Arthur, W J; Markham, O D
1984-04-01
Polonium-210 concentrations were determined for soil, vegetation and small mammal tissues collected at a solid radioactive waste disposal area, near a phosphate ore processing plant and at two rural areas in southeastern Idaho. Polonium concentrations in media sampled near the radioactive waste disposal facility were equal to or less than values from rural area samples, indicating that disposal of solid radioactive waste at the Idaho National Engineering Laboratory Site has not resulted in increased environmental levels of polonium. Concentrations of 210Po in soils, deer mice hide and carcass samples collected near the phosphate processing plant were statistically (P less than or equal to 0.05) greater than the other sampling locations; however, the mean 210Po concentration in soils and small mammal tissues from sampling areas near the phosphate plant were only four and three times greater, respectively, than control values. No statistical (P greater than 0.05) difference was observed for 210Po concentrations in vegetation among any of the sampling locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.A.
1984-07-01
Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less
NASA Astrophysics Data System (ADS)
Mohamed, N.; Ariffin, N. A. N.; Mohamed, C. A. R.
2016-07-01
Distribution of 226Ra and 228Ra radioactive in marine have been studied at Kapar coastal area that closed to Sultan Salahudin Abdul Aziz Shah (SJSSAS) power station. The concentration level of 226Ra and 228Ra were measured in seawater include total suspended solids (TSSrw) and dissolved phases from September 2006 to February 2008. The measurement technique used for 226Ra and 228Ra was using cation exchange column and counted using Liquid Scintillator Ciunter (LSC). The radioactivities of 226Rasw and 228Rasw in the dissolved phase of seawater ranged from 1.29 ± 0.52 mBq/L - 3.69 ± 1.29 mBq/L and 2.12 ± 0.71 mbq/L - 17.07 ± 6.03 mBq/L respectively. The measurement of radioactivities of radium isotopes in the particulate phase of seawater ranged from 15.62 ± 1.99 Bq/kg - 241.76 ± 100.23 Bq/kg (226Ratsw) and 7.19 ± 3.21 Bq/kg - 879.66 ± 365.74 Bq/kg (228Ratsw). Radium isotopes inventory in this study showed that suspended solid have higher inventory value than seawater and sediment. Study also found that suspended solid play an important role for flux contribution at seawater. Based on the finding, the radioactivity concentration of 226Ra and 228Ra is higher in particulate phase than in dissolved phase.
Performance assessment for continuing and future operations at solid waste storage area 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, R.; Wade, M.; Tharp, T.
1994-12-31
The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... luminous exit signs do not require electricity or batteries, and are commonly installed in areas where... tritium exit signs are returned to the manufacturer for recycling or disposed of as low-level radioactive...
LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS
2000-09-01
The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less
Behavior of cesium in municipal solid waste incineration.
Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki
2015-05-01
As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tanks Focus Area annual report FY2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-12-01
The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for overmore » 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.« less
Radioactive waste disposal package
Lampe, Robert F.
1986-11-04
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Radioactive waste disposal package
Lampe, Robert F.
1986-01-01
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Management of low-level radioactive waste in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabtai, B.; Brenner, S.; Ne`eman, E.
1995-12-31
Radioactive materials are used extensively in Israel in many areas and applications for medicine, industry, agriculture, research and development and others. Israel`s primary concern in waste management is population safety and environmental protection. The Ministry of The Environment (MOE), in cooperation with the Israeli Atomic Energy Commission (IAEC), supervise over the disposal system, and ensure an effective control. The MOE is responsible for the granting of permits to users of radioactive elements in about 300 plants and institutes, with about 2,200 installations. The MOE operates a computerized database management system (DBMS) on radioactive materials, with data on licensing, import andmore » distribution, waste disposal and transportation. Supervision over the disposal of LLRW has deepened recently, and periodic reports, based on the number of drums containing LLRW, which were transferred from all institutes in Israel to the NRWDS, were prepared. Draft regulations on the disposal of LLRW from institutes of research and education, hospitals, medical laboratories and other, have been recently prepared. These regulations include instructions on the disposal of solid and liquid LLRW as well as radioactive gases and vapors. As a general rule, no LLRW of any sort will be disposed of through the ordinary waste system or general sewage. However, in some extraordinary cases, residues of liquid LLRW are allowed to be disposed in this manner, if the requirements for disposal are satisfied. There are some conditions, in which solid LLRW might be treated as a conventional waste, as well as for safe emission of radioactive gases and aerosols. In light of these considerations, a new and more specific approach to radiation protection organizations and management of low-level radioactive waste problems, supervision and optimization is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-09-01
This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.
Method for magnesium sulfate recovery
Gay, Richard L.; Grantham, LeRoy F.
1987-01-01
A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.
Method for magnesium sulfate recovery
Gay, R.L.; Grantham, L.F.
1987-08-25
A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.
Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source
NASA Astrophysics Data System (ADS)
Hu, Rui; Kan, Wentao; Xiong, Xiaoling; Wei, Hongyuan
2017-08-01
The preparation of a deuterated polymer was performed in order to simulate the production of the corresponding tritiated polymer as a solid tritium radioactive source. Substitution and addition reaction were used to introduce deuterium into the polymer. Proton nuclear magnetic resonance and FT-IR spectroscopy were used to investigate the extent and location of deuterium in the polymer, indicating an effectively deuterated polymer was produced. The thermal analysis showed that the final polymer product could tolerate the environmental temperature below 125 °C in its application. This research provides a prosperous method to prepare solid tritium radioactive source.
SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. C. Khamankar
2000-06-20
The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less
Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat
2001-01-01
In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-09-01
This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)
Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.
A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coony, F.M.; Howe, D.B.; Voigt, L.J.
The purpose of this report is to fulfill the reporting requirements of US Department of Energy (DOE) Order 5484.1, Environmental Protection, Safety, and Health Protection Information Reporting Requirements. Quantities of airborne and liquid wastes discharged by Westinghouse Hanford Company (Westinghouse Hanford) in the 200 Areas, 600 Area, and 1100 Area in 1987 are presented in this report. Also, quantities of solid wastes stored and buried by Westinghouse Hanford in the 200 Areas are presented in this report. The report is also intended to demonstrate compliance with Westinghouse Hanford administrative control limit (ACL) values for radioactive constituents and with applicable guidelinesmore » and standards for nonradioactive constituents. The summary of airborne release data, liquid discharge data, and solid waste management data for calendar year (CY) 1987 and CY 1986 are presented in Table ES-1. Data values for 1986 are cited in Table ES-1 to show differences in releases and waste quantities between 1986 and 1987. 19 refs., 3 figs., 19 tabs.« less
An industry perspective on commercial radioactive waste disposal conditions and trends.
Romano, Stephen A
2006-11-01
The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, John C.
2012-07-01
A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comesmore » into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically replaced and disposed of as radioactive waste. A total of 0.85 m{sup 3} of waste sludge per year requires disposal on average, in addition to another 6.6 m{sup 3} of waste cartridge filters. All water discharges are regulated by a state of New Jersey Pollutant Discharge Elimination System Permit implemented by the Federal Water Pollution Control Act (Clean Water Act). Laboratory analyses are required to satisfy requirements of the state NPDES permit. Specific monitoring parameters and discharge rates will be provided. Use of the water treatment systems drastically reduces the amount of contaminated water requiring solidification and water disposal to near zero. Millions of liters of potentially contaminated water from excavation activities is treated and released within permit limits. A small volume of solid radioactive waste (21 cubic meters) is generated annually from water treatment process operations. Management of ground and surface water is effectively controlled in remediation areas by the use of sumps, erosion control measures and pumping of water to storage vessels. Continued excavations can be made as water impacting the site is effectively controlled. (authors)« less
System for chemically digesting low level radioactive, solid waste material
Cowan, Richard G.; Blasewitz, Albert G.
1982-01-01
An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Testimony by representatives of the Environmental Protection Agency, citizen environmental organizations, DOE, and universities on the Mixed Hazardous Waste Amendment Act of 1985 (H.R. 2009) and the Military Radioactive Emissions Control Act of 1985 (H.R. 2593) focused on safety aspects of mixed wastes at DOE facilities from the point of view of the general public and the implications for tourism and recreation in affected areas. H.R. 2593 calls for standards and continuous independent monitoring, while H.R. 2009 ensures that wastes the Solid Waste Management Act covers solid wastes containing radioactive material. The testimony covered definitions and interpretations by byproduct materialmore » and the problems associated with self-regulation. The testimony of the 10 witnesses follows the text of the two bills.« less
Lewis, Leroy C.; Trammell, David R.
1986-01-01
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
Lewis, L.C.; Trammell, D.R.
1983-10-12
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
Evseeva, T I; Geras'kin, S A; Maĭstrenko, T A; Belykh, E S
2011-01-01
Degree of the soil cover degradation at the "Balapan" and "Experimental field" test sites was assessed based on Allium-test of soil toxicity results and international guidelines on radioactive restriction of solid materials (IAEA, 2004) and environment (Smith, 2005). Soil cover degradation maps of large-scale (1 : 25000) were made. The main part of the area mapped belongs to high-contaminated toxic degraded soil. A relationship between the soil toxicity and the total radionuclide activity concentrations was found to be described by power functions. When the calculated value (equal to 413-415 Bq/kg of air dry soil) increases, the soil becomes toxic for plants. This value is 7.8 times higher than the maximal value for background territories (53 Bq/kg) surrounding SNTS. Russian sanitary and hygienic guidelines (Radiation safety norms, 2009; Sanitary regulations of radioactive waste management, 2003) underestimate the degree of soil radioactive contamination for plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Naranjo, Jr.; P. R. Fresquez; R. J. Wechsler
1998-08-01
Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-were analyzed for 3H, 238Pu, 239Pu, 137CS, 234U, 235U, 228AC, Be, 214Bi, 60Co, 40& 54Mn, 22Na, 214Pb and 208Tl. In general, most radionuclide concentrations, with the exception of 3Ef and ~9Pu, in soils and overstory and understory vegetation collected from within and around Area G were within upper (95'%) level background concentrations. Although 3H concentrations in vegetation from most sites were significantly higher than background (>2 pCi mL-l), concentrations decreased markedly in comparisonmore » to last year's results. The highest `H concentration in vegetation was detected from a juniper tree that was growing over tritium shaft /+150; it contained 530,000 pCi 3H mL-l. Also, as in the pas~ the transuranic waste pad area contained the highest levels of 239Pu in soils and in understory vegetation as compared to other areas at Area G.« less
Transuranic solid waste management programs. Progress report, July--December 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming nomore » change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.« less
The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel
2013-07-01
The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)
Paranhos Gazineu, Maria Helena; de Araújo, Andressa Arruda; Brandão, Yana Batista; Hazin, Clovis Abrahão; de O Godoy, José Marcos
2005-01-01
Scales and sludge generated during oil extraction and production can contain uranium, thorium, radium and other natural radionuclides, which can cause exposure of maintenance personnel. This work shows how the oil content can influence the results of measurements of radionuclide concentration in scale and sludge. Samples were taken from a PETROBRAS unit in Northeast Brazil. They were collected directly from the inner surface of water pipes or from barrels stored in the waste storage area of the E&P unit. The oil was separated from the solids with a Soxhlet extractor by using aguarras at 90+/-5 degrees C as solvent. Concentrations of 226Ra and 228Ra in the samples were determined before and after oil extraction by using an HPGe gamma spectrometric system. The results showed an increase in the radionuclide concentration in the solid (dry) phase, indicating that the above radionuclides concentrate mostly in the solid material.
10 CFR 835.603 - Radiological areas and radioactive material areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Danger, Very High Radiation Area” shall be posted at each very high radiation area. (d) Airborne radioactivity area. The words “Caution, Airborne Radioactivity Area” or “Danger, Airborne Radioactivity Area” shall be posted at each airborne radioactivity area. (e) Contamination area. The words “Caution...
Barney, Gary S.; Brownell, Lloyd E.
1977-01-01
A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.
Cable attachment for a radioactive brachytherapy source capsule
Gross, Ian G; Pierce, Larry A
2006-07-18
In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.
Evseeva, T; Belykh, E; Geras'kin, S; Majstrenko, T
2012-07-01
In spite of the long history of the research, radioactive contamination of the Semipalatinsk nuclear test site (SNTS) in the Republic of Kazakhstan has not been adequately characterized. Our cartographic investigation has demonstrated highly variable radioactive contamination of the SNTS. The Cs-137, Sr-90, Eu-152, Eu-154, Co-60, and Am-241 activity concentrations in soil samples from the "Balapan" site were 42.6-17646, 96-18250, 1.05-11222, 0.6-4865, 0.23-4893, and 1.2-1037 Bq kg(-1), correspondingly. Cs-137 and Sr-90 activity concentrations in soil samples from the "Experimental field" site were varied from 87 up to 400 and from 94 up to 1000 Bq kg(-1), respectively. Activity concentrations of Co-60, Eu-152, and Eu-154 were lower than the minimum detectable activity of the method used. Concentrations of naturally occurring radionuclides (K-40, Ra-226, U-238, and Th-232) in the majority of soil samples from the "Balapan" and the "Experimental field" sites did not exceed typical for surrounding of the SNTS areas levels. Estimation of risks associated with radioactive contamination based on the IAEA clearance levels for a number of key radionuclides in solid materials shows that soils sampled from the "Balapan" and the "Experimental field" sites might be considered as radioactive wastes. Decrease in specific activity of soil from the sites studied up to safety levels due to Co-60, Cs-137, Sr-90, Eu-152, Eu-154 radioactive decay and Am-241 accumulation-decay will occur not earlier than 100 years. In contrast, soils from the "Experimental field" and the "Balapan" sites (except 0.5-2.5 km distance from the "Chagan" explosion point) cannot be regarded as the radioactive wastes according safety norms valid in Russia and Kazakhstan. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hanford Site Solid Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-17
This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.
Sargent, Kenneth A.; Bedinger, M.S.
1985-01-01
The geology and hydrology of the Basin and Range Province of the western conterminous United States are characterized in a series of data sets depicted in maps compiled for evaluation of prospective areas for further study of geohydrologic environments for isolation of high-level radioactive waste. The data sets include: (1) Average precipitation and evaporation; (2) surface distribution of selected rock types; (3) tectonic conditions; and (4) surface- and ground -water hydrology and Pleistocene lakes and marshes.Rocks mapped for consideration as potential host media for the isolation of high-level radioactive waste are widespread and include argillaceous rocks, granitic rocks, tuffaceous rocks, mafic extrusive rocks, evaporites, and laharic breccias. The unsaturated zone, where probably as thick as 150 meters (500 feet), was mapped for consideration as an environment for isolation of high-level waste. Unsaturated rocks of various lithologic types are widespread in the Province.Tectonic stability in the Quaternary Period is considered the key to assessing the probability of future tectonism with regard to high-level radioactive waste disposal. Tectonic conditions are characterized on the basis of the seismic record, heat-flow measurements, the occurrence of Quaternary faults, vertical crustal movement, and volcanic features. Tectonic activity, as indicated by seismicity, is greatest in areas bordering the western margin of the Province in Nevada and southern California, the eastern margin of the Province bordering the Wasatch Mountains in Utah and in parts of the Rio Grande valley. Late Cenozoic volcanic activity is widespread, being greatest bordering the Sierra Nevada in California and Oregon, and bordering the Wasatch Mountains in southern Utah and Idaho.he arid to semiarid climate of the Province results in few perennial streams and lakes. A large part of the surface drainage is interior and the many closed basins commonly are occupied by playas or dry lake beds. The Province is divided into ground-water flow units defined on the basis of ground-water divides, ground-water flow lines, and surface streams that receive ground-water discharge.Ground water contains less than 500 milligrams per liter of dissolved solids throughout most of the Province. Ground water is more mineralized in areas underlain by evaporitic rocks, overlain by playas, and near saline lakes. Ground water is of the calcium, magnesium, or sodium bicarbonate type in the areas where dissolved-solids concentrations are less than 500 milligrams per liter, and of the calcium, magnesium, or sodium sulfate or chloride type where dissolved-solids concentrations are greater than 500 milligrams per liter.Geologic and hydrologic evidence is found for about 100 lakes and marshes that existed during the Pleistocene Epoch. The possibility of a recurrence of pluvial conditions, such as existed in the Pleistocene, is of concern in repository siting because of possible changes in hydrologic conditions. The Pleistocene lakes and marshes provide clues to the hydrology during pluvial climates.
Magnesium fluoride recovery method
Gay, Richard L.; McKenzie, Donald E.
1989-01-01
A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.
Uranium in the Mayoworth area, Johnson County, Wyoming - a preliminary report
Love, J.D.
1954-01-01
The uranium mineral, metatyuyamunite, occurs in the basal limestone of the Sundance formation of late Jurassic age along the east flank of the Bighorn Mountains, about 2 miles southwest of the abandoned Mayoworth post office. This occurrence is of particular interest because it is the first uranium mineralization reported from a marine limestone in Wyoming. The discovery uranium claims were filed in July 1953, by J.S. Masek, Dan Oglesby, and Jack Emery of Casper, Wyo. Subsequent reconnaissance investigations have been made by private individuals and geologists of the U.S. Geological Survey and Atomic Energy Commission. The metatyuyamunite is concentrated in a hard gray oolitic limestone that forms the basal bed of the Sundance formation. A selected sample of limestone from a fresh face in the northernmost deposit known at the time of the field examination contained 0.70 percent equivalent uranium and 0.71 percent uranium. Eight samples of the limestone taken at the sample place by the Atomic Energy Commission contained from 0.007 to 0.22 percent uranium. A chip sample from the weathered outcrop at the top of this limestone half a mile to the southeast contained 0.17 percent equivalent uranium and 0.030 percent uranium. A dinosaur bone from the middle part of the Morrison formation contained 0.044 percent equivalent uranium and 0.004 percent uranium. metatyuyamunite forms a conspicuous yellow coating along fracture planes cutting the oolitic limestone and has also replaced many of the oolites within the solid limestone and has also replaced many of the oolites within the solid limestone even where fractures are not present. Many radioactive spots in the basal limestone of the Sundance formation were examined in a reconnaissance fashion along the outcrop for a distance of half a mile south of the initial discovery. Samples were taken for analysis only at the northern and southern margins of this interval. Outcrops farther north and south were not studied. There are not sufficient data to make even rough estimates of tonnage and grade of the occurrences. The extent of the limestone, the approximate boundaries of the area of above-normal radioactivity, and the possibilities of other radioactive zones have not been thoroughly investigated. Although dinosaur bones in the Morrison formation were radioactive wherever they were tested, no significant amount of radioactivity was observed in rocks adjacent to the bones.
Occurrence of natural radium-226 radioactivity in ground water of Sarasota County, Florida
Miller, R.L.; Sutcliffe, Horace
1985-01-01
Water that contains radium-226 radioactivity in excess of the 5.0-picocurie-per-liter limit set in the National Interim Primary Drinking Water Regulations was found in the majority of wells sampled throughout Sarasota County. Highest levels were found areally near the coast or near rivers and vertically in the Tamiami-upper Hawthorn aquifer where semiconsolidated phosphate pebbles occur. Analysis of data suggests that part of the radium-226 in ground water of Sarasota County is dissolved by alpha particle recoil. In slightly mineralized water, radium-226 concentrations are decreased by ion exchange or sorption. In more mineralized water, other ions compete with radium-226 for ion exchange or sorption sites. Dissolution of minerals containing radium-226 by mineralized water probably contributes a significant fraction of the dissolved radium-226. Two types of mineralized water were present in Sarasota County. One type is a marine-like water, presumably associated with saltwater encroachment in coastal areas; the other is a calcium magnesium strontium surfate bicarbonate type. In general, water that contains high radium-226 radioactivities also contains too much water hardness or dissolved solids to be used for public supply without treatment that would also reduce radium-226 radioactivities. (USGS)
Foaming in simulated radioactive waste.
Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C
2001-10-01
Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.
300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping, Mark R.; Lewis, Mark
2013-07-01
The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the eliminationmore » of spent powdered filter media. (authors)« less
Radioactive springs geochemical data related to uranium exploration
Cadigan, R.A.; Felmlee, J.K.
1977-01-01
Radioactive mineral springs and wells at 33 localities in the States of Colorado, Utah, Arizona and New Mexico in the United States were sampled and studied to obtain geochemical data which might be used for U exploration. The major source of radioactivity at mineral spring sites is 226Ra. Minor amounts of 228Ra, 238U and 232Th are also present. Ra is presumed to have been selectively removed from possibly quite deep uranium-mineralized rock by hydrothermal solutions and is either precipitated at the surface or added to fresh surface water. In this way, the source rocks influence the geochemistry of the spring waters and precipitates. Characteristics of the spring waters at or near the surface are also affected by variations in total dissolved solids, alkalinity, temperature and co-precipitation. Spring precipitates, both hard and soft, consist of four major types: (1) calcite travertine; (2) iron- and arsenic-rich precipitates; (3) manganese- and barium-rich precipitates; and (4) barite, in some instances accompanied by S, Ra and U, if present in the spring water, are co-precipitated with the barite, Mn-Ba and Fe-As precipitates. Using parameters based on U and Ra concentrations in waters and precipitates springsite areas are tentatively rated for favourability as potential uraniferous areas. ?? 1977.
Solid Waste Management Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-26
The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.
DWPF Safely Dispositioning Liquid Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-01-05
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.
Environmental Programs: Status of Work and Current Priorities for FY13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Patricia
2012-08-17
Presentation outline is: Mission/overview, Regulatory framework, Current status of cleanup, Shift in priorities to address highest risk, Removal of above-ground waste, Continued focus on protecting water resources, and Priorities for fiscal year 2013. LANL's Environmental Mission is to: (1) Repack and ship legacy transuranic waste containers; (2) Investigate and remediate Cold War (legacy) hazardous and radioactive waste areas; (3) Demolish unused buildings; (4) Disposition solid waste from Laboratory operations; and (5) Lifecycle cost nearly $3 billion.
Weiss, W
2012-01-01
The report of International Commission on Radiological Protection (ICRP) Task Group 80 entitled 'Radiological protection in geological disposal of long-lived solid radioactive waste' updates and consolidates previous ICRP recommendations related to solid waste disposal (ICRP Publications 46, 77, and 81). The recommendations given in this report apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the 2007 system of radiological protection, described in ICRP Publication 103, can be applied in the context of the geological disposal of long-lived solid radioactive waste. The report is written as a self-standing document. It describes the different stages in the lifetime of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences application of the protection system over the different phases in the lifetime of a disposal facility is the level of oversight that is present. The level of oversight affects the capability to reduce or avoid exposures. Three main time frames have to be considered for the purpose of radiological protection: time of direct oversight when the disposal facility is being implemented and active oversight is taking place; time of indirect oversight when the disposal facility is sealed and indirect oversight is being exercised to provide additional assurance on behalf of the population; and time of no oversight when oversight is no longer exercised because memory is lost. Copyright © 2012. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gillmore, G.; Woods, M.
2009-04-01
Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of this work item is 2011. The ISO document here highlighted is a working draft. ISO is a worldwide federation of national standards bodies. Keywords: radon; international standards; measurement techniques.
[Microbiological Aspects of Radioactive Waste Storage].
Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N
2015-01-01
The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, L.D.
Oak Ridge National Laboratory (ORNL) is a principle Department of Energy (DOE) Research Institution operated by the Union Carbide Corporation - Nuclear Division (UCC-ND) under direction of the DOE Oak Ridge Operations Office (DOE-ORO). The Laboratory was established in east Tennessee, near what is now the city of Oak Ridge, in the mid 1940s as a part of the World War II effort to develop a nuclear weapon. Since its inception, disposal of radioactively contaminated materials, both solid and liquid, has been an integral part of Laboratory operations. The purpose of this document is to provide a detailed description ofmore » the ORNL Solid Waste Storage Areas, to describe the practice and procedure of their operation, and to address the health and safety impacts and concerns of that operation.« less
Highly efficient method for production of radioactive silver seed cores for brachytherapy.
Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti
2017-02-01
A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy. Copyright © 2016. Published by Elsevier Ltd.
Radioactive waste management and practice in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.; Rahman, M.M.
1993-12-31
A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less
Method of encapsulating solid radioactive waste material for storage
Bunnell, Lee Roy; Bates, J. Lambert
1976-01-01
High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.
DWPF Safely Dispositioning Liquid Waste
None
2018-06-21
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called âvitrification,â as the preferred option for treating liquid radioactive waste.
A low-cost miniaturised detector for environmental radioactivity measurements
NASA Astrophysics Data System (ADS)
Aplin, Karen; Briggs, Aaron; Hastings, Peter; Harrison, R. Giles; Marlton, Graeme; Baird, Adam
2017-04-01
We have developed a low-cost (£ few hundred), low-power (40mA), low-mass (30g) detector for environmental radioactivity measurements, using scintillator and solid state technology. The detector can measure energy and therefore has the capability to distinguish between different types of energetic particle. Results from recent tests, when our detector was integrated with a meteorological radiosonde system, and flew on a balloon up to 25km, identified the transition region between energetic particles near the surface, dominated by terrestrial gamma emissions, and higher-energy particles in the free troposphere from cosmic rays. The detector can be used with Bluetooth technology for remote monitoring, which is particularly useful for hazardous areas. It is also small and cheap enough to be used in sensor networks for a wide range of applications, from atmospheric science to disaster monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-10-04
The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less
Safety evaluation for packaging (onsite) concrete-lined waste packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
1997-09-25
The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.
Evangeliou, Nikolaos; Balkanski, Yves; Cozic, Anne; Hao, Wei Min; Møller, Anders Pape
2014-12-01
Radioactive contamination in Ukraine, Belarus and Russia after the Chernobyl accident left large rural and forest areas to their own fate. Forest succession in conjunction with lack of forest management started gradually transforming the landscape. During the last 28 years dead wood and litter have dramatically accumulated in these areas, whereas climate change has increased temperature and favored drought. The present situation in these forests suggests an increased risk of wildfires, especially after the pronounced forest fires of 2010, which remobilized Chernobyl-deposited radioactive materials transporting them thousand kilometers far. For the aforementioned reasons, we study the consequences of different forest fires on the redistribution of (137)Cs. Using the time frequency of the fires that occurred in the area during 2010, we study three scenarios assuming that 10%, 50% and 100% of the area are burnt. We aim to sensitize the scientific community and the European authorities for the foreseen risks from radioactivity redistribution over Europe. The global model LMDZORINCA that reads deposition density of radionuclides and burnt area from satellites was used, whereas risks for the human and animal population were calculated using the Linear No-Threshold (LNT) model and the computerized software ERICA Tool, respectively. Depending on the scenario, whereas between 20 and 240 humans may suffer from solid cancers, of which 10-170 may be fatal. ERICA predicts insignificant changes in animal populations from the fires, whereas the already extreme radioactivity background plays a major role in their living quality. The resulting releases of (137)Cs after hypothetical wildfires in Chernobyl's forests are classified as high in the International Nuclear Events Scale (INES). The estimated cancer incidents and fatalities are expected to be comparable to those predicted for Fukushima. This is attributed to the fact that the distribution of radioactive fallout after the wildfires occurred to the intensely populated Western Europe, whereas after Fukushima it occurred towards the Pacific Ocean. The situation will be exacerbated near the forests not only due to the expected redistribution of refractory radionuclides (also trapped there), but also due to the nutritional habits of the local human and animal population. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sasaki, S.; Yamada, T.
2013-12-01
The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time series of effective cesium-137 dose according to age calculated by ICRP software with calculated by the present method. Plots are calculated values by ICRP, the solid line is analytic solution given from the present method. It should be noted that the present study does not consider complicated mechanism, but it could give equally accurate results comparing to existing research. Time series of effective Cs-137 dose according to age when food contains 1 Bq/year is ingested for 1 year. (Plots are calculated values by ICRP. The solid line is analytic solution given from the present method)
Lloyd, O.B.; Davis, R.W.
1989-01-01
Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. (USGS)
Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya
2018-07-01
After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.
Webster, D.A.; Bradley, Michael W.
1988-01-01
Burial grounds 4, 5, and 6 of the Melton Valley Radioactive-waste Burial Grounds, Oak Ridge, TN, were used sequentially from 1951 to the present for the disposal of solid, low level radioactive waste by burial in shallow trenches and auger holes. Abundant rainfall, a generally thin unsaturated zone, geologic media of inherently low permeability, and the operational practices employed have contributed to partial saturation of the buried waste, leaching of radionuclides, and transport of dissolved matter from the burial areas. Two primary methods of movement of wastes from these sites are transport in groundwater, and the overflow of fluid in trenches and subsequent flow across land surface. Whiteoak Creek and its tributaries receive all overland flow from trench spillage, surface runoff from each site, and discharge of groundwater from the regolith of each site. Potentiometric data, locally, indicate that this drainage system also receives groundwater discharges from the bedrock of burial ground 5. By projection of the bedrock flow patterns characteristic of this site to other areas of Melton Valley, it is inferred that discharges from the bedrock underlying burial grounds 4 and 6 also is to the Whiteoak Creek drainage system. The differences in potentiometric heads and a comparatively thin saturated zone in bedrock do not favor the development of deep flow through bedrock from one river system to another. (USGS)
Active Sites Environmental Monitoring Program: Mid-FY 1991 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.
1991-10-01
This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading ofmore » vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.« less
Moxham, Robert M.
1952-01-01
Airborne radioactivity surveys in the Mojave Desert region Kern, Riverside, and Bernardino counties were made in five areas recommended as favorable for the occurrence of radioactive raw materials: (1) Rock Corral area, San Bernardino County. (2) Searles Station area, Kern county. (3) Soledad area, Kern County. (4) White Tank area, Riverside and San Bernardino counties. (5) Harvard Hills area, San Bernardino County. Anomalous radiation was detected in all but the Harvard Hills area. The radioactivity anomalies detected in the Rock Corral area are of the greatest amplitude yet recorded by the airborne equipment over natural sources. The activity is apparently attributable to the thorium-beating mineral associated with roof pendants of crystalline metamorphic rocks in a granitic intrusive. In the Searles Station, Soledad, and White Tank area, several radioactivity anomalies of medium amplitude were recorded, suggesting possible local concentrations of radioactive minerals.
Colombo, P.; Kalb, P.D.
1984-06-05
In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.
NEUTRON ABSORPTION AND SHIELDING DEVICE
Axelrad, I.R.
1960-06-21
A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.W.; Yambert, M.W.; Kocher, D.C.
1994-12-31
A performance assessment of the operating Solid Waste Storage Area 6 (SWSA 6) facility for the disposal of low-level radioactive waste at the Oak Ridge National Laboratory has been prepared to provide the technical basis for demonstrating compliance with the performance objectives of DOE Order 5820.2A, Chapter 111.2 An analysis of the uncertainty incorporated into the assessment was performed which addressed the quantitative uncertainty in the data used by the models, the subjective uncertainty associated with the models used for assessing performance of the disposal facility and site, and the uncertainty in the models used for estimating dose and humanmore » exposure. The results of the uncertainty analysis were used to interpret results and to formulate conclusions about the performance assessment. This paper discusses the approach taken in analyzing the uncertainty in the performance assessment and the role of uncertainty in performance assessment.« less
Yoo, Wook Jae; Shin, Sang Hun; Lee, Dong Eun; Jang, Kyoung Won; Cho, Seunghyun; Lee, Bongsoo
2015-01-01
We fabricated a small-sized, flexible, and insertable fiber-optic radiation sensor (FORS) that is composed of a sensing probe, a plastic optical fiber (POF), a photomultiplier tube (PMT)-amplifier system, and a multichannel analyzer (MCA) to obtain the energy spectra of radioactive isotopes. As an inorganic scintillator for gamma-ray spectroscopy, a cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal was used and two solid-disc type radioactive isotopes with the same dimensions, cesium-137 (Cs-137) and cobalt-60 (Co-60), were used as gamma-ray emitters. We first determined the length of the LYSO:Ce crystal considering the absorption of charged particle energy and measured the gamma-ray energy spectra using the FORS. The experimental results demonstrated that the proposed FORS can be used to discriminate species of radioactive isotopes by measuring their inherent energy spectra, even when gamma-ray emitters are mixed. The relationship between the measured photon counts of the FORS and the radioactivity of Cs-137 was subsequently obtained. The amount of scintillating light generated from the FORS increased by increasing the radioactivity of Cs-137. Finally, the performance of the fabricated FORS according to the length and diameter of the POF was also evaluated. Based on the results of this study, it is anticipated that a novel FORS can be developed to accurately measure the gamma-ray energy spectrum in inaccessible locations such as narrow areas and holes. PMID:26343667
Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.
Beddow, H; Black, S; Read, D
2006-01-01
In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.
Disposal of Radioactive Waste at Hanford Creates Problems
ERIC Educational Resources Information Center
Chemical and Engineering News, 1978
1978-01-01
Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)
COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
THIELGES, J.R.; CHASTAIN, S.A.
