; Lechowich, R. V.

    1970-01-01

    Comparisons of the starch-gel patterns of uninoculated aseptic control samples from rabbit and pig muscle with similar samples inoculated and incubated with Clostridium perfringens, Salmonella enteritidis, Achromobacter liquefaciens, and Kurthia zopfii were made. Results indicated that C. perfringens caused extensive alteration in the proteins or enzymes, or both, of the sarcoplasmic fraction of porcine muscle, whereas S. enteritidis and S. faecalis caused complete breakdown of only myoglobin. Neither A. liquefaciens nor K. zopfii showed any measurable amount of proteolysis in the sarcoplasmic fraction from pig muscle. Although some of the bands in the starch-gel pattern of rabbit muscle decreased in size and intensity of staining, complete proteolysis of any protein fraction was absent for all test organisms. The disc-gel patterns of the 8 m urea-soluble proteins showed that C. perfringens caused extensive proteolysis in pig muscle and a lesser extent of proteolysis in rabbit muscle. None of the other organisms utilized in this study had any measurable effect upon the urea-soluble proteins. In addition, a simple procedure for aseptic isolation of muscle samples for studying meat spoilage is outlined. Results indicate that careful sanitation and cleanliness will give suitable samples for meat spoilage investigations. Images PMID:4318570

  16. [The proteomic profiling of blood serum of children with gastroesophageal reflux disease].

    PubMed

    Korkotashvili, L V; Kolesov, S A; Jukova, E A; Vidmanova, T A; Kankova, N Yu; Bashurova, I A; Sidorova, A M; Kulakova, E V

    2015-03-01

    The mass-spectra of proteome of blood serum from healthy children and children with gastroesophageal reflux disease were received. The technology platform including direct proteome mass-spectrometer profiling after pre-fractional rectification using magnetic particles MB WCX was applied. The significant differences in mass-spectra were established manifesting in detection of more mass-spectrometer peaks and higher indicators of their intensity and area in group of healthy children. The study detected 39 particular peptides and low-molecular proteins predominantly intrinsic to healthy or ill children. It was established that two peptides with molecular mass 925 and 909 Da. are registered only in healthy patients and have no traces in group ofpatients with gastroesophageal reflux disease. The peptide 1564 Da is detected only in blood of children with gastroesophageal reflux disease and totally is absent in healthy children. The research data permitted to reveal specific patterns (signatures) of low-molecular proteins and peptides specific for blood serum of healthy children and patients with gastroesophageal reflux disease. The results testify the availability of singularities in metabolism of low-molecular proteins and can be used as a basis for development of minimally invasive mass-spectrometer system for its diagnostic.

  17. Stereophysicochemical variability plots highlight conserved antigenic areas in Flaviviruses

    PubMed Central

    Schein, Catherine H; Zhou, Bin; Braun, Werner

    2005-01-01

    Background Flaviviruses, which include Dengue (DV) and West Nile (WN), mutate in response to immune system pressure. Identifying escape mutants, variant progeny that replicate in the presence of neutralizing antibodies, is a common way to identify functionally important residues of viral proteins. However, the mutations typically occur at variable positions on the viral surface that are not essential for viral replication. Methods are needed to determine the true targets of the neutralizing antibodies. Results Stereophysicochemical variability plots (SVPs), 3-D images of protein structures colored according to variability, as determined by our PCPMer program, were used to visualize residues conserved in their physical chemical properties (PCPs) near escape mutant positions. The analysis showed 1) that escape mutations in the flavivirus envelope protein are variable residues by our criteria and 2) two escape mutants found at the same position in many flaviviruses sit above clusters of conserved residues from different regions of the linear sequence. Conservation patterns in T-cell epitopes in the NS3- protease suggest a similar mechanism of immune system evasion. Conclusion The SVPs add another dimension to structurally defining the binding sites of neutralizing antibodies. They provide a useful aid for determining antigenically important regions and designing vaccines. PMID:15845145

  18. Nanotechnology Enhanced Functional Assays of Actomyosin Motility - Potentials and Challenges

    NASA Astrophysics Data System (ADS)

    Månsson, A.; Nicholls, I. A.; Omling, P.; Tågerud, S.; Montelius, L.

    Muscle contraction occurs as a result of force-producing interactions between the contractile proteins myosin II and actin with the two proteins highly ordered in the filament lattice of the muscle sarcomere. In contrast to this wellordered structure, most in vitro studies are performed with the contractile proteins in a disordered arrangement. Here we first review the existing in vitro motility assays and then consider how they can be improved by the use of nanotechnology. As a basis for such improvement we describe our recent work where we used chemically and topographically patterned surfaces to achieve selective localization of actomyosin motor function to predetermined areas of sub-micrometer dimensions. We also describe guidance and unidirectional actin filament sliding on nanosized tracks and suggest how such tracks can be combined with 1. microfluidics-based rapid solution exchange and 2. application of electromagnetic forces of well-defined orientation, thus simulating the lifting of a weight by actomyosin. As a related issue we discuss the usefulness of nanotechnology based assay systems for miniaturized highthroughput drug screening systems with molecular motors as drug targets. Finally, we consider the potentials and challenges in using nanotechnology to reconstruct the most essential aspects of cellular order within the muscle sarcomere.

  19. Identification of pulmonary edema in forensic autopsy cases of fatal anaphylactic shock using Fourier transform infrared microspectroscopy.

    PubMed

    Lin, Hancheng; Luo, Yiwen; Wang, Lei; Deng, Kaifei; Sun, Qiran; Fang, Ruoxi; Wei, Xin; Zha, Shuai; Wang, Zhenyuan; Huang, Ping

    2018-03-01

    Anaphylaxis is a rapid allergic reaction that may cause sudden death. Currently, postmortem diagnosis of anaphylactic shock is sometimes difficult and often achieved through exclusion. The aim of our study was to investigate whether Fourier transform infrared (FTIR) microspectroscopy combined with pattern recognition methods would be complementary to traditional methods and provide a more accurate postmortem diagnosis of fatal anaphylactic shock. First, the results of spectral peak area analysis showed that the pulmonary edema fluid of the fatal anaphylactic shock group was richer in protein components than the control group, which included mechanical asphyxia, brain injury, and acute cardiac death. Subsequently, principle component analysis (PCA) was performed and showed that the anaphylactic shock group contained more turn and α-helix protein structures as well as less tyrosine-rich proteins than the control group. Ultimately, a partial least-square discriminant analysis (PLS-DA) model combined with a variables selection method called the genetic algorithm (GA) was built and demonstrated good separation between these two groups. This pilot study demonstrates that FTIR microspectroscopy has the potential to be an effective aid for postmortem diagnosis of fatal anaphylactic shock.

  20. Deregulation of versican and elastin binding protein in solar elastosis.

    PubMed

    Knott, Anja; Reuschlein, Katja; Lucius, Ralph; Stäb, Franz; Wenck, Horst; Gallinat, Stefan

    2009-04-01

    Several changes in skin appearance including loss of elasticity and wrinkle formation are associated with alterations in the composition of the dermal extracellular matrix. They are induced by intrinsic aging or by environmental factors such as UV light referred to as photoaging. A general characteristic in the histology of photoaged skin is the accumulation of elastotic material suggesting impaired formation and/or massive breakdown of elastic fibres. In order to shed light on some of the underlying mechanisms we tracked two of the major players in elastic fibre formation in different skin conditions: EBP (elastin binding protein), a regulator of elastic fibre assembly and VER (versican), a component of functional elastic fibres as well as non-functional elastotic material. Using quantitative RT-PCR on skin biopsies we found that the expression levels of VER and EBP were unaltered during intrinsic skin aging. Upon acute UV stress however, VER and EBP showed different regulation patterns: VER mRNA increased after 6 h and was further up-regulated until 24 h. The EBP mRNA by contrast was reduced after 6 h but showed massive induction at 24 h after acute UV stress. In chronically sun-exposed skin, VER protein was accumulated similar to elastotic material in the extracellular space, whereas its mRNA level was consistently reduced compared to sun-protected skin. The EBP mRNA by contrast showed slightly increased expression levels in the sun-exposed area compared to its sun-protected counterpart. Based on these data we propose a model which may help to explain parts of the mechanisms leading to the formation of elastotic masses. We further hypothesize that the presence of elastotic material triggers some yet unknown feedback mechanism(s) resulting in altered expression patterns of VER and EBP in chronically sun-exposed skin.

  1. Melatonin treatment further improves adipose-derived mesenchymal stem cell therapy for acute interstitial cystitis in rat.

    PubMed

    Chen, Yen-Ta; Chiang, Hsin-Ju; Chen, Chih-Hung; Sung, Pei-Hsun; Lee, Fan-Yen; Tsai, Tzu-Hsien; Chang, Chia-Lo; Chen, Hong-Hwa; Sun, Cheuk-Kwan; Leu, Steve; Chang, Hsueh-Wen; Yang, Chih-Chao; Yip, Hon-Kan

    2014-10-01

    This study tests the hypothesis that combined melatonin and adipose-derived mesenchymal stem cell (ADMSC, 1.2 × 10(6) given intravenously) treatment offer superior protection against cyclophosphamide (CYP 150 mg/kg)-induced acute interstitial cystitis (AIC) in rats. Male adult Sprague-Dawley rats were treated as follows: sham controls, AIC alone, AIC + melatonin, AIC + ADMSC, and AIC + melatonin +ADMSC. When melatonin was used, it was given as follows: 20 mg/kg at 30 min after CYP and 50 mg/kg at 6 and 18 hr after CYP. Twenty-four-hour urine volume, urine albumin level, and severity of hematuria were highest in AIC rats and lowest in the controls; likewise urine volume was higher in AIC + melatonin rats than in AIC + ADMSC and AIC + melatonin + ADMSC treated rats; in all cases, P < 0.001. The numbers of CD14+, CD74+, CD68+, MIP+, Cox-2+, substance P+, cells and protein expression of IL-6, IL-12, RANTES, TNF-α, NF-κB, MMP-9, iNOS (i.e. inflammatory biomarkers), glycosaminoglycan level, expression of oxidized protein, and protein expression of reactive oxygen species (NOX-1, NOX-2, NOX-4) in the bladder tissue exhibited an identical pattern compared with that of hematuria among the five groups (all P < 0.0001). The integrity of epithelial layer and area of collagen deposition displayed an opposite pattern compared to that of hematuria among all groups (P < 0.0001). The cellular expressions of antioxidants (GR, GPx, HO-1, NQO 1) showed a significant progressive increase form controls to AIC + melatonin + ADMSC (all P < 0.0001). Combined regimen of melatonin and ADMSC was superior to either alone in protecting against CYP-induced AIC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Ethnic studies of dietary intakes of zinc, copper, iron, and calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, C.; Figueroa, M.; Tam, C.F.

    1986-01-01

    Immigrants, such as S.E. Asians who live in the L.A. area, often suffer high incidences of diseases. It is of interest to examine ethnic eating patterns whether they influence dietary Zn, Cu, Fe, Ca, protein and Kcal, which are essential for proper immune functions. Three-day dietary intake of adult ethnic groups, Asian(A)(N=18), Caucasian(C)(26), Black(B)(7), Latino(L)(12), Middle Easterner(ME)(9) and Filipino(F)(6) were analyzed for Zn, Cu, Fe, Ca, protein and Kcal by Ohio Data Base Foods II(ODBF) then statistically compared by PROPHET. Zn and Cu were also analyzed by hand calculation(HC). No statistical differences were observed for mean Zn between groups analyzedmore » by ODBF whereas HC of mean Zn between A vs C (A=11.3 +/- S.D.2.9 mg vs C=8.8 +/- 2.8, P<0.01) and A vs L (11.3+/-2.9 vs L=8.9+/-2.2, P<0.05) were statistically different. No differences were found for Cu between the groups. By ODBF, none of mean Cu or Zn met 2/3 RDA for any of the groups. For Fe, no differences were found between groups and only 50% of the subjects met 2/3 RDA. Significant differences were observed for Ca only between A vs C and B vs C. Both A and B had lower mean Ca than C. All groups had adequate protein. Mean Kcal of all groups were found to be at or about 2/3 RDA. Both insufficient Kcal and eating patterns contribute to inadequate Cu, Zn, and Fe intakes and hence may affect immune competency.« less

  3. Stage and cell-specific expression and intracellular localization of the small heat shock protein Hsp27 during oogenesis and spermatogenesis in the Mediterranean fruit fly, Ceratitis capitata.

