Sample records for area sla leaf

  1. [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China].

    PubMed

    Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi

    2017-03-18

    We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.

  2. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    PubMed Central

    Hodgson, J. G.; Montserrat-Martí, G.; Charles, M.; Jones, G.; Wilson, P.; Shipley, B.; Sharafi, M.; Cerabolini, B. E. L.; Cornelissen, J. H. C.; Band, S. R.; Bogard, A.; Castro-Díez, P.; Guerrero-Campo, J.; Palmer, C.; Pérez-Rontomé, M. C.; Carter, G.; Hynd, A.; Romo-Díez, A.; de Torres Espuny, L.; Royo Pla, F.

    2011-01-01

    Background and Aims Specific leaf area (SLA), a key element of the ‘worldwide leaf economics spectrum’, is the preferred ‘soft’ plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? Methods SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Key Results Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Conclusions Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended. PMID:21948627

  3. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    PubMed

    Hodgson, J G; Montserrat-Martí, G; Charles, M; Jones, G; Wilson, P; Shipley, B; Sharafi, M; Cerabolini, B E L; Cornelissen, J H C; Band, S R; Bogard, A; Castro-Díez, P; Guerrero-Campo, J; Palmer, C; Pérez-Rontomé, M C; Carter, G; Hynd, A; Romo-Díez, A; de Torres Espuny, L; Royo Pla, F

    2011-11-01

    Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.

  4. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    PubMed

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.

  5. Relative growth rate in phylogenetically related deciduous and evergreen woody species.

    PubMed

    Antúnez, Isabel; Retamosa, Emilio C; Villar, Rafael

    2001-07-01

    Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR×SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species.

  6. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L.

    PubMed

    Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland

    2011-10-01

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO(x) and O(3) concentrations had only a marginal influence. The influence of SO(2) concentration was negligible. Although our data analysis suggests a relationship between SLA and NO(x)/O(3) concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE PAGES

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; ...

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  8. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  9. Importance of the method of leaf area measurement to the interpretation of gas exchange of complex shoots

    Treesearch

    W. K. Smith; A. W. Schoettle; M. Cui

    1991-01-01

    Net CO(2) uptake in full sunlight, total leaf area (TLA), projected leaf area of detached leaves (PLA), and the silhouette area of attached leaves in their natural orientation to the sun at midday on June 1 (SLA) were measured for sun shoots of six conifer species. Among species, TLA/SLA ranged between 5.2 and 10.0 (x bar = 7.3), TLA/PLA ranged between 2.5 and 2.9 (x...

  10. Soil conditions drive changes in a key leaf functional trait through environmental filtering and facilitative interactions

    NASA Astrophysics Data System (ADS)

    Molina-Venegas, Rafael; Aparicio, Abelardo; Lavergne, Sébastien; Arroyo, Juan

    2018-01-01

    Non-random patterns in the functional structure of communities are often interpreted as evidence for different forces governing their assemblage. However, community assembly processes may act antagonistically, countering each other's signatures on the functional structure of communities, which may lead to spurious inferences on the underlying mechanisms. To illustrate this issue, we assessed the joint effects of environmental filtering and facilitative interactions on a key leaf functional trait (i.e. specific leaf area, SLA) in Mediterranean dwarf-shrub communities, using a two-scale sampling approach. Specifically, we analyzed differences in community-weighted mean SLA values (CWM-SLA) between communities (community-scale) and between guilds within communities (guild-scale, i.e. individuals sampled in understorey, overstorey and open-ground conditions) across contrasted soil environments and elevational gradients. We found that communities on harsh edaphic conditions (i.e. dolomite habitats) showed significantly lower CWM-SLA values than communities on more fertile habitats. In contrast, elevation was a poor predictor of differences in CWM-SLA between the communities. This suggests that environmental filtering may influence leaf trait variation along soil gradients irrespective of elevation. On the other hand, communities on dolomite habitats showed strong differences in CWM-SLA between understorey (higher CWM-SLA) and either open-ground and overstorey guilds (lower CWM-SLA), whereas communities on more fertile soils showed no differences between the guilds. The strong differences in CWM-SLA between understorey and non-understorey guilds in dolomite communities suggest that facilitative interactions may be particularly at stake under stressful edaphic conditions, thus partially mitigating the effect of environmental filtering (i.e. low SLA values) on communities growing in harsh soils.

  11. Ecological strategies of Al-accumulating and non-accumulating functional groups from the cerrado sensu stricto.

    PubMed

    Souza, Marcelo C de; Bueno, Paula C P; Morellato, Leonor P C; Habermann, Gustavo

    2015-01-01

    The cerrado's flora comprises aluminum-(Al) accumulating and non-accumulating plants, which coexist on acidic and Al-rich soils with low fertility. Despite their existence, the ecological importance or biological strategies of these functional groups have been little explored. We evaluated the leaf flushing patterns of both groups throughout a year; leaf concentrations of N, P, K, Ca, Mg, S, Al, total flavonoids and polyphenols; as well as the specific leaf area (SLA) on young and mature leaves within and between the groups. In Al-accumulating plants, leaf flushed throughout the year, mainly in May and September; for non-accumulating plants, leaf flushing peaked at the dry-wet seasons transition. However, these behaviors could not be associated with strategies for building up concentrations of defense compounds in leaves of any functional groups. Al-accumulating plants showed low leaf nutrient concentrations, while non-accumulating plants accumulated more macronutrients and produced leaves with high SLA since the juvenile leaf phase. This demonstrates that the increase in SLA is slower in Al-accumulating plants that are likely to achieve SLA values comparable to the rest of the plant community only in the wet season, when sunlight capture is important for the growth of new branches.

  12. Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest.

    PubMed

    He, Dong; Chen, Yongfa; Zhao, Kangning; Cornelissen, J H C; Chu, Chengjin

    2018-02-03

    How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species. In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA-habitat relationships were compared among these three groups. Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA-habitat association than high-variability species. For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the predominance of species with ever-decreasing SLA towards less fertile habitats. Intraspecific variability in SLA is positively connected to species' niche breadth, suggesting that low-variability species may play a more deterministic role in structuring plant assemblages than high-variability species. This study highlights the importance of quantifying intraspecific trait variation to improve our understanding of species distributions across a vegetated landscape. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau

    Treesearch

    Tianxiang Luo; Ji Luo; Yude Pan

    2005-01-01

    Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (Nmass, Narea) of dominant tree species...

  14. Relative importance of habitat filtering and limiting similarity on species assemblages of alpine and subalpine plant communities.

    PubMed

    Takahashi, Koichi; Tanaka, Saeka

    2016-11-01

    This study examined how habitat filtering and limiting similarity affect species assemblages of alpine and subalpine plant communities along a slope gradient on Mt. Norikura in central Japan. Plant traits (plant height, individual leaf area, specific leaf area (SLA), leaf linearity, leaf nitrogen and chlorophyll concentrations) and abiotic environmental factors (elevation, slope inclination, ground surface texture, soil water, soil pH, soil nutrient concentrations of NH 4 -N and NO 3 -N) were examined. The metrics of variance, range, kurtosis and the standard deviation of neighbor distance divided by the range of traits present (SDNDr) were calculated for each plant trait to measure trait distribution patterns. Limiting similarity was detected only for chlorophyll concentration. By contrast, habitat filtering was detected for individual leaf area, SLA, leaf linearity, chlorophyll concentration. Abiotic environmental factors were summarized by the principal component analysis (PCA). The first PCA axis positively correlated with elevation and soil pH, and negatively correlated with sand cover, soil water, NH 4 -N and NO 3 -N concentrations. High values of the first PCA axis represent the wind-exposed upper slope with lower soil moisture and nutrient availabilities. Plant traits changed along the first PCA axis. Leaf area, SLA and chlorophyll concentration decreased, and leaf linearity increased with the first PCA axis. This study showed that the species assemblage of alpine and subalpine plants was determined mainly by habitat filtering, indicating that abiotic environmental factors are more important for species assemblage than interspecific competition. Therefore, only species adapting to abiotic environments can distribute to these environments.

  15. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups

    Treesearch

    Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.

    1998-01-01

    Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...

  16. Differences in functional traits between invasive and native Amaranthus species under different forms of N deposition

    NASA Astrophysics Data System (ADS)

    Wang, Congyan; Zhou, Jiawei; Liu, Jun; Jiang, Kun

    2017-08-01

    Differences in functional traits between invasive and native plant species are believed to determine the invasion success of the former. Increasing amounts of anthropogenic nitrogen (N) are continually deposited into natural ecosystems, which may change the relative occurrence of the different N deposition forms (such as NH4-N, NO3-N, and CO(NH2)2-N) naturally deposited. Under high N deposition scenarios, some invasive species may grow faster, gaining advantage over native species. In a greenhouse experiment, we grew invasive and native Amaranthus species from seed both alone and in competition under simulated N enriched environments with different forms of N over 3 months. Then, we measured different leaf traits (i.e., plant height, leaf length, leaf width, leaf shape index, specific leaf area (SLA), and leaf chlorophyll and N concentrations). Results showed that the competition intensity between A. retroflexus and A. tricolor decreased under N deposition. This may be due to the large functional divergence between A. retroflexus and A. tricolor under simulated N deposition. Phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus were significantly lower than in A. tricolor. The lower range of phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may indicate a fitness cost for plastic functional traits under adverse environments. The restricted phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may also stabilize leaf construction costs and the growth rate. Meanwhile, the two Amaranthus species possessed greater plasticity in leaf N concentration under NO3-N fertilization, which enhanced their competitiveness.

  17. Differences in functional traits between invasive and native Amaranthus species under different forms of N deposition.

    PubMed

    Wang, Congyan; Zhou, Jiawei; Liu, Jun; Jiang, Kun

    2017-08-01

    Differences in functional traits between invasive and native plant species are believed to determine the invasion success of the former. Increasing amounts of anthropogenic nitrogen (N) are continually deposited into natural ecosystems, which may change the relative occurrence of the different N deposition forms (such as NH 4 -N, NO 3 -N, and CO(NH 2 ) 2 -N) naturally deposited. Under high N deposition scenarios, some invasive species may grow faster, gaining advantage over native species. In a greenhouse experiment, we grew invasive and native Amaranthus species from seed both alone and in competition under simulated N enriched environments with different forms of N over 3 months. Then, we measured different leaf traits (i.e., plant height, leaf length, leaf width, leaf shape index, specific leaf area (SLA), and leaf chlorophyll and N concentrations). Results showed that the competition intensity between A. retroflexus and A. tricolor decreased under N deposition. This may be due to the large functional divergence between A. retroflexus and A. tricolor under simulated N deposition. Phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus were significantly lower than in A. tricolor. The lower range of phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may indicate a fitness cost for plastic functional traits under adverse environments. The restricted phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may also stabilize leaf construction costs and the growth rate. Meanwhile, the two Amaranthus species possessed greater plasticity in leaf N concentration under NO 3 -N fertilization, which enhanced their competitiveness.

  18. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species.

    PubMed

    Barros, Vanessa; Frosi, Gabriella; Santos, Mariana; Ramos, Diego Gomes; Falcão, Hiram Marinho; Santos, Mauro Guida

    2018-06-01

    Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Patterns of diversity in leaves from canopies of Ginkgo biloba are revealed using Specific Leaf Area as a morphological character.

    PubMed

    Christianson, Michael L; Niklas, Karl J

    2011-07-01

    The difference reported in the literature for the Specific Leaf Area (SLA, cm(2)/g) of leaves on short- and long-shoots of Acer rubrum could mean that SLA can serve as a quantitative morphological trait. Our survey of SLA in canopies of Ginkgo biloba sampled a different clade of seed plants to investigate this morphological phenomenon. Such a survey in this dioecious taxon, and one in which a single canopy may have juvenile and reproductive portions, as well as one where canopies bear leaves of several shapes, examine these additional morphological factors as well as any long-shoot short-shoot differences. We measured SLA for a set of 642 dried leaves, a sampling across all morphological levels in canopies of large landscape specimens. The tabulated values were analyzed as distributions. Populations of leaves of G. biloba, sorted by morphological features of canopy structure, differ between long- and short-shoots (175%), on the two genders of tree (131%), in the juvenile and reproductive portions of a canopy (183%), and with the presence or absence of seed on short-shoots in the reproductive portion of megasporangiate canopies (114%). Basipetal leaves of long-shoots and leaves of short-shoots have similar values of SLA. With the exception of the acropetal decrease in SLA along long-shoots, the differences among the several classes of leaf seem to reflect local sink strength, even though the sink itself develops after leaves mature. The large overall range in the values of SLA in Ginkgo underscores the relevance of the details of canopy structure to parsing ecological phenomena.

  20. The length of the dry season may be associated with leaf scleromorphism in cerrado plants.

    PubMed

    Souza, Marcelo C; Franco, Augusto C; Haridasan, Mundayatan; Rossatto, Davi R; de Araújo, Janaína F; Morellato, Leonor P C; Habermann, Gustavo

    2015-09-01

    Despite limitations of low fertility and high acidity of the soils, the cerrado flora is the richest amongst savannas. Many cerrado woody species show sclerophyllous leaves, which might be related to the availability of water and nutrients in the soil. To better understand the function and structure of cerrado vegetation within its own variations, we compared two cerrado communities: one in its core region in central Brazil (Brasília, DF) and the other on its southern periphery (Itirapina, SP). We contrasted the length of the dry season, soil fertility rates, leaf concentrations of N, P, K, Ca and Mg and the specific leaf area (SLA) between these communities. The dry season was shorter on the periphery, where the soil was more fertile although more acidic. Plants from the periphery showed higher SLA and higher leaf concentrations of N, P, Ca and Mg. We propose that the higher SLA of plants from the periphery is related to the shorter dry season, which allows better conditions for nutrient uptake.

  1. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

    NASA Astrophysics Data System (ADS)

    Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco

    2016-03-01

    Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.

  2. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems.

    PubMed

    Wellstein, Camilla; Poschlod, Peter; Gohlke, Andreas; Chelli, Stefano; Campetella, Giandiego; Rosbakh, Sergey; Canullo, Roberto; Kreyling, Jürgen; Jentsch, Anke; Beierkuhnlein, Carl

    2017-06-01

    Here, we conducted a meta-analysis of experimental drought manipulation studies using rainout shelters in five sites of natural grassland ecosystems of Europe. The single studies assess the effects of extreme drought on the intraspecific variation of the specific leaf area (SLA), a proxy of plant growth. We evaluate and compare the effect size of the SLA response for the functional groups of forbs and grasses in temperate and sub-Mediterranean systems. We hypothesized that the functional groups of grasses and forbs from temperate grassland systems have different strategies in short-term drought response, measured as adjustment of SLA, with SLA-reduction in grasses and SLA-maintenance in forbs. Second, we hypothesized that grasses and forbs from sub-Mediterranean systems do not differ in their drought response as both groups maintain their SLA. We found a significant decrease of SLA in grasses of the temperate systems in response to drought while SLA of forbs showed no significant response. Lower SLA is associated with enhanced water-use efficiency under water stress and thus can be seen as a strategy of phenotypic adjustment. By contrast, in the sub-Mediterranean systems, grasses significantly increased their SLA in the drought treatment. This result points towards a better growth performance of these grasses, which is most likely related to their strategy to allocate resources to belowground parts. The observed SLA reduction of forbs is most likely a direct drought response given that competitive effect of grasses is unlikely due to the scanty vegetation cover. We point out that phenotypic adjustment is an important driver of short-term functional plant response to climatic extremes such as drought. Differential reactions of functional groups have to be interpreted against the background of the group's evolutionary configuration that can differ between climatic zones. © 2017 John Wiley & Sons Ltd.

  3. Ecological strategies in california chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    USGS Publications Warehouse

    Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael

    2011-01-01

    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.

  4. Convergence of tree water use within an arid-zone woodland.

    PubMed

    O'Grady, A P; Cook, P G; Eamus, D; Duguid, A; Wischusen, J D H; Fass, T; Worldege, D

    2009-07-01

    We examined spatial and temporal patterns of tree water use and aspects of hydraulic architecture in four common tree species of central Australia--Corymbia opaca, Eucalyptus victrix, E. camaldulensis and Acacia aneura--to better understand processes that constrain water use in these environments. These four widely distributed species occupy contrasting niches within arid environments including woodlands, floodplains and riparian environments. Measurements of tree water use and leaf water potential were made at two sites with contrasting water table depths during a period of high soil water availability following summer rainfall and during a period of low soil water availability following 7 months of very little rainfall during 2007. There were significant differences in specific leaf area (SLA), sapwood area to leaf area ratios and sapwood density between species. Sapwood to leaf area ratio increased in all species from April to November indicating a decline in leaf area per unit sapwood area. Despite very little rainfall in the intervening period three species, C. opaca, E. victrix and E. camaldulensis maintained high leaf water potentials and tree water use during both periods. In contrast, leaf water potential and water use in the A. aneura were significantly reduced in November compared to April. Despite contrasting morphology and water use strategies, we observed considerable convergence in water use among the four species. Wood density in particular was strongly related to SLA, sapwood area to leaf area ratios and soil to leaf conductance, with all four species converging on a common relationship. Identifying convergence in hydraulic traits can potentially provide powerful tools for scaling physiological processes in natural ecosystems.

  5. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?

    PubMed

    Liu, Yanjie; Dawson, Wayne; Prati, Daniel; Haeuser, Emily; Feng, Yanhao; van Kleunen, Mark

    2016-12-01

    It is frequently assumed that phenotypic plasticity can be very advantageous for plants, because it may increase environmental tolerance (fitness homeostasis). This should, however, only hold for plastic responses that are adaptive, i.e. increase fitness. Numerous studies have shown shade-induced increases in specific leaf area (SLA), and there is wide consensus that this plastic response optimizes light capture and thus has to be adaptive. However, it has rarely been tested whether this is really the case. In order to identify whether SLA plasticity does contribute to the maintenance of high biomass of plant species under shaded conditions, a meta-analytical approach was employed. The data set included 280 species and 467 individual studies from 32 publications and two unpublished experiments. Plants increased their SLA by 55·4 % on average when shaded, while they decreased their biomass by 59·9 %. Species with a high SLA under high-light control conditions showed a significantly greater ability to maintain biomass production under shade overall. However, in contrast to the expectation of a positive relationship between SLA plasticity and maintenance of plant biomass, the results indicated that species with greater SLA plasticity were less able to maintain biomass under shade. Although a high SLA per se contributes to biomass homeostasis, there was no evidence that plasticity in SLA contributes to this. Therefore, it is argued that some of the plastic changes that are frequently thought to be adaptive might simply reflect passive responses to the environment, or result as by-products of adaptive plastic responses in other traits. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China.

    PubMed

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-09-01

    In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China

    PubMed Central

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-01-01

    Background and Aims In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert–steppe ecotone in northern China. Methods Along rainfall gradients with a moisture index (MI) of 0·17–0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ13C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica. Key Results In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ13C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ13C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Conclusions Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. PMID:27443298

  8. Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities.

    PubMed

    Ramírez-Valiente, Jose Alberto; Sánchez-Gómez, David; Aranda, Ismael; Valladares, Fernando

    2010-05-01

    Plants distributed across a wide range of environmental conditions are submitted to differential selective pressures. Long-term selection can lead to the development of adaptations to the local environment, generating ecotypic differentiation. Additionally, plant species can cope with this environmental variability by phenotypic plasticity. In this study, we examine the importance of both processes in coping with environmental heterogeneity in the Mediterranean sclerophyllous cork oak Quercus suber. For this purpose, we measured growth and key functional traits at the leaf level in 9-year-old plants across 2 years of contrasting precipitation (2005 and 2006) in a common garden. Plants were grown from acorns originated from 13 populations spanning a wide range of climates along the distribution range of the species. The traits measured were: leaf size (LS), specific leaf area (SLA), carbon isotope discrimination (Delta(13)C) and leaf nitrogen content per unit mass (N(mass)). Inter-population differences in LS, SLA and Delta(13)C were found. These differences were associated with rainfall and temperature at the sites of origin, suggesting local adaptation in response to diverging climates. Additionally, SLA and LS exhibited positive responses to the increase in annual rainfall. Year effect explained 28% of the total phenotypic variance in LS and 2.7% in SLA. There was a significant genotype x environment interaction for shoot growth and a phenotypic correlation between the difference in shoot growth among years and the annual mean temperature at origin. This suggests that populations originating from warm sites can benefit more from wet conditions than populations from cool sites. Finally, we investigated the relationships between functional traits and aboveground growth by several regression models. Our results showed that plants with lower SLA presented larger aboveground growth in a dry year and plants with larger leaf sizes displayed larger growth rates in both years. Overall, the study supports the adaptive value of SLA and LS for cork oak under a Mediterranean climate and their potentially important role for dealing with varying temperature and rainfall regimes through both local adaptation and phenotypic plasticity.

  9. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners.

    PubMed

    Feng, Yu-Long; Fu, Gai-Lan; Zheng, Yu-Long

    2008-08-01

    Comparisons between invasive and native species may not characterize the traits of invasive species, as native species might be invasive elsewhere if they were introduced. In this study, invasive Oxalis corymbosa and Peperomia pellucida were compared with their respective noninvasive alien congeners. We hypothesized that the invasive species have higher specific leaf (SLA) than their respective noninvasive alien congeners, and analyzed the physiological and ecological consequences of the higher SLA. Higher SLA was indeed the most important trait for the two invaders, which was associated with their lower leaf construction cost, higher nitrogen (N) allocation to photosynthesis and photosynthetic N use efficiency (PNUE). The higher N allocation to photosynthesis of the invaders in turn increased their PNUE, N content in photosynthesis, biochemical capacity for photosynthesis, and therefore light-saturated photosynthetic rate. The above resource capture-, use- and growth-related traits may facilitate the two invaders' invasion, while further comparative studies on a wider range of invasive and noninvasive congeners are needed to understand the generality of this pattern and to fully assess the competitive advantages afforded by these traits.

  10. A Functional Characterisation of a Wide Range of Cover Crop Species: Growth and Nitrogen Acquisition Rates, Leaf Traits and Ecological Strategies

    PubMed Central

    Tribouillois, Hélène; Fort, Florian; Cruz, Pablo; Charles, Raphaël; Flores, Olivier; Garnier, Eric; Justes, Eric

    2015-01-01

    Cover crops can produce ecosystem services during the fallow period, as reducing nitrate leaching and producing green manure. Crop growth rate (CGR) and crop nitrogen acquisition rate (CNR) can be used as two indicators of the ability of cover crops to produce these services in agrosystems. We used leaf functional traits to characterise the growth strategies of 36 cover crops as an approach to assess their ability to grow and acquire N rapidly. We measured specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf area (LA) and we evaluated their relevance to characterise CGR and CNR. Cover crop species were positioned along the Leaf Economics Spectrum (LES), the SLA-LDMC plane, and the CSR triangle of plant strategies. LA was positively correlated with CGR and CNR, while LDMC was negatively correlated with CNR. All cover crops could be classified as resource-acquisitive species from their relative position on the LES and the SLA-LDMC plane. Most cover crops were located along the Competition/Ruderality axis in the CSR triangle. In particular, Brassicaceae species were classified as very competitive, which was consistent with their high CGR and CNR. Leaf functional traits, especially LA and LDMC, allowed to differentiate some cover crops strategies related to their ability to grow and acquire N. LDMC was lower and LNC was higher in cover crop than in wild species, pointing to an efficient acquisitive syndrome in the former, corresponding to the high resource availability found in agrosystems. Combining several leaf traits explained approximately half of the CGR and CNR variances, which might be considered insufficient to precisely characterise and rank cover crop species for agronomic purposes. We hypothesised that may be the consequence of domestication process, which has reduced the range of plant strategies and modified the leaf trait syndrome in cultivated species. PMID:25789485

  11. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs

    Treesearch

    Jill L. Bubier; Rose Smith; Sari Juutinen; Tim R. Moore; Rakesh Minocha; Stephanie Long; Subash Minocha

    2011-01-01

    Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We...

  12. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron.

    PubMed

    Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar

    2017-06-01

    We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.

  13. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny.

    PubMed

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-04-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion of quantitative traits, in particular SLA, into the WRA schemes. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  14. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest.

    PubMed

    Cosme, Luiza H M; Schietti, Juliana; Costa, Flávia R C; Oliveira, Rafael S

    2017-07-01

    Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids.

    PubMed

    Venn, Susanna; Pickering, Catherine; Green, Ken

    2014-01-01

    Classical approaches to investigating temporal and spatial changes in community composition offer only partial insight into the ecology that drives species distribution, community patterns and processes, whereas a functional approach can help to determine many of the underlying mechanisms that drive such patterns. Here, we aim to bring these two approaches together to understand such drivers, using an elevation gradient of sites, a repeat species survey and species functional traits. We used data from a repeat vegetation survey on five alpine summits and measured plant height, leaf area, leaf dry matter content and specific leaf area (SLA) for every species recorded in the surveys. We combined species abundances with trait values to produce a community trait-weighted mean (CTWM) for each trait, and then combined survey results with the CTWMs. Across the gradient of summits, more favourable conditions for plant growth (warmer, longer growing season) occurred at the lower elevations. Vegetation composition changes between 2004 and 2011 (according to non-metric multi-dimensional scaling ordination) were strongly affected by the high and increasing abundance of species with high SLA at high elevations. Species life-form categories strongly affected compositional changes and functional composition, with increasing dominance of tall shrubs and graminoids at the lower-elevation summits, and an overall increase in graminoids across the gradient. The CTWM for plant height and leaf dry matter content significantly decreased with elevation, whereas for leaf area and SLA it significantly increased. The significant relationships between CTWM and elevation may suggest specific ecological processes, namely plant competition and local productivity, influencing vegetation preferentially across the elevation gradient, with the dominance of shrubs and graminoids driving the patterns in the CTWMs.

  16. Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids

    PubMed Central

    Venn, Susanna; Pickering, Catherine; Green, Ken

    2014-01-01

    Classical approaches to investigating temporal and spatial changes in community composition offer only partial insight into the ecology that drives species distribution, community patterns and processes, whereas a functional approach can help to determine many of the underlying mechanisms that drive such patterns. Here, we aim to bring these two approaches together to understand such drivers, using an elevation gradient of sites, a repeat species survey and species functional traits. We used data from a repeat vegetation survey on five alpine summits and measured plant height, leaf area, leaf dry matter content and specific leaf area (SLA) for every species recorded in the surveys. We combined species abundances with trait values to produce a community trait-weighted mean (CTWM) for each trait, and then combined survey results with the CTWMs. Across the gradient of summits, more favourable conditions for plant growth (warmer, longer growing season) occurred at the lower elevations. Vegetation composition changes between 2004 and 2011 (according to non-metric multi-dimensional scaling ordination) were strongly affected by the high and increasing abundance of species with high SLA at high elevations. Species life-form categories strongly affected compositional changes and functional composition, with increasing dominance of tall shrubs and graminoids at the lower-elevation summits, and an overall increase in graminoids across the gradient. The CTWM for plant height and leaf dry matter content significantly decreased with elevation, whereas for leaf area and SLA it significantly increased. The significant relationships between CTWM and elevation may suggest specific ecological processes, namely plant competition and local productivity, influencing vegetation preferentially across the elevation gradient, with the dominance of shrubs and graminoids driving the patterns in the CTWMs. PMID:24790129

  17. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession

    PubMed Central

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content (NA), maximum CO2 assimilation rate (Pmax), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation (NC), and to bioenergetics (NB). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, NA, but higher Pmax, SLA, PNUE, NC, and NB, in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between Pmax and leaf CC strengthened, whereas the relationships between NB, NC, PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization. PMID:29472939

  18. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession.

    PubMed

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.

  19. Growth temperature modulates the spatial variability of leaf morphology and chemical elements within crowns of climatically divergent Acer rubrum genotypes.

    PubMed

    Shahba, Mohamed A; Bauerle, William L

    2009-07-01

    Our understanding of leaf acclimation in relation to temperature of fully grown or juvenile tree crowns is mainly based on research involving spatially uncontrolled growth temperature. In this study, we test the hypothesis that leaf morphology and chemical elements are modulated by within-crown growth temperature differences. We ask whether within-species variation can influence acclimation to elevated temperatures. Within-crown temperature dependence of leaf morphology, carbon and nitrogen was examined in two genotypes of Acer rubrum L. (red maple) from different latitudes, where the mean annual temperature varies between 7.2 and 19.4 degrees C. Crown sections were grown in temperature-controlled chambers at three daytime growth temperatures (25, 33 and 38 degrees C). Leaf growth and resource acquisition were measured at regular intervals over long-term (50 days) controlled daytime growth temperatures. We found significant intraspecific variation in temperature dependence of leaf carbon and nitrogen accumulation between genotypes. Additionally, there was evidence that leaf morphology depended on inherited adaptation. Leaf dry matter and nitrogen content decreased as growth temperature was elevated above 25 degrees C in the genotype native to the cooler climate, whereas they remained fairly constant in response to temperature in the genotype native to the warmer climate. Specific leaf area (SLA) was correlated positively to leaf nitrogen content in both genotypes. The SLA and the relative leaf dry matter content (LM), on the other hand, were correlated negatively to leaf thickness. However, intraspecific variation in SLA and LM versus leaf thickness was highly significant. Intraspecific differences in leaf temperature response between climatically divergent genotypes yielded important implications for convergent evolution of leaf adaptation. Comparison of our results with those of previous studies showed that leaf carbon allocation along a vertical temperature gradient was modulated by growth temperature in the genotype native to the cooler climate. This indicates that within-crown temperature-induced variations in leaf morphology and chemical content should be accounted for in forest ecosystem models.

  20. Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests.

    PubMed

    Zhu, Shi-Dan; Li, Rong-Hua; Song, Juan; He, Peng-Cheng; Liu, Hui; Berninger, Frank; Ye, Qing

    2016-03-01

    Ferns are abundant in sub-tropical forests in southern China, with some species being restricted to shaded understorey of natural forests, while others are widespread in disturbed, open habitats. To explain this distribution pattern, we hypothesize that ferns that occur in disturbed forests (FDF) have a different leaf cost-benefit strategy compared with ferns that occur in natural forests (FNF), with a quicker return on carbon investment in disturbed habitats compared with old-growth forests. We chose 16 fern species from contrasting light habitats (eight FDF and eight FNF) and studied leaf functional traits, including leaf life span (LLS), specific leaf area (SLA), leaf nitrogen and phosphorus concentrations (N and P), maximum net photosynthetic rates (A), leaf construction cost (CC) and payback time (PBT), to conduct a leaf cost-benefit analysis for the two fern groups. The two groups, FDF and FNF, did not differ significantly in SLA, leaf N and P, and CC, but FDF had significantly higher A, greater photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE), and shorter PBT and LLS compared with FNF. Further, across the 16 fern species, LLS was significantly correlated with A, PNUE, PPUE and PBT, but not with SLA and CC. Our results demonstrate that leaf cost-benefit analysis contributes to understanding the distribution pattern of ferns in contrasting light habitats of sub-tropical forests: FDF employing a quick-return strategy can pre-empt resources and rapidly grow in the high-resource environment of open habitats; while a slow-return strategy in FNF allows their persistence in the shaded understorey of old-growth forests. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Different leaf cost–benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests

    PubMed Central

    Zhu, Shi-Dan; Li, Rong-Hua; Song, Juan; He, Peng-Cheng; Liu, Hui; Berninger, Frank; Ye, Qing

    2016-01-01

    Background and Aims Ferns are abundant in sub-tropical forests in southern China, with some species being restricted to shaded understorey of natural forests, while others are widespread in disturbed, open habitats. To explain this distribution pattern, we hypothesize that ferns that occur in disturbed forests (FDF) have a different leaf cost–benefit strategy compared with ferns that occur in natural forests (FNF), with a quicker return on carbon investment in disturbed habitats compared with old-growth forests. Methods We chose 16 fern species from contrasting light habitats (eight FDF and eight FNF) and studied leaf functional traits, including leaf life span (LLS), specific leaf area (SLA), leaf nitrogen and phosphorus concentrations (N and P), maximum net photosynthetic rates (A), leaf construction cost (CC) and payback time (PBT), to conduct a leaf cost–benefit analysis for the two fern groups. Key Results The two groups, FDF and FNF, did not differ significantly in SLA, leaf N and P, and CC, but FDF had significantly higher A, greater photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE), and shorter PBT and LLS compared with FNF. Further, across the 16 fern species, LLS was significantly correlated with A, PNUE, PPUE and PBT, but not with SLA and CC. Conclusions Our results demonstrate that leaf cost–benefit analysis contributes to understanding the distribution pattern of ferns in contrasting light habitats of sub-tropical forests: FDF employing a quick-return strategy can pre-empt resources and rapidly grow in the high-resource environment of open habitats; while a slow-return strategy in FNF allows their persistence in the shaded understorey of old-growth forests. PMID:26684751

  2. Trait-abundance relation in response to nutrient addition in a Tibetan alpine meadow: The importance of species trade-off in resource conservation and acquisition.

    PubMed

    Liu, Huiying; Li, Ying; Ren, Fei; Lin, Li; Zhu, Wenyan; He, Jin-Sheng; Niu, Kechang

    2017-12-01

    In competition-dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait-abundance relations in the line of species trade-off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade-off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height-SRA was found in NP-fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade-off in nutrient acquisition and resource conservation was a key driver of SRA in competition-dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta-communities.

  3. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.

    PubMed

    Xu, Zhenzhu; Zhou, Guangsheng

    2008-01-01

    Responses of plant leaf stomatal conductance and photosynthesis to water deficit have been extensively reported; however, little is known concerning the relationships of stomatal density with regard to water status and gas exchange. The responses of stomatal density to leaf water status were determined, and correlation with specific leaf area (SLA) in a photosynthetic study of a perennial grass, Leymus chinensis, subjected to different soil moisture contents. Moderate water deficits had positive effects on stomatal number, but more severe deficits led to a reduction, described in a quadratic parabolic curve. The stomatal size obviously decreased with water deficit, and stomatal density was positively correlated with stomatal conductance (g(s)), net CO(2) assimilation rate (A(n)), and water use efficiency (WUE). A significantly negative correlation of SLA with stomatal density was also observed, suggesting that the balance between leaf area and its matter may be associated with the guard cell number. The present results indicate that high flexibilities in stomatal density and guard cell size will change in response to water status, and this process may be closely associated with photosynthesis and water use efficiency.