The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized andmore » attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.« less
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor... be designed to store spent fuel and/or solid reactor-related GTCC waste. (1) Reactor-related GTCC...
System for handling and storing radioactive waste
Anderson, J.K.; Lindemann, P.E.
1982-07-19
A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.
System for handling and storing radioactive waste
Anderson, John K.; Lindemann, Paul E.
1984-01-01
A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.
Hydrolysis of ferric chloride in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lussiez, G.; Beckstead, L.
1996-11-01
The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves amore » two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.« less
Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.Soholt; G.Gonzales; P.Fresquez
2003-03-01
Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses tomore » higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquis Childs
1999-09-01
Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. Tomore » assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.« less
IAEA activities in the area of partitioning and transmutation
NASA Astrophysics Data System (ADS)
Stanculescu, Alexander
2006-06-01
Four major challenges are facing the long-term development of nuclear energy: improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptance. Meeting the sustainability criteria is the driving force behind the topic of this paper. In this context, sustainability has two aspects: natural resources and waste management. IAEA's activities in the area of Partitioning and Transmutation (P&T) are mostly in response to the latter. While not involving the large quantities of gaseous products and toxic solid wastes associated with fossil fuels, radioactive waste disposal is today's dominant public acceptance issue. In fact, small waste quantities permit a rigorous confinement strategy, and mined geological disposal is the strategy followed by some countries. Nevertheless, political opposition arguing that this does not yet constitute a safe disposal technology has largely stalled these efforts. One of the primary reasons cited is the long life of many of the radioisotopes generated from fission. This concern has led to increased R&D efforts to develop a technology aimed at reducing the amount and radio-toxicity of long-lived radioactive waste through transmutation in fission reactors or sub-critical systems. In the frame of the Project on Technology Advances in Fast Reactors and Accelerator-Driven Systems (ADS), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long-lived radioactive waste, ADS, and deuterium-tritium plasma-driven sub-critical systems. The paper presents past accomplishments, current status and planned activities of this IAEA project.
2008-03-01
will be accomplished by the day prior to the sample transfer operation. i. The radiation hood lab bench tops where radioactive material will be...source container to a sample container in a single syringe transfer. (All other non- radioactive solutions will have been previously added to this... radioactive spill. 4. Procedure Checklist: a. Setup □ Tape down plastic liner and locate absorbent □ Lay out sample container holder, sample
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, Robert O.; Aulich, Ted R.
1997-12-31
Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less
Sodium to sodium carbonate conversion process
Herrmann, Steven D.
1997-01-01
A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.
Development of a software package for solid-angle calculations using the Monte Carlo method
NASA Astrophysics Data System (ADS)
Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai
2014-02-01
Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C++, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4.
A Different Laboratory Tale: Fifty Years of Mössbauer Spectroscopy
NASA Astrophysics Data System (ADS)
Westfall, Catherine
2006-05-01
I explore the fifty-year development of Mössbauer spectroscopy by focusing on three episodes in its development at Argonne National Laboratory: work by nuclear physicists using radioactive sources in the early 1960s, work by solid-state physicists using radioactive resources from the mid- 1960s through the 1970s,and work by solid-state physicists using the Advanced Photon Source from the 1980s to 2005. These episodes show how knowledge about the properties of matter was produced in a national-laboratory context and highlights the web of connections that allow nationallaboratory scientists working at a variety of scales to produce both technological and scientific innovations.
Drug-targeting methodologies with applications: A review
Kleinstreuer, Clement; Feng, Yu; Childress, Emily
2014-01-01
Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the drug-particles are already at the target site or at least in its direct vicinity. In this review, drug-delivery methodologies, drug types and drug-delivery devices are discussed with examples in two major application areas: (1) inhaled drug-aerosol delivery into human lung-airways; and (2) intravascular drug-delivery for solid tumor targeting. The major problem addressed is how to deliver efficiently the drug-particles from the entry/infusion point to the target site. So far, most experimental results are based on animal studies. Concerning pulmonary drug delivery, the focus is on the pros and cons of three inhaler types, i.e., pressurized metered dose inhaler, dry powder inhaler and nebulizer, in addition to drug-aerosol formulations. Computational fluid-particle dynamics techniques and the underlying methodology for a smart inhaler system are discussed as well. Concerning intravascular drug-delivery for solid tumor targeting, passive and active targeting are reviewed as well as direct drug-targeting, using optimal delivery of radioactive microspheres to liver tumors as an example. The review concludes with suggestions for future work, considereing both pulmonary drug targeting and direct drug delivery to solid tumors in the vascular system. PMID:25516850
Sanitary engineering aspects of nuclear energy developments*
Kenny, A. W.
1962-01-01
So many developments have taken place in the field of nuclear energy since 1956, when the author's previous paper on radioactive waste disposal was published in the Bulletin of the World Health Organization, that a fresh review of the subject is now appropriate. The present paper deals with those aspects of the problem which are of most interest to the sanitary engineer. It considers specific points in the latest recommendations of the International Commission on Radiological Protection in relation to public drinking-water supplies, and examines the problem of fall-out, with special reference to the presence and significance of strontium-90 in drinking-water. A general survey of the various uses of radioactive materials is followed by a discussion of the legislative and control measures necessary to ensure safe disposal of wastes. The methods of waste disposal adopted in a number of nuclear energy establishments are described in detail. The paper concludes with some remarks on solid waste disposal, siting of nuclear energy industries and area monitoring. PMID:14455214
Solid state tritium detector for biomedical applications
NASA Astrophysics Data System (ADS)
Gordon, J. S.; Farrell, R.; Daley, K.; Oakes, C. E.
1994-08-01
Radioactive labeling of proteins is a very important technique used in biomedical research to identify, isolate, and investigate the expression and properties of proteins in biological systems. In such procedures, the preferred radiolabel is often tritium. Presently, binding assays involving tritium are carried out using inconvenient and expensive techniques which rely on the use of scintillation fluid counting systems. This traditional method involves both time-consuming laboratory protocols and the generation of substantial quantities of radioactive and chemical waste. We have developed a novel technology to measure the tritium content of biological specimens that does not rely on scintillation fluids. The tritiated samples can be positioned directly under a large area, monolithic array of specially prepared avalanche photodiodes (APDs) which record the tritium activity distribution at each point within the field of view of the array. The 1 mm(sup 2) sensing elements exhibit an intrinsic tritium beta detection efficiency of 27% with high gain uniformity and very low cross talk.
Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maza R.; Wilson, J.A.; Hetherington, R.
This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.
Ghosh, Dipak; Deb, Argha; Maiti, Sunil; Haldar, Subrata; Bera, Sukumar; Sengupta, Rosalima; Bhaitacharyya, Rini
2010-04-01
Human beings are always exposed to radiation from chemical cosmetics. In order to collect information regarding the radioactivity of chemical cosmetics used in our daily life, we studied the alpha radioactivity in different cosmetics samples, such as lipsticks, nail-polish, toothpaste and vermilion. The significant accumulation ofradionuclide in and on the tissues, directly or indirectly exposed due to the lipsticks, toothpaste, vermilion, may cause health hazards. Different samples of these cosmetic materials (Indian and foreign brands) were collected from the local markets of Kolkata, India. CR-39--a useful solid state nuclear track detector (SSNTD) was used to detect alpha radioactivity of these samples. Such exhaustive measurement of radioactivity in lipsticks, nail-polish, toothpaste and vermilion has not been reported so far.
Parajuli, Durga; Tanaka, Hisashi; Hakuta, Yukiya; Minami, Kimitaka; Fukuda, Shigeharu; Umeoka, Kuniyoshi; Kamimura, Ryuichi; Hayashi, Yukie; Ouchi, Masatoshi; Kawamoto, Tohru
2013-04-16
Environmental radioactivity, mainly in the Tohoku and Kanto areas, due to the long living radioisotopes of cesium is an obstacle to speedy recovery from the impacts of the Fukushima Daiichi Nuclear Power Plant accident. Although incineration of the contaminated wastes is encouraged, safe disposal of the Cs enriched ash is the big challenge. To address this issue, safe incineration of contaminated wastes while restricting the release of volatile Cs to the atmosphere was studied. Detailed study on effective removal of Cs from ash samples generated from wood bark, household garbage, and municipal sewage sludge was performed. For wood ash and garbage ash, washing only with water at ambient conditions removed radioactivity due to (134)Cs and (137)Cs, retaining most of the components other than the alkali metals with the residue. However, removing Cs from sludge ash needed acid treatment at high temperature. This difference in Cs solubility is due to the presence of soil particle originated clay minerals in the sludge ash. Because only removing the contaminated vegetation is found to sharply decrease the environmental radioactivity, volume reduction of contaminated biomass by incineration makes great sense. In addition, need for a long-term leachate monitoring system in the landfill can be avoided by washing the ash with water. Once the Cs in solids is extracted to the solution, it can be loaded to Cs selective adsorbents such as Prussian blue and safely stored in a small volume.
Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. Staiger
2007-06-01
This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.
NCRP Program Area Committee 5: Environmental Radiation and Radioactive Waste Issues.
Chen, S Y; Napier, Bruce
2016-02-01
Program Area Committee 5 of the National Council on Radiation Protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. The Committee completed a number of reports in these subject areas, most recently NCRP Report No. 175, Decision Making for Late-Phase Recovery from Major Nuclear or Radiological Incidents. Historically this Committee addressed emerging issues of the nation pertaining to radioactivity or radiation in the environment or radioactive waste issues due either to natural origins or to manmade activities.
Allard, David J
2015-02-01
This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This presentation summarizes conventional and unconventional oil and gas well operations, geology and respective uranium/thorium content, radium content in oil and gas wastewater, treatment solids, radon in natural gas, the scope of other TENORM issues in the state, regulatory framework, national regulations and guidance. It also provides an overview of past and the status of ongoing TENORM studies in the Commonwealth (; Rowan and Kraemer 2012; ).
Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu
2005-06-04
Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemicalmore » industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.« less
Sodium to sodium carbonate conversion process
Herrmann, S.D.
1997-10-14
A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.
LaSala, Albert Mario; Doty, Gene C.
1976-01-01
The geology and hydrology of radioactive solid waste burial grounds at the Hanford Reservation were investigated, using existing data, by the U.S. Geological Survey as part of the waste management plan of the Richland Operations Office of the Energy Research and Development Administration. The purpose of the investigation was to assist the operations office in characterizing the burial sites as to present environmental safety and as to their suitability for long-term storage (several thousand to tens of thousands of years) of radioactive sol id wastes. The burial ground sites fall into two classifications: (1) those on the low stream terraces adjacent to the Columbia River, mainly in the 100 Areas and 300 Area, and (2) those lying on the high terraces south of Gable Mountain in the 200 Areas. Evaluation of the suitability of the burial grounds for long-term storage was made almost entirely on hydrologic, geologic, and topographic criteria. Of greatest concern was the possibility that radionuclides might be leached from the buried wastes by infiltrating water and carried downward to the water table. The climate is semi-arid and the average annual precipitation is 6.4 inches at the Hanford Meteorological Station. However, the precipitation is seasonally distributed with about 50 percent occurring during the months of November, December, January, and February when evapotranspiration is negligible and conditions for infiltration are most favorable. None of the burial grounds are instrumented with monitoring devices that could be used to determine if radionuclides derived from them are reaching the water table. Burial grounds on the low stream terraces are mainly underlain by permeable materials and the water table lies at relatively shallow depths. Radionuclides conceivably could be leached from these burial grounds by percolating soil water, and radionuclides might reach the Columbia River in a relatively short time. These sites could also be inundated by erosion during a catastrophic flood. For these reasons, they are judged to be unsuited for long-term storage. Local conditions at several of these burial grounds are particularly unfavorable from the standpoint of safety. Depressions and swales at some burial grounds, such as numbers 4 and 5 in the 300 Area in which runoff can collect, enhance the possibility of water infiltrating through the buried wastes and transporting radionuclides to the water table. Also, during a high stage of the Columbia River, the water table conceivably could rise into burial grounds l and 2 of the 100 F Area. Most of the burial grounds on the low terraces contain either (1) reactor components and related equipment bearing activation products, principally cobalt-60, or (2) less hazardous radioactive materials such as uranium. The inventory of activation products in these burial grounds will decay to a safe level in a relatively short period of time (about 100 years), according to estimates made by C. D. Corbit, Douglas United Nuclear, Inc., 1969. The inventory of radionuclides is not considered by the ERDA staff to be complete, however. At these burial grounds containing activation products or less hazardous materials, investigations should be made of the radioactivity in soil and ground water beneath selected representative sites to verify that radionuclides are not migrating from the burial grounds. If migration is detected, field investigations should be made to determine the source or sources of the radionuclides and the desirability of removing the source wastes. Other burial grounds on the low terraces contain plutonium and fission products, which require long-term storage. Both the 300 WYE and the 300 North burial grounds are reported to contain plutonium in large quantities. Burial ground no. l in the 300 Area reportedly also contains plutonium. The inventory records of any other burial grounds on the low terraces suspected of containing plutonium should be reviewed to determine if pl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, Dennis W.
The approach was to perform a document search, supplemented by a visual site inspection, to identify potential environmental contamination associated with the property. Factors evaluated included hazardous substances; petroleum products and derivatives; environmental restoration sites; areas of concern; storage tanks; oil/water separators; grease traps; wash racks; waste tanks; pesticides; military munitions/ordnance; medical or bio-hazardous waste; radioactive waste; solid/municipal waste; indoor air quality; groundwater; wastewater treatment, collection, and disposal/discharge; drinking water quality; utilities; asbestos; polychlorinated biphenyls (PCBs); radon; lead-based paint; cultural resources; floodplains; and natural/biological resources.
NCRP Program Area Committee 5: Environmental Radiation and Radioactive Waste Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S. Y.; Napier, Bruce
Program Area Committee 5 of the National Council on Radiation Protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. Historically this Committee addressed emerging issues of the nation pertaining to radioactivity or radiation in the environment or radioactive waste issues due either to natural origins or to manmade activities. The Committee continues to identify such issues in the future.
Matzko, John J.; Naqvi, Mohammed Ibne
1978-01-01
Investigations in 1965 located veins containing radioactive material in the Halaban Group on the east side of a granite pluton at Jabal Aja near Ha'il. Later study extended the known area of radioactivity to a total length of about 30 km. Mineralogic studies indicated that the samples were low in uranium and that the radioactivity was due principally to thorium in niobium-bearing minerals. Two samples were reexamined to identify the sources of radioactivity, but X-ray and alpha plate studies did not reveal the radioactive minerals, even though uranium mineralization was indicated by the alpha plates. Further sampling is suggested to isolate the sources of radioactivity. This study indicates that niobium occurrences are related to alkaline intrusives in many areas of western Saudi Arabia. These areas should be investigated for their possible niobium and rare earth contents; their uranium content is apparently too low to be of economic interest.
NASA Astrophysics Data System (ADS)
Nunes, J. C.; Surette, R. A.; Wood, M. J.
1999-08-01
A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.
Otton, James K.; Asher-Bolinder, Sigrid; Owen, Douglass E.; Hall, Laurel
1997-01-01
The authors conducted limited site surveys in the Wildhorse and Burbank oilfields on the Osage Indian Reservation, northeastern Oklahoma. The purpose was to document salt scarring, erosion, and soil and water salinization, to survey for radioactivity in oilfield equipment, and to determine if trace elements and naturally occurring radioactive materials (NORM) were present in soils affected by oilfield solid waste and produced waters. These surveys were also designed to see if field gamma spectrometry and field soil conductivity measurements were useful in screening for NORM contamination and soil salinity at these sites. Visits to oilfield production sites in the Wildhorse field in June of 1995 and 1996 confirmed the presence of substantial salt scarring, soil salinization, and slight to locally severe erosion. Levels of radioactivity on some oil field equipment, soils, and road surfaces exceed proposed state standards. Radium activities in soils affected by tank sludge and produced waters also locally exceed proposed state standards. Laboratory analyses of samples from two sites show moderate levels of copper, lead, and zinc in brine-affected soils and pipe scale. Several sites showed detectable levels of bromine and iodine, suggesting that these trace elements may be present in sufficient quantity to inhibit plant growth. Surface waters in streams at two sampled sites exceed total dissolved solid limits for drinking waters. At one site in the Wildhorse field, an EM survey showed that saline soils in the upper 6m extend from a surface salt scar downvalley about 150 m. (Photo [95k]: Dead oak trees and partly revegetated salt scar at Site OS95-2 in the Wildhorse field, Osage County, Oklahoma.) In the Burbank field, limited salt scarring and slight erosion occurs in soils at some sites and low to moderate levels of radioactivity were observed in oil field equipment at some sites. The levels of radioactivity and radium observed in some soils and equipment at these sites are above levels of concern as defined in regulations proposed by the Conference of Radiation Control Program Directors. The volumes of material involved appear to be relatively small for most sites. The lead levels observed in soils affected by tank sludge wastes are about one half of the US Environmental Protection Agency (USEPA) interim remedial action levels used for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites (400 ppm). Field gamma spectrometry proved useful in delineating areas where radium has been added to the natural soil by oilfield solid waste and produced water, although the technique does not meet standards of assessment used in the state of Louisiana which require core sampling of 15 cm intervals and radiochemical analysis in the laboratory. Further work is needed to develop field gamma spectrometry as a substitute for the more expensive coring and laboratory analysis. The ratio of radium-228 to radium-226 may hold promise in evaluating the relative ages of NORM contamination at a site.
Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto
2001-01-01
The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.
Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto
1999-01-01
The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.
Solid wastes from nuclear power production.
Soule, H F
1978-01-01
Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244
MEASUREMENT OF TIME INTERVALS FOR TIME CORRELATED RADIOACTIVE DECAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindeman, H.; Mornel, E.; Galil, U.
1960-11-01
The distribution of time intervals between successive counts was measured for radioactive decay in the thorium series. The measurements showed that the classical Marsden-Barratt law does not apply to this case of timecorrelated decay. They appeared, however, to be in agreement with the theory of Lindeman-Rosen, taking into account the fact that the counter receives only the radiation emitted in a solid angle near to 2 pi . (auth)
Radioactive materials released from nuclear power plants. Annual report, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.
10 CFR 835.1101 - Control of material and equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
....1101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control... section, material and equipment in contamination areas, high contamination areas, and airborne radioactivity areas shall not be released to a controlled area if: (1) Removable surface contamination levels on...
Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T
2015-06-01
A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.
41 CFR 50-204.24 - Caution signs, labels, and signals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... established for a period of 30 days or less, such control device is not required. (d) Airborne radioactivity area. (1) As used in the provisions of this subpart, “airborne radioactivity area” means (i) any room, enclosure, or operating area in which airborne radioactive materials, composed wholly or partly of...
Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010
Nystrom, Elizabeth A.
2012-01-01
Water quality in both study areas is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (one sample in the St. Lawrence study area), pH (three samples in the Delaware study area), sodium (one sample in the St. Lawrence study area), total dissolved solids (one sample in the St. Lawrence study area), aluminum (one sample in the Delaware study area and one sample in the St. Lawrence study area), iron (seven samples in the St. Lawrence study area), manganese (one sample in the Delaware study area and five samples in the St. Lawrence study area), gross alpha radioactivity (one sample in the St. Lawrence study area), radon-222 (10 samples in the Delaware study area and 14 samples in the St. Lawrence study area), and bacteria (5 samples in the Delaware study area and 10 samples in the St. Lawrence study area). E. coli bacteria were detected in samples from two wells in the St. Lawrence study area. Concentrations of chloride, fluoride, sulfate, nitrate, nitrite, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and uranium did not exceed existing drinking-water standards in any of the samples collected.
Toward the framework and implementation for clearance of materials from regulated facilities.
Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G
2005-08-01
The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify clearance as an important disposition option for solid materials, establish the framework and basis of release, and discuss resolutions regarding the implementation of such a disposition option.
Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials
Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.
1999-03-16
Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.
Processing of solid mixed waste containing radioactive and hazardous materials
Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.
1998-05-12
Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.
Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials
Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.
1999-03-16
Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.
Processing of solid mixed waste containing radioactive and hazardous materials
Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.
1998-05-12
Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.
Mathematics in chemistry: indeterminate forms and their meaning
NASA Astrophysics Data System (ADS)
Segurado, Manuel A. P.; Silva, Margarida F. B.; Castro, Rita
2011-07-01
The mathematical language and its tools are complementary to the formalism in chemistry, in particular at an advanced level. It is thus crucial, for its understanding, that students acquire a solid knowledge in Calculus and that they know how to apply it. The frequent occurrence of indeterminate forms in multiple areas, particularly in Physical Chemistry, justifies the need to properly understand the limiting process in such cases. This article emphasizes the importance of the L'Hôpital's rule as a practical tool, although often neglected, to obtain the more common indeterminate limits, through the use of some specific examples as the radioactive decay, spectrophotometric error, Planck's radiation law, second-order kinetics, or consecutive reactions.
Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report 1981. Vol. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1981 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1981 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report, 1983. Volume 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1983 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1983 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Michael Marquand; Little, Bonnie Colleen
The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid wastemore » was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKallor, J.A.
1962-01-01
An airborne gamma-radioactivity survey of about 7000 square miles around the Georgia Nuclear Laboratory (GNL) in Dawson County, Ga., was made by the U. S. Geological Survey in cooperation with the Division of Biology and Medicine, U. S. Atomic Energy Commission. The project was flown perpendicular to the regional strike at a nominal elevation of 500 ft above the ground with a flight-line spacing of 1 mile. Radioactivity contacts shown on a 1:250,000 map delineate areas of similar radioactivity, which, in general, trend northeast, parallel to the geologic strike. Many, but not all, formations correlate closely with radioactivity units. Changesmore » of radioactivity within some formations may indicate facies changes. In the GNL area the Cartersville fault, which dlosely coincides with a prominent radioactivity contact, separates the Valley and Ridge physiographic province from the Piedmont to the east. Within the Valley and Ridge province bedrock consists of sedimentary rocks of Paleozoic age; the radioactivity is from 300 to 900 counts per second (cps). Areas of limestone and dolomite are characterized by radioactivity lows, usually less than 500 cps. Most areas of shale have a radioactivity of 600 to 900 cps. Bedrock in the Piedmont consists mainly of igneous and metamorphic rocks of Precambrian and Palezoic ages, and the radioactivity ranges from about 250 to 2000 cps. The least radioactive rocks (250 to 500 cps) are hornblende gneiss, dioritic injection gneiss, and some of the granitic gneiss. The most radioactive rock is the augen gneiss in Bartow and Cherokee Counties (1000 to 2000 cps). Some of the granitic gneiss, biotite gneiss and schist, and the Talladega Slate have a radioactivity of slightly more than 1000 cps. Composite samples of surficial material were collected from sites directly under the flight path of the aircraft. After analysis for equivalent uranium based upon the number of counts recorded by geiger tubes, the samples were stored for future reference. The equivalent uranium was plotted against cps obtained from the aerial surveying. From 600 cps, which corresponds to slightiy more than 0.001 percent equivalent uranium, to 1600 cps, each 200-cps increase corresponds to an increase of almost 0.001 percent equivalent uranium. (auth)« less
Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, M.I.; Khaleel, R.; Rittmann, P.D.
1995-06-01
This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order inmore » September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.« less
Hamid Khan, M A; Chowdhury, M S
2003-10-01
Beach Sand Exploitation Centre at Cox's Bazar, Bangladesh, produces commercial grade concentrations of magnetite, ilmenite, zircon, etc., from the high-grade accumulations available along the beach and foredune of Cox's Bazar. Solid state nuclear track detectors (CR-39 foils) were used to determine indoor radon concentration of radioactive mineral sands and the technologically enhanced radiation level inside the pilot plant of the Centre. It is found that the concentrations at processed mineral stock areas are high, and the maximum concentration was found to be 2,103 +/- 331 Bq m(-3) (0.23 +/- 0.03 WL). The indoor concentration of radon and its decay products in the raw sand stock area and at other locations was in the range of 116 +/- 27 Bq m(-3) (0.03 +/- 0.003 WL) to 2,042 +/- 233 Bq m(-3) (0.22 +/- 0.03 WL).
A&M. Radioactive parts security storage area. camera facing northwest. Outdoor ...
A&M. Radioactive parts security storage area. camera facing northwest. Outdoor storage of concrete storage casks. Photographer: M. Holmes. Date: November 21, 1959. INEEL negative no. 59-6081 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
METHOD OF SEPARATING FROTHS FROM LIQUIDS
Monet, G.P.
1958-01-21
A method for separating solids and precipitates from liquids is described. The method is particularly adapted for and valuable in processing highly radioactive solutions. It consists in essence, in employing the principles of froth flotation to effect the separation of approximately 99% of the solids present. An apparatus, consisting of a system of pipes, valves and vessels, for carrying out the process of this patent is also described therein.
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
41 CFR 109-40.5005 - Description of property for shipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...
Shafe, A; Mortazavi, S M J; Joharnia, A; Safaeyan, Gh H
2016-09-01
Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.
Rapid Evaluation of Radioactive Contamination in Rare Earth Mine Mining
NASA Astrophysics Data System (ADS)
Wang, N.
2017-12-01
In order to estimate the current levels of environmental radioactivity in Bayan Obo rare earth mine and to study the rapid evaluation methods of radioactivity contamination in the rare earth mine, the surveys of the in-situ gamma-ray spectrometry and gamma dose rate measurement were carried out around the mining area and living area. The in-situ gamma-ray spectrometer was composed of a scintillation detector of NaI(Tl) (Φ75mm×75mm) and a multichannel analyzer. Our survey results in Bayan Obo Mine display: (1) Thorium-232 is the radioactive contamination source of this region, and uranium-238 and potassium - 40 is at the background level. (2) The average content of thorium-232 in the slag of the tailings dam in Bayan Obo is as high as 276 mg/kg, which is 37 times as the global average value of thorium content. (3) We found that the thorium-232 content in the soil in the living area near the mining is higher than that in the local soil in Guyang County. The average thorium-232 concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7±7.5 and 26.2±9.1 mg/kg, respectively. (4) It was observed that thorium-232 was abnormal distributed in the contaminated area near the tailings dam. Our preliminary research results show that the in-situ gamma-ray spectrometry is an effective approach of fast evaluating rare earths radioactive pollution, not only can the scene to determine the types of radioactive contamination source, but also to measure the radioactivity concentration of thorium and uranium in soil. The environmental radioactive evaluation of rare earth ore and tailings dam in open-pit mining is also needed. The research was supported by National Natural Science Foundation of China (No. 41674111).
Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials
Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.
1999-01-01
The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.
Immobilization of iodine in concrete
Clark, Walter E.; Thompson, Clarence T.
1977-04-12
A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.
Process for disposal of aqueous solutions containing radioactive isotopes
Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.
1979-01-01
A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.
41 CFR 50-204.28 - Storage of radioactive materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Storage of radioactive... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored in a nonradiation area shall be secured against unauthorized removal from the place of storage. ...
41 CFR 50-204.28 - Storage of radioactive materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Storage of radioactive... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored in a nonradiation area shall be secured against unauthorized removal from the place of storage. ...
41 CFR 50-204.28 - Storage of radioactive materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Storage of radioactive... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored in a nonradiation area shall be secured against unauthorized removal from the place of storage. ...
New mass-spectrometric facility for the analysis of highly radioactive samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warmack, R.J.; Landau, L.; Christie, W.H.
A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained.
Agrawal, S; Christodoulou, C; Gait, M J
1986-01-01
The syntheses are described of two types of linker molecule useful for the specific attachment of non-radioactive labels such as biotin and fluorophores to the 5' terminus of synthetic oligodeoxyribonucleotides. The linkers are designed such that they can be coupled to the oligonucleotide as a final step in solid-phase synthesis using commercial DNA synthesis machines. Increased sensitivity of biotin detection was possible using an anti-biotin hybridoma/peroxidase detection system. PMID:3748808
Radioactive materials released from nuclear power plants. Volume 13, Annual report 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Lucadamo, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1992 have been compiled and reported. The summary data for the years 1973 through 1991 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1992 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report 1989: Volume 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1989 have been compiled and reported. The summary data for the years 1970 through 1988 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1989 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Lucadamo, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Method for storage of solid waste
Mecham, William J.
1976-01-01
Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.
Radio-tracer techniques for the study of flow in saturated porous materials
Skibitzke, H.E.; Chapman, H.T.; Robinson, G.M.; McCullough, Richard A.
1961-01-01
An experiment was conducted by the U.S. Geological Survey to determine the feasibility of using a radioactive substance as a tracer in the study of microscopic flow in a saturated porous solid. A radioactive tracer was chosen in preference to dye or other chemical in order to eliminate effects of the tracer itself on the flow system such as those relating to density, viscosity and surface tension. The porous solid was artificial "sandstone" composed of uniform fine grains of sand bonded together with an epoxy adhesive. The sides of the block thus made were sealed with an epoxy coating compound to insure water-tightness. Because of the chemical inertness of the block it was possible to use radioactive phosphorus (P32). Ion-exchange equilibrium was created between the block and nonradioactive phosphoric acid. Then a tracer tagged with P32 was injected into the block in the desired geometric configuration, in this case, a line source. After equilibrium in isotopic exchange was reached between the block and the line source, the block was rinsed, drained and sawn into slices. It was found that a quantitative analysis of the flow system may be made by assaying the dissected block. ?? 1961.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subchapter) cargo tank motor vehicles. Bottom outlets are not authorized. Trailer-on-flat-car service is not... conveyances 1. LSA-I No limit. 2. LSA-II and LSA-III; Non-combustible solids No limit. 3. LSA-II and LSA-III; Combustible solids and all liquids and gases 100 A2 4. SCO 100 A2 Table 6—Industrial Package Integrity...
Code of Federal Regulations, 2013 CFR
2013-10-01
... subchapter) cargo tank motor vehicles. Bottom outlets are not authorized. Trailer-on-flat-car service is not... conveyances 1. LSA-I No limit. 2. LSA-II and LSA-III; Non-combustible solids No limit. 3. LSA-II and LSA-III; Combustible solids and all liquids and gases 100 A2 4. SCO 100 A2 Table 6—Industrial Package Integrity...
ERIC Educational Resources Information Center
Gipps, John
1995-01-01
Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)
Composite analysis E-area vaults and saltstone disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1997-09-01
This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less
Webster, D.A.