    PubMed

    Economou, Katerina; Kotsiliti, Elena; Mintzas, Anastassios C

    2017-01-01

    The cell-specific expression and intracellular distribution of the small heat protein Hsp27 was investigated in the ovaries and testes of the Mediterranean fruit fly, Ceratitis capitata (medfly), under both normal and heat shock conditions. For this study, a gfp-hsp27 strain was used to detect the chimeric protein by confocal microscopy. In unstressed ovaries, the protein was expressed throughout egg development in a stage and cell-specific pattern. In germarium, the protein was detected in the cytoplasm of the somatic cells in both unstressed and heat-shocked ovaries. In the early stages of oogenesis of unstressed ovaries, the protein was mainly located in the perinuclear region of the germ cells and in the cytoplasm of the follicle cells, while in later stages (9-10) it was distributed in the cytoplasm of the germ cells. In late stages (12-14), the protein changed localization pattern and was exclusively associated with the nuclei of the somatic cells. In heat shocked ovaries, the protein was mainly located in the nuclei of the somatic cells throughout egg chamber's development. In unstressed testes, the chimeric protein was detected in the nuclei of primary spermatocytes and in the filamentous structures of spermatid bundles, called actin cones. Interestingly, after a heat shock, the protein presented the same cell-specific localization pattern as in unstressed testes. Furthermore, the protein was also detected in the nuclei of the epithelial cells of the deferent duct, the accessory glands and the ejaculatory bulb. Our data suggest that medfly Hsp27 may have cell-specific functions, especially in the nucleus. Moreover, the association of this protein to actin cones during spermatid individualization, suggests a possible role of the protein in the formation and stabilization of actin cones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of motor patterns on water-soluble and membrane proteins and cholinesterase activity in subcellular fractions of rat brain tissue

    NASA Technical Reports Server (NTRS)

    Pevzner, L. Z.; Venkov, L.; Cheresharov, L.

    1980-01-01

    Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.

  5. [A structural protein study of the influenza A (H1N1) virus by polyacrylamide gel electrophoresis].

    PubMed

    Pérez Guevara, M T; Savón Valdés, C; Rivas Arjona, M; Goyenechea Hernández, A

    1992-01-01

    Influenza is an acute respiratory disease typically appearing as an epidemic. Three immunological types of the influenza virus are known: A, B and C. Continually, antigen changes occur, especially in type A. Therefore, a comparative study was carried out on 4 influenza A(H1N1) virus strains in relation to protein structure (surface antigens), by using polyacrylamide gel electrophoresis by the modified Laemmli method. The objective was to compare the structural proteins of the A/Havana/1292/78 (H1N1) national strain with the proteins of 3 international pattern strains. In all the cases, 6 bands were detected by densitometry. In the 4 strains studied the most abundant protein was M. Great differences between the Cuban strain and the 3 international patterns were not seen.

  6. Nutritional assessment for primary school children in tehran: an evaluation of dietary pattern with emphasis on snacks and meals consumption.

    PubMed

    Amini, Maryam; Dadkhah-Piraghaj, Monireh; Abtahi, Mitra; Abdollahi, Morteza; Houshiarrad, Anahita; Kimiagar, Masoud

    2014-05-01

    In order to provide better advice for prevention of obesity and eating disorders among children, there is a need to have more knowledge of their dietary patterns. This study examined meal and snacking patterns of primary school children in Tehran. A total of 761 male and female primary school children from all educational areas in Tehran were recruited in a cross-sectional survey. The data was collected by interviewing the students and their mothers or caregivers. Information on food consumption patterns was collected by one 24-h-recall and one snack-oriented food frequency questionnaire which covered a period of 1 month. Means, standard deviations, frequencies, percentages, energy and nutrient analyzes and nutrient densities were reported. All of the students snacked at least once on the day of the survey. Snacks provided 38% of total energy intake by the students. Fruits and sweet snacks were consumed by almost all of the students during a week. Energy and most nutrient intakes from meals were greater than those consumed from snacks. Snacks had a higher density of fiber, carbohydrate, calcium, iron, vitamin C, riboflavin and thiamin and had a lower density of protein, fat and niacin, compared with main meals. Salty snacks such as extruded cheese curls (Cheetos) and chips were not consumed so often. Results provide detailed information about dietary patterns, which in turn enable development of targeted messages and/or interventions to improve nutritional status of school children.

  7. Exclusion of EDNRB and KIT as the basis for white spotting in Border Collies.

    PubMed

    Metallinos, D; Rine, J

    2000-01-01

    White spotting patterns in mammals can be caused by mutations in the genes for the endothelin B receptor and c-Kit, whose protein products are necessary for proper migration, differentiation or survival of the melanoblast population of cells. Although there are many different dog breeds that segregate white spotting patterns, no genes have been identified that are linked to these phenotypes. An intercross was generated from a female Newfoundland and a male Border Collie and the white spotting phenotypes of the intercross progeny were evaluated by measuring percentage surface area of white in the puppies. The Border Collie markings segregated as a simple autosomal recessive (7/25 intercross progeny had the phenotype). Two candidate genes, for the endothelin B receptor (EDNRB) and c-Kit (KIT), were evaluated for segregation with the white spotting pattern. Polymorphisms between the Border Collie and Newfoundland were identified for EDNRB using Southern analysis after a portion of the canine gene had been cloned. Polymorphisms for KIT were identified using a microsatellite developed from a bacterial artificial chromosome containing the canine gene. Both EDNRB and KIT were excluded as a cause of the white spotting pattern in at least two of the intercross progeny. Although these genes have been implicated in white spotting in other mammals, including horses, pigs, cows, mice and rats, they do not appear to be responsible for the white spotting pattern found in the Border Collie breed of dog.

  8. Projection-Based 3D Printing of Cell Patterning Scaffolds with Multiscale Channels.

    PubMed

    Xue, Dai; Wang, Yancheng; Zhang, Jiaxin; Mei, Deqing; Wang, Yue; Chen, Shaochen

    2018-06-13

    To fully actualize artificial, cell-laden biological models in tissue engineering, such as 3D organoids and organs-on-a-chip systems, cells need to be patterned such that they can precisely mimic natural microenvironments in vitro. Despite increasing interest in this area, patterning cells at multiscale (∼10 μm to 10 mm) remains a significant challenge in bioengineering. Here, we report a projection-based 3D printing system that achieves rapid and high-resolution fabrication of hydrogel scaffolds featuring intricate channels for multiscale cell patterning. Using this system, we were able to use biocompatible poly(ethylene glycol)diacrylate in fabricating a variety of scaffold architectures, ranging from regular geometries such as serpentine, spiral, and fractal-like to more irregular/intricate geometries, such as biomimetic arborescent and capillary networks. A red food dye solution was able to freely fill all channels in the scaffolds, from the trunk (>1100 μm in width) to the small branch (∼17 μm in width) without an external pump. The dimensions of the printed scaffolds remained stable over 3 days while being immersed in Dulbecco's phosphate-buffered saline at 37 °C, and a penetration analysis revealed that these scaffolds are suitable for metabolic and nutrient transport. Cell patterning experiments showed that red fluorescent protein-transfected A549 human nonsmall lung cancer cells adhered well in the scaffolds' channels, and showed further attachment and penetration during cell culture proliferation.

  9. Exclusion of EDNRB and KIT as the basis for white spotting in Border Collies

    PubMed Central

    Metallinos, Danika; Rine, Jasper

    2000-01-01

    Background: White spotting patterns in mammals can be caused by mutations in the genes for the endothelin B receptor and c-Kit, whose protein products are necessary for proper migration, differentiation or survival of the melanoblast population of cells. Although there are many different dog breeds that segregate white spotting patterns, no genes have been identified that are linked to these phenotypes. Results: An intercross was generated from a female Newfoundland and a male Border Collie and the white spotting phenotypes of the intercross progeny were evaluated by measuring percentage surface area of white in the puppies. The Border Collie markings segregated as a simple autosomal recessive (7/25 intercross progeny had the phenotype). Two candidate genes, for the endothelin B receptor (EDNRB) and c-Kit (KIT), were evaluated for segregation with the white spotting pattern. Polymorphisms between the Border Collie and Newfoundland were identified for EDNRB using Southern analysis after a portion of the canine gene had been cloned. Polymorphisms for KIT were identified using a microsatellite developed from a bacterial artificial chromosome containing the canine gene. Conclusions: Both EDNRB and KIT were excluded as a cause of the white spotting pattern in at least two of the intercross progeny. Although these genes have been implicated in white spotting in other mammals, including horses, pigs, cows, mice and rats, they do not appear to be responsible for the white spotting pattern found in the Border Collie breed of dog. PMID:11178229

  10. Finding Relational Associations in HIV Resistance Mutation Data

    NASA Astrophysics Data System (ADS)

    Richter, Lothar; Augustin, Regina; Kramer, Stefan

    HIV therapy optimization is a hard task due to rapidly evolving mutations leading to drug resistance. Over the past five years, several machine learning approaches have been developed for decision support, mostly to predict therapy failure from the genotypic sequence of viral proteins and additional factors. In this paper, we define a relational representation for an important part of the data, namely the sequences of a viral protein (reverse transcriptase), their mutations, and the drug resistance(s) associated with those mutations. The data were retrieved from the Los Alamos National Laboratories' (LANL) HIV databases. In contrast to existing work in this area, we do not aim directly for predictive modeling, but take one step back and apply descriptive mining methods to develop a better understanding of the correlations and associations between mutations and resistances. In our particular application, we use the Warmr algorithm to detect non-trivial patterns connecting mutations and resistances. Our findings suggest that well-known facts can be rediscovered, but also hint at the potential of discovering yet unknown associations.

  11. Sigma-1 receptor and inflammatory pain.

    PubMed

    Gris, Georgia; Cobos, Enrique José; Zamanillo, Daniel; Portillo-Salido, Enrique

    2015-06-01

    The sigma-1 receptor (Sig-1R) is a unique ligand-regulated molecular chaperone that interacts with several protein targets such as G protein-coupled receptors and ion channels to modulate their activity. Sig-1R is located in areas of the central and peripheral nervous system that are key to pain control. Previous preclinical studies have suggested a potential therapeutic use of Sig-1R antagonists for the management of neuropathic pain. Recent studies using pharmacological and genetic tools have explored the role of Sig-1R in inflammatory pain conditions. Mice lacking the Sig-1R have shown different patterns of phenotypic responses to inflammatory injury. Systemic or peripheral administration of several Sig-1R antagonists, including the selective Sig-1R antagonist S1RA, inhibited both mechanical and thermal hypersensitivity in several preclinical models of inflammatory pain. These recent studies are summarized in the present commentary. Central and peripheral pharmacological blockade of Sig-1R could be an effective option to treat inflammatory pain.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, B.; Brown, D.

    Biological endpoints can complement chemical analyses in monitoring environmental remediation. In some cases the levels of chemical detection are so low that the costs of clean-up to no detection would be prohibitive. And chemical tests do not indicate the availability of the contaminants to the biota. On the other hand many if not most biological tests lack specificity. The authors have investigated a protein expression assay to establish an endpoint for clean-up of sulfur mustard and breakdown products. Earthworms (Lumbricus terrestris) were exposed to sulfur mustard (SM), a breakdown product thiodiethanol (TDE), and ethylene glycol, the solvent for the twomore » chemicals. Tissue from the lining of the coelomic cavity was taken from each of 6 worms in each treatment class. Soluble proteins were extracted and separated on one and two-dimensional (1D and 2D) gels. The 1 D gels showed no difference by eye but the patterns from control and solvent control worms on 2D gels differed from those of worms exposed to TDE and SM. The 1D gel data were digitized and analyzed by pattern recognition using artificial neural networks. The protein patterns under the two treatments and the two controls were learned in one set of data and successfully recognized in a second. This indicated that what was learned was useful in recognizing patterns induced by SM and TDE. Thus a possible endpoint for remediation would be the protein pattern at no effect levels of chemicals of interest.« less

  13. Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation

    PubMed Central

    2011-01-01

    Background To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns. Results We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed. Conclusions The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses. PMID:21672238

  14. Long-term, high-resolution confocal time lapse imaging of Arabidopsis cotyledon epidermis during germination.

    PubMed

    Peterson, Kylee M; Torii, Keiko U

    2012-12-31

    Imaging in vivo dynamics of cellular behavior throughout a developmental sequence can be a powerful technique for understanding the mechanics of tissue patterning. During animal development, key cell proliferation and patterning events occur very quickly. For instance, in Caenorhabditis elegans all cell divisions required for the larval body plan are completed within six hours after fertilization, with seven mitotic cycles(1); the sixteen or more mitoses of Drosophila embryogenesis occur in less than 24 hr(2). In contrast, cell divisions during plant development are slow, typically on the order of a day (3,4,5) . This imposes a unique challenge and a need for long-term live imaging for documenting dynamic behaviors of cell division and differentiation events during plant organogenesis. Arabidopsis epidermis is an excellent model system for investigating signaling, cell fate, and development in plants. In the cotyledon, this tissue consists of air- and water-resistant pavement cells interspersed with evenly distributed stomata, valves that open and close to control gas exchange and water loss. Proper spacing of these stomata is critical to their function, and their development follows a sequence of asymmetric division and cell differentiation steps to produce the organized epidermis (Fig. 1). This protocol allows observation of cells and proteins in the epidermis over several days of development. This time frame enables precise documentation of stem-cell divisions and differentiation of epidermal cells, including stomata and epidermal pavement cells. Fluorescent proteins can be fused to proteins of interest to assess their dynamics during cell division and differentiation processes. This technique allows us to understand the localization of a novel protein, POLAR(6), during the proliferation stage of stomatal-lineage cells in the Arabidopsis cotyledon epidermis, where it is expressed in cells preceding asymmetric division events and moves to a characteristic area of the cell cortex shortly before division occurs. Images can be registered and streamlined video easily produced using public domain software to visualize dynamic protein localization and cell types as they change over time.