  4. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    PubMed

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Effect of water stress on carbon isotope discrimination and its relationship with transpiration efficiency and specific leaf area in Cenchrus species.

    PubMed

    Dubey, Archana; Chandra, Amaresh

    2008-05-01

    Carbon isotope discrimination (CID) has been proposed in estimating transpiration efficiency (TE) in plants indirectly To identify variations for TE and specific leaf area (SLA) and their association with CID, a glasshouse experiment was conducted using six prominent species of Cenchrus. A significant increase in TE (3.50 to 3.87 g kg(-1)) and decrease in SLA (219.50 to 207.99 cm2 g(-1)) and CID (13.72 to 13.23% per hundred) was observed from well watered to stress condition. Results indicated a direct relationship of SLA with CID (r = 0.511* and 0.544*) and inverse relationship between TE and CID (r = -0.229 and -0.270) However the relationship of TE with CID was insignificant. A positive and significant relationship was visualized between TE and dry matter production in both control (r = 0.917**) and stress (0.718**) treatments. Relationships of total dry matter with SLA and CID were monitored insignificant and negative in control and positive in stress treatment indicated difference in dry matter production under two treatments. It seems that, in Cenchrus species, CID was influenced more by the photosynthetic capacity than by stomatal conductance, as indicated by its positive relationship with SLAin both control (r = 0.511) and stress (r = 0.544) conditions and negative relationship with root dry matter production under control (r = -0.921**) and stress (r = -0.919***) condition. Results showed good correspondence between CID and SLA, indicating that lines having high TE and biomass production can be exploited for their genetic improvement for drought.

  6. Inter- and intraspecific variation in leaf economic traits in wheat and maize

    PubMed Central

    Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F

    2018-01-01

    Abstract Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world’s most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates (Amax) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait–environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on Amax; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in Amax and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species. PMID:29484152

  7. Inter- and intraspecific variation in leaf economic traits in wheat and maize.

    PubMed

    Martin, Adam R; Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F

    2018-02-01

    Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world's most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates ( A max ) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait-environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on A max ; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in A max and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species.

  8. Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series.

    PubMed

    Marchand, Lilian; Lamy, Pierre; Bert, Valerie; Quintela-Sabaris, Celestino; Mench, Michel

    2016-02-01

    Foliar ionome, photosystem II activity, and leaf growth parameters of Ranunculus acris L., a potential biomonitor of trace element (TE) contamination and phytoavailability, were assessed using two riverbank soil series. R. acris was cultivated on two potted soil series obtained by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol with either an uncontaminated sandy riverbank soil (A) or a silty clay one slightly contaminated by TE (B). Trace elements concentrations in the soil-pore water and the leaves, leaf dry weight (DW) yield, total leaf area (TLA), specific leaf area (SLA), and photosystem II activity were measured for both soil series after a 50-day growth period. As soil contamination increased, changes in soluble TE concentrations depended on soil texture. Increase in total soil TE did not affect the leaf DW yield, the TLA, the SLA, and the photosystem II activity of R. acris over the 50-day exposure. The foliar ionome did not reflect the total and soluble TE concentrations in both soil series. Foliar ionome of R. acris was only effective to biomonitor total and soluble soil Na concentrations in both soil series and total and soluble soil Mo concentrations in the soil series B.

  9. Using functional traits to assess the resistance of subalpine grassland to trampling by mountain biking and hiking.

    PubMed

    Pickering, Catherine Marina; Barros, Agustina

    2015-12-01

    Functional traits reflect plant responses to disturbance, including from visitor impacts. The impacts of mountain biking and hiking on functional composition were compared using a common experimental protocol in a subalpine grassland in the Australian Alps. The overlapping cover of all species was recorded two weeks after different intensities of hiking (200 and 500 passes) and mountain biking (none, 25, 75, 200 and 500 passes). Species' functional trait data were combined with their relative cover to calculate community trait weighted means for plant height, leaf area, percentage leaf dry matter content and Specific Leaf Area (SLA). Species such as Poa fawcettiae with larger leaves and SLA but lower dry weight content of leaves were more resistant to use, with differences between bikers and hikers only apparent at the highest levels of use tested. This differs from some vegetation communities in Europe where plants with smaller leaves were more resistant to hiking. More research using functional traits may account for differences in species responses to trampling. Managers of conservation areas used for hiking and biking need to minimise off trail use by both user groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form.

    PubMed

    Rossatto, Davi Rodrigo; Franco, Augusto Cesar

    2017-04-01

    The assessment of leaf strategies has been a common theme in ecology, especially where multiple sources of environmental constraints (fire, seasonal drought, nutrient-poor soils) impose a strong selection pressure towards leaf functional diversity, leading to inevitable tradeoffs among leaf traits, and ultimately to niche segregation among coexisting species. As diversification on leaf functional strategies is dependent on integration at whole plant level, we hypothesized that regardless of phylogenetic relatedness, leaf trait functional syndromes in a multivariate space would be associated with the type of growth form. We measured traits related to leaf gas exchange, structure and nutrient status in 57 coexisting species encompassing all Angiosperms major clades, in a wide array of plant morphologies (trees, shrubs, sub-shrubs, herbs, grasses and palms) in a savanna of Central Brazil. Growth forms differed in mean values for the studied functional leaf traits. We extracted 4 groups of functional typologies: grasses (elevated leaf dark respiration, light-saturated photosynthesis on a leaf mass and area basis, lower values of leaf Ca and Mg), herbs (high values of SLA, leaf N and leaf Fe), palms (high values of stomatal conductance, leaf transpiration and leaf K) and woody eudicots (sub-shrubs, shrubs and trees; low SLA and high leaf Ca and Mg). Despite the large range of variation among species for each individual trait and the independent evolutionary trajectory of individual species, growth forms were strongly associated with particular leaf trait combinations, suggesting clear evolutionary constraints on leaf function for morphologically similar species in savanna ecosystems.

  11. Seedling growth strategies in Bauhinia species: comparing lianas and trees.

    PubMed

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-10-01

    Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25% of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (A(area)) and similar photosynthetic rates per unit mass (A(mass)) than the trees. Across species, RGR was positively related to SLA, but not to LAR and A(area). It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species.

  12. [Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis].

    PubMed

    Huo, Hong; Wang, Chuan-kuan

    2007-06-01

    The photosynthesis and transpiration of Pinus koraiensis needles at different canopy positions and of different leaf ages were measured in the field with a Li-6400 portable CO2/H2O infrared gas analyzer. The results showed that canopy position and leaf age had significant effects on the maximum net photosynthetic rate (Pmax), light saturation point (LSP), light compensation point (LCP), maximum apparent quantum efficiency (alpha), transpiration rate (T(r)), and specific leaf area (SLA), but no effects on water use efficiency (WUE). The Pmax decreased with the decrease of canopy position and the increase of leaf age, ranging in 6.55-9.05 micromol.m(-2).s(-1) on average. There were great variations in LSP and LCP among different canopy positions and leaf ages. The needles at middle canopy position had the greatest capacity of utilizing both weak and strong radiation. The T(r) decreased with canopy position decreasing, and varied from 1.37 to 1.59 mmol.m(-2).s(-1) across different leaf ages. There was a significant positive correlation between T(r) and photosynthetically active radiation (R2 = 0.967), and between WUE and net photosynthetic rate (R2 = 0.860). The SLA decreased with canopy position and leaf age increasing, ranging in 6.61-8.41 m2.kg(-1) and 6.65-8.38 m2.kg(-1), respectively.

  13. UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands

    PubMed Central

    Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng

    2013-01-01

    Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898

  14. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  15. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.

    PubMed

    Chmura, Daniel J; Tjoelker, Mark G

    2008-05-01

    Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.

  16. Aridity increases below-ground niche breadth in grass communities

    USGS Publications Warehouse

    Butterfield, Bradley J.; Bradford, John B.; Munson, Seth M.; Gremer, Jennifer R.

    2017-01-01

    Aridity is an important environmental filter in the assembly of plant communities worldwide. The extent to which root traits mediate responses to aridity, and how they are coordinated with leaf traits, remains unclear. Here, we measured variation in root tissue density (RTD), specific root length (SRL), specific leaf area (SLA), and seed size within and among thirty perennial grass communities distributed along an aridity gradient spanning 190–540 mm of climatic water deficit (potential minus actual evapotranspiration). We tested the hypotheses that traits exhibited coordinated variation (1) among species, as well as (2) among communities varying in aridity, and (3) functional diversity within communities declines with increasing aridity, consistent with the “stress-dominance” hypothesis. Across communities, SLA and RTD exhibited a coordinated response to aridity, shifting toward more conservative (lower SLA, higher RTD) functional strategies with increasing aridity. The response of SRL to aridity was more idiosyncratic and was independent of variation in SLA and RTD. Contrary to the stress-dominance hypothesis, the diversity of SRL values within communities increased with aridity, while none of the other traits exhibited significant diversity responses. These results are consistent with other studies that have found SRL to be independent of an SLA–RTD axis of functional variation and suggest that the dynamic nature of soil moisture in arid environments may facilitate a wider array of resource capture strategies associated with variation in SRL.

  17. Taxonomy, Traits, and Environment Determine Isoprenoid Emission from an Evergreen Tropical forest.

    NASA Astrophysics Data System (ADS)

    Taylor, T.; Alves, E. G.; Tota, J.; Oliveira Junior, R. C.; Camargo, P. B. D.; Saleska, S. R.

    2016-12-01

    Volatile isoprenoid emissions from the leaves of tropical forest trees significantly affects atmospheric chemistry, aerosols, and cloud dynamics, as well as the physiology of the emitting leaves. Emission is associated with plant tolerance to heat and drought stress. Despite a potentially central role of isoprenoid emissions in tropical forest-climate interactions, we have a poor understanding of the relationship between emissions and ecological axes of forest function. We used a custom instrument to quantify leaf isoprenoid emission rates from over 200 leaves and 80 trees at a site in the eastern Brazilian Amazon. We related standardized leaf emission capacity (EC: leaf emission rate at 1000 PAR) to tree taxonomy, height, light environment, wood traits, and leaf traits. Taxonomy was the strongest predictor of EC, and non-emitters could be found throughout the canopy. But we found that environment and leaf carbon economics constrained the upper bound of EC. For example, the relationship between EC and specific leaf area (SLA; fresh leaf area / dry mass) is described by an envelope with a decreasing upper bound on EC as SLA increases (quantile regression: 85th quantile, p<0.01). That result suggests a limitation on emissions related to leaf carbon investment strategies. EC was highest in the mid-canopy, and in leaves growing under less direct light. While inferences of ecosystem emissions focus on environmental conditions in the canopy, our results suggest that sub-canopy leaves are more responsive. This work is allowing us to develop an ecological understanding of isoprenoid emissions from forests, the basis for a predictive model of emissions that depends on both environmental factors and biological emission capacity that is grounded in plant traits and phylogeny.

  18. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    PubMed

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  19. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments were maintained regardless of soil nutrient status.

  20. Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants

    PubMed Central

    Leishman, Michelle R; Cooke, Julia; Richardson, David M; Newman, Jonathan

    2014-01-01

    Summary Understanding the processes underlying the transition from introduction to naturalization and spread is an important goal of invasion ecology. Release from pests and pathogens in association with capacity for rapid growth is thought to confer an advantage for species in novel regions. We assessed leaf herbivory and leaf-level traits associated with growth strategy in the native and exotic ranges of 13 invasive plant species from 256 populations. Species were native to either the Western Cape region of South Africa, south-western Australia or south-eastern Australia and had been introduced to at least one of the other regions or to New Zealand. We tested for evidence of herbivore release and shifts in leaf traits between native and exotic ranges of the 13 species. Across all species, leaf herbivory, specific leaf area and leaf area were significantly different between native and exotic ranges while there were no significant differences across the 13 species found for leaf mass, assimilation rate, dark respiration or foliar nitrogen. Analysis at the species- and region-level showed that eight out of 13 species had reduced leaf herbivory in at least one exotic region compared to its native range. Six out of 13 species had significantly larger specific leaf area (SLA) in at least one exotic range region and five of those six species experienced reduced leaf herbivory. Increases in SLA were underpinned by increases in leaf area rather than reductions in leaf mass. No species showed differences in the direction of trait shifts from the native range between different exotic regions. This suggests that the driver of selection on these traits in the exotic range is consistent across regions and hence is most likely to be associated with factors linked with introduction to a novel environment, such as release from leaf herbivory, rather than with particular environmental conditions. Synthesis. These results provide evidence that introduction of a plant species into a novel environment commonly results in a reduction in the top-down constraint imposed by herbivores on growth, allowing plants to shift towards a faster growth strategy which may result in an increase in population size and spread and consequently to invasive success. PMID:25558090

  1. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest.

    PubMed

    Santiago, Louis S; Kitajima, Kaoru; Wright, S Joseph; Mulkey, Stephen S

    2004-05-01

    We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost-benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar delta15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests. Copyright 2004 Springer-Verlag

  2. Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth?

    PubMed

    Sides, Colby B; Enquist, Brian J; Ebersole, James J; Smith, Marielle N; Henderson, Amanda N; Sloat, Lindsey L

    2014-01-01

    Darwin first proposed that species with larger ecological breadth have greater phenotypic variation. We tested this hypothesis by comparing intraspecific variation in specific leaf area (SLA) to species' local elevational range and by assessing how external (abiotic) filters may influence observed differences in ecological breadth among species. Understanding the patterns of individual variation within and between populations will help evaluate differing hypotheses for structuring of communities and distribution of species. We selected 21 species with varying elevational ranges and compared the coefficient of variation of SLA for each species against its local elevational range. We examined the influence of external filters on local trait composition by determining if intraspecific changes in SLA with elevation have the same direction and similar rates of change as the change in community mean SLA value. In support of Darwin's hypothesis, we found a positive relationship between species' coefficient of variation for SLA with species' local elevational range. Intraspecific changes in SLA had the same sign, but generally lower magnitude than the community mean SLA. The results indicate that wide-ranging species are indeed characterized by greater intraspecific variation and that species' phenotypes shift along environmental gradients in the same direction as the community phenotypes. However, across species, the rate of intraspecific trait change, reflecting plastic and/or adaptive changes across populations, is limited and prevents species from adjusting to environmental gradients as quickly as interspecific changes resulting from community assembly.

  3. Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability.

    PubMed

    Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming

    2016-01-01

    Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.

  4. Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability

    PubMed Central

    Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming

    2016-01-01

    Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%–76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change. PMID:27191402

  5. Ecophysiology and growth of advance red spruce and balsam fir regeneration after partial cutting in yellow birch-conifer stands.

    PubMed

    Dumais, Daniel; Prévost, Marcel

    2008-08-01

    We investigated ecophysiological and growth responses of short (0.4 to 1.3 m in height) advance regeneration of red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea L.) six years after removal of 0, 40, 50, 60 and 100% of the overstory basal area (BA) in two yellow birch-conifer stands. Partial cuts significantly increased stomatal conductance of red spruce only. Light-saturated photosynthesis (leaf-area basis) of both species increased with BA removal, but unlike red spruce, specific leaf area (SLA) of balsam fir decreased with increased cutting intensity. Partial cuts appreciably increased the concentration of N and Ca in red spruce and balsam fir foliage, respectively, and resulted in decreased foliar concentrations of K in red spruce and Mg in balsam fir. The height and lateral growth of both species increased with BA removal, although partial cuts were more beneficial to balsam fir. The data suggest that short advance regeneration of red spruce and balsam fir can coexist under partial overstory conditions, but balsam fir has physiological characteristics and a capacity for morphological adjustment (SLA) that places it at an advantage when in competition with red spruce.

  6. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees

    PubMed Central

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-01-01

    Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978

  7. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests

    PubMed Central

    Wright, Ian J.; Ackerly, David D.; Bongers, Frans; Harms, Kyle E.; Ibarra-Manriquez, Guillermo; Martinez-Ramos, Miguel; Mazer, Susan J.; Muller-Landau, Helene C.; Paz, Horacio; Pitman, Nigel C. A.; Poorter, Lourens; Silman, Miles R.; Vriesendorp, Corine F.; Webb, Cam O.; Westoby, Mark; Wright, S. Joseph

    2007-01-01

    Background and Aims When ecologically important plant traits are correlated they may be said to constitute an ecological ‘strategy’ dimension. Through identifying these dimensions and understanding their inter-relationships we gain insight into why particular trait combinations are favoured over others and into the implications of trait differences among species. Here we investigated relationships among several traits, and thus the strategy dimensions they represented, across 2134 woody species from seven Neotropical forests. Methods Six traits were studied: specific leaf area (SLA), the average size of leaves, seed and fruit, typical maximum plant height, and wood density (WD). Trait relationships were quantified across species at each individual forest as well as across the dataset as a whole. ‘Phylogenetic’ analyses were used to test for correlations among evolutionary trait-divergences and to ascertain whether interspecific relationships were biased by strong taxonomic patterning in the traits. Key Results The interspecific and phylogenetic analyses yielded congruent results. Seed and fruit size were expected, and confirmed, to be tightly related. As expected, plant height was correlated with each of seed and fruit size, albeit weakly. Weak support was found for an expected positive relationship between leaf and fruit size. The prediction that SLA and WD would be negatively correlated was not supported. Otherwise the traits were predicted to be largely unrelated, being representatives of putatively independent strategy dimensions. This was indeed the case, although WD was consistently, negatively related to leaf size. Conclusions The dimensions represented by SLA, seed/fruit size and leaf size were essentially independent and thus conveyed largely independent information about plant strategies. To a lesser extent the same was true for plant height and WD. Our tentative explanation for negative WD–leaf size relationships, now also known from other habitats, is that the traits are indirectly linked via plant hydraulics. PMID:16595553

  9. Photosynthetic properties of C4 plants growing in an African savanna/wetland mosaic.

    PubMed

    Mantlana, K B; Arneth, A; Veenendaal, E M; Wohland, P; Wolski, P; Kolle, O; Wagner, M; Lloyd, J

    2008-01-01

    Photosynthesis rates and photosynthesis-leaf nutrient relationships were analysed in nine tropical grass and sedge species growing in three different ecosystems: a rain-fed grassland, a seasonal floodplain, and a permanent swamp, located along a hydrological gradient in the Okavango Delta, Botswana. These investigations were conducted during the rainy season, at a time of the year when differences in growth conditions between the sites were relatively uniform. At the permanent swamp, the largest variations were found for area-based leaf nitrogen contents, from 20 mmol m(-2) to 140 mmol m(-2), nitrogen use efficiencies (NUE), from 0.2 mmol (C) mol(-1) (N) s(-1) to 2.0 mmol (C) mol(-1) (N) s(-1), and specific leaf areas (SLA), from 50 cm(2) g(-1) to 400 cm(2) g(-1). For the vegetation growing at the rain-fed grassland, the highest leaf gas exchange rates, high leaf nutrient levels, a low ratio of intercellular to ambient CO(2) concentration, and high carboxylation efficiency were found. Taken together, these observations indicate a very efficient growth strategy that is required for survival and reproduction during the relatively brief period of water availability. The overall lowest values of light-saturated photosynthesis (A(sat)) were observed at the seasonal floodplain; around 25 micromol m(-2) s(-1) and 30 micromol m(-2) s(-1). To place these observations into the broader context of functional leaf trait analysis, relationships of photosynthesis rates, specific leaf area, and foliar nutrient levels were plotted, in the same way as was done for previously published 'scaling relationships' that are based largely on C(3) plants, noting the differences in the analyses between this study and the previous study. The within- and across-species variation in both A(sat) and SLA appeared better predicted by foliar phosphorus content (dry mass or area basis) rather than by foliar nitrogen concentrations, possibly because the availability of phosphorus is even more critical than the availability of nitrogen in the studied relatively oligotrophic ecosystems.

  10. Outbreak of Drepanopeziza fungus in aspen forests and variation in stand susceptibility: leaf functional traits, compensatory growth and phenology.

    PubMed

    Call, Anson C; St Clair, Samuel B

    2017-09-01

    In the spring of 2015, a severe outbreak of the necrotrophic pathogen Drepanopeziza (also known as Marssonina) spread across large portions of aspen (Populus tremuloides Michx.) forests in the western United States. Among adjacent stands, some were diseased and others were not. Drepanopeziza infection in diseased aspen stands stimulated compensatory growth of second-flush leaves at the top of the canopy. These patterns of infection provided an opportunity to characterize associations of pathogen infection and leaf functional traits. Eight pairs of adjacent healthy and diseased aspen stands were identified across a forest landscape in northern Utah. Average leaf surface area, specific leaf area (SLA), photosynthesis, starch concentration and defense chemistry expression (phenolic glycosides and condensed tannins) were measured on original, first-flush leaves in the lower portion of the tree canopy of healthy and diseased stands and compensatory, second-flush leaves produced in the canopy top of diseased stands. Only first-flush leaves of diseased stands showed high levels of Drepanopeziza infection. Leaf area of second-flush leaves of diseased stands was threefold larger than all other leaf types in healthy or diseased stands. Lower canopy leaves of healthy stands had the highest SLA. Photosynthesis was lowest in infected first-flush leaves, highest in second-flush leaves of diseased stands and intermediate in leaves of healthy stands. Foliar starch concentrations were lower in leaves of diseased stands than leaves from healthy stands. Condensed tannins were greater in second-flush leaves than first-flush leaves in both healthy and diseased stands. Phenolic glycoside concentrations were lowest in infected leaves of diseased stands. Diseased stands leafed out a week earlier in the spring than healthy stands, which may have exposed their emerging leaves to rainy conditions that promote Drepanopeziza infection. Compensatory leaf regrowth of diseased stands appears to offset some of the functional loss (i.e., photosynthetic capacity) of infected leaves. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Quantifying multi-dimensional functional trait spaces of trees: empirical versus theoretical approaches

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Fell, M.; Barber, J. J.

    2016-12-01

    Empirical, field studies of plant functional traits have revealed important trade-offs among pairs or triplets of traits, such as the leaf (LES) and wood (WES) economics spectra. Trade-offs include correlations between leaf longevity (LL) vs specific leaf area (SLA), LL vs mass-specific leaf respiration rate (RmL), SLA vs RmL, and resistance to breakage vs wood density. Ordination analyses (e.g., PCA) show groupings of traits that tend to align with different life-history strategies or taxonomic groups. It is unclear, however, what underlies such trade-offs and emergent spectra. Do they arise from inherent physiological constraints on growth, or are they more reflective of environmental filtering? The relative importance of these mechanisms has implications for predicting biogeochemical cycling, which is influenced by trait distributions of the plant community. We address this question using an individual-based model of tree growth (ACGCA) to quantify the theoretical trait space of trees that emerges from physiological constraints. ACGCA's inputs include 32 physiological, anatomical, and allometric traits, many of which are related to the LES and WES. We fit ACGCA to 1.6 million USFS FIA observations of tree diameters and heights to obtain vectors of trait values that produce realistic growth, and we explored the structure of this trait space. No notable correlations emerged among the 496 trait pairs, but stepwise regressions revealed complicated multi-variate structure: e.g., relationships between pairs of traits (e.g., RmL and SLA) are governed by other traits (e.g., LL, radiation-use efficiency [RUE]). We also simulated growth under various canopy gap scenarios that impose varying degrees of environmental filtering to explore the multi-dimensional trait space (hypervolume) of trees that died vs survived. The centroid and volume of the hypervolumes differed among dead and live trees, especially under gap conditions leading to low mortality. Traits most predictive of tree-level mortality were maximum tree height, RUE, xylem conducting area, and branch turn-over rate. We are using these hypervolumes as priors to an emulator that approximates the ACGCA, which we are fitting to the FIA data to quantify species-specific trait spectra and to explore factors giving rise to species differences.

  12. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts

    NASA Astrophysics Data System (ADS)

    Meng, T.-T.; Wang, H.; Harrison, S. P.; Prentice, I. C.; Ni, J.; Wang, G.

    2015-09-01

    Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.

  13. Abandoned seasonal livestock migration reflected by plant functional traits: A case study in Kyrgyz rangelands

    NASA Astrophysics Data System (ADS)

    Hoppe, Franziska; Zhusui Kyzy, Taalaigul; Usupbaev, Adilet; Schickoff, Udo

    2017-04-01

    At least 30% of Kyrgyz pasture areas are considered to be subject to vegetation and soil degradation. Since animal husbandry is the economic basis to sustain people's livelihoods, rangeland degradation presents a threat for the majority of the population. Recently, the usage of plant functional traits as a powerful tool for the characterization of vegetation dynamics in response to anthropogenic and natural disturbances has been put forward. Grazing is one of the most severe disturbances on vegetation, which concerns equally the loss of area and biomass. Because grazing is both depending on and affecting plant functional traits, important insights can be generated, based on this codependency. We hypothesized that the contrasting grazing intensity of summer and winter pastures is reflected by the chosen traits. We used traits such as plant height, flowering start, growth form as well as SLA (Specific Leaf Area) and LMA (Leaf Mass per Area). Based on former phytosociological classification of the main pasture types (summer and winter pastures), community structure and the traits of dominant plant species were analyzed. Our results showed that on winter pastures grazing decreased plant height and SLA and favored plants with an earlier flowering start as well as rosette plants and ascending plants. We conclude that the study of trait composition in relation to anthropogenic disturbances can provide important insights into the mechanism of plant response to grazing in high-altitude rangelands.

  14. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia.

    PubMed

    Schulze, Ernst-Detlef; Turner, Neil C; Nicolle, Dean; Schumacher, Jens

    2006-04-01

    Leaves and samples of recent wood of Eucalyptus species were collected along a rainfall gradient parallel to the coast of Western Australia between Perth in the north and Walpole in the south and along a southwest to northeast transect from Walpole in southwestern Australia, to near Mount Olga in central Australia. The collection included 65 species of Eucalyptus sampled at 73 sites and many of the species were collected at several sites along the rainfall gradient. Specific leaf area (SLA) and isotopic ratio of 13C to 12C (delta 13C) of leaves that grew in 2002, and tree ring growth and delta 13C of individual cell layers of the wood were measured. Rainfall data were obtained from the Australian Bureau of Meteorology for 29 locations that represented one or a few closely located collection sites. Site-averaged data and species-specific values of delta 13C decreased with decreasing annual rainfall between 1200 and 300 mm at a rate of 1.63 per thousand per 1000 mm decrease in rainfall. Responses became variable in the low rainfall region (< 300 mm), with some species showing decreasing delta 13C with rainfall, whereas delta 13C increased or remained constant in other species. The range of delta 13C values in the low rainfall region was as large as the range observed at sites receiving > 300 mm of annual rainfall. Specific leaf area varied between 2 and 6 m2 kg(-1) and tended to increase with decreasing annual rainfall in some species, but not all, whereas delta 13C decreased with SLA. The relationship between delta 13C and SLA was highly species and soil-type specific. Leaf-area-based nitrogen (N) content varied between 2 and almost 6 g m(-2) and decreased with rainfall. Thus, thicker leaves were associated with higher N content and this compensated for the effect of drought on delta 13C. Nitrogen content was also related to soil type and species identity. Based on a linear mixed model, statistical analysis of the whole data set showed that 27% of the variation in delta 13C was associated with changes in SLA, 16% with soil type and only 1% with rainfall. Additionally, 21% was associated with species identity. For a subset of sites with > 300 mm rainfall, 43% of the variation was explained by SLA, 13% by soil type and only 3% by rainfall. The species effect decreased to 9% because there were fewer species in the subset of sites. The small effect of rainfall on delta 13C was further supported by a path analysis that yielded a standardized path coefficient of 0.38 for the effect of rainfall on SLA and -0.50 for the effect of SLA on delta 13C, but an insignificantly low standardized path coefficient of -0.05 for the direct effect of rainfall on delta 13C. Thus, in contrast to our hypothesis that delta 13C decreases with rainfall independent of soil type and species, we detected no statistically significant relationship between rainfall and delta 13C in leaves of trees growing at sites receiving < 300 mm of rainfall annually. Rainfall affected delta 13C indirectly through soil type (a surrogate for water-holding capacity) across the rainfall gradient. Annual tree rings are not clearly visible in evergreen Eucalyptus species, even in the seasonally cool climate of SW Australia. Generally, visible density transitions in the wood are related not to a strict annual cycle but to periods of growth associated mainly with rainfall. The relationship between delta 13C of leaves and the width of these stem increments was not statistically significant. Analysis of stem growth periods showed that delta 13C in wood responded to rainfall events, but carbohydrate storage and reallocation also affected the isotopic signature. Although delta 13C in wood of any one species varied over a range of 2 to 4 per thousand, there was a general relationship between delta 13C of the leaves and the annual range of delta 13C in wood. We conclude that species-specific traits are important in understanding the response of Eucalyptus to rainfall and that the diversity of the genus may reflect its response to the large climatic gradient in Australia and to the large annual and interannual variations in rainfall at any one location.

  15. Predicting tropical plant physiology from leaf and canopy spectroscopy

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Asner, G. P.; Martin, R.

    2009-12-01

    A broad understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but elusive, due to difficult canopy access and great species diversity. In this paper, we develop an empirical model to predict light saturated sunlit tropical leaf photosynthesis based on leaf and canopy spectra with the goal of developing a high resolution remote sensing technique to measure canopy photosynthesis. To develop this model, we used the partial least squares (PLS) regression technique on three tropical forest datasets (~168 species), two in Hawaii and one in the tropical rainforest module of Biosphere 2 (B2L). For each species, we measured light saturated photosynthesis (A), light and CO2 saturated photosynthesis (Amax), day respiration (R), leaf spectra (400-2500 nm with 1 nm sampling), leaf nitrogen (N), chlorophyll A and B, carotenoids, and specific leaf area (SLA). On a subset of species we measured Jmax and Vcmax based on light and Aci curves. The model best predicted A (r2 = 0.74, root mean square error (RMSE) = 2.85 µmol m-2 s-1), R (r2 of 0.48, RMSE of -0.52 µmol m-2 s-1) followed by Amax (r2 of 0.47, RMSE of 5.1 µmol m-2 s-1), Jmax, (R2 = 0.52, RMSE = 39) and VCmax (R2 = 0.39, RMSE = 36). The PLS weightings, which indicate which wavelengths most contribute to the model, indicated that physiology weightings were most similar to nitrogen weightings, followed by chlorophyll and SLA. We combined leaf-level reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance, and found that canopy spectra are a better predictor of light saturated photosynthesis more strongly (RMSE = 2.4 µmol m-2 s-1) than are leaf spectra (RMSE = 2.85 µmol m-2 s-1). The results suggest that there is potential for this technique to be used with high fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  16. Alterations in plant community niche hypervolume and functional group representation to accommodate extreme drought

    NASA Astrophysics Data System (ADS)

    Mao, W.; Sun, Z.; Felton, A. J.; Zhao, X.; Zhang, T.; Li, Y.; Smith, M. D.

    2017-12-01

    We used the method of `niche hypervolume' to study how plant communities accommodate extreme environmental changes. Due to the gradual decreases in precipitation, the desert-steppe ecotone in western of Inner Mongolia, an already arid region, has large shifts in species composition within short geographical ranges. Based on precipitation and species composition, we divided this study area into four categories: desert area (D), partial desert area (pD), partial steppe area (pS) and steppe area(S). We sampled along a climatic gradient of precipitation. We selected four transects, in each transect 100-125 quadrats were randomly selected, with 425 quadrats sampled in total. We assessed species composition of each sampling quadrat, and collected leaves of every species that appeared in every quadrat. We also studied the change of plant community weighted means of leaf traits (CWM) along the precipitation gradient. Leaf traits (phenotypic traits, i.e. SLA, LDMC and stoichiometry traits, i.e. LNC, LCC) were used to calculate the changes in `niche hypervolume'. Our results show that: 1) with decreases in precipitation, species richness and functional group types (PFTs) change. Species richness and functional groups were the highest in the pD area, while the species richness and functional groups in the desert area were the lowest. 2), CWM-SLA in the desert area was relatively small, while CWM-SLA in pD area, the pS area, and the steppe area are more similar. CWM-LNC decreases as precipitation decreases, consistent with CWM-LCC trends. While CWM-LDMC of the desert area was the highest, and CWM-LDMC in desert area was the lowest. The dynamics of CWM traits suggests that species in the desert region have slower growth rates, while species in the transitional zone and steppe area have relatively higher growth rates. Finally, the pD area had the highest niche hypervolume, while the steppe area had the lowest hypervolume, which may be closely related to the high level of PFTs. These results suggest that even in drought-prone ecosystems, plants yield multiple life strategies to adapt to stressful environments. While under extreme drought conditions, environmental filters will remove species with unsuitable traits, like perennial species in this study, leaving shrubs and other drought tolerant species to survive.

  17. Exploring chemical variables in Ligustrum lucidum Ait. F. tricolor (rehd.) Rehd. in relation to air pollutants and environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignata, M.L.; Canas, M.S.; Carreras, H.A.

    1997-09-01

    A diagnostic study was done on Ligustrum lucidum Ait. f. tricolor (Rehd.) Rehd. in relation to atmospheric pollutants in Cordoba city, Argentina. The study area receives regional Pollutants and was categorized taking into account traffic level, industrial density, type of industry, location of the sample point in relation to the street corner, treeless condition, and topographic level. Dried weight/fresh weight ratio (DW/FW) and specific leaf area (SLA) were calculated, and concentrations of chlorophylls, carotenoids, total sulfur, soluble proteins, malondialdehyde (MDA), and hydroperoxy conjugated dienes (HPCD) were determined in leaf samples. Sulfur content correlates positively with traffic density and SLA correlatesmore » negatively with some combinations of the categorical variables; MDA correlates positively with topographic level and total protein concentration correlates negatively with treeless condition. On the basis of our results, traffic, location of trees, type of industry, situation of a tree with respect to others, and topographic level are the environmental variables to bear in mind when selecting analogous sampling points in a passive monitoring program. An approximation to predict tree injury may be obtained by measuring DW/FW ratio, proteins, pigments, HPCD, and MDA as they are responsible for the major variability of data.« less

  18. Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species

    PubMed Central

    Grassein, Fabrice; Lemauviel-Lavenant, Servane; Lavorel, Sandra; Bahn, Michael; Bardgett, Richard D.; Desclos-Theveniau, Marie; Laîné, Philippe

    2015-01-01

    Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species’ coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. Methods Root uptake of NH4+ and NO3–, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+. Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits. PMID:25471096

  19. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.

    PubMed

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai

    2014-09-01

    The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Intraspecific variability in functional traits matters: case study of Scots pine.