1976-01-01
Solid waste contaminated by radioactive matter has been buried in the vicinity of Oak Ridge National Laboratory since 1944. By 1973, an estimated six million cubic feet of such material had been placed in six burial grounds in two valleys. The practice initially was thought of as a safe method for permanently removing these potentially hazardous substances from man's surroundings, but is now que.3tionable at this site because of known leaching of contaminants from the waste, transport in ground water, and release to the terrestrial and fluvial environments. This review attempts to bring together in a single document information from numerous published and unpublished sources regarding the past criteria used for selecting the Oak Ridge burial-ground sites, the historical development and conditions of these facilities as of 1974, the geologic framework of the Laboratory area and the movement of water and water-borne contaminants in that area, the effects of sorption and ion exchange upon radionuclide transport, and a description and evaluation of the existing monitoring system. It is intended to assist Atomic Energy Commission (now Energy Research and Development Administration) officials in the formulation of managerial decisions concerning the burial grounds and present monitoring methods. Sites for the first three burial grounds appear to have been chosen during and shortly after World War II on the basis of such factors as safety, security, and distance from sources of waste origin. By 1950, geologic criteria had been introduced, and in the latter part of that decade, geohydrologic criteria were considered. While no current criteria have been defined, it becomes evident from the historical record that the successful containment of radionuclides below land surface for long periods of time is dependent upon a complex interrelationship between many geologic, hydrologic, and geochemical controls, and any definition of criteria must include consideration of these factors. For the most part, the burial grounds have been developed by a simple cut and fill procedure similar to the operation of a municipal landfill. Low permeability of the residuum, high rainfall, shallow depth to ground water, the excavation of trenches below the water table, and other practices, have contributed to a condition of waste leaching in probably all of the burial grounds. Despite these conditions, only very small concentrations of radionuclides have been found in wells or otherwise attributed to the initial three, small sites in Bethel Valley. This fact, however, may be due in part to the scant extent of site monitoring of those burial grounds for transport of radionuclides in ground water, and to the discharge of liquid radioactive waste to the drainage in concentrations that probably would have masked the presence of contaminants derived from these burial grounds. In comparison to the Bethel Valley sites, larger amounts of radioactive contaminants have been found in wells, seeps, trench overflow, and the drainages that drain Burial Grounds 4 and 5 in Melton Valley. The movement of radionuclides from the trenches to the drainages show that the latter sites are not suitable for the retention of all contaminants under existing conditions, and invalidates the operational concept of long-term or permanent retention of all radionuclides in the geologic environment. The transport of many radioactive ions leached from the waste has been retarded by the very high sorptive and ion exchange capacity of the residuum with which the radionuclides have had contact. Not all radionuclides, though, will be retained in the subsurface by adsorption, absorption, or ion exchange. Among those radioactive contaminants that may be problematical with respect to trench burial at Oak Ridge are tritium and other negatively-charged nuclides, positively-charged radionuclides included in some of the complexed molecules, radioactive ions that have chemical properties si
Butterworth, C. E.; Baugh, C. M.; Krumdieck, Carlos
1969-01-01
The absorption and metabolism of synthetic polyglutamates of folic acid have been compared with free pteroylglutamic acid in four subjects having chronic lymphatic leukemia and one with Hodgkin's granuloma. Pteroylpolyglutamates containing either three or seven glutamate residues were prepared by the solid-phase method permitting placement of carbon-14 labels in either the pteridine ring or in a selected glutamate unit of the gamma peptide chain. Complete dissociation was observed between biological folate activity and radioactivity of plasma after ingestion of pteroyltriglutamate labeled in the middle glutamate. This indicates cleavage to the monoglutamate form at the time of absorption from the intestine or very soon thereafter. A large portion of radioactivity liberated from the middle glutamate is recoverable as carbon dioxide in the exhaled air. Fecal losses of folate tended to be greater with increasing length of the poly-γ-glutamyl chain. Higher blood levels and greater urinary losses of folate tended to occur after ingestion of mono- and triglutamates than with the heptaglutamate. Calculations based on radioactivity determinations in feces plus urinary folate losses, judged by either radioactivity or microbiological assays, indicated net retention of 37-67% of the dose irrespective of chain length ingested and major avenue of loss. During the peak of absorption the folate circulating in plasma was active for both Streptococcus fecalis and Lactobacillus casei and carried specific radioactivity which was virtually identical with that of the administered dose. This suggests that neither methylation, conjugation, nor displacement of nonradioactive folate occurred to any significant extent during the 1st 2 hr. The specific radioactivity of 24-hr urine specimens as measured with L. casei corresponded closely with that of the administered dose. Evidence exists that methylation of the radioactive folate may occur, but significant displacement of nonradioactive methylfolate was not observed under the conditions of this study. Since 50-75% of administered heptaglutamate appears to be absorbable in man, estimates of dietary intake should include this fraction as well as the “free” folate. PMID:4977032
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blount, Gerald; Thibault, Jeffrey; Millings, Margaret
The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and Hmore » Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent environmental remediation projects tend to be managed under tri-party agreement (DOE, Environmental Protection Agency, and SCDHEC) through the Federal Facilities Agreement. During 25 years of environmental remediation SRS has stabilized and capped seepage basins, and consolidated and capped waste units and burial grounds in the GSA. Groundwater activities include: pump and treat systems in the groundwater, installation of deep subsurface barrier systems to manage groundwater flow, in situ chemical treatments in the groundwater, and captured contaminated groundwater discharges at the surface for management in a forest irrigation system. Over the last 25 years concentrations of contaminants in the aquifers beneath the GSA and in surface water streams in the GSA have dropped significantly. Closure of 65 waste sites and 4 RCRA facilities has been successfully accomplished. Wastes have been successfully isolated in place beneath a variety of caps and cover systems. Environmental clean-up has progressed to the stage where most of the work involves monitoring, optimization, and maintenance of existing remedial systems. Many lessons have been learned in the process. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. SRS operated two very large pump and treat systems at the F and H Seepage Basins to attempt to limit the release of tritium to Fourmile Branch, a tributary of the Savannah River. The systems were designed to extract contaminated acidic groundwater, remove all contamination except tritium (not possible to remove the tritium from the water), and inject the tritiated groundwater up-gradient of the source area and the plume. The concept was to increase the travel time of the injected water for radioactive decay of the tritium. The two systems were found to be non-effective and potentially mobilizing more contamination. SRS invested approximately $50 million in construction and approximately $100 million in 6 years of operation. The H Seepage Basin pump and treat system was replaced by a series of subsurface barriers that alters the groundwater velocity; the F Seepage Basin pump and treat system was replaced by subsurface barriers forming a funnel and gate augmented by chemical treatment within the gates. These replacement systems are mostly passive and cost approximately $13 million to construct, and have reduced the tritium flux to Fourmile Branch, in these plumes, by over 70%. SRS manages non-acidic tritiated groundwater releases to Fourmile Branch from the southwest plume of the MWMF with a forest irrigation system. Tritiated water is captured with a sheetpile dam below the springs that caused releases to Fourmile Branch. Water from the irrigation pond is pumped to a filter plant prior to irrigation of approximately 26 hectares of mixed forest and developing pine plantation. SRS has almost achieved a 70% reduction in tritium flux to the Branch from this plume. The system cost approximately $5 million to construct with operation cost of approximately $500K per year. In conclusion, many lessons have been learned in 25 years of relatively aggressive remedial activities in the GSA. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. In water management situations with non-accumulative contaminants (tritium, VOCs, etc.) irrigation in a forest setting can be very effective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, M; Keisha Martin, K; S Crump, S
2007-03-23
The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work inmore » facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.« less
Reconnaissance of radioactive rocks of Maine
Nelson, John M.; Narten, Perry F.
1951-01-01
The state of Maine was traversed with car-mounted Geiger-Mueller equipment in the late summer of 1948 and the radioactivity of approximately 4,600 miles of road was logged. All samples were analyzed, both in the field by comparing the radioactivity of each sample to the radioactivity of a stranded measured with a simple scaling modification of a portable counter, and in the Geological Survey’s Trace Elements Section Washington Laboratory. Differences between both types of analyses were negligible. The maximum equivalent uranium content of the most radioactive rocks thus analyzed was 0.008 percent. A 1,400-square-mile abnormally radioactive province in southwestern Maine was outlined. The outcrop data obtained from car traversing are evaluated statistically. Cumulative frequency distribution curves are drawn to show the distribution of outcrops at various levels of radioactivity, and straight-line extensions are made to show to maximum probable grade for various rock types and areas in Maine. A maximum grade of 0.055 percent equivalent uranium is thus predicted for the entire state. This prediction necessarily is a broad generalization because large areas of Main are inaccessible for car traversing. A concept of evaluation of an area for possible mineral deposits is proposed on the basis of lithology, and observed and indicated ranges in grade.
[Estimation of dietary intake of radioactive materials by total diet methods].
Uekusa, Yoshinori; Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko; Teshima, Reiko
2014-01-01
Radioactive contamination in foods is a matter of great concern after the Tokyo Electric Power Company's Fukushima Daiichi nuclear power plant disaster caused by the Great East Japan Earthquake. In order to estimate human intake and annual committed effective dose of radioactive materials, market basket and duplicate diet samples from various areas in Japan were analyzed for cesium-134 ((134)Cs), -137 ((137)Cs), and natural radionuclide potassium-40 ((40)K) by γ-ray spectroscopy. Dietary intake of radioactive cesium around Fukushima area was somewhat higher than in other areas. However, maximum committed effective doses obtained by the market basket and duplicate diet samples were 0.0094 and 0.027 mSv/year, respectively, which are much lower than the maximum permissible dose (1 mSv/year) in foods in Japan.
Fate of the pyrethroid insecticide deltamethrin in small ponds: a mass balance study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, D.C.G.; Rawn, G.P.; Grift, N.P.
The fate and distribution of /sup 14/C-radiolabeled deltamethrin (1(R)(la(S),3a)-cyano-(3-phenoxyphenyl)methyl 3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropanecarboxylate) were monitored for 306 days, following a single application at 10 g/ha to two small outdoor ponds (17 m/sup 2/ surface area). Initial concentrations of the insecticide in filtered water ranged from 1.28 to 2.50 ..mu..g/L. Deltamethrin ((/sup 14/C)cyclopropyl acid or benzyl alcohol labeled) rapidly partitioned into suspended solids, plants, sediment, and air, with a half-life of 2-4 h in water. Duckweed (Lemna sp.) and a submerged pondweed (Potamogeton berchtoldi) accumulated deltamethrin concentrations ranging from 253 to 1021 ng/g, respectively, at 24 h posttreatment. Sediments were the major sink formore » radioactivity at 306 days posttreatment, and intact deltamethrin was present at concentrations ranging from 3 to 5 ng/g. Deltamethrin levels in air above the water ranged from 10-100 ng/m/sup 3/ during a 48-h monitoring period following application. Fathead minnows (Pimephales promelas) accumulated levels of extractable radioactivity 248-907-fold higher than concentrations in water 24 h posttreatment, but no fish mortality was observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talento, A.; Steven, G.
1959-04-15
A literature survey was made on the friction and wear of solid metals and on autoradiographic techniques as they apply to metal-to-metal wear studies. When two contacting surfaces are moving with respect to one another, the asperities weld together to form weld junctions. The number of junctions is large when no foreigm materials are on the contacting surfaces, but is greatly reduced by the presence of lubricants. Frictional forces are equal to the sum of the forces required to shear the weld junctions and the plough ing force. The rubbing surfaces may develop localized hot spots which may reach 2000more » F, and in these areas the metal is plastically deformed. Frictional forces and wear usually decrease as the hardness of the specimens increases. Autoradiographic techniques have been used to determine the location of radioactive tracers. Because photographic emulsions are sensitive to ionization caused by products of atomic disintegration, they are used to record the radiation given off by radioactive tracers. The wet and dry autoradiographic techniques that have been developed for metallurgical applications are described in this report. (auth)« less
Rowling, Brett; Kinsela, Andrew S; Comarmond, M Josick; Hughes, Catherine E; Harrison, Jennifer J; Johansen, Mathew P; Payne, Timothy E
2017-11-01
At many legacy radioactive waste sites, organic compounds have been co-disposed, which may be a factor in mobilisation of radionuclides at these sites. Tri-butyl phosphate (TBP) is a component of waste streams from the nuclear fuel cycle, where it has been used in separating actinides during processing of nuclear fuels. Analyses of ground waters from the Little Forest Legacy Site (LFLS) in eastern Australia were undertaken using solid-phase extraction (SPE) followed by gas chromatographic mass spectrometry (GCMS). The results indicate the presence of TBP several decades after waste disposal, with TBP only being detected in the immediate vicinity of the main disposal area. TBP is generally considered to degrade in the environment relatively rapidly. Therefore, it is likely that its presence is due to relatively recent releases of TBP, possibly stemming from leakage due to container degradation. The ongoing presence and solubility of TBP has the potential to provide a mechanism for nuclide mobilisation, with implications for long term management of LFLS and similar legacy waste sites. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Public exposure to hazards associated with natural radioactivity in open-pit mining in Ghana.
Darko, E O; Faanu, A; Awudu, A R; Emi-Reynolds, G; Yeboah, J; Oppon, O C; Akaho, E H K
2010-01-01
The results of studies carried out on public exposure contribution from naturally occurring radioactive materials (NORMS) in two open-pit mines in the Western and Ashanti regions of Ghana are reported. The studies were carried out under International Atomic Energy Agency-supported Technical Co-operation Project GHA/9/005. Measurements were made on samples of water, soil, ore, mine tailings and air using gamma spectrometry. Solid-state nuclear track detectors were used for radon concentration measurements. Survey was also carried out to determine the ambient gamma dose rate in the vicinity of the mines and surrounding areas. The effective doses due to external gamma irradiation, ingestion of water and inhalation of radon and ore dusts were calculated for the two mines. The average annual effective dose was found to be 0.30 +/- 0.06 mSv. The result was found to be within the levels published by other countries. The study provides a useful information and data for establishing a comprehensive framework to investigate other mines and develop guidelines for monitoring and control of NORMS in the mining industry and the environment as a whole in Ghana.
Davis, R.W.
1984-01-01
Among the concepts suggested for the deep disposal of high-level radioactive wastes from nuclear power reactors is the excavation of a repository in suitable crystalline rocks overlain by a thick sequence of sedimentary strata in a hydrogeologic environment that would effectively impede waste transport. To determine the occurrence of such environments in the Eastern United States, a review was made of available sources of published or unpublished information, using the following hydrogeologic criteria:The top of the crystalline basement rock is 1,000 to 4,000 feet below land surface.The crystalline rock is overlain by sedimentary rock whose lowermost part, at least, contains ground water with a dissolved-solids concentration of 10,000 milligrams per liter or more.Shale or clay confining beds overlie the saline-water aquifer.The flow system in the saline-water aquifer is known or determinable from presently available data.All of these hydrogeologic conditions occur in two general areas: (1) parts of Indiana, Ohio, and Kentucky, underlain by part of the geologic structure known as the Cincinnati arch, and (2) parts of the Atlantic Coastal Plain from Georgia to New Jersey.
Radionuclide Basics: Americium-241
Americium (chemical symbol Am) is a man-made radioactive metal that is solid under normal conditions. Exposure to a significant amount of Am-241 is generally unlikely. Small amounts are found in the soil, plants and water from nuclear weapons testing.
Nucleosynthesis of Short-lived Radioactivities in Massive Stars
NASA Technical Reports Server (NTRS)
Meyer, B. S.
2004-01-01
A leading model for the source of many of the short-lived radioactivities in the early solar nebula is direct incorporation from a massive star [1]. A recent and promising incarnation of this model includes an injection mass cut, which is a boundary between the stellar ejecta that become incorporated into the solar cloud and those ejecta that do not [2-4]. This model also includes a delay time between ejection from the star and incorporation into early solar system solid bodies. While largely successful, this model requires further validation and comparison against data. Such evaluation becomes easier if we have a better sense of the nature of the synthesis of the various radioactivities in the star. That is the goal of this brief abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.
2013-07-01
The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less
NASA Astrophysics Data System (ADS)
Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo
2015-04-01
Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.
Nakao, Ryuji; Halldin, Christer
2013-07-01
A solid phase extraction method has been developed for simple and high-speed direct determination of PET radioligands in plasma. This methodology makes use of a micellar medium and a solid-phase extraction cartridge for displacement of plasma protein bound radioligand and separation of PET radioligands from their radiometabolites without significant preparation. The plasma samples taken from monkey or human during PET measurements were mixed with a micellar eluent containing an anionic surfactant sodium dodecyl sulphate and loaded onto SPE cartridges. The amount of radioactivity corresponding to parent radioligand (retained on the cartridge) and its radioactive metabolites (eluted with micellar eluent) was measured. Under the optimized conditions, excellent separation of target PET radioligands from their radiometabolites was achieved with a single elution and short run-time of 1 min. This method was successfully applied to study the metabolism for (11)C-labelled radioligands in human or monkey plasma. The amount of parent PET radioligands estimated by micellar solid phase extraction strongly corresponded with that determined by radio-LC. The improved throughput permitted the analysis of a large number of plasma samples (up to 13 samples per one PET study) for accurate estimation of metabolite-corrected input function during quantitative PET imaging studies. Solid phase extraction together with micellar medium is fast, sensitive and easy to use, and therefore it is an attractive alternative method to determine relative composition of PET radioligands in plasma. Copyright © 2013 Elsevier Inc. All rights reserved.
A&M. Radioactive parts security storage area, heat removal storage casks. ...
A&M. Radioactive parts security storage area, heat removal storage casks. Plan, section, and details. Ralph M. Parsons 1480-7 ANP/GE-3-720-S-1. Date: November 1958. Approved by INEEL Classification Office for public release. INEEL index no. 034-0720-60-693-107459 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLemore, V. T.
1982-01-01
From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralizationmore » are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included.« less
Vickers, R.C.
1955-01-01
Airborne and ground reconnaissance for radioactive minerals in part of the syenite complex near Wausau, Marathon county, Wis., found 12 radioactive mineral localities. The rocks in the area are of Precambrian age and consist of syenite and nepheline syenite, which have intruded older granite, greenstone, quartzite, and argillite. There are very few outcrops, and much of the bedrock is deeply weathered and covered by residual soil. Thorium-bearing zircon pegatite float was found within the area of syenite and nepheline syenite at four localities. Reddish-brown euhedral to subeuhedral crystals of well-zoned zircon (variety cyrtolite) comprise more than 40 percent of some of the specimens. The radioactive mineral at four localities outside the area of syneites was identified as thorogummite, which occurred in nodular masses in residual soil. Alinement of the thorogummite float and associated radioactivity suggests that the thorogummite has resulted from weathering of narrow veins or pegmatites containing thorium-bearing minerals. Unidentified thorium-bearing minerals were found at three localities, and a specimen of allanite weighing about 2 pounds was found at one locality. Shallow trenches at two of the largest radioactivity anomalies showed that the radioactive material extended down into weathered bedrock. The occurrences might warrant additional physical exploration should there be sufficient demand for thorium. Further reconnaissance in the area would probably result in the discovery of additional occurrences.
PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, M.; Nash, C.; Poirier, M.
2011-01-12
In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less
Radioactive liquid wastes discharged to ground in the 200 Areas during 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirabella, J.E.
An overall summary is presented giving the radioactive liquid wastes discharged to ground during 1976 and since startup (for both total and decayed depositions) within the Production and Waste Management Division control zone (200 Area plateau). Overall summaries are also presented for 200 East Area and for 200 West Area. The data contain an estimate of the radioactivity discharged to individual ponds, cribs and specific retention sites within the Production and Waste Management Division during 1976 and from startup through December 31, 1976; an estimate of the decayed activities from startup through 1976; the location and reference drawings of eachmore » disposal site; and the usage dates of each disposal site. The estimates for the radioactivity discharged and for decayed activities dicharged from startup through December 31, 1976 are based upon Item 4 of the Bibliography. The volume of liquid discharged to the ponds also includes major nonradioactive streams. The wastes discharged during 1976 to each active disposal site are detailed on a month-to-month basis, along with the monthly maximum concentration and average concentration data. An estimate of the radioactivity discharged to each active site along with the remaining decayed activities is given.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
... recycling, or disposed of as low-level radioactive waste. The petitioner asserts that from the standpoint of... electricity. Efficient Light Emitting Diodes with backup batteries are being used where electricity is...
Filtration device for active effluents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, M.; Meunier, G.
1994-12-31
Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... agents, radioactive materials, chemicals, biological and laboratory waste, wreck or discarded equipment, rock, sand, excavation debris, industrial, municipal, agricultural, and other waste, but such term does... matter of any kind or description, including, but not limited to, dredged material, solid waste...
An overview of radioactive waste disposal procedures of a nuclear medicine department
Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.
2011-01-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225
An overview of radioactive waste disposal procedures of a nuclear medicine department.
Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S
2011-04-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Lenox, Art
2008-09-30
This Annual Site Environmental Report (ASER) for 2007 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequentmore » radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended until DOE completes the SSFL Area IV Environmental Impact Statement (EIS). The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2007 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2007.« less
Radioactive waste material disposal
Forsberg, C.W.; Beahm, E.C.; Parker, G.W.
1995-10-24
The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.
Radioactive waste material disposal
Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.
1995-01-01
The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.
Status of the Beam Thermalization Area at the NSCL
NASA Astrophysics Data System (ADS)
Cooper, Kortney; Barquest, Bradley; Morrissey, David; Rodriguez, Jose Alberto; Schwarz, Stefan; Sumithrarachchi, Chandana; Kwarsick, Jeff; Savard, Guy
2013-10-01
Beam thermalization is a necessary process for the production of low-energy ion beams at projectile fragmentation facilities. Present beam thermalization techniques rely on passing high-energy ion beams through solid degraders followed by a gas cell where the remaining kinetic energy is dissipated through collisions with buffer gas atoms. Recently, the National Superconducting Cyclotron Laboratory (NSCL) upgraded its thermalization area with the implementation of new large acceptance beam lines and a large RF-gas catcher constructed by Argonne National Lab (ANL). Two high-energy beam lines were commissioned along with the installation and commissioning of this new device in late 2012. Low-energy radioactive ion beams have been successfully delivered to the Electron Beam Ion Trap (EBIT) charge breeder for the ReA3 reaccelerator, the SuN detector, the Low Energy Beam Ion Trap (LEBIT) penning trap, and the Beam Cooler and Laser Spectroscopy (BeCoLa) collinear laser beamline. Construction of a gas-filled reverse cyclotron dubbed the CycStopper is also underway. The status of the beam thermalization area will be presented and the overall efficiency of the system will be discussed.
Apple, Marc; Waksman, Ron; Chan, Rosanna C; Vodovotz, Yoram; Fournadjiev, Jana; Bass, Bill G
2002-08-06
Ionizing radiation administered intraluminally via catheter-based systems using solid beta and gamma sources or liquid-filled balloons has shown reduction in the neointima formation after injury in the porcine model. We propose a novel system that uses a 133-Xenon (133Xe) radioactive gas-filled balloon catheter system. Overstretch balloon injury was performed in the coronary arteries of 33 domestic pigs. A novel 133Xe radioactive gas-filled balloon (3.5/45 mm) was positioned to overlap the injured segment with margins. After vacuum was obtained in the balloon catheter, approximately 2.5 cc of 133Xe gas was injected to fill the balloon. Doses of 0, 7.5, 15, and 30 Gy were delivered to a distance of 0.25 mm from the balloon surface. The dwell time ranged from 1.0 to 4.0 minutes, depending on the dose. Localization of 133Xe in the balloon was verified by a gamma camera. The average activity in a 3.5/45-mm balloon was measured at 67.7+/-12.1 mCi, and the total diffusion loss of the injected dose was 0.26% per minute of the injected dose. Bedside radiation exposure measured between 2 and 6 mR/h, and the shallow dose equivalent was calculated as 0.037 mrem per treatment. Histomorphometric analysis at 2 weeks showed inhibition of the intimal area (intimal area corrected for medial fracture length [IA/FL]) in the irradiated segments of 0.26+/-0.08 with 30 Gy, 0.07+/-0.24 with 15 Gy, and 0.12+/-0.89 with 7.5 Gy versus 0.76+/-0.08 with control P<0.001. 133Xe gas-filled balloon is feasible and effective in the reduction of neointima formation in the porcine model and safe for use in coronary arteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shih-Yew; Napier, Bruce A.
The Program Area Committee 5 (PAC 5) of the National Council on Radiation protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. The committee completed a number of reports in the subject areas, and specifically the most recent NCRP Report 175 (Decision Making for Late-Phase Recovery from Major Nuclear or Radiological Incidents). Historically PAC 5 addressed the emerging issues of the nation that pertain to radioactivity or radiation in the environment, or the radioactive waste issues due either to the natural origins or to the manmade activities
Reconnaissance for radioactive materials in northeastern United States during 1952
McKeown, Francis A.; Klemic, Harry
1953-01-01
Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.
Process for immobilizing radioactive boric acid liquid wastes
Greenhalgh, Wilbur O.
1986-01-01
A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.
ERIC Educational Resources Information Center
Marshall, James L.
2000-01-01
Introduces a portable and permanent set of the elemental collection including 87 samples of elements which are, minimum, one gram or more. Demonstrates radioactivity, magnetism, fluorescence, melting solids, spectral analysis, and conduction of heat. Includes a display of minerals associated with the elements. (YDS)
System and method for identifying, reporting, and evaluating presence of substance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Maurice; Lusby, Michael; Van Hook, Arthur
A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive andmore » evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.« less
System and method for identifying, reporting, and evaluating presence of substance
Smith, Maurice [Kansas City, MO; Lusby, Michael [Kansas City, MO; Van Hook, Arthur [Lotawana, MO; Cook, Charles J [Raytown, MO; Wenski, Edward G [Lenexa, KS; Solyom, David [Overland Park, KS
2012-02-14
A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive and evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.
System And Method For Identifying, Reporting, And Evaluating Presence Of Substance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Maurice; Lusby, Michael; Hook, Arthur Van
A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive andmore » evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.« less
A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Ashrafi, S.; Yazdansetad, F.
2018-05-01
Given a wide range application of NaI(Tl) detector in industrial and medical sectors, computation of the related detection efficiency in different distances of a radioactive source, especially for calibration purposes, is the subject of radiation detection studies. In this work, a 2in both in radius and height cylindrical NaI (Tl) scintillator was used, and by changing the radial, axial, and diagonal positions of an isotropic 137Cs point source relative to the detector, the solid angles and the interaction probabilities of gamma photons with the detector's sensitive area have been calculated. The calculations present the geometric and intrinsic efficiency as the functions of detector's dimensions and the position of the source. The calculation model is in good agreement with experiment, and MCNPX simulation.
NASA Technical Reports Server (NTRS)
1975-01-01
Explicit concern over land use and abuse stems from the recognition of the negative impacts of unrestrained and unregulated economic, industrial, and population growth upon finite land resources. Only one quarter of the total surface area of the earth is land, and of that a large portion is uninhabitable. The present stresses upon the land include urbanization, urban sprawl and urban congestion; electrical, nuclear industrial park siting requirements; land degradation through stripping surface minerals; land degradation through disposal of radioactive wastes, sewage sludge, solid waste and other industrial wastes; rising demand for agricultural land; and the erosion and destruction of land through elimination of protective coverings such as forests, grasslands, and wetlands.
Ferrate treatment for removing chromium from high-level radioactive tank waste.
Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J
2001-01-01
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.
Reconnaissance for radioactive deposits in eastern Alaska, 1952
Nelson, Arthur Edward; West, Walter S.; Matzko, John J.
1954-01-01
Reconnaissance for radioactive deposits was conducted in selected areas of eastern Alaska during 1952. Examination of copper, silver, and molybdenum occurrences and of a reported nickel prospect in the Slana-Nabesna and Chisana districts in the eastern Alaska Range revealed a maximum radioactivity of about 0.003 percent equivalent uranium. No appreciable radioactivity anomolies were indicated by aerial and foot traverses in the area. Reconnaissance for possible lode concentrations of uranium minerals in the vicinity of reported fluoride occurrences in the Hope Creek and Miller House-Circle Hot Springs areas of the Circle quadrangle and in the Fortymile district found a maximum of 0.055 percent equivalent uranium in a float fragment of ferruginous breccia in the Hope Creek area; analysis of samples obtained in the vicinity of the other fluoride occurrences showed a maximum of only 0.005 percent equivalent uranium. No uraniferous loads were discovered in the Koyukuk-Chandalar region, nor was the source of the monazite, previously reported in the placer concentrates from the Chandalar mining district, located. The source of the uranotheorianite in the placers at Gold Bench on the South Fork of the Koyukuk River was not found during a brief reconaissance, but a placer concentrate was obtained that contains 0.18 percent equivalent uranium. This concentrate is about ten times more radioactive than concentrates previously available from the area.
Nagaoka, Hiroaki; Watanabe, Hiroshi; Yamaguchi, Ichiro; Fujibuchi, Toshioh; Kida, Tetsuo; Tanaka, Shinji
2009-12-20
A clearance system for medical radioactive solid waste has not yet been implemented in Japan. Since 2004 new regulations have allowed institutions using positron emission tomography(PET)to handle totally decayed radioactive waste as non-radioactive waste after decay-in-storage. It was expected that this new regulation would mediate the installation of clearance systems in Japan. In order to assess the current situation of radiation safety management in PET institutions, we conducted a nationwide survey. The study design was a cross-sectional descriptive study conducted by questionnaire. The subjects of this survey were all the PET institutions in Japan. Among 224 institutes, 128 institutes are equipped with cyclotrons and 96 institutes are not. The number of returned questionnaires was 138. Among institutes that are using delivered radiopharmaceuticals, 80% treat their waste as non-radioactive according to the new regulation. The impact of new regulations for reducing radioactive waste in PET institutes without a cyclotron was estimated at about $400 thousand per year. The main concern of medical institutes was assessment of the contamination caused by by-products of radioactive nuclides generated in target water during the operation of a cyclotron. It was thought that a rational rule based on scientific risk management should be established because these by-products of radioactive nuclides are negligible for radiation safety. New regulation has had a good influence on medical PET institutes, and it is expected that a clearance system for medical radioactive waste will be introduced in the near future, following these recent experiences in PET institutes.
White, Max Gregg; West, W.S.; Matzko, J.J.
1953-01-01
Placer-mining areas and bedrock exposures near Teller on the Seward Peninsula, Alaska, were investigated in June and July, 1946, for possible sources of radioactive materials. The areas that were investigated are: Dese Creek, southeast of Teller; Bluestone River basin, south and southeast of Teller; Sunset Creek and other small streams flowing south into Grantley Harbor, northeast of Teller; and, also northeast of Teller, Swanson Creek and its tributaries, which flow north into the Agiapuk River basin. No significant amount of radioactive material was found, either in the stream gravels or in the bedrock of any of the areas. A heavy-mineral fraction obtained from a granite boulder probably derived from a bench gravel on Gold Run contains 0. 017 percent equivalent uranium, but the radioactivity is due to allanite and zircon. The types of bedrock tested include schist, slate, and greenstone. Readings on fresh surfaces of rock were the same as, or only slightly above the background count. The maximum radioactivity in stream concentrates is 0. 004 percent equivalent uranium in a sluice concentrate from Sunset Creek.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, J.; Cease, H.; Jaskierny, W. F.
2014-10-23
We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less
HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.
2003-02-27
This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less
Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.
1982-08-01
The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distancemore » below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy.« less
A&M. Radioactive parts security storage area, TAN647 and TAN648. Plot ...
A&M. Radioactive parts security storage area, TAN-647 and TAN-648. Plot plan, fencing details. Relationship to hot shop and railroad turntable. Ralph M. Parsons 1480-7-ANP/GE-3-102. Date: November 19958. Approved by INEEL Classification Office for public release. INEEL index no. 034-0100-00-693-107447 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Code of Federal Regulations, 2010 CFR
2010-01-01
... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... construction authorization for a high-level radioactive waste repository at a geologic repository operations...-level radioactive waste at a geologic repository operations area under parts 60 or 63 of this chapter...
Process for immobilizing radioactive boric acid liquid wastes
Greenhalgh, W.O.
1984-05-10
Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide.
Kirkegaard, Marie C; Miskowiec, Andrew; Ambrogio, Michael W; Anderson, Brian B
2018-05-21
We have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novel UP formation mechanism.
41 CFR 50-204.22 - Exposure to airborne radioactive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Exposure to airborne... FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.22 Exposure to airborne radioactive material. (a) No..., within a restricted area, to be exposed to airborne radioactive material in an average concentration in...
Jones, C Rick
2004-01-01
The US has far-reaching and extensive experience in the long-term management of areas contaminated with radioactive materials. This experience base includes the Department of Energy's continued follow-up with Hiroshima and Nagasaki from the 1940s at the Radiological Effects Research Foundation in Hiroshima, Japan, the long-term management of the Marshall Islands Programme, the clean-up of the US nuclear weapons complex and the ongoing management of accident sites such as in Palomares, Spain. This paper discusses the lessons learnt and best practices gained from this far-reaching and extensive experience in the long-term management of areas contaminated with radioactive materials. Copyright 2004 Oxford University Press
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Nevada Test Site Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Seeds in Chernobyl: the database on proteome response on radioactive environment
Klubicová, Katarína; Vesel, Martin; Rashydov, Namik M.; Hajduch, Martin
2012-01-01
Two serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. The database “Seeds in Chernobyl” (http://www.chernobylproteomics.sav.sk) contains the information about the abundances of hundreds of proteins from on-going investigation of mature and developing seed harvested from plants grown in radioactive Chernobyl area. This database provides a useful source of information concerning the response of the seed proteome to permanently increased level of ionizing radiation in a user-friendly format. PMID:23087698
Drilling of airborne radioactivity anomalies in Florida, Georgia, and South Carolina, 1954
Cathcart, J.B.
1954-01-01
From April 22 to May 19, 1953, airborne radioactivity surveys totalling 5,600 traverse miles were made in 10 areas in Florida (Moxham, 1954). Abnormal radioactivity was recorded in Bradford, Clay, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties, Florida. Additional airborne surveys were made in the Spring of 1954 in Hardee and Manatee Counties, Florida, on the drainage of the Altamaha River in Georgia, and in the area of the old phosphate workings in and around Charleston County, South Carolina.
Rabesiranana, Naivo; Rasolonirina, Martin; Terina, Franck; Solonjara, Asivelo F; Andriambololona, Raoelina
2008-11-01
The village of Vinaninkarena, Antsirabe, Madagascar (47 degrees 02'40''E, 19 degrees 57'17''S) is located in a high natural radioactivity area. In order to evaluate the natural radionuclide content in soil, sampling was done on-site by the transect method (85 soil samples) and off-site through transects across and beyond the region (up to a range of 100 km), to determine the natural radioactivity variation within vs. outside the region, and to detect significant differences, taking into account spatial variability.
Perspectives of Radioactive Contamination in Nuclear War
Waters, W. R.
1967-01-01
The degrees of risk associated with the medical, industrial and military employment of nuclear energy are compared. The nature of radioactive contamination of areas and of persons resulting from the explosion of nuclear weapons, particularly the relationship between the radiation exposure and the amount of physical debris, is examined. Some theoretical examples are compared quantitatively. It is concluded that the amount of radio-activity that may be carried on the contaminated person involves a minor health hazard from gamma radiation, compared to the irradiation arising from contaminated areas. PMID:6015741
Levels of radioactivity in Qatar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Thani, A.A.; Abdul-Majid, S.; Mohammed, K.