  15. Cdx1 and cdx2 expression during intestinal development.

    PubMed

    Silberg, D G; Swain, G P; Suh, E R; Traber, P G

    2000-10-01

    The intestine-specific transcription factors Cdx1 and Cdx2 are candidate genes for directing intestinal development, differentiation, and maintenance of the intestinal phenotype. This study focused on the complex patterns of expression of Cdx1 and Cdx2 during mouse gastrointestinal development. Embryonic and postnatal mouse tissues were analyzed by immunohistochemistry to determine protein expression of Cdx1 and Cdx2 in the developing intestinal tract. Cdx2 protein expression was observed at 9. 5 postcoitum (pc), whereas weak expression of Cdx1 protein was first seen at 12.5 pc in the distal developing intestine (hindgut). Expression of Cdx1 increased from 13.5 to 14.5 pc during the endoderm/epithelial transition with predominately distal expression. In contrast to Cdx1, there was intense expression of Cdx2 in all but the distal portions of the developing intestine. Cdx2 expression remained low in the distal colon throughout postnatal development. A gradient of expression formed in the crypt-villus axis, with Cdx1 primarily in the crypt and Cdx2 primarily in the villus. Direct comparison of the patterns of Cdx1 and Cdx2 protein expression during development as performed in this study provides new insights into their potential functional roles. The relative expression of Cdx1 to Cdx2 protein may be important in the anterior to posterior patterning of the intestinal epithelium and in defining patterns of proliferation and differentiation along the crypt-villus axis.

  16. Method of producing strained-layer semiconductor devices via subsurface-patterning

    DOEpatents

    Dodson, Brian W.

    1993-01-01

    A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.

  17. Structure-related statistical singularities along protein sequences: a correlation study.

    PubMed

    Colafranceschi, Mauro; Colosimo, Alfredo; Zbilut, Joseph P; Uversky, Vladimir N; Giuliani, Alessandro

    2005-01-01

    A data set composed of 1141 proteins representative of all eukaryotic protein sequences in the Swiss-Prot Protein Knowledge base was coded by seven physicochemical properties of amino acid residues. The resulting numerical profiles were submitted to correlation analysis after the application of a linear (simple mean) and a nonlinear (Recurrence Quantification Analysis, RQA) filter. The main RQA variables, Recurrence and Determinism, were subsequently analyzed by Principal Component Analysis. The RQA descriptors showed that (i) within protein sequences is embedded specific information neither present in the codes nor in the amino acid composition and (ii) the most sensitive code for detecting ordered recurrent (deterministic) patterns of residues in protein sequences is the Miyazawa-Jernigan hydrophobicity scale. The most deterministic proteins in terms of autocorrelation properties of primary structures were found (i) to be involved in protein-protein and protein-DNA interactions and (ii) to display a significantly higher proportion of structural disorder with respect to the average data set. A study of the scaling behavior of the average determinism with the setting parameters of RQA (embedding dimension and radius) allows for the identification of patterns of minimal length (six residues) as possible markers of zones specifically prone to inter- and intramolecular interactions.

  18. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization.

    PubMed

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan E B; Kastner, Sabine; Hasson, Uri

    2015-02-19

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas.

  19. Association of C-Reactive Protein and Lower Urinary Tract Symptoms in Men and Women. Results from the Boston Area Community Health (BACH) Survey

    PubMed Central

    Kupelian, Varant; McVary, Kevin T.; Barry, Michael J.; Link, Carol L.; Rosen, Raymond C.; Aiyer, Lalitha Padmanabhan; Mollon, Patrick; McKinlay, John B.

    2012-01-01

    Objectives The objectives of this study were: 1) to determine whether there is an association between C-reactive protein (CRP) levels and lower urinary tract symptoms (LUTS) as assessed by the American Urological Association Symptom Index (AUA-SI) among both men and women, 2) to determine the association of CRP levels with individual urologic symptoms comprising the AUA-SI among both men and women. Methods The Boston Area Community Health (BACH) Survey used a multistage stratified design to recruit a random sample of 5,502 adults age 30–79. Blood samples were obtained on 3,752 participants. Analyses were conducted on 1,898 men and 1,854 women with complete data on C-Reactive Protein (CRP) levels. Overall LUTS was defined as an AUA-SI≥8 (moderate to severe LUTS). Urologic symptoms comprising the AUA-SI were included in the analysis as reports of fairly often to almost always vs. non/rarely/a few times. Results A statistically significant association was observed between CRP levels and overall LUTS among both men and women. The pattern of associations between individual symptoms and CRP levels varied by gender. Nocturia and straining were associated with higher CRP levels among men, while incomplete emptying and weak stream were associated with higher CRP levels among women. Conclusions This study demonstrates an association between CRP levels and LUTS in both men and women. The dose-response relationship between increased CRP levels and increased odds of LUTS supports the hypothesized role of inflammatory processes in the etiology of LUTS. PMID:19394490

  20. MAMP (microbe-associated molecular pattern)-induced changes in plasma membrane-associated proteins.

    PubMed

    Uhlíková, Hana; Solanský, Martin; Hrdinová, Vendula; Šedo, Ondrej; Kašparovský, Tomáš; Hejátko, Jan; Lochman, Jan

    2017-03-01

    Plant plasma membrane associated proteins play significant roles in Microbe-Associated Molecular Pattern (MAMP) mediated defence responses including signal transduction, membrane transport or energetic metabolism. To elucidate the dynamics of proteins associated with plasma membrane in response to cryptogein, a well-known MAMP of defence reaction secreted by the oomycete Phytophthora cryptogea, 2D-Blue Native/SDS gel electrophoresis of plasma membrane fractions was employed. This approach revealed 21 up- or down-regulated protein spots of which 15 were successfully identified as proteins related to transport through plasma membrane, vesicle trafficking, and metabolic enzymes including cytosolic NADP-malic enzyme and glutamine synthetase. Observed changes in proteins were also confirmed on transcriptional level by qRT-PCR analysis. In addition, a significantly decreased accumulation of transcripts observed after employment of a mutant variant of cryptogein Leu41Phe, exhibiting a conspicuous defect in induction of resistance, sustains the contribution of identified proteins in cryptogein-triggered cellular responses. Our data provide further evidence for dynamic MAMP-induced changes in plasma membrane associated proteins. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function

    PubMed Central

    Hensen, Ulf; Meyer, Tim; Haas, Jürgen; Rex, René; Vriend, Gert; Grubmüller, Helmut

    2012-01-01

    Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics. PMID:22606222

  2. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life

    PubMed Central

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-01-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. PMID:27501943

  3. Concentration Dependent Ion-Protein Interaction Patterns Underlying Protein Oligomerization Behaviours

    NASA Astrophysics Data System (ADS)

    Batoulis, Helena; Schmidt, Thomas H.; Weber, Pascal; Schloetel, Jan-Gero; Kandt, Christian; Lang, Thorsten

    2016-04-01

    Salts and proteins comprise two of the basic molecular components of biological materials. Kosmotropic/chaotropic co-solvation and matching ion water affinities explain basic ionic effects on protein aggregation observed in simple solutions. However, it is unclear how these theories apply to proteins in complex biological environments and what the underlying ionic binding patterns are. Using the positive ion Ca2+ and the negatively charged membrane protein SNAP25, we studied ion effects on protein oligomerization in solution, in native membranes and in molecular dynamics (MD) simulations. We find that concentration-dependent ion-induced protein oligomerization is a fundamental chemico-physical principle applying not only to soluble but also to membrane-anchored proteins in their native environment. Oligomerization is driven by the interaction of Ca2+ ions with the carboxylate groups of aspartate and glutamate. From low up to middle concentrations, salt bridges between Ca2+ ions and two or more protein residues lead to increasingly larger oligomers, while at high concentrations oligomers disperse due to overcharging effects. The insights provide a conceptual framework at the interface of physics, chemistry and biology to explain binding of ions to charged protein surfaces on an atomistic scale, as occurring during protein solubilisation, aggregation and oligomerization both in simple solutions and membrane systems.

  4. Alcoholic cardiomyopathy: Pathophysiologic insights

    PubMed Central

    Piano, Mariann R.; Phillips, Shane A.

    2014-01-01

    Alcoholic cardiomyopathy is a specific heart muscle disease found in individuals with a history of long-term heavy alcohol consumption. Alcoholic cardiomyopathy is associated with a number of adverse histological, cellular, and structural changes within the myocardium. Several mechanisms are implicated in mediating the adverse effects of ethanol, including the generation of oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, derangements in fatty acid metabolism and transport, and accelerated protein catabolism. In this review, we discuss the evidence for such mechanisms and present the potential importance of drinking patterns, genetic susceptibility, nutritional factors, race, and sex. The purpose of this review is to provide a mechanistic paradigm for future research in the area of alcoholic cardiomyopathy. PMID:24671642

  5. Proteins, Platelets, and Blood Coagulation at Biomaterial Interfaces

    PubMed Central

    Xu, Li-Chong; Bauer, James; Siedlecki, Christopher A.

    2015-01-01

    Blood coagulation and platelet adhesion remain major impediments to the use of biomaterials in implantable medical devices. There is still significant controversy and question in the field regarding the role that surfaces play in this process. This manuscript addresses this topic area and reports on state of the art in the field. Particular emphasis is placed on the subject of surface engineering and surface measurements that allow for control and observation of surface-mediated biological responses in blood and test solutions. Appropriate use of surface texturing and chemical patterning methodologies allow for reduction of both blood coagulation and platelet adhesion, and new methods of surface interrogation at high resolution allow for measurement of the relevant biological factors. PMID:25448722

  6. Shrink film patterning by craft cutter: complete plastic chips with high resolution/high-aspect ratio channel.

    PubMed

    Taylor, Douglas; Dyer, David; Lew, Valerie; Khine, Michelle

    2010-09-21

    This paper presents a rapid, ultra-low-cost approach to fabricate microfluidic devices using a polyolefin shrink film and a digital craft cutter. The shrinking process (with a 95% reduction in area) results in relatively uniform and consistent microfluidic channels with smooth surfaces, vertical sidewalls, and high aspect ratio channels with lateral resolutions well beyond the tool used to cut them. The thermal bonding of the layers results in strongly bonded devices. Complex microfluidic designs are easily designed on the fly and protein assays are also readily integrated into the device. Full device characterization including channel consistency, optical properties, and bonding strength are assessed in this technical note.

  7. Snow Pattern Delineation, Scaling, Fidelity, and Landscape Factors

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Wagner, A. M.; Deeb, E. J.; Morriss, B. F.; Sturm, M.