    PubMed

    Laforest-Lapointe, Isabelle; Martínez-Vilalta, Jordi; Retana, Javier

    2014-08-01

    Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.

  1. Response of Korean pine’s functional traits to geography and climate

    PubMed Central

    Dong, Yichen

    2017-01-01

    This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°–48°N) and the linear relationships among Korean pine functional traits, to explore this species’ adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors—latitude, longitude, and altitude; temperature factors—mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors—annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation. PMID:28886053

  2. Response of Korean pine's functional traits to geography and climate.

    PubMed

    Dong, Yichen; Liu, Yanhong

    2017-01-01

    This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°-48°N) and the linear relationships among Korean pine functional traits, to explore this species' adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors-latitude, longitude, and altitude; temperature factors-mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors-annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation.

  3. Variation in species-level plant functional traits over wetland indicator status categories

    USGS Publications Warehouse

    McCoy-Sulentic, Miles E.; Kolb, Thomas E.; Merritt, David M.; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.

    2017-01-01

    Wetland indicator status (WIS) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species-level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species-level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA), stem specific gravity (SSG), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species-level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG, seed mass, % leaf carbon and height, and for woody species occurred for height, SSG, and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low-density stem tissue. Adaptations to drier habitats in the riparian zone include short, high-density cavitation-resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.

  4. Changes in community-level riparian plant traits over inundation gradients, Colorado River, Grand Canyon

    USGS Publications Warehouse

    McCoy-Sulentic, Miles; Kolb, Thomas; Merritt, David; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel; Shafroth, Patrick B.

    2017-01-01

    Comparisons of community-level functional traits across environmental gradients have potential for identifying links among plant characteristics, adaptations to stress and disturbance, and community assembly. We investigated community-level variation in specific leaf area (SLA), plant mature height, seed mass, stem specific gravity (SSG), relative cover of C4 species, and total plant cover over hydrologic zones and gradients in years 2013 and 2014 in the riparian plant community along the Colorado River in the Grand Canyon. Vegetation cover was lowest in the frequently inundated active channel zone, indicating constraints on plant establishment and production by flood disturbance and anaerobic stress. Changes in trait values over hydrologic zones and inundation gradients indicate that frequently inundated plots exhibit a community-level ruderal strategy with adaptation to submergence (high SLA and low SSG, height, seed mass, C4 relative cover), whereas less frequently inundated plots exhibit adaptation to drought and infrequent flood disturbance (low SLA and high SSG, height, seed mass, C4 relative cover). Variation in traits not associated with inundation suggests niche differentiation and multiple modes of community assembly. The results enhance understanding of future responses of riparian communities of the Grand Canyon to anticipated drying and changes in hydrologic regime.

  5. Functional Trait Trade-Offs for the Tropical Montane Rain Forest Species Responding to Light from Simulating Experiments

    PubMed Central

    Mao, Peili; Zang, Runguo; Shao, Hongbo; Yu, Junbao

    2014-01-01

    Differences among tropical tree species in survival and growth to light play a key role in plant competition and community composition. Two canopy species with contrasting functional traits dominating early and late successional stages, respectively, in a tropical montane rain forest of Hainan Island, China, were selected in a pot experiment under 4 levels of light intensity (full, 50%, 30%, and 10%) in order to explore the adaptive strategies of tropical trees to light conditions. Under each light intensity level, the pioneer species, Endospermum chinense (Euphorbiaceae), had higher relative growth rate (RGR), stem mass ratio (SMR), specific leaf area (SLA), and morphological plasticity while the shade tolerant climax species, Parakmeria lotungensis (Magnoliaceae), had higher root mass ratio (RMR) and leaf mass ratio (LMR). RGR of both species was positively related to SMR and SLA under each light level but was negatively correlated with RMR under lower light (30% and 10% full light). The climax species increased its survival by a conservative resource use strategy through increasing leaf defense and root biomass investment at the expense of growth rate in low light. In contrast, the pioneer increased its growth by an exploitative resource use strategy through increasing leaf photosynthetic capacity and stem biomass investment at the expense of survival under low light. There was a trade-off between growth and survival for species under different light conditions. Our study suggests that tree species in the tropical rainforest adopt different strategies in stands of different successional stages. Species in the earlier successional stages have functional traits more advantageous to grow faster in the high light conditions, whereas species in the late successional stages have traits more favorable to survive in the low light conditions. PMID:25019095

  6. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species

    PubMed Central

    Smith, Nicholas G; Hoeppner, Susanne S; Dukes, Jeffrey S

    2018-01-01

    Abstract Predicting the effects of climate change on tree species and communities is critical for understanding the future state of our forested ecosystems. We used a fully factorial precipitation (three levels; ambient, −50 % ambient, +50 % ambient) by warming (four levels; up to +4 °C) experiment in an old-field ecosystem in the northeastern USA to study the climatic sensitivity of seedlings of six native tree species. We measured whole plant-level responses: survival, total leaf area (TLA), seedling insect herbivory damage, as well as leaf-level responses: specific leaf area (SLA), leaf-level water content (LWC), foliar nitrogen (N) concentration, foliar carbon (C) concentration and C:N ratio of each of these deciduous species in each treatment across a single growing season. We found that canopy warming dramatically increased the sensitivity of plant growth (measured as TLA) to rainfall across all species. Warm, dry conditions consistently reduced TLA and also reduced leaf C:N in four species (Acer rubrum, Betula lenta, Prunus serotina, Ulmus americana), primarily as a result of reduced foliar C, not increased foliar N. Interestingly, these conditions also harmed the other two species in different ways, increasing either mortality (Populus grandidentata) or herbivory (Quercus rubra). Specific leaf area and LWC varied across species, but did not show strong treatment responses. Our results indicate that, in the northeastern USA, dry years in a future warmer environment could have damaging effects on the growth capacity of these early secondary successional forests, through species-specific effects on leaf production (total leaves and leaf C), herbivory and mortality. PMID:29484151

  7. [Construction of transgenic tobacco expressing tomato GGPS2 gene and analysis of its low light tolerance].

    PubMed

    Li, Cuiping; Dong, Weihua; Zhang, Xingguo

    2015-05-01

    To explore the influence of low light on the synthesis of carotenoids, chlorophyll and the adaptability of transgenic plants with tomato Solanum lycopersicon L. GGPS2 gene, we constructed a vector containing a GGPS2 gene with green fluorescent protein (GFP) as report gene under the control of a cauliflower mosaic virus 35S promoter and introduced it into tobacco Nicotiana tabacum L. cv. Wisconsin 38 by Agrobacterium tumefaciens-mediated transformation. PCR analysis of the DNA from kanamycin resistant tobacco indicated that the transgenic tobacco containing the nptII gene, SlaGGPS2 gene and without contamination of Agrobacterium. We also detected the root tip of kanamycin resistant tobacco showing characteristic fluorescence. The contents of carotenoid, chlorophyll and photosynthesis of transgenic tobacco increased in comparison with wild tobacco after low light treatment. In addition, leaf mass per unit area, total dry weight, ratio of root to shoot in transgenic tobacco were all higher than that of the wild tobacco, which proved that the transgenic tobacco could increase the accumulation of biomass and promote it transport to root. The transgenic tobacco with SlaGGPS2 gene can increase the contents of carotenoid, chlorophyll, enhance the photosynthetic rate, promote the biomass accumulation and its distribution to root. Hence, the transgenic tobacco with SlaGGPS2 gene had increased low light tolerance and the SlaGGPS2 gene maybe can be used in other crops.

  8. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.

    PubMed

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E L

    2012-04-01

    Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.

  9. Effects of deer on the photosynthetic performance of invasive and native forest herbs.

    PubMed

    Heberling, J Mason; Brouwer, Nathan L; Kalisz, Susan

    2017-03-01

    Overabundant generalist herbivores can facilitate non-native plant invasions, presumably through direct and indirect modifications to the environment that affect plant performance. However, ecophysiological mechanisms behind ungulate-mediated plant invasions have not been well-studied. At a long-term Odocoileus virginianus (white-tailed deer) exclusion site in a temperate deciduous forest, we quantified deer-mediated ecophysiological impacts on an invasive biennial Alliaria petiolata (garlic mustard) and two palatable native herbaceous perennials, Maianthemum racemosum and Trillium grandiflorum . In mid-summer, we found that leaf-level light availability was higher in unfenced areas compared with areas fenced to exclude deer. Alliaria in unfenced areas exhibited 50 % higher mean maximum photosynthetic rates compared with fenced areas. Further, specific leaf area decreased by 48 % on average in unfenced areas, suggesting leaf structural responses to higher light levels. Similarly, Maianthemum had 42 % higher mean photosynthetic rates and 33 % decreased mean specific leaf area in unfenced areas, but these functional advantages were likely countered by high rates of deer herbivory. By contrast, Trillium exhibited significantly lower (26 %) maximum photosynthetic rates in unfenced areas, but SLA did not differ. Deer-mediated differences in light saturated photosynthetic rates for all three species were only significant during months with overstory tree canopy cover, when light availability in the herb layer was significantly lower in fenced areas. Alliaria 's enhanced photosynthetic rates implicate overabundant deer, a situation that is nearly ubiquitous across its invaded range. Collectively, our results provide empirical evidence that generalist herbivores can alter non-native plant physiology to facilitate invasion.

  10. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla

    PubMed Central

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition. PMID:28182638

  11. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    PubMed

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  12. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).

    PubMed

    Ramírez-Valiente, Jose A; Cavender-Bares, Jeannine

    2017-07-01

    In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not necessarily tightly coupled with resource-use strategies. Overall, our study demonstrates the importance of considering intraspecific variation in analyses of the vulnerability of tropical trees to climate change. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies

    PubMed Central

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E. L.

    2012-01-01

    Background and Aims Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Methods Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Key Results Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Conclusions Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits. PMID:22337079

  14. Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.

    PubMed

    Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.

  15. Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees

    PubMed Central

    Rios, Rodrigo S.; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [Amax], dark respiration rate [Rd], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that Rd evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for Rd, while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. Rd followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for Amax. Rd may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades. PMID:24914958

  16. Interspecific correlates of plasticity in relative growth rate following a decrease in nitrogen availability.

    PubMed

    Useche, Antonio; Shipley, Bill

    2010-02-01

    Nitrogen availability varies greatly over short time scales. This requires that a well-adapted plant modify its phenotype by an appropriate amount and at a certain speed in order to maximize growth and fitness. To determine how plastic ontogenetic changes in each trait interact and whether or not these changes are likely to maximize growth, ontogenetic changes in relative growth rate (RGR), net assimilation rate (NAR), specific leaf area (SLA) and root weight ratio (RWR), before and after a decrease in nitrogen supply, were studied in 14 herbaceous species. Forty-four plants of each species were grown in hydroponic culture under controlled conditions in a control treatment where the supply of nitrogen remained constant at 1 mm, and in a stress treatment where the nitrogen supply was abruptly decreased from 1 to 0.01 mm during the growth period. In the treatment series, and in comparison with the control, NAR and RGR decreased, RWR increased, and SLA did not change except for the timing of ontogenetic change. Species having greater increases in the maximum rate of change in RWR also had smaller reductions in RGR; plasticity in RWR is therefore adaptive. In contrast, species which showed a greater decrease in NAR showed stronger reductions in RGR; plasticity in NAR is therefore not adaptive. Plasticity in RGR was not related to plasticity in SLA. There were no significant relationships among the plasticities in NAR, RWR or SLA. Potentially fast-growing species experienced larger reductions in RGR following the nitrogen reduction. These results suggest that competitive responses to interspecific competition for nitrogen might be positively correlated with the plasticity in the maximum rate of change in RWR in response to a reduction in nitrogen supply.

  17. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits.

    PubMed

    Lusk, Christopher H; Kelly, Jeff W G; Gleason, Sean M

    2013-03-01

    A trade-off between shade tolerance and growth in high light is thought to underlie the temporal dynamics of humid forests. On the other hand, it has been suggested that tree species sorting on temperature gradients involves a trade-off between growth rate and cold resistance. Little is known about how these two major trade-offs interact. Seedlings of Australian tropical and cool-temperate rainforest trees were grown in glasshouse environments to compare growth versus shade-tolerance trade-offs in these two assemblages. Biomass distribution, photosynthetic capacity and vessel diameters were measured in order to examine the functional correlates of species differences in light requirements and growth rate. Species light requirements were assessed by field estimation of the light compensation point for stem growth. Light-demanding and shade-tolerant tropical species differed markedly in relative growth rates (RGR), but this trend was less evident among temperate species. This pattern was paralleled by biomass distribution data: specific leaf area (SLA) and leaf area ratio (LAR) of tropical species were significantly positively correlated with compensation points, but not those of cool-temperate species. The relatively slow growth and small SLA and LAR of Tasmanian light-demanders were associated with narrow vessels and low potential sapwood conductivity. The conservative xylem traits, small LAR and modest RGR of Tasmanian light-demanders are consistent with selection for resistance to freeze-thaw embolism, at the expense of growth rate. Whereas competition for light favours rapid growth in light-demanding trees native to environments with warm, frost-free growing seasons, frost resistance may be an equally important determinant of the fitness of light-demanders in cool-temperate rainforest, as seedlings establishing in large openings are exposed to sub-zero temperatures that can occur throughout most of the year.

  18. Post-fire environments are favourable for plant functioning of seeder and resprouter Mediterranean shrubs, even under drought.

    PubMed

    Parra, Antonio; Moreno, José M

    2017-05-01

    Understanding how drought affects seeder and resprouter plants during post-fire regeneration is important for the anticipation of Mediterranean vegetation vulnerability in a context of increasing drought and fire caused by climate change. A Mediterranean shrubland was subjected to various drought treatments (including 45% rainfall reduction, 7 months drought yr -1 ), before and after experimental burning, by means of a rainout-shelter system with an irrigation facility. Predawn shoot water potential (Ψ pd ), relative growth rate (RGR), specific leaf area (SLA) and bulk leaf carbon isotopic composition (δ 13 C) were monitored in the main woody species during the first 3 yr after fire. Cistus ladanifer seedlings showed higher Ψ pd , RGR and SLA, and lower δ 13 C, than unburned plants during the first two post-fire years. Seedlings under drought maintained relatively high Ψ pd , but suffered a decrease in Ψ pd and RGR, and an increase in δ 13 C, relative to control treatments. Erica arborea, E. scoparia and Phillyrea angustifolia resprouts had higher Ψ pd and RGR than unburned plants during the first post-fire year. Resprouters were largely unaffected by drought. Overall, despite marked differences between the two functional groups, post-fire environments were favourable for plant functioning of both seeder and resprouter shrubs, even under the most severe drought conditions implemented. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests.

    PubMed

    Lasky, Jesse R; Uriarte, María; Boukili, Vanessa K; Chazdon, Robin L

    2014-04-15

    Interspecific differences in relative fitness can cause local dominance by a single species. However, stabilizing interspecific niche differences can promote local diversity. Understanding these mechanisms requires that we simultaneously quantify their effects on demography and link these effects to community dynamics. Successional forests are ideal systems for testing assembly theory because they exhibit rapid community assembly. Here, we leverage functional trait and long-term demographic data to build spatially explicit models of successional community dynamics of lowland rainforests in Costa Rica. First, we ask what the effects and relative importance of four trait-mediated community assembly processes are on tree survival, a major component of fitness. We model trait correlations with relative fitness differences that are both density-independent and -dependent in addition to trait correlations with stabilizing niche differences. Second, we ask how the relative importance of these trait-mediated processes relates to successional changes in functional diversity. Tree dynamics were more strongly influenced by trait-related interspecific variation in average survival than trait-related responses to neighbors, with wood specific gravity (WSG) positively correlated with greater survival. Our findings also suggest that competition was mediated by stabilizing niche differences associated with specific leaf area (SLA) and leaf dry matter content (LDMC). These drivers of individual-level survival were reflected in successional shifts to higher SLA and LDMC diversity but lower WSG diversity. Our study makes significant advances to identifying the links between individual tree performance, species functional traits, and mechanisms of tropical forest succession.

  20. Causes and consequences of variation in conifer leaf life-span

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, P.B.; Koike, T.; Gower, S.T.

    1995-07-01

    Species with mutually supporting traits, such as high N{sub mass}, SLA, and A{sub mass}, and short leaf life-span, tend to inhabit either generally resource-rich environments or spatial and/or temporal microhabitats that are resource-rich in otherwise more limited habitats (e.g., {open_quotes}precipitation{close_quotes} ephemerals in warm deserts or spring ephemerals in the understory of temperate deciduous forests). In contrast, species with long leaf life-span often support foliage with low SLA, N{sub mass}, and A{sub mass}, and often grow in low-temperature limited, dry, and/or nutrient-poor environments. The contrast between evergreen and deciduous species, and the implications that emerge from such comparisons, can be consideredmore » a paradigm of modern ecological theory. However, based on the results of Reich et al. (1992) and Gower et al. (1993), coniferous species with foliage that persists for 9-10 years are likely to assimilate and allocate carbon and nutrients differently than other evergreen conifers that retain foliage for 2-3 years. Thus, attempts to contrast ecophysiological or ecosystem characteristics of evergreen versus deciduous life forms may be misleading, and pronounced differences among evergreen conifers may be ignored. Clearly, the deciduous-evergreen contrast, although useful in several ways, should be viewed from the broader perspective of a gradient in leaf life-span.« less

  1. Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought.

    PubMed

    de Miguel, Marina; Sánchez-Gómez, David; Cervera, María Teresa; Aranda, Ismael

    2012-01-01

    Drought is an important environmental factor in Mediterranean ecosystems affecting seedling recruitment, productivity or susceptibility to fires and pathogens. Studying water use efficiency in these environments is crucial due to its adaptive value allowing trees to cope with low water availability. We studied the phenotypic variability and genetic control of intrinsic water use efficiency (WUE(i)) and related traits in a full-sib family of Pinus pinaster under drought imposition. We detected significant differences in WUE(i) between clones of the same family and moderate heritability estimates that indicate some degree of genetic control over this trait. Stomatal conductance to water vapor was the trait most affected by drought imposition and it showed the strongest influence in WUE(i). Stomatal conductance to water vapor and specific leaf area (SLA) were the traits with highest heritabilities and they showed a significant genetic correlation with WUE(i), suggesting that selection of needles with low SLA values will improve WUE(i) in this species by reducing water losses through stomatal control.

  2. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity

    PubMed Central

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-01-01

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance–resistance strategies to grazing and mixed acquisitive–conservative strategies in resource utilization. PMID:26655858

  3. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity.

    PubMed

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-12-11

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization.

  4. Scaling Sap Flow Results Over Wide Areas Using High-Resolution Aerial Multispectral Digital Imaging, Leaf Area Index (LAI) and MODIS Satellite Imagery in Saltcedar Stands on the Lower Colorado River

    NASA Astrophysics Data System (ADS)

    Murray, R.; Neale, C.; Nagler, P. L.; Glenn, E. P.

    2008-12-01

    Heat-balance sap flow sensors provide direct estimates of water movement through plant stems and can be used to accurately measure leaf-level transpiration (EL) and stomatal conductance (GS) over time scales ranging from 20-minutes to a month or longer in natural stands of plants. However, their use is limited to relatively small branches on shrubs or trees, as the gauged stem section needs to be uniformly heated by the heating coil to produce valid measurements. This presents a scaling problem in applying the results to whole plants, stands of plants, and larger landscape areas. We used high-resolution aerial multispectral digital imaging with green, red and NIR bands as a bridge between ground measurements of EL and GS, and MODIS satellite imagery of a flood plain on the Lower Colorado River dominated by saltcedar (Tamarix ramosissima). Saltcedar is considered to be a high-water-use plant, and saltcedar removal programs have been proposed to salvage water. Hence, knowledge of actual saltcedar ET rates is needed on western U.S. rivers. Scaling EL and GS to large landscape units requires knowledge of leaf area index (LAI) over large areas. We used a LAI model developed for riparian habitats on Bosque del Apache, New Mexico, to estimate LAI at our study site on the Colorado River. We compared the model estimates to ground measurements of LAI, determined with a Li-Cor LAI-2000 Plant Canopy Analyzer calibrated by leaf harvesting to determine Specific Leaf Area (SLA) (m2 leaf area per g dry weight leaves) of the different species on the floodplain. LAI could be adequately predicted from NDVI from aerial multispectral imagery and could be cross-calibrated with MODIS NDVI and EVI. Hence, we were able to project point measurements of sap flow and LAI over multiple years and over large areas of floodplain using aerial multispectral imagery as a bridge between ground and satellite data. The methods are applicable to riparian corridors throughout the western U.S.

  5. [Needles stable carbon isotope composition and traits of Pinus sylvestris var. mongolica in sparse wood grassland in south edge of Keerqin Sandy Land under the conditions of different precipitation].

    PubMed

    Song, Li-Ning; Zhu, Jiao-Jun; Li, Ming-Cai; Yan, Tao; Zhang, Jin-Xin

    2012-06-01

    A comparative study was conducted on the needles stable carbon isotope composition (delta13 C), specific leaf area (SLA), and dry matter content (DMC) of 19-year-old Pinus sylvestris var. mongolica trees in a sparse wood grassland in the south edge of Keerqin Sandy Land under the conditions of extreme drought and extreme wetness, aimed to understand the water use of Pinus sylvestris under the conditions of extreme precipitation. The soil water content and groundwater level were also measured. In the dry year (2009), the soil water content in the grassland was significantly lower than that in the wet year (2010), but the delta13C values of the current year-old needles had no significant difference between the two years and between the same months of the two years. The SLA of the current year-old needles was significantly lower in the dry year than in the wet year, but the DMC had no significant difference between the two years. Under the conditions of the two extreme precipitations, the water use efficiency of the trees did not vary remarkably, and the trees could change their needles SLA to adapt the variations of precipitation. For the test ecosystem with a groundwater level more than 3.0 m, extreme drought could have no serious impact on the growth and survival of the trees.

  6. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model.

    PubMed

    Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Rammig, Anja; Kattge, Jens; Poorter, Lourens; Peñuelas, Josep; Thonicke, Kirsten

    2015-01-22

    Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual- and trait-based version of the DGVM LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL- flexible individual traits (LPJmL-FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (N area ), the maximum carboxylation rate of Rubisco per leaf area (vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade-offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species-rich center of the region with relatively low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects. © 2015 John Wiley & Sons Ltd.

  7. Relating Stomatal Conductance to Leaf Functional Traits.

    PubMed

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  8. Inter- and intrapopulation variation in the response of tree seedlings to drought: physiological adjustments based on geographical origin, water supply and species.

    PubMed

    Carevic, Felipe S; Delatorre-Herrera, José; Delatorre-Castillo, José

    2017-09-01

    Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (E c ), specific leaf area (SLA) and pressure-volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus.

  9. Inter- and intrapopulation variation in the response of tree seedlings to drought: physiological adjustments based on geographical origin, water supply and species

    PubMed Central

    Delatorre-Herrera, José; Delatorre-Castillo, José

    2017-01-01

    Abstract Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (Ec), specific leaf area (SLA) and pressure–volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus. PMID:28948009

  10. Local climate and cultivation, but not ploidy, predict functional trait variation in Bouteloua gracilis (Poaceae)

    USGS Publications Warehouse

    Butterfield, Bradley J.; Wood, Troy E.

    2015-01-01

    Efforts to improve the diversity of seed 18 resources for important restoration species has become a high priority for land managers in many parts of the world. Relationships between functional trait values and the environment from which seed sources are collected can provide important insights into patterns of local adaptation and guidelines for seed transfer. However, little is known about which functional traits exhibit genetic differentiation across populations of restoration species and thus may contribute to local adaptation. Here, we report the results of a common garden experiment aimed at assessing genetic (including ploidy level) and environmental regulation of several functional traits among populations of Bouteloua gracilis, a dominant C4 grass and the most highly utilized restoration species across much of the Colorado Plateau. We found that leaf size and specific leaf area (SLA) varied significantly among populations, and were strongly correlated with the source population environment from which seeds were collected. However, variation in ploidy level had no significant effect on functional traits. Leaves of plants grown from commercial seed releases were significantly larger and had lower SLA than those from natural populations, a result that is concordant with the overall relation between climate and these two functional traits. We suggest that the patterns of functional trait variation shown here may extend to other grass species in the western USA, and may serve as useful proxies for more extensive genecology research. Furthermore, we argue that care should be taken to develop commercial seed lines with functional trait values that match those of natural populations occupying climates similar to target restoration sites.

  11. The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea.

    PubMed

    Goodger, Jason Q D; Woodrow, Ian E

    2010-02-01

    A micropropagation protocol was recently developed for Eucalyptus polybractea R.T. Baker, a commercially important eucalypt grown in short-rotation coppice cultivation and harvested for its foliar 1,8-cineole oil. Micropropagation of elite E. polybractea trees has resulted in selection gains for foliar oil traits, but decreased above-ground biomass accumulation has been observed in clones compared to related half-sibling families. This study aims to use a greenhouse study to investigate if micropropagation induces somaclonal variation that can account for the reduction in above-ground biomass in E. polybractea clones. Secondly, the study aims to compare the coppicing ability of micropropagated clones with related half-sibling seedlings using de-topped plantation-grown saplings. The results of the greenhouse study suggest that micropropagation of E. polybractea induces somaclonal variation that manifests in more mature leaf morphologies such as increased foliar oil concentrations and lower specific leaf area (SLA), attributable to an isobilateral arrangement of increased palisade mesophyll layers. Lower SLA, rather than differences in root allocation, is likely to be a key contributor to the lower relative growth rates observed in early sapling growth of micropropagated clones. In the field study, all micropropagated and seedling-derived E. polybractea saplings coppiced vigorously in the 12 months after de-topping. The coppice growth was so vigorous in the 12 months after de-topping that total above-ground biomass equalled that of the 27-month-old saplings, irrespective of propagation source. The morphological distinction between leaves of micropropagated and seed-derived plants was no longer evident in the coppice regrowth. The results presented here suggest that the micropropagated leaf morphology and the resultant growth reduction is transient and micropropagated plants coppice just as vigorously as seed-derived plants. Therefore, micropropagation is unlikely to detrimentally influence above-ground biomass accumulation beyond the first harvest rotation.

  12. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India.

    PubMed

    Qadir, Sami Ullah; Raja, Vaseem; Siddiqui, Weqar A

    2016-07-01

    The foliar and biochemical traits of Azadirachta indica A. Juss from fly ash (FA) dumping site in Badarpur thermal power plant (BTPP) New Delhi, India was studied. Three different experimental sites were selected at different distances from the thermal power plant. Ambient suspended particulate matter (SPM) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b, and carotenoids), total chlorophyll, net photosynthetic rate, stomatal index (SI), stomatal conductance (SC), intercellular carbon dioxide concentration [CO2]i, net photosynthetic rate (NPR), nitrogen, nitrate, nitrate reductase activity, proline, protein, reducing sugar and sulphur content were measured. Considerable reduction in pigments (chlorophyll a, chlorophyll b and carotenoids), and total chlorophyll was observed at fly ash dumping site. Fly ash stress revealed the inhibitory effect on Nitrate reductase activity (NRA), Nitrate, soluble protein, and reducing sugar content, whereas stimulatory effect was found for the stomatal index, nitrogen, proline, antioxidants and sulphur content in the leaves. Under fly ash stress, stomatal conductance was low, leading to declining in photosynthetic rate and increase in the internal CO2 concentration of leaf. Single leaf area (SLA), leaf length and leaf width also showed a declining trend from control to the polluted site. Antioxidant enzymes increased in leaves reflecting stress and extenuation of reactive oxygen species (ROS). Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The Spacing Effect and Its Relevance to Second Language Acquisition

    ERIC Educational Resources Information Center

    Rogers, John

    2017-01-01

    This commentary discusses some theoretical and methodological issues related to research on the spacing effect in second language acquisition research (SLA). There has been a growing interest in SLA in how the temporal distribution of input might impact language development. SLA research in this area has frequently drawn upon the rich field of…

  14. Effects of long- and short-term management on the functional structure of meadows through species turnover and intraspecific trait variability.

    PubMed

    Volf, Martin; Redmond, Conor; Albert, Ágnes J; Le Bagousse-Pinguet, Yoann; Biella, Paolo; Götzenberger, Lars; Hrázský, Záboj; Janeček, Štěpán; Klimešová, Jitka; Lepš, Jan; Šebelíková, Lenka; Vlasatá, Tereza; de Bello, Francesco

    2016-04-01

    The functional structures of communities respond to environmental changes by both species replacement (turnover) and within-species variation (intraspecific trait variability; ITV). Evidence is lacking on the relative importance of these two components, particularly in response to both short- and long-term environmental disturbance. We hypothesized that such short- and long-term perturbations would induce changes in community functional structure primarily via ITV and turnover, respectively. To test this we applied an experimental design across long-term mown and abandoned meadows, with each plot containing a further level of short-term management treatments: mowing, grazing and abandonment. Within each plot, species composition and trait values [height, shoot biomass, and specific leaf area (SLA)] were recorded on up to five individuals per species. Positive covariations between the contribution of species turnover and ITV occurred for height and shoot biomass in response to both short- and long-term management, indicating that species turnover and intraspecific adjustments selected for similar trait values. Positive covariations also occurred for SLA, but only in response to long-term management. The contributions of turnover and ITV changed depending on both the trait and management trajectory. As expected, communities responded to short-term disturbances mostly through changes in intraspecific trait variability, particularly for height and biomass. Interestingly, for SLA they responded to long-term disturbances by both species turnover and intraspecific adjustments. These findings highlight the importance of both ITV and species turnover in adjusting grassland functional trait response to environmental perturbation, and show that the response is trait specific and affected by disturbance regime history.

  15. Seed banks of native forbs, but not exotic grasses, increase during extreme drought.

    PubMed

    LaForgia, Marina L; Spasojevic, Marko J; Case, Erica J; Latimer, Andrew M; Harrison, Susan P

    2018-04-01

    Extreme droughts such as the one that affected California in 2012-2015 have been linked to severe ecological consequences in perennial-dominated communities such as forests. In annual communities, drought impacts are difficult to assess because many species persist through facultative multiyear seed dormancy, which leads to the development of seed banks. Impacts of extreme drought on the abundance and composition of the seed banks of whole communities are little known. In 80 heterogeneous grassland plots where cover is dominated by ~15 species of exotic annual grasses and diversity is dominated by ~70 species of native annual forbs, we grew out seeds from soil cores collected early in the California drought (2012) and later in the multiyear drought (2014), and analyzed drought-associated changes in the seed bank. Over the course of the study we identified more than 22,000 seedlings to species. We found that seeds of exotic annual grasses declined sharply in abundance during the drought while seeds of native annual forbs increased, a pattern that resembled but was even stronger than the changes in aboveground cover of these groups. Consistent with the expectation that low specific leaf area (SLA) is an indicator of drought tolerance, we found that the community-weighted mean SLA of annual forbs declined both in the seed bank and in the aboveground community, as low-SLA forbs increased disproportionately. In this system, seed dormancy reinforces the indirect benefits of extreme drought to the native forb community. © 2018 by the Ecological Society of America.

  16. Patterns of Leaf Biochemical and Structural Properties of Cerrado Life Forms: Implications for Remote Sensing

    PubMed Central

    Ball, Aaron; Sanchez-Azofeifa, Arturo; Portillo-Quintero, Carlos; Rivard, Benoit; Castro-Contreras, Saulo; Fernandes, Geraldo

    2015-01-01

    Aim The general goal of this study is to investigate and analyze patterns of ecophysiological leaf traits and spectral response among life forms (trees, shrubs and lianas) in the Cerrado ecosystem. In this study, we first tested whether life forms are discriminated through leaf level functional traits. We then explored the correlation between leaf-level plant functional traits and spectral reflectance. Location Serra do Cipo National Park, Minas Gerais, Brazil. Methods Six ecophysiological leaf traits were selected to best characterize differences between life forms in the woody plant community of the Cerrado. Results were compared to spectral vegetation indices to determine if plant groups provide means to separate leaf spectral responses. Results Values obtained from leaf traits were similar to results reported from other tropical dry sites. Trees and shrubs significantly differed from lianas in terms of the percentage of leaf water content and Specific Leaf Area. Spectral indices were insufficient to capture the differences of these key traits between groups, though indices were still adequately correlated to overall trait variation. Conclusion The importance of life forms as biochemical and structurally distinctive groups is a significant finding for future remote sensing studies of vegetation, especially in arid and semi-arid environments. The traits we found as indicative of these groups (SLA and water content) are good candidates for spectral characterization. Future studies need to use the full wavelength (400 nm–2500 nm) in order to capture the potential response of these traits. The ecological linkage to water balance and life strategies encourages these traits as starting points for modeling plant communities using hyperspectral remote sensing. PMID:25692675

  17. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits

    PubMed Central

    Vesk, Peter A.

    2017-01-01

    Plant functional traits are increasingly used to generalize across species, however few examples exist of predictions from trait-based models being evaluated in new species or new places. Can we use functional traits to predict growth of unknown species in different areas? We used three independently collected datasets, each containing data on heights of individuals from non-resprouting species over a chronosquence of time-since-fire sites from three ecosystems in south-eastern Australia. We examined the influence of specific leaf area, woody density, seed size and leaf nitrogen content on three aspects of plant growth; maximum relative growth rate, age at maximum growth and asymptotic height. We tested our capacity to perform out-of-sample prediction of growth trajectories between ecosystems using species functional traits. We found strong trait-growth relationships in one of the datasets; whereby species with low SLA achieved the greatest asymptotic heights, species with high leaf-nitrogen content achieved relatively fast growth rates, and species with low seed mass reached their time of maximum growth early. However these same growth-trait relationships did not hold across the two other datasets, making accurate prediction from one dataset to another unachievable. We believe there is evidence to suggest that growth trajectories themselves may be fundamentally different between ecosystems and that trait-height-growth relationships may change over environmental gradients. PMID:28486535

  18. [Effects of eutrophic nitrogen nutrition on carbon balance capacity of Liquidambar formosana seedlings under low light].