The levels of natural and man-made radioactivity in soil and seabed were measured in Qatar to assess radiation exposure levels and to evaluate any radioactive contamination that may have reached the country from fallout or due to the Chernobyl accident radioactivity release. Qatar peninsula is located on the Arabian Gulf, 4500 km from Chernobyl, and has an area of {approximately}11,600 km{sup 2} and a population of {approximately}600,000.
Biochemical process of low level radioactive liquid simulation waste containing detergent
NASA Astrophysics Data System (ADS)
Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi
2015-12-01
Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.
Biochemical process of low level radioactive liquid simulation waste containing detergent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi
Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour{sup −1}.« less
76 FR 14386 - Environmental Management Site-Specific Advisory Board, Hanford
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
...: Red Lion Hotel on the River, Jantzen Beach, 909 North Hayden Island Drive, Portland, Oregon 97217... Committee; Public Involvement Committee; and Budgets and Contracts Committee Potential Board Advice [cir] 2011-2013 Budget [cir] Regulatory document timelines/review [cir] Radioactive solid waste burial...
EVALUATION OF SEDIMENT TRANSPORT MODELS AND COMPARATIVE APPLICATION OF TWO WATERSHED MODELS
Suspended solids and sediments are regarded as the two leading pollutants of nation's streams and waterbodies. They serve as carriers for various pesticides, radioactive materials and nutrients. Section 303(d) of the 1972 Clean Water Act requires states, territories, and authoriz...
Determination of 241Pu in low-level radioactive wastes from reactors.
Martin, J E
1986-11-01
Plutonium-241 is unique in low-level radioactive wastes (LLW) from nuclear power plants because it is the only significant beta-emitting transuranic nuclide in LLW, has a relatively short half-life of 14.4 y, and has a fairly high allowable concentration for shallow land burial. Radiochemical separation of Pu followed by liquid scintillation analysis was used to quantitate 241Pu in a wide range of solid, semi-solid, and liquid LLW samples from two nuclear plants in Michigan. The 241Pu concentrations varied considerably by sample type and reactor operational period as did their correlation with 137Cs, 144Ce, 239Pu and 240Pu concentrations in the same sample. These patterns were also found in reported data for 241Pu in LLW from other reactors, raising the difficulty of accurately determining the inventory (or source term) in a LLW shallow land burial site and its implications for predicting and controlling the future environmental and public health impacts of such disposal.
The radiological exposure of man from radioactivity in the Baltic Sea.
Nielsen, S P; Bengtson, P; Bojanowsky, R; Hagel, P; Herrmann, J; Ilus, E; Jakobson, E; Motiejunas, S; Panteleev, Y; Skujina, A; Suplinska, M
1999-09-30
A radiological assessment has been carried out considering discharges of radioactivity to the Baltic Sea marine environment since 1950. The sources of radioactivity that have been evaluated are atmospheric nuclear-weapons fallout, fallout from the Chernobyl accident in 1986, discharges of radionuclides from Sellafield and La Hague transported into the Baltic Sea, and discharges of radionuclides from nuclear installations located in the Baltic Sea area. Dose rates from man-made radioactivity to individual members of the public (critical groups) have been calculated based on annual intake of seafood and beach occupancy time. The dose rates to individuals from the regions of the Bothnian Sea and Gulf of Finland are predicted to be larger than from any other area in the Baltic Sea due to the pattern of Chernobyl fallout. The dose rates are predicted to have peaked in 1986 at a value of 0.2 mSv year-1. Collective committed doses to members of the public have been calculated based on fishery statistics and predicted concentrations of radionuclides in biota and coastal sediments. The total collective dose from man-made radioactivity in the Baltic Sea is estimated at 2600 manSv, of which approximately two-thirds originate from Chernobyl fallout, approximately one-quarter from atmospheric nuclear-weapons fallout, approximately 8% from European reprocessing facilities, and approximately 0.04% from nuclear installations bordering the Baltic Sea area. An assessment of small-scale dumping of low-level radioactive waste in the Baltic Sea in the 1960s by Sweden and the Soviet Union has showed that doses to man from these activities are negligible. Dose rates and doses from natural radioactivity dominate except for the year 1986 where dose rates to individuals from Chernobyl fallout in some regions of the Baltic Sea approached those from natural radioactivity.
Radiochemical analyses of surface water from U.S. Geological Survey hydrologic bench-mark stations
Janzer, V.J.; Saindon, L.G.
1972-01-01
The U.S. Geological Survey's program for collecting and analyzing surface-water samples for radiochemical constituents at hydrologic bench-mark stations is described. Analytical methods used during the study are described briefly and data obtained from 55 of the network stations in the United States during the period from 1967 to 1971 are given in tabular form.Concentration values are reported for dissolved uranium, radium, gross alpha and gross beta radioactivity. Values are also given for suspended gross alpha radioactivity in terms of natural uranium. Suspended gross beta radioactivity is expressed both as the equilibrium mixture of strontium-90/yttrium-90 and as cesium-137.Other physical parameters reported which describe the samples include the concentrations of dissolved and suspended solids, the water temperature and stream discharge at the time of the sample collection.
2012-01-01
This paper describes a modification of the basic directions of state accounting and control of radioactive substances and radioactive waste products, whose implementation will significantly improve the efficiency of its operation at the regional level. Selected areas are designed to improve accounting and control system for the submission of the enterprises established by the reporting forms, the quality of the information contained in them, as well as structures of information and process for collecting, analyzing and data processing concerning radioactive substances and waste products.
Species removal from aqueous radioactive waste by deep-bed filtration.
Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta
2018-05-26
Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Determination of beta activity in water
Barker, F.B.; Robinson, B.P.
1963-01-01
Many elements have one or more naturally radioactive isotopes, and several hundred other radionuclides have been produced artificially. Radioactive substances may be present in natural water as a result of geochemical processes or the release of radioactive waste and other nuclear debris to the environment. The Geological Survey has developed methods for measuring certain of these .radioactive substances in water. Radioactive substances often are present in water samples in microgram quantities or less. Therefore, precautions must be taken to prevent loss of material and to assure that the sample truly represents its source at the time of collection. Addition of acids, complexing agents, or stable isotopes often aids in preventing loss of radioactivity on container walls, on sediment, or on other solid materials in contact with the sample. The disintegration of radioactive atoms is a random process subject to established methods of statistical analysis. Because many water samples contain small amounts of radioactivity, low-level counting techniques must be used. The usual assumption that counting data follow a Gaussian distribution is invalid under these conditions, and statistical analyses must be based on the Poisson distribution. The gross beta activity in water samples is determined from the residue left after evaporation of the sample to dryness. Evaporation is accomplished first in a teflon dish, then the residue is transferred with distilled water to a counting planchet and again is reduced to dryness. The radioactivity on the planchet is measured with an anticoincidence-shielded, low-background, beta counter and is compared with measurements of a strontium-90-yttrium-90 standard prepared and measured in the same manner. Control charts are used to assure consistent operation of the counting instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillmer, Kurt T.
This report focuses on the detection and control of radioactive contamination, which are an integral part of an aggressive ALARA program and provide an indication of the effectiveness of engineering controls and proper work practices in preventing the release of radioactive material. Radioactive contamination, if undetected or not properly controlled, can be spread and contaminate areas, equipment, personnel, and the environment.
46 CFR 148.300 - Radioactive materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300 Radioactive... surface, when averaged over an area of 300 cm2, does not exceed the following levels: (1) 4.0 Bq/cm2 (10−4...
10 CFR 72.126 - Criteria for radiological protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... exposed to radiation or airborne radioactive materials. Structures, systems, and components for which... accessible work areas as appropriate to warn operating personnel of radiation and airborne radioactive...
A Course on the Physics and Chemistry of Pollution
ERIC Educational Resources Information Center
Hodges, Laurent
1971-01-01
Describes a course on environmental pollution which stresses physical and chemical principles. Course presents a unified discussion of air and water pollution and solid waste with special treatment of pesticides, thermal pollution, radioactivity, and electric power generation. Uses historical and current statistics extensively to set pollution…
Radioactive-gas separation technique
NASA Technical Reports Server (NTRS)
Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.
1977-01-01
Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
The solid state physics programme at ISOLDE: recent developments and perspectives
NASA Astrophysics Data System (ADS)
Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.
2017-10-01
Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—<1 ppm concentrations—is one of the features which distinguishes the use of radioisotopes for materials science research. The manner in which nuclear momenta of excited nuclear states interact with their local electronic and magnetic environment, or how charged emitted particles interact with the crystalline lattices allow the determination of the location, its action and the role of the selected impurity element at the nanoscopic state. ISOLDE offers an unrivalled range of available radioactive elements and this is attracting an increasing user community in the field of nuclear SSP research and brings together a community of materials scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.
Air modelling as an alternative to sampling for low-level radioactive airborne releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenstern, M.Y.; Hueske, K.
1995-05-01
This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparingmore » the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940`s by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.L.
Information on release of radioactive materials in airborne and liquid effluents, solid waste shipments and selected operating information from commercial nuclear power plants in the United States is maintained in a computer data base at Brookhaven National Laboratory (BNL) for the United States Nuclear Regulatory Commission (USNRC). The information entered into the data base is obtained from semiannual reports submitted by the operators of the plants to the USNRC in compliance with the USNRC Regulatory Guide 1.21, ''Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants.''more » The data on releases in the calendar year 1986 include information from 69 plants representing 87 reactors and contain approximately 19,000 entries. Since all the information is contained in a computer data base management system, entry and rapidly respond to inquiries about the data set and to generate computer readable subsets of the data. Such a subset is used as input to the computer program which generates the annual report, ''Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites,'' prepared by Pacific Northwest Laboratory for the USNRC. BNL began maintaining this data base for the USNRC with the 1978 information and has added information to the data base for each succeeding year. An annual report summarizing the information for each year, prepared by BNL, and published by the USNRC, is available to the general public. Prior to 1978, annual reports were prepared by the USNRC and are available for the years 1972--1977; however, the information for these years is not in a computer accessible data base.« less
Radioactive liquid wastes discharged to ground in the 200 Areas during 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J. D.; Poremba, B. E.
1979-03-26
This document is issued quarterly for the purpose of summarizing the radioactive liquid wastes that have been discharged to the ground in the 200 Areas. In addition to data for 1978, cumulative data since plant startup are presented. Also, in this document is a listing of decayed activity to the various plant sites.
Prediction of Radioactive Material Proliferation in Abukuma Basin using USLE
NASA Astrophysics Data System (ADS)
Yi, C. J.
2014-12-01
Due to the nuclear-power plant accident after the 2011 Great East Japan Earthquake and Tsunami, the residents who had resided within 20 km from the Daiichi Fukushima Nuclear Power Plant had forced to leave their hometown. The impacts by the radioactive contamination extended to numerous social elements, such as food, economy, civil engineering, community rebuilding, etc. Japanese government agencies have measured the level of radioactive contamination in urban, agricultural area, forest, riverine and ocean. The research found that the concentration level of cesium-137 (137Cs) is higher in the forest than an open area such as paddy field or rural town. Litter layers and surface layers, especially, are found to be significantly contaminated. The study calculated the estimation of contaminated soil erosion using the USLE which the idea is based on scenario that addresses a question, what if 137Cs would carry out from the forest after intensive rainfall. Predicting radioactively contaminated areas after intense rainfall is a critical matter for the future watershed risk management.
Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin
2012-01-01
Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204
NASA Astrophysics Data System (ADS)
Disch, C.
2014-09-01
Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.
Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.
Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S; Umarov, M A; Sergeeva, I Iu; Sergeev, V Iu
2008-01-01
Results on estimation of modern radioecological situation at nuclear explosion "Chagan" based on large-scale cartographic studies (1:25000) of a test area (4 km2) are presented. Maximum gamma-irradiation doses were observed at bulk of ground surrounded a crater and at radioactive fall-outs extended to the North-East and to the SouthWest from the crater. Based on data on artificial radionuclide specific activity most part of soil samples were attributed to radioactive wastes according to IAEA (1996) and OSPORB (1999). Natural decrease of soil radioactivity up to safety level due to 60Co, 137Cs, 90Sr, 152Eu, 154Eu radioactive decay and 241Am accumulation-decay will not take place within the next 60 years at the studied area.
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
Airborne radioactivity survey of parts of Atlantic Ocean beach, Virginia to Florida
Moxham, R.M.; Johnson, R.W.
1953-01-01
The accompanying maps show the results of an airborne radioactivity survey along the Atlantic Ocean beach from Cape Henry, Virginia to Cape Fear, North Carolina and from Savannah Bach Georgia to Miami Beach, Florida. The survey was made March 23-24, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the normal 500 foot flight altitude varies with the areal extent radioactivity of the source. For strong sources of radioactivity the width of the zone would be as much as 1,400 feet. The location of the flight lines is shown on the index map below. No abnormal radioactivity was detected along the northern flight line between Cape Henry, Virginia and Cape Fear, North Carolina. Along the southern flight line fourteen areas of abnormal radioactivity were detected between Savannah Beach, Georgia and Anastasia Island, Florida as shown on the map on the left. The abnormal radioactivity is apparently due to radioactive minerals associated with "black sand" deposits with occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity sue to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given on the accompanying map indicates only those localities of greater-than-average radioactivity and, therefore suggest areas in which uranium and thorium deposits are more likely to occur.
Top Soils Geochemical and Radioactivity Survey of Naples (Italy) Metropolitan.
NASA Astrophysics Data System (ADS)
Somma, R.; De Vivo, B.; Cicchella, D.
2001-05-01
The metropolitan area of Naples due to intense human activities is an emblematic area affected by various environmental pollution of soils and waters in addition to hydrogeological volcanic, seismic and bradyseismic hazards. The geology of the area is prevailing represented by volcanics erupted, from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. The morphology of the metropolitan area of Naples city can be subdivided in flat areas, constituted by reworked pyroclastic terrains, and by hills originated by the overlapping of different welded pyroclastic flows (i.e.: Campanian Ignimbrite and Neapoletan Yellow Tuff) intercalated with pyroclastic deposits of different origins (i.e.: Campi Flegrei, Mt. Somma-Vesuvius, Ischia) and ages. In order to compile a multi-element baseline geochemical and radioactivity mapping of the metropolitan area of the Napoli we have sampled for this study, in situ top soil and imported filling material (mainly soil, volcanic ash, pumice and scoriae). The sampling and radioactivity survey has been carried out on about 200 sampling sites covering an area of about 150 Km2, with a grid of 0.5 x 0.5 km in the urbanised downtown and 1 km x 1 km in the sub urban areas. In each site has been determined a radioactivity by a Scintrex GRS-500 at different emission spectra as total radioactivity (> 0.08 MeV and > 0.40 MeV), 238U (at 1.76 MeV mostly from 214Bi), 232Th (at 2.6 MeV mostly from 208Tl) and 40K (at 1.46 MeV mostly for 40K). The range of values of in situ soils are as follow for the in situ soils (Total radioactivity: 1327- 360 and 114- 47; 238U: 2.6- 1.3; 40K: 8.1- 3.1; 232U: 0.5- 0.1). Analyses of major, metallic elements and pH of each soil sample are in progress, while Pb isotopes compositions, for a selected number of samples, will be determined to discriminate the natural (geogenic) from the anthropogenic components in the soils by versus the anthropogenetic origin. The data collected will be statistically analysed and will be utilised, using a GIS, to compile multi-elements geochemical maps of the entire metropolitan areas of the Naples.
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.
Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide
Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.; ...
2018-05-10
Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less
Fate and lability of silver in soils: Effect of ageing
The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the 110mAg radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure (XANES) spectrosco...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-06-30
This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.« less
Reconnaissance for uranium and thorium in Alaska, 1954
Matzko, John J.; Bates, Robert G.
1957-01-01
During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... package (IP-1, IP-2 or IP-3; § 173.411), subject to the limitations of Table 6; (2) In a DOT Specification... use shipment 1. LSA-I: Solid IP-1 IP-1 Liquid IP-1 IP-2 2. LSA-II: Solid IP-2 IP-2 Liquid and gas IP-2 IP-3 3. LSA-III IP-2 IP-3 4. SCO-I IP-1 IP-1 5. SCO-II IP-2 IP-2 [69 FR 3676, Jan. 26, 2004; 69 FR...
Code of Federal Regulations, 2011 CFR
2011-10-01
... package (IP-1, IP-2 or IP-3; § 173.411), subject to the limitations of Table 6; (2) In a DOT Specification... use shipment 1. LSA-I: Solid IP-1 IP-1 Liquid IP-1 IP-2 2. LSA-II: Solid IP-2 IP-2 Liquid and gas IP-2 IP-3 3. LSA-III IP-2 IP-3 4. SCO-I IP-1 IP-1 5. SCO-II IP-2 IP-2 [69 FR 3676, Jan. 26, 2004; 69 FR...
Cleanup Verification Package for the 118-F-1 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. J. Farris and H. M. Sulloway
2008-01-10
This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.
Discussions about safety criteria and guidelines for radioactive waste management.
Yamamoto, Masafumi
2011-07-01
In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.
Complete Non-Radioactive Operability Tests for Cladding Hull Chlorination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Emory D; Johnson, Jared A.; Hylton, Tom D.
2016-04-01
Non-radioactive operability tests were made to test the metal chlorination reactor and condenser and their accessories using batch chlorinations of non-radioactive cladding samples and to identify optimum operating practices and components that need further modifications prior to installation of the equipment into the hot cell for tests on actual used nuclear fuel (UNF) cladding. The operability tests included (1) modifications to provide the desired heating and reactor temperature profile; and (2) three batch chlorination tests using, respectively, 100, 250, and 500 g of cladding. During the batch chlorinations, metal corrosion of the equipment was assessed, pressurization of the gas inletmore » was examined and the best method for maintaining solid salt product transfer through the condenser was determined. Also, additional accessing equipment for collection of residual ash and positioning of the unit within the hot cell were identified, designed, and are being fabricated.« less
Cinelli, Giorgia; Tositti, Laura; Mostacci, Domiziano; Baré, Jonathan
2016-05-01
In view of assessing natural radioactivity with on-site quantitative gamma spectrometry, efficiency calibration of NaI(Tl) detectors is investigated. A calibration based on Monte Carlo simulation of detector response is proposed, to render reliable quantitative analysis practicable in field campaigns. The method is developed with reference to contact geometry, in which measurements are taken placing the NaI(Tl) probe directly against the solid source to be analyzed. The Monte Carlo code used for the simulations was MCNP. Experimental verification of the calibration goodness is obtained by comparison with appropriate standards, as reported. On-site measurements yield a quick quantitative assessment of natural radioactivity levels present ((40)K, (238)U and (232)Th). On-site gamma spectrometry can prove particularly useful insofar as it provides information on materials from which samples cannot be taken. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Production of 35S for a Liquid Semiconductor Betavoltaic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, David E.; Garnov, A. Y.; Robertson, J. D.
2009-10-01
The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductormore » media.« less
NCRP Program Area Committee 2: Operational Radiation Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Kathryn H.; Goldin, Eric M.
2016-02-29
Program Area Committee 2 of the National Council on Radiation Protection and Measurements provides guidance for radiation safety in occupational settings in a variety of industries and activities. The committee completed three reports in recent years covering recommendations for the development and administration of radiation safety programs for smaller educational institutions, requirements for self-assessment programs that improve radiation safety and identify and correct deficiencies, and a comprehensive process for effective investigation of radiological incidents. Ongoing work includes a report on sealed radioactive source controls and oversight of a report on radioactive nanomaterials focusing on gaps within current radiation safety programs.more » Future efforts may deal with operational radiation safety programs in fields such as the safe use of handheld and portable X-Ray fluorescence analyzers, occupational airborne radioactive contamination, unsealed radioactive sources, or industrial accelerators.« less
NASA Astrophysics Data System (ADS)
Rugger, B.; Templeton, W. L.; Gurbutt, P.
1983-05-01
Sea dumping operations of certain types of packaged low and medium level radioactive wastes have been carried out since 1967 in the North-East Atlantic under the auspices of the OECD Nuclear Energy Agency. On the occasion of the 1980 review of the continued suitability of the North-East Atlantic site used for the disposal of radioactive waste, it was recommended that an effort should be made to increase the scientific data base relating to the oceanographic and biological characteristics of the dumping area. In particular, it was suggested that a site specific model of the transfer of radionuclides in the marine environment be developed, which would permit a better assessment of the potential radiation doses to man from the dumping of radioactive waste. To fulfill these objectives a research and environmental surveillance program related to sea disposal of radioactive waste was set up in 1981 with the participation of thirteen Member countries and the International Laboratory for Marine Radioactivity of the IAEA in Monaco. The research program is focused on five research areas which are directly relevant to the preparation of more site specific assessments in the future. They are: model development; physical oceanography; geochemistry; biology; and radiological surveillance. Promising results have already been obtained and more are anticipated in the not too distant future. An interim description of the NEA dumping site has been prepared which provides an excellent data base for this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garabedian, G.
This document details the decontamination and decommissioning (D&D) process of Rooms 248 and 250 of Building 62 at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL). The document describes the D&D efforts for the rooms, their contents, and adjacent areas containing ancillary equipment. The rooms and equipment, before being released, were required to meet the unrestricted release criteria and requirements set forth in DOE orders 5400.5 and 5480.11, LBNL`s internal release-criteria procedure (EH&S Procedure 708), and the LBNL Radiological Control Manual. The radioactive material and items not meeting the release criteria were either sent to the Hazardous Waste Handling Facilitymore » (HWHF) for disposal or transferred to other locations approved for radioactive material. The D&D was undertaken by the Radiation Protection Group of LBNL`s Environment, Health and Safety (EH&S) Division at the request of the Materials Sciences Division. Current and past use of radioactive material in both Rooms 248 and 250 necessitated the D&D in order to release both rooms for nonradioactive work. (1) Room 248 was designated a {open_quotes}controlled area.{close_quotes} There was contained radioactive material in some of the equipment. The previous occupants of Room 248 had worked with radioactive materials. (2) Room 250 was designated a {open_quotes}Radioactive Materials Management Area{close_quotes} (RMMA) because the current occupants used potentially dispersible radioisotopes. Both laboratories, during the occupancy of U.C. Berkeley Professor Leo Brewer and Ms. Karen Krushwitz, were kept in excellent condition. There was a detailed inventory of all radioactive materials and chemicals. All work and self surveys were documented. The labs were kept extremely orderly, clean, and in compliance. In October 1993 Ms. Krushwitz received an award in recognition of her efforts in Environmental Protection, Health, and Safety at LBNL.« less
Kashparov, V A; Lundin, S M; Kadygrib, A M; Protsak, V P; Levchuk, S E; Ioshchenko, V I; Kashpur, V A; Talerko, N N
2001-01-01
Retransfer of radionuclides on the condensation trails of Chernobyl radioactive fallouts during forest fires has been experimentally evaluated and their mathematical transfer model verified. It has been shown that radionuclide retransfer will make no great impact on additional pollution of an area even under the most unfavourable conditions. The contribution of convective and non-convective components of transfer to the formation of a radioactive aerosol concentration field has been assessed. Time course of changes in the concentration of radioactive aerosol and its dispersive composition are shown in different phases of fire and at different distance from its source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.
NASA Astrophysics Data System (ADS)
Ohnuki, Toshihiko; Aiba, Yukitoshi; Sakamoto, Fuminori; Kozai, Naofumi; Niizato, Tadafumi; Sasaki, Yoshito
2016-07-01
This paper presents the accumulation process of radioactive Cs in edible mushrooms. We here first report the direct accumulation pathway of radioactive Cs from contaminated wood logs to the fruit-bodies of shiitake mushrooms through the basal portion of the stipe. In this pathway, radioactive Cs is not transported through the hyphae. This pathway results in a high accumulation of radioactive Cs in the fruit-body, more by the excess accumulation of radioactive Cs from the wood logs than that through the hyphae. We grew the fruit-bodies of Shiitake mushroom from radioactive-Cs-contaminated wood logs. The spatial distributions of radioactive Cs and Prussian blue as a tracer of interstitial water in the cross section of the wood log measured after the harvest of the fruit-body from the inoculated sawdust spawn area indicated that some fraction of the radioactive Cs and Prussian blue were transported directly to the basal portion of the stipe during the growth of the fruit-bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.
Reconnaissance for radioactive deposits in Alaska, 1953
Matzko, John J.; Bates, Robert G.
1955-01-01
During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.
Real Time Wide Area Radiation Surveillance System
NASA Astrophysics Data System (ADS)
Biafore, M.
2012-04-01
We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity of it based on the latest needs and also on the budget.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, J.
This document is a report of the analytical results for samples collected from the radioactive wastes in Tank 241-U-202 at the Hanford Reservation. Core samples were collected from the solid wastes in the tank and underwent safety screening analyses including differential scanning calorimetry, thermogravimetric analysis, and total alpha analysis. Results indicate that no safety screening notification limits were exceeded.
77 FR 34411 - Branch Technical Position on Concentration Averaging and Encapsulation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... of cartridge filters as a homogeneous waste: Cartridge filters are used to remove radioactive solids from various systems in a nuclear power plant. Filters are typically composed of thin metal or plastic frames with a corrugated or wound paper or synthetic filter media enclosed within the frame. Although the...
18 CFR 401.74 - Form and contents of report.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...
18 CFR 401.74 - Form and contents of report.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...
18 CFR 401.74 - Form and contents of report.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...
Amano, Hikaru; Akiyama, Masakazu; Chunlei, Bi; Kawamura, Takao; Kishimoto, Takeshi; Kuroda, Tomotaka; Muroi, Takahiko; Odaira, Tomoaki; Ohta, Yuji; Takeda, Kenji; Watanabe, Yushu; Morimoto, Takao
2012-09-01
Large amounts of radioactive substances were released into the environment from the Fukushima Dai-ichi Nuclear Power Plants in eastern Japan as a consequence of the great earthquake (M 9.0) and tsunami of 11 March 2011. Radioactive substances discharged into the atmosphere first reached the Chiba Metropolitan Area on 15 March. We collected daily samples of air, fallout deposition, and tap water starting directly after the incident and measured their radioactivity. During the first two months maximum daily concentrations of airborne radionuclides observed at the Japan Chemical Analysis Center in the Chiba Metropolitan Area were as follows: 4.7 × 10(1) Bq m(-3) of (131)I, 7.5 Bq m(-3) of (137)Cs, and 6.1 Bq m(-3) of (134)Cs. The ratio of gaseous iodine to total iodine ranged from 5.2 × 10(-1) to 7.1 × 10(-1). Observed deposition rate maxima were as follows: 1.7 × 10(4) Bq m(-2) d(-1) of (131)I, 2.9 × 10(3) Bq m(-2) d(-1) of (137)Cs, and 2.9 × 10(3) Bq m(-2) d(-1) of (134)Cs. The deposition velocities (ratio of deposition rate to concentration) of cesium radionuclides and (131)I were detectably different. Radioactivity in tap water caused by the accident was detected several days after detection of radioactivity in fallout in the area. Radiation doses were estimated from external radiation and internal radiation by inhalation and ingestion of tap water for people living outdoor in the Chiba Metropolitan Area following the Fukushima accident. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rodríguez, Rogelio; Avivar, Jessica; Ferrer, Laura; Leal, Luz O; Cerdà, Victor
2012-07-15
A novel lab-on-valve system has been developed for strontium determination in environmental samples. Miniaturized lab-on-valve system potentially offers facilities to allow any kind of chemical and physical processes, including fluidic and microcarrier bead control, homogenous reaction and liquid-solid interaction. A rapid, inexpensive and fully automated method for the separation and preconcentration of total and radioactive strontium, using a solid phase extraction material (Sr-Resin), has been developed. Total strontium concentrations are determined by ICP-OES and (90)Sr activities by a low background proportional counter. The method has been successfully applied to different water samples of environmental interest. The proposed system offers minimization of sample handling, drastic reduction of reagent volume, improvement of the reproducibility and sample throughput and attains a significant decrease of both time and cost per analysis. The LLD of the total Sr reached is 1.8ng and the minimum detectable activity for (90)Sr is 0.008Bq. The repeatability of the separation procedure is 1.2% (n=10). Copyright © 2011 Elsevier B.V. All rights reserved.
Combined, solid-state molecular property and gamma spectrometers for CBRNE detection
NASA Astrophysics Data System (ADS)
Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse
2013-05-01
Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehto, J.; Ikaeheimonen, T.K.; Salbu, B.
The fallout from a major nuclear accident at a nuclear plant may result in a wide-scale contamination of the environment. Cleanup of contaminated areas is of special importance if these areas are populated or cultivated. All cleanup measures generate high amounts of radioactive waste, which have to be treated and disposed of in a safe manner. Scenarios assessing the amounts and activity concentrations of radioactive wastes for various cleanup measures after severe nuclear accidents have been worked out for urban, forest and agricultural areas. These scenarios are based on contamination levels and ares of contaminated lands from a model accident,more » which simulates a worst case accident at a nuclear power plant. Amounts and activity concentrations of cleanup wastes are not only dependent on the contamination levels and areas of affected lands, but also on the type of deposition, wet or dry, on the time between the deposition and the cleanup work, on the season, at which the deposition took place, and finally on the level of cleanup work. In this study practically all types of cleanup wastes were considered, whether or not the corresponding cleanup measures are cost-effective or justified. All cleanup measures are shown to create large amounts of radioactive wastes, but the amounts, as well as the activity concentrations vary widely from case to case.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy... Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of Airborne Radioactive... identifying the need for posting of airborne radioactivity areas in accordance with § 835.603(d). b. The air...
Status of the waste assay for nonradioactive disposal (WAND) project
NASA Astrophysics Data System (ADS)
Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.
1999-01-01
The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.
NASA Astrophysics Data System (ADS)
Latynova, N. E.
2010-03-01
The spatial-temporal features of the radioactive contamination of terrestrial ecosystem components caused by the deterioration of the multibarrier protection of regional radioactive waste storages of the State Research Center of the Russian Federation-Leipunskii Institute of Physics and Power Engineering at the input of radionuclides into the soil and ground water were studied. The composition of the radioactive contamination was determined, and the hydrological and geochemical processes resulting in the formation of large radioactive sources were described. The natural features of the radioactive waste storage areas favoring the entry of 90Sr, 137Cs, and 226Ra into the soils and their inclusion in the biological turnover were characterized. The directions of the horizontal migration of 90Sr, 137Cs, and 226Ra and the sites of their accumulation within the superaquatic and aquatic landscapes of a near-terrace depression were studied; the factors of the 90Sr accumulation in plants and cockles were calculated. The results of the studies expand the theoretical concepts of the mechanisms, processes, and factors controlling the behavior of radionuclides at the deterioration of the multibarrier protection of radioactive waste storages. The presented experimental data can be used for solving practical problems related to environmental protection in the areas of industrial nuclear complexes.
Measuring one nucleon transfer reaction 24Mg( p, d)23Mg for astrophysical reaction rates
NASA Astrophysics Data System (ADS)
Lee, E. J.; Chae, K. Y.
2017-12-01
The level structure of a radionuclide 23Mg has been studied by using the 24Mg( p, d)23Mg one nucleon transfer reaction measurement for the astrophysical 19Ne(α, γ)23Mg reaction rate. A 41 MeV proton beam was produced and accelerated at the 25 MV tandem accelerator of the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory in the United States. The beam particles impinged on an isotopically-enriched 24Mg solid target. Angular distributions of recoiling deuterons were extracted by using a large area silicon strip detector array. By comparing the experimentally-obtained angular distributions with zero range distorted wave Born approximation calculations, spins and parities of three energy levels of 23Mg could be constrained for the first time, which is very important information needed to understand the 19Ne(α, γ)23Mg reaction rate.
From Pushing Paper to Pushing Dirt - Canada's Largest LLRW Cleanup Gets Underway - 13111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veen, Walter van; Lawrence, Dave
2013-07-01
The Port Hope Project is the larger of the two projects in the Port Hope Area Initiative (PHAI), Canada's largest low level radioactive waste (LLRW) cleanup. With a budget of approximately $1 billion, the Port Hope Project includes a broad and complex range of remedial elements from a state of the art water treatment plant, an engineered waste management facility, municipal solid waste removal, remediation of 18 major sites within the Municipality of Port Hope (MPH), sediment dredging and dewatering, an investigation of 4,800 properties (many of these homes) to identify LLRW and remediation of approximately 450 of these properties.more » This paper discusses the status of the Port Hope Project in terms of designs completed and regulatory approvals received, and sets out the scope and schedule for the remaining studies, engineering designs and remediation contracts. (authors)« less
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1973-01-01
The terrestrial planets aggregated essentially from small particles, to begin as solid cool bodies with the same general compositions, and there is no possibility of an iron-core developing within any of them at any stage. Their differing internal and surface properties receive ready explanation from their different masses which determine whether the pressures within are sufficient to bring about phase-changes. The claim that the terrestrial core can be identified by means of shock-wave data as nickel-iron is based on theoretical misconception, whereas the actual seismic data establish an uncompressed-density value much lower than any such mixture could have. The onset of the Ramsey phase-change in the earth takes the form of a rapid initial collapse to produce a large core in metallic state which thereafter continues to grow secularly as a result of radioactive heating and leads to reduction of surface-area at long last adequate to account for folded and thrusted mountain-building.