    2014-12-01

    In many snow-covered landscapes, snow tends to be shallow or deep in the same locations year after year. As snowmelt progresses in spring, areas of shallow snow become snow-free earlier than areas with deep snow. This pattern (Sturm and Wagner 2010) could likely be used to inform or improve modeled snow depth estimates where ground measurements are not collected; however, we must be certain of their utility before ingesting them into model calculations. Do patterns, as we detect them, have a relationship with earlier measured snow distributions? Second, are certain areas on the landscape likely to yield patterns that are influenced too highly by melting to be useful? Our Imnavait Creek Study Area (11 by 19 km) is on Alaska's North Slope, where we have examined a vast library of spring satellite imagery (ranging from mostly snow-covered to mostly snow-free). Landsat TM Imagery has been collected from the early 1980s-present, and the temporal and spatial resolution is roughly two weeks and 30 m, respectively. High resolution satellite imagery (WorldView 1, WorldView 2, IKONOS) has been obtained from 2010-2013 for the same area with almost daily- to monthly-temporal and at 2.5 m spatial resolutions, respectively. We found that there is a striking similarity among patterns from year to year across the span of decades and resolutions. However, the relationship of pattern with observed snow depths was strong in some areas and less clear in others. Overall, we suspect spatial scaling, spatial mismatch, sampling errors, and melt patterns explain most of the areas of pattern and depth disparity.

  8. G Protein-Coupled Receptor 30 (GPR30) Expression Pattern in Inflammatory Bowel Disease Patients Suggests its Key Role in the Inflammatory Process. A Preliminary Study.

    PubMed

    Włodarczyk, Marcin; Sobolewska-Włodarczyk, Aleksandra; Cygankiewicz, Adam I; Jacenik, Damian; Piechota-Polańczyk, Aleksandra; Stec-Michalska, Krystyna; Krajewska, Wanda M; Fichna, Jakub; Wiśniewska-Jarosińska, Maria

    2017-03-01

    G protein-coupled receptor 30 (GPR30) is a recently de-orphanized estrogen receptor that mediates the effects of estrogens on different cells. It has been postulated that in inflammatory bowel diseases (IBD) activation of GPR30 blocks the pathways dependent on pro-inflammatory cytokines. The aim of our study was to investigate GPR30 expression in patients with IBD and its potential implication in future therapies. Fifty-seven patients were enrolled in our study: 20 subjects with Crohn's disease (CD), 22 with ulcerative colitis (UC) and 15 controls. In each subject, biopsies were taken from various left-colonic locations. Gene and protein expression of GPR30 was quantified using real time RT-PCR or Western blot. GPR30 mRNA and protein expression were detected in all tested colonic tissues. No significant differences in GPR30 gene expression were observed. In non-inflamed areas, GPR30 protein was strongly increased in CD patients, but moderately in UC patients (p= 0.014 and p=0.143, respectively, vs. controls). In CD patients, a significantly lower GPR30 protein content in inflamed than in non-inflamed tissue was observed (p=0.039). The change was independent of patient gender. Our observations indicate that GPR30 may play a role in the development and progression of inflammatory lesions in IBD, thus affecting disease severity, and consequently IBD treatment. Therefore, GPR30 may become an attractive target for novel anti-IBD drugs, particularly in CD.

  9. Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins.

    PubMed

    Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B

    2014-01-01

    Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

  10. Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process

    NASA Astrophysics Data System (ADS)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2011-07-01

    A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.

  11. Extreme Evolutionary Conservation of Functionally Important Regions in H1N1 Influenza Proteome

    PubMed Central

    Warren, Samantha; Wan, Xiu-Feng; Conant, Gavin; Korkin, Dmitry

    2013-01-01

    The H1N1 subtype of influenza A virus has caused two of the four documented pandemics and is responsible for seasonal epidemic outbreaks, presenting a continuous threat to public health. Co-circulating antigenically divergent influenza strains significantly complicates vaccine development and use. Here, by combining evolutionary, structural, functional, and population information about the H1N1 proteome, we seek to answer two questions: (1) do residues on the protein surfaces evolve faster than the protein core residues consistently across all proteins that constitute the influenza proteome? and (2) in spite of the rapid evolution of surface residues in influenza proteins, are there any protein regions on the protein surface that do not evolve? To answer these questions, we first built phylogenetically-aware models of the patterns of surface and interior substitutions. Employing these models, we found a single coherent pattern of faster evolution on the protein surfaces that characterizes all influenza proteins. The pattern is consistent with the events of inter-species reassortment, the worldwide introduction of the flu vaccine in the early 80’s, as well as the differences caused by the geographic origins of the virus. Next, we developed an automated computational pipeline to comprehensively detect regions of the protein surface residues that were 100% conserved over multiple years and in multiple host species. We identified conserved regions on the surface of 10 influenza proteins spread across all avian, swine, and human strains; with the exception of a small group of isolated strains that affected the conservation of three proteins. Surprisingly, these regions were also unaffected by genetic variation in the pandemic 2009 H1N1 viral population data obtained from deep sequencing experiments. Finally, the conserved regions were intrinsically related to the intra-viral macromolecular interaction interfaces. Our study may provide further insights towards the identification of novel protein targets for influenza antivirals. PMID:24282564

  12. Patterns of c-reactive protein RATIO response in severe community-acquired pneumonia: a cohort study.

    PubMed

    Coelho, Luís M; Salluh, Jorge I F; Soares, Márcio; Bozza, Fernando A; Verdeal, Juan Carlos R; Castro-Faria-Neto, Hugo C; Lapa e Silva, José Roberto; Bozza, Patrícia T; Póvoa, Pedro

    2012-12-12

    Community-acquired pneumonia (CAP) requiring intensive care unit (ICU) admission remains a severe medical condition, presenting ICU mortality rates reaching 30%. The aim of this study was to assess the value of different patterns of C-reactive protein (CRP)-ratio response to antibiotic therapy in patients with severe CAP requiring ICU admission as an early maker of outcome. In total, 191 patients with severe CAP were prospectively included and CRP was sampled every other day from D1 to D7 of antibiotic prescription. CRP-ratio was calculated in relation to D1 CRP concentration. Patients were classified according to an individual pattern of CRP-ratio response with the following criteria: fast response - when D5 CRP was less than or equal to 0.4 of D1 CRP concentration; slow response - when D5 CRP was > 0.4 and D7 less than or equal to 0.8 of D1 CRP concentration; nonresponse - when D7 CRP was > 0.8 of D1 CRP concentration. Comparison between ICU survivors and non-survivors was performed. CRP-ratio from D1 to D7 decreased faster in survivors than in non-survivors (p = 0.01). The ability of CRP-ratio by D5 to predict ICU outcome assessed by the area under the ROC curve was 0.73 (95% Confidence Interval, 0.64 - 0.82). By D5, a CRP concentration above 0.5 of the initial level was a marker of poor outcome (sensitivity 0.81, specificity 0.58, positive likelihood ratio 1.93, negative likelihood ratio 0.33). The time-dependent analysis of CRP-ratio of the three patterns (fast response n = 66; slow response n = 81; nonresponse n = 44) was significantly different between groups (p < 0.001). The ICU mortality rate was considerably different according to the patterns of CRP-ratio response: fast response 4.8%, slow response 17.3% and nonresponse 36.4% (p < 0.001). In severe CAP, sequential evaluation of CRP-ratio was useful in the early identification of patients with poor outcome. The evaluation of CRP-ratio pattern of response to antibiotics during the first week of therapy was useful in the recognition of the individual clinical evolution.

  13. Immunohistochemical Analysis on Cortex-to-Cortex Healing After Mandibular Vertical Ramus Osteotomy: A Preliminary Study.

    PubMed

    Jung, Hwi-Dong; Kim, Sang Yoon; Jung, Han-Sung; Park, Hyung-Sik; Jung, Young-Soo

    2018-02-01

    The present study analyzed the expression of specific cytokines in the transforming growth factor (TGF)-β superfamily postoperatively after mandibular vertical ramus osteotomy (VRO). Four beagle dogs were enrolled and euthanized at 1, 2, 4, and 8 weeks postoperatively for immunohistochemical analysis using 6 specific antibodies (bone morphogenetic protein [BMP]-2/4, BMP-7, TGF-β2, TGF-β3, matrix metalloproteinase-3, and vascular endothelial growth factor [VEGF]). The results from the surgical site and control (adjacent area) were compared. Generalized upregulation of BMP-2/4 was observed in all healing periods, and the strongest expression of BMP-7 was observed at 1 week postoperatively. The strongest expression of TGF-β2 was observed at 8 weeks with increasing pattern. The strong expression of TGF-β3 was observed at 1 and 4 weeks, with the strongest expression of VEGF at 1 week, with a decreasing pattern. No notable uptake was detected with the 6 specific antibodies in the adjacent bone (control). The absence of internal fixation after VRO led to dynamic healing with a specific expression pattern of BMP-7 and TGF-β2. The anatomic factors, including sufficient preexisting vascularity, led to the earlier expression pattern of VEGF. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP).

    PubMed

    Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.

  15. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    NASA Astrophysics Data System (ADS)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  16. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.

    PubMed

    Hellwig, Michael; Rückriemen, Jana; Sandner, Daniel; Henle, Thomas

    2017-05-03

    As a unique feature, honey from the New Zealand manuka tree (Leptospermum scoparium) contains substantial amounts of dihydroxyacetone (DHA) and methylglyoxal (MGO). Although MGO is a reactive intermediate in the Maillard reaction, very little is known about reactions of MGO with honey proteins. We hypothesized that the abundance of MGO should result in a particular pattern of protein-bound Maillard reaction products (MRPs) in manuka honey. A protein-rich high-molecular-weight fraction was isolated from 12 manuka and 8 non-manuka honeys and hydrolyzed enzymatically. By HPLC-MS/MS, 8 MRPs, namely, N-ε-fructosyllysine, N-ε-maltulosyllysine, carboxymethyllysine, carboxyethyllysine (CEL), pyrraline, formyline, maltosine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1), were quantitated. Compared to non-manuka honeys, the manuka honeys were characterized by high concentrations of CEL and MG-H1, whereas the formation of N-ε-fructosyllysine was suppressed, indicating concurrence reactions of glucose and MGO at the ε-amino group of protein-bound lysine. Up to 31% of the lysine and 8% of the arginine residues, respectively, in the manuka honey protein can be modified to CEL and MG-H1, respectively. CEL and MG-H1 concentrations correlated strongly with the MGO concentration of the honeys. Manuka honey possesses a special pattern of protein-bound MRPs, which might be used to prove the reliability of labeled MGO levels in honeys and possibly enable the detection of fraudulent MGO or DHA addition to honey.

  17. Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury.

    PubMed

    Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru

    2015-09-01

    Immunostaining for beta-amyloid precursor protein (APP) is recognized as an effective tool for detecting traumatic axonal injury, but it also detects axonal injury due to ischemic or other metabolic causes. Previously, we reported two different patterns of APP staining: labeled axons oriented along with white matter bundles (pattern 1) and labeled axons scattered irregularly (pattern 2) (Hayashi et al. (Leg Med (Tokyo) 11:S171-173, 2009). In this study, we investigated whether these two patterns are consistent with patterns of trauma and hypoxic brain damage, respectively. Sections of the corpus callosum from 44 cases of blunt head injury and equivalent control tissue were immunostained for APP. APP was detected in injured axons such as axonal bulbs and varicose axons in 24 of the 44 cases of head injuries that also survived for three or more hours after injury. In 21 of the 24 APP-positive cases, pattern 1 alone was observed in 14 cases, pattern 2 alone was not observed in any cases, and both patterns 1 and 2 were detected in 7 cases. APP-labeled injured axons were detected in 3 of the 44 control cases, all of which were pattern 2. These results suggest that pattern 1 indicates traumatic axonal injury, while pattern 2 results from hypoxic insult. These patterns may be useful to differentiate between traumatic and nontraumatic axonal injuries.

  18. Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems

    PubMed Central

    MacPherson, Jamie I.; Dickerson, Jonathan E.; Pinney, John W.; Robertson, David L.