    PubMed

    Wang, Chuan-Hua; Li, Jun-Qing; Yang, Ying

    2011-12-01

    To investigate the effects of atmospheric nitrogen deposition on the seedlings regeneration of Liquidambar formosana, a greenhouse experiment was conducted, in which, the low light- and nitrogen supplies were controlled similar to those in typical L. formosana secondary forests, with the effects of different light- and nitrogen supply on the L. formosana seedlings survival, leaf functional traits, biomass allocation, and gas exchange studied. The whole plant light compensation point (LCP(whoIe-plant)) of the seedlings was estimated with a whole plant carbon balance model, and then compared with the understory photosynthetic active radiance (PAR) of the typical secondary forests. Under 3.0% and 6.0% of full sunlight, eutrophic nitrogen supply led to a decrease of seedlings survival (shade tolerance) and specific leaf area (SLA), but had no obvious effects on the seedlings biomass allocation. At eutrophic nitrogen supply, light intensity had significant effects on the leaf area based maximum assimilation rate, whereas increasing nitrogen supply under low light induced the increase of leaf mass based dark respiration rate. Both light intensity and nitrogen supply had significant effects on the mass based leaf respiration rate, and the interaction of light and nitrogen had significant effects on the mass based stem respiration rate. Increasing nitrogen supply increased the LCP(wholeplant), under 3.0%, 6.0%, and 12.0% of full sunlight, but decreased the LCP(whoIe-plant) under 25.0% of full sunlight. The decrease of the seedlings shade tolerance induced by the increasing nitrogen supply under low light was correlated with the variations of the seedlings carbon balance capacity. Under the background of elevated atmospheric nitrogen deposition, the maintenance of L. formosana populations in China would more depend on disturbances and gap regeneration, and the population dynamics would be deeply affected.

  19. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances.

    PubMed

    Maseda, Pablo H; Fernández, Roberto J

    2016-02-01

    Water stress modifies plant above- vs belowground biomass allocation, i.e., morphological plasticity. It is known that all species and genotypes reduce their growth rate in response to stress, but in the case of water stress it is unclear whether the magnitude of such reduction is linked to the genotype's growth potential, and whether the reduction can be largely attributed to morphological adjustments such as plant allocation and leaf and root anatomy. We subjected seedlings of six seed sources, three from each of Eucalyptus camaldulensis (potentially fast growing) and E. globulus (inherently slow growing), to three experimental water regimes. Biomass, leaf area and root length were measured in a 6-month glasshouse experiment. We then performed functional growth analysis of relative growth rate (RGR), and aboveground (leaf area ratio (LAR), specific leaf area (SLA) and leaf mass ratio (LMR)) and belowground (root length ratio (RLR), specific root length (SRL) and root mass ratio (RMR)) morphological components. Total biomass, root biomass and leaf area were reduced for all Eucalyptus provenances according to drought intensity. All populations exhibited drought plasticity, while those of greater growth potential (RGRmax) had a larger reduction in growth (discounting the effect of size). A positive correlation was observed between drought sensitivity and RGRmax. Aboveground, drought reduced LAR and LMR; under severe drought a negative correlation was found between LMR and RGRmax. Belowground, drought reduced SRL but increased RMR, resulting in no change in RLR. Under severe drought, a negative correlation was found between RLR, SRL and RGRmax. Our evidence strongly supports the classic ecophysiological trade-off between growth potential and drought tolerance for woody seedlings. It also suggests that slow growers would have a low capacity to adjust their morphology. For shoots, this constraint on plasticity was best observed in partition (i.e., LMR) whereas for roots it was clearest in morphology/anatomy (i.e., SRL). Thus, a low RGRmax would limit plastic response to drought not only at the whole plant level but also at the organ and even the tissue level. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Sampling intraspecific variability in leaf functional traits: Practical suggestions to maximize collected information.

    PubMed

    Petruzzellis, Francesco; Palandrani, Chiara; Savi, Tadeja; Alberti, Roberto; Nardini, Andrea; Bacaro, Giovanni

    2017-12-01

    The choice of the best sampling strategy to capture mean values of functional traits for a species/population, while maintaining information about traits' variability and minimizing the sampling size and effort, is an open issue in functional trait ecology. Intraspecific variability (ITV) of functional traits strongly influences sampling size and effort. However, while adequate information is available about intraspecific variability between individuals (ITV BI ) and among populations (ITV POP ), relatively few studies have analyzed intraspecific variability within individuals (ITV WI ). Here, we provide an analysis of ITV WI of two foliar traits, namely specific leaf area (SLA) and osmotic potential (π), in a population of Quercus ilex L. We assessed the baseline ITV WI level of variation between the two traits and provided the minimum and optimal sampling size in order to take into account ITV WI , comparing sampling optimization outputs with those previously proposed in the literature. Different factors accounted for different amount of variance of the two traits. SLA variance was mostly spread within individuals (43.4% of the total variance), while π variance was mainly spread between individuals (43.2%). Strategies that did not account for all the canopy strata produced mean values not representative of the sampled population. The minimum size to adequately capture the studied functional traits corresponded to 5 leaves taken randomly from 5 individuals, while the most accurate and feasible sampling size was 4 leaves taken randomly from 10 individuals. We demonstrate that the spatial structure of the canopy could significantly affect traits variability. Moreover, different strategies for different traits could be implemented during sampling surveys. We partially confirm sampling sizes previously proposed in the recent literature and encourage future analysis involving different traits.

  1. Physiological and morphological responses to permanent and intermittent waterlogging in seedlings of four evergreen trees of temperate swamp forests.

    PubMed

    Zúñiga-Feest, Alejandra; Bustos-Salazar, Angela; Alves, Fernanda; Martinez, Vanessa; Smith-Ramírez, Cecilia

    2017-06-01

    Waterlogging decreases a plant's metabolism, stomatal conductance (gs) and photosynthetic rate (A); however, some evergreen species show acclimation to waterlogging. By studying both the physiological and morphological responses to waterlogging, the objective of this study was to assess the acclimation capacity of four swamp forest species that reside in different microhabitats. We proposed that species (Luma apiculata [D.C.] Burret. and Drimys winteri J.R. et G. Forster.) abundant in seasonally and intermittently waterlogged areas (SIWA) would have a higher acclimation capacity than species abundant in the inner swamp (Blepharocalyx cruckshanksii [H et A.] Mied. and Myrceugenia exsucca [D.C.] Berg.) where permanent waterlogging occurs (PWA); it was expected that the species from SIWA would maintain leaf expansion and gas exchange rates during intermittent waterlogging treatments. Conversely, we expected that PWA species would have higher constitutive waterlogging tolerance, and this would be reflected in the formation of lenticels and adventitious roots. Over the course of 2 months, we subjected seedlings to different waterlogging treatments: (i) permanent (sudden, SW), (ii) intermittent (gradual) or (iii) control (field capacity, C). Survival after waterlogging was high (≥80%) for all species and treatments, and only the growth rate of D. winteri subjected to SW was affected. Drimys winteri plants had low, but constant A and g during both waterlogging treatments. Conversely, L. apiculata had the highest A and g values, and g increased significantly during the first several days of waterlogging. In general, seedlings of all species subjected to waterlogging produced more adventitious roots and fully expanded leaves and had higher specific leaf area (SLA) and stomatal density (StD) than seedlings in the C treatment. From the results gathered here, we partially accept our hypothesis as all species showed high tolerance to waterlogging, maintained growth, and had increased A or g during different time points of waterlogging. Differences in leaf (SLA) and stomata functioning (gs, StD) plasticity likely allows plants to maintain positive carbon gains when waterlogging occurs. The species-specific differences found here were not entirely related to microhabitat distribution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Constructing seasonal LAI trajectory by data-model fusion for global evergreen needle-leaf forests

    NASA Astrophysics Data System (ADS)

    Wang, R.; Chen, J.; Mo, G.

    2010-12-01

    For decades, advancements in optical remote sensors made it possible to produce maps of a biophysical parameter--the Leaf Area Index (LAI), which is critically necessary in regional and global modeling of exchanges of carbon, water, energy and other substances, across large areas in a fast way. Quite a few global LAI products have been generated since 2000, e.g. GLOBCARBON (Deng et al., 2006), MODIS Collection 5 (Shabanov et al., 2007), CYCLOPES (Baret et al., 2007), etc. Albeit these progresses, the basic physics behind the technology restrains it from accurate estimation of LAI in winter, especially for northern high-latitude evergreen needle-leaf forests. Underestimation of winter LAI in these regions has been reported in literature (Yang et al., 2000; Cohen et al., 2003; Tian et al., 2004; Weiss et al., 2007; Pisek et al., 2007), and the distortion is usually attributed to the variations of canopy reflectance caused by understory change (Weiss et al., 2007) as well as by the presence of ice and snow on leaves and ground (Cohen, 2003; Tian et al., 2004). Seasonal changes in leaf pigments can also be another reason for low LAI retrieved in winter. Low conifer LAI values in winter retrieved from remote sensing make them unusable for surface energy budget calculations. To avoid these drawbacks of remote sensing approaches, we attempt to reconstruct the seasonal LAI trajectory through model-data fusion. A 1-degree LAI map of global evergreen needle-leaf forests at 10-day interval is produced based on the carbon allocation principle in trees. With net primary productivity (NPP) calculated by the Boreal Ecosystems Productivity Simulator (BEPS) (Chen et al., 1999), carbon allocated to needles is quantitatively evaluated and then can be further transformed into LAI using the specific leaf area (SLA). A leaf-fall scheme is developed to mimic the carbon loss caused by falling needles throughout the year. The seasonally maximum LAI from remote sensing data for each pixel is used as an anchor point of the LAI trajectory. Ground data are used for validation. The resulting LAI does not show strong seasonality within a year, which is reasonable for evergreen needle-leaf forests with known leaf longevity.

  3. Factors Influencing Oral Corrective Feedback Provision in the Spanish Foreign Language Classroom: Investigating Instructor Native/Nonnative Speaker Status, SLA Education, & Teaching Experience

    ERIC Educational Resources Information Center

    Gurzynski-Weiss, Laura

    2010-01-01

    The role of interactional feedback has been a critical area of second language acquisition (SLA) research for decades and while findings suggest interactional feedback can facilitate SLA, the extent of its influence can vary depending on a number of factors, including the native language of those involved in communication. Although studies have…

  4. Effect of seasonality and Cr(VI) on starch-sucrose partitioning and related enzymes in floating leaves of Salvinia minima.

    PubMed

    Rosa, Mariana; Prado, Carolina; Chocobar-Ponce, Silvana; Pagano, Eduardo; Prado, Fernando

    2017-09-01

    Effects of seasonality and increasing Cr(VI) concentrations on leaf starch-sucrose partitioning, sucrose- and starch-related enzyme activities, and carbon allocation toward leaf development were analyzed in fronds (floating leaves) of the floating fern Salvinia minima. Carbohydrates and enzyme activities of Cr-exposed fronds showed different patterns in winter and summer. Total soluble sugars, starch, glucose and fructose increased in winter fronds, while sucrose was higher in summer ones. Starch and soluble carbohydrates, except glucose, increased under increasing Cr(VI) concentrations in winter fronds, while in summer ones only sucrose increased under Cr(VI) treatment. In summer fronds starch, total soluble sugars, fructose and glucose practically stayed without changes in all assayed Cr(VI) concentrations. Enzyme activities related to starch and sucrose metabolisms (e.g. ADPGase, SPS, SS and AI) were higher in winter fronds than in summer ones. Total amylase and cFBPase activities were higher in summer fronds. Cr(VI) treatment increased enzyme activities, except ADPGase, in both winter and summer fronds but no clear pattern changes were observed. Data of this study show clearly that carbohydrate metabolism is differently perturbed by both seasonality and Cr(VI) treatment in summer and winter fronds, which affects leaf starch-sucrose partitioning and specific leaf area (SLA) in terms of carbon investment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Accuracy and precision of occlusal contacts of stereolithographic casts mounted by digital interocclusal registrations.

    PubMed

    Krahenbuhl, Jason T; Cho, Seok-Hwan; Irelan, Jon; Bansal, Naveen K

    2016-08-01

    Little peer-reviewed information is available regarding the accuracy and precision of the occlusal contact reproduction of digitally mounted stereolithographic casts. The purpose of this in vitro study was to evaluate the accuracy and precision of occlusal contacts among stereolithographic casts mounted by digital occlusal registrations. Four complete anatomic dentoforms were arbitrarily mounted on a semi-adjustable articulator in maximal intercuspal position and served as the 4 different simulated patients (SP). A total of 60 digital impressions and digital interocclusal registrations were made with a digital intraoral scanner to fabricate 15 sets of mounted stereolithographic (SLA) definitive casts for each dentoform. After receiving a total of 60 SLA casts, polyvinyl siloxane (PVS) interocclusal records were made for each set. The occlusal contacts for each set of SLA casts were measured by recording the amount of light transmitted through the interocclusal records. To evaluate the accuracy between the SP and their respective SLA casts, the areas of actual contact (AC) and near contact (NC) were calculated. For precision analysis, the coefficient of variation (CoV) was used. The data was analyzed with t tests for accuracy and the McKay and Vangel test for precision (α=.05). The accuracy analysis showed a statistically significant difference between the SP and the SLA cast of each dentoform (P<.05). For the AC in all dentoforms, a significant increase was found in the areas of actual contact of SLA casts compared with the contacts present in the SP (P<.05). Conversely, for the NC in all dentoforms, a significant decrease was found in the occlusal contact areas of the SLA casts compared with the contacts in the SP (P<.05). The precision analysis demonstrated the different CoV values between AC (5.8 to 8.8%) and NC (21.4 to 44.6%) of digitally mounted SLA casts, indicating that the overall precision of the SLA cast was low. For the accuracy evaluation, statistically significant differences were found between the occlusal contacts of all digitally mounted SLA casts groups, with an increase in AC values and a decrease in NC values. For the precision assessment, the CoV values of the AC and NC showed the digitally articulated cast's inability to reproduce the uniform occlusal contacts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Meaningful traits for grouping plant species across arid ecosystems.

    PubMed

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  7. Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories.

    PubMed

    Firn, Jennifer; Schütz, Martin; Nguyen, Huong; Risch, Anita C

    2017-01-01

    Vertebrate and invertebrate herbivores alter plant communities directly by selectively consuming plant species; and indirectly by inducing morphological and physiological changes to plant traits that provide competitive or survivorship advantages to some life forms over others. Progressively excluding aboveground herbivore communities (ungulates, medium and small sized mammals, invertebrates) over five growing seasons, we explored how leaf morphology (specific leaf area or SLA) and nutrition (nitrogen, carbon, phosphorous, potassium, sodium, and calcium) of different plant life forms (forbs, legumes, grasses, sedges) correlated with their dominance. We experimented in two subalpine grassland types with different land-use histories: (1) heavily grazed, nutrient-rich, short-grass vegetation and (2) lightly grazed, lower nutrient tall-grass vegetation. We found differences in leaf traits between treatments where either all herbivores were excluded or all herbivores were present, showing the importance of considering the impacts of both vertebrates and invertebrates on the leaf traits of plant species. Life forms responses to the progressive exclusion of herbivores were captured by six possible combinations: (1) increased leaf size and resource use efficiency (leaf area/nutrients) where lower nutrient levels are invested in leaf construction, but a reduction in the number of leaves, for example, forbs in both vegetation types, (2) increased leaf size and resource use efficiency, for example, legumes in short grass, (3) increased leaf size but a reduction in the number of leaves, for example, legumes in the tall grass, (4) increased number of leaves produced and increased resource use efficiency, for example, grasses in the short grass, (5) increased resource use efficiency of leaves only, for example, grasses and sedges in the tall grass, and (6) no response in terms of leaf construction or dominance, for example, sedges in the short grass. Although we found multiple possible responses by life forms to progressive exclusion of herbivores, we also found some important generalities. Changes in leaf traits of legumes and grasses correlated with their increasing dominance in the short-grass vegetation and plants were more efficient at constructing photosynthetic tissue when herbivores are present with few exceptions. These results demonstrate that vertebrate and invertebrate herbivores are essential to maintain plant species richness and resource-use efficiency. © 2016 by the Ecological Society of America.

  8. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Does enemy damage vary across the range of exotic plant species? Evidence from two coastal dune plant species in eastern Australia.

    PubMed

    Tabassum, Samiya; Leishman, Michelle R

    2018-02-01

    Release from natural enemies is often cited as a key factor for understanding the success of invasive plant species in novel environments. However, with time invasive species will accumulate native enemies in their invaded range, with factors such as spread distance from the site of introduction, climate and leaf-level traits potentially affecting enemy acquisition rates. However, the influence of such factors is difficult to assess without examining enemy attack across the entire species' range. We tested the significance of factors associated with range expansion (distance from source population and maximum population density), climatic variables (annual temperature and rainfall) and leaf-level traits [specific leaf area (SLA) and foliar nitrogen concentration] in explaining variation in enemy damage across multiple populations of two coastal invasive plants (Gladiolus gueinzii Kunze and Hydrocotyle bonariensis Lam.) along their entire introduced distribution in eastern Australia. We found that for H. bonariensis, amount of foliar damage increased with distance from source population. In contrast, for G. gueinzii, probability and amount of foliar damage decreased with decreasing temperature and increasing rainfall, respectively. Our results show that patterns of enemy attack across species' ranges are complex and cannot be generalised between species or even range edges.

  10. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual

    PubMed Central

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-01-01

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706

  11. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula

    PubMed Central

    Ibrahim, Mohamed A.; Mäenpää, Maarit; Hassinen, Viivi; Kontunen-Soppela, Sari; Malec, Lukáš; Rousi, Matti; Pietikäinen, Liisa; Tervahauta, Arja; Kärenlampi, Sirpa; Holopainen, Jarmo K.; Oksanen, Elina J.

    2010-01-01

    Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 °C) while daytime temperature was kept at a constant 22 °C. VOC emissions were collected during the daytime and analysed by gas chromatography–mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and β-ocimene increased from 6 °C to 14 °C, while several other monoterpenes and the SQTs (Z,E)-α-farnesene and (E,E)-α-farnesene increased up to 18 °C. Total monoterpene and sesquiterpene emission peaked at 18 °C, whereas isoprene emissions decreased at 22 °C. Leaf area increased across the temperature range of 6–22 °C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees. PMID:20181662

  12. Predicting species' range limits from functional traits for the tree flora of North America.

    PubMed

    Stahl, Ulrike; Reu, Björn; Wirth, Christian

    2014-09-23

    Using functional traits to explain species' range limits is a promising approach in functional biogeography. It replaces the idiosyncrasy of species-specific climate ranges with a generic trait-based predictive framework. In addition, it has the potential to shed light on specific filter mechanisms creating large-scale vegetation patterns. However, its application to a continental flora, spanning large climate gradients, has been hampered by a lack of trait data. Here, we explore whether five key plant functional traits (seed mass, wood density, specific leaf area (SLA), maximum height, and longevity of a tree)--indicative of life history, mechanical, and physiological adaptations--explain the climate ranges of 250 North American tree species distributed from the boreal to the subtropics. Although the relationship between traits and the median climate across a species range is weak, quantile regressions revealed strong effects on range limits. Wood density and seed mass were strongly related to the lower but not upper temperature range limits of species. Maximum height affects the species range limits in both dry and humid climates, whereas SLA and longevity do not show clear relationships. These results allow the definition and delineation of climatic "no-go areas" for North American tree species based on key traits. As some of these key traits serve as important parameters in recent vegetation models, the implementation of trait-based climatic constraints has the potential to predict both range shifts and ecosystem consequences on a more functional basis. Moreover, for future trait-based vegetation models our results provide a benchmark for model evaluation.

  13. Herbivores modify selection on plant functional traits in a temperate rainforest understory.

    PubMed

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2012-08-01

    There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.

  14. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny

    PubMed Central

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-01-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species’ native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion of quantitative traits, in particular SLA, into the WRA schemes. Diferencia de Características entre Especies de Plantas Naturalizadas e Invasoras Independientes del Tiempo de Residencia y de la Filogenia Resumen La habilidad para predecir cuáles plantas exóticas harán la transición de naturalizadas a invasoras antes de su introducción a regiones nuevas es un objetivo clave para la conservación y tiene el potencial de incrementar la eficiencia de la evaluación de riesgo de hierbas (ERH). Sin embargo, múltiples factores contribuyen al éxito invasor de las plantas (p. ej.: características funcionales, características de cobertura, tiempo de residencia, filogenia) y todos deben considerarse simultáneamente para poder identificar correlaciones significativas del éxito invasor. Recopilamos en Australia 146 parejas de especies de plantas invasoras y naturalizadas emparejadas filogenéticamente (congéneres) y con tiempos de residencia mínima similares (es decir, el tiempo transcurrido desde su introducción en años). Estas parejas se usaron para probar diferencias en cinco características funcionales (duración de la floración, tamaño de la hoja, altura máxima, área específica de la hoja [AEH], masa de la semilla) y en tres características de cobertura nativa de las especies (ocupación de bioma, temperatura media anual y amplitud de pluviosidad) entre especies invasoras y naturalizadas. Las especies invasoras, en promedio, tuvieron una mayor AEH, periodos de floración más largos y fueron más altas que sus parientes congéneres naturalizadas. Las invasoras también exhibieron una mayor tolerancia a diferentes condiciones ambientales en su cobertura nativa, donde ocuparon más biomas y una mayor amplitud de pluviosidad y condiciones de temperatura que sus congéneres naturalizadas. Sin embargo, ni la masa de la semilla ni el tamaño de hoja difirieron entre las parejas de especies naturalizadas e invasoras. Un hallazgo relevante fue el papel de la AEH en la distinción entre las parejas naturalizadas e invasoras. Las especies con valores altos de AEH estuvieron asociadas típicamente con tasas mayores de crecimiento, pérdida rápida de volumen de material de hojas y periodos de vida más cortos que aquellas especies con AEH baja. Este conjunto de características puede contribuir a la habilidad de las especies para llevar a cabo la transición de naturalizada a invasora a lo largo de una amplia cobertura de contextos ambientales y regímenes de perturbación. Nuestros hallazgos ayudarán en la mejora de los protocolos de ERH, y abogamos por la inclusión de las características cuantitativas, en particular la AEH, en los esquemas de ERH. PMID:25369762

  15. The CALL-SLA Interface: Insights from a Second-Order Synthesis

    ERIC Educational Resources Information Center

    Plonsky, Luke; Ziegler, Nicole

    2016-01-01

    The relationship between computer-assisted language learning (CALL) and second language acquisition (SLA) has been studied both extensively, covering numerous subdomains, and intensively, resulting in hundreds of primary studies. It is therefore no surprise that CALL researchers, as in other areas of applied linguistics, have turned in recent…

  16. Light and nitrogen competition limit Lolium perenne in experimental grasslands of increasing plant diversity.

    PubMed

    Roscher, C; Kutsch, W L; Schulze, E-D

    2011-01-01

    Positive species richness effects on aboveground community productivity in experimental grasslands have been reported to correlate with variable responses of individual species. So far, it is largely unknown whether more complete use of resources at the community level correlates with resource limitation of particular species and may explain their decreasing performance with increasing plant diversity. Using the subordinate grass species Lolium perenne L. as a model, we monitored populations in 82 experimental grasslands of different plant diversity (Jena Experiment) from year 2 to 6 after establishment, and measured ecophysiological leaf traits related to light and nutrient acquisition and use. Population and plant individual sizes of L. perenne decreased with increasing species richness. A decrease in transmitted light with increasing species richness and legume proportion correlated with increasing specific leaf area (SLA). Despite this morphological adaptation to lower light availability, decreasing foliar δ(13) C signatures with increasing species richness and low variation in leaf gas exchange and chlorophyll concentrations suggested a low capacity of L. perenne for adjustment to canopy shade. Leaf nitrogen concentrations and foliar δ(15) N signatures indicated a better N supply in communities with legumes and a shift in the uptake of different N forms with increasing species richness. Leaf blade nitrate and carbohydrate concentrations as indicators of plants nutritional status supported that light limitation with increasing species richness and legume proportions, combined with a N limitation in communities with increasing proportions of non-legumes, correlated with the decreasing performance of L. perenne in communities of increasing plant diversity. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Tree Species Traits but Not Diversity Mitigate Stem Breakage in a Subtropical Forest following a Rare and Extreme Ice Storm

    PubMed Central

    Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian

    2014-01-01

    Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434

  18. Evaluation of mandibular posterior single implants with two different surfaces: a 5-year comparative study.

    PubMed

    Jung, Ui-Won; Choi, Jung-Yoo; Kim, Chang-Sung; Cho, Kyoo-Sung; Chai, Jung-Kiu; Kim, Chong-Kwan; Choi, Seong-Ho

    2008-10-01

    Anatomic and biomechanical limitations can jeopardize successful single implantation in the mandibular posterior area. To overcome the limitations, the design and the surface of the fixtures were modified. This study evaluated the cumulative survival rate (CSR) of mandibular molars replaced with a sand-blasted, large-grit, acid-etched (SLA) single implant or an anodized (ANO) single implant and examined associated factors, such as the surface treatment, position, and length and diameter of the implants. One hundred ninety-three single implants restored with an SLA implant and 112 single implants restored with an ANO implant in the mandibular molar area were selected from subjects who had visited the Department of Periodontology, Dental Hospital of Yonsei University, from March 2001 through June 2006. In the SLA group, 123 and 70 implants were placed in the first and second molar area, respectively. In the ANO group, 55 and 57 implants were placed in the first and second molar area, respectively. The 1- to 6-year CSR of the SLA and ANO groups was calculated using the life-table analysis. In addition, associated factors, such as the surface treatment, position, and length and diameter of the implants, were compared and analyzed using the chi(2) test (P <0.05). Two of 193 implants in the SLA group failed, giving a CSR of 98.96%; four of 112 ANO implants failed, giving a CSR of 96.43%. There were no significant differences with regard to the surface treatment, position, and length and diameter of the implants. Despite the anatomic and biomechanical limitation in the mandibular posterior area, mandibular posterior single implants showed a high CSR during the observation period. Mandibular posterior single implants can be an effective and reliable treatment modality that is not affected by the surface treatment, position, or length and diameter of the implant.

  19. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    NASA Astrophysics Data System (ADS)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the field survey) were weighted for priority. We compared some gradient-based global optimization methods of Dakota starting with the default parameters of Biome-BGC. In the result of sensitive analysis, carbon allocation parameters between coarse root and leaf, between stem and leaf, and SLA had high contribution on both leaf and woody biomass changes. These parameters were selected to be optimized. The measured leaf, above- and below-ground woody biomass carbon density at the last year were 0.22, 1.81 and 0.86 kgC m-2, respectively, whereas those simulated in the non-optimized control case using all default parameters were 0.12, 2.26 and 0.52 kgC m-2, respectively. After optimizing the parameters, the simulated values were improved to 0.19, 1.81 and 0.86 kgC m-2, respectively. The coliny global optimization method gave the better fitness than efficient global and ncsu direct method. The optimized parameters showed the higher carbon allocation rates to coarse roots and leaves and the lower SLA than the default parameters, which were consistent to the general water physiological response in a dry climate. The simulation using the weighted object function resulted in the closer simulations to the measurements at the last year with the lower fitness during the previous years.

  20. Stomatal regulation, structural acclimation and metabolic shift towards defensive compounds reduce O3 load in birch under chronic O3 stress

    NASA Astrophysics Data System (ADS)

    Oksanen, E.; Riikonen, J.; Kontunen-Soppela, S.; Maenpaa, M.; Rousi, M.

    2009-12-01

    Northern forests are encountering new threats due to continuously increasing load of oxidative stress, e.g. due to rising tropospheric O3 levels, and simultaneous climate warming, which is more intense in northern latitudes as compared to global means. The proportion of silver birch (Betula pendula) in Finnish forests is expected to increase with climate warming. Unfortunately, we have growing evidence that the vitality and the carbon sink strength of birch trees are weakened under chronic O3 stress. In this study we investigated the effects of slightly elevated O3 concentration (1.3 x the ambient), temperature (T) and their combination on the antioxidant defense, gas exchange and leaf growth of Betula pendula saplings (clone 12) growing in open-field conditions over two growing seasons. The plants were measured for SLA (specific leaf area), total leaf area, net photosynthesis (Pn), stomatal conductance (gs), maximum rate of carboxylation (Vc,max), maximum rate of electron transport (Jmax), relative stomatal limitation to photosynthesis (ls), dark respiration (Rd), apoplastic concentrations of AA (ascorbic acid), DHA (dehydroascobate) and total ascorbate, the redox state of apoplastic ascorbate, and total antioxidant capacity. Elevated O3 enhanced the total antioxidant capacity in the apoplast in the first year of the experiment at the ambient T. However, during the second year of the experiment, the saplings responded to elevated O3 level by closing the stomata and by developing leaves with a lower leaf area per mass, rather than by accumulating ascorbate in the apoplast. O3 did not affect the total leaf area, whereas Pn was slightly and gs significantly reduced in the second year. Elevated T enhanced the total leaf area, Pn and Vc,max, redox state of ascorbate and total antioxidant capacity in the apoplast. The effects of T and O3 on total leaf area and net photosynthesis were counteractive. We were not able to detect significant differences in Rd between the treatments. Our results with birch suggest that (1) apoplastic AA plays only a minor and transient role in O3 defence whereas (2) stomatal regulation and structural plasticity of leaves are more important long-term mechanisms leading to O3 avoidance in chronic O3 stress with relatively low O3 concentrations. The role of antioxidant capacity was, however, modified by temperature in a complex manner. We should also remember that the clonal differences are wide in birch responses to O3 and therefore the role of AA in scavencing ROS in the apoplast maybe more important in other birch genotypes. Our previous studies with O3-stressed birches have indicated a considerable shift in leaf metabolome towards quercetin-phenolic compounds and chlorogenic acid, which have good radical-scavencing properties, and compounds related to leaf cuticular wax layer. Therefore we can conclude that the long-term protection of birch against chronic O3 stress in mainly composed of stomatal closure, secondary compounds and structural acclimation.

  1. Conspecific Plasticity and Invasion: Invasive Populations of Chinese Tallow (Triadica sebifera) Have Performance Advantage over Native Populations Only in Low Soil Salinity

    PubMed Central

    Chen, Leiyi; Tiu, Candice J.; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the “Master-of-some” pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas. PMID:24040366

  2. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity.

    PubMed

    Chen, Leiyi; Tiu, Candice J; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  3. Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture.

    PubMed

    von Arx, Georg; Archer, Steven R; Hughes, Malcolm K

    2012-05-01

    Plasticity in structural and functional traits related to water balance may determine plant performance and survival in ecosystems characterized by water limitation or high levels of rainfall variability, particularly in perennial herbaceous species with long generation cycles. This paper addresses whether and the extent to which several such seasonal to long-term traits respond to changes in moisture availability. Using a novel approach that integrates ecology, physiology and anatomy, a comparison was made of lifetime functional traits in the root xylem of a long-lived perennial herb (Potentilla diversifolia, Rosaceae) growing in dry habitats with those of nearby individuals growing where soil moisture had been supplemented for 14 years. Traditional parameters such as specific leaf area (SLA) and above-ground growth were also assessed. Individuals from the site receiving supplemental moisture consistently showed significant responses in all considered traits related to water balance: SLA was greater by 24 %; roots developed 19 % less starch storing tissue, an indicator for drought-stress tolerance; and vessel size distributions shifted towards wider elements that collectively conducted water 54 % more efficiently - but only during the years for which moisture was supplemented. In contrast, above-ground growth parameters showed insignificant or inconsistent responses. The phenotypic changes documented represent consistent, dynamic responses to increased moisture availability that should increase plant competitive ability. The functional plasticity of xylem anatomy quantified in this study constitutes a mechanistic basis for anticipating the differential success of plant species in response to climate variability and change, particularly where water limitation occurs.

  4. Similarity of plant functional traits and aggregation pattern in a subtropical forest

    USGS Publications Warehouse

    Zhang, Bo; Lu, Xiaozhen; Jiang, Jiang; DeAngelis, Donald L.; Fu, Zhiyuan; Zhang, Jinchi

    2017-01-01

    The distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co-occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to test how functional traits are selectively filtered by environmental conditions at local scales. Exploring the relationship between soil characteristics and plant traits is a step toward understanding the filtering hypothesis in determining plant distribution at local scale. Toward this end, we mapped all individual trees (diameter >1 cm) in a one-ha subtropical forest of China in 2007 and 2015. We measured topographic and detailed soil properties within the field site, as well as plant leaf functional traits and demographic rates of the seven most common tree species. A second one-ha study plot was established in 2015, to test and validate the general patterns that were drawn from first plot. We found that variation in species distribution at local scale can be explained by soil heterogeneity and plant functional traits. (From first plot). (1) Species dominant in habitats with high soil ammonium nitrogen and total phosphorus tended to have high specific leaf area (SLA) and relative growth rate (RGR). (2) Species dominant in low-fertility habitats tended to have high leaf dry matter content (LDMC), ratio of chlorophyll a and b (ratioab), and leaf thickness (LT). The hypothesis that functional traits are selected in part by environmental filters and determine plant distribution at local scale was confirmed by the data of the first plot and a second regional site showed similar species distribution patterns.

  5. On the Danger of Exogenous Theory in CA-for-SLA: A Response to Hellermann and Cole (2009)

    ERIC Educational Resources Information Center

    Hauser, Eric

    2011-01-01

    Within the growing body of work that is sometimes labeled CA-for-SLA, there is a need for more research with longitudinal data. Hellermann and Cole (2009) provide a valuable contribution in this area. However, in doing so, they also make use of an exogenous theory of learning, situated learning theory (Lave and Wenger 1991), and its associated…

  6. Molecular characterization of swine leukocyte antigen gene diversity in purebred Pietrain pigs.

    PubMed

    Essler, Sabine E; Ertl, Werner; Deutsch, Julia; Ruetgen, Barbara C; Groiss, Sandra; Stadler, Maria; Wysoudil, Bhuma; Gerner, Wilhelm; Ho, Chak-Sum; Saalmueller, Armin

    2013-04-01

    The porcine major histocompatibility complex (MHC) harbors the highly polymorphic swine leukocyte antigen (SLA) class I and II gene clusters encoding glycoproteins that present antigenic peptides to T cells in the adaptive immune response. In Austria, the majority of commercial pigs are F 2 descendants of F 1 Large White/Landrace hybrids paired with Pietrain boars. Therefore, the repertoire of SLA alleles and haplotypes present in Pietrain pigs has an important influence on that of their descendants. In this study, we characterized the SLA class I ( SLA-1 , SLA-2 , SLA-3 ) and class II ( SLA-DRB1 , SLA-DQB1 , SLA-DQA ) genes of 27 purebred Pietrain pigs using a combination of the high-resolution sequence-based typing (SBT) method and a low-resolution (Lr) PCR-based method using allele-group, sequence-specific primers (PCR-SSP). A total of 15 class I and 13 class II haplotypes were identified in the studied cohort. The most common SLA class I haplotype Lr-43.0 ( SLA-1 *11XX- SLA-3 *04XX- SLA-2 *04XX) was identified in 11 animals with a frequency of 20%. For SLA class II, the most prevalent haplotype, Lr-0.14 [ SLA-DRB1 *0901- SLA-DQB1 *0801- SLA-DQA *03XX], was found in 14 animals with a frequency of 26%. Two class II haplotypes, tentatively designated as Lr-Pie-0.1 [ SLA-DRB1 *01XX/be01/ha04- SLA-DQB1 *05XX- SLA - DQA*blank] and Lr-Pie-0.2 [ SLA-DRB1 *06XX- SLA-DQB1 *03XX- SLA-DQA *03XX], appeared to be novel and have never been reported so far in other pig populations. We showed that SLA genotyping using PCR-SSP-based assays represents a rapid and cost-effective way to study SLA diversity in outbred commercial pigs and may facilitate the development of more effective vaccines or identification of disease-resistant pigs in the context of SLA antigens to improve overall swine health. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  7. The influence of implantoplasty on the diameter, chemical surface composition, and biocompatibility of titanium implants.