Reference levels of background radioactivity for beach sands and soils in İnebolu/Kastamonu-Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnaz, Aslı, E-mail: akurnaz@kastamonu.edu.tr; Türkdoğan, Savaş, E-mail: savas-turk-dogan@hotmail.com; Hançerlioğulları, Aybaba, E-mail: aybaba@kastamonu.edu.tr
This paper presents the measurement results of environmental radioactivity levels for İnebolu district (tourist area), Kastamonu-Turkey. The radioactivity concentrations of {sup 238}U, {sup 232}Th, {sup 40}K and the fission product {sup 137}Cs in soil samples collected from 13 region surroundings of study area and in 12 beach sand samples collected from along the coast of İnebolu were determined. To evaluate the radiological hazard of the natural radioactivity, based on the measured concentrations of these radionuclides, the mean absorbed gamma dose and the annual effective dose were evaluated separately, and found to be 112.90 nGy h-1 and 138.46 µSv y-1 for soilmore » samples and 75.19 nGy h-1 and 92.22 µSv y-1 for beach sand samples, respectively. The results show that İnebolu does not have high background.« less
European organization for nuclear research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenbacher, H.; Tavlet, M.
1987-09-10
The CERN Intersecting Storage Rings (ISR) operated from 1971 to 1984. During that time high-energy physics experiments were carried out with 30 GeV colliding proton beams. At the end of this period the machine was decommissioned and dismantled. This involved the movement of about 1000 machine elements, e.g., magnets, vacuum pumps, rf cavities, etc., 2500 racks, 7000 shielding blocks, 3500 km of cables and 7 km of beam piping. All these items were considered to be radioactive until the contrary was proven. They were then sorted, either for storage and reuse or for radioactive or non-radioactive waste. The paper describesmore » the radiation protection surveillance of this project which lasted for five months. It includes the radiation protection standards, the control of personnel and materials, typical radioactivity levels and isotopes, as well as final cleaning and decommissioning of an originally restricted radiation area to a free accessible area.« less
Reference levels of background radioactivity for beach sands and soils in İnebolu/Kastamonu-Turkey
NASA Astrophysics Data System (ADS)
Kurnaz, Aslı; Türkdoǧan, Savaş; Hançerlioǧulları, Aybaba; ćetiner, M. Atıf
2016-03-01
This paper presents the measurement results of environmental radioactivity levels for İnebolu district (tourist area), Kastamonu-Turkey. The radioactivity concentrations of 238U, 232Th, 40K and the fission product 137Cs in soil samples collected from 13 region surroundings of study area and in 12 beach sand samples collected from along the coast of İnebolu were determined. To evaluate the radiological hazard of the natural radioactivity, based on the measured concentrations of these radionuclides, the mean absorbed gamma dose and the annual effective dose were evaluated separately, and found to be 112.90 nGy h-1 and 138.46 µSv y-1 for soil samples and 75.19 nGy h-1 and 92.22 µSv y-1 for beach sand samples, respectively. The results show that İnebolu does not have high background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerem, Z.; Friesem, D.; Hadar, Y.
Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparison two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of {sup 14}C-lignin mineralization exhibited similar differences. In cultures of P. chrysosporium, mineralization ceased after 18 days, resultingmore » in the release of 12% of the total radioactivity as {sup 14}CO{sub 2}. In P. ostreatus, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the P. ostreatus fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanism involved in lignocellulose degradation.« less
Kinsman, Simon
1960-01-01
At present there are a large number of people capable of conducting the task of surface and area radiation monitoring including external monitoring of personnel. Once the extent and the intensity of radioactivity in an area is determined, good use of personnel can be made without too much risk. This is fortunate for the medical profession whose personnel can devote their talents to casualty care during or following nuclear warfare. Most individuals who know how to detect and measure the extent of radioactive contamination are also capable of conducting personnel decontamination operations and would do so if necessary. Consequently the spread of contamination can be minimized by adequate decontamination and the medical personnel can treat casualties who are relatively free of external radioactive contamination. The appropriate use of trained manpower and radiation detection equipment which are available in California combined with sufficient rehearsals prior to a nuclear war will greatly reduce any casualty damage due to radioactive fallout. The chances of survival of individuals can be greatly improved with a little knowledge of protection from radioactive contamination and of salvage of food and water. PMID:14409247
Niitsu, Tomihisa; Takaoka, Kota; Uemura, Saho; Kono, Akiko; Saito, Akihiko; Kawakami, Norito; Nakazato, Michiko; Shimizu, Eiji
2014-05-20
The psychological impact of dual-disasters (earthquakes and a nuclear accident), on affected communities is unknown. This study investigated the impact of a dual-disaster (earthquakes and radioactive contamination) on the prevalence of psychological distress in a landlocked city within the Tohoku area, Japan. A cross-sectional mail-in survey with a random sample of inhabitants from Ichinoseki city was conducted eleven months after the disasters, and data from 902 respondents were analyzed by logistic regression models, with multiple imputation methodology. The K6 was used to determine psychological distress. The estimated prevalence of psychological distress was 48.0 percent. House damage due to earthquakes and anxiety about radioactive contamination were significantly associated with psychological distress (p < 0.05), while an interactive effect between house damage and anxiety about radioactive contamination was not significant. Being female, middle-to-low educational status and unemployed were additional risk factors for psychological distress. This dual-disaster was associated with a moderate prevalence of psychological distress in the area. The impact of the earthquake and radioactive contamination appeared additive.
Ostroumova, Evgenia; Hatch, Maureen; Brenner, Alina; Nadyrov, Eldar; Veyalkin, Ilya; Polyanskaya, Olga; Yauseyenka, Vasilina; Polyakov, Semion; Levin, Leonid; Zablotska, Lydia; Rozhko, Alexander; Mabuchi, Kiyohiko
2016-01-01
Background While an increased risk of thyroid cancer from post-Chernobyl exposure to Iodine-131 (I-131) in children and adolescents has been well-documented, risks of other cancers or leukemia as a result of residence in radioactively contaminated areas remain uncertain. Methods We studied non-thyroid cancer incidence in a cohort of about 12,000 individuals from Belarus exposed under age of 18 years to Chernobyl fallout (median age at the time of Chernobyl accident of 7.9 years). During 15 years of follow-up from1997 through 2011, 54 incident cancers excluding thyroid were identified in the study cohort with 142,968 person-years at risk. We performed Standardized Incidence Ratio (SIR) analysis of all solid cancers excluding thyroid (n=42), of leukemia (n=6) and of lymphoma (n=6). Results We found no significant increase in the incidence of non-thyroid solid cancer (SIR=0.83, 95% Confidence Interval [CI]: 0.61; 1.11), lymphoma (SIR=0.66, 95% CI: 0.26; 1.33) or leukemia (SIR=1.78, 95% CI: 0.71; 3.61) in the study cohort as compared with the sex-, age- and calendar-time-specific national rates. These findings may in part reflect the relatively young age of study subjects (median attained age of 33.4years), and long latency for some radiation-related solid cancers. Conclusions We found no evidence of statistically significant increases in solid cancer, lymphoma and leukemia incidence 25 years after childhood exposure in the study cohort; however, it is important to continue follow-up non-thyroid cancers in individuals exposed to low-level radiation at radiosensitive ages. PMID:26851723
Ostroumova, Evgenia; Hatch, Maureen; Brenner, Alina; Nadyrov, Eldar; Veyalkin, Ilya; Polyanskaya, Olga; Yauseyenka, Vasilina; Polyakov, Semion; Levin, Leonid; Zablotska, Lydia; Rozhko, Alexander; Mabuchi, Kiyohiko
2016-05-01
While an increased risk of thyroid cancer from post-Chernobyl exposure to Iodine-131 (I-131) in children and adolescents has been well-documented, risks of other cancers or leukemia as a result of residence in radioactively contaminated areas remain uncertain. We studied non-thyroid cancer incidence in a cohort of about 12,000 individuals from Belarus exposed under age of 18 years to Chernobyl fallout (median age at the time of Chernobyl accident of 7.9 years). During 15 years of follow-up from1997 through 2011, 54 incident cancers excluding thyroid were identified in the study cohort with 142,968 person-years at risk. We performed Standardized Incidence Ratio (SIR) analysis of all solid cancers excluding thyroid (n=42), of leukemia (n=6) and of lymphoma (n=6). We found no significant increase in the incidence of non-thyroid solid cancer (SIR=0.83, 95% Confidence Interval [CI]: 0.61; 1.11), lymphoma (SIR=0.66, 95% CI: 0.26; 1.33) or leukemia (SIR=1.78, 95% CI: 0.71; 3.61) in the study cohort as compared with the sex-, age- and calendar-time-specific national rates. These findings may in part reflect the relatively young age of study subjects (median attained age of 33.4 years), and long latency for some radiation-related solid cancers. We found no evidence of statistically significant increases in solid cancer, lymphoma and leukemia incidence 25 years after childhood exposure in the study cohort; however, it is important to continue follow-up non-thyroid cancers in individuals exposed to low-level radiation at radiosensitive ages. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. B. Campbell
This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are locatedmore » in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are inactive or abandoned. However, some leachfields may still receive liquids from runoff during storm events. Results from the 2000-2001 site characterization activities conducted by International Technology (IT) Corporation, Las Vegas Office are documented in the Corrective Action Investigation Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. This document is located in Appendix A of the Corrective Action Decision Document for CAU 262. Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. (DOE/NV, 2001).« less
Chemical Technology Division annual technical report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battles, J.E.; Myles, K.M.; Laidler, J.J.
1993-06-01
In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Method for immobilizing radioactive iodine
Babad, Harry; Strachan, Denis M.
1980-01-01
Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.
Teaching about Radioactivity and Ionising Radiation: An Alternative Approach.
ERIC Educational Resources Information Center
Millar, Robin; And Others
1990-01-01
Children's ideas about radiation and radioactivity are reviewed and several common areas of misunderstanding are identified. An approach to teaching the topic at the secondary school level which seeks to specifically address known difficulties is outlined. (CW)
FFTF disposable solid waste cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, J. D.; Goetsch, S. D.
1983-01-01
Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less
Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, P.H.
The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.
Volume reduction of hot cell plastic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, F W; Henscheid, J P; Lewis, L C
1989-09-19
The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, Phil; Samuels, Sandy; Leee, Majelle
2002-09-01
This Annual Site Environmental Report (ASER) for 2001 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Boeing Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988,more » and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Closure of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2001 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway. No structural debris from buildings, released for unrestricted use, was transferred to municipal landfills or recycled in 2001.« less
The total amounts of radioactively contaminated materials in forests in Fukushima, Japan
Hashimoto, Shoji; Ugawa, Shin; Nanko, Kazuki; Shichi, Koji
2012-01-01
There has been leakage of radioactive materials from the Fukushima Daiichi Nuclear Power Plant. A heavily contaminated area (≥ 134, 137Cs 1000 kBq m−2) has been identified in the area northwest of the plant. The majority of the land in the contaminated area is forest. Here we report the amounts of biomass, litter (small organic matter on the surface of the soil), coarse woody litter, and soil in the contaminated forest area. The estimated overall volume and weight were 33 Mm3 (branches, leaves, litter, and coarse woody litter are not included) and 21 Tg (dry matter), respectively. Our results suggest that removing litter is an efficient method of decontamination. However, litter is being continuously decomposed, and contaminated leaves will continue to fall on the soil surface for several years; hence, the litter should be removed promptly but continuously before more radioactive elements are transferred into the soil. PMID:22639724
Aspermy, Sperm Quality and Radiation in Chernobyl Birds
Møller, Anders Pape; Bonisoli-Alquati, Andrea; Mousseau, Timothy A.; Rudolfsen, Geir
2014-01-01
Background Following the Chernobyl nuclear power plant accident, large amounts of radionuclides were emitted and spread in the environment. Animals living in such contaminated areas are predicted to suffer fitness costs including reductions in the quality and quantity of gametes. Methodology/Principal Findings We studied whether aspermy and sperm quality were affected by radioactive contamination by examining ejaculates from wild caught birds breeding in areas varying in background radiation level by more than three orders of magnitude around Chernobyl, Ukraine. The frequency of males with aspermy increased logarithmically with radiation level. While 18.4% of males from contaminated areas had no sperm that was only the case for 3.0% of males from uncontaminated control areas. Furthermore, there were negative relationships between sperm quality as reflected by reduced sperm velocity and motility, respectively, and radiation. Conclusions/Significance Our results suggest that radioactive contamination around Chernobyl affects sperm production and quality. We are the first to report an interspecific difference in sperm quality in relation to radioactive contamination. PMID:24963711
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
2011-03-01
The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Waste Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2010. This annual summary report presents data and conclusions from the FY 2010 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at themore » Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, Phil; Samuels, Sandy; Lee, Majelle
2001-09-01
This Annual Site Environmental Report (ASER) for 2000 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned company-operated, test facility within Area IV. All nuclear work was terminated in 1988, andmore » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2000 continue to indicate no significant releases of radioactive material from Rocketdyne sites. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway.« less
Radiation-induced microcrystal shape change as a mechanism of wasteform degradation
NASA Astrophysics Data System (ADS)
Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.
2018-04-01
Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.
10 CFR 60.71 - Records and reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Records... the Energy Reorganization Act. (b) Records of the receipt, handling, and disposition of radioactive waste at a geologic repository operations area shall contain sufficient information to provide a...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
NASA Astrophysics Data System (ADS)
Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.
2006-12-01
Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping
2011-09-15
A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site density) when using clay model. Moreover, increasing s/l ratio would produce more sorption sites, which helps to suppress the impact of heterogeneous surface on Cs sorption behavior under high pH environments. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcos, T.N.; Tadrous, N.A.; Borai, E.H.
2007-07-01
Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less
General classification of ``hot`` particles from the nearest Chernobyl contaminated areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabalev, S.I.; Burakov, B.E.; Anderson, E.B.
1997-12-31
The morphology and composition both chemical and radionuclide of the main types of the solid-phase hot particles formed following the accident on the Chernobyl NPP have been studied by SEM, electron microprobe and gamma-spectrometry methods. Differences in many isotopes including: {sup 106}Ru, {sup 134}Cs, {sup 137}Cs dependent upon the hot particle matrix chemical composition was observed. The classification of hot particles based upon the chemical composition of their matrices has been done. It includes three main types: (1) fuel particles with UO{sub x} matrix; (2) fuel-constructional particles with Zr-U-O matrix, (3) hot particles with metallic inclusions of Fe-Cr-Ni. Moreover, theremore » are more rare types of hot particles with silicate or metal matrices. It was shown that only metallic inclusions of Fe-Cr-Ni are concentrators of {sup 106}Ru, which caused this nuclides assimilation in the molten stainless steel during the initial stages of the accident. Soils contamination of non-radioactive lead oxide particles in the Chernobyl NPP region were noticed. It was supposed that part of metallic lead, dropped from helicopters into burning reactor during first days of accident, was evaporated and oxidized accompanying solid oxide particles formation.« less
Case studies in organic contaminant hydrogeology
NASA Astrophysics Data System (ADS)
Baker, John A.
1989-07-01
The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences over the world. This series of case studies of organic contaminants from both solid and hazardous waste disposal facilities provides examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The results of these studies and investigations by Waste Management Inc. (WMI) and its consultants have shown certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic charac teristics of each facility. In each of the case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells at the request of regulatory agencies. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of the organic compounds detected and these data are evaluated in each case study. The case studies are on disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. A brief discussion of groundwater quality impacts and remedial measures also is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaller, A.; Skanata, D.
1995-12-31
Site selection approach to radioactive waste disposal facility, which is under way in Croatia, is presented in the paper. This approach is based on application of certain relevant terrestrial and technical criteria in the site selection process. Basic documentation used for this purpose are regional planning documents prepared by the Regional Planning Institute of Croatia. The basic result of research described in the paper is the proposal of several potential areas which are suitable for siting a radioactive waste repository. All relevant conclusions are based on both data groups -- generic and on-field experienced (measured). Out of a dozen potentialmore » areas, four have been chosen as representative by the authors. The presented comparative analysis was made by means of the VISA II computer code, developed by the V. Belton and SPV Software Products. The code was donated to the APO by the IAEA. The main objective of the paper is to initiate and facilitate further discussions on possible ways of evaluation and comparison of potential areas for sitting of radioactive waste repository in this country, as well as to provide additional contributions to the current site selection process in the Republic of Croatia.« less
Collective doses to man from dumping of radioactive waste in the Arctic Seas.
Nielsen, S P; Iosjpe, M; Strand, P
1997-08-25
A box model for the dispersion of radionuclides in the marine environment covering the Arctic Ocean and the North Atlantic Ocean has been constructed. Collective doses from ingestion pathways have been calculated from unit releases of the radionuclides 3H, 60Co, 63Ni, 90Sr, 129I, 137Cs, 239Pu and 241Am into a fjord on the east coast of NovayaZemlya. The results show that doses for the shorter-lived radionuclides (e.g. 137Cs) are derived mainly from seafood production in the Barents Sea. Doses from the longer-lived radionuclides (e.g. 239Pu) are delivered through marine produce further away from the Arctic Ocean. Collective doses were calculated for two release scenarios, both of which are based on information of the dumping of radioactive waste in the Barents and Kara Seas by the former Soviet Union and on preliminary information from the International Arctic Sea Assessment Programme. A worst-case scenario was assumed according to which all radionuclides in liquid and solid radioactive waste were available for dispersion in the marine environment at the time of dumping. Release of radionuclides from spent nuclear fuel was assumed to take place by direct corrosion of the fuel ignoring the barriers that prevent direct contact between the fuel and the seawater. The second scenario selected assumed that releases of radionuclides from spent nuclear fuel do not occur until after failure of the protective barriers. All other liquid and solid radioactive waste was assumed to be available for dispersion at the time of discharge in both scenarios. The estimated collective dose for the worst-case scenario was about 9 manSv and that for the second scenario was about 3 manSv. In both cases, 137Cs is the radionuclide predicted to dominate the collective doses as well as the peak collective dose rates.
NASA Technical Reports Server (NTRS)
Haggerty, S. E.
1983-01-01
Stabilization techniques for the storage of radioactive wastes are surveyed, with emphasis on immobilization in a primary barrier of synthetic rock. The composition, half-life, and thermal-emission characteristics of the wastes are shown to require thermally stable immobilization enduring at least 100,000 years. Glass materials are determined to be incapable of withstanding the expected conditions, average temperatures of 100-500 C for the first 100 years. The geological-time stability of crystalline materials, ceramics or synthetic rocks, is examined in detail by comparing their components with similar naturally occurring minerals, especially those containing the same radioactive elements. The high-temperature environment over the first 100 years is seen as stabilizing, since it can recrystallize radiation-induced metamicts. The synthetic-rock stabilization technique is found to be essentially feasible, and improvements are suggested, including the substitution of nepheline with freudenbergite and priderite for alkaline-waste stabilization, the maintenance of low oxygen fugacity, and the dilution of the synthetic-rock pellets into an inert medium.
Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro
2017-11-01
Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (<1%). These results are significantly different from those obtained for the incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-06-01
This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal ofmore » suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.« less
Kaiser, M F; Aziz, A M; Ghieth, B M
2014-11-01
High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. Copyright © 2014 Elsevier Ltd. All rights reserved.
STUDIES ON LARGE AREA SUB-FABRIC BURNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkley, K.M.; Pearse, H.E.
1957-07-05
The detonation of shot one at Bikini Atoll on March 1, 1954, produced a fallout of radioactive ash upon Rongelap Atoll, Marshall Islands. The distribution of the radioactive ash on the islands and in the plants and animals of the area has been studied and evaluated. During the first expedition to Rongelap Atoll on March 26, 1954, biological samples were collected and measurements made of the radiation contamination. On three additional expeditions extensive collections of material were made for this study, the last on January 25-30, 1955. The decline in radioactivity was measured in 1499 samples of fish, invertebrates, landmore » plants, algae, birds, plankton, soil, and water from the Rongelap area. During this study particular emphasis was placed upon evaluation of the radioactivity in food used by the natives. Coconut milk collected on March 26, 1954, contained 1.03 microcuries per kilogram of wet tissue while the coconut meat had 1.16 mu c/kg. By January 25-30, 1955, the level in coconut milk had declined to 0.041 mu c/kg and the meat to 0.036 mu c/ kg. Fish muscle on March 26, 1954, averaged 2.74 mu c/kg and fish liver 204.0 mu c/kg. The decline to January 25-30 was 0.10 mu c/kg for the muscle and 3.52 mu c/kg for the liver of fish. Somewhat similar declines were found for clam muscle, crab muscle, bird muscle and liver, and for squash, papaya, arrowroot and pandanus. The level of radioactivity was highest in the northern portion of the atoll, except for samples of algae and fish-eating birds, collected during January 1955 from the southern part of the atoll, which had higher levels of radioactivity than samples collected from the northern islands on the same date. This may indicate a translocation of radioactive materials within the lagoon. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasan, Darsh T.
2007-10-09
The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2014-12-02
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annualmore » summaries for FY 2014.« less
Popple, T; Williams, J B; May, E; Mills, G A; Oliver, R
2016-01-01
Pharmaceuticals are frequently detected in the aquatic environment, and have potentially damaging effects. Effluents from sewage treatment plants (STPs) are major sources of these substances. The use of sequencing batch reactor (SBR) STPs, involving cycling between aerobic and anoxic conditions to promote nitrification and denitrification, is increasing but these have yet to be understood in terms of removal of pharmaceutical residues. This study reports on the development of a laboratory rig to simulate a SBR. The rig was used to investigate the fate of radiolabelled propranolol. This is a commonly prescribed beta blocker, but with unresolved fate in STPs. The SBR rig (4.5 L) was operated on an 8 h batch cycle with settled sewage. Effective treatment was demonstrated, with clearly distinct treatment phases and evidence of nitrogen removal. Radiolabelled (14)C-propranolol was dosed into both single (closed) and continuous (flow-through) simulations over 13 SBR cycles. Radioactivity in CO2 off-gas, biomass and liquid was monitored, along with the characteristics of the sewage. This allowed apparent rate constants and coefficients for biodegradation and solid:water partitioning to be determined. Extrapolation from off-gas radioactivity measurements in the single dose 4-d study suggested that propranolol fell outside the definitions of being readily biodegradable (DegT50 = 9.1 d; 60% biodegradation at 12.0 d). During continuous dosing, 63-72% of propranolol was removed in the rig, but less than 4% of dose recovered as (14)CO2, suggesting that biodegradation was a minor process (Kbiol(M) L kg d(-1) = 22-49) and that adsorption onto solids dominated, giving rise to accumulations within biomass during the 17 d solid retention time in the SBR. Estimations of adsorption isotherm coefficients were different depending on which of three generally accepted denominators representing sorption sites was used (mixed liquor suspended solids, reactor COD or mass of waste activated sludge). With further development and evaluation, the rig developed for simulating SBR processes has potential to be used for informing better environmental risk assessments for those pharmaceuticals showing ambiguous results in field fate studies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kleeschulte, M.J.; Emmett, L.F.
1986-01-01
The Weldon Spring Chemical Plant is located just north of the drainage divide separating the Mississippi River and the Missouri River in St. Charles County, Missouri. From 1957 to 1966 the plant converted uranium-ore concentrates and recycled scrap to pure uranium trioxide, uranium tetrafluoride, and uranium metal. Residues from these operations were pumped to four large pits that had been excavated near the plant. Small springs and losing streams are present in the area. Water overlying the residue in the pits has a large concentration of dissolved solids and a different chemical composition compared to the native groundwater and surface water. This difference is indicated by the concentrations of calcium, sodium, sulfate, nitrate, fluoride, uranium, radium, lithium, molybdenum, strontium, and vanadium, all of which are greater than natural or background concentrations. Water from Burgermeister Spring, located about 1.5 miles north of the chemical plant area, contains uranium and nitrate concentrations greater than background concentrations. Groundwater in the shallow bedrock aquifer moves northward from the vicinity of the chemical plant toward Dardenne Creek. An abandoned limestone quarry several miles southwest of the chemical plant also has been used for the disposal of radioactive waste and rubble. Groundwater flow from the quarry area is southward through the alluvium, away from the quarry and toward the Missouri River. The St. Charles County well field is located in the Missouri River flood plain near the quarry and the large yield wells are open to the Missouri River alluvial aquifer. Water from a well 4,000 ft southeast of the quarry was analyzed; there was no indication of contamination from the quarry. Additional water quality and water level data are needed to determine if water from the quarry moves toward the well field. Observation wells need to be installed in the area between the chemical plant, pits, and Dardenne Creek. The wells would be used to provide access for measurements of depth to ground water and for the collection of water samples from the shallow bedrock aquifer. (Lantz-PTT)
Yasui, Shojiro
2014-01-01
The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011 released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work. In April 2012, the Nuclear Emergency Response Headquarters (NERH) started dividing the restricted areas into three sub-areas based on the ambient dose rate. In accordance with the rearrangement of the restricted area, NERH decided to allow resumption of business activities, including manufacturing and farming, as well as operation of hospitals, welfare facilities, and shops and related subordinate tasks, such as maintenance, repair, and transportation. As a result, the government needed regulations for radiation protection for workers engaged in those activities. The issues that arose in the deliberation of the regulations were distilled into two points: 1) whether radiation protection systems established for a planned exposure situation should apply to construction and agricultural work activities in an existing exposure situation, and 2) how to simplify the regulation in accordance with the nature of the work activities. Further research and development concerning the following issues are warranted: a) the relationship between the radioactive concentrations of materials handled and the risk of internal exposure, and b) the relationship between the radioactive concentration of the soil and the surface contamination level.
Final repository for Denmark's low- and intermediate level radioactive waste
NASA Astrophysics Data System (ADS)
Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.
2012-12-01
Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Risø should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Risø, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stritar, A.
Slovenia is a relatively small European country with only one operating nuclear power plant, one operating research reactor and one Central Interim Storage for Radioactive Waste from small producers. There are also a uranium mine and mill at Zirovski vrh, both in the decommissioning stage. The Slovenian Government, its public and neighboring countries are most interested in the managing of radioactive waste in the safest possible way by carefully utilizing best practices and existing human and financial resources. In order to achieve this goal the tight connection with the international community in the area of radioactive waste management is essential.more » Slovenia was among those countries involved in the process of preparation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) from the very beginning and was also among first ratifiers. Slovenia had prepared the first report under the Convention and took part in the first Review Meeting in November 2003. The preparation of this report was not regarded only as a fulfillment of obligation toward Joint Convention, but was considered primarily as a kind of self appraisal of the national radioactive management program. Therefore the preparation of the report primarily contributed to the improvements in the field of radioactive waste management and consequently enhanced the safety of our public. For the preparation of the second report for the review meeting in 2006 it was decided to follow the structure of the first report. Only updates were introduced and eventual changes in the area of radioactive waste management were reflected. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson
The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...
Code of Federal Regulations, 2011 CFR
2011-01-01
... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...
Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.
1990-01-01
A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)
NASA Astrophysics Data System (ADS)
Kaniu, M. I.; Angeyo, K. H.; Darby, I. G.
2018-05-01
Characterized by a variety of rock formations, namely alkaline, igneous and sedimentary that contain significant deposits of monazite and pyrochlore ores, the south coastal region of Kenya may be regarded as highly heterogeneous with regard to its geochemistry, mineralogy as well as geological morphology. The region is one of the several alkaline carbonatite complexes of Kenya that are associated with high natural background radiation and therefore radioactivity anomaly. However, this high background radiation (HBR) anomaly has hardly been systematically assessed and delineated with regard to the spatial, geological, geochemical as well as anthropogenic variability and co-dependencies. We conducted wide-ranging in-situ gamma-ray spectrometric measurements in this area. The goal of the study was to assess the radiation exposure as well as determine the underlying natural radioactivity levels in the region. In this paper we report the occurrence, exploratory analysis and modeling to assess the multivariate geo-dependence and spatial variability of the radioactivity and associated radiation exposure. Unsupervised principal component analysis and ternary plots were utilized in the study. It was observed that areas which exhibit HBR anomalies are located along the south coast paved road and in the Mrima-Kiruku complex. These areas showed a trend towards enhanced levels of 232Th and 238U and low 40K. The spatial variability of the radioactivity anomaly was found to be mainly constrained by anthropogenic activities, underlying geology and geochemical processes in the terrestrial environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2003-09-30
This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and,more » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.« less
Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki
2013-01-01
The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight 134Cs and 607,000 Bq kg−1 dry weight 137Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil. PMID:24256969
Liu, Xinhua; Wei, Fangxin; Xu, Chunyan; Liao, Yunxuan; Jiang, Jing
2015-09-01
The proper classification of radioactive waste is the basis upon which to define its disposal method. In view of differences between waste containing artificial radionuclides and waste with naturally occurring radionuclides, the scientific definition of the properties of waste arising from the front end of the uranium fuel cycle (UF Waste) is the key to dispose of such waste. This paper is intended to introduce briefly the policy and practice to dispose of such waste in China and some foreign countries, explore how to solve the dilemma facing such waste, analyze in detail the compositions and properties of such waste, and finally put forward a new concept of classifying such waste as waste with naturally occurring radionuclides.
Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.
2014-11-15
Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essentialmore » elements of a feed delivery strategy that drives the Hanford clean-up mission.« less
Matti, Jonathan C.; Cox, Brett F.; Rodriguez, Eduardo A.; Obi, Curtis M.; Powell, Robert E.; Hinkle, Margaret E.; Griscom, Andrew; Sabine, Charles; Cwick, Gary J.
1982-01-01
Geological, geochemical, and geophysical evidence, together with a review of historical mining and prospecting activities, suggests that most of the Bighorn Mountains Wilderness Study Area has low potential for the discovery of all types of mineral and energy resources-including precious and base metals, building stone and aggregate, fossil fuels, radioactive-mineral resources, and geothermal resources. Low-grade mineralization has been documented in one small area near Rattlesnake Canyon, and this area has low to moderate potential for future small-scale exploration and development of precious and base metals. Thorium and uranium enrichment have been documented in two small areas in the eastern part of the wilderness study area; these two areas have low to moderate potential for future small-scale exploration and development of radioactive-mineral resources.
RADIOACTIVE OBJECT AND METHOD OF MAKING SAME
Dorfman, L.M.; Shipko, F.J.
1959-09-01
A process is described for depositing an adherent coating of tritiated cuprene upon a solid body at the bottom of a vessel by introductng an atmosphere into the vessel containing a large fraction of tritiated acetylene whereby tritiated cuprene forms by polymerizing action and is deposited on the body by the action of gravity. An adherent, evenly distributed coating is obtained.
Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muguercia, I.; Yang, G.; Ebadian, M.A.
The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.
Radioactivity concentrations in soils in the Qingdao area, China.
Qu, Limei; Yao, De; Cong, Pifu; Xia, Ning
2008-10-01
The specific activity concentrations of radionuclides (238)U, (232)Th, and (40)K of 2300 sampling points in the Qingdao area were measured by an FD-3022 gamma-ray spectrometer. The radioactivity concentrations of (238)U, (232)Th, and (40)K ranged from 3.3 to 185.3, from 6.9 to 157.2, and from 115.8 to 7834.4 Bq kg(-1), respectively. The air-absorbed dose at 1 meter above ground, effective annual dose, external hazard index, and radium equivalent activity were also calculated to systematically evaluate the radiological hazards of the natural radioactivity in Qingdao. The air-absorbed dose, effective annual dose, external hazard index, and radium equivalent activity in the study area were 98.6 nGy h(-1), 0.12 mSv, 0.56, 197 Bq kg(-1), respectively. Compared with the worldwide value, the air-absorbed dose is slightly high, but the other factors are all lower than the recommended value. The natural external exposure will not pose significant radiological threat to the population. In conclusion, the Qingdao area is safe with regard to the radiological level and suitable for living.
NASA Astrophysics Data System (ADS)
Yamauchi, M.; Takeda, M.; Makino, M.; Owada, T.