    2010-01-01

    Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection. PMID:20686668

  19. The extracellular Leucine-Rich Repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns

    PubMed Central

    Dolan, Jackie; Walshe, Karen; Alsbury, Samantha; Hokamp, Karsten; O'Keeffe, Sean; Okafuji, Tatsuya; Miller, Suzanne FC; Tear, Guy; Mitchell, Kevin J

    2007-01-01

    Background Leucine-rich repeats (LRRs) are highly versatile and evolvable protein-ligand interaction motifs found in a large number of proteins with diverse functions, including innate immunity and nervous system development. Here we catalogue all of the extracellular LRR (eLRR) proteins in worms, flies, mice and humans. We use convergent evidence from several transmembrane-prediction and motif-detection programs, including a customised algorithm, LRRscan, to identify eLRR proteins, and a hierarchical clustering method based on TribeMCL to establish their evolutionary relationships. Results This yields a total of 369 proteins (29 in worm, 66 in fly, 135 in mouse and 139 in human), many of them of unknown function. We group eLRR proteins into several classes: those with only LRRs, those that cluster with Toll-like receptors (Tlrs), those with immunoglobulin or fibronectin-type 3 (FN3) domains and those with some other domain. These groups show differential patterns of expansion and diversification across species. Our analyses reveal several clusters of novel genes, including two Elfn genes, encoding transmembrane proteins with eLRRs and an FN3 domain, and six genes encoding transmembrane proteins with eLRRs only (the Elron cluster). Many of these are expressed in discrete patterns in the developing mouse brain, notably in the thalamus and cortex. We have also identified a number of novel fly eLRR proteins with discrete expression in the embryonic nervous system. Conclusion This study provides the necessary foundation for a systematic analysis of the functions of this class of genes, which are likely to include prominently innate immunity, inflammation and neural development, especially the specification of neuronal connectivity. PMID:17868438

  20. Developmental distribution of the plasma membrane-enriched proteome in the maize primary root growth zone.

    PubMed

    Zhang, Zhe; Voothuluru, Priyamvada; Yamaguchi, Mineo; Sharp, Robert E; Peck, Scott C

    2013-01-01

    Within the growth zone of the maize primary root, there are well-defined patterns of spatial and temporal organization of cell division and elongation. However, the processes underlying this organization remain poorly understood. To gain additional insights into the differences amongst the defined regions, we performed a proteomic analysis focusing on fractions enriched for plasma membrane (PM) proteins. The PM is the interface between the plant cell and the apoplast and/or extracellular space. As such, it is a key structure involved in the exchange of nutrients and other molecules as well as in the integration of signals that regulate growth and development. Despite the important functions of PM-localized proteins in mediating these processes, a full understanding of dynamic changes in PM proteomes is often impeded by low relative concentrations relative to total proteins. Using a relatively simple strategy of treating microsomal fractions with Brij-58 detergent to enrich for PM proteins, we compared the developmental distribution of proteins within the root growth zone which revealed a number of previously known as well as novel proteins with interesting patterns of abundance. For instance, the quantitative proteomic analysis detected a gradient of PM aquaporin proteins similar to that previously reported using immunoblot analyses, confirming the veracity of this strategy. Cellulose synthases increased in abundance with increasing distance from the root apex, consistent with expected locations of cell wall deposition. The similar distribution pattern for Brittle-stalk-2-like protein implicates that this protein may also have cell wall related functions. These results show that the simplified PM enrichment method previously demonstrated in Arabidopsis can be successfully applied to completely unrelated plant tissues and provide insights into differences in the PM proteome throughout growth and development zones of the maize primary root.

  1. RNA and ribosomal protein patterns during aerial spore germination in Streptomyces granaticolor.

    PubMed

    Mikulík, K; Janda, I; Weiser, J; Stastná, J; Jiránová, A

    1984-12-03

    Disruption of the external sheath of Streptomyces granaticolor aerial spores and subsequent cultivation in a rich medium result in a synchronous germination. This method was used to analyze RNA and protein patterns during the germination. The germination process took place through a sequence of time-ordered events. RNA and protein synthesis started during the first 5 min and net DNA synthesis at 60-70 min of germination. Within the first 10 min of germination, synthesis of RNA was not sensitive to the inhibitory effect of rifamycin. During this period rRNA and other species including 4-5-S RNA were synthesized. Dormant spores contained populations of ribosomes or ribosomal precursors that were structurally and functionally defective. The ribosomal particles bound a sporulation pigment(s) of the melanine type. The ribosomal proteins complexed to the pigments formed insoluble aggregates which were easily removed from the ribosomes by one wash with 1 M NH4Cl. During the first 10 min of germination, pigment(s) were liberated from the complexes with the ribosomes and protein extracts of the washed ribosomes had essentially the same pattern as the extracts of ribosomes of vegetative cells. These structural alterations were accompanied by enhancement of the ribosome activities in polypeptide synthesis in vivo and in vitro. When the spores were incubated with a 14C-labelled amino acid mixture in the presence of rifamycin, only three proteins (GS1, GL1 and GS9) were identified to be radiolabelled in the extracts from the washed ribosomes. These experiments indicate that liberation of the sporulation pigment(s) from the complexes with ribosomal proteins and assembly of de novo synthesized proteins and proteins from a preexisting pool in the spore are involved in the reactivation of the ribosomes of dormant spores of S. granaticolor.

  2. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  3. Electrophoretic serum protein fraction profile during the different physiological phases in Comisana ewes.

    PubMed

    Piccione, G; Alberghina, D; Marafioti, S; Giannetto, C; Casella, S; Assenza, A; Fazio, F

    2012-08-01

    The aim of this study was to evaluate the influence of different physiological phases on serum total proteins and their fractions of ten Comisana ewes housed in Mediterranean area. From each animal, blood samples were collected at different physiological phases: late pregnancy, post-partum, early, mid-, end lactation and dry period. On all samples serum total proteins were determined by the biuret method, and albumin, α-globulins, β(1) -globulins, β(2) -globulins and γ-globulins concentrations were assessed using an automated system. One-way repeated measures analysis of variance was applied to determine the significant effect of different physiological phases on the parameters studied. During the late pregnancy and post-partum, total proteins, β1- and β2-globulins and γ-globulins showed the highest values. Starting from post-partum, α-globulins increased to reach their peaks in mid-lactation. Early lactation was characterized by low γ-globulins values. The increase in serum albumin concentration and the drop in some globulin fractions determined the significant increase in albumin/globulin ratio. The obtained results contributed to improve the knowledge on electrophoretic profile during the different physiological phases in ewes, confirming that pregnancy and lactation periods affect the protein metabolism. Particularly, serum protein fractions pattern could give information about dehydration, plasma volume expansion and hepatic function, which occur during the different physiological phases. Dynamics of the protein profile - from pregnancy to dry period - which are provided by our results, could be considered as guidelines for the management strategies to guarantee the nutritional needs of these animals during the different physiological phases and to avoid a decline of productive performance and consequently an economic loss. © 2011 Blackwell Verlag GmbH.

  4. Condition of larval and early juvenile Japanese temperate bass Lateolabrax japonicus related to spatial distribution and feeding in the Chikugo estuarine nursery ground in the Ariake Bay, Japan

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shahidul; Hibino, Manabu; Nakayama, Kouji; Tanaka, Masaru

    2006-02-01

    The present study investigates feeding and condition of larval and juvenile Japanese temperate bass Lateolabrax japonicus in relation to spatial distribution in the Chikugo estuary (Japan). Larvae were collected in a wide area covering the nursery grounds of the species in 2002 and 2003. Food habits of the fish were analysed by examining their gut contents. Fish condition was evaluated by using morphometric (the length-weight relationship and condition factor) and biochemical (the RNA:DNA ratio and other nucleic acid based parameters) indices and growth rates. The nucleic-acid contents in individually frozen larvae and juveniles were quantified by standard fluorometric methods. Two distinct feeding patterns, determined by the distribution of prey copepods, were identified. The first pattern showed dependence on the calanoid copepod Sinocalanus sinensis, which was the single dominant prey in low-saline upper river areas. The second pattern involved a multi-specific dietary habit mainly dominated by Acartia omorii, Oithona davisae, and Paracalanus parvus. As in the gut contents analyses, two different sets of values were observed for RNA, DNA, total protein, growth rates and for all the nucleic acid-based indices: one for the high-saline downstream areas and a second for the low-saline upstream areas, which was significantly higher than the first. The proportion of starving fish was lower upstream than downstream. Values of the allometric coefficient ( b) and the condition factor ( K) obtained from the length-weight relationships increased gradually from the sea to the upper river. Clearly, fish in the upper river had a better condition than those in the lower estuary. RNA:DNA ratios correlated positively with temperature and negatively with salinity. We hypothesise that by migration to the better foraging grounds of the upper estuary (with higher prey biomass, elevated temperature and reduced salinity), the fish reduce early mortality and attain a better condition. We conclude that utilisation of the copepod S. sinensis in the upstream nursery grounds is one of the key early survival strategies in Japanese temperate bass in the Chikugo estuary.

  5. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus

    DTIC Science & Technology

    2011-01-06

    identified viral restriction factors that inhibit infection mediated by the influenza A virus ( IAV ) hemagglutinin (HA) protein. Here we show that IFITM...observations, interferon-b specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV...We observed distinct patterns of IFITM-mediated restriction: compared with IAV , the entry processes of MARV and EBOV were less restricted by IFITM3

  6. Conversion of amino-acid sequence in proteins to classical music: search for auditory patterns

    PubMed Central

    2007-01-01

    We have converted genome-encoded protein sequences into musical notes to reveal auditory patterns without compromising musicality. We derived a reduced range of 13 base notes by pairing similar amino acids and distinguishing them using variations of three-note chords and codon distribution to dictate rhythm. The conversion will help make genomic coding sequences more approachable for the general public, young children, and vision-impaired scientists. PMID:17477882

  7. Tight Junction Protein 1a regulates pigment cell organisation during zebrafish colour patterning.

    PubMed

    Fadeev, Andrey; Krauss, Jana; Frohnhöfer, Hans Georg; Irion, Uwe; Nüsslein-Volhard, Christiane

    2015-04-27

    Zebrafish display a prominent pattern of alternating dark and light stripes generated by the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell movements, cell shape changes, and the organisation of pigment cells during metamorphosis. Iridophores play a crucial part in this process by switching between the dense form of the light stripes and the loose form of the dark stripes. Adult schachbrett (sbr) mutants exhibit delayed changes in iridophore shape and organisation caused by truncations in Tight Junction Protein 1a (ZO-1a). In sbr mutants, the dark stripes are interrupted by dense iridophores invading as coherent sheets. Immuno-labelling and chimeric analyses indicate that Tjp1a is expressed in dense iridophores but down-regulated in the loose form. Tjp1a is a novel regulator of cell shape changes during colour pattern formation and the first cytoplasmic protein implicated in this process.

  8. Generation of Micropatterned Substrates Using Micro Photopatterning

    PubMed Central

    Doyle, Andrew D.

    2010-01-01

    Micro photopatterning (µPP) has been developed to rapidly test and generate different patterns for extracellular matrix adsorption without being hindered with the process of making physical stamps through nanolithography techniques. It uses two-photon excitation guided through a point-scanning confocal microscope to locally photoablate poly(vinyl) alcohol (PVA) thin films in user-defined computer-controlled patterns. PVA thin films are ideal for surface blocking, being hydrophilic substrates that deter protein adsorption and cell attachment. Because gold substrates are not used during µPP, all live-cell fluorescent imaging techniques including total internal reflection fluorescence microscopy of GFP–linked proteins can be performed with minimal loss of fluorescence signal. Furthermore, because µPP does not require physical stamps for pattern generation, multiple ECMs or other proteins can be localized within microns of each other. This unit details the setup of µPP as well as giving troubleshooting techniques. PMID:20013752

  9. Daple coordinates organ-wide and cell-intrinsic polarity to pattern inner-ear hair bundles

    PubMed Central

    Siletti, Kimberly; Hudspeth, A. J.

    2017-01-01

    The establishment of planar polarization by mammalian cells necessitates the integration of diverse signaling pathways. In the inner ear, at least two systems regulate the planar polarity of sensory hair bundles. The core planar cell polarity (PCP) proteins coordinate the orientations of hair cells across the epithelial plane. The cell-intrinsic patterning of hair bundles is implemented independently by the G protein complex classically known for orienting the mitotic spindle. Although the primary cilium also participates in each of these pathways, its role and the integration of the two systems are poorly understood. We show that Dishevelled-associating protein with a high frequency of leucine residues (Daple) interacts with PCP and cell-intrinsic signals. Regulated by the cell-intrinsic pathway, Daple is required to maintain the polarized distribution of the core PCP protein Dishevelled and to position the primary cilium at the abneural edge of the apical surface. Our results suggest that the primary cilium or an associated structure influences the domain of cell-intrinsic signals that shape the hair bundle. Daple is therefore essential to orient and pattern sensory hair bundles. PMID:29229865

  10. Transcript and protein environmental biomarkers in fish--a review.

    PubMed

    Tom, Moshe; Auslander, Meirav

    2005-04-01

    The levels of contaminant-affected gene products (transcripts and proteins) are increasingly utilized as environmental biomarkers, and their appropriate implementation as diagnostic tools is discussed. The required characteristics of a gene product biomarker are accurate evaluation using properly normalized absolute units, aiming at long-term comparability of biomarker levels over a wide geographical range and among many laboratories. Quantitative RT-PCR and competitive ELISA are suggested as preferred evaluation methods for transcript and protein, respectively. Constitutively expressed RNAs or proteins which are part of the examined homogenate are suggested as normalizing agents, compensating for variable processing efficiency. Essential characterization of expression patterns is suggested, providing reference values to be compared to the monitored levels. This comparison would enable estimation of the intensity of biological effects of contaminants. Contaminant-independent reference expression patterns should include natural fluctuations of the biomarker level. Contaminant-dependent patterns should include dose response to model contaminants chronically administered in two environmentally-realistic routes, reaching extreme sub-lethal affected levels. Recent studies using fish as environmental sentinel species, applying gene products as environmental biomarkers, and implementing at least part of the depicted methodologies are reviewed.