    PubMed

    Schwarz, Frank; John, Gordon; Becker, Jürgen

    2017-09-01

    The objective of the study was to assess the influence of implantoplasty (IP) on the diameter, chemical surface composition, and biocompatibility of titanium implants in vitro. Twenty soft tissue-level (TL; machined transmucosal-M and rough endosseous part-SLA) and 20 bone-level (BL; SLA) implants were allocated to IP covering 3 or 6 mm of the structured surface (SLA) area. The samples were subjected to diameter, energy-dispersive X-ray spectroscopy (EDX), and cell viability (ginigval fibroblasts, 6 days) assessments. Median diameter reductions varied between 0.1 (TL 3 mm) and 0.2 mm (TL 6 mm). EDX analysis revealed that IP and M surfaces were characterized by a comparable quantity (Wt%) of elements C, O, Na, Cl, K, and Si, but a significantly different quantity of elements Ti and Al. When compared to SLA surfaces, significant differences were noted for elements C, O, Na, Ti, and Al. At BL implants, the extension of IP (i.e., 3 to 6 mm) was associated with a significant increase in cell viability. IP applied to SLA implants was associated with (i) a minimal diameter reduction, (ii) an undisturbed cell viability, and (iii) a chemical elemental composition comparable to M surfaces. This specific IP procedure appears to be suitable for the management of exposed SLA implant surfaces.

  8. Mapping local and global variability in plant trait distributions

    DOE PAGES

    Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc; ...

    2017-12-01

    Accurate trait-environment relationships and global maps of plant trait distributions represent a needed stepping stone in global biogeography and are critical constraints of key parameters for land models. Here, we use a global data set of plant traits to map trait distributions closely coupled to photosynthesis and foliar respiration: specific leaf area (SLA), and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm); We propose two models to extrapolate geographically sparse point data to continuous spatial surfaces. The first is a categorical model using species mean trait values, categorized into plant functional types (PFTs) and extrapolating to PFT occurrencemore » ranges identified by remote sensing. The second is a Bayesian spatial model that incorporates information about PFT, location and environmental covariates to estimate trait distributions. Both models are further stratified by varying the number of PFTs; The performance of the models was evaluated based on their explanatory and predictive ability. The Bayesian spatial model leveraging the largest number of PFTs produced the best maps; The interpolation of full trait distributions enables a wider diversity of vegetation to be represented across the land surface. These maps may be used as input to Earth System Models and to evaluate other estimates of functional diversity.« less

  9. Mapping local and global variability in plant trait distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc

    Accurate trait-environment relationships and global maps of plant trait distributions represent a needed stepping stone in global biogeography and are critical constraints of key parameters for land models. Here, we use a global data set of plant traits to map trait distributions closely coupled to photosynthesis and foliar respiration: specific leaf area (SLA), and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm); We propose two models to extrapolate geographically sparse point data to continuous spatial surfaces. The first is a categorical model using species mean trait values, categorized into plant functional types (PFTs) and extrapolating to PFT occurrencemore » ranges identified by remote sensing. The second is a Bayesian spatial model that incorporates information about PFT, location and environmental covariates to estimate trait distributions. Both models are further stratified by varying the number of PFTs; The performance of the models was evaluated based on their explanatory and predictive ability. The Bayesian spatial model leveraging the largest number of PFTs produced the best maps; The interpolation of full trait distributions enables a wider diversity of vegetation to be represented across the land surface. These maps may be used as input to Earth System Models and to evaluate other estimates of functional diversity.« less

  10. Demographic drivers of functional composition dynamics.

    PubMed

    Muscarella, Robert; Lohbeck, Madelon; Martínez-Ramos, Miguel; Poorter, Lourens; Rodríguez-Velázquez, Jorge Enrique; van Breugel, Michiel; Bongers, Frans

    2017-11-01

    Mechanisms of community assembly and ecosystem function are often analyzed using community-weighted mean trait values (CWMs). We present a novel conceptual framework to quantify the contribution of demographic processes (i.e., growth, recruitment, and mortality) to temporal changes in CWMs. We used this framework to analyze mechanisms of secondary succession in wet tropical forests in Mexico. Seed size increased over time, reflecting a trade-off between colonization by small seeds early in succession, to establishment by large seeds later in succession. Specific leaf area (SLA) and leaf phosphorus content decreased over time, reflecting a trade-off between fast growth early in succession vs. high survival late in succession. On average, CWM shifts were driven mainly (70%) by growth of surviving trees that comprise the bulk of standing biomass, then mortality (25%), and weakly by recruitment (5%). Trait shifts of growing and recruiting trees mirrored the CWM trait shifts, and traits of dying trees did not change during succession, indicating that these traits are important for recruitment and growth, but not for mortality, during the first 30 yr of succession. Identifying the demographic drivers of functional composition change links population dynamics to community change, and enhances insights into mechanisms of succession. © 2017 by the Ecological Society of America.

  11. Characterization of swine leukocyte antigen alleles and haplotypes on a novel miniature pig line, Microminipig.

    PubMed

    Ando, A; Imaeda, N; Ohshima, S; Miyamoto, A; Kaneko, N; Takasu, M; Shiina, T; Kulski, J K; Inoko, H; Kitagawa, H

    2014-12-01

    Microminipigs are extremely small-sized, novel miniature pigs that were recently developed for medical research. The inbred Microminipigs with defined swine leukocyte antigen (SLA) haplotypes are expected to be useful for allo- and xenotransplantation studies and also for association analyses between SLA haplotypes and immunological traits. To establish SLA-defined Microminipig lines, we characterized the polymorphic SLA alleles for three class I (SLA-1, SLA-2 and SLA-3) and two class II (SLA-DRB1 and SLA-DQB1) genes of 14 parental Microminipigs using a high-resolution nucleotide sequence-based typing method. Eleven class I and II haplotypes, including three recombinant haplotypes, were found in the offspring of the parental Microminipigs. Two class I and class II haplotypes, Hp-31.0 (SLA-1*1502-SLA-3*070102-SLA-2*1601) and Hp-0.37 (SLA-DRB1*0701-SLA-DQB1*0502), are novel and have not so far been reported in other pig breeds. Crossover regions were defined by the analysis of 22 microsatellite markers within the SLA class III region of three recombinant haplotypes. The SLA allele and haplotype information of Microminipigs in this study will be useful to establish SLA homozygous lines including three recombinants for transplantation and immunological studies. © 2014 Stichting International Foundation for Animal Genetics.

  12. Enantioselective Pharmacokinetics of α-Lipoic Acid in Rats

    PubMed Central

    Uchida, Ryota; Okamoto, Hinako; Ikuta, Naoko; Terao, Keiji; Hirota, Takashi

    2015-01-01

    α-Lipoic acid (LA) is widely used for nutritional supplements as a racemic mixture, even though the R enantiomer is biologically active. After oral administration of the racemic mixture (R-α-lipoic acid (RLA) and S-α-lipoic acid (SLA) mixed at the ratio of 50:50) to rats, RLA showed higher plasma concentration than SLA, and its area under the plasma concentration-time curve from time zero to the last (AUC) was significantly about 1.26 times higher than that of SLA. However, after intravenous administration of the racemic mixture, the pharmacokinetic profiles, initial concentration (C0), AUC, and half-life (T1/2) of the enantiomers were not significantly different. After oral and intraduodenal administration of the racemic mixture to pyrolus-ligated rats, the AUCs of RLA were significantly about 1.24 and 1.32 times higher than that of SLA, respectively. In addition, after intraportal administration the AUC of RLA was significantly 1.16 times higher than that of SLA. In conclusion, the enantioselective pharmacokinetics of LA in rats arose from the fraction absorbed multiplied by gastrointestinal availability (FaFg) and hepatic availability (Fh), and not from the total clearance. PMID:26402669

  13. Enantioselective Pharmacokinetics of α-Lipoic Acid in Rats.

    PubMed

    Uchida, Ryota; Okamoto, Hinako; Ikuta, Naoko; Terao, Keiji; Hirota, Takashi

    2015-09-21

    α-Lipoic acid (LA) is widely used for nutritional supplements as a racemic mixture, even though the R enantiomer is biologically active. After oral administration of the racemic mixture (R-α-lipoic acid (RLA) and S-α-lipoic acid (SLA) mixed at the ratio of 50:50) to rats, RLA showed higher plasma concentration than SLA, and its area under the plasma concentration-time curve from time zero to the last (AUC) was significantly about 1.26 times higher than that of SLA. However, after intravenous administration of the racemic mixture, the pharmacokinetic profiles, initial concentration (C₀), AUC, and half-life (T1/2) of the enantiomers were not significantly different. After oral and intraduodenal administration of the racemic mixture to pyrolus-ligated rats, the AUCs of RLA were significantly about 1.24 and 1.32 times higher than that of SLA, respectively. In addition, after intraportal administration the AUC of RLA was significantly 1.16 times higher than that of SLA. In conclusion, the enantioselective pharmacokinetics of LA in rats arose from the fraction absorbed multiplied by gastrointestinal availability (FaFg) and hepatic availability (Fh), and not from the total clearance.

  14. Proposal of landmarks for clamping neurovascular elements during endoscopic surgery of the supraglottic region.

    PubMed

    Souvirón, R; Maranillo, E; Vázquez, T; Patel, N; McHanwell, S; Cobeta, I; Scola, B; Sañudo, J

    2013-01-01

    Bleeding within the supraglottic region can be a lethal complication after CO(2) laser microsurgery. Our aim was to propose endoluminal anatomical landmarks to locate the superior laryngeal vessels resulting in a safer microsurgery. Endoluminal dissections were made in 22 larynges without laryngeal disease. The neurovascular structures were in the superior third of a triangle defined by the vocal process, the anterior commissure, and the epiglottic attachment of the aryepiglottic fold. They overlapped in 4 different ways: pattern I (70.4%): superior laryngeal vein (SLV), superior laryngeal artery (SLA), and internal laryngeal nerve (ILN); pattern II (13.6%): SLA, SLV, ILN; pattern III (4.6%): SLV, ILN, and SLA; pattern IV (4.6%): SLA, ILN, and SLV. Microsurgery in the supraglottic region may be safer if surgeons are aware of the superior third of the above-defined triangle, "danger area", where the vascular elements of this region are located. Copyright © 2012 Wiley Periodicals, Inc.

  15. Assignment of the SLA alleles and reproductive potential of selective breeding Duroc pig lines.

    PubMed

    Soe, Ok Kar; Ohba, Yasunori; Imaeda, Noriaki; Nishii, Naohito; Takasu, Masaki; Yoshioka, Gou; Kawata, Hisako; Shigenari, Atsuko; Uenishi, Hirohide; Inoko, Hidetoshi; Ando, Asako; Kitagawa, Hitoshi

    2008-01-01

    Pigs with defined swine leukocyte antigen (SLA) haplotypes and their detailed information are useful for transplantation and immunological studies. We developed two herds of SLA homozygous Duroc pigs with novel SLA haplotypes and characterized their reproductive potential. For selective inbreeding, a pair of Duroc pigs was chosen as initial breeders, and substantial breeding within progenies was carried out for eight generations. In the selective breeding Duroc pigs, SLA haplotypes were assigned by nucleotide sequence determination of reverse transcription polymerase chain reaction (RT-PCR) products of three SLA classical class I genes and two class II genes. Based on this sequence information, we developed a rapid and simple SLA class II DNA typing method by polymerase chain reaction-sequence specific primer (PCR-SSP) technique. As a complementary method for the characterization of the SLA haplotypes, genetic polymorphisms of 36 microsatellite (MS) markers within the SLA region were also analyzed in the selective breeding pigs with SLA homozygous/heterozygous haplotypes. Among the selective breeding pigs from the third to fifth generations, only two SLA haplotypes were identified by the RT-PCR based SLA typing method; Hp-27.30 (SLA-1*08an03, SLA-1*06an04, SLA-2*0102, SLA-3*0101 DRB1*1101 and DQB1*0503) and Hp-60.13 (SLA-1*an02, SLA-2*1002, SLA-3*0502, DRB1*0403 and DQB1*0303). In these two SLA haplotypes, two class I haplotypes, Hp-27.0 and Hp-60.0, are novel. Furthermore, two class II haplotypes, Hp-0.30 and Hp-0.13, which were previously reported in Korean native pigs and pigs of Hanford breed, respectively, were also assigned by a simple assay using a PCR-SSP technique in the entire selective breeding stock. Moreover, two haplotype specific MS patterns were observed across the entire SLA region in the selective breeding (homozygous/heterozygous) pigs. No morphological abnormalities were observed in selective breeding pigs. The theoretical inbreeding coefficient at the eighth generation was 78.5%. In all generations of selective breeding pigs, litter sizes were comparable and weaning weights from the fifth to eighth generation produced progenies significantly lighter (P < 0.01) than those in the non-selective breeding pigs. We established and characterized SLA homozygous Duroc herds with two kinds of haplotypes that can be used as a new resource for transplantation and other biomedical studies.

  16. Characteristics of contact and distance osteogenesis around modified implant surfaces in rabbit tibiae

    PubMed Central

    2017-01-01

    Purpose Contact and distance osteogenesis occur around all endosseous dental implants. However, the mechanisms underlying these processes have not been fully elucidated. We hypothesized that these processes occur independently of each other. To test this, we used titanium (Ti) tubes to physically separate contact and distance osteogenesis, thus allowing contact osteogenesis to be measured in the absence of possible triggers from distance osteogenesis. Methods Sandblasted and acid-etched (SLA) and modified SLA (modSLA) implants were used. Both types had been sandblasted with large grit and then etched with acid. The modSLA implants then underwent additional treatment to increase hydrophilicity. The implants were implanted into rabbit tibiae, and half were implanted within Ti tubes. The bone-to-implant contact (BIC) ratio was calculated for each implant. Immunohistochemical analyses of bone morphogenetic protein (BMP)-2 expression and new bone formation (Masson trichrome stain) were performed. Results The implants outside of Ti tubes were associated with good bone formation along the implant surface. Implantation within a Ti tube significantly reduced the BIC ratio (P<0.001). Compared with the modSLA implants, the SLA implants were associated with significantly higher BIC ratios, regardless of the presence or absence of Ti tubes (P=0.043). In the absence of Ti tubes, the bone adjacent to the implant had areas of new bone formation that expressed BMP-2 at high levels. Conclusions This study disproved the null hypothesis and suggested that contact osteogenesis is initiated by signals from the old bone that undergoes distance osteogenesis after drilling. This signal may be BMP-2. PMID:28680714

  17. Preliminary Survey on TRY Forest Traits and Growth Index Relations - New Challenges

    NASA Astrophysics Data System (ADS)

    Lyubenova, Mariyana; Kattge, Jens; van Bodegom, Peter; Chikalanov, Alexandre; Popova, Silvia; Zlateva, Plamena; Peteva, Simona

    2016-04-01

    Forest ecosystems provide critical ecosystem goods and services, including food, fodder, water, shelter, nutrient cycling, and cultural and recreational value. Forests also store carbon, provide habitat for a wide range of species and help alleviate land degradation and desertification. Thus they have a potentially significant role to play in climate change adaptation planning through maintaining ecosystem services and providing livelihood options. Therefore the study of forest traits is such an important issue not just for individual countries but for the planet as a whole. We need to know what functional relations between forest traits exactly can express TRY data base and haw it will be significant for the global modeling and IPBES. The study of the biodiversity characteristics at all levels and functional links between them is extremely important for the selection of key indicators for assessing biodiversity and ecosystem services for sustainable natural capital control. By comparing the available information in tree data bases: TRY, ITR (International Tree Ring) and SP-PAM the 42 tree species are selected for the traits analyses. The dependence between location characteristics (latitude, longitude, altitude, annual precipitation, annual temperature and soil type) and forest traits (specific leaf area, leaf weight ratio, wood density and growth index) is studied by by multiply regression analyses (RDA) using the statistical software package Canoco 4.5. The Pearson correlation coefficient (measure of linear correlation), Kendal rank correlation coefficient (non parametric measure of statistical dependence) and Spearman correlation coefficient (monotonic function relationship between two variables) are calculated for each pair of variables (indexes) and species. After analysis of above mentioned correlation coefficients the dimensional linear regression models, multidimensional linear and nonlinear regression models and multidimensional neural networks models are built. The strongest dependence between It and WD was obtained. The research will support the work on: Strategic Plan for Biodiversity 2011-2020, modelling and implementation of ecosystem-based approaches to climate change adaptation and disaster risk reduction. Key words: Specific leaf area (SLA), Leaf weight ratio (LWR), Wood density (WD), Growth index (It)

  18. Comparison of Measurements from Pressure-recording Inverted Echo Sounders and Satellite Altimetry in the North Equatorial Current Region of the Western Pacific

    NASA Astrophysics Data System (ADS)

    Jeon, Chanhyung; Park, Jae-Hun; Kim, Dong Guk; Kim, Eung; Jeon, Dongchull

    2018-04-01

    An array of 5 pressure-recording inverted echo sounders (PIESs) was deployed along the Jason-2 214 ground track in the North Equatorial Current (NEC) region of the western Pacific Ocean for about 2 years from June 2012. Round-trip acoustic travel time from the bottom to the sea surface and bottom pressure measurements from PIES were converted to sea level anomaly (SLA). AVISO along-track mono-mission SLA (Mono-SLA), reference mapped SLA (Ref-MSLA), and up-to-date mapped SLA (Upd-MSLA) products were used for comparison with PIESderived SLA (η tot). Comparisons of η tot with Mono-SLA revealed that hump artifact errors significantly contaminate the Mono-SLA. Differences of η tot from both Ref-MSLA and Upd-MSLA decreased as the hump errors were reduced in mapped SLA products. Comparisons of Mono-SLA measurements at crossover points of ground tracks near the observation sites revealed large differences though the time differences of their measurements were only 1.53 and 4.58 days. Comparisons between Mono-SLA and mapped SLA suggested that mapped SLA smooths out the hump artifact errors by taking values between the two discrepant Mono-SLA measurements at the crossover points. Consequently, mapped SLA showed better agreement with η tot at our observation sites. AVISO mapped sea surface height (SSH) products are the preferable dataset for studying SSH variability in the NEC region of the western Pacific, though some portions of hump artifact errors seem to still remain in them.

  19. Multiscale assemblage of an ectomycorrhizal fungal community: the influence of host functional traits and soil properties in a 10-ha miombo forest.

    PubMed

    Bauman, David; Raspé, Olivier; Meerts, Pierre; Degreef, Jérôme; Ilunga Muledi, Jonathan; Drouet, Thomas

    2016-10-01

    Ectomycorrhizal fungi (EMF) are highly diversified and dominant in a number of forest ecosystems. Nevertheless, their scales of spatial distribution and the underlying ecological processes remain poorly understood. Although most EMF are considered to be generalists regarding host identity, a preference toward functional strategies of host trees has never been tested. Here, the EMF community was characterised by DNA sequencing in a 10-ha tropical dry season forest-referred to as miombo-an understudied ecosystem from a mycorrhizal perspective. We used 36 soil parameters and 21 host functional traits (FTs) as candidate explanatory variables in spatial constrained ordinations for explaining the EMF community assemblage. Results highlighted that the community variability was explained by host FTs related to the 'leaf economics spectrum' (adjusted R(2) = 11%; SLA, leaf area, foliar Mg content), and by soil parameters (adjusted R(2) = 17%), notably total forms of micronutrients or correlated available elements (Al, N, K, P). Both FTs and soil generated patterns in the community at scales ranging from 75 to 375 m. Our results indicate that soil is more important than previously thought for EMF in miombo woodlands, and show that FTs of host species can be better predictors of symbiont distribution than taxonomical identity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Constraints to hydraulic acclimation under reduced light in two contrasting Phaseolus vulgaris cultivars.

    PubMed

    Matzner, Steven L; Rettedal, David D; Harmon, Derek A; Beukelman, MacKenzie R

    2014-08-01

    Two cultivars of Phaseolus vulgaris L. were grown under three light levels to determine if hydraulic acclimation to light occurs in herbaceous annuals and whether intraspecific trade-offs constrain hydraulic traits. Acclimation occurred in response to reduced light and included decreased stomatal density (SD) and increased specific leaf area (SLA). Reduced light resulted in lower wood density (WD); decreased cavitation resistance, measured as the xylem pressure causing a 50 % reduction in stem conductivity (P50); and increased hydraulic capacity, measured as average leaf mass specific transpiration (E(LM)). Significant or marginally significant trade-offs between P50 and WD, WD and E(LM), and E(LM) and P50 reflected variation due to both genotype and environmental effects. A trade-off between WD and P50 within one cultivar indicated that morphological adjustment was constrained. Coordinated changes in WD, P50, and E(LM) within each cultivar in response to light were consistent with trade-offs constraining plasticity. A water-use efficiency (WUE, measured as δ(13)C) versus hydraulic capacity (E(LM)) trade-off was observed within each cultivar, further indicating that hydraulic trade-offs can constrain acclimation. Larger plants had lower hydraulic capacity (E(LM)) but greater cavitation resistance, WD, and WUE. Distinct hydraulic strategies were observed with the cultivar adapted to irrigated conditions having higher stomatal conductance and stem flow rates. The cultivar adapted to rain-fed conditions had higher leaf area and greater cavitation resistance. Hydraulic trade-offs were observed within the herbaceous P. vulgaris resulting from both genotype and environmental effects. Trade-offs within a cultivar reflected constraints to hydraulic acclimation in response to changing light. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow

    PubMed Central

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E.; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao’s index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production. PMID:26295345

  2. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow.

    PubMed

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao's index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production.

  3. The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo

    PubMed Central

    Ding, Xianglong; Zhou, Lei; Wang, Jingxu; Zhao, Qingxia; Lin, Xi; Gao, Yan; Li, Shaobing; Wu, Jingyi; Rong, Mingdeng; Guo, Zehong; Lai, Chunhua; Lu, Haibin; Jia, Fang

    2015-01-01

    In the present work, a hierarchical hybrid micro/nanostructured titanium surface was obtained by sandblasting with large grit and acid etching (SLA), and nanotubes of different diameters (30 nm, 50 nm, and 80 nm) were superimposed by anodization. The effect of each SLA-treated surface decorated with nanotubes (SLA + 30 nm, SLA + 50 nm, and SLA + 80 nm) on osteogenesis was studied in vitro and in vivo. The human MG63 osteosarcoma cell line was used for cytocompatibility evaluation, which showed that cell adhesion and proliferation were dramatically enhanced on SLA + 30 nm. In comparison with cells grown on the other tested surfaces, those grown on SLA + 80 nm showed an enhanced expression of osteogenesis-related genes. Cell spread was also enhanced on SLA + 80 nm. A canine model was used for in vivo evaluation of bone bonding. Histological examination demonstrated that new bone was formed more rapidly on SLA-treated surfaces with nanotubes (especially SLA + 80 nm) than on those without nanotubes. All of these results indicate that SLA + 80 nm is favorable for promoting the activity of osteoblasts and early bone bonding. PMID:26635472

  4. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas.

    PubMed

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-06-01

    The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant's lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant-plant interactions was analysed. Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant-plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly driven by plastic and not by genotypic responses to changes in atmospheric [CO2]. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Plant–plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas

    PubMed Central

    van Loon, Marloes P.; Rietkerk, Max; Dekker, Stefan C.; Hikosaka, Kouki; Ueda, Miki U.; Anten, Niels P. R.

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant’s lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant–plant interactions was analysed. Methods Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. Key Results It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. Conclusion The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant–plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly driven by plastic and not by genotypic responses to changes in atmospheric [CO2]. PMID:27192707

  6. Spectroscopic measurements of soybeans used to parameterize physiological traits in the AgroIBIS ecosystem model

    NASA Astrophysics Data System (ADS)

    Singh, A.; Serbin, S.; Kucharik, C. J.; Townsend, P. A.

    2014-12-01

    Ecosystem models such AgroIBIS require detailed parameterizations of numerous vegetation traits related to leaf structure, biochemistry and photosynthetic capacity to properly assess plant carbon assimilation and yield response to environmental variability. In general, these traits are estimated from a limited number of field measurements or sourced from the literature, but rarely is the full observed range of variability in these traits utilized in modeling activities. In addition, pathogens and pests, such as the exotic soybean aphid (Aphis glycines), which affects photosynthetic pathways in soybean plants by feeding on phloem and sap, can potentially impact plant productivity and yields. Capturing plant responses to pest pressure in conjunction with environmental variability is of considerable interest to managers and the scientific community alike. In this research, we employed full-range (400-2500 nm) field and laboratory spectroscopy to rapidly characterize the leaf biochemical and physiological traits, namely foliar nitrogen, specific leaf area (SLA) and the maximum rate of RuBP carboxylation by the enzyme RuBisCo (Vcmax) in soybean plants, which experienced a broad range of environmental conditions and soybean aphid pressures. We utilized near-surface spectroscopic remote sensing measurements as a means to capture the spatial and temporal patterns of aphid impacts across broad aphid pressure levels. In addition, we used the spectroscopic data to generate a much larger dataset of key model parameters required by AgroIBIS than would be possible through traditional measurements of biochemistry and leaf-level gas exchange. The use of spectroscopic retrievals of soybean traits allowed us to better characterize the variability of plant responses associated with aphid pressure to more accurately model the likely impacts of soybean aphid on soybeans. Our next steps include the coupling of the information derived from our spectral measurements with the AgroIBIS model to project the impacts of increasing aphid pressures on yields expected with continued global change and altered environmental conditions.

  7. Slope position and Soil Lithological Effects on Live Leaf Nitrogen Concentration.

    NASA Astrophysics Data System (ADS)

    Szink, I.; Adams, T. S.; Orr, A. S.; Eissenstat, D. M.

    2017-12-01

    Soil lithology has been shown to have an effect on plant physiology from the roots to the leaves. Soils at ridgetop positions are typically more shallow and drier than soils at valley floor positions. Additionally, sandy soils tend to have a much lower water holding capacity and can be much harder for plants to draw nutrients from. We hypothesized that leaves from trees in shale derived soil at ridgetop positions will have lower nitrogen concentration than those in valley floor positions, and that this difference will be more pronounced in sandstone derived soils. This is due to the movement of nitrogen through the soil in a catchment, and the holding and exchange capacities of shale and sandstone lithologies. To test this, we collected live leaves using shotgun sampling from two locations in Central Pennsylvania from the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO); one location where soils are underlain by the Rose Hill Shale, and one from where soils are underlain by the Tuscarora Sandstone formation. We then measured, dried, and massed in order to determine specific leaf area (SLA). Afterwards, we powderized the leaves to determined their C:N ratio using a CE Instruments EA 1110 CHNS-O elemental Analyzer based on the "Dumas Method". We found that live leaves of the same species at higher elevations had lower nitrogen concentrations than those at lower elevations, which is consistent with our hypothesis. However, the comparison of leaves from all species in the catchment is not as strong, suggesting that there is a species specific effect on nitrogen concentration within leaves. We are currently processing additional leaves from other shale and sandstone sites. These results highlight the effect of abiotic environments on leaf nutrient concentrations, and the connection between belowground and aboveground tree physiology.

  8. Women's Political Empowerment and Investments in Primary Schooling in India.

    PubMed

    Halim, Nafisa; Yount, Kathryn M; Cunningham, Solveig A; Pande, Rohini P

    2016-02-01

    Using a national district-level dataset of India composed of information on investments in primary schooling (data from the District Information Survey for Education [DISE, 2007/8]) and information on demographic characteristics of elected officials (data from the Election Commission of India [ECI, 2000/04]), we examined the relationship between women's representation in State Legislative Assembly (SLA) seats and district-level investments in primary schooling. We used OLS regressions adjusting for confounders and spatial autocorrelation, and estimated separate models for North and South India. Women's representation in general SLA seats typically was negatively associated with investments in primary-school amenities and teachers; women's representation in SLA seats reserved for under-represented minorities, i.e., scheduled castes and scheduled tribes, typically was positively associated with investments in primary schooling, especially in areas addressing the basic needs of poor children. Women legislators' gender and caste identities may shape their decisions about redistributive educational policies.

  9. Leaf angle, tree species, and the functioning of broadleaf deciduous forest ecosystems

    NASA Astrophysics Data System (ADS)

    McNeil, B. E.; Brzostek, E. R.; Fahey, R. T.; King, C. J.; Flamenco, E. A.; Rescorl, S.; Erazo, D.; Heimerl, T.

    2016-12-01

    The effects of temperate forests on the global cycles of carbon, water, and energy depends strongly on how individual tree species adjust to the novel environmental conditions of the Anthropocene. Here, we seek to identify and understand ecological variability in one important component of tree canopies, the inclination angles of leaves. Leaf angle has important effects on forest albedo, photosynthesis, and evapotranspiration, but there is relatively little data to constrain the many models that include (or perhaps should include) this essential aspect of canopy architecture. We employ a relatively new technique for using an electronic protractor to measure leaf angles from leveled digital photographs. From a suite of observation platforms (e.g. UAVs, eddy flux towers, old fire towers) in Connecticut, Indiana, Maryland, Michigan, Pennsylvania, and West Virginia, USA, we have measured leaf angles periodically throughout the 2014, 2015, and 2016 growing seasons. Based on over 25,000 measurements taken from 15 tree species, we find highly significant differences in mean leaf angle by canopy position, tree species, location, and observation date. In addition to replicating findings where upper-canopy sun leaves are more vertical than lower-canopy shade leaves, our analysis on sun leaves also finds other ecologically meaningful differences. For instance, we find that the mesic, shade tolerant sugar maple had significantly more horizontal leaf angles than drought-resistant species such as white oak. Species also appear to have unique patterns of leaf angle phenology, with most species tending toward more vertical leaf angles during droughty conditions later in the year. We discuss these empirical results in light of an emerging theoretical framework that positions leaf angle as a functional trait. Like leaf traits such as %N or SLA, we suggest that leaf angle is an essential part of the adaptive resource strategy of each tree species. Finally, by linking our leaf angle data to new observations of spatial and temporal variations in near infrared reflectance measured from UAV, airborne, and satellite sensors, we highlight how species-specific patterns of leaf angle phenology could provide a new mechanism to better constrain model predictions of energy, water, and carbon fluxes from temperate forests.

  10. Comprehensive ecosystem model-experiment synthesis using multiple datasets at two temperate forest free-air CO2 enrichment experiments: model performance and compensating biases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Anthony P; Hanson, Paul J; DeKauwe, Martin G

    2014-01-01

    Free Air CO2 Enrichment (FACE) experiments provide a remarkable wealth of data to test the sensitivities of terrestrial ecosystem models (TEMs). In this study, a broad set of 11 TEMs were compared to 22 years of data from two contrasting FACE experiments in temperate forests of the south eastern US the evergreen Duke Forest and the deciduous Oak Ridge forest. We evaluated the models' ability to reproduce observed net primary productivity (NPP), transpiration and Leaf Area index (LAI) in ambient CO2 treatments. Encouragingly, many models simulated annual NPP and transpiration within observed uncertainty. Daily transpiration model errors were often relatedmore » to errors in leaf area phenology and peak LAI. Our analysis demonstrates that the simulation of LAI often drives the simulation of transpiration and hence there is a need to adopt the most appropriate of hypothesis driven methods to simulate and predict LAI. Of the three competing hypotheses determining peak LAI (1) optimisation to maximise carbon export, (2) increasing SLA with canopy depth and (3) the pipe model the pipe model produced LAI closest to the observations. Modelled phenology was either prescribed or based on broader empirical calibrations to climate. In some cases, simulation accuracy was achieved through compensating biases in component variables. For example, NPP accuracy was sometimes achieved with counter-balancing biases in nitrogen use efficiency and nitrogen uptake. Combined analysis of parallel measurements aides the identification of offsetting biases; without which over-confidence in model abilities to predict ecosystem function may emerge, potentially leading to erroneous predictions of change under future climates.« less

  11. Mapping local and global variability in plant trait distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc

    2017-12-01

    Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusingmore » on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N m) and phosphorus (P m), we characterize how traits vary within and among over 50,000 ~50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps further reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.« less

  12. Nutritive Value Response of Native Warm-Season Forage Grasses to Harvest Intervals and Durations in Mixed Stands

    PubMed Central

    Temu, Vitalis W.; Rude, Brian J.; Baldwin, Brian S.