2012-04-01
The nuclear accident at the Fukushima Dai-ichi Nuclear Power Plant in March 2011 contaminated an area of more than 100 km in diameter by radioactive material with amount of about 10-20% of that by the Chernobyl accident. According to the Chernobyl experience, a part of fallout radionuclide is expected to be re-suspended by wind, causing possible risk of internal dose. However, this re-suspension process and its amounts have not been studied very much due to the difficulty of direct measurement of low-density dusts. To estimate forms and periods of the re-suspension of the radioactive fallout, we used both the radiation dose rate data and vertical (downward) component of the DC electric field near the ground, or potential gradient (PG) at Kakioka, 150 km away from the accident site. The data indicates: (1) During 14-15 March, the radioactive dust is most likely suspended in the air near the ground. (2) During 2-7 UT on 16 March, the radioactive dust is most likely blown up from the surface by the strong wind from the non-contaminated area. (3) During 16-20 March, the radioactive dust most likely stayed re-suspended. (4) After the wet contamination on 20 March until late April, the radioactive fallout on the ground are re-suspended during daytime by daily convection due to sunshine, and transported to downwind direction. (5) At more than 30 km distance from the accident site, the re-suspension most likely ceased by the end of April. However, no data is available within 20 km distance from the accident site. Yamauchi, et al. (2012): Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement, Ann. Geophys., 30, 49-56, doi:10.5194/angeo-30-49-2012. Yamauchi (2012): Secondary wind transport of radioactive materials after the Fukushima accident, Earth Planet Space, accepted for publication.
Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
2007-07-01
A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range,more » including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area.« less
Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.
1993-01-01
A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.
Quality of ground water in Idaho
Yee, Johnson J.; Souza, William R.
1987-01-01
The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.
Wedow, Helmuth
1956-01-01
In the period 1945-1954 over 100 investigations for radioactive source materials were made in Alaska. The nature of these investigations ranged from field examinations of individual prospects or the laboratory analysis of significantly radioactive samples submitted by prospectors to reconnaissance studies of large districts. In this period no deposits of uranium or thorium that would warrant commercial exploitation were discovered. The investigations, however, disclosed that radioactive materials occur in widely scattered areas of Alaska and in widely diverse environments. Many igneous rocks throughout Alaska are weakly radioactive because of uranium- and thorium-bearing accessory minerals, such as allanite, apatite, monazite, sphene, xenotime, and zircon; more rarely the radioactivity of these rocks is due to thorianite or thorite and their uranoan varieties. The felsic rocks, for example, granites and syenites, are generally more radioactive than the mafic igneous rocks. Pegmatites, locally, have also proved to be radioactive, but they have little commercial significance. No primary uranium oxide minerals have been found yet in Alaskan vein deposits, except, perhaps, for a mineral tentatively identified as pitchblende in the Hyder district of southeastern Alaska. However, certain occurrences of secondary uranium minerals, chiefly those of the uranite group, on the Seward Peninsula, in the Russian Mountains, and in the vicinity of Kodiak suggest that pitchblende-type ores may occur at depth beneath zones of alteration. Thorite-bearing veins have been discovered on Prince of Wales Island in southeastern Alaska. Although no deposits or carnotite-type minerals have been found in Alaska, several samples containing such minerals have been submitted by Alaskan prospectors. Efforts to locate the deposits from which these minerals were obtained have been unsuccessful, but review of available geologic data suggests that several Alaskan areas are potentially favorable for carnotite-type deposits. The chief of these areas is the Alaska Peninsula-Cook Inlet area which encompasses most of the reported occurrences of the prospectors' carnotite-type samples. Alaska is also potentially favorable for the occurrence of large bodies of the very low-grade uraniferous sedimentary rocks, such as phosphorites and black shales. This type of deposit, however, has not received much study because of the emphasis on the search for bonanza-type high-grade ores. Uraniferous phosphorites similar to those of Idaho, Montana, and Wyoming occur in northern Alaska on the north flank of the Brooks Range; black shales comparable to the uraniferous shales of the Chattanooga formation of southeastern United States have been noted along the Yukon River near the international boundary. Placer deposits in Alaska have some small potential for the production of the radioactive elements as byproducts of gold- and tin-placer mining. the placer area believed to have the relatively greatest potential in Alaska lies in the Kahiltna River valley where concentrates are known to contain such commercial minerals as ilmenite, cassiterite, platinum, and gold in addition to uranothorianite and monazite. The possibilities of the natural fluids--water and petroleum--have not yet been tested in Alaska to any great extent. Studies of fluids are in progress to determine whether they may be used to discover and define areas potentially favorable for the occurrence of uraniferous lodes.
A review of post-nuclear-catastrophe management
NASA Astrophysics Data System (ADS)
Nifenecker, Hervé
2015-07-01
The purpose of this paper is to make radioactive risk more generally understandable. To that end, we compare it to smoking tobacco. Further, we show that the concept of loss of life expectancy permits a quantitative comparison between various aggressions. The demystification of radioactive risk should lead to basic changes in post-catastrophe management, allowing victims to choose whether or not to leave contaminated areas. A less emotional appreciation of radioactive risks should lead to the adaptation of legal practices when dealing with probabilistic situations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controlled area must not exceed 0.25 mSv (25 mrem) to the whole body, 0.75 mSv (75 mrem) to the thyroid and 0... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...
Code of Federal Regulations, 2010 CFR
2010-01-01
... controlled area must not exceed 0.25 mSv (25 mrem) to the whole body, 0.75 mSv (75 mrem) to the thyroid and 0... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{submore » 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.« less
Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia
2007-07-01
Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241more » migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)« less
NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun
2017-01-01
This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308
Nakamura, Satoshi; Imamichi, Shoji; Masumoto, Kazuyoshi; Ito, Masashi; Wakita, Akihisa; Okamoto, Hiroyuki; Nishioka, Shie; Iijima, Kotaro; Kobayashi, Kazuma; Abe, Yoshihisa; Igaki, Hiroshi; Kurita, Kazuyoshi; Nishio, Teiji; Masutani, Mitsuko; Itami, Jun
2017-01-01
This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24 Na, 38 Cl, 80m Br, 82 Br, 56 Mn, and 42 K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 10 2 , (2.2 ± 0.1) × 10 1 , (3.4 ± 0.4) × 10 2 , 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 10 1 Bq/g/mA, respectively. The 24 Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system.
Heavy Metals and Radioactivity Reduction from Acid Mine Drainage Lime Neutralized Sludge
NASA Astrophysics Data System (ADS)
Mashifana, T.; Sithole, N.
2018-03-01
The worldwide known treatment processes of acid mine drainage result into the formation of hydrous ferric oxides that is amorphous, poorly crystalline and into the generation of hazardous voluminous sludge posing threat to the environment. Applicable treatment technologies to treat hazardous solid material and produce useful products are limited and in most cases nonexistence. A chemical treatment process utilizing different reagents was developed to treat hazardous acid mine drainage (AMD) sludge with the objectives to conduct radioactivity assessment of the sludge generated from lime treatment process and determine the reagent that provides the best results. Leaching with 0.5 M citric acid, 0.4 M oxalic acid, 0.5 M sodium carbonate and 0.5 M sodium bicarbonate was investigated. The leaching time applied was 24 hours at 25 °C. The characterization of the raw AMD revealed that the AMD sludge from lime treatment process is radioactive. The sludge was laden with radioactive elements namely, 238U, 214Pb, 226Ra, 232Th, 40K and 214Bi. 0.5 M citric acid provided the best results and the hazardous contaminants were significantly reduced. The constituents in the sludge after treatment revealed that there is a great potential for the sludge to be used for other applications such as building and construction.
Murad, A; Zhou, X D; Yi, P; Alshamsi, D; Aldahan, A; Hou, X L; Yu, Z B
2014-10-01
Groundwater is the most valuable resource in arid regions, and recognizing radiological criteria among other water quality parameters is essential for sustainable use. In the investigation presented here, gross-α and gross-β were measured in groundwater samples collected in the south-eastern Arabian Peninsula, 67 wells in Unite Arab Emirates (UAE), as well as two wells and one spring in Oman. The results show a wide gross-α and gross-β activities range in the groundwater samples that vary at 0.01∼19.5 Bq/l and 0.13∼6.6 Bq/l, respectively. The data show gross-β and gross-α values below the WHO permissible limits for drinking water in the majority of the investigated samples except those in region 4 (Jabel Hafit and surroundings). No correlation between groundwater pH and the gross-α and gross-β, while high temperatures probably enhance leaching of radionuclides from the aquifer body and thereby increase the radioactivity in the groundwater. This conclusion is also supported by the positive correlation between radioactivity and amount of total dissolved solid. Particular water purification technology and environmental impact assessments are essential for sustainable and secure use of the groundwater in regions that show radioactivity values far above the WHO permissible limit for drinking water.
Capture of Tritium Released from Cladding in the Zirconium Recycle Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Barry B.; Walker, T. B.; Bruffey, Stephanie H.
2016-08-31
This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-basedmore » cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman-Pollard, J.R.
1994-03-02
This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less
NASA Astrophysics Data System (ADS)
Jing, Zhenzi; Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian; Jin, Fangming
2017-05-01
Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6-5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiva, Isabel; Trindade, Romao B.
Council Directive 2011/70/EURATOM of 19 July 2011, establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste will enter in force August 2013 in all EU Member States. Portugal has already started preparing its legislative framework to accommodate the new legislative piece. However, the first report of Portugal to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management of the IAEA, in Vienna, 2012, has shown that Portugal still has many steps to overcome to establish a successful and effective basic regulatory framework. The existencemore » of many competent authorities related to the radiological protection area and a newly independent commission that is still looking on how to fulfill its regulator role in other areas such as the radioactive waste management makes quite challenging the full application of the new directive as well as compliance that Portugal will have to show in the next Joint Convention review meeting in order to meet the obligations of the Convention. In this paper, the reality of the regulatory Portuguese framework on radiological protection, nuclear safety and radioactive waste management is presented. Discussion of the future impact of the new legislation and its consequences such as the need to setup the national program on radioactive waste management is critical discussed. (authors)« less
The development of radioactive sample surrogates for training and exercises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martha Finck; Bevin Brush; Dick Jansen
2012-03-01
The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Membersmore » from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.« less
Tribological properties of surfaces
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
The real area of contact between two solid surfaces is only a small portion of the apparent area. Deformation of these areas can result in solid state contact through surface films. For clean solid to solid contact strong adhesive bonding occurs across the interface. Under these conditions many properties of the solid such as the metallurgical and chemical nature of metals can influence adhesion, friction, and wear behavior. The presence of gases, liquids, and solid films on the surface of solids alter markedly tribological characteristics. These surface films can also considerably change the mechanical effects of solid state contact on bulk material behavior.
Evaluation of municipal solid waste management in egyptian rural areas.
El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K
2009-01-01
A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation in solid waste management through the composting of organic matter and using of food waste as an animal feed are considered strength points. However, throwing of solid waste on the banks of water streams, open dumping and uncontrolled burning of solid waste are environmental damaging behaviors that need to be changed. Integrated solid waste management in the Egyptian rural areas is not yet among the priorities of the Egyptian government.
Boll, Rose Ann; Matos, Milan; Torrico, Matthew N.
2015-03-27
Electrodeposition is a technique that is routinely employed in nuclear research for the preparation of thin solid films of actinide materials which can be used in accelerator beam bombardments, irradiation studies, or as radioactive sources. The present study investigates the deposition of both lanthanides and actinides from an aqueous ammonium acetate electrolyte matrix. Electrodepositions were performed primarily on stainless steel disks; with yield analysis evaluated using -spectroscopy. Experimental parameters were studied and modified in order to optimize the uniformity and adherence of the deposition while maximizing the yield. The initial development utilized samarium as the plating material, with and withoutmore » a radioactive tracer. As a result, surface characterization studies were performed by scanning electron microscopy, electron microprobe analysis, radiographic imaging, and x-ray diffraction.« less
Synthesis of tritium labelled endomorphin II and its stability in the radioreceptor assay
NASA Astrophysics Data System (ADS)
Tömböly, Cs.; Spetea, M.; Borsodi, A.; Tóth, G.
1999-01-01
Endomorphine I (Tyr-Pro-Trp-Phe-NH2) and endomorphin II (Tyr-Pro-Phe-Phe-NH2) are recently isolated neuropeptides. They have the highest specificity and affinity for the μ-opiate receptor among all the endogenous substances so far described, and they may be natural ligands for this receptor [1]. We prepared the [3H] endomorphin II with high specific radioactivity (53.4 Ci/mmol) by catalytic dehalotritiation. The precursor [(3,5-I2)Tyr1]-endomorphin II was synthesized by solid phase peptide synthesis using Boc chemistry. Labelled endomorphin II was used to investigate its binding properties in rat brain membrane. The stability of [3H]endomorphin II toward enzymatic degradation in membrane preparation was examined by RP-HPLC and by using a radioactivity detector.
Medical Effects of a Transuranic "Dirty Bomb".
Durakovic, Asaf
2017-03-01
The modern military battlefields are characterized by the use of nonconventional weapons such as encountered in the conflicts of the Gulf War I and Gulf War II. Recent warfare in Iraq, Afghanistan, and the Balkans has introduced radioactive weapons to the modern war zone scenarios. This presents the military medicine with a new area of radioactive warfare with the potential large scale contamination of military and civilian targets with the variety of radioactive isotopes further enhanced by the clandestine use of radioactive materials in the terrorist radioactive warfare. Radioactive dispersal devices (RDDs), including the "dirty bomb," involve the use of organotropic radioisotopes such as iodine 131, cesium 137, strontium 90, and transuranic elements. Some of the current studies of RDDs involve large-scale medical effects, social and economic disruption of the society, logistics of casualty management, cleanup, and transportation preparedness, still insufficiently addressed by the environmental and mass casualty medicine. The consequences of a dirty bomb, particularly in the terrorist use in urban areas, are a subject of international studies of multiple agencies involved in the management of disaster medicine. The long-term somatic and genetic impact of some from among over 400 radioisotopes released in the nuclear fission include somatic and transgenerational genetic effects with the potential challenges of the genomic stability of the biosphere. The global contamination is additionally heightened by the presence of transuranic elements in the modern warzone, including depleted uranium recently found to contain plutonium 239, possibly the most dangerous substance known to man with one pound of plutonium capable of causing 8 billion cancers. The planning for the consequences of radioactive dirty bomb are being currently studied in reference to the alkaline earths, osteotropic, and stem cell hazards of internally deposited radioactive isotopes, in particular uranium and transuranic elements. The spread of radioactive materials in the area of the impact would expose both military and civilian personnel to the blast and dust with both inhalational, somatic, and gastrointestinal exposure, in the aftermath of the deployment of RDDs. The quantities of radioactive materials have proliferated from the original quantity of plutonium first isolated in 1941 from 0.5 mg to the current tens of thousands of kilograms in the strategic nuclear arsenal with the obvious potential consequences to the biosphere and mankind. In an event of RDD employment, the immediate goal of disaster and mass casualty medicine would be a synchronized effort to contain the scope of the event, followed by cleanup and treatment procedures. A pragmatic approach to this problem is not always possible because of unpredictability of the terrorist-use scenarios. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Trask, Newell J.
1994-01-01
Concern with the threat posed by terrestrial asteroid and comet impacts has heightened as the catastrophic consequences of such events have become better appreciated. Although the probabilities of such impacts are very small, a reasonable question for debate is whether such phenomena should be taken into account in deciding policy for the management of spent fuel and high-level radioactive waste. The rate at which asteroid or comet impacts would affect areas of surface storage of radioactive waste is about the same as the estimated rate at which volcanic activity would affect the Yucca Mountain area. The Underground Retrievable Storage (URS) concept could satisfactorily reduce the risk from cosmic impact with its associated uncertainties in addition to providing other benefits described by previous authors.
Measurement of radon exhalation rate in various building materials and soil samples
NASA Astrophysics Data System (ADS)
Bala, Pankaj; Kumar, Vinod; Mehra, Rohit
2017-03-01
Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.
Radioactive waste management in a hospital.
Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa
2010-01-01
Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.
Thorn, M C; Kelly, M; Rees, J H; Sánchez-Friera, P; Calvez, M
2002-09-01
Bioaccumulation and dosimetric models have been developed that allow the computation of dose rates to a wide variety of plants and animals in the context of the deep geological disposal of solid radioactive wastes. These dose rates can be compared with the threshold dose rates at which significant deleterious effects have been observed in field and laboratory observations. This provides a general indication of whether effects on ecosystems could be observable, but does not quantify the level of those effects. To address this latter issue, two indicator organisms were identified and exposure-response relationships were developed for endpoints of potential interest (mortality in conifers and the induction of skeletal malformations in rodents irradiated in utero). The bioaccumulation, dosimetry and exposure-response models were implemented and used to evaluate the potential significance of radionuclide releases from a proposed deep geological repository for radioactive wastes in France. This evaluation was undertaken in the context of a programme of assessment studies being performed by the Agence nationale pour la gestion des déchets radioactifs (ANDRA).
Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abitz, R.J.
1996-12-31
Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less
Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland.
Brennwald, M S; van Dorp, F
2009-12-01
Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.
Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; King, W.; Hay, M.
Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less
Minouflet, Marion; Ayrault, Sophie; Badot, Pierre-Marie; Cotelle, Sylvie; Ferard, Jean-François
2005-01-01
Since the middle of the 20th century, ionizing radiations from radioactive isotopes including 137Cs have been investigated to determine their genotoxic impact on living organisms. The present study was designed to compare the effectiveness of three plant bioassays to assess DNA damage induced by low doses of 137Cs: Vicia-micronucleus test (Vicia-MCN), Tradescantia-micronucleus test (Trad-MCN) and Tradescantia-stamen-hair mutation test (Trad-SH) were used. Vicia faba (broad bean) and Tradescantia clone 4430 (spiderwort) were exposed to 137Cs according to different scenarios: external and internal (contamination) irradiations. Experiments were conducted with various levels of radioactivity in solution or in soil, using solid or liquid 137Cs sources. The three bioassays showed different sensitivities to the treatments. Trad-MCN appeared to be the most sensitive test (significative response from 1.5 kBq/200 ml after 30 h of contamination). Moreover, at comparable doses, internal irradiations led to larger effects for the three bioassays. These bioassays are effective tests for assessing the genotoxic effects of radioactive 137Cs pollution.
A Retrieval System for Radioactive Target Materials at the NIF
NASA Astrophysics Data System (ADS)
Krieger, M.; Shibata, K.; Fallica, J.; Henchen, R.; Pogozelski, E.; Padalino, S.; Sangster, T. C.; Suny Collaboration; Laboratory Collaboration
2011-10-01
Currently, solid radioactive material collection from the NIF target chamber is performed via the DIM. The retrieval process takes several hours to complete. To decrease this time for short lived radioisotopes, the Target Materials Retrieval System (TMRS) is being designed to move a radioactive sample from the target chamber to the counting station in less than 50 seconds, using a closed-loop helium filled RaPToRS system. The TMRS consists of three components: the retrieval apparatus, RaPToRS and the counting station. Starting at 0.5 meters from TCC, the sample will move from the vacuum chamber, travel through 60 meters of 10 centimeter diameter RaPToRS tubes, reaching speeds of 10 m/s. The sample will then arrive at the counting station, where it be robotically placed in front of a gamma ray detector. The use of helium will decrease background gamma radiation produced by activated N2 normally found in a pressurized air system. This work was supported in part by the US Department of Energy through the LLE.
Rubin, Leslie S.
1986-01-01
A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.
Soares, Daniel Crístian Ferreira; Cardoso, Valbert Nascimento; de Barros, André Luís Branco; de Souza, Cristina Maria; Cassali, Geovanni Dantas; de Oliveira, Mônica Cristina; Ramaldes, Gilson Andrade
2012-01-23
In the present study, PEG-coated pH-sensitive and PEG-folate-coated pH-sensitive liposomes containing the ¹⁵⁹Gd-DTPA-BMA were prepared and radiolabeled through neutron activation technique, aiming to study the in vivo antitumoral activity and toxicity on mice bearing a previously-developed solid Ehrlich tumor. The treatment efficacy was verified through tumoral volume increase and histomorphometry studies. The toxicity of formulations was investigated through animal weight variations, as well as hematological and biochemical tests. The results showed that after 31 days of treatment, animals treated with radioactive formulations had a lower increase in tumor volume and a significantly higher percentage of necrosis compared with controls revealed by histomorphometry studies. Furthermore, mice treated with radioactive formulations exhibited lower weight gain without significant hematological or biochemical changes, except for toxicity to hepatocytes which requires more detailed studies. From the results obtained to date, we believe that the radioactive formulations can be considered potential therapeutic agents for cancer. Copyright © 2011 Elsevier B.V. All rights reserved.
Yan, Wei-Liang; Lv, Jin-Shuang; Guan, Zhi-Yu; Wang, Li-Yang; Yang, Jing-Kui; Liang, Ji-Xiang
2017-05-01
Computed tomography (CT)-guided percutaneous implantation of 125 Iodine radioactive seeds requires the precise arrangement of seeds by tumor shape. We tested whether selecting target areas, including subclinical areas around tumors, can influence locoregional recurrence in patients with non-small cell lung cancer (NSCLC). We divided 82 patients with NSCLC into two groups. Target areas in group 1 (n = 40) were defined along tumor margins based on lung-window CT. Target areas in group 2 (n = 42) were extended by 0.5 cm in all dimensions outside tumor margins. Preoperative plans for both groups were based on a treatment plan system, which guided 125 I seed implantation. Six months later, patients underwent chest CT to evaluate treatment efficacy (per Response Evaluation Criteria in Solid Tumors version 1). We compared locoregional recurrences between the groups after a year of follow-up. We then used the treatment plan system to extend target areas for group 1 patients by 0.5 cm (defined as group 3 data) and compared these hypothetical group 3 planned seeds with the actual seed numbers used in group 1 patients. All patients successfully underwent implantation; none died during the follow-up period. Recurrence was significantly lower in group 2 than in group 1 ( P < 0.05). Group 1 patients and group 3 data significantly differed in seed numbers ( P < 0.01). Our results imply that extending the implantation area for 125 I seeds can decrease recurrence risk by eradicating cancerous lymph-duct blockades within the extended areas. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Salmani-Ghabeshi, S; Palomo-Marín, M R; Bernalte, E; Rueda-Holgado, F; Miró-Rodríguez, C; Cereceda-Balic, F; Fadic, X; Vidal, V; Funes, M; Pinilla-Gil, E
2016-11-01
The Punchuncaví Valley in central Chile, heavily affected by a range of anthropogenic emissions from a localized industrial complex, has been studied as a model environment for evaluating the spatial gradient of human health risk, which are mainly caused by trace elemental pollutants in soil. Soil elemental profiles in 121 samples from five selected locations representing different degrees of impact from the industrial source were used for human risk estimation. Distance to source dependent cumulative non-carcinogenic hazard indexes above 1 for children (max 4.4 - min 1.5) were found in the study area, ingestion being the most relevant risk pathway. The significance of health risk differences within the study area was confirmed by statistical analysis (ANOVA and HCA) of individual hazard index values at the five sampling locations. As was the dominant factor causing unacceptable carcinogenic risk levels for children (<10 -4 ) at the two sampling locations which are closer to the industrial complex, whereas the risk was just in the tolerable range (10 -6 - 10 -4 ) for children and adults in the rest of the sampling locations at the study area. Furthermore, we assessed gamma ray radiation external hazard indexes and annual effective dose rate from the natural radioactivity elements ( 226 Ra, 232 Th and 40 K) levels in the surface soils of the study area. The highest average values for the specific activity of 232 Th (31 Bq kg -1 ), 40 K (615 Bq kg - 1 ), and 226 Ra (25 Bq kg -1 ) are lower than limit recommended by OECD, so no significant radioactive risk was detected within the study area. In addition, no significant variability of radioactive risk was observed among sampling locations. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P.; Hamilton-Brehm, Scott D.; Fisher, Jenny C.
Due to the legacy of Cold War nuclear weapons testing, the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project, cooperative actions between the Desert Research Institute (DRI), the Nevada Field Office of the National Nuclear Security Administration (NNSA), the Underground Test Area Activity (UGTA), and contractors such as Navarro-Interra (NI), were required. Ultimately, fluids from 17more » boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS, the adjacent Nevada Test and Training Range (NTTR), and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge, intermediate, and discharge zones of a 100,000-km2 internally-draining province, known as the Death Valley Regional Flow System (DVRFS), which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone), Yucca and Frenchman Flats (transitional zone), and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters, aqueous geochemistry, and microbial communities using both DNA- and cultivation-based tools in an effort to understand the drivers of microbial community structure (including radioactivity) and microbial interactions with select radionuclides and other factors across the range of habitats surveyed.« less
Thermodynamic Models for Aqueous Alteration Coupled with Volume and Pressure Changes in Asteroids
NASA Technical Reports Server (NTRS)
Mironenko, M. V.; Zolotov, M. Y.
2005-01-01
All major classes of chondrites show signs of alteration on their parent bodies (asteroids). The prevalence of oxidation and hydration in alteration pathways implies that water was the major reactant. Sublimation and melting of water ice, generation of gases, formation of aqueous solutions, alteration of primary minerals and glasses and formation of secondary solids in interior parts of asteroids was likely to be driven by heat from the radioactive decay of short-lived radionuclides. Progress of alteration reactions should have affected masses and volumes of solids, and aqueous and gas phases. In turn, pressure evolution should have been controlled by changes in volumes and temperatures, escape processes, and production/ consumption of gases.
Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing
Gay, E.C.
1995-10-03
An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.
Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing
Gay, Eddie C.
1995-01-01
An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.
Generation of electrical power
Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.
1976-01-01
A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.
Monk, G.S.
1959-01-13
An optical system is presented that is suitable for viewing objects in a region of relatively high radioactivity, or high neutron activity, such as a neutronic reactor. This optical system will absorb neutrons and gamma rays thereby protecting personnel fronm the harmful biological effects of such penetrating radiations. The optical system is comprised of a viewing tube having a lens at one end, a transparent solid member at the other end and a transparent aqueous liquid completely filling the tube between the ends. The lens is made of a polymerized organic material and the transparent solid member is made of a radiation absorbent material. A shield surrounds the tube betwcen the flanges and is made of a gamma ray absorbing material.
Storage containers for radioactive material
Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.
1981-01-01
A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or
Forensic microanalysis of Manhattan Project legacy radioactive wastes in St. Louis, MO.
Kaltofen, Marco; Alvarez, Robert; Hixson, Lucas W
2018-06-01
Radioactive particulate matter (RPM) in St Louis, MO, area surface soils, house dusts and sediments was examined by scanning electron microscopy with energy dispersive X-ray analysis. Analyses found RPM containing 238 U and decay products (up to 46 wt%), and a distinct second form of RPM containing 230 Th and decay products (up to 15.6 wt%). The SEM-EDS analyses found similar RPM in Manhattan Project-era radioactive wastes and indoor dusts in surrounding homes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bedinger, M.S.; Sargent, K.A.; Langer, William H.
1990-01-01
The Bonneville region of the Basin and Range province in westcentral Utah and adjacent Nevada includes several basins lying south of the Great Salt Lake Desert. Physiographically, the region consists of linear, north-trending mountain ranges separated by valleys, many of which are closed basins underlain by thick sequences of fill. Surface drainage of open basins and ground-water flow is to the Great Salt Lake Desert. In structure and composition the ranges are faulted Paleozoic rocks, locally intruded by Mesozoic and Tertiary plugs and stocks. In the southern and northeastern parts of the region, volcanic rocks are widespread and form large parts of some mountain ranges. The Paleozoic sedimentary rocks include great thicknesses of carbonate rocks which compose a significant aquifer in the regionMedia considered to have potential for isolation of high-level radioactive waste in the region include intrusive rocks, such as granite; ash-flow tuff; and basalt and basaltic andesite lava flows. These rock types, basin fill, and possibly other rock types, may have potential as host media in the unsaturated zone. Quaternary tectonism in the region is evidenced by seismic activity, local areas of above-normal geothermal heat flow, Quaternary faulting, late Cenozoic volcanic activity, and active vertical crustal movement. The Bonneville region is part of a large ground-water flow system that is integrated partly through basin-fill deposits, but largely through an underlying carbonate-rock sequence. The region includes: (1) several topographically closed basins with virtually no local surface discharge that are drained by the underlying carbonate-rock aquifer; (2) closed basins with local surface discharge by evapotranspiration; and (3) basins open to the Great Salt Lake Desert that discharge by groundwater underflow and evapotranspiration. The carbonate-rock aquifer discharges to large springs in the Desert and in basins tributary to the Desert. The climate is arid to semiarid with the greatest precipitation in the mountain ranges. Most recharge probably occurs by infiltration of runoff as it leaves the mountains, although some recharge probably occurs directly to the carbonate rocks in the mountain areas. The concentration of dissolved solids in ground water is generally less than 500 milligrams per liter. Dissolved-solids concentrations increase in the Great Salt Lake Desert and in major valleys adjoining the Desert. The predominant chemical constituents in ground water are calcium, magnesium, and sodium bicarbonate. Chloride-type water is associated with the higher dissolved-solids content of water in and near the Great Salt Lake Desert. The majority of the mineral occurrences containing base- and precious-metal deposits in the Bonneville region are of Tertiary age. Fluorspar is the primary industrial mineral. Coal, oil, and gas have not been produced in significant amounts.
Sorption of radioactive contaminants by sediment from the Kara Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuhrmann, M.; Zhou, H.; Neiheisel, J.
1995-02-01
The purpose of this study is to quantify some of the parameters needed to perform near-field modeling of sites in the Kara Sea that were impacted by the disposal of radioactive waste. The parameters of interest are: the distribution coefficients (K{sub d}) for several important radionuclides, the mineralogy of the sediment, and the relationship of K{sub d} to liquid to solid ratio. Sediment from the Kara Sea (location: 73{degrees} 00` N, 58{degrees} 00` E) was sampled from a depth of 287 meters on August 23/24, 1992, during a joint Russian/Norwegian scientific cruise. Analysis of the material included mineralogy, grain sizemore » and total organic carbon. Uptake kinetics were determined for {sup 85}Sr, {sup 99}Tc, {sup 125}I, {sup 137}Cs, {sup 210}Pb, {sup 232}U, and {sup 241}Am and distribution coefficients (K{sub d}) were determined for these radionuclides using batch type experiments. Sorption isotherms were developed for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs to examine the effect that varying the concentration of a tracer has on the quantity of that tracer taken up by the solid. The effect of liquid to solid ratio on the uptake of contaminants was determined for {sup 99}Tc and {sup 137}Cs. In another set of experiments, the sediment was separated into four size fractions and uptake was determined for each fraction for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs. In addition, the sediment was analyzed to determine if it contains observable concentrations of anthropogenic radionuclides.« less
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Weick, H.; Iwase, H.; Geissel, H.; Hoffmann, D. H. H.; Kindler, B.; Lommel, B.; Radon, T.; Münzenberg, G.; Shutov, A.; Sümmerer, K.; Winkler, M.
2005-06-01
A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump.
300 Area dangerous waste tank management system: Compliance plan approach. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixedmore » waste.« less
Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M
2013-06-01
This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences the application of the protection system over the different phases in the life time of a disposal facility is the level of oversight or 'watchful care' that is present. The level of oversight affects the capability to control the source, i.e. the waste and the repository, and to avoid or reduce potential exposures. Three main time frames are considered: time of direct oversight, when the disposal facility is being implemented and is under active supervision; time of indirect oversight, when the disposal facility is sealed and oversight is being exercised by regulators or special administrative bodies or society at large to provide additional assurance on behalf of society; and time of no oversight, when oversight is no longer exercised in case memory of the disposal facility is lost. Copyright © 2013. Published by Elsevier Ltd.
Unique Regulatory Approach for Licensing the Port Hope Remediation Project in Canada - 13315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, M.; Howard, D.; Elder, P.
2013-07-01
The Port Hope remediation project is a part of a larger initiative of the Canadian Federal Government the Port Hope Area Initiative (PHAI) which is based upon a community proposal. The Government of Canada, through Natural Resources Canada (NRCan) is investing $1.28 billion over 10 years to clean up historic low-level radioactive waste in the Port Hope Area and to provide long-term safe management of the low-level radioactive wastes in the Port Hope Area. These wastes arose from the activities of a former Federal Crown Corporation (Eldorado Nuclear) and its private sector predecessors. In Canada, historic waste are defined asmore » low-level radioactive waste that was managed in a manner no longer considered acceptable, but for which the original producer cannot reasonably be held responsible or no longer exists and for which the Federal Government has accepted responsibility. In Canada, under the current regulatory framework, the environmental remediation is not considered as a distinct phase of the nuclear cycle. The regulatory approach for dealing with existing sites contaminated with radioactive residues is defined on the basis of risk and application of existing regulations. A unique regulatory approach was taken by the Canadian Nuclear Safety Commission (CNSC) to address the various licensing issues and to set out the requirements for licensing of the Port Hope Project within the current regulatory framework. (authors)« less
Methods for determination of radioactive substances in water and fluvial sediments
Thatcher, Leland Lincoln; Janzer, Victor J.; Edwards, Kenneth W.