  11. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats.

    PubMed

    Pavón, Francisco Javier; Marco, Eva María; Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats with a strong sexual dimorphism. The potential impact of these alterations in early adulthood remains to be elucidated.

  12. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats

    PubMed Central

    Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    2016-01-01

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats with a strong sexual dimorphism. The potential impact of these alterations in early adulthood remains to be elucidated. PMID:27662369

  13. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models

    PubMed Central

    2011-01-01

    Background Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). Results We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. Conclusions The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions. PMID:21429187

  14. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models.

    PubMed

    Bernardes, Juliana S; Carbone, Alessandra; Zaverucha, Gerson

    2011-03-23

    Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions.

  15. Development of broadband X-ray interference lithography large area exposure system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Chaofan; Wu, Yanqing, E-mail: wuyanqing@sinap.ac.cn, E-mail: zhaojun@sinap.ac.cn, E-mail: tairenzhong@sinap.ac.cn; Zhu, Fangyuan

    2016-04-15

    The single-exposure patterned area is about several 10{sup 2} × 10{sup 2} μm{sup 2} which is mainly decided by the mask area in multi-beam X-ray interference lithography (XIL). The exposure area is difficult to stitch to a larger one because the patterned area is surrounded by 0th diffraction exposure areas. To block the 0th diffraction beams precisely and effectively, a new large area exposure technology is developed in the Shanghai Synchrotron Radiation Facility by applying an order-sorting aperture with a new in situ monitoring scheme in the XIL system. The patterned area could be stitched readily up to several squaremore » centimeters and even bigger by this technology.« less

  16. AFAL: a web service for profiling amino acids surrounding ligands in proteins

    NASA Astrophysics Data System (ADS)

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  17. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  18. Frustration in Condensed Matter and Protein Folding

    NASA Astrophysics Data System (ADS)

    Lorelli, S.; Cabot, A.; Sundarprasad, N.; Boekema, C.

    Using computer modeling we study frustration in condensed matter and protein folding. Frustration is due to random and/or competing interactions. One definition of frustration is the sum of squares of the differences between actual and expected distances between characters. If this sum is non-zero, then the system is said to have frustration. A simulation tracks the movement of characters to lower their frustration. Our research is conducted on frustration as a function of temperature using a logarithmic scale. At absolute zero, the relaxation for frustration is a power function for randomly assigned patterns or an exponential function for regular patterns like Thomson figures. These findings have implications for protein folding; we attempt to apply our frustration modeling to protein folding and dynamics. We use coding in Python to simulate different ways a protein can fold. An algorithm is being developed to find the lowest frustration (and thus energy) states possible. Research supported by SJSU & AFC.

  19. IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas

    PubMed Central

    Wood, Christopher R.; Wang, Zhaohui; Diener, Dennis; Zones, James Matt; Rosenbaum, Joel; Umen, James G.

    2012-01-01

    Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division. PMID:22328921

  20. Proteomic analysis of the bacterial cell cycle

    PubMed Central

    Grünenfelder, Björn; Rummel, Gabriele; Vohradsky, Jiri; Röder, Daniel; Langen, Hanno; Jenal, Urs

    2001-01-01

    A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control. PMID:11287652

  1. Almond (Prunus dulcis L.) protein quality.

    PubMed

    Ahrens, Susan; Venkatachalam, Mahesh; Mistry, Anahita M; Lapsley, Karen; Sathe, Shridhar K

    2005-09-01

    Three marketing varieties of almonds; Carmel, Mission, and Nonpareil; were analyzed for proximate composition and protein nutritive quality. Moisture, lipids, protein, ash, sugars, and tannins ranges were 3.05-4.33%, 43.37-47.50%, 20.68-23.30%, 3.74-4.56%, 5.35-7.45%, and 0.12-0.18%, respectively. No detectable hemagglutinating and trypsin inhibitory activities were present in Carmel, Mission, and Nonpareil almonds. Amino acid analyses indicated the sulfur amino acids (methionine + cysteine), lysine, and threonine to be the first, second, and third limiting amino acids in almonds when compared to the recommended amino acid pattern for children 2-5-year old. However, compared to the recommended amino acid pattern for adults, sulfur amino acids were the only limiting amino acids in almonds tested. True Protein Digestibility (% TPD) values for Carmel, Mission, and Nonpareil were 88.55 +/- 1.26, 92.25 +/- 1.05, and 82.62 +/- 1.47, respectively. Protein Digestibility Corrected Amino Acid Scoring (PDCAAS) values suggested almond proteins to be of poor nutritional quality.

  2. Quantitative theory of hydrophobic effect as a driving force of protein structure

    PubMed Central

    Perunov, Nikolay; England, Jeremy L

    2014-01-01

    Various studies suggest that the hydrophobic effect plays a major role in driving the folding of proteins. In the past, however, it has been challenging to translate this understanding into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a protein shapes functionally important features of its tertiary structure. Here, we extend and apply such a phenomenological theory of the sequence-structure relationship in globular protein domains, which had previously been applied to the study of allosteric motion. In an effort to optimize parameters for the model, we first analyze the patterns of backbone burial found in single-domain crystal structures, and discover that classic hydrophobicity scales derived from bulk physicochemical properties of amino acids are already nearly optimal for prediction of burial using the model. Subsequently, we apply the model to studying structural fluctuations in proteins and establish a means of identifying ligand-binding and protein–protein interaction sites using this approach. PMID:24408023

  3. Laser Trabeculoplasty Induces Changes in the Trabecular Meshwork Glycoproteome: A pilot study

    PubMed Central

    Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K.; Bhattacharya, Sanjoy K.; Parel, Jean-Marie A

    2009-01-01

    Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. Using cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and non-treated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to non-lasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to non-lasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty. PMID:19432485

  4. Biochemical basis for the biological clock

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Chueh, Pin-Ju; Pletcher, Jake; Tang, Xiaoyu; Wu, Lian-Ying; Morre, Dorothy M.

    2002-01-01

    NADH oxidases at the external surface of plant and animal cells (ECTO-NOX proteins) exhibit stable and recurring patterns of oscillations with potentially clock-related, entrainable, and temperature-compensated period lengths of 24 min. To determine if ECTO-NOX proteins might represent the ultradian time keepers (pacemakers) of the biological clock, COS cells were transfected with cDNAs encoding tNOX proteins having a period length of 22 min or with C575A or C558A cysteine to alanine replacements having period lengths of 36 or 42 min. Here we demonstrate that such transfectants exhibited 22, 36, or 40 to 42 h circadian patterns in the activity of glyceraldehyde-3-phosphate dehydrogenase, a common clock-regulated protein, in addition to the endogenous 24 h circadian period length. The fact that the expression of a single oscillatory ECTO-NOX protein determines the period length of a circadian biochemical marker (60 X the ECTO-NOX period length) provides compelling evidence that ECTO-NOX proteins are the biochemical ultradian drivers of the cellular biological clock.

  5. Analysis of Pacific oyster larval proteome and its response to high-CO2.

    PubMed

    Dineshram, R; Wong, Kelvin K W; Xiao, Shu; Yu, Ziniu; Qian, Pei Yuan; Thiyagarajan, Vengatesen

    2012-10-01

    Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteinsmore » in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.« less

  7. Laser trabeculoplasty induces changes in the trabecular meshwork glycoproteome: a pilot study.

    PubMed

    Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K; Bhattacharya, Sanjoy K; Parel, Jean-Marie A

    2009-07-01

    Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. With the use of cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and nontreated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to nonlasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to nonlasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty.

  8. Binary Classification using Decision Tree based Genetic Programming and Its Application to Analysis of Bio-mass Data

    NASA Astrophysics Data System (ADS)

    To, Cuong; Pham, Tuan D.

    2010-01-01

    In machine learning, pattern recognition may be the most popular task. "Similar" patterns identification is also very important in biology because first, it is useful for prediction of patterns associated with disease, for example cancer tissue (normal or tumor); second, similarity or dissimilarity of the kinetic patterns is used to identify coordinately controlled genes or proteins involved in the same regulatory process. Third, similar genes (proteins) share similar functions. In this paper, we present an algorithm which uses genetic programming to create decision tree for binary classification problem. The application of the algorithm was implemented on five real biological databases. Base on the results of comparisons with well-known methods, we see that the algorithm is outstanding in most of cases.

  9. Concordant p53 and mdm-2 protein expression in vulvar squamous cell carcinoma and adjacent lichen sclerosus.

    PubMed

    Carlson, J A; Amin, S; Malfetano, J; Tien, A T; Selkin, B; Hou, J; Goncharuk, V; Wilson, V L; Rohwedder, A; Ambros, R; Ross, J S

    2001-06-01

    To determine if carcinogenic events in vulvar skin precede the onset of morphologic atypia, the authors investigated for derangements in DNA content, cell proliferation, and cell death in vulvar carcinomas and surrounding skin in 140 samples of tumor and surrounding skin collected from 35 consecutive vulvectomy specimen for squamous cell carcinoma (SCC) or vulvar intraepithelial neoplasia (VIN) 3. Vulvar non-cancer excisions were used as controls. Investigations consisted of histologic classification and measurement of 9 variables--epidermal thickness (acanthosis and rete ridge length), immunolabeling index (LI) for 3 proteins (p53 protein, Ki-67, and mdm-2), pattern of p53 expression (dispersed vs. compact), DNA content index, and presence of aneuploidy by image analysis and apoptotic rate by Apotag labeling. Significant positive correlations were found for all nine variables studied versus increasing histologic severity in two proposed histologic stepwise models of vulvar carcinogenesis (lichen sclerosus (LS) and VIN 3 undifferentiated associated SCC groups). High p53 LI (>25) and the compact pattern of p53 expression (suspected oncoprotein) significantly correlated with LS and its associated vulvar samples compared with samples not associated with LS (P < or = 0.001). Furthermore, p53 LI, mdm-2 LI, and pattern of p53 expression were concordant between patient matched samples of LS and SCC. In addition, mdm-2 LI significantly correlated with dispersed pattern p53 LI suggesting a response to wild-type p53 protein accumulation. These findings support the hypothesis that neoplastic transformation occurs in sequential steps and compromises proteins involved in the cell cycle control. Concordance of p53 and mdm-2 protein expression in LS and adjacent SCC provides evidence that LS can act as a precursor lesion in the absence of morphologic atypia. Overexpression of mdm-2 with stabilization and inactivation of p53 protein may provide an alternate pathway for vulvar carcinogenesis.

  10. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice.

    PubMed

    Mori, Yu; Adams, Douglas; Hagiwara, Yusuke; Yoshida, Ryu; Kamimura, Masayuki; Itoi, Eiji; Rowe, David W

    2016-11-01

    Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3-green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.

  11. Comparative proteomic analysis of two wasps venom, Vespa tropica and Vespa affinis.

    PubMed

    Rungsa, Prapenpuksiri; Incamnoi, Paroonkorn; Sukprasert, Sophida; Uawonggul, Nunthawun; Klaynongsruang, Sompong; Daduang, Jureerut; Patramanon, Rina; Roytrakul, Sittiruk; Daduang, Sakda

    2016-09-01

    Vespid venom is composed of many bioactive compounds. The venom of the banded tiger wasp (Vespa affinis, or VA) and the great banded wasp (Vespa tropica, or VT)-which are locally found in the northeastern part of Thailand and are well known for their life-threatening venom potency-were comparatively studied in terms of potency, composition and biological activity. Clinical studies that included word-of-mouth information shared by traditional healers in local areas noted that the venom of VT is more potent than that of VA. Our previous study showed that the venom of VA is lower in potency (PD50 = 12.5 μg/g body weight) than that of VT (PD50 = 3 μg/g body weight). Analysis with the PAGE technique showed that these two venoms showed similar patterns of active proteins. Most protein spots were basic proteins at an isoelectric point (pI) ranging from 5 to 10, with molecular weights between 27 and 50 kDa. These spots were identified as hyaluronidase, phospholipase, antigen 5, dipeptidyl peptidase and albumin-like protein. The proportion of hyaluronidase was 2.5 times higher in VT than in VA. VT also showed higher hyaluronidase, phospholipase and dipeptidyl peptidase activities, suggesting that these components made VT venom more potent than VA venom. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation.