    2014-01-01

    Interest in management of native warm-season grasses for multiple uses is growing in southeastern USA. Forage quality response of early-succession mixed stands of big bluestem (BB, Andropogon gerardii), indiangrass (IG, Sorghastrum nutans), and little bluestem (SG, Schizachyrium scoparium) to harvest intervals (30-, 40-, 60-, 90 or 120-d) and durations (one or two years) were assessed in crop-field buffers. Over three years, phased harvestings were initiated in May, on sets of randomized plots, ≥90 cm apart, in five replications (blocks) to produce one-, two-, and three-year-old stands, by the third year. Whole-plot regrowths were machine-harvested after collecting species (IG and LB) sample tillers for leafiness estimates. Species-specific leaf area (SLA) and leaf-to-stem ratio (LSR) were greater for early-season harvests and shorter intervals. In a similar pattern, whole-plot crude protein concentrations were greatest for the 30-d (74 g·kg−1 DM) and the least (40 g·kg−1 DM) for the 120-d interval. Corresponding neutral detergent fiber (NDF) values were the lowest (620 g·kg−1 DM) and highest (710 g·kg−1 DM), respectively. In vitro dry matter and NDF digestibility were greater for early-season harvests at shorter intervals (63 and 720 g·kg−1 DM). With strategic harvesting, similar stands may produce quality hay for beef cattle weight gain. PMID:27135504

  13. Mapping local and global variability in plant trait distributions.

    PubMed

    Butler, Ethan E; Datta, Abhirup; Flores-Moreno, Habacuc; Chen, Ming; Wythers, Kirk R; Fazayeli, Farideh; Banerjee, Arindam; Atkin, Owen K; Kattge, Jens; Amiaud, Bernard; Blonder, Benjamin; Boenisch, Gerhard; Bond-Lamberty, Ben; Brown, Kerry A; Byun, Chaeho; Campetella, Giandiego; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph M; Craven, Dylan; de Vries, Franciska T; Díaz, Sandra; Domingues, Tomas F; Forey, Estelle; González-Melo, Andrés; Gross, Nicolas; Han, Wenxuan; Hattingh, Wesley N; Hickler, Thomas; Jansen, Steven; Kramer, Koen; Kraft, Nathan J B; Kurokawa, Hiroko; Laughlin, Daniel C; Meir, Patrick; Minden, Vanessa; Niinemets, Ülo; Onoda, Yusuke; Peñuelas, Josep; Read, Quentin; Sack, Lawren; Schamp, Brandon; Soudzilovskaia, Nadejda A; Spasojevic, Marko J; Sosinski, Enio; Thornton, Peter E; Valladares, Fernando; van Bodegom, Peter M; Williams, Mathew; Wirth, Christian; Reich, Peter B

    2017-12-19

    Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.

  14. The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis.

    PubMed

    Tolsma, Thomas O; Cuevas, Lena M; Di Pietro, Santiago M

    2018-06-01

    Clathrin-mediated endocytosis is a fundamental transport pathway that depends on numerous protein-protein interactions. Testing the importance of the adaptor protein-clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin-binding motif (sla1 AAA ) that disrupt clathrin binding. Live-cell imaging showed an impaired Sla1-clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1 AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3-dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1 AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1-clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Shuttle Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Garvin, James B.

    1999-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.

  16. Cognitive Perspectives on SLA: The Associative-Cognitive CREED

    ERIC Educational Resources Information Center

    Ellis, Nick C.

    2006-01-01

    This paper outlines current cognitive perspectives on second language acquisition (SLA). The Associative-Cognitive CREED holds that SLA is governed by the same principles of associative and cognitive learning that underpin the rest of human knowledge. The major principles of the framework are that SLA is Construction-based, Rational,…

  17. SLA and the Emergence of Creoles

    ERIC Educational Resources Information Center

    Mufwene, Salikoko S.

    2010-01-01

    Although the emergence of creoles presupposes naturalistic SLA, current SLA scholarship does not shed much light on the development of creoles with regard to the population-internal mechanisms that produce normalization and autonomization from the creoles' lexifiers. This is largely due to the fact that research on SLA is focused on individuals…

  18. Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession?

    NASA Astrophysics Data System (ADS)

    Ciccarelli, Daniela

    2015-11-01

    Plant communities of coastal dunes are distributed along a characteristic sea-inland gradient. Generally, there is a shift from annual and short height species with small leaves in the initial successional stages to perennial tall shrubs with tough leaves in later phases. Assessing the community-weighted mean (CWM) trait values is used in plant ecology to describe ecosystem properties especially during succession. In particular, CSR (Competitive, Stress-tolerant, and Ruderal strategy) classification allows us to explore community functional shifts in terms of disturbance, stress and competition selective forces. The functional basis of the psammophilous succession was studied based on the following questions: (1) Can we circumscribe different functional types among plant species of Mediterranean coastal dunes? (2) How do CWM trait values vary along the environmental sea-inland gradient? (3) What is the relative importance of competition, stress and disturbance in the processes of plant community assembling? (4) Can we postulate that along primary successions there is generally a shift from ruderality to stress-tolerance? An explorative analysis of functional groups was performed by Non-Metric Multidimensional Scaling (NMDS) analysing nine morpho-functional traits measured for 45 taxa from 880 dune plots localised in Tuscany (central Italy, Europe). NMDS ordination showed a scattered distribution of psammophytes that could not be delimited in precise plant functional types. The first NMDS axis has been interpreted as a leaf economics axis because it was correlated to leaf area (LA) and leaf dry matter content (LDMC), while the second one was a plant size axis because of its correlation with canopy height. Along the sea-inland gradient, pioneer plant communities of upper beach were dominated by ruderals (with the lowest values of LDMC and specific leaf area - SLA), well-adapted to the harsh environmental conditions of coastal dunes. More distant from the sea, where ecological conditions were less extreme, late-successional communities of backdunes were characterised by the prevalence of stress-tolerance. This study suggested that psammophytes have evolved not a single but multiple adaptive strategies showing a high degree of functional diversity and complexity. Moreover, CSR classification supported the hypothesis of a functional shift from R-strategists in early successional stages to S-strategists in late-successional communities along a primary succession.

  19. Plenary Speeches: Is the Second Language Acquisition Discipline Disintegrating?

    ERIC Educational Resources Information Center

    Hulstijn, Jan H.

    2013-01-01

    After characterizing the study of second language acquisition (SLA) from three viewpoints, I try to answer the question, raised by DeKeyser (2010), of whether the SLA field is disintegrating. In answering this question, I first propose a distinction between SLA as the relatively fundamental academic discipline and SLA as the relatively applied…

  20. VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management

    NASA Astrophysics Data System (ADS)

    Brandic, Ivona; Music, Dejan; Leitner, Philipp; Dustdar, Schahram

    Novel computing paradigms like Grid and Cloud computing demand guarantees on non-functional requirements such as application execution time or price. Such requirements are usually negotiated following a specific Quality of Service (QoS) model and are expressed using Service Level Agreements (SLAs). Currently available QoS models assume either that service provider and consumer have matching SLA templates and common understanding of the negotiated terms or provide public templates, which can be downloaded and utilized by the end users. On the one hand, matching SLA templates represent an unrealistic assumption in systems where service consumer and provider meet dynamically and on demand. On the other hand, handling of public templates seems to be a rather challenging issue, especially if the templates do not reflect users’ needs. In this paper we present VieSLAF, a novel framework for the specification and management of SLA mappings. Using VieSLAF users may specify, manage, and apply SLA mapping bridging the gap between non-matching SLA templates. Moreover, based on the predefined learning functions and considering accumulated SLA mappings, domain specific public SLA templates can be derived reflecting users’ needs.

  1. Women’s Political Empowerment and Investments in Primary Schooling in India

    PubMed Central

    Yount, Kathryn M.; Cunningham, Solveig A.; Pande, Rohini P.

    2015-01-01

    Using a national district-level dataset of India composed of information on investments in primary schooling (data from the District Information Survey for Education [DISE, 2007/8]) and information on demographic characteristics of elected officials (data from the Election Commission of India [ECI, 2000/04]), we examined the relationship between women’s representation in State Legislative Assembly (SLA) seats and district-level investments in primary schooling. We used OLS regressions adjusting for confounders and spatial autocorrelation, and estimated separate models for North and South India. Women’s representation in general SLA seats typically was negatively associated with investments in primary-school amenities and teachers; women’s representation in SLA seats reserved for under-represented minorities, i.e., scheduled castes and scheduled tribes, typically was positively associated with investments in primary schooling, especially in areas addressing the basic needs of poor children. Women legislators’ gender and caste identities may shape their decisions about redistributive educational policies. PMID:26924878

  2. Dynamic SLA Negotiation in Autonomic Federated Environments

    NASA Astrophysics Data System (ADS)

    Rubach, Pawel; Sobolewski, Michael

    Federated computing environments offer requestors the ability to dynamically invoke services offered by collaborating providers in the virtual service network. Without an efficient resource management that includes Dynamic SLA Negotiation, however, the assignment of providers to customer's requests cannot be optimized and cannot offer high reliability without relevant SLA guarantees. We propose a new SLA-based SERViceable Metacomputing Environment (SERVME) capable of matching providers based on QoS requirements and performing autonomic provisioning and deprovisioning of services according to dynamic requestor needs. This paper presents the SLA negotiation process that includes on-demand provisioning and uses an object-oriented SLA model for large-scale service-oriented systems supported by SERVME. An initial reference implementation in the SORCER environment is also described.

  3. Spatial and Temporal Control Contribute to Step Length Asymmetry during Split-Belt Adaptation and Hemiparetic Gait

    PubMed Central

    Finley, James M.; Long, Andrew; Bastian, Amy J.; Torres-Oviedo, Gelsy

    2014-01-01

    Background Step length asymmetry (SLA) is a common hallmark of gait post-stroke. Though conventionally viewed as a spatial deficit, SLA can result from differences in where the feet are placed relative to the body (spatial strategy), the timing between foot-strikes (step time strategy), or the velocity of the body relative to the feet (step velocity strategy). Objective The goal of this study was to characterize the relative contributions of each of these strategies to SLA. Methods We developed an analytical model that parses SLA into independent step position, step time, and step velocity contributions. This model was validated by reproducing SLA values for twenty-five healthy participants when their natural symmetric gait was perturbed on a split-belt treadmill moving at either a 2:1 or 3:1 belt-speed ratio. We then applied the validated model to quantify step position, step time, and step velocity contributions to SLA in fifteen stroke survivors while walking at their self-selected speed. Results SLA was predicted precisely by summing the derived contributions, regardless of the belt-speed ratio. Although the contributions to SLA varied considerably across our sample of stroke survivors, the step position contribution tended to oppose the other two – possibly as an attempt to minimize the overall SLA. Conclusions Our results suggest that changes in where the feet are placed or changes in interlimb timing could be used as compensatory strategies to reduce overall SLA in stroke survivors. These results may allow clinicians and researchers to identify patient-specific gait abnormalities and personalize their therapeutic approaches accordingly. PMID:25589580

  4. Sequence-Based Genotyping of Expressed Swine Leukocyte Antigen Class I Alleles by Next-Generation Sequencing Reveal Novel Swine Leukocyte Antigen Class I Haplotypes and Alleles in Belgian, Danish, and Kenyan Fattening Pigs and Göttingen Minipigs.

    PubMed

    Sørensen, Maria Rathmann; Ilsøe, Mette; Strube, Mikael Lenz; Bishop, Richard; Erbs, Gitte; Hartmann, Sofie Bruun; Jungersen, Gregers

    2017-01-01

    The need for typing of the swine leukocyte antigen (SLA) is increasing with the expanded use of pigs as models for human diseases and organ-transplantation experiments, their use in infection studies, and for design of veterinary vaccines. Knowledge of SLA sequences is furthermore a prerequisite for the prediction of epitope binding in pigs. The low number of known SLA class I alleles and the limited knowledge of their prevalence in different pig breeds emphasizes the need for efficient SLA typing methods. This study utilizes an SLA class I-typing method based on next-generation sequencing of barcoded PCR amplicons. The amplicons were generated with universal primers and predicted to resolve 68-88% of all known SLA class I alleles dependent on amplicon size. We analyzed the SLA profiles of 72 pigs from four different pig populations; Göttingen minipigs and Belgian, Kenyan, and Danish fattening pigs. We identified 67 alleles, nine previously described haplotypes and 15 novel haplotypes. The highest variation in SLA class I profiles was observed in the Danish pigs and the lowest among the Göttingen minipig population, which also have the highest percentage of homozygote individuals. Highlighting the fact that there are still numerous unknown SLA class I alleles to be discovered, a total of 12 novel SLA class I alleles were identified. Overall, we present new information about known and novel alleles and haplotypes and their prevalence in the tested pig populations.

  5. The contribution of geography to disparities in preventable hospitalisations between indigenous and non-indigenous Australians.

    PubMed

    Harrold, Timothy C; Randall, Deborah A; Falster, Michael O; Lujic, Sanja; Jorm, Louisa R

    2014-01-01

    To quantify the independent roles of geography and Indigenous status in explaining disparities in Potentially Preventable Hospital (PPH) admissions between Indigenous and non-Indigenous Australians. Analysis of linked hospital admission data for New South Wales (NSW), Australia, for the period July 1 2003 to June 30 2008. Age-standardised admission rates, and rate ratios adjusted for age, sex and Statistical Local Area (SLA) of residence using multilevel models. PPH diagnoses accounted for 987,604 admissions in NSW over the study period, of which 3.7% were for Indigenous people. The age-standardised PPH admission rate was 76.5 and 27.3 per 1,000 for Indigenous and non-Indigenous people respectively. PPH admission rates in Indigenous people were 2.16 times higher than in non-Indigenous people of the same age group and sex who lived in the same SLA. The largest disparities in PPH admission rates were seen for diabetes complications, chronic obstructive pulmonary disease and rheumatic heart disease. Both rates of PPH admission in Indigenous people, and the disparity in rates between Indigenous than non-Indigenous people, varied significantly by SLA, with greater disparities seen in regional and remote areas than in major cities. Higher rates of PPH admission among Indigenous people are not simply a function of their greater likelihood of living in rural and remote areas. The very considerable geographic variation in the disparity in rates of PPH admission between Indigenous and non-Indigenous people indicates that there is potential to reduce unwarranted variation by characterising outlying areas which contribute the most to this disparity.

  6. Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system

    NASA Astrophysics Data System (ADS)

    ÁLvarez, A.; Orfila, A.; Tintoré, J.

    2004-03-01

    Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.

  7. SLA Research and L2 Pedagogy: Misapplications and Questions of Relevance

    ERIC Educational Resources Information Center

    Spada, Nina

    2015-01-01

    There has been considerable debate about the relevance and applicability of SLA theory and research for L2 pedagogy. There are those who maintain that SLA must be applicable to L2 pedagogy: a view based on the argument that because SLA is a subfield of applied linguistics, it should have direct relevance to L2 teaching. Others take the view that…

  8. Effects of Nano-Hydroxyapatite/Polyetheretherketone-Coated, Sandblasted, Large-Grit, and Acid-Etched Implants on Inflammatory Cytokines and Osseointegration in a Peri-Implantitis Model in Beagle Dogs.

    PubMed

    Yang, Hua-Wei; Tang, Xiao-Shan; Tian, Zhuo-Wei; Wang, Yang; Yang, Wen-Yi; Hu, Jing-Zhou

    2017-09-25

    BACKGROUND This study explored the effects of nano-hydroxyapatite/polyetheretherketone (n-HA/PEEK)- coated sandblasted, large-grit, and acid-etched (SLA) implants on inflammatory cytokines and osseointegration in peri-implantitis model beagle dogs. MATERIAL AND METHODS Peri-implantitis models were established. Eight beagle dogs were randomly and evenly assigned into SLA tied, SLA + n-HA/PEEK tied, SLA untied, or SLA + n-HA/PEEK untied groups. A special periodontal probe was used to detect the plaque index (PLI), probing depth (PD), and modified Sulcus Bleeding Index (mSBI). Gingival crevicular fluid was collected and an ELISA kit was utilized to detect IL-1, IL-6, and IL-17 levels. The colony-forming units were counted and the maximum shear strength of implants was tested using the axial pullout test. HE staining was used to detect the inflammation of peri-implant bone tissues. Osseointegration was observed through toluidine blue staining. Bone-to-implant contact (BIC) was obtained through histological observation and the mineral apposition rate (MAR) was calculated after immune fluorescent double staining. RESULTS The SLA tied group demonstrated higher levels of PLI, PD, mSBI, IL-1, IL-6, and IL-17 and a higher degree of inflammation than the SLA + n-HA/PEEK tied group. The tied groups also displayed similar results over the untied groups at the same time point. The maximum shear strength, BIC, and MAR in the SLA tied group were significantly lower than in the SLA + n-HA/PEEK tied group. CONCLUSIONS Our findings demonstrate that SLA + n-HA/PEEK implants can promote osseointegration and relieve the inflammation response of peri-implantitis in beagle dogs.

  9. Characterization of swine leucocyte antigen alleles in a crossbred pig to be used in xenotransplant studies.

    PubMed

    Reyes, L M; Blosser, R J; Smith, R F; Miner, A C; Paris, L L; Blankenship, R L; Tector, M F; Tector, A J

    2014-11-01

    We have characterized swine leucocyte antigen (SLA) classes I and II molecules of a domestic pig as a model for use in our xenotransplant program. Molecular characterization of the SLA classes I and II genes is critical to understanding the adaptive immune responses between swine and humans in the event of xenotransplantation. Seven swine leucocyte antigen genes (SLA-1, SLA-2, SLA-3, DQB1, DRB1, DQA and DRA) were analyzed and 15 alleles were identified. A novel DRA*w04re01 is reported for this limited polymorphic class II gene. The heterozygous haplotypes, Hp-32.0/35.0 and Hp-0.13/0.23 were deduced for our IU-pig model, for SLA classes I and II regions, respectively. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Construct Validity of Science Motivation and Beliefs Instrument (SLA-MB): A Case study in Sumedang, Indonesia

    NASA Astrophysics Data System (ADS)

    Rachmatullah, A.; Octavianda, R. P.; Ha, M.; Rustaman, N. Y.; Diana, S.

    2017-02-01

    Along with numerous instruments developed and used in science education researches, some of those instruments have been translated to local language in the country where the instruments were used. Most of researchers that used those translated instruments did not report the quality of those translated instruments. One of the instruments is the Scientific Literacy Assessment (SLA) including the Science Motivation and Beliefs (SLA-MB) as part of the SLA. In this study, the SLA-MB has been translated into Indonesian Language (Bahasa). The purpose of this study is to investigate the SLA-MB instrument that has been translated to Indonesian language from the view of dimensionality, reliability, item quality and differential item functioning (DIF) based on IRT-Rasch analysis. We used Conquest and Winstep as the program for IRT-Rasch analysis. We employed quantitative research method with school-survey on this study. Research subjects are 223 Indonesian Middle school students (age 13-16), with 64 boys and 159 girls. IRT-Rasch analysis of the SLA-MB Indonesian version indicated that a three-dimensional model fit significantly better than one-dimension model, and the reliability of each dimensions are about 0.60 to 0.82. As well as those findings, fit values of all items are acceptable, moreover we found no DIF for all of the SLA-MB items. Overall, our study suggests that Indonesian version of SLA-MB is acceptable to be implemented as research instrument conducted in Indonesia.

  11. The Stretched Lens Array (SLA): A Low-Risk, Cost-Effective Array Offering Wing-Level Performance of 180 W/KG and 300 W/M2 at 300 VDC

    NASA Technical Reports Server (NTRS)

    ONeill, Mark; Piszczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    At IECEC 2001, our team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in the SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing.

  12. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  13. Seabird drift as a proxy to estimate surface currents in the western Mediterranean?

    NASA Astrophysics Data System (ADS)

    Gomez-Navarro, Laura; Sánchez-Román, Antonio; Pascual, Ananda; Fablet, Ronan; Hernandez-Carrasco, Ismael; Mason, Evan; Arcos, José Manuel; Oro, Daniel

    2017-04-01

    Seabird trajectories can be used as proxies to investigate the dynamics of marine systems and their spatiotemporal evolution. Previous studies have mainly been based on analyses of long range flights, where birds are travelling at high velocities over long time periods. Such data have been used to study wind patterns, and areas of avian feeding and foraging have also been used to study oceanic fronts. Here we focus on "slow moving" periods (which we associate to when birds appear to be drifting on the sea surface), in order to investigate bird drift as a proxy for sea surface currents in the western Mediterranean Sea. We analyse trajectories corresponding to "slow moving" periods recorded by GPSs attached to individuals of the species Calonectris diomedea ( Scopoli's shearwater) from mid August to mid September 2012. The trajectories are compared with sea level anomaly (SLA), sea surface temperature (SST), Finite Size Lyapunov Exponents (FSLE), wind fields, and the outputs from an automated sea-surface-height based eddy tracker. The SLA and SST datasets were obtained from the Copernicus Marine Environment Monitoring Service (CMEMS) with a spatial resolution of 1/8 ̊ and 1/100 ̊ respectively while the FSLEs were computed from the SLA dataset. Finally, the wind data comes from the outputs of the CCMPv2 numerical model. This model has a global coverage with a spatial resolution of 1/4 ̊. Interesting relationships between the trajectories and SLA fields are found. According to the angle between the SLA gradient and the trajectories of birds, we classify drifts into three scenarios: perpendicular, parallel and other, which are associated with different driving forces. The first scenario implies that bird drift is driven by geostrophic sea surface currents. The second we associate with wind drag as the main driving force. This is validated through the wind dataset. Moreover, from the SST, FSLEs and the eddy tracker, we obtain supplementary information on the presence of oceanic structures (such as eddies or fronts), not observed in the SLA field due to its limited spatial and temporal resolutions. Therefore, this data helps to explain some of the third case scenario trajectories.

  14. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA).

    PubMed

    Firouzmand, Hengameh; Badiee, Ali; Khamesipour, Ali; Heravi Shargh, Vahid; Alavizadeh, Seyedeh Hoda; Abbasi, Azam; Jaafari, Mahmoud Reza

    2013-12-01

    A suitable adjuvant and delivery system are needed to develop an effective vaccine against leishmaniasis. To induce a Th1 type of response and protection in BALB/c mice against Leishmania major infection, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) nanoliposomes bearing an intrinsic adjuvanticity, were used as an antigen delivery system and immunoadjuvant for soluble Leishmania antigens (SLA). DOTAP liposomes containing different concentrations of SLA were prepared by using lipid film method followed by sonication. The prepared vesicles showed a diameter of about 100nm, a positive zeta potential and approximately 70% encapsulation efficiency of SLA. BALB/c mice were immunized subcutaneously (SC), three times in a 3-week interval with different concentrations of liposomal SLA (12.5, 25, and 50μg of SLA/50μl/mice), free SLA and as well as free liposome. The group of mice received 50μg of SLA in DOTAP-nanoliposomes showed a significantly (p<0.001) smaller footpad swelling and the lowest spleen and footpad parasite burden after the challenge. This group also showed the highest IFN-γ production compared to the other groups, lower IL-4 level and higher IgG2a antibody titer. Taken together, the results indicated that simple DOTAP nanoliposome containing 1μg/μl SLA are appropriate delivery systems to induce a Th1 type of immune response and protection against L. major infection in BALB/c mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Streptococcus pyogenes Phospholipase A2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice.

    PubMed

    Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2017-01-01

    The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.

  16. Development of the Ultra-Light Stretched Lens Array

    NASA Technical Reports Server (NTRS)

    O'Neill, M. J.; McDanal, A. J.; George, P. J.; Piszczor, M. F.; Edwards, D. L.; Botke, M. M.; Jaster, P. A.; Brandhorst, H. W.; Eskenazi, M.I.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    At the last IEEE (Institute of Electrical and Electronics Engineers) PVSC (Photovoltaic Specialists Conference), the new stretched lens array (SLA) concept was introduced. Since that conference, the SLA team has made significant advances in the SLA technology, including component level improvements, array level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper will describe the evolved version of the SLA, highlighting the improvements in the lens, solar cell, rigid panel structure, and complete solar array wing. The near term SLA will provide outstanding wing level performance: greater than 180 W/kg specific power, greater than 300 W/sq m power density, greater than 300 V operational voltage, and excellent durability in the space environment.

  17. Research Challenges in Managing and Using Service Level Agreements

    NASA Astrophysics Data System (ADS)

    Rana, Omer; Ziegler, Wolfgang

    A Service Level Agreement (SLA) represents an agreement between a service user and a provider in the context of a particular service provision. SLAs contain Quality of Service properties that must be maintained by a provider, and as agreed between a provider and a user/client. These are generally defined as a set of Service Level Objectives (SLOs). These properties need to be measurable and must be monitored during the provision of the service that has been agreed in the SLA. The SLA must also contain a set of penalty clauses specifying what happens when service providers fail to deliver the pre-agreed quality. Hence, an SLA may be used by both a user and a provider - from a user perspective, an SLA defines what is required - often defined using non-functional attributes of service provision. From a providers perspective, an SLA may be used to support capacity planning - especially if a provider is making it's capability available to multiple users. An SLA may be used by a client and provider to manage their behaviour over time - for instance, to optimise their long running revenue (cost) or QoS attributes (such as execution time), for instance. The lifecycle of an SLA is outlined, along with various uses of SLAs to support infrastructure management. A discussion about WS-Agreement - the emerging standard for specifying SLAs - is also provided.

  18. Simple 3,4-Dihydroxy-L-Phenylalanine Surface Modification Enhances Titanium Implant Osseointegration in Ovariectomized Rats.

    PubMed

    Ma, Ting; Ge, Xi-Yuan; Hao, Ke-Yi; Zhang, Bi-Ru; Jiang, Xi; Lin, Ye; Zhang, Yu

    2017-12-19

    Osteoporosis presents a challenge to the long-term success of osseointegration of endosseous implants. The bio-inspired 3,4-dihydroxy-L-phenylalanine (Dopa) coating is widely used as a basic layer to bind osteogenetic molecules that may improve osseointegration. To date, little attention has focused on application of Dopa alone or binding inhibitors of bone resorption in osteoporosis. Local use of a bisphosphonate such as zoledronic acid (ZA), an inhibitor of osteoclast-mediated bone resorption, has been proven to improve implant osseointegration. In this study, ovariectomized rats were divided into four groups and implanted with implants with different surface modifications: sandblasted and acid-etched (SLA), SLA modified with Dopa (SLA-Dopa), SLA modified with ZA (SLA-ZA), and SLA modified with Dopa and ZA (SLA-Dopa + ZA). Measurement of removal torque, micro-computed tomography and histology revealed a greater extent of bone formation around the three surface-modified implants than SLA-controls. No synergistic effect was observed for combined Dopa + ZA coating. Microarray analysis showed the Dopa coating inhibited expression of genes associated with osteoclast differentiation, similarly to the mechanism of action of ZA. Simple Dopa modification resulted in a similar improvement in osseointegration compared to ZA. Thus, our data suggest simple Dopa coating is promising strategy to promote osseointegration of implants in patients with osteoporosis.

  19. Effect of Different Titanium Surfaces on Maturation of Murine Bone Marrow-Derived Dendritic Cells

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaofei; Zhou, Fengjuan; Gu, Yifei; Duan, Xiaobo; Mo, Anchun

    2017-02-01

    Dendritic cells (DCs) play a pivotal role in the host response to implanted biomaterials. Osseointegration of titanium (Ti) implant is an immunological and inflammatory-driven process. However, the role of DCs in this complex process is largely unknown. This study aimed to investigate the effect of different Ti surfaces on DC maturation, and evaluate its subsequent potential on osteogenic differentiation of preosteoblasts. Murine bone marrow-derived DCs were seeded on Ti disks with different surface treatments, including pretreatment (PT), sandblasted/acid-etched (SLA) and modified SLA (modSLA) surface. Compared with DCs cultured on PT and SLA surfaces, the cells seeded on modSLA surface demonstrated a more round morphology with lower expression of CD86 and MHC-II, the DC maturation markers. Those cells also secreted high levels of anti-inflammatory cytokine IL-10 and TGF-β. Notably, addition of conditioned medium (CM) from modSLA-induced DCs significantly increased the mRNA expression of Runx2 and ALP as well as ALP activity by murine preosteoblast MC3T3-E1 cells. Our data demonstrated that Ti disks with different surfaces lead to differential DCs responses. PT and SLA surfaces induce DCs mature, while DCs seeded on modSLA-Ti surface maintain an immature phenotype and exhibit a potential of promoting osteogenic differentiation of MC3T3-E1 cells.

  20. Swine Leukocyte Antigen Diversity in Canadian Specific Pathogen-Free Yorkshire and Landrace Pigs

    PubMed Central

    Gao, Caixia; Quan, Jinqiang; Jiang, Xinjie; Li, Changwen; Lu, Xiaoye; Chen, Hongyan

    2017-01-01

    The highly polymorphic swine major histocompatibility complex (MHC), termed swine leukocyte antigen (SLA), is associated with different levels of immunologic responses to infectious diseases, vaccines, and transplantation. Pig breeds with known SLA haplotypes are important genetic resources for biomedical research. Canadian Yorkshire and Landrace pigs represent the current specific pathogen-free (SPF) breeding stock maintained in the isolation environment at the Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences. In this study, we identified 61 alleles at five polymorphic SLA loci (SLA-1, SLA-2, SLA-3, DRB1, and DQB1) representing 17 class I haplotypes and 11 class II haplotypes using reverse transcription-polymerase chain reaction (RT-PCR) sequence-based typing and PCR-sequence specific primers methods in 367 Canadian SPF Yorkshire and Landrace pigs. The official designation of the alleles has been assigned by the SLA Nomenclature Committee of the International Society for Animal Genetics and released in updated Immuno Polymorphism Database-MHC SLA sequence database [Release 2.0.0.3 (2016-11-03)]. The submissions confirmed some unassigned alleles and standardized nomenclatures of many previously unconfirmed alleles in the GenBank database. Three class I haplotypes, Hp-37.0, 63.0, and 73.0, appeared to be novel and have not previously been reported in other pig populations. One crossover within the class I region and two between class I and class II regions were observed, resulting in three new recombinant haplotypes. The presence of the duplicated SLA-1 locus was confirmed in three class I haplotypes Hp-28.0, Hp-35.0, and Hp-63.0. Furthermore, we also analyzed the functional diversities of 19 identified frequent SLA class I molecules in this study and confirmed the existence of four supertypes using the MHCcluster method. These results will be useful for studying the adaptive immune response and immunological phenotypic differences in pigs, screening potential T-cell epitopes, and further developing the more effective vaccines. PMID:28360911

  1. Role of Scd5, a protein phosphatase-1 targeting protein, in phosphoregulation of Sla1 during endocytosis

    PubMed Central

    Chi, Richard J.; Torres, Onaidy T.; Segarra, Verónica A.; Lansley, Tanya; Chang, Ji Suk; Newpher, Thomas M.; Lemmon, Sandra K.

    2012-01-01

    Summary Phosphorylation regulates assembly and disassembly of proteins during endocytosis. In yeast, Prk1 and Ark1 phosphorylate factors after vesicle internalization leading to coat disassembly. Scd5, a protein phosphatase-1 (PP1)-targeting subunit, is proposed to regulate dephosphorylation of Prk1/Ark1 substrates to promote new rounds of endocytosis. In this study we analyzed scd5-PP1Δ2, a mutation causing impaired PP1 binding. scd5-PP1Δ2 caused hyperphosphorylation of several Prk1 endocytic targets. Live-cell imaging of 15 endocytic components in scd5-PP1Δ2 revealed that most factors arriving before the invagination/actin phase of endocytosis had delayed lifetimes. Severely affected were early factors and Sla2 (Hip1R homolog), whose lifetime was extended nearly fourfold. In contrast, the lifetime of Sla1, a Prk1 target, was extended less than twofold, but its cortical recruitment was significantly reduced. Delayed Sla2 dynamics caused by scd5-PP1Δ2 were suppressed by SLA1 overexpression. This was dependent on the LxxQxTG repeats (SR) of Sla1, which are phosphorylated by Prk1 and bind Pan1, another Prk1 target, in the dephosphorylated state. Without the SR, Sla1ΔSR was still recruited to the cell surface, but was less concentrated in cortical patches than Pan1. sla1ΔSR severely impaired endocytic progression, but this was partially suppressed by overexpression of LAS17, suggesting that without the SR region the SH3 region of Sla1 causes constitutive negative regulation of Las17 (WASp). These results demonstrate that Scd5/PP1 is important for recycling Prk1 targets to initiate new rounds of endocytosis and provide new mechanistic information on the role of the Sla1 SR domain in regulating progression to the invagination/actin phase of endocytosis. PMID:22825870

  2. Endocytic Machinery Protein SlaB Is Dispensable for Polarity Establishment but Necessary for Polarity Maintenance in Hyphal Tip Cells of Aspergillus nidulans▿†

    PubMed Central

    Hervás-Aguilar, América; Peñalva, Miguel A.

    2010-01-01

    The Aspergillus nidulans endocytic internalization protein SlaB is essential, in agreement with the key role in apical extension attributed to endocytosis. We constructed, by gene replacement, a nitrate-inducible, ammonium-repressible slaB1 allele for conditional SlaB expression. Video microscopy showed that repressed slaB1 cells are able to establish but unable to maintain a stable polarity axis, arresting growth with budding-yeast-like morphology shortly after initially normal germ tube emergence. Using green fluorescent protein (GFP)-tagged secretory v-SNARE SynA, which continuously recycles to the plasma membrane after being efficiently endocytosed, we establish that SlaB is crucial for endocytosis, although it is dispensable for the anterograde traffic of SynA and of the t-SNARE Pep12 to the plasma and vacuolar membrane, respectively. By confocal microscopy, repressed slaB1 germlings show deep plasma membrane invaginations. Ammonium-to-nitrate medium shift experiments demonstrated reversibility of the null polarity maintenance phenotype and correlation of normal apical extension with resumption of SynA endocytosis. In contrast, SlaB downregulation in hyphae that had progressed far beyond germ tube emergence led to marked polarity maintenance defects correlating with deficient SynA endocytosis. Thus, the strict correlation between abolishment of endocytosis and disability of polarity maintenance that we report here supports the view that hyphal growth requires coupling of secretion and endocytosis. However, downregulated slaB1 cells form F-actin clumps containing the actin-binding protein AbpA, and thus F-actin misregulation cannot be completely disregarded as a possible contributor to defective apical extension. Latrunculin B treatment of SlaB-downregulated tips reduced the formation of AbpA clumps without promoting growth and revealed the formation of cortical “comets” of AbpA. PMID:20693304

  3. Recent Progress on the Stretched Lens Array (SLA)

    NASA Technical Reports Server (NTRS)

    O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry

    2005-01-01

    At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.

  4. The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator

    NASA Technical Reports Server (NTRS)

    ONeill, Mark J.; Pisczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.

    2002-01-01

    A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array.

  5. Nanotubular topography enhances the bioactivity of titanium implants.

    PubMed

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cationic liposomes containing soluble Leishmania antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis.