1977-01-01
Analytical methods for the determination of some of the more important components of fission or neutron activation product radioactivity and of natural radioactivity found in water are reported. The report for each analytical method includes conditions for application of the method, a summary of the method, interferences, required apparatus and reagents, analytical procedures, calculations, reporting of results, and estimation of precision. The fission product isotopes considered are cesium-137, strontium-90, and ruthenium-106. The natural radioelements and isotopes considered are uranium, lead-210, radium-226, radium-228, tritium, and carbon-14. A gross radioactivity survey method and a uranium isotope ratio method are given. When two analytical methods are in routine use for an individual isotope, both methods are reported with identification of the specific areas of application of each. Techniques for the collection and preservation of water samples to be analyzed for radioactivity are discussed.
Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finster, Molly; Clark, Corrie; Schroeder, Jenna
2015-10-01
Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less
Soils: man-caused radioactivity and radiation forecast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gablin, Vassily
2007-07-01
Available in abstract form only. Full text of publication follows: One of the main tasks of the radiation safety guarantee is non-admission of the excess over critical radiation levels. In Russia they are man-caused radiation levels. Meanwhile any radiation measurement represents total radioactivity. That is why it is hard to assess natural and man-caused contributions to total radioactivity. It is shown that soil radioactivity depends on natural factors including radioactivity of rocks and cosmic radiation as well as man-caused factors including nuclear and non-nuclear technologies. Whole totality of these factors includes unpredictable (non-deterministic) factors - nuclear explosions and radiation accidents,more » and predictable ones (deterministic) - all the rest. Deterministic factors represent background radioactivity whose trends is the base of the radiation forecast. Non-deterministic factors represent man-caused radiation treatment contribution which is to be controlled. This contribution is equal to the difference in measured radioactivity and radiation background. The way of calculation of background radioactivity is proposed. Contemporary soils are complicated technologically influenced systems with multi-leveled spatial and temporary inhomogeneity of radionuclides distribution. Generally analysis area can be characterized by any set of factors of soil radioactivity including natural and man-caused factors. Natural factors are cosmic radiation and radioactivity of rocks. Man-caused factors are shown on Fig. 1. It is obvious that man-caused radioactivity is due to both artificial and natural emitters. Any result of radiation measurement represents total radioactivity i.e. the sum of activities resulting from natural and man-caused emitters. There is no gauge which could separately measure natural and man-caused radioactivity. That is why it is so hard to assess natural and man-caused contributions to soil radioactivity. It would have been possible if human activity had led to contamination of soil only by artificial radionuclides. But we can view a totality of soil radioactivity factors in the following way. (author)« less
Review and Implementation of Technology for Solid Radioactive Waste Volume Reduction
1999-10-15
were shifted to Project 1.1 for spent nuclear fuel cask development to accelerate that project. Those funds should be repaid to Project 1.3 in the... transported between the shipyards such as Nerpa, and other intermediate storage sites such as Gremikha and Andreeva Bay. At these sites the largest...waste source and allow pretreatment unit operations using commercially available technologies of contaminant assaying, cutting/shearing, sorting
Safety analysis report for packaging (onsite) steel drum
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, W.A.
This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.
Micrometer-level naked-eye detection of caesium particulates in the solid state
NASA Astrophysics Data System (ADS)
Mori, Taizo; Akamatsu, Masaaki; Okamoto, Ken; Sumita, Masato; Tateyama, Yoshitaka; Sakai, Hideki; Hill, Jonathan P.; Abe, Masahiko; Ariga, Katsuhiko
2013-02-01
Large amounts of radioactive material were released from the Fukushima Daiichi nuclear plant in Japan, contaminating the local environment. During the early stages of such nuclear accidents, iodine I-131 (half-life 8.02 d) is usually detectable in the surrounding atmosphere and bodies of water. On the other hand, in the long-term, soil and water contamination by Cs-137, which has a half-life of 30.17 years, is a serious problem. In Japan, the government is planning and carrying out radioactive decontamination operations not only with public agencies but also non-governmental organizations, making radiation measurements within Japan. If caesium (also radiocaesium) could be detected by the naked eye then its environmental remediation would be facilitated. Supramolecular material approaches, such as host-guest chemistry, are useful in the design of high-resolution molecular sensors and can be used to convert molecular-recognition processes into optical signals. In this work, we have developed molecular materials (here, phenols) as an optical probe for caesium cation-containing particles with implementation based on simple spray-on reagents and a commonly available fluorescent lamp for naked-eye detection in the solid state. This chemical optical probe provides a higher spatial resolution than existing radioscopes and gamma-ray cameras.
Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Preedy, O; Read, D
2017-07-01
The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH) 2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO 2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 μm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G
2012-06-05
Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.
NASA Astrophysics Data System (ADS)
Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki
2018-05-01
The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.
Mehta, Samata; Verstraelen, Hans; Peremans, Kathelijne; Villeirs, Geert; Vermeire, Simon; De Vos, Filip; Mehuys, Els; Remon, Jean Paul; Vervaet, Chris
2012-04-15
For any new vaginal dosage form, the distribution and retention in the vagina has to be assessed by in vivo evaluation. We evaluated the vaginal distribution and retention of starch-based pellets in sheep as live animal model by gamma scintigraphy (using Indium-111 DTPA as radiolabel) and in women via magnetic resonance imaging (MRI, using a gadolinium chelate as contrast agent). A conventional cream formulation was used as reference in both studies. Cream and pellets were administered to sheep (n=6) in a two period-two treatment study and to healthy female volunteers (n=6) via a randomized crossover trial. Pellets (filled into hard gelatin capsule) and cetomacrogol cream, both labeled with Indium-111 DTPA (for gamma scintigraphy) or with gadolinium chelate (for MRI) were evaluated for their intravaginal distribution and retention over a 24h period. Spreading in the vagina was assessed based on the part of the vagina covered with formulation (expressed in relation to the total vaginal length). Vaginal retention of the formulation was quantified based on the radioactivity remaining in the vaginal area (sheep study), or qualitatively evaluated (women study). Both trials indicated a rapid distribution of the cream within the vagina as complete coverage of the vaginal mucosa was seen 1h after dose administration. Clearance of the cream was rapid: about 10% activity remained in the vaginal area of the sheep 12h post-administration, while after 8h only a thin layer of cream was detected on the vaginal mucosa of women. After disintegration of the hard gelatin capsule, the pellet formulation gradually distributed over the entire vaginal mucosa. Residence time of the pellets in the vagina was longer compared to the semi-solid formulation: after 24h 23 ± 7% radioactivity was detected in the vaginal area of the sheep, while in women the pellet formulation was still detected throughout the vagina. A multi-particulate system containing starch-based pellets was identified as a promising novel vaginal drug delivery system, resulting in complete coverage of the vaginal mucosa and long retention time. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Shott, Vefa Yucel, Lloyd Desotell
2008-05-01
This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limitedmore » quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a reasonable expectation that the TRU in T04C can meet all the requirements of 40 CFR 191. Therefore, inadvertent disposal of a limited quantity of TRU in a shallow land burial trench at the Area 5 RWMS does not pose a significant risk to the public and the environment.« less
Glass microspheres for medical applications
NASA Astrophysics Data System (ADS)
Conzone, Samuel David
Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass microspheres containing 3.7 GBq of 186Re and 8.5 GBq of 188Re could be used to deliver a 100 Gy dose to a cancerous tumor, while limiting the total body dose caused by rhenium dissolution to approximately 1 mGy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less
Survey of Costs Arising From Potential Radionuclide Scattering Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luna, R.E.; Pe, Ph.D.; Yoshimura, H.R.
The potential effects from scattering radioactive materials in public places include health, social, and economic consequences. These are substantial consequences relative to potential terror activities that include use of radioactive material dispersal devices (RDDs). Such an event with radionuclides released and deposited on surfaces outside and inside people's residences and places of work, commerce, and recreation will require decisions on how to recover from the event. One aspect of those decisions will be the cost to clean up the residual radioactive contamination to make the area functional again versus abandonment and/or razing and rebuilding. Development of cleanup processes have beenmore » the subject of experiment from the beginning of the nuclear age, but formalized cost breakdowns are relatively rare and mostly applicable to long term releases in non-public sites. Pre-event cleanup cost estimation of cost for cleanup of radioactive materials released to the public environment is an issue that has seen sporadic activity over the last 20 to 30 years. This paper will briefly review several of the more important efforts to estimate the costs of remediation or razing and reconstruction of radioactively contaminated areas. The cost estimates for such recoveries will be compared in terms of 2005 dollars for the sake of consistency. Dependence of cost estimates on population density and needed degree of decontamination will be shown to be quite strong in the overall presentation of the data. (authors)« less
A new route to the stable capture and final immobilization of radioactive cesium.
Yang, Jae Hwan; Han, Ahreum; Yoon, Joo Young; Park, Hwan-Seo; Cho, Yung-Zun
2017-10-05
Radioactive Cs released from damaged fuel materials in the event of nuclear accidents must be controlled to prevent the spreading of hazardous Cs into the environment. This study describes a simple and novel process to safely manage Cs gas by capturing it within ceramic filters and converting it into monolithic waste forms. The results of Cs trapping tests showed that CsAlSiO 4 was a reaction product of gas-solid reactions between Cs gas and our ceramic filters. Monolithic waste forms were readily prepared from the Cs-trapping filters by the addition of a glass frit followed by thermal treatment at 1000°C for 3h. Major findings revealed that the Cs-trapping filters could be added up to 50wt% to form durable monoliths. In 30-50wt% of waste fraction, CsAlSiO 4 was completely converted to pollucite (CsAlSi 2 O 6 ), which is a potential phase for radioactive Cs due to its excellent thermal and chemical stability. A static leaching test for 28 d confirmed the excellent chemical resistance of the pollucite structure, with a Cs leaching rate as low as 7.21×10 -5 gm -2 /d. This simple scheme of waste processing promises a new route for radioactive Cs immobilization by synthesizing pollucite-based monoliths. Copyright © 2017 Elsevier B.V. All rights reserved.
Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilk, A.J.; Robertson, D.E.; Thomas, C.W.
1993-03-01
The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public tomore » such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions, trace metals, Eh, pH, alkalinity and dissolved oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumova, Evgenia, E-mail: ostroumovae@iarc.fr; Hatch, Maureen, E-mail: hatchm@mail.nih.gov; Brenner, Alina, E-mail: brennera@mail.nih.gov
Background: While an increased risk of thyroid cancer from post-Chernobyl exposure to Iodine-131 (I-131) in children and adolescents has been well-documented, risks of other cancers or leukemia as a result of residence in radioactively contaminated areas remain uncertain. Methods: We studied non-thyroid cancer incidence in a cohort of about 12,000 individuals from Belarus exposed under age of 18 years to Chernobyl fallout (median age at the time of Chernobyl accident of 7.9 years). During 15 years of follow-up from1997 through 2011, 54 incident cancers excluding thyroid were identified in the study cohort with 142,968 person-years at risk. We performed Standardizedmore » Incidence Ratio (SIR) analysis of all solid cancers excluding thyroid (n=42), of leukemia (n=6) and of lymphoma (n=6). Results: We found no significant increase in the incidence of non-thyroid solid cancer (SIR=0.83, 95% Confidence Interval [CI]: 0.61; 1.11), lymphoma (SIR=0.66, 95% CI: 0.26; 1.33) or leukemia (SIR=1.78, 95% CI: 0.71; 3.61) in the study cohort as compared with the sex-, age- and calendar-time-specific national rates. These findings may in part reflect the relatively young age of study subjects (median attained age of 33.4 years), and long latency for some radiation-related solid cancers. Conclusions: We found no evidence of statistically significant increases in solid cancer, lymphoma and leukemia incidence 25 years after childhood exposure in the study cohort; however, it is important to continue follow-up non-thyroid cancers in individuals exposed to low-level radiation at radiosensitive ages. - Highlights: • We monitor cancers in a Belarusian cohort of exposed as children due to Chernobyl. • No increase in solid cancer rates was found as compared to the national rates. • An elevation of leukemia rates was detected, although statistically insignificant. • Results are consistent with those in a cohort of exposed as children in Ukraine. • Further monitoring of cancer situation in this cohort is warranted.« less
Yamazaki, Hideo
2017-01-01
Radioactive contamination in the Tokyo metropolitan area in the immediate aftermath of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident was analyzed via surface soil sampled during a two-month period after the accident. 131I, 134Cs, and 137Cs were detected in these soil samples. The activity and inventory of radioactive material in the eastern part of Tokyo tended to be high. The 134Cs/137Cs activity ratio in soil was 0.978 ± 0.053. The 131I/137Cs ratio fluctuated widely, and was 19.7 ± 9.0 (weighted average 18.71 ± 0.13, n = 14) in the Tokyo metropolitan area. The radioactive plume with high 131I activity spread into the Tokyo metropolitan area and was higher than the weighted average of 6.07 ± 0.04 (n = 26) in other areas. The radiocesium activity and inventory surveyed in soil from a garden in Chiyoda Ward in the center of Tokyo, fell approximately 85% in the four months after the accident, and subsequently tended to rise slightly while fluctuating widely. It is possible that migration and redistribution of radiocesium occurred. The behavior of radiocesium in Tokyo was analyzed via monitoring of radiocesium in sludge incineration ash. The radiocesium activity in the incineration ash was high at wastewater treatment centers that had catchment areas in eastern Tokyo and low at those with catchment areas in western Tokyo. Similar to the case of the garden soil, even in incineration ash, the radiocesium activity dropped rapidly immediately after the accident. The radiocesium activity in the incineration ash fell steadily from the tenth month after the accident until December 2016, and its half-life was about 500 days. According to frequency analysis, in central Tokyo, the cycles of fluctuation of radiocesium activity in incineration ash and rainfall conformed, clearly showing that radiocesium deposited in urban areas was resuspended and transported by rainfall run-off. PMID:29136641
Secondary wind transport of radioactive materials after the Fukushima accident
NASA Astrophysics Data System (ADS)
Yamauchi, M.
2012-01-01
Data from the radiation monitoring network surrounding the Fukushima Dai-ichi Nuclear Power Plant (FNPP) revealed that the radiation levels generally decayed faster at a highly-contaminated area than at neighboring moderately-contaminated areas during the first month after the Fukushima nuclear accident in March, 2011. Two possible mechanisms are considered: secondary transport of radioactive dust by wind or rain, and nonuniform radionuclide ratio of contamination between radioiodine (131I) and radiocesium (134Cs and 137Cs). The composition data from soil does not favor the latter scenario, except for the local coastal region south of the FNPP, while inter-regional transport from the highly-contaminated area to the moderately-contaminated areas explains both the general difference in the decay rate in the entire area and the relatively slow decay at a high-dose rate anomaly 40 km northwest of the FNPP.
Solids Erosion Patterns Developed by Pulse Jet Mixers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A.; Pease, Leonard F.; Minette, Michael J.
Millions of gallons of radioactive waste are stored in underground storage tanks at the Hanford Site in Washington State. This waste will be vitrified at the Waste Treatment and Immobilization Plant that is under construction. Vessels in the pretreatment portion of the plant are being configured for processing waste slurries with challenging physical and rheological properties that range from Newtonian slurries to non-Newtonian sludge. Pulse jet mixing technology has been selected for mobilizing and mixing this waste. In the pulse jet mixing process, slurry is expelled from pulse tube nozzles directed towards the vessel floor. The expelled fluid forms amore » radial jet that erodes the settled layer of solids. The pulse tubes are configured in a ring or multiple rings and operate concurrently. The expelled fluid and mobilized solids traverse toward the center of the tank. At the tank center the jets from pulse tubes in the ring collide and lift solids upward in a central plume. At the end of the pulse, when the desired fluid volume is expelled from the pulse tube, the applied pressure switches to suction and the pulse tube is refilled. This cycle is used to mobilize and mix the tank contents. An initial step of the process is the erosion of solids from the vessel floor by the radial jets that form on the vessel flow beneath each pulse tube. Experiments have been conducted using simulants to evaluate the ability of the pulse jet mixing system radial jets to combine to develop the central upwell and lift solids into the vessel. These experiments have been conducted at three scales using a range of granular simulants over a range of concentrations. The vessels have elliptical, spherical, or flanged and dished bottoms. Process parameters evaluated include the velocity of fluid expelled from the pulse tube, the duration of the pulse and the duty cycle, the ratio of pulse duration to cycle time. Videos taken from beneath the vessel show the growth of the cleared area from each pulse tube as a function of time. All solids are lifted from the vessel bottom when the system is operating at the critical suspension velocity. The focus of this paper is to compare and contrast erosion patterns developed from different simulants and pulse tube configurations. The cases are evaluated to determine how changes in process parameters affects the PJM ability to mobilize solids from the vessel floor.« less
10 CFR 835.603 - Radiological areas and radioactive material areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 835.603 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Posting and Labeling § 835... provided in this section. (a) Radiation area. The words “Caution, Radiation Area” shall be posted at each radiation area. (b) High radiation area. The words “Caution, High Radiation Area” or “Danger, High Radiation...
10 CFR 835.603 - Radiological areas and radioactive material areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 835.603 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Posting and Labeling § 835... provided in this section. (a) Radiation area. The words “Caution, Radiation Area” shall be posted at each radiation area. (b) High radiation area. The words “Caution, High Radiation Area” or “Danger, High Radiation...
10 CFR 835.603 - Radiological areas and radioactive material areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 835.603 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Posting and Labeling § 835... provided in this section. (a) Radiation area. The words “Caution, Radiation Area” shall be posted at each radiation area. (b) High radiation area. The words “Caution, High Radiation Area” or “Danger, High Radiation...
10 CFR 835.603 - Radiological areas and radioactive material areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 835.603 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Posting and Labeling § 835... provided in this section. (a) Radiation area. The words “Caution, Radiation Area” shall be posted at each radiation area. (b) High radiation area. The words “Caution, High Radiation Area” or “Danger, High Radiation...
Method and apparatus for separating radionuclides from non-radionuclides
Harp, Richard J.
1990-01-01
In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.
Radioactive fallout reconstruction from contemporary measurements of reservoir sediments.
Krey, P W; Heit, M; Miller, K M
1990-11-01
The temporal history of atmospheric deposition to a watershed area can be preserved in the sediment of a lake or reservoir that is supplied by the watershed. The 137Cs and isotopic Pu concentrations with depth were determined in the sediments of two reservoirs, Enterprise and Deer Creek, which are located in widely separated regions of the state of Utah. Our data not only reconstruct the history of the total radioactive fallout in the area, but also permit estimating the contributions from global sources and from the Nevada Test Site detonations in the 1950s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Kauss
2011-06-01
This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 539: Areas 25 and 26 Railroad Tracks, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 539 are located within Areas 25 and 26 of the Nevada National Security Site. Corrective Action Unit 539 comprises the following CASs: • 25-99-21, Area 25 Railroad Tracksmore » • 26-99-05, Area 26 Railroad Tracks The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 539 were met. To achieve this, the following actions were performed: • Reviewed documentation on historical and current site conditions, including the concentration and extent of contamination. • Conducted radiological walkover surveys of railroad tracks in both Areas 25 and 26. • Collected ballast and soil samples and calculated internal dose estimates for radiological releases. • Collected in situ thermoluminescent dosimeter measurements and calculated external dose estimates for radiological releases. • Removed lead bricks as potential source material (PSM) and collected verification samples. • Implemented corrective actions as necessary to protect human health and the environment. • Properly disposed of corrective action and investigation wastes. • Implemented an FFACO use restriction (UR) for radiological contamination at CAS 25-99-21. The approved UR form and map are provided in Appendix F and will be filed in the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Facility Information Management System; the FFACO database; and the NNSA/NSO CAU/CAS files. From November 29, 2010, through May 2, 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 539. Assessment of the data generated from closure activities revealed the following: • At CAS 26-99-05, the total effective dose for radiological releases did not exceed the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at three locations. A corrective action of clean closure was implemented at these locations, and verification samples indicated that no further action is necessary. • At CAS 25-99-21, the total effective dose for radiological releases exceeds the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at eight locations. A corrective action was implemented by removing the lead bricks and soil above FALs at these locations, and verification samples indicated that no further action is necessary. Pieces of debris with high radioactivity were identified as PSM and remain within the CAS boundary. A corrective action of closure in place with a UR was implemented at this CAS because closure activities showed evidence of remaining soil contamination and radioactive PSM. Future land use will be restricted from surface and intrusive activities. Closure activities generated waste streams consisting of industrial solid waste, recyclable materials, low-level radioactive waste, and mixed low-level radioactive waste. Wastes were disposed of in the appropriate onsite landfills. The NNSA/NSO provides the following recommendations: • Clean closure is required at CAS 26-99-05. • Closure in place is required at CAS 25-99-21. • A UR is required at CAS 25-99-21. • A Notice of Completion to the NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 539. • Corrective Action Unit 539 should be moved from Appendix III to Appendix IV of the FFACO.« less
Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Aminuddin, Siti Fatimah; Oshita, Kazuyuki; Fujimori, Takashi
2017-11-01
Environmentally sound treatments are required to dispose of municipal solid waste incineration fly ash (MSWIFA) contaminated with radioactive cesium (Cs) from the Fukushima Daiichi nuclear power plant accident in Japan. This study focuses on the stabilization of Cs using an alkali-activated MSWIFA and pyophyllite-based system. Three composite solid products were synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. Three types of MSWIFAs were prepared as raw fly ash, raw fly ash with 0.1% CsCl, and raw fly ash with 40% CsCl to understand the stabilization mechanism of Cs. Cs stabilization in two solid products was successful, with less than 6.9% leaching observed from two types tests, and was partly successful for the solid product with the highest concentration of Cs. X-ray diffraction showed that all of the solid products produced several crystalline phases, and that pollucite was formed in the highest Cs concentration product. The X-ray absorption fine structure and scanning electron microscopy with X-ray analysis suggested that most Cs species formed pollucite in the two solid products from MSWIFA with added CsCl. This system provides a technique for the direct stabilization of Cs in MSWIFA. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.; Orr, W.C.; Katz, L.
Cerium(III) ion in a barium chloride flux does not readily exchangs with any of the ions in solid BaZrO/sub 3/ or BaTiO/sub 3/. It reacts to form new solid phases, which are identified, and does not enter the original crystal lattices at an appreciable rate. The strontium was found to exchange at a measurable rate with barium in BaTiO/sub 3/ and with the corresponding ions in alkaline-earth zirconates. Results of a series of equilibrium and rate measurements were interpreted to ahow that the exchange produces an additional solid phase, SrTiO/sub 3/, rather than the mixed phase, or solid solution, thatmore » ndght have been expected. The significance of this observation is discussed. The self-exchange of yttnium ions between a solid compound of yttrium and an alkali chloride flux in which yttrium chloride is dissolved appears in the systems studied to depend primaaily on the solubility of the solid. Exchange is rapid and complete in the case of yttrium oxychlonide, which is soluble to the extent of 0.6%, but is limited to the surface of yttrium chromium oxide, which has no measurable solubility in the flux. The introduction of yttrium ion vacancies in the lattice of yttrium chromium oxide has no detectable effect in promoting exchange. (For preceding period see NYO-3279.) (auth)« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... geologic repository operations area. 63.112 Section 63.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical... repository operations area. The preclosure safety analysis of the geologic repository operations area must...
Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, Jhon T.; Krenzien, Susan K.
2013-07-01
The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)
Imanaka, Tetsuji; Fukutani, Satoshi; Yamamoto, Masayoshi; Sakaguchi, Aya; Hoshi, Masaharu
2005-12-01
In relation to the efforts to reconstruct the radiation dose in Dolon village, which was affected by the first USSR atomic bomb test in 1949 at the Semipalatinsk nuclear test site, the width and the center-axis location of the radioactive plume were investigated based on the soil contamination data around Dolon and the nearby villages. Assuming that the radioactive plume passed over along a straight line from the ground zero point to this area, the spatial distributions of soil contamination were plotted as a function of the perpendicular distance from the supposed center-axis of the plume. In total 83 and 52 soil contamination data were available for 137Cs and 239,240Pu, respectively. The plotted distribution formed a peak-like shape both for 137Cs and 239,240Pu. A Gaussian function drawn so as to envelop the points plotted for 239,240Pu indicated that the central part of the radioactive plume passed over the residential area of Dolon with a sigma value of 1.5 km. Additional soil contamination data around Dolon and other villages are necessary for more detailed discussion.
Radioactive Waste Management in A Hospital
Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA
2010-01-01
Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524
NASA Astrophysics Data System (ADS)
Yamakawa, Emi; Yoshimoto, Masahiro; Kinsho, Michikazu
At the injection area of the RCS ring in the J-PARC, residual gamma dose at the rectangular ceramic ducts, especially immediately downstream of the charge-exchanged foil, has increased with the output beam power. In order to investigate the cause of high residual activities, residual gamma dose and radioactive sources produced at the exterior surface of the ducts have been measured by a GM survey meter and a handy type of Germanium (Ge) semiconductor detector in the case of 181 MeV injected proton beam energy. With these measurements, it is revealed that the radioactive sources produced by nuclear reactions cause the high activities at the injection area. For a better understanding of phenomena in the injection area, various simulations have been done with the PHITS Monte Carlo code. The distribution of radioactive sources and residual gamma dose rate obtained by the calculations are consistent with the measurement results. With this consistency, secondary neutrons and protons derived from nuclear reactions at the charge-exchanged foil are the dominant cause to high residual gamma dose at the ceramic ducts in the injection area. These measurements and calculations are unique approaches to reveal the cause of high residual dose around the foil. This study is essential for the future of high-intensity proton accelerators using a stripping foil.
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control... transfer of removable contamination to locations outside of radiological areas under normal operating conditions. (b) Any area in which contamination levels exceed the values specified in appendix D of this part...
10 CFR 60.130 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.130 General... for a high-level radioactive waste repository at a geologic repository operations area, and an... geologic repository operations area, must include the principal design criteria for a proposed facility...
[Ecological and economic approaches to removing radioactively dangerous objects from service].
Korenkov, I P; Lashchenova, T N; Neveĭkin, P P; Shandala, N K; Veselov, E I; Maksimova, O A
2011-01-01
The paper considers major ecological and economic problems when removing radiation dangerous objects from service and rehabilitating the areas, which require their solution: the absence of specific guidelines for ranking the contaminated lands exposed to radioactive and chemical pollution from the potential risk to the population and environment; no clear criteria for ceasing area rehabilitation works; radiation exposure levels for the population living in the areas after rehabilitation; allowable levels of residual specific activity, and levels of heavy metals in soil, surface and underground water and bed sediment. The cost such works is the most important and decisive problem. A decision-making algorithm consisting of three main blocks: organizational-technical, engineering, geological and medicoecological measures is proposed to solve managerial, economic, and scientific problems.
Furukawa, Makoto; Takagai, Yoshitaka
2016-10-04
Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.
Tanaka, K; Tchaijunusova, N J; Takatsuji, T; Gusev, B I; Sakerbaev, A K; Hoshi, M; Kamada, N
2000-03-01
The Semipalatinsk area is highly contaminated with radioactive fallout from 40 years of continuous nuclear testing. The biological effects on human health in this area have not been studied. Significant remaining radioactivities include long-lived radioisotopes of 238,239,400Pu, 137Cs and 90Sr. To evaluate the long-term biological effects of the radioactive fallout, the incidence of micronuclei in lymphocytes from residents of the area was observed. Blood was obtained from 10 residents (5 females and 5 males, aged 47 to 55 years old) from each of the 3 areas of Znamenka, Dolon and Semipalatinsk, which are about 50-150 km from the nuclear explosion test site. For micronucleus assay, PHA-stimulated lymphocytes were cultured for 72 h and cytochalasin B was added at 44 h for detecting binuclear lymphocytes. Five thousand binuclear lymphocytes in each resident were scored. The means of micronucleus counts in 1,000 lymphocytes in residents of Semipalatinsk, Dolon and Znamenka were 16.3, 12.6, and 7.80, respectively, which were higher than those of the normal Japanese persons (4.66). These values were equivalent to the results obtained from 0.187-0.47 Gy of chronic exposure to gamma-rays at a dose rate of 0.02 cGy/min. The high incidence of micronuclei in residents of the Semipalatinsk nuclear test site area was mainly caused by internal exposure rather than external exposure received for the past 40 years.
[Radioactive caesium contamination in Inago and sustainability of Inago cuisine in Fukushima].
Mitsuhashi, Ryota; Mizuno, Hiroshi; Saeki, Shinjiro; Uchiyama, Sho-ichi; Yoshida, Makoto; Takamatsu, Yuki; Fugo, Hajime
2013-01-01
Inago (edible grasshoppers, Oxya spp.) was a popular food in the Fukushima area, before the reactor accident at Fukushima Dai-ichi Nuclear Power Station in March 2011. We investigated the radioactivity of Cs-134 and Cs-137 contained in Inago captured in Sukagawa, Motomiya, Inawashiro, Date, and Iidate in Fukushima prefecture in 2011 and 2012. The maximum combined radioactivity of Cs-134 and Cs-137 in Inago was 60.7 Bq/kg, which is below the maximum permitted level (100 Bq/kg) in foods established by the government of Japan in April 2012. Furthermore, conventional cooking processes decreased the radioactivity in cooked Inago to under 15.8 Bq/kg, a quarter of that in uncooked Inago. Therefore, we concluded that the health risk of eating Inago is low.
NASA Astrophysics Data System (ADS)
Järvelill, Johanna-Iisebel; Koch, Rein; Raukas, Anto; Vaasma, Tiit
2018-03-01
The present study discusses results of heavy mineral analyses and radioactivity of beach sediments of Lake Peipsi. Such analyses are commonly done globally, but had not yet been conducted for the fourth largest lake in Europe. The average heavy mineral content in Lake Peipsi beach sediments along the northern and western coast is higher than usual for Estonian coastal and Quaternary sediments. Concomitantly, elevated radioactivity levels have been measured in several places, with the highest concentrations observed at Alajõe (1885.5 Bq/kg), which is over five times more than the recommended limit. The aim of the present study is to find sites with higher radioactivity levels, because the northern coast of Lake Peipsi is a well-known recreational area.
NASA Astrophysics Data System (ADS)
Manzolaro, Mattia; Meneghetti, Giovanni; Andrighetto, Alberto
2010-11-01
In a facility for the production of radioactive ion beams (RIBs), the target system and the ion source are the most critical objects. In the context of the Selective Production of Exotic Species (SPES) project, a proton beam directly impinges a Uranium Carbide production target, generating approximately 10 13 fissions per second. The radioactive isotopes produced by the 238U fissions are then directed to the ion source to acquire a charge state. After that, the radioactive ions obtained are transported electrostatically to the subsequent areas of the facility. In this work the surface ion source at present adopted for the SPES project is studied by means of both analytical and numerical thermal-electric models. The theoretical results are compared with temperature and electric potential difference measurements.
Simplified method for detecting tritium contamination in plants and soil
Andraski, Brian J.; Sandstrom, M.W.; Michel, R.L.; Radyk, J.C.; Stonestrom, David A.; Johnson, M.J.; Mayers, C.J.
2003-01-01
Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphite-based solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation–SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation–SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.
Defenses against keratinolytic bacteria in birds living in radioactively contaminated areas
NASA Astrophysics Data System (ADS)
Ruiz-Rodríguez, Magdalena; Møller, Anders Pape; Mousseau, Timothy A.; Soler, Juan J.
2016-10-01
Microorganisms have shaped the evolution of a variety of defense mechanisms against pathogenic infections. Radioactivity modifies bacterial communities and, therefore, bird hosts breeding in contaminated areas are expected to adapt to the new bacterial environment. We tested this hypothesis in populations of barn swallows ( Hirundo rustica) from a gradient of background radiation levels at Chernobyl and uncontaminated controls from Denmark. Investment in defenses against keratinolytic bacteria was measured from feather structure (i.e., susceptibility to degradation) and uropygial secretions. We studied degradability of tail feathers from areas varying in contamination in laboratory experiments using incubation of feathers with a feather-degrading bacterium, Bacillus licheniformis, followed by measurement of the amount of keratin digested. The size of uropygial glands and secretion amounts were quantified, followed by antimicrobial tests against B. licheniformis and quantification of wear of feathers. Feathers of males, but not of females, from highly contaminated areas degraded at a lower rate than those from medium and low contamination areas. However, feathers of both sexes from the Danish populations showed little evidence of degradation. Individual barn swallows from the more contaminated areas of Ukraine produced the largest uropygial secretions with higher antimicrobial activity, although wear of feathers did not differ among males from different populations. In Denmark, swallows produced smaller quantities of uropygial secretion with lower antimicrobial activity, which was similar to swallow populations from uncontaminated areas in Ukraine. Therefore, barn swallows breeding in contaminated areas invested more in all defenses against keratinolytic bacteria than in uncontaminated areas of Ukraine and Denmark, although they had similar levels of feather wear. Strong natural selection exerted by radioactivity may have selected for individuals with higher defense capacity against bacterial infections during the 30 years since the Chernobyl disaster.