    PubMed

    Dudek, Christian-Alexander; Dannheim, Henning; Schomburg, Dietmar

    2017-01-01

    The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de.

  13. BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation

    PubMed Central

    Schomburg, Dietmar

    2017-01-01

    The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de. PMID:28750104

  14. Different evolutionary patterns of SNPs between domains and unassigned regions in human protein-coding sequences.

    PubMed

    Pang, Erli; Wu, Xiaomei; Lin, Kui

    2016-06-01

    Protein evolution plays an important role in the evolution of each genome. Because of their functional nature, in general, most of their parts or sites are differently constrained selectively, particularly by purifying selection. Most previous studies on protein evolution considered individual proteins in their entirety or compared protein-coding sequences with non-coding sequences. Less attention has been paid to the evolution of different parts within each protein of a given genome. To this end, based on PfamA annotation of all human proteins, each protein sequence can be split into two parts: domains or unassigned regions. Using this rationale, single nucleotide polymorphisms (SNPs) in protein-coding sequences from the 1000 Genomes Project were mapped according to two classifications: SNPs occurring within protein domains and those within unassigned regions. With these classifications, we found: the density of synonymous SNPs within domains is significantly greater than that of synonymous SNPs within unassigned regions; however, the density of non-synonymous SNPs shows the opposite pattern. We also found there are signatures of purifying selection on both the domain and unassigned regions. Furthermore, the selective strength on domains is significantly greater than that on unassigned regions. In addition, among all of the human protein sequences, there are 117 PfamA domains in which no SNPs are found. Our results highlight an important aspect of protein domains and may contribute to our understanding of protein evolution.

  15. ChiPPI: a novel method for mapping chimeric protein-protein interactions uncovers selection principles of protein fusion events in cancer.

    PubMed

    Frenkel-Morgenstern, Milana; Gorohovski, Alessandro; Tagore, Somnath; Sekar, Vaishnovi; Vazquez, Miguel; Valencia, Alfonso

    2017-07-07

    Fusion proteins, comprising peptides deriving from the translation of two parental genes, are produced in cancer by chromosomal aberrations. The expressed fusion protein incorporates domains of both parental proteins. Using a methodology that treats discrete protein domains as binding sites for specific domains of interacting proteins, we have cataloged the protein interaction networks for 11 528 cancer fusions (ChiTaRS-3.1). Here, we present our novel method, chimeric protein-protein interactions (ChiPPI) that uses the domain-domain co-occurrence scores in order to identify preserved interactors of chimeric proteins. Mapping the influence of fusion proteins on cell metabolism and pathways reveals that ChiPPI networks often lose tumor suppressor proteins and gain oncoproteins. Furthermore, fusions often induce novel connections between non-interactors skewing interaction networks and signaling pathways. We compared fusion protein PPI networks in leukemia/lymphoma, sarcoma and solid tumors finding distinct enrichment patterns for each disease type. While certain pathways are enriched in all three diseases (Wnt, Notch and TGF β), there are distinct patterns for leukemia (EGFR signaling, DNA replication and CCKR signaling), for sarcoma (p53 pathway and CCKR signaling) and solid tumors (FGFR and EGFR signaling). Thus, the ChiPPI method represents a comprehensive tool for studying the anomaly of skewed cellular networks produced by fusion proteins in cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Promoter methylation profile in gallbladder cancer.

    PubMed

    Roa, Juan Carlos; Anabalón, Leonardo; Roa, Iván; Melo, Angélica; Araya, Juan Carlos; Tapia, Oscar; de Aretxabala, Xavier; Muñoz, Sergio; Schneider, Barbara

    2006-03-01

    Methylation in the promoter region of genes is an important mechanism of inactivation of tumor suppressor genes. Our objective was to analyze the methylation pattern of some of the genes involved in carcinogenesis of the gallbladder, examining the immunohistochemical expression of proteins, clinical features, and patient survival time. Twenty cases of gallbladder cancer were selected from the frozen tumor bank. The DNA extracted was analyzed by means of a methylation-specific polymerase chain reaction test for the CDKN2A (p16), MLH1, APC, FHIT, and CDH1 (E-cadherin) genes. Morphological and clinical data and follow-up information were obtained. All cases were in an advanced stage: histologically moderate or poorly differentiated tumors (95%). Methylation of the promoter area of genes was observed in 5%, 20%, 30%, 40%, and 65% of cases, and an altered immunohistochemical pattern (AIP) in 5%, 35%, 21%, 25%, and 66% for the MLH1, CDKN2A, FHIT, APC, and CDH1 genes, respectively. The Kappa concordance index between methylation of the promoter area and AIP for the MLH1 and CDH1 genes was very high (K > 0.75) and substantial for APC (K > 0.45). No correlation was found between survival time and the methylation of the genes studied. The high frequency of gene methylation (with the exception of MLH1) and the high agreement between AIP and methylation of the gene promoter area for the MLH1, APC, and CDH1 genes suggest that the inactivation of tumor suppressor genes and of the genes related to the control of cellular proliferation through this mechanism is involved in gallbladder carcinogenesis.

  17. Measuring accessibility of sustainable transportation using space syntax in Bojonggede area

    NASA Astrophysics Data System (ADS)

    Suryawinata, B. A.; Mariana, Y.; Wijaksono, S.

    2017-12-01

    Changes in the physical structure of regional space as a result of the increase of planned and unplanned settlements in the Bojonggede area have an impact on the road network pattern system. Changes in road network patterns will have an impact on the permeability of the area. Permeability measures the extent to which road network patterns provide an option in traveling. If the permeability increases the travel distance decreases and the route of travel choice increases, permeability like this can create an easy access system and physically integrated. This study aims to identify the relationship of physical characteristics of residential area and road network pattern to the level of space permeability in Bojonggede area. By conducting this research can be a reference for the arrangement of circulation, accessibility, and land use in the vicinity of Bojonggede. This research uses quantitative method and space syntax method to see global integration and local integration on the region which become the parameter of permeability level. The results showed that the level of permeability globally and locally high in Bojonggede physical area is the physical characteristics of the area that has a grid pattern of road network grid.

  18. CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder.

    PubMed

    Trazzi, Stefania; De Franceschi, Marianna; Fuchs, Claudia; Bastianini, Stefano; Viggiano, Rocchina; Lupori, Leonardo; Mazziotti, Raffaele; Medici, Giorgio; Lo Martire, Viviana; Ren, Elisa; Rimondini, Roberto; Zoccoli, Giovanna; Bartesaghi, Renata; Pizzorusso, Tommaso; Ciani, Elisabetta

    2018-05-01

    Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.

  19. Protein and alkaloid patterns of the floral nectar in some solanaceous species.

    PubMed

    Kerchner, András; Darók, Judit; Bacskay, Ivett; Felinger, Attila; Jakab, Gábor; Farkas, Ágnes

    2015-09-01

    The family Solanaceae includes several melliferous plants, which tend to produce copious amounts of nectar. Floral nectar is a chemically complex aqueous solution, dominated by sugars, but minor components such as amino acids, proteins, flavonoids and alkaloids are present as well. This study aimed at analysing the protein and alkaloid profile of the nectar in seven solanaceous species. Proteins were examined with SDS-PAGE and alkaloids were analyzed with HPLC. The investigation of protein profile revealed significant differences in nectar-protein patterns not only between different plant genera, but also between the three Nicotiana species investigated. SDS-PAGE suggested the presence of several Nectarin proteins with antimicrobial activity in Nicotiana species. The nectar of all tobacco species contained the alkaloid nicotine, N. tabacum having the highest nicotine content. The nectar of Brugmansia suaveolens, Datura stramonium, Hyoscyamus niger and Lycium barbarum contained scopolamine, the highest content of which was measured in B. suaveolens. The alkaloid concentrations in the nectars of most solanaceous species investigated can cause deterrence in honeybees, and the nectar of N. rustica and N. tabacum can be considered toxic for honeybees.

  20. Physiological effects of a pea protein isolate in gnotobiotic rats: comparison with a soybean isolate and meat.

    PubMed

    Lhoste, E F; Mouzon, B; Andrieux, C; Gueugneau, A M; Fiszlewicz, M; Corring, T; Szylit, O

    1998-01-01

    Pea proteins have been considered for the introduction into the human diet only recently. This protein source was tested on nutritional and digestive parameters in heteroxenic male Fischer rats inoculated with a human faecal microflora from a methane producer. Compared to soybean proteins, pea proteins have similar effects on the rat's endogenous and bacterial digestive patterns. Compared to the pea proteins, a diet containing a standard meat meal enhanced the pH and the production of ammonia, while a lyophilized beef meat enhanced that of urea. The diet containing the standard meat decreases short-chain fatty acids and modifies the ratio of caecal short-chain fatty acids. Both animal diets decreased the specific activities of pancreatic proteases such as chymotrypsin (EC 3.4.21.1), trypsin (EC 3.4.21.4), and carboxypeptidase A (EC 3.4.17.1) when compared to the diet containing the pea isolate. In conclusion, the whole composition of the diet, more than the origin of the dietary protein, influences the rat's digestive pattern.

  1. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belteton, Samuel; Sawchuk, Megan G.; Donohoe, Bryon S.

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxinmore » gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here we used Arabidopsis reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells, and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.« less

  2. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis1[OPEN

    PubMed Central

    Sawchuk, Megan G.; Scarpella, Enrico

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. PMID:29192026

  3. A Novel Family of Cell Wall-Related Proteins Regulated Differently during the Yeast Life Cycle

    PubMed Central

    Rodríguez-Peña, José Manuel; Cid, Víctor J.; Arroyo, Javier; Nombela, César

    2000-01-01

    The Saccharomyces cerevisiae Ygr189c, Yel040w, and Ylr213c gene products show significant homologies among themselves and with various bacterial β-glucanases and eukaryotic endotransglycosidases. Deletion of the corresponding genes, either individually or in combination, did not produce a lethal phenotype. However, the removal of YGR189c and YEL040w, but not YLR213c, caused additive sensitivity to compounds that interfere with cell wall construction, such as Congo red and Calcofluor White, and overexpression of YEL040w led to resistance to these compounds. These genes were renamed CRH1 and CRH2, respectively, for Congo red hypersensitive. By site-directed mutagenesis we found that the putative glycosidase domain of CRH1 was critical for its function in complementing hypersensitivity to the inhibitors. The involvement of CRH1 and CRH2 in the development of cell wall architecture was clearly shown, since the alkali-soluble glucan fraction in the crh1Δ crh2Δ strain was almost twice the level in the wild-type. Interestingly, the three genes were subject to different patterns of transcriptional regulation. CRH1 and YLR213c (renamed CRR1, for CRH related) were found to be cell cycle regulated and also expressed under sporulation conditions, whereas CRH2 expression did not vary during the mitotic cycle. Crh1 and Crh2 are localized at the cell surface, particularly in chitin-rich areas. Consistent with the observed expression patterns, Crh1–green fluorescent protein was found at the incipient bud site, around the septum area in later stages of budding, and in ascospore envelopes. Crh2 was found to localize mainly at the bud neck throughout the whole budding cycle, in mating projections and zygotes, but not in ascospores. These data suggest that the members of this family of putative glycosidases might exert a common role in cell wall organization at different stages of the yeast life cycle. PMID:10757808

  4. Expression profiles of the Gα subunits during Xenopus tropicalis embryonic development.

    PubMed

    Fuentealba, Jaime; Toro-Tapia, Gabriela; Rodriguez, Marion; Arriagada, Cecilia; Maureira, Alejandro; Beyer, Andrea; Villaseca, Soraya; Leal, Juan I; Hinrichs, Maria V; Olate, Juan; Caprile, Teresa; Torrejón, Marcela

    2016-09-01

    Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm.

    PubMed

    Luz, Marta; Spannl-Müller, Stephanie; Özhan, Günes; Kagermeier-Schenk, Birgit; Rhinn, Muriel; Weidinger, Gilbert; Brand, Michael

    2014-01-01

    Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning.