    PubMed

    Heravi Shargh, Vahid; Jaafari, Mahmoud Reza; Khamesipour, Ali; Jalali, Seyed Amir; Firouzmand, Hengameh; Abbasi, Azam; Badiee, Ali

    2012-07-01

    Development of an effective vaccine against leishmaniasis is possible due to the fact that individuals cured from cutaneous leishmaniasis (CL) are protected from further infection. First generation Leishmania vaccines consisting of whole killed parasites reached to phase 3 clinical trials but failed to show enough efficacies mainly due to the lack of an appropriate adjuvant. In this study, an efficient liposomal protein-based vaccine against Leishmania major infection was developed using soluble Leishmania antigens (SLA) as a first generation vaccine and cytidine phosphate guanosine oligodeoxynucleotides (CpG ODNs) as an immunostimulatory adjuvant. 1, 2-Dioleoyl-3-trimethylammonium-propane was used as a cationic lipid to prepare the liposomes due to its intrinsic adjuvanticity. BALB/c mice were immunized subcutaneously (SC), three times in 2-week intervals, with Lip-SLA-CpG, Lip-SLA, SLA + CpG, SLA, or HEPES buffer. As criteria for protection, footpad swelling at the site of challenge and spleen parasite loads were assessed, and the immune responses were evaluated by determination of IFN-γ and IL-4 levels of cultured splenocytes, and IgG subtypes. The group of mice that received Lip-SLA-CpG showed a significantly smaller footpad swelling, lower spleen parasite burden, higher IgG2a antibody, and lower IL-4 level compared to the control groups. It is concluded that cationic liposomes containing SLA and CpG ODNs are appropriate to induce Th1 type of immune response and protection against leishmaniasis.

  7. 77 FR 38884 - Sisseton Milbank Railroad Company-Acquisition and Operation Exemption-SLA Property Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35641] Sisseton Milbank Railroad Company--Acquisition and Operation Exemption--SLA Property Management Limited Partnership and... verified notice of exemption under 49 CFR 1150.31 to acquire from SLA Property Management Limited...

  8. The Role of (Un)awareness in SLA

    ERIC Educational Resources Information Center

    Leow, Ronald P.; Donatelli, Lucia

    2017-01-01

    The construct "awareness" is undoubtedly one of the more difficult constructs to operationalize and measure in both second language acquisition (SLA) and non-SLA fields of research. Indeed, the multifaceted nature of awareness is clearly exemplified in concepts that include perception, detection, and noticing, and also in type of…

  9. Beyond Poverty: Engaging with Input in Generative SLA

    ERIC Educational Resources Information Center

    Rankin, Tom; Unsworth, Sharon

    2016-01-01

    A generative approach to language acquisition is no different from any other in assuming that target language input is crucial for language acquisition. This discussion note addresses the place of input in generative second language acquisition (SLA) research and the perception in the wider field of SLA research that generative SLA…

  10. On Discourse, Communication, and (Some) Fundamental Concepts in SLA Research

    ERIC Educational Resources Information Center

    Firth, Alan; Wagner, Johannes

    2007-01-01

    This article argues for a reconceptualization of Second Language Acquisition (SLA) research that would enlarge the ontological and empirical parameters of the field. We claim that methodologies, theories, and foci within SLA reflect an imbalance between cognitive and mentalistic orientations, and social and contextual orientations to language, the…

  11. SLA Triennial Salary Survey, 1989.

    ERIC Educational Resources Information Center

    Special Libraries Association, Washington, DC.

    The objectives of the 8th triennial salary survey of Special Library Association (SLA) members were to: (1) obtain systematic accurate information about the salaries of special librarians and information personnel; (2) establish a data bank from which inquiries about salaries can be answered for members of the SLA, persons engaged in personnel and…

  12. SLA at 100: Conference Preview

    ERIC Educational Resources Information Center

    Blumenstein, Lynn

    2009-01-01

    When School Library Association (SLA) convenes its annual conference in Washington, DC, June 14-17, 2009, the association will be celebrating its 100th birthday. This occasion allows for grand gestures--the SLA Salutes! Awards and Leadership Reception will be held in the Library of Congress's Great Hall. The conference also draws upon Washington…

  13. Osteogenic response of human MSCs and osteoblasts to hydrophilic and hydrophobic nanostructured titanium implant surfaces.

    PubMed

    Lotz, Ethan M; Olivares-Navarrete, Rene; Berner, Simon; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Microstructured implant surfaces created by grit blasting and acid etching titanium (Ti) support osseointegration. This effect is further enhanced by storing in aqueous solution to retain hydrophilicity, but this also leads to surface nanostructure formation. The purpose of this study was to assess the contributions of nanostructures on the improved osteogenic response of osteoblast lineage cells to hydrophilic microstructured Ti. Human mesenchymal stem cells (MSCs) and normal human osteoblasts (NHOsts) were cultured separately on non-nanostructured/hydrophobic (SLA), nanostructured/hydrophilic (modSLA), or nanostructured/hydrophobic (SLAnano) Ti surfaces. XPS showed elevated carbon levels on SLA and SLAnano compared to modSLA. Contact angle measurements indicated only modSLA was hydrophilic. Confocal laser microscopy revealed minor differences in mean surface roughness. SEM showed the presence of nanostructures on modSLA and SLAnano. MSCs and NHOst cells exhibited similar morphology on the substrates and osteoblastic differentiation and maturation were greatest on modSLA. These results suggest that when the appropriate microstructure is present, hydrophilicity may play a greater role in stimulating MSC and NHOst osteoblastic differentiation and maturation than the presence of nanostructures generated during storage in an aqueous environment. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3137-3148, 2016. © 2016 Wiley Periodicals, Inc.

  14. The Influence of SLA Training in Curricular Design among Teachers in Preparation

    ERIC Educational Resources Information Center

    Kessler, Greg; Bikowski, Dawn

    2011-01-01

    This study reports on how language teachers in preparation integrate key concepts from second language acquisition (SLA) theory into CALL curricular design. The need for language teachers who have had SLA coursework to receive orientation to student-centered learning in a CALL context has been identified previously (Kessler, 2010). This research…

  15. Stretched Lens Array (SLA) for Collection and Conversion of Infrared Laser Light: 45% Efficiency Demonstrated for Near-Term 800 W/kg Space Power System

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; Howell, Joe; Fikes, John; Fork, Richard; Phillips, Dane; Aiken, Dan; McDanal, A. J.

    2006-01-01

    For the past 2% years, our team has been developing a unique photovoltaic concentrator array for collection and conversion of infrared laser light. This laser-receiving array has evolved from the solar-receiving Stretched Lens Array (SLA). The laser-receiving version of SLA is being developed for space power applications when or where sunlight is not available (e.g., the eternally dark lunar polar craters). The laser-receiving SLA can efficiently collect and convert beamed laser power from orbiting spacecraft or other sources (e.g., solar-powered lasers on the permanently illuminated ridges of lunar polar craters). A dual-use version of SLA can produce power from sunlight during sunlit portions of the mission, and from beamed laser light during dark portions of the mission. SLA minimizes the cost and mass of photovoltaic cells by using gossamer-like Fresnel lenses to capture and focus incoming light (solar or laser) by a factor of 8.5X, thereby providing a cost-effective, ultra-light space power system.

  16. Sociolinguistic Approaches to SLA.

    ERIC Educational Resources Information Center

    Young, Richard

    1999-01-01

    Discusses two complementary traditions in the study of communication and social context and shows how one researcher's theory of context influences the methodologies he or she adopts. Reviews substantive findings of sociolinguistic researchers in four main areas of second-language acquisition and use: interlanguage variation, cross-cultural…

  17. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis.

    PubMed

    Shargh, Vahid Heravi; Jaafari, Mahmoud Reza; Khamesipour, Ali; Jaafari, Iman; Jalali, Seyed Amir; Abbasi, Azam; Badiee, Ali

    2012-06-06

    First generation Leishmania vaccines consisting of whole killed parasites with or without adjuvants have reached phase 3 trial and failed to show enough efficacy mainly due to the lack of an appropriate adjuvant. In this study, the nuclease-resistant phosphorothioate CpG oligodeoxynucleotides (PS CpG) or nuclease-sensitive phosphodiester CpG ODNs (PO CpG) were used as adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Due to the susceptibility of PO CpG to nuclease degradation, an efficient liposomal delivery system was developed to protect them from degradation. 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid was used because of its unique adjuvanticity and electrostatic interaction with negatively charged CpG ODNs. To evaluate the role of liposomal formulation in protection rate and enhanced immune response, BALB/c mice were immunized subcutaneously with liposomal soluble Leishmania antigens (SLA) co-incorporated with PO CpG (Lip-SLA-PO CpG), Lip-SLA-PS CpG, SLA+PO CpG, SLA+PS CpG, SLA or buffer. As criteria for protection, footpad swelling at the site of challenge, parasite loads, the levels of IFN-γ and IL-4, and the IgG subtypes were evaluated. The groups of mice receiving Lip-SLA-PO CpG or Lip-SLA-PS CpG showed a high protection rate compared with the control groups. In addition, there was no significant difference in immune response generation between mice immunized with PS CpG and the group receiving PO CpG when incorporated into the liposomes. The results suggested that liposomal form of PO CpG might be used instead of PS CpG in future vaccine formulations as an efficient adjuvant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effects of Local and Systemic Zoledronic Acid Application on Titanium Implant Osseointegration: An Experimental Study Conducted on Two Surface Types.

    PubMed

    Dundar, Serkan; Yaman, Ferhan; Gecor, Orhan; Cakmak, Omer; Kirtay, Mustafa; Yildirim, Tuba Talo; Karaman, Tahir; Benlidayi, Mehmet Emre

    2017-06-01

    The aim of this study was to evaluate the effects of local and systemic zoledronic acid (ZA) applications on titaniumoksit ceramic blasted (TiO-CB)- and sandblasted large acid-grit (SLA)-surfaced titanium implant osseointegration. Twelve New Zealand White rabbits were used in the study, divided into 6 groups: the TiO-CB (TiO-CB-CNT) (n = 2) and SLA (SLA-CNT) (n = 2) control groups in which TiO-CB- and SLA-surfaced titanium implants were surgically inserted into rabbit tibias but no treatment was applied; the TiO-CB (TiO-CB-LZA) (n = 2) and SLA (SLA-LZA) (n = 2) local ZA groups in which 1 mL of normal saline solution containing 2 mg of ZA was injected into sockets and after this the implants were integrated; and the TiO-CB (TiO-CB-SZA) (n = 2) and SLA (SLA-SZA) (n = 2) systemic ZA groups in which a single infusion of 0.1 mg/kg of ZA was administered during surgical implant insertion. Following a period of osseointegration, bone implant contact (BIC) was recorded as a proportion of the total implant surface length in direct contact with the bone. Results of this study indicate that BIC was greater in the systemic ZA application groups than in the local ZA application groups, and BIC was greater in the local ZA groups than in the controls. Statistically significant differences in BIC were not detected between the TiO-CB- and SLA-surfaced implants in all the groups. Furthermore, this study did not reveal significant differences between the 2 types of surfaces due to similar average roughness values. Overall, systemic ZA application was found to be more effective in increasing BIC than local ZA application based on the results obtained by testing 2 implant surfaces.

  19. Conformal Robotic Stereolithography

    PubMed Central

    Stevens, Adam G.; Oliver, C. Ryan; Kirchmeyer, Matthieu; Wu, Jieyuan; Chin, Lillian; Polsen, Erik S.; Archer, Chad; Boyle, Casey; Garber, Jenna

    2016-01-01

    Abstract Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems. PMID:29577062

  20. Intra-seasonal sea level variability along the west coast of India

    NASA Astrophysics Data System (ADS)

    Dhage, Laxmikant; Strub, P. Ted

    2016-11-01

    The importance of local versus distant forcing is studied for the wind-driven intra-seasonal (30-120 day) sea level anomaly (SLA) variations along the west coast of India. Significant correlations of altimeter-derived SLA on the west coast are found with the mid-basin SLA east of Sri Lanka and SLA as far as Sumatra and the equator, with increased lags, connecting with the remote forcing from the equator in the form of reflected Rossby waves. The highest correlations between SLA on the west coast and winds are found with the winds at the southern tip of India. Coherence calculations help to identify the importance of a narrow band (40-60 day) for the interactions of winds with the intra-seasonal SLA variations. A multivariate regression model, along with the coherences within this narrower band, suggest the lags of SLA on the west coast with winds to range from 0 to 2 days with the local forcing to 11-13 days with the forcing along south east coast of India. Hovmöller diagrams illustrate the propagation of signals by estimating phase speed for Rossby waves (57 cm/s) across the Indian Ocean from Sumatra and Coastal Trapped Waves (CTWs) along the west coast of India (178 cm/s). Propagation from the south-east coast of India is not as robust as Rossby waves from Sumatra.

  1. Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status.

    PubMed

    Bachelot, Benedicte; Uriarte, María; Muscarella, Robert; Forero-Montaña, Jimena; Thompson, Jill; McGuire, Krista; Zimmerman, Jess; Swenson, Nathan G; Clark, James S

    2018-03-01

    Arbuscular mycorrhizal (AM) fungi in the soil may influence tropical tree dynamics and forest succession. The mechanisms are poorly understood, because the functional characteristics and abundances of tree species and AM fungi are likely to be codependent. We used generalized joint attribute modeling to evaluate if AM fungi are associated with three forest community metrics for a sub-tropical montane forest in Puerto Rico. The metrics chosen to reflect changes during forest succession are the abundance of seedlings of different successional status, the amount of foliar damage on seedlings of different successional status, and community-weighted mean functional trait values (adult specific leaf area [SLA], adult wood density, and seed mass). We used high-throughput DNA sequencing to identify fungal operational taxonomic units (OTUs) in the soil. Model predictions showed that seedlings of mid- and late-successional species had less leaf damage when the 12 most common AM fungi were abundant compared to when these fungi were absent. We also found that seedlings of mid-successional species were predicted to be more abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. In contrast, early-successional tree seedlings were predicted to be less abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. Finally, we showed that, among the 12 most common AM fungi, different AM fungi were correlated with functional trait characteristics of early- or late-successional species. Together, these results suggest that early-successional species might not rely as much as mid- and late-successional species on AM fungi, and AM fungi might accelerate forest succession. © 2017 by the Ecological Society of America.

  2. Corrective Feedback in SLA: Theoretical Relevance and Empirical Research

    ERIC Educational Resources Information Center

    Chen, Jin; Lin, Jianghao; Jiang, Lin

    2016-01-01

    Corrective feedback (CF) refers to the responses or treatments from teachers to a learner's nontargetlike second language (L2) production. CF has been a crucial and controversial topic in the discipline of second language acquisition (SLA). Some SLA theorists believe that CF is harmful to L2 acquisition and should be ruled out completely while…

  3. On the Nature of Interaction in SLA: A Philosophical Stream

    ERIC Educational Resources Information Center

    Maftoon, Parviz; Shakouri, Nima

    2013-01-01

    Researchers have long grappled with situating the stance of interaction in SLA, but it is only recently that interaction has begun to receive consideration from SLA quarters. Delving into the nature of interaction and the prerequisite of interaction in real world, in general, and in classroom, in particular, the authors hold that based on…

  4. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia.

    PubMed

    Wennerberg, Ann; Jimbo, Ryo; Stübinger, Stefan; Obrecht, Marcel; Dard, Michel; Berner, Simon

    2014-09-01

    Implant surface properties have long been identified as an important factor to promote osseointegration. The importance of nanostructures and hydrophilicity has recently been discussed. The aim of this study was to investigate how nanostructures and wettability influence osseointegration and to identify whether the wettability, the nanostructure or both in combination play the key role in improved osseointegration. Twenty-six adult rabbits each received two Ti grade 4 discs in each tibia. Four different types of surface modifications with different wettability and nanostructures were prepared: hydrophobic without nanostructures (SLA), with nanostructures (SLAnano); hydrophilic with two different nanostructure densities (low density: pmodSLA, high density: SLActive). All four groups were intended to have similar chemistry and microroughness. The surfaces were evaluated with contact angle measurements, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and interferometry. After 4 and 8 weeks healing time, pull-out tests were performed. SLA and SLAnano were hydrophobic, whereas SLActive and pmodSLA were super-hydrophilic. No nanostructures were present on the SLA surface, but the three other surface modifications clearly showed the presence of nanostructures, although more sparsely distributed on pmodSLA. The hydrophobic samples showed higher carbon contamination levels compared with the hydrophilic samples. After 4 weeks healing time, SLActive implants showed the highest pull-out values, with significantly higher pull-out force than SLA and SLAnano. After 8 weeks, the SLActive implants had the highest pull-out force, significantly higher than SLAnano and SLA. The strongest bone response was achieved with a combination of wettability and the presence of nanostructures (SLActive). © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Resting-state qEEG predicts rate of second language learning in adults.

    PubMed

    Prat, Chantel S; Yamasaki, Brianna L; Kluender, Reina A; Stocco, Andrea

    2016-01-01

    Understanding the neurobiological basis of individual differences in second language acquisition (SLA) is important for research on bilingualism, learning, and neural plasticity. The current study used quantitative electroencephalography (qEEG) to predict SLA in college-aged individuals. Baseline, eyes-closed resting-state qEEG was used to predict language learning rate during eight weeks of French exposure using an immersive, virtual scenario software. Individual qEEG indices predicted up to 60% of the variability in SLA, whereas behavioral indices of fluid intelligence, executive functioning, and working-memory capacity were not correlated with learning rate. Specifically, power in beta and low-gamma frequency ranges over right temporoparietal regions were strongly positively correlated with SLA. These results highlight the utility of resting-state EEG for studying the neurobiological basis of SLA in a relatively construct-free, paradigm-independent manner. Published by Elsevier Inc.

  6. Assessing soybean leaf area and leaf biomass by spectral measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tucker, C. J.; Fan, C. J.

    1979-01-01

    Red and photographic infrared spectral radiances were correlated with soybean total leaf area index, green leaf area index, chlorotic leaf area index, green leaf biomass, chlorotic leaf biomass, and total biomass. The most significant correlations were found to exist between the IR/red radiance ratio data and green leaf area index and/or green leaf biomass (r squared equals 0.85 and 0.86, respectively). These findings demonstrate that remote sensing data can supply information basic to soybean canopy growth, development, and status by nondestructive determination of the green leaf area or green leaf biomass.

  7. SLA for the 21st Century: Disciplinary Progress, Transdisciplinary Relevance, and the Bi/Multilingual Turn

    ERIC Educational Resources Information Center

    Ortega, Lourdes

    2013-01-01

    The goals of this article are to appraise second language acquisition's (SLA) disciplinary progress over the last 15 years and to reflect on transdisciplinary relevance as the field has completed 40 years of existence and moves forward into the 21st century. I first identify four trends that demonstrate vibrant disciplinary progress in SLA. I then…

  8. Analytical Review of Universal Grammar (UG) Approach on Second Language Acquisition (SLA)

    ERIC Educational Resources Information Center

    Irwandy

    2015-01-01

    The aim of this paper is to explore the analysis of Universal Grammar (UG) approach on Second Language Acquisition (SLA). This paper is significant as the sources for teacher or researcher of the second language since this elaboration is deeply focusing on the use of UG on SLA. The method used in this academic writing is inductive method of…

  9. Application of a hierarchical structure stochastic learning automation

    NASA Technical Reports Server (NTRS)

    Neville, R. G.; Chrystall, M. S.; Mars, P.

    1979-01-01

    A hierarchical structure automaton was developed using a two state stochastic learning automato (SLA) in a time shared model. Application of the hierarchical SLA to systems with multidimensional, multimodal performance criteria is described. Results of experiments performed with the hierarchical SLA using a performance index with a superimposed noise component of ? or - delta distributed uniformly over the surface are discussed.

  10. pSLA2-M of Streptomyces rochei is a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L.

    PubMed

    Yang, Yingjie; Kurokawa, Toru; Takahama, Yoshifumi; Nindita, Yosi; Mochizuki, Susumu; Arakawa, Kenji; Endo, Satoru; Kinashi, Haruyasu

    2011-01-01

    The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.

  11. The role of MPL and imiquimod adjuvants in enhancement of immune response and protection in BALB/c mice immunized with soluble Leishmania antigen (SLA) encapsulated in nanoliposome.

    PubMed

    Emami, Tara; Rezayat, Seyed Mahdi; Khamesipour, Ali; Madani, Rasool; Habibi, Gholamreza; Hojatizade, Mansure; Jaafari, Mahmoud Reza

    2018-04-01

    Adjuvants play an essential role in the induction of immunity against leishmaniasis. In this study, monophosphoryl lipid A (MPL) and imiquimod (IMQ) were used as TLR ligands adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Nanoliposomes containing soluble Leishmania antigens (SLA) and adjuvants were consisted of DSPC, DSPG and Chol prepared by using lipid film method followed by bath sonication. The size of nanoliposomes was around 95 nm and their zeta potential was negative. BALB/c mice were immunized by liposomal formulations of lip/SLA, lip/MPL/SLA, lip/IMQ/SLA, lip/MPL/IMQ/SLA, lip/SLA + lip/IMQ, lip/SLA + lip/MPL, lip/SLA + lip/MPL/IMQ and five controls of SLA, lip/MPL, lip/IMQ, lip/MPL/IMQ and buffer by subcutaneously (SC) injections, three times in 2 weeks intervals. The synergic effect of two adjuvants when they are used in one formulation showed significantly (p < .001) smaller footpad swelling and the lowest parasite burden in lymph node and foot after the challenge. IgG2a in these groups showed the higher titre compared to control groups, which is compatible with the high IFN-γ production and lowest IL-4. Taken together the results indicated that co-delivery of MPL and IMQ adjuvants and antigen in nanoliposome carrier could be an appropriate delivery system to induce cellular immunity pathway against leishmaniasis.

  12. Marginal Bone Loss Around Early-Loaded SLA and SLActive Implants: Radiological Follow-Up Evaluation Up to 6.5 Years.

    PubMed

    Şener-Yamaner, Işil Damla; Yamaner, Gökhan; Sertgöz, Atilla; Çanakçi, Cenk Fatih; Özcan, Mutlu

    2017-08-01

    The aim of this study was to compare marginal bone loss around early-loaded SLA and SLActive tissue-level implants (Straumann Dental Implants; Institut Straumann AG, Basel, Switzerland) after a mean of 81-month follow-up period. One hundred seven SLA and 68 SLActive implants were placed in 55 patients and loaded with final restoration after 8 and 3 weeks of healing time, respectively. Marginal bone loss around implants was determined radiographically at initial and after a mean observation time ranging between 20 and 81 months. The effect of location (mandible vs maxilla), smoking habit, sex, implant length and diameter, and the type of prosthesis on the marginal bone loss was evaluated. The overall cumulative survival rate was 98.2% being 99% for SLA implants and 97% for SLActive implants. After 20-month follow-up period, mean marginal bone loss values for the SLA and SLActive implants were 0.24 and 0.17 mm, respectively. After 81 months, mean marginal bone loss for the SLA and SLActive implants reached 0.71 and 0.53 mm, respectively. Marginal bone loss was affected by the length and type of implant and patients' smoking habit after a mean observation time of 20 months. However, none of the parameters had any significant effect on the marginal bone loss after a follow-up period of 81 months. With both SLA and SLActive implants, successful clinical results could be achieved up to 6.5 years of follow-up period.

  13. Second Language Writing Research and Written Corrective Feedback in SLA: Intersections and Practical Applications

    ERIC Educational Resources Information Center

    Ferris, Dana R.

    2010-01-01

    For more than a decade now, a great deal of research has been done on the topic of written corrective feedback (CF) in SLA and second language (L2) writing. Nonetheless, what those research efforts really have shown as well as the possible implications for practice remain in dispute. Although L2 writing and SLA researchers often examine similar…

  14. From Theory to Research: Contextual Predictors of "Estar + Adjective" and the Study of the SLA of Spanish Copula Choice--A Response to Woolsey

    ERIC Educational Resources Information Center

    Lafford, Barbara A.

    2008-01-01

    The use of social vs. cognitive approaches to the study of second language acquisition (SLA) has engendered considerable debate in the field. For instance, the recent "Modern Language Journal" Focus Issue (Lafford, 2007a) reviewed the ongoing debate between scholars espousing socially- and cognitively-grounded approaches to SLA research and…

  15. Can trait patterns along gradients predict plant community responses to climate change?

    PubMed

    Guittar, John; Goldberg, Deborah; Klanderud, Kari; Telford, Richard J; Vandvik, Vigdis

    2016-10-01

    Plant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space-for-time assumption by combining a spatial gradient study with whole-community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait-based responses to climate change by comparing observed community dynamics in transplanted turfs to field-parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet-ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad-scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree. © 2016 by the Ecological Society of America.

  16. The Initial Inflammatory Response to Bioactive Implants Is Characterized by NETosis

    PubMed Central

    Stoiber, Walter; Hannig, Matthias; Klappacher, Michaela; Hartl, Dominik

    2015-01-01

    Implants trigger an inflammatory response, which is important for osseointegration. Here we studied neutrophil extracellular trap (NET) release of human neutrophils in response to sandblasted large-grit acid etched (SLA) implants using fluorescent, confocal laser scanning and scanning electron microscopy. Our studies demonstrate that human neutrophils rapidly adhered to SLA surfaces, which triggered histone citrullination and NET release. Further studies showed that albumin or acetylsalicylic acid had no significant effects on the inflammatory response to SLA surfaces. In contrast to bioinert materials, which do not osseointegrate, the bioactivity of SLA surfaces is coupled with the ability to release NETs. Further investigations are necessary for clarifying the role of NETosis for osseointegration. PMID:25798949

  17. High-voltage Array Ground Test for Direct-drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; O'Neill, Mark J.

    2005-01-01

    Development is underway on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for direct drive electric propulsion. These SLA performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for "space tugs" to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLA SEP technology, discuss ground tests already completed, and present plans for future ground tests and future flight tests of SLA SEP systems.

  18. Metonymic Inferencing and Second Language Acquisition

    ERIC Educational Resources Information Center

    Barcelona, Antonio

    2010-01-01

    The article is a reflection on the various areas of cognitive linguistic research on metonymy that are of potential relevance for SLA. Three of them are particularly relevant: (1) research on metonymy-guided inferencing; (2) research on metonymy-based lexical polysemy, and (3) research on metonymy-based grammatical constructions. Of the three main…

  19. Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs.

    PubMed

    Schwarz, Frank; Sager, Martin; Kadelka, Ines; Ferrari, Daniel; Becker, Jürgen

    2010-05-01

    The aim of the present study was to compare bone regeneration in dehiscence-type defects at titanium implants with chemically modified sandblasted/acid-etched (modSLA) or dual acid-etched surfaces with a calcium phosphate nanometre particle modification (DCD/CaP). Buccal dehiscence-type defects were surgically created following implant site preparation in both the upper and the lower jaws of 12 fox hounds. Both types of implants were randomly allocated in a split-mouth design and left to heal in a submerged position for 2 and 8 weeks. Dissected blocks were processed for histomorphometrical analysis [e.g. new bone height (NBH), percentage of bone-to-implant contact (BIC), area of new bone fill (BF), and area of mineralized tissue (MT) within BF]. At 2 and 8 weeks, both groups revealed comparable mean BF (2.3+/-0.6 to 2.5+/-0.6 mm(2)versus 2.0+/-0.6 to 1.4+/-0.5 mm(2)) and MT (31.1+/-14.3-83.2+/-8.2%versus 38.9+/-15.9-84.4+/-6.3%) values. However, modSLA implants revealed significantly higher mean NBH (2.4+/-0.8 to 3.6+/-0.3 mm versus 0.9+/-0.8 to 1.8+/-1.4 mm) and BIC (53.3+/-11.3-79.5+/-6.6%versus 19.3+/-16.4-47.2+/-30.7%) values than DCD/CaP implants. ModSLA implants may have a higher potential to support osseointegration in dehiscence-type defects than DCD/CaP implants.

  20. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii).

    PubMed

    Bansal, Sheel; Harrington, Constance A; Gould, Peter J; St Clair, J Bradley

    2015-02-01

    There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought-resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space-for-time substitution, common garden experiment with 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as 'cool/moist', 'moderate', or 'warm/dry') to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought-resistance, (ii) the patterns of genetic variation are related to the native source-climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought-resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpiration(min)), water deficit (% below turgid saturation), and specific leaf area (SLA, cm(2) g(-1)) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought-resistance (i.e., lower transpiration(min), water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought-resistance across all test sites. Multiple regression analysis indicated that Douglas-fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing

    NASA Astrophysics Data System (ADS)

    Park, Hong Key; Shin, Mikyung; Kim, Bongkyun; Park, Jin Woo; Lee, Haeshin

    2018-04-01

    Herein, a new polymeric resin for stereolithography (SLA) three-dimensional printing (SLA-3DP) is reported. An ultraviolet (UV) or visible (VIS) light source is critical for SLA printing technology. UV light can be used to manufacture 3D objects in SLA-3DP, but there are significant occupational safety and health issues (particularly for eyes). These issues prevent the widespread use of SLA-3DP at home or in the office. Through the use of VIS light, the safety and health issues can largely be solved, but only non-transparent 3D objects can be manufactured, which prevents the application of 3DP to the production of various common transparent consumer products. For these reasons, we developed a VIS light-curable yet visibly transparent resin for SLA-3DP, which also retains UV curability. The key was to identify the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (DPTBP). DPTBP was originally designed as a UV photoinitiator, but we found that VIS light irradiation is sufficient to split DPTBP and generate radicals due to its slight VIS light absorption up to 420 nm. The cured resin displays high transparency and beautiful transparent colors by incorporating various dyes; additionally, its mechanical properties are superior to those of commercial resins (Arario 410) and photoinitiators (Irgacure 2959).

  2. Evaluation of the adjuvant effect of agonists of toll-like receptor 4 and 7/8 in a vaccine against leishmaniasis in BALB/c mice.

    PubMed

    Rostamian, Mosayeb; Niknam, Hamid M

    2017-11-01

    There is no effective vaccine against human leishmaniasis. Achieving successful vaccines seems to need powerful adjuvants. Separate or combined use of toll like receptor (TLR) agonists as adjuvant is a promising approach in Leishmania vaccine research. In present study, we evaluated adjuvant effect of separate or combined use of a TLR7/8 agonist, R848 and a TLR4 agonist, monophosphoryl lipid A (MPL) beside soluble Leishmania antigen (SLA) in BALB/c mice. Mice were vaccinated three times by SLA with separate or combined TLR7/8 and TLR4 agonists and were then challenged by Leishmania major. Delay type hypersensitivity, lesion development, parasite load, and cytokines (interferon gamma, and interleukin-10) response were assessed. Results showed: 1) MPL can slightly assist SLA in parasite load reduction, but it is not able to increase SLA ability in evoking DTH and cytokine responses or decreasing lesion diameter. 2) R848 does not affect the DTH response and parasite load of mice vaccinated with SLA, but it decreases/inhibits cytokine responses induced by SLA, leading to increase lesion diameter. 3) MPL neutralized inhibitory effect of R848. In overall, these data emphasize that MPL slightly assists SLA to make a more potent vaccine, but R848 is not a good adjuvant to induce T cell-dependent immune response in BALB/c mice, and therefore combination of these TLR agonists in the current formulation, is not recommended for making a more powerful adjuvant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur.

    PubMed

    Park, Jin-Woo; Kwon, Tae-Geon; Suh, Jo-Young

    2013-06-01

    It is unclear whether surface bioactive chemistry or hydrophilicity plays a more dominant role in the osseointegration of micro-structured titanium implants having the same surface topography at the micrometer and submicrometer scales. To understand their comparative effect on enhancing the early osseointegration of micro-rough-surfaced implants, this study compared the bone healing-promoting effect of surface strontium (Sr) chemistry that has been shown in numerous studies to super-hydrophilicity in the early osseointegration of moderately rough-surfaced clinical oral implants (SLA(®) implant) in rabbit cancellous bone. Hydrothermal treatment was performed to incorporate Sr ions into the surface of clinical SLA implants (SLA/Sr implant). The surface characteristics were evaluated by using field emission-scanning electron microscopy, X-ray photoelectron spectroscopy and optical profilometry. Twenty screw implants (10 control and 10 experimental) were placed in the femoral condyles of 10 New Zealand White rabbits. The early osseointegration of the SLA/Sr implant was compared with a chemically modified super-hydrophilic SLA implant (SLActive(®) implant) by histomorphometric and resonance frequency analysis after 2 weeks of implantation. The SLA/Sr and SLActive implants exhibited an identical surface topography and average R(a) values at the micron and submicron scales. The SLA/Sr implant displayed a high amount of surface Sr content (15.6 at.%). There was no significant difference in the implant stability quotient (ISQ) values between the two groups. However, histomorphometric analysis revealed a significantly higher bone-to-implant contact percentage in the SLA/Sr implants compared with the SLActive implants in rabbit cancellous bone (P < 0.01). The results indicate that the surface Sr chemistry surpasses the effect of super-hydrophilicity in promoting the early bone apposition of moderately rough Ti surface in cancellous bone. © 2012 John Wiley & Sons A/S.