Defenses against keratinolytic bacteria in birds living in radioactively contaminated areas.
Ruiz-Rodríguez, Magdalena; Møller, Anders Pape; Mousseau, Timothy A; Soler, Juan J
2016-10-01
Microorganisms have shaped the evolution of a variety of defense mechanisms against pathogenic infections. Radioactivity modifies bacterial communities and, therefore, bird hosts breeding in contaminated areas are expected to adapt to the new bacterial environment. We tested this hypothesis in populations of barn swallows (Hirundo rustica) from a gradient of background radiation levels at Chernobyl and uncontaminated controls from Denmark. Investment in defenses against keratinolytic bacteria was measured from feather structure (i.e., susceptibility to degradation) and uropygial secretions. We studied degradability of tail feathers from areas varying in contamination in laboratory experiments using incubation of feathers with a feather-degrading bacterium, Bacillus licheniformis, followed by measurement of the amount of keratin digested. The size of uropygial glands and secretion amounts were quantified, followed by antimicrobial tests against B. licheniformis and quantification of wear of feathers. Feathers of males, but not of females, from highly contaminated areas degraded at a lower rate than those from medium and low contamination areas. However, feathers of both sexes from the Danish populations showed little evidence of degradation. Individual barn swallows from the more contaminated areas of Ukraine produced the largest uropygial secretions with higher antimicrobial activity, although wear of feathers did not differ among males from different populations. In Denmark, swallows produced smaller quantities of uropygial secretion with lower antimicrobial activity, which was similar to swallow populations from uncontaminated areas in Ukraine. Therefore, barn swallows breeding in contaminated areas invested more in all defenses against keratinolytic bacteria than in uncontaminated areas of Ukraine and Denmark, although they had similar levels of feather wear. Strong natural selection exerted by radioactivity may have selected for individuals with higher defense capacity against bacterial infections during the 30 years since the Chernobyl disaster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.
1996-10-01
The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysismore » of mixed chemical wastes and contaminated soils.« less
NASA Astrophysics Data System (ADS)
Ito, S.; Takaku, Y.; Ikeda, M.; Kishimoto, Y.
2018-01-01
The Super Kamiokand-Gadolinium (SK-Gd) project is the upgrade of the Super-Kamiokande (SK) detector in order to discover Supernova Relic Neutrinos (SRNs) by loading 0.2% of Gd2(SO4)3 into a 50 kton of the SK water tank. In order to continue solar neutrino measurement with low energy threshold at ˜3.5 MeV, main radioactive contamination, U and Th in Gd2(SO4)3, should be purified before loading. We developed solid-phase extraction technique to measure low concentration of U and Th in Gd2(SO4)3 by ICP-MS. The extraction technique and current status will be presented.
Radiological study of soils in oil and gas producing areas in Delta State, Nigeria.
Tchokossa, P; Olomo, J B; Balogun, F A; Adesanmi, C A
2013-01-01
Measurements of radioactivity concentrations in soils around the oil and gas producing areas in Delta State of Nigeria were carried out using a high-purity germanium detector gamma-ray spectrometer. Soil samples were collected from 20 locations from the study area and analysed. The radionuclides detected are traceable to the primordial series of (238)U and(232)Th as well as (40)K and traces of globally released (137)Cs. The specific activity values ranged between 7 and 60 Bq kg(-1) with a mean of 24±2 Bq kg(-1) for (238)U; while for (232)Th the range was 7-73 Bq kg(-1) with a mean of 29±3 Bq kg(-1). Relatively higher specific activity values were recorded in (40)K with a range of 15-696 Bq kg(-1), while the mean was 256±37 Bq kg(-1). However, a relatively low-specific radioactivity was obtained from(137)Cs with a range of 1-25 Bq kg(-1) and a mean of 7±1 Bq kg(-1). The estimated dose equivalent obtainable per year from these levels of radioactivity is <5 % of the recommended safe level of 1 mSv per annum. Therefore, the area and the use of the soils as building materials may be considered safe.
Radon Monitoring in Army Stand-Alone Housing Units
1990-04-01
greater damage to tissues. The internal exposures to alpha radiation resulting from inhalation of radioactive radon daughters (adsorbed onto airborne...appropriate detector, the monitor can measure all or some of the radon daughters adsorbed onto airborne, respirable dust particles. As with the 3...input to the cell is equipped with a 0.8-rim micropore filter that3removes any solid radon daughters from the air stream. Alpha I 26 Final Report, April
Method of preparing nuclear wastes for tansportation and interim storage
Bandyopadhyay, Gautam; Galvin, Thomas M.
1984-01-01
Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.
10 CFR 71.75 - Qualification of special form radioactive material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...
10 CFR 71.75 - Qualification of special form radioactive material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...
10 CFR 71.75 - Qualification of special form radioactive material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... target must be a flat, horizontal surface of such mass and rigidity that any increase in its resistance... of ×10−4 torr-liter/s (1.3××10−4 atm-cm3/s) based on air at 25 °C (77 °F) and one atmosphere... supported by a smooth solid surface, and struck by the flat face of a steel billet so as to produce an...
Vertical Extent of 100 Area Vadose Zone Contamination of Metals at the Hanford Site
NASA Astrophysics Data System (ADS)
Khaleel, R.; Mehta, S.
2012-12-01
The 100 Area is part of the U.S. Department of Energy Hanford Site in southeastern Washington and borders the Columbia River. The primary sources of contamination in the area are associated with the operation of nine former production reactors, the last one shutting down in 1988. The area is undergoing a CERCLA remedial investigation (RI) that will provide data to support final cleanup decisions. During reactor operations, cooling water contaminated with radioactive and hazardous chemicals was discharged to both the adjacent Columbia River and infiltration cribs and trenches. Contaminated solid wastes were disposed of in burial grounds; the estimated Lead-Cadmium used as "reactor poison" and disposed of in 100 Area burial grounds is 1103 metric tons, of which up to 1059 metric tons are Lead and 44 metric tons are Cadmium. We summarize vadose zone site characterization data for the recently drilled boreholes, including the vertical distribution of concentration profiles for metals (i.e., Lead, Arsenic and Mercury) under the near neutral pH and oxygenated conditions. The deep borehole measurements targeted in the RI work plan were identified with a bias towards locating contaminants throughout the vadose zone and targeted areas at or near the waste sites; i.e., the drilling as well as the sampling was biased towards capturing contamination within the "hot spots." Unlike non-reactive contaminants such as tritium, Arsenic, Mercury and Lead are known to have a higher distribution coefficient (Kd), expected to be relatively immobile, and have a long residence time within the vadose zone. However, a number of sediment samples located close to the water table exceed the background concentrations for Lead and Arsenic. Three conceptual models are postulated to explain the deeper than expected penetration for the metals.
NASA Astrophysics Data System (ADS)
Ryu, Jungho; Hong, Hye-jin; Ryu, Taegong; Park, In-Su
2017-04-01
Strontium (Sr) which has many industrial applications such as ferrite magnet, ceramic, and fire works exists in seawater with the concentration of approximately 7 mg/L. In previous report estimating economic potential on recovery of various elements from seawater in terms of their commercial values and concentrations in seawater, Sr locates upper than approximate break-even line, which implies Sr recovery from seawater can be potentially profitable. Recently, Sr separation from seawater has received great attention in the environmental aspect after Fukushima Nuclear Power Plant (NPP) accident which released much amount of radioactive Sr and Cs. Accordingly, the efficient separation of radioactive elements released to seawater has become critical as an important technological need as well as their removal from radioactive wastes. So far, it has been introduced to separate Sr from aqueous media by various methods including solvent extraction, adsorption by solid materials, and ion exchange. Among them, the adsorption technique using solid adsorbents is of great interest for selectively separating Sr from seawater with respect to low concentration level of Sr. In this study, we synthesized titanate nanotube (TiNT) by simple hydrothermal reaction, characterized its physicochemical properties, and systematically evaluated Sr sorption behavior under various reaction conditions corresponding to seawater environment. The synthesized TiNT exhibited the fibril-type nanotube structure with high specific surface area of 260 m2/g. The adsorption of Sr on TiNT rapidly occurred following pseudo-second-order kinetic model, and was in good agreement with Langmuir isotherm model, indicating maximum adsorption capacity of 97 mg/g. Based on Sr uptake and Na release with stoichiometric balance, sorption mechanism of Sr on TiNT was found to be ion-exchange between Na in TiNT lattice and Sr in solution phase, which was also confirmed by XRD and Raman analysis. Among competitive ions, Ca significantly hindered Sr sorption on TiNT, whereas Na had little effect on Sr sorption despite the sorption mechanism of Na-exchange. The effect of Ca on Sr sorption was evaluated in detail by introducing distribution coefficient (Kd) that is critical factor to determine the selectivity, revealing slightly higher selectivity for Sr. The adsorption-desoption test of Sr in real seawater medium enabled to determine Kd and concentration factor (CF) for co-existing matrix ions in seawater, and these values were assessed in both aspects of removal and recovery of Sr from seawater. The TiNT could be easily regenerated by acid treatment and reused for repeated cycle, supporting its long term use for the practical application of removing and recovering Sr from seawater.
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Control of areas. 835.1102 Section 835.1102 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control of areas. (a) Appropriate controls shall be maintained and verified which prevent the inadvertent...
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Control of areas. 835.1102 Section 835.1102 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control of areas. (a) Appropriate controls shall be maintained and verified which prevent the inadvertent...
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Control of areas. 835.1102 Section 835.1102 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control of areas. (a) Appropriate controls shall be maintained and verified which prevent the inadvertent...
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Control of areas. 835.1102 Section 835.1102 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control of areas. (a) Appropriate controls shall be maintained and verified which prevent the inadvertent...
Results of the radon measurements in the area of volcano Popocatepetl, Mexico
NASA Astrophysics Data System (ADS)
Kotsarenko, Anatoliy; Yustis, Vsevolod; Grimalsky, Vladimir; Medina Pérez, Ivan Luis; Koshevaya, Svetlana; Villegas Cerón, Reyna Alejandra; Pérez Enríquez, Hector Roman; López Cruz Abeyro, Jose Antonio; Valdés Gonzáles, Carlos
2010-05-01
Anomaly variation of the concentration of radon measured in the area of the volcano Popocatepetl and their analysis are presented. Permanent observations in the different sites during December 2007 - December 2009 revealed certain stable tendency: the character of radon variation in Tlamacas station area differs essentially from the similar measurements in all the other sites. Thus, numerous gradual depressions of the radon concentration with duration from about 12 hours up to several days were detected there as possible response to the major and moderate volcano eruptions. In order to determine presumed peculiarities of the Tlamacas site we realized detailed study of the natural radioactivity near Tlamacas and surrounding area, combining measurements of the Radon concentration in 25 sites in the mentioned area with radioactive spectroscopy (K, U and Th) study. Obtained distributions of the Rn, K, U and Th permit us to surmise a possible existence of a hidden tectono-volcanic structure in the area of Tlamacas mountain with anomalously enhanced emanation of radon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birdsell, Kay Hanson; Stauffer, Philip H.; French, Sean B.
Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. This special analysis, SA 2017-001, evaluates the potential impacts of disposing of this waste in Pit 38 atmore » Area G based on the assumptions that form the basis of the Area G PA/CA. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3; and conclusions and recommendations are provided in Section 4.« less
Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy
NASA Astrophysics Data System (ADS)
Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; Rosa, Rosanna De; Scarciglia, Fabio; Buttafuoco, Gabriele
2016-12-01
The activity of natural radionuclides in soil has become an environmental concern for local public and national authorities because of the harmful effects of radiation exposure on human health. In this context, modelling and mapping the activity of natural radionuclides in soil is an important research topic. The study was aimed to model, in a spatial sense, the soil radioactivity in an urban and peri-urban soils area in southern Italy to analyse the seasonal influence on soil radioactivity. Measures of gamma radiation naturally emitted through the decay of radioactive isotopes (potassium, uranium and thorium) were analysed using a geostatistical approach to map the spatial distribution of soil radioactivity. The activity of three radionuclides was measured at 181 locations using a high-resolution ?-ray spectrometry. To take into account the influence of season, the measurements were carried out in summer and in winter. Activity data were analysed by using a geostatistical approach and zones of relatively high or low radioactivity were delineated. Among the main processes which influence natural radioactivity such as geology, geochemical, pedological, and ecological processes, results of this study showed a prominent control of radio-emission measurements by seasonal changes. Low natural radioactivity levels were measured in December associated with winter weather and moist soil conditions (due to high rainfall and low temperature), and higher activity values in July, when the soil was dry and no precipitations occurred.
Caldwell, Rodney R.; Nimick, David A.; DeVaney, Rainie M.
2014-01-01
The U.S. Geological Survey, in cooperation with Jefferson County and the Jefferson Valley Conservation District, sampled groundwater in southwestern Montana to evaluate the occurrence and concentration of naturally-occurring radioactive constituents and to identify geologic settings and environmental conditions in which elevated concentrations occur. A total of 168 samples were collected from 128 wells within Broadwater, Deer Lodge, Jefferson, Lewis and Clark, Madison, Powell, and Silver Bow Counties from 2007 through 2010. Most wells were used for domestic purposes and were primary sources of drinking water for individual households. Water-quality samples were collected from wells completed within six generalized geologic units, and analyzed for constituents including uranium, radon, gross alpha-particle activity, and gross beta-particle activity. Thirty-eight wells with elevated concentrations or activities were sampled a second time to examine variability in water quality throughout time. These water-quality samples were analyzed for an expanded list of radioactive constituents including the following: three isotopes of uranium (uranium-234, uranium-235, and uranium-238), three isotopes of radium (radium-224, radium-226, and radium-228), and polonium-210. Existing U.S. Geological Survey and Montana Bureau of Mines and Geology uranium and radon water-quality data collected as part of other investigations through 2011 from wells within the study area were compiled as part of this investigation. Water-quality data from this study were compared to data collected nationwide by the U.S. Geological Survey through 2011. Radionuclide samples for this study typically were analyzed within a few days after collection, and therefore data for this study may closely represent the concentrations and activities of water being consumed locally from domestic wells. Radioactive constituents were detected in water from every well sampled during this study regardless of location or geologic unit. Nearly 41 percent of sampled wells had at least one radioactive constituent concentration that exceeded U.S. Environmental Protection Agency drinking-water standards or screening levels. Uranium concentrations were higher than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 30 micrograms per liter in samples from 14 percent of the wells. Radon concentrations exceeded a proposed MCL of 4,000 picocuries per liter in 27 percent of the wells. Combined radium (radium-226 and radium-228) exceeded the MCL of 5 picocuries per liter in samples from 10 of 47 wells. About 40 percent (42 of 104 wells) of the wells had gross alpha-particle activities (72-hour count) at or greater than a screening level of 15 pCi/L. Gross beta-particle activity exceeded the U.S. Environmental Protection Agency 50 picocuries per liter screening level in samples from 5 of 104 wells. Maximum radium-224 and polonium-210 activities in study wells were 16.1 and 3.08 picocuries per liter, respectively; these isotopes are constituents of human-health concern, but the U.S. Environmental Protection Agency has not established MCLs for them. Radioactive constituent concentrations or activities exceeded at least one established drinking-water standard, proposed drinking-water standard, or screening level in groundwater samples from five of six generalized geologic units assessed during this study. Radioactive constituent concentrations or activities were variable not only within each geologic unit, but also among wells that were completed in the same geologic unit and in close proximity to one another. Established or proposed drinking-water standards were exceeded most frequently in water from wells completed in the generalized geologic unit that includes rocks of the Boulder batholith and other Tertiary through Cretaceous igneous intrusive rocks (commonly described as granite). Specifically, of the wells completed in the Boulder batholith and related rocks sampled as part of this study, 24 percent exceeded the MCL of 30 micrograms per liter for uranium, 50 percent exceeded the proposed alternative MCL of 4,000 picocuries per liter for radon, and 27 percent exceeded the MCL of 5 micrograms per liter for combined radium-226 and radium-228. Elevated radioactive constituent values were detected in samples representing a large range of field properties and water types. Correlations between radioactive constituents and pH, dissolved oxygen, and most major ions were not statistically significant (p-value > 0.05) or were weakly correlated with Spearman correlation coefficients (rho) ranging from -0.5 to 0.5. Moderate correlations did exist between gross beta-particle activity and potassium (rho = 0.72 to 0.82), likely because one potassium isotope (potassium-40) is a beta-particle emitter. Total dissolved solids and specific conductance also were moderately correlated (rho = 0.62 to 0.71) with gross alpha-particle and gross beta-particle activity, indicating that higher radioactivity values can be associated with higher total dissolved solids. Correlations were evaluated among radioactive constituents. Moderate to strong correlations occurred between gross alpha-particle and beta-particle activities (rho = 0.77 to 0.96) and radium isotopes (rho = 0.78 to 0.92). Correlations between gross alpha-particle activity (72-hour count) and all analyzed radioactive constituents were statistically significant (p-value Radiochemical results varied temporally in samples from several of the thirty-eight wells sampled at least twice during the study. The time between successive sampling events ranged from about 1 to 10 months for 29 wells to about 3 years for the other 9 wells. Radiochemical constituents that varied by greater than 30 percent between sampling events included uranium (29 percent of the resampled wells), and radon (11 percent of the resampled wells), gross alpha-particle activity (38 percent of the resampled wells), and gross beta-particle activity (15 percent of the resampled wells). Variability in uranium concentrations from two wells was sufficiently large that concentrations were less than the MCL in the first set of samples and greater than the MCL in the second. Sample holding times affect analytical results in this study. Gross alpha-particle and gross beta-particle activities were measured twice, 72 hours and 30 days after sample collection. Gross alpha-particle activity decreased an average of 37 percent between measurements, indicating the presence of short-lived alpha-emitting radionuclides in these samples. Gross beta-particle activity increased an average of 31 percent between measurements, indicating ingrowth of longer-lived beta-emitting radionuclides.
NASA Astrophysics Data System (ADS)
Bessada, Catherine; Zanghi, Didier; Pauvert, Olivier; Maksoud, Louis; Gil-Martin, Ana; Sarou-Kanian, Vincent; Melin, Philippe; Brassamin, Séverine; Nezu, Atsushi; Matsuura, Haruaki
2017-10-01
An airtight double barrier cell with simple geometry has been developed for X-rays absorption measurements at high temperature in solid and molten actinide fluorides. The aim was both to improve the air tightness, to avoid any possible leakage and to maintain the high quality of the signal. The dimensions of the heating chamber were also constrained and minimized to be compatible with the limited space available usually on synchrotron beam lines and with a geometry suitable for absorption/diffraction measurements at high temperature. The design of the double barrier cell was also driven by the safety requirements in every experiment involving radioactive materials. The furnace itself was designed to ensure easy operating modes and disassembly, the aim being to consider the furnace as the ultimate containment. The cell has been tested with different molten fluorides up to more than 1000 °C, starting from non-radioactive LiF-ZrF4 mixtures in order to prove that the cell is absolutely airtight and that not any contamination of the environment occurs. Then it has been successfully applied to thorium fluoride- and uranium fluoride-alkali fluorides mixtures.
Korenkov, I P; Lashchenova, T N; Shandala, N K
2015-01-01
In the article there are presented materials on radiation-hygienic approaches to the treatment of very low level radioactive waste (VLLW) and industrial waste containing radionuclides. There is done detailed information on radiation-hygienic principles and criteria for the assurance ofradiation safety in the collection, transportation, storage and processing of VLLW as a category of radioactive waste.. Particular attention is paid to the problem of designing VLLW landfill site choice, system of radiation monitoring in operation and decommissioning of the landfill. There are presented data about the criteria for the release of VLLW buried at the site, from regulatory control. Also there are considered in detail the radiation-hygienic requirements for radiation safety of industrial waste containing radionuclides for which there is assumed unlimited and limited use of solid materials in economic activity, based on the requirements ofthe revised Basic Sanitary Rules for Radiation Safety - 99/2010. There are considered basic requirements for the organization of industrial waste landfill. As an example, there-are presented the hygiene requirements for industrial waste management and results of waste categorization in Northern Federal Enterprise for Radioactive Waste Management.
Radioactive waste processing apparatus
Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.
1987-01-01
Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.
Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.
2012-11-15
The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficienciesmore » of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.« less
Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey
2012-11-01
The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies ofmore » both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.A.
1991-12-31
In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solidmore » Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.« less
Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes
NASA Astrophysics Data System (ADS)
Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca
2010-10-01
Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.
FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia
2000-12-01
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10.more » Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste.« less
2006-03-17
energy programs, fossil energy, nuclear energy information, and civilian radioactive waste management; oversight of the power marketing administrations...ADMINISTRATION ALASKA BONNEVILLE SOUTHEASTERN SOUTHWESTERN WESTERN AREA OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT ASST SECRETARY ( FOSSIL ENERGY) OFFICE ON...Cutter Service and the Lifesaving Service. The USCG remained in the Department of Treasury until 1967 when it transferred to the Department of
A&M. Radioactive parts security storage warehouses: TAN648 on left, and ...
A&M. Radioactive parts security storage warehouses: TAN-648 on left, and dolly storage building, TAN-647, on right. Camera facing south. This was the front entry for the warehouse and the rear of the dolly storage building. Date: August 6, 2003. INEEL negative no. HD-36-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Yumoto, Yasuhiro; Okada, Shigeru; Kinno, Ikuo; Nagamatsu, Tomohiro; Nouso, Kazuhiro; Nakayama, Eiichi
2016-05-01
The clearance of solid low-level radioactive laboratory waste (LLRW) after decay-in-storage (DIS) obtained from a research institute and thoroughly separated using the separation and classification protocols presented in this study was evaluated. The radioisotope (RI) content of incinerated LLRW from the specified RI research group (group A); the RI content of LLRW obtained in fiscal year 2000, which contained radionuclides with half-lives of less than 164 d (LLRW2); and the RI content of the LLRW reported in group A's disposal records were compared. The LLRW2 and LLRW of group A were incinerated after 2 y of decay-in-storage and immediately after storage, respectively. The highest ratio of the RI of incinerated LLRW to the value in the disposal records was 2.52 for ⁵¹Cr. The radioactivities of radionuclides in both the LLRW2 and LLRW for ³⁵S, ⁴⁵Ca, ⁵¹Cr, ¹²⁵I, ³²P, ³³P, and ⁹⁹mTc and the incinerated ash after 1 y later of decay-in-storage were below the clearance level defined by the RS-G-1.7 of the International Basic Safety Standard without contamination by ³H and ¹⁴C. These remains contained very small amounts of some long-half-life radionuclides of natural origin after 7 y of decay-in-storage. This LLRW separation protocol was effective for the separation of ³H and ¹⁴C. LLRW2 after 2 years of DIS and its incinerated ash after one year later of DIS were below the clearance level for radioactivity and radioactivity concentration.
Thiros, Susan A.; Gerner, Steven J.
2015-01-01
Irrigation improvements began to be implemented in 2007 to reduce dissolved-solids loads discharged from the MWSP area. The theoretical annual net dissolved-solids load where the cumulative NRCS calculated dissolved-solids load reduction is added to the net MWSP dissolved-solids load is what would be expected if there was no irrigation improvement in the area associated with the MWSP. The theoretical data points lie very near the baseline representing the pre-MWSP dissolved-solids load to canal streamflow relation. The proximity of the theoretical data points to the baseline shows that the NRCS calculations of reduction in dissolved-solids load are generally supported by the data collected during this study.
Estimating Residual Solids Volume In Underground Storage Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.
2014-01-08
The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less
Al-Hilal, Mohamed; Aissa, Mosa
2015-02-01
The concentrations of equivalent eU, eTh, and K% were determined together with soil gas radon values and carborne gamma-ray survey in order to define the natural radioactivity levels throughout main geological units of Sabkhat al Jabboul region. Forty five soil and rock samples were collected from various lithofacies in each geological unit, and analyzed by γ-ray spectrometric technique for determining the concentration values of major radioelements. Such radiometric data could be used to differentiate between various lithologies of the investigated rocks. Although no distinct radioactive anomalies were found in the area, the radiometric profiles showed some minor variations with slightly higher values than the normal level. Despite the low radioactivity and the lack of rocks diversity in the surveyed area, it was possible to classify some certain rock types based on their radiometric response. The relationships between eU, eTh and their ratios were discussed for the Quaternary, Neogene and Paleogene formations, in order to evaluate the degree of uranium distribution and remobilization. The overall results of this radiometric survey were generally low, and lying within the range of the normal background levels in Syrian. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pozolotina, Vera N; Antonova, Elena V; Bezel, Victor S
2012-10-01
We carried out a comparative study of seed progeny taken from the dandelion (Taraxacum officinale s.l.) coenopopulations exposed for a long time to radioactive or chemical contamination originated from the East-Ural radioactive trace zone (EURT) or Nizhniy Tagil metallurgical combine impact zone (NTMC), respectively. Coenopopulations from EURT, NTMC and background areas significantly differ from each other with respect to the qualitative and quantitative composition of allozyme phenes. An analysis of clonal diversity showed the uniqueness of all coenopopulations in terms of their phenogenetics. P-generation seed viability was found to decrease in a similar manner as all types of the industrial stress increased. Studies of F (1)-generation variability in radio- and metal resistance by family analysis showed that seed progeny from EURT impact zone possessed high viability that, however, was accompanied by development of latent injuries resulting in low resistance to additional man-caused impacts. In F (1)-generation originated from NTMC zone, high seed viability was combined with increased resistance to provocative heavy metal and radiation exposure. No significant differences in responses to 'habitual' and 'new' factors, i.e. pre-adaptation effect, were found in samples from the contaminated areas.
Storage containers for radioactive material
Groh, E.F.; Cassidy, D.A.; Dates, L.R.
1980-07-31
A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.
Radioactive waste disposal in the marine environment
NASA Astrophysics Data System (ADS)
Anderson, D. R.
In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.
Wide-range radioactive-gas-concentration detector
Anderson, D.F.
1981-11-16
A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest
1977-01-01
Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.
Determination of indoor radon concentrations at the elementary schools of Fatih district in Istanbul
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, A., E-mail: aziz.kurt@istanbul.edu.tr; Yalcin, L. Sahin, E-mail: latife.sahin@gmail.com; Oktem, Y., E-mail: sgyks@istanbul.edu.tr
Radon is an odorless, tasteless, colorless noble radioactive gas which is produced within the radioactive decay chain of Uranium. The Radon forms in rocks, diffuses into soil and then escapes into atmosphere. When human exposure to high concentration of radon gas from inside, risk of developing lung cancer is increased. There are many methods to determine {sup 222}Rn concentration in the air. In this study, radon concentration of confined air spaces were measured by using LR-115 solid state nuclear track detectors. 509 LR-115 nuclear trace detectors were placed to 25 schools in Fatih District and they effective dose values weremore » calculated. The results of measurements showed that the radon concentration varies between 40-395 Bq/m{sup 3}. This results compared with Turkey’s limits (400 Bq/m{sup 3}) are low, conversely higher compared with WHO’s limits (100 Bq/m{sup 3}).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarti, D.; Eisler, R.
The values for strontium-90 and gross beta activity in the fat and non- fat fractions from the livers of twelve coconut crabs (Birgus latro) collected at Rongelap Atoll during March 1958 are presented. Although fat constituted an average of 47 percent by weight on a wet weight basis (74 percent on a dry weight basis), gross beta activity of the fat fraction amounted to less than 0.5 percent of the total activity on a wet weight basis. Fat content on a wet weight basis had a range of 31 percent to 65 percent. There is a linear relationship between strontium-90more » activity and gross beta activity. Since the fat content of coconut crab liver is variable and the fat fraction contains practically no radioactivity, it is suggested that the radioactivity (and mineral content) of liver samples be compared on the basis of the non-fat solids. (auth)« less
Finnish stakeholder engagement in the restoration of a radioactively contaminated food supply chain.
Rantavaara, A; Wallin, H; Hasunen, K; Härmälä, K; Kulmala, H; Latvio, E; Liskola, K; Mustonen, I; Nieminen, I; Tainio, R
2005-01-01
An expert group was established in 2001 representing various organisations and authorities responsible for primary production, food processing, the distribution and consumption of foodstuffs, food safety and availability, catering and extension services, nature conservation, research into environmental impacts, and the media. The aim was to strengthen networking and improve the stakeholder response to accidental radioactive contamination of rural areas through participation in the FARMING network project. A hypothetical contamination of a large milk-producing area provided a suitable framework for evaluation of actions ensuring clean feeding of dairy cows during grazing. The following year the group received a compilation of rural countermeasures and waste disposal methods, described by the STRATEGY project. The robust, uncomplicated approach of the evaluation meetings was fruitful and efficient, and the multidisciplinary group was capable of taking shared views on various measures after updating their knowledge together. High priority was given to measurements of radioactivity and the provision of information and advice to a wider audience.
Chew, Randall T.
1955-01-01
Traverses along some streams of the Colorado Plateau in areas known to contain minable uranium deposits show that anomalous radiation in the stream gravels can be detected with a suitable counter downstream from the deposits. The amount of radiation is influenced by the size of the uranium deposit, the size of the drainage area of the stream, the grain size of the sediments, and the lithology of the rocks over which the stream flows. The spacing of the stations where readings are taken is controlled by the size of the stream, and special readings are also taken directly downstream from important tributaries. An anomaly is empirically defined as a 10 percent rise over background. Radioactive material from large uranium deposits has been detected as much as 1 mile downstream. Radioactive material from smaller deposits is detachable over shorter distances. The method is slow but appears to be a useful prospecting tool under restricted conditions.
Disposal of radioactive iodine in space
NASA Technical Reports Server (NTRS)
Burns, R. E.; Defield, J. G.
1978-01-01
The possibility of space disposal of iodine waste from nuclear power reactors is investigated. The space transportation system utilized relies upon the space shuttle, a liquid hydrogen/liquid oxygen orbit transfer vehicle, and a solid propellant final stage. The iodine is assumed to be in the form of either an iodide or an iodate, and calculations assume that the final destination is either solar orbit or solar system escape. It is concluded that space disposal of iodine is feasible.
Zhang, Tieyuan; Hammack, Richard W; Vidic, Radisav D
2015-08-04
Natural gas extraction from Marcellus Shale generates large quantities of flowback water that contain high levels of salinity, heavy metals, and naturally occurring radioactive material (NORM). This water is typically stored in centralized storage impoundments or tanks prior to reuse, treatment or disposal. The fate of Ra-226, which is the dominant NORM component in flowback water, in three centralized storage impoundments in southwestern Pennsylvania was investigated during a 2.5-year period. Field sampling revealed that Ra-226 concentration in these storage facilities depends on the management strategy but is generally increasing during the reuse of flowback water for hydraulic fracturing. In addition, Ra-226 is enriched in the bottom solids (e.g., impoundment sludge), where it increased from less than 10 pCi/g for fresh sludge to several hundred pCi/g for aged sludge. A combination of sequential extraction procedure (SEP) and chemical composition analysis of impoundment sludge revealed that Barite is the main carrier of Ra-226 in the sludge. Toxicity characteristic leaching procedure (TCLP) (EPA Method 1311) was used to assess the leaching behavior of Ra-226 in the impoundment sludge and its implications for waste management strategies for this low-level radioactive solid waste. Radiation exposure for on-site workers calculated using the RESRAD model showed that the radiation dose equivalent for the baseline conditions was well below the NRC limit for the general public.
NASA Astrophysics Data System (ADS)
Inoyatov, A. Kh.; Perevoshchikov, L. L.; Kovalík, A.; Filosofov, D. V.; Gorozhankin, V. M.; Ryšavý, M.
2012-09-01
The KLL Auger spectrum of Ni generated in the electron capture decay of radioactive 64Cu in a solid state matrix was measured for the first time using a combined electrostatic electron spectrometer adjusted to a 7 eV instrumental resolution. Energies and relative intensities of the all nine basic spectrum components were determined and compared with data obtained from X-ray induced spectra of metallic Ni and with theoretical results as well. Absolute energy of 6562.5 ± 1.3 eV (related to the Fermi level) measured for the dominant KL2L3(1D2) than a value obtained from the X-ray induced spectra which is probably caused by the effects of chemical bonding and physico-chemical environment. Moreover, it is higher by 20.4 eV (16 σ) than a prediction of the semi-empirical calculations by Larkins which indicates an influence of the "atomic structure effect" on absolute energies of the Auger transitions following the electron capture decay and, possibly, some imperfections in the calculations. Good agreement of the measured and predicted KL1L2(3P0/1P1) transition intensity ratios indicates perceptible influence of the relativistic effects on the KLL Auger spectrum even at Z = 28.
Code of Federal Regulations, 2010 CFR
2010-01-01
... geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.132 Additional design criteria for surface facilities in...
10 CFR 60.111 - Performance of the geologic repository operations area through permanent closure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Performance of the geologic repository operations area... OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.111 Performance of the geologic repository operations area through permanent closure. (a...