  6. Dynamic Association with Donor Cell Filopodia and Lipid-Modification Are Essential Features of Wnt8a during Patterning of the Zebrafish Neuroectoderm

    PubMed Central

    Luz, Marta; Spannl-Müller, Stephanie; Özhan, Günes; Kagermeier-Schenk, Birgit; Rhinn, Muriel; Weidinger, Gilbert; Brand, Michael

    2014-01-01

    Background Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. Results We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. Conclusions Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning. PMID:24427298

  7. Biochemical Characterization of Echinococcus multilocularis Antigen B3 Reveals Insight into Adaptation and Maintenance of Parasitic Homeostasis at the Host-Parasite Interface.

    PubMed

    Ahn, Chun-Seob; Kim, Jeong-Geun; Han, Xiumin; Bae, Young-An; Park, Woo-Jae; Kang, Insug; Wang, Hu; Kong, Yoon

    2017-02-03

    Alveolar echinococcosis (AE) caused by Echinococcus multilocularis metacestode is frequently associated with deleterious zoonotic helminthiasis. The growth patterns and morphological features of AE, such as invasion of the liver parenchyme and multiplication into multivesiculated masses, are similar to those of malignant tumors. AE has been increasingly detected in several regions of Europe, North America, Central Asia, and northwestern China. An isoform of E. multilocularis antigen B3 (EmAgB3) shows a specific immunoreactivity against patient sera of active-stage AE, suggesting that EmAgB3 might play important roles during adaptation of the parasite to hosts. However, expression patterns and biochemical properties of EmAgB3 remained elusive. The protein profile and nature of component proteins of E. multilocularis hydatid fluid (EmHF) have never been addressed. In this study, we conducted proteome analysis of EmHF of AE cysts harvested from immunocompetent mice. We observed the molecular and biochemical properties of EmAgB3, including differential transcription patterns of paralogous genes, macromolecular protein status by self-assembly, distinct oligomeric states according to individual anatomical compartments of the worm, and hydrophobic ligand-binding protein activity. We also demonstrated tissue expression patterns of EmAgB3 transcript and protein. EmAgB3 might participate in immune response and recruitment of essential host lipids at the host-parasite interface. Our results might contribute to an in depth understanding of the biophysical and biological features of EmAgB3, thus providing insights into the design of novel targets to control AE.

  8. A Recommendation for Naming Transcription Factor Proteins in the Grasses

    USDA-ARS?s Scientific Manuscript database

    Transcription factors are central for the exquisite temporal and spatial expression patterns of many genes. These proteins are characterized by their ability to be tethered to particular regulatory sequences in the genes that they control. While many other proteins participate in the regulation of g...

  9. Community food pattern and nutrition among toddlers in district of Pacitan, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Lestari, A.; Hanim, D.; Listyaningsih, E.; Supriyadi

    2017-04-01

    Aim of this study was to asses and formulate food consumption patterns among under five children in accordance with the desirable dietary pattern score and Recommended Dietary Allowances to the target of East Java’s desirable dietary pattern. Toddlers who have nutritional status less than normal are 29.44%. Toddlers with good nutritional status are 59.39% and obesity toddlers are 11.16 %. Families of respondents were able to provide the food of the crop and compound (p = 0.81; r = 0.11). The ability of the respondent’s family to buy vegetables with p = 0.06; r = 0.19. Animal side dish food spending patterns showed that the family of respondents who consume meat poultry, including eggs was 92.1%. Families fruits spending patterns of respondents was 70.8% had a habit of eating fresh fruit so that every day can be provided. The pattern of food consumption in Pacitan already reflected the pattern of nutritionally balanced food, especially in the fulfillment of carbohydrates, vegetable-sourced protein, animal-sourced protein. Nutritional status of toddlers was ideal. The main driving factor for the improvement of nutritional status of toddlers was nutrition awareness against food diversification.

  10. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    PubMed

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization

    PubMed Central

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan EB; Kastner, Sabine; Hasson, Uri

    2015-01-01

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas. DOI: http://dx.doi.org/10.7554/eLife.03952.001 PMID:25695154

  12. Dietary Protein in Older Adults: Adequate Daily Intake but Potential for Improved Distribution.

    PubMed

    Cardon-Thomas, Danielle K; Riviere, Timothy; Tieges, Zoë; Greig, Carolyn A

    2017-02-23

    Daily distribution of dietary protein may be important in protecting against sarcopenia, specifically in terms of per meal amounts relative to a proposed threshold for maximal response. The aims of this study were to determine total and per meal protein intake in older adults, as well as identifying associations with physical activity and sedentary behavior. Three-day food diaries recorded protein intake in 38 participants. Protein distribution, coefficient of variation (CV), and per meal amounts were calculated. Accelerometry was used to collect physical activity data as well as volume and patterns of sedentary time. Average intake was 1.14 g·kg -1 ·day -1 . Distribution was uneven (CV = 0.67), and 79% of participants reported <0.4 g·kg -1 protein content in at least 2/3 daily meals. Protein intake was significantly correlated with step count ( r = 0.439, p = 0.007) and negatively correlated with sedentary time ( r = -0.456, p = 0.005) and Gini index G, which describes the pattern of accumulation of sedentary time ( r = -0.421, p = 0.011). Total daily protein intake was sufficient; however, distribution did not align with the current literature; increasing protein intake may help to facilitate optimization of distribution. Associations between protein and other risk factors for sarcopenia may also inform protective strategies.

  13. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries

    PubMed Central

    Erickson, Timothy; Scholpp, Steffen; Brand, Michael; Moens, Cecilia B.; Waskiewicz, Andrew Jan

    2007-01-01

    Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro, and that this interaction is required for both the eng2a overexpression phenotype and Engrailed’s role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube. PMID:16959235

  14. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries.

    PubMed

    Erickson, Timothy; Scholpp, Steffen; Brand, Michael; Moens, Cecilia B; Waskiewicz, Andrew Jan

    2007-01-15

    Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro and that this interaction is required for both the eng2a overexpression phenotype and Engrailed's role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube.

  15. A missense mutation in the agouti signaling protein gene (ASIP) is associated with the no light points coat phenotype in donkeys.

    PubMed

    Abitbol, Marie; Legrand, Romain; Tiret, Laurent

    2015-04-08

    Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both phenotypes are associated with the agouti signaling protein gene (ASIP). We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results strongly support that the identified mutation is causative of the NLP phenotype. Thus, we propose to name the c.[349 T > C] allele in donkeys, the a(nlp) allele, which enlarges the panel of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.

  16. Haemoglobin variants among voluntary blood donors in Jos, Nigeria: the implications on blood transfusion.

    PubMed

    Damulak, O D; Bolorunduro, S A; Egesie, J O; Yakubu, K; Godit, P; Smith, O A

    2013-01-01

    The normal haemoglobin is an efficient transporter of oxygen to the tissues and carbondioxide from tissues to the lungs for elimination. Various abnormal haemoglobin variants including, the sickle cell diseases, have been described with varying sickling tendencies. This study aimed to determine the haemoglobin variants among voluntary blood donors in Jos. Records of the age, sex, Haemoglobin level, and the haemoglobin genotype of all voluntary blood donors who donated blood at the National Blood Transfusion Service Centre, Jos, Nigeria between January 2011 and April 2012; and their haemoglobin levels and protein electrophoresis determined, were reviewed. A total of 937 blood donors, 658 (70.23%) males and 279 (29.79%) females, mean age 32.4 years, donated blood voluntarily, their haemoglobin electrophoretic patterns determined by alkaline cellulose acetate electrophoresis. Donor blood haemoglobin levels were determined by automation. Haemoglobin protein electrophoretic patterns identified among our donors were 77.70% AA, 21.88% AS, 0.22% SC, 0.11% AC and 0.11% SS. Mean haemoglobin levels of the donors according to their haemoglobin proteins electrophoretic patterns were, 150.4 +/- 12.5 gms/l for AA, 151.9 +/- 13.8 gms/l for AS and 131.1 +/- 5.0 gms/l for haemoglobin SC. Determination of haemoglobin protein electrophoretic patterns of blood unit for transfusion could enhance selective blood issuing based on recipient's haemoglobin type.

  17. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane

    PubMed Central

    Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-01-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  18. Expression of inducible nitric oxide synthase in spontaneous bovine bronchopneumonia.

    PubMed

    Fligger, J M; Waldvogel, A S; Pfister, H; Jungi, T W

    1999-09-01

    The expression of inducible nitric oxide synthase (iNOS), major histocompatibility class II molecules (MHC-II), CD68, and the calcium-binding proteins S100A8 and S100A9 (also called MRP8 and MRP14, respectively) was assessed in lung tissues from cattle that succumbed to pneumonia. Expression patterns of these markers were related to the types of lung lesion. iNOS expression was only observed in lungs infected with Arcanobacterium pyogenes or Pasteurella haemolytica but not in lungs from cattle with subacute chronic interstitial pneumonia and acute interstitial pneumonia due to Escherichia coli infection. High levels of iNOS were expressed by cells (probably leukocytes) surrounding necrotic foci. Occasionally, iNOS was expressed by intraalveolar macrophages in viable parenchyma, by leukocytes within the airways, and by some chondrocytes in the supporting cartilage of bronchi. Cells expressing MHC-II were distributed relatively evenly throughout areas of inflammation and did not display any clear association with necrotic foci. Cell types expressing MHC-II included type II alveolar epithelial cells, spindle-shaped cells of the interstitium, cells in bronchus-associated lymphoid tissue, and leukocytes in lymph and blood vessels but largely excluded iNOS-positive cells. Likewise, CD68-positive cells were rarely positive for iNOS and were not confined to the areas surrounding necrotic tissue. As with MHC-II and CD68, there was little if any coexpression of iNOS and either of the S100 proteins tested. Thus, in cattle with necrotizing bronchopneumonia, iNOS-expressing cells were largely restricted to the cellular zone surrounding necrotic areas.

  19. Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset

    PubMed Central

    Solomon, Selina S; Tailby, Chris; Gharaei, Saba; Camp, Aaron J; Bourne, James A; Solomon, Samuel G

    2011-01-01

    Abstract The middle temporal area (MT/V5) is an anatomically distinct region of primate visual cortex that is specialized for the processing of image motion. It is generally thought that some neurons in area MT are capable of signalling the motion of complex patterns, but this has only been established in the macaque monkey. We made extracellular recordings from single units in area MT of anaesthetized marmosets, a New World monkey. We show through quantitative analyses that some neurons (35 of 185; 19%) are capable of signalling pattern motion (‘pattern cells’). Across several dimensions, the visual response of pattern cells in marmosets is indistinguishable from that of pattern cells in macaques. Other neurons respond to the motion of oriented contours in a pattern (‘component cells’) or show intermediate properties. In addition, we encountered a subset of neurons (22 of 185; 12%) insensitive to sinusoidal gratings but very responsive to plaids and other two-dimensional patterns and otherwise indistinguishable from pattern cells. We compared the response of each cell class to drifting gratings and dot fields. In pattern cells, directional selectivity was similar for gratings and dot fields; in component cells, directional selectivity was weaker for dot fields than gratings. Pattern cells were more likely to have stronger suppressive surrounds, prefer lower spatial frequencies and prefer higher speeds than component cells. We conclude that pattern motion sensitivity is a feature of some neurons in area MT of both New and Old World monkeys, suggesting that this functional property is an important stage in motion analysis and is likely to be conserved in humans. PMID:21946851

  20. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings.

    PubMed

    Engelsberger, Wolfgang R; Schulze, Waltraud X

    2012-03-01

    Nitrogen is an essential macronutrient for plant growth and development. Inorganic nitrogen and its assimilation products control various metabolic, physiological and developmental processes. Although the transcriptional responses induced by nitrogen have been extensively studied in the past, our work here focused on the discovery of candidate proteins for regulatory events that are complementary to transcriptional changes. Most signaling pathways involve modulation of protein abundance and/or activity by protein phosphorylation. Therefore, we analyzed the dynamic changes in protein phosphorylation in membrane and soluble proteins from plants exposed to rapid changes in nutrient availability over a time course of 30 min. Plants were starved of nitrogen and subsequently resupplied with nitrogen in the form of nitrate or ammonium. Proteins with maximum change in their phosphorylation level at up to 5 min after nitrogen resupply (fast responses) included GPI-anchored proteins, receptor kinases and transcription factors, while proteins with maximum change in their phosphorylation level after 10 min of nitrogen resupply (late responses) included proteins involved in protein synthesis and degradation, as well as proteins with functions in central metabolism and hormone metabolism. Resupply of nitrogen in the form of nitrate or ammonium resulted in distinct phosphorylation patterns, mainly of proteins with signaling functions, transcription factors and transporters. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

Top