  4. Identification of oral bacteria on titanium implant surfaces by 16S rDNA sequencing.

    PubMed

    de Melo, Fabiana; do Nascimento, Cássio; Souza, Diogo Onofre; de Albuquerque, Rubens F

    2017-06-01

    To characterize the profile of microbial communities colonizing titanium implants with different surface treatments after exposure to the oral environment at the genus or higher taxonomic level. Sixteen titanium disks, machined or sandblasted large-grit and acid-etched (SLA), were mounted on removable intraoral splints worn by four patients. After 24 h of intraoral exposure, biofilm samples were collected from disks and supra/subgingival teeth areas. The 16S rDNA genes from each sample were amplified, sequenced with the Miseq Illumina instrument and analyzed. A total of 29 genera and seven more inclusive taxa, representing the phyla Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, Actinobacteria and candidate division TM7 were identified in both titanium surfaces and teeth. No differences were found in relation to the operational taxonomic units (OTUs) and microbial diversity, assessed by Chao 1 and Shannon indices, when comparing SLA and machined titanium surfaces. Machined and SLA surfaces are colonized by similar numbers of prokaryotic OTUs after 24 h of exposure to the oral environment. Higher complexity of the titanium surface topography in the initial phase of biofilm maturation does not seem to significantly influence the colonizing microbiota. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    PubMed

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  6. Leaf area dynamics of conifer forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolis, H.; Oren, R.; Whitehead, D.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less

  7. Leaf-IT: An Android application for measuring leaf area.

    PubMed

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  8. Doing "Not" Being a Foreign Language Learner: English as a "Lingua Franca" in the Workplace and (Some) Implications for SLA

    ERIC Educational Resources Information Center

    Firth, Alan

    2009-01-01

    The main goal of this paper is to shift the focus on "learning" away from the traditional locus of inquiry in SLA--the L2 classroom--in order to extend the SLA empirical database, and by so doing extend and broaden our understanding of what it means to learn and use (in mutually reinforcing and enlightening ways) an additional, or second,…

  9. KSC-07pd2368

    NASA Image and Video Library

    2007-08-24

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance external tank technician maps out the cutting area of the liquid oxygen (LO2) feed line bracket where BX265 foam insulation and super lightweight ablator, or SLA, cork insulation is to be removed. The BX265 foam insulation will later be reapplied without the SLA. The tank is scheduled to fly on Space Shuttle Discovery in October 2007 on mission STS-120. Discovery's crew will add the module Harmony that will serve as a port for installing additional international laboratories. Harmony will be the first expansion of the living and working space on the complex since the Russian Pirs airlock was installed in 2001. The mission also will move the first set of solar arrays installed on the station to a permanent location on the complex and redeploy them. Photo credit: NASA/Jim Grossmann

  10. Anti-soluble liver antigen/liver-pancreas (SLA/LP) antibodies in pediatric patients with autoimmune hepatitis.

    PubMed

    Vitozzi, Susana; Djilali-Saiah, Idriss; Lapierre, Pascal; Alvarez, Fernando

    2002-12-01

    Antibodies against soluble liver antigen/liver-pancreas (SLA/LP) have been associated with severe autoimmune hepatitis (AIH) and poor outcome, but most of these reports have focused on adult patients. The aim of this study was to assess the prevalence and clinical significance of anti-SLA/LP antibodies in a pediatric population with AIH. We developed a quantitative enzyme-linked immunoassay (ELISA), a Western blot (WB) and an immunoprecipitation assay (IPA) based on recombinant cDNA from activated Jurkat cells. The specificity of these tests was validated by testing 200 serum samples from healthy subjects, and from patients with liver and non-liver diseases. Anti-SLA/LP antibodies were found in patients with type 1 and type 2 AIH. The prevalence of these antibodies in patients with type 1 AIH was: 42% when tested by ELISA, 15% by WB and 50% by IPA. In patients with type 2 AIH, the prevalence rates were 42% by ELISA, 18% by WB and 44% by IPA. The mean titer values for anti-SLA/LP antibodies was significantly higher in type 2 AIH (1:1,300 +/- 339) than in type 1 AIH (1:600 +/- 71; p < 0.0001) and closely associated with higher titers of anti-liver kidney microsome type 1 (LKM1) and anti-liver cytosol type 1 (LC1) antibodies in sera. The presence of anti-SLA/LP showed a significant female preponderance in type 1 and 2 AIH patients (p = 0.0003 and p = 0.003, respectively), and was significantly correlated with a lower age at diagnosis (p = 0.05) in type 1 AIH patients. In conclusion, anti-SLA/LP antibodies in pediatric patients are associated with both type 1 and 2 AIH.

  11. Anti-soluble liver antigen (SLA) antibodies in chronic HCV infection.

    PubMed

    Vitozzi, Susana; Lapierre, Pascal; Djilali-Saiah, Idriss; Marceau, Gabriel; Beland, Kathie; Alvarez, Fernando

    2004-05-01

    Hepatitis C infection is associated with autoimmune disorders, such as the production of autoantibodies. Anti-LKM1 and anti-LC1, immunomarkers of type 2 autoimmune hepatitis, have been previously associated with a HCV infection. Anti-Soluble-Liver-Antigen autoantibodies (SLA) are specifically associated with type 1 and type 2 autoimmune hepatitis and more closely related to patients who relapse after steroid therapy. The recent molecular cloning of the soluble liver antigen provides the opportunity to develop more specific tests for the detection of antibodies against it. The aim of this work is to characterize anti-soluble-liver autoantibodies in sera from patients chronically infected by HCV. A recombinant cDNA from activated Jurkat cells coding for the full length tRNP(Ser)Sec/SLA antigen was obtained. ELISA, Western Blot and immunoprecipitation tests were developed and used to search for linear and conformational epitopes recognized by anti-SLA antibodies in sera from patients chronically infected by HCV. Anti-soluble liver antigen antibodies were found in sera from 10.4% of HCV-infected patients. The prevalence was significantly increased to 27% when anti-LKM1 was also present. Most anti-SLA reactivity was directed against conformational epitopes on the antigen. The means titers by ELISA were lower than those obtained in type 2 AIH. The result of autoantibody isotyping showed a subclass restriction to IgG1 and also IgG4. This study shows the presence of anti-SLA antibodies in approximately 10% of HCV infected patients. The prevalence of SLA autoantibodies in HCV infected patients increases when LKM1 autoantibodies are also present. The relationship between the prevalence of this characteristic autoimmune hepatitis autoantibody and the implication of an autoimmune phenomenon in the liver injury of patients chronically infected by HCV needs further investigation.

  12. Linear System Control Using Stochastic Learning Automata

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  13. Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces

    PubMed Central

    Kim, So Yeon; Yoo, Ji-Yeon; Ohe, Joo-Young; Lee, Jung-Woo; Moon, Ji-Hoi; Kwon, Yong-Dae; Heo, Jung Sun

    2014-01-01

    This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) subjected to different titanium (Ti) surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS), and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT), and hydrophilic SLA (modSLA)) with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP) activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs. PMID:25057487

  14. Differential expression of osteo-modulatory molecules in periodontal ligament stem cells in response to modified titanium surfaces.

    PubMed

    Kim, So Yeon; Yoo, Ji-Yeon; Ohe, Joo-Young; Lee, Jung-Woo; Moon, Ji-Hoi; Kwon, Yong-Dae; Heo, Jung Sun

    2014-01-01

    This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) subjected to different titanium (Ti) surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS), and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT), and hydrophilic SLA (modSLA)) with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP) activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.

  15. A Shared Platform for Studying Second Language Acquisition

    ERIC Educational Resources Information Center

    MacWhinney, Brian

    2017-01-01

    The study of second language acquisition (SLA) can benefit from the same process of datasharing that has proven effective in areas such as first language acquisition and aphasiology. Researchers can work together to construct a shared platform that combines data from spoken and written corpora, online tutors, and Web-based experimentation. Many of…

  16. Systematising the Field of Mobile Assisted Language Learning

    ERIC Educational Resources Information Center

    Viberg, Olga; Grönlund, Åke

    2013-01-01

    This study provides a systematic review of mobile assisted language (MALL) research within the specific area of second language acquisition (SLA) during the period of 2005-2012 in terms of research approaches, theories and methods, technology, and the linguistic knowledge and skills' results. The findings show a shift from the prevailing SMS-based…

  17. Surface Modification of Direct-Current and Radio-Frequency Oxygen Plasma Treatments Enhance Cell Biocompatibility

    PubMed Central

    Wang, Rex C.-C.; Liu, Cheng; Yang, Chyun-Yu

    2017-01-01

    The sand-blasting and acid etching (SLA) method can fabricate a rough topography for mechanical fixation and long-term stability of titanium implant, but can not achieve early bone healing. This study used two kinds of plasma treatments (Direct-Current and Radio-Frequency plasma) to modify the SLA-treated surface. The modification of plasma treatments creates respective power range and different content functional OH groups. The results show that the plasma treatments do not change the micron scale topography, and plasma-treated specimens presented super hydrophilicity. The X-ray photoelectron spectroscopy (XPS)-examined result showed that the functional OH content of the RF plasma-treated group was higher than the control (SLA) and DC treatment groups. The biological responses (protein adsorption, cell attachment, cell proliferation, and differentiation) promoted after plasma treatments, and the cell responses, have correlated to the total content of amphoteric OH groups. The experimental results indicated that plasma treatments can create functional OH groups on SLA-treated specimens, and the RF plasma-treated SLA implant thus has potential for achievement of bone healing in early stage of implantation. PMID:29068417

  18. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians

    Treesearch

    James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad

    1995-01-01

    We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...

  19. Distributed Trust Management for Validating SLA Choreographies

    NASA Astrophysics Data System (ADS)

    Haq, Irfan Ul; Alnemr, Rehab; Paschke, Adrian; Schikuta, Erich; Boley, Harold; Meinel, Christoph

    For business workflow automation in a service-enriched environment such as a grid or a cloud, services scattered across heterogeneous Virtual Organizations (VOs) can be aggregated in a producer-consumer manner, building hierarchical structures of added value. In order to preserve the supply chain, the Service Level Agreements (SLAs) corresponding to the underlying choreography of services should also be incrementally aggregated. This cross-VO hierarchical SLA aggregation requires validation, for which a distributed trust system becomes a prerequisite. Elaborating our previous work on rule-based SLA validation, we propose a hybrid distributed trust model. This new model is based on Public Key Infrastructure (PKI) and reputation-based trust systems. It helps preventing SLA violations by identifying violation-prone services at service selection stage and actively contributes in breach management at the time of penalty enforcement.

  20. Corneal-Reflection Eye-Tracking Technique for the Assessment of Horizontal Sound Localization Accuracy from 6 Months of Age.

    PubMed

    Asp, Filip; Olofsson, Åke; Berninger, Erik

    2016-01-01

    The evaluation of sound localization accuracy (SLA) requires precise behavioral responses from the listener. Such responses are not always possible to elicit in infants and young children, and procedures for the assessment of SLA are time consuming. The aim of this study was to develop a fast, valid, and objective method for the assessment of SLA from 6 months of age. To this end, pupil positions toward spatially distributed continuous auditory and visual stimuli were recorded. Twelve children (29 to 157 weeks of age) who passed the universal newborn hearing screening and eight adults (18 to 40 years of age) who had pure-tone thresholds ≤20 dB HL in both ears participated in this study. Horizontal SLA was measured in a sound field with 12 loudspeaker/display (LD)-pairs placed in an audiological test room at 10 degrees intervals in the frontal horizontal plane (±55 degrees azimuth). An ongoing auditory-visual stimulus was presented at 63 dB SPL(A) and shifted to randomized loudspeakers simultaneously with pauses of the visual stimulus. The visual stimulus was automatically reintroduced at the azimuth of the sounding loudspeaker after a sound-only period of 1.6 sec. A corneal-reflection eye-tracking technique allowed the acquisition of the subjects' pupil positions relative to the LD-pairs. The perceived azimuth was defined as the median of the intersections between gaze and LD-pairs during the final 500 msec of the sound-only period. Overall SLA was quantified by an Error Index (EI), where EI = 0 corresponded to perfect match between perceived and presented azimuths, whereas EI = 1 corresponded to chance. SLA was rapidly measured in children (mean = 168 sec, n = 12) and adults (mean = 162 sec, n = 8). Visual inspection of gaze data indicated that gaze shifts occurred in sound-only periods. The medians of the perceived sound-source azimuths either coincided with the presenting sound-source azimuth or were offset by a maximum of 20 degrees in children. In contrast, adults revealed a perfect match from -55 to 55 degrees, except at 15 degrees azimuth (median = 20 degrees), with 9/12 of the quartile ranges = 0 degrees. Children showed a mean (SD) EI of 0.42 (0.17), which was significantly higher than that in adults (p < 0.0001). However, children revealed a distinct age-related EI improvement of 16 percentage points per year (r = -0.68, p = 0.015, n = 12), suggesting an ongoing maturation of SLA in the studied age range (29 to 157 weeks). The eight adults showed high SLA and high reliability as demonstrated by the low mean (SD) EI (0.054 [0.021]) and the low variability in test-retest differences (95% confidence interval = -0.020 to 0.046). Corneal-reflection eye-tracking provides an objective and fast assessment of horizontal SLA from about 6 months of age and may enable gaze to be used as an objective measure for sound localization in this age group. Infant SLA is immature and improvements are related to increasing age. Adults show high overall SLA and low intra- and intersubject variability in SLA. The technique may be used as a clinical tool for the evaluation of very early intervention in a young, preverbal population and throughout the life span.

  1. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.

    PubMed

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-09-30

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.

  2. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures

    PubMed Central

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-01-01

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables. PMID:21072126

  3. Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar

    NASA Technical Reports Server (NTRS)

    Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James

    1995-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test objectives for the STS-72 mission center on the acquisition of sample data sets for land topography and vegetation height, waveform digitizer performance, and verification of data acquisition algorithms. The operational concept of SLA is illustrated in Fig. 1 where a series of 100 m footprints stretch in a profile of Earth surface topography along the nadir track of the Space Shuttle. The location of SLA as a dual canister payload on the Hitchhiker Bridge Assembly in Bay 12 of the Space Shuttle Endeavor can also be noted in this figure. Full interpretation of the SLA range measurement data set requires a 1 m knowledge of the Orbiter trajectory and better than 0.1 deg knowledge of Orbiter pointing angle. These ancillary data sets will be acquired during the STS-72 mission with an on-board Global Positioning System (GPS) receiver, K-band range and range-rate tracking of the Orbiter through TDRSS, and use of on-board inertial measurement units and star trackers. Integration and interpretation of all these different data sets as a pathfinder investigation for accurate determination of Earth surface elevation is the overall science of the SLA investigation.

  4. SLA truck configuration library final report.

    DOT National Transportation Integrated Search

    2016-10-31

    Historically, the Texas Department of Transportation (TxDOT) State Legislative Affairs (SLA) : Section, TxDOT subject matter experts (SME) and the University of Texas Center for : Transportation Research (CTR) and University of Texas San Anto...

  5. A review on fabricating tissue scaffolds using vat photopolymerization.

    PubMed

    Chartrain, Nicholas A; Williams, Christopher B; Whittington, Abby R

    2018-05-09

    Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. [Genetic diversity based on swine leukocyte antigen complex mi-crosatellites(SLA-MS) in five pig populations].

    PubMed

    Yu, Hui; Liu, Rong-Hui; Li, Hua; Zuo, Qi-Zhen; Li, Yan; Wu, Zhen-Fang

    2012-11-01

    The genetic diversity of swine leukocyte antigen complex (SLA) was studied among Guangdong local pigs, Huanan wild boars (S.s. chirodontus) and introduced pigs, which aimed at providing a theoretical foundation for further pig anti-disease resistance breeding. Pietrain pigs, Duroc pigs, Large black-white pigs, Lantang pigs, and Huanan wild boars were genotyped by employing 18 microsatellites in swine leukocyte antigen complex (SLA-MS). The result showed that the average diversity in SLA II was higher (He=0.628, PIC=0.581) than that in SLA I (He=0.530, PIC=0.474) and in SLA III (He=0.526, PIC=0.458). The molecular diversity indices (MDI) of Huanan wild boars was the highest(0.716), followed by Lantang pigs (0.614), Large black-white pigs (0.559), Pietrain pigs (0.550) and Duroc pigs (0.507). As a whole, the genetic diversity of Huanan wild boars was the highest over Guangdong native pigs and introduced pigs. Large black-white pigs and Duroc pigs had ever happened a severe bottleneck by comparison with the Garza-Williamson index (GWI) in Huanan wild boar. From the genetic distance, one clade was that Lantang pigs were first clustered with Huanan wild boar, and then grouped together with Large black-white pigs; another clade was that Pietrain pigs were independently clustered with Duroc pigs in the NJ tree. The results would establish the foundation for pig conservation of germplasm resource, disease resistance breeding, and multiplicative strains.

  7. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    PubMed

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  8. Nonverbal Behavior and Corrective Feedback in Nine ESL University-Level Classrooms

    ERIC Educational Resources Information Center

    Wang, Weiqing; Loewen, Shawn

    2016-01-01

    Nonverbal behavior is an area of recent interest in second language acquisition (SLA). Some researchers have found that teachers' nonverbal behavior plays a role in second language (L2) learners' learning. Furthermore, corrective feedback during L2 interaction can also be facilitative of L2 development; however, little is known about how nonverbal…

  9. Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; O'Neill, Mark J.; Eskenazi, Michael

    2003-01-01

    Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions.

  10. Mapping the Snow Line Altitude for Large Glacier Samples from Multitemporal Landsat Imagery

    NASA Astrophysics Data System (ADS)

    Rastner, P.; Nicholson, L. I.; Notarnicola, C.; Prinz, R.; Sailer, R.

    2015-12-01

    The cryosphere of mountain regions is fastly changing in response to climate change. This is particularly evident in global-scale glacier retreat. Trends in snow cover, however, are more difficult to determine, as annual fluctuations can be very large. Snow is an important parameter in the energy and mass balance of glaciers and the snow line altitude (SLA) at the end of the melting period can be considered as a proxy for the equilibrium line altitude (ELA). By frequently observing the SLA from satellite, region-wide monitoring of glaciers and improved calibration and validation of transient glacier (mass balance) models is possible. In the near future, frequent mapping of the SLA will be strongly facilitated by satellite missions like Sentinel 2A/B, where the same region will be covered every 5 days with 10 m spatial resolution. For this study we have developed an automated tool to derive the SLA for large glacier samples from remote sensing data. The method is first applied in the Ötztal Alps (Austria) where reliable in-situ data of mass balance and ELA are available for several glaciers over a 30-years period. The algorithm currently works with multi-temporal Landsat imagery (1972-2015), digital glacier outlines and a high-quality national DEM. All input datasets are atmospherically and topographically pre-processed before the SLA is automatically retrieved for each glacier. The remote-sensing derived SLA is generally about 200 m lower than the ELA, however, a clear trend in the altitude of the end of summer snow line is detectable (~ 200 m), which is in agreement with the ELA trend observed in the field. After bias correction and conversion to mass balance, the variability in observed mass balance can be well reproduced from the satellite-derived SLA time series. This is promising for application of the approach in other regions.

  11. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought.

    PubMed

    Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard

    2012-06-01

    Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.

  12. 76 FR 43676 - Arbitration Panel Decision Under the Randolph-Sheppard Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... fault to Complainant or the SLA, that Complainant be assigned a better established and less demanding... Complainant to a suitable site that was a better established or less demanding route. Instead, the SLA...

  13. Interpreting operational altimetry signals in near-coastal areas using underwater autonomous vehicles and remotely sensed ocean colour data

    NASA Astrophysics Data System (ADS)

    Borrione, Ines; Oddo, Paolo; Russo, Aniello; Coelho, Emanuel

    2017-04-01

    During the LOGMEC16 (Long-Term Glider Mission for Environmental Characterization) sea trial carried out in the eastern Ligurian Sea (Northwestern Mediterranean Sea), two oceanographic gliders rated to a maximum depth of 1000m were operating continuously from 3 May to 27 June 2016. When possible, glider tracks were synchronized with the footprints of contemporaneous altimeters (i.e., Jason 2, Altika and Cryosat 2). Temperature and salinity measured by the gliders along the tracks that were co-localized with the altimeter passages, were used to calculate along-track dynamic heights. The latter were then compared with near-real time absolute sea level CMEMS-TAPAS (Copernicus Marine Environment Monitoring Service - Tailored Product for Data Assimilation) product. TAPAS provides along-track sea level anomaly (SLA) estimates together with all the terms used in the correction and the associated Mean Dynamic Topography. Where available, the CMEMS near-real time 1km resolution, Aqua-MODIS ocean colour data was also used as a tracer of the main oceanographic features of the region. Comparison between SLA derived from gliders and TAPAS along common transects, indicates that differences increase for larger sampling time lags between platforms and especially when time differences exceed 20 hrs. In fact, contemporaneous ocean color images reveal the presence of several mesoscale/sub-mesoscale structures (i.e., transient meanders and filaments), suggesting that the oceanographic variability of the region is likely the main cause for the differences observed between the glider and altimetry-based SLA. Results from this study provide additional evidence of the advantages on using a networked ocean observing system. In fact, the interpretation of in-situ observations obtained from a continuously operating sampling platform (also during ongoing experiments at sea) can be greatly improved when combined with other operational datasets, as the CMEMS SLA used here.

  14. Wheat productivity estimates using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The electro-optical leaf area meter was the most accurate of the approaches tested on harvested wheat samples, but it is very time consuming. It was decided to infer leaf area from dry weight biomass after establishing a relationship between dry weight biomass and area as measured by the leaf area meter. There is a good correlation between leaf area as measured by the meter and dry leaf biomass. There is a less consistent relationship between stem area and stem biomass.

  15. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    PubMed

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  16. Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p.

    PubMed

    Cherkasova, Vera; Maury, Luis Lopez; Bacikova, Dagmar; Pridham, Kevin; Bähler, Jürg; Maraia, Richard J

    2012-02-01

    Deletion of the sla1(+) gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1(+) have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1-like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1(+) (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1(+) regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae.

  17. Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p

    PubMed Central

    Cherkasova, Vera; Lopez Maury, Luis; Bacikova, Dagmar; Pridham, Kevin; Bähler, Jürg; Maraia, Richard J.

    2012-01-01

    Deletion of the sla1+ gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1+ have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1–like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1+ (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1+ regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae. PMID:22160596

  18. SLA-aware differentiated QoS in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Agrawal, Anuj; Vyas, Upama; Bhatia, Vimal; Prakash, Shashi

    2017-07-01

    The quality of service (QoS) offered by optical networks can be improved by accurate provisioning of service level specifications (SLSs) included in the service level agreement (SLA). A large number of users coexisting in the network require different services. Thus, a pragmatic network needs to offer a differentiated QoS to a variety of users according to the SLA contracted for different services at varying costs. In conventional wavelength division multiplexed (WDM) optical networks, service differentiation is feasible only for a limited number of users because of its fixed-grid structure. Newly introduced flex-grid based elastic optical networks (EONs) are more adaptive to traffic requirements as compared to the WDM networks because of the flexibility in their grid structure. Thus, we propose an efficient SLA provisioning algorithm with improved QoS for these flex-grid EONs empowered by optical orthogonal frequency division multiplexing (O-OFDM). The proposed algorithm, called SLA-aware differentiated QoS (SADQ), employs differentiation at the level of routing, spectrum allocation, and connection survivability. The proposed SADQ aims to accurately provision the SLA using such multilevel differentiation with an objective to improve the spectrum utilization from the network operator's perspective. SADQ is evaluated for three different CoSs under various traffic demand patterns and for different ratios of the number of requests belonging to the three considered CoSs. We propose two new SLA metrics for the improvement of functional QoS requirements, namely, security, confidentiality and survivability of high class of service (CoS) traffic. Since, to the best of our knowledge, the proposed SADQ is the first scheme in optical networks to employ exhaustive differentiation at the levels of routing, spectrum allocation, and survivability in a single algorithm, we first compare the performance of SADQ in EON and currently deployed WDM networks to assess the differentiation capability of EON and WDM networks under such differentiated service environment. The proposed SADQ is then compared with two existing benchmark routing and spectrum allocation (RSA) schemes that are also designed under EONs. Simulations indicate that the performance of SADQ is distinctly better in EON than in WDM network under differentiated QoS scenario. The comparative analysis of the proposed SADQ with the considered benchmark RSA strategies designed under EON shows the improved performance of SADQ in EON paradigm for offering differentiated services as per the SLA.

  19. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing.

    PubMed

    Dehurtevent, Marion; Robberecht, Lieven; Hornez, Jean-Christophe; Thuault, Anthony; Deveaux, Etienne; Béhin, Pascal

    2017-05-01

    The aim of this study was to compare the physical and mechanical properties of stereolithography (SLA)- manufactured alumina ceramics of different composition to those of subtractive- manufactured ceramics and to produce suitable dental crown frameworks. The physical and mechanical properties of a control and six experimental SLA ceramics prepared from slurries with small (S) and large (L) particles (0.46±0.03 and 1.56±0.04μm, respectively) and three dry matter contents (70%, 75%, 80%) were evaluated by dynamic rheometry, hydrostatic weighing, three3-point flexural strength measurements, and Weibull analyses, and by the micrometrics measurement of shrinkage ratio before and after the heat treatments. S75 was the only small particle slurry with a significantly higher viscosity than L70. The viscosity of the S80 slurry made it impossible to take rheological measurements. The viscosities of the S75 and S80 slurries caused deformations in the printed layers during SLA manufacturing and were excluded from further consideration. SLA samples with low dry matter content had significantly lower and densityflexural strengths. Only SLA samples with a large particle size and high dry matter content (L75 and L80) were similar in density and flexural strength to the subtractive- manufactured samples. The 95% confidence intervals of the Weibull modulus of the L80 ceramic were higher (no overlap fraction) than those of the L75 ceramic and were similar to the control (overlap fraction). The Weibull characteristics of L80 ceramic were higher than those of L75 ceramic and the control. SLA can be used to process suitable crown frameworks but shows results in anisotropic shrinkage. The hH High particle size and dry matter content of the L80 slurry allowed made it possible to produce a reliable ceramic by SLA manufacturing with an anisotropic shrinkage, and a density, and flexural strength similar to those of a subtractive-manufactured ceramic. SLA allowed made it possible to build up a dense 3D alumina crown framework with controlled shape. Further studies on the marginal adaptation and shrinkage model of alumina crown frameworks will be required to optimize the process. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    PubMed

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. A trait-based trade-off between growth and mortality: evidence from 15 tropical tree species using size-specific relative growth rates

    PubMed Central

    Philipson, Christopher D; Dent, Daisy H; O’Brien, Michael J; Chamagne, Juliette; Dzulkifli, Dzaeman; Nilus, Reuben; Philips, Sam; Reynolds, Glen; Saner, Philippe; Hector, Andy

    2014-01-01

    A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species-specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed-effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed-effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade-off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade-off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments. PMID:25478157

  2. Spanish as a Second Language when L1 Is Quechua: Endangered Languages and the SLA Researcher

    ERIC Educational Resources Information Center

    Kalt, Susan E.

    2012-01-01

    Spanish is one of the most widely spoken languages in the world. Quechua is the largest indigenous language family to constitute the first language (L1) of second language (L2) Spanish speakers. Despite sheer number of speakers and typologically interesting contrasts, Quechua-Spanish second language acquisition is a nearly untapped research area,…

  3. Leaf area prediction models for Tsuga canadensis in Maine

    Treesearch

    Laura S. Kenefic; R.S. Seymour

    1999-01-01

    Tsuga canadensis (L.) Carr. (eastern hemlock) is a common species throughout the Acadian forest. Studies of leaf area and growth efficiency in this forest type have been limited by the lack of equations to predict leaf area of this species. We found that sapwood area was an effective leaf area surrogate in T. canadensis, though...

  4. The Gap in Standards for Special Libraries.

    ERIC Educational Resources Information Center

    Dodd, James Beaupre

    1982-01-01

    The issue of standards for special libraries is discussed, highlighting surveys conducted concerning the diversity of special libraries and salaries of members of the Special Libraries Association (SLA). Efforts of SLA's Standards and Statistics Committee are noted. Twenty references are listed. (EJS)

  5. Interaction of gases with ablative composites. I - Ar, CO2, and N2

    NASA Technical Reports Server (NTRS)

    King, C. A.; Wightman, J. P.

    1974-01-01

    The sorption of argon, carbon dioxide, and nitrogen on two heat shield composites (SLA-561 and SLA-561V) and on the SLA components was measured over the pressure range of 0.001 to 760 torr and in the temperature range of 30 to 50 C. The sorption of the gases by both the composites and the components varied directly with pressure. The sorption of CO2 by the phenolic spheres and the silicone elastomer and of Ar by the silicone elastomer varied inversely with temperature. The mechanism involved in the gas sorption was primarily absorption.

  6. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio?

    PubMed

    Fajardo, Alex

    2016-05-01

    The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.

  7. Leishmania mexicana Gp63 cDNA Using Gene Gun Induced Higher Immunity to L. mexicana Infection Compared to Soluble Leishmania Antigen in BALB/C

    PubMed Central

    Rezvan, H; Rees, R; Ali, SA

    2011-01-01

    Background Leishmaniasis is a worldwide disease prevalent in tropical and sub tropical countries. Many attempts have been made and different strategies have been approached to develop a potent vaccine against Leishmania. DNA immunisation is a method, which is shown to be effective in Leishmania vaccination. Leishmania Soluble Antigen (SLA) has also recently been used Leishmania vaccination. Methods The immunity generated by SLA and L. mexicana gp63 cDNA was compared in groups of 6 mice, which were statistically analysed by student t- test with the P-value of 0.05. SLA was administered by two different methods; intramuscular injection and injection of dendritic cells (DCs) loaded with SLA. L. mexicana gp63 cDNA was administered by the gene gun. Results Immunisation of BALB/c mice with L. mexicana gp63 resulted in high levels of Th1-type immune response and cytotoxic T lymphocytes (CTL) activity, which were accompanied with protection induced by the immunisation against L. mexicana infection. In contrast, administration of SLA, produced a mixed Th1/Th2-type immune responses as well as a high level of CTL activity but did not protect mice from the infection. Conclusion The results indicate higher protection by DNA immunisation using L. mexicana gp63 cDNA compared to SLA, which is accompanied by a high level of Th1 immune response. However, the CTL activity does not necessarily correlate with the protection induced by the vaccine. Also, gene gun immunisation is a potential approach in Leishmania vaccination. These findings would be helpful in opening new windows in Leishmania vaccine research. PMID:22347315

  8. Comparison of removal torques between laser-etched and modified sandblasted acid-etched Ti implant surfaces in rabbit tibias

    PubMed Central

    Al Awamleh, Abdel Ghani Ibrahim

    2018-01-01

    PURPOSE The purpose of this study was to analyze the effects of two different implant surface treatments on initial bone connection by comparing the Removal Torque Values (RTQs) at 7 and 10 days after chemically modified, sandblasted, large-grit and acid-etched (modSLA), and Laser-etched (LE) Ti implant placements. MATERIALS AND METHODS Twenty modSLA and 20 LE implants were installed on the left and right tibias of 20 adult rabbits. RTQs were measured after 7 and 10 days in 10 rabbits each. Scanning electron microscope (SEM) photographs of the two implants were observed by using Quanta FEG 650 from the FEI company (Hillsboro, OR, USA). Analyses of surface elements and components were conducted using energy dispersive spectroscopy (EDS, Horiba, Kyoto, Japan). RESULTS The mean RTQs were 12.29 ± 0.830 and 12.19 ± 0.713 Ncm after 7 days (P=.928) and 16.47 ± 1.324 and 16.17 ± 1.165 Ncm after 10 days (P=.867) for LE and modSLA, respectively, indicating no significant inter-group differences. Pore sizes in the LE were 40 µm and consisted of numerous small pores, whereas pore sizes in the modSLA were 5 µm. In the EDS analysis, Ti, O, and C were the only three elements found in the LE surfaces. Na, Ca, Cl, and K were also observed in modSLA, in addition to Ti, O, and C. CONCLUSION The implants showed no significant difference in biomechanical bond strength to bone in early-stage osseointegration. LE implant can be considered an excellent surface treatment method in addition to the modSLA implant and can be applied to the early loading of the prosthesis clinically. PMID:29503717

  9. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route.

    PubMed

    Ravindran, Rajesh; Maji, Mithun; Ali, Nahid

    2012-01-01

    The development of a long-term protective subunit vaccine against visceral leishmaniasis depends on antigens and adjuvants that can induce an appropriate immune response. The immunization of leishmanial antigens alone shows limited efficacy in the absence of an appropriate adjuvant. Earlier we demonstrated sustained protection against Leishmania donovani with leishmanial antigens entrapped in cationic liposomes through an intraperitoneal route. However, this route is not applicable for human administration. Herein, we therefore evaluated the immune response and protection induced by liposomal soluble leishmanial antigen (SLA) formulated with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) through a subcutaneous route. Subcutaneous immunization of BALB/c mice with SLA entrapped in liposomes or with MPL-TDM elicited partial protection against experimental visceral leishmaniasis. In contrast, liposomal SLA adjuvanted with MPL-TDM induced significantly higher levels of protection in liver and spleen in BALB/c mice challenged 10 days post-vaccination. Protection conferred by this formulation was sustained up to 12 weeks of immunization, and infection was controlled for at least 4 months of the challenge, similar to liposomal SLA immunization administered intraperitoneally. An analysis of cellular immune responses of liposomal SLA + MPL-TDM immunized mice demonstrated the induction of IFN-γ and IgG2a antibody production not only 10 days or 12 weeks post-vaccination but also 4 months after the challenge infection and a down regulation of IL-4 production after infection. Moreover, long-term immunity elicited by this formulation was associated with IFN-γ production also by CD8⁺ T cells. Taken together, our results suggest that liposomal SLA + MPL-TDM represent a good vaccine formulation for the induction of durable protection against L. donovani through a human administrable route.

  10. Characterization and phylogenetic analysis of the swine leukocyte antigen 3 gene from Korean native pigs.

    PubMed

    Chung, H Y; Choi, Y C; Park, H N

    2015-05-18

    We investigated the phylogenetic relationships between pig breeds, compared the genetic similarity between humans and pigs, and provided basic genetic information on Korean native pigs (KNPs), using genetic variants of the swine leukocyte antigen 3 (SLA-3) gene. Primers were based on sequences from GenBank (accession Nos. AF464010 and AF464009). Polymerase chain reaction analysis amplified approximately 1727 bp of segments, which contained 1086 bp of coding regions and 641 bp of the 3'- and 5'-untranslated regions. Bacterial artificial chromosome clones of miniature pigs were used for sequencing the SLA-3 genomic region, which was 3114 bp in total length, including the coding (1086 bp) and non-coding (2028 bp) regions. Sequence analysis detected 53 single nucleotide polymorphisms (SNPs), based on a minor allele frequency greater than 0.01, which is low compared with other pig breeds, and the results suggest that there is low genetic variability in KNPs. Comparative analysis revealed that humans possess approximately three times more genetic variation than do pigs. Approximately 71% of SNPs in exons 2 and 3 were detected in KNPs, and exon 5 in humans is a highly polymorphic region. Newly identified sequences of SLA-3 using KNPs were submitted to GenBank (accession No. DQ992512-18). Cluster analysis revealed that KNPs were grouped according to three major alleles: SLA-3*0502 (DQ992518), SLA-3*0302 (DQ992513 and DQ992516), and SLA-3*0303 (DQ992512, DQ992514, DQ992515, and DQ992517). Alignments revealed that humans have a relatively close genetic relationship with pigs and chimpanzees. The information provided by this study may be useful in KNP management.

  11. Using the conservative nature of fresh leaf surface density to measure foliar area

    NASA Astrophysics Data System (ADS)

    Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita

    2014-10-01

    For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.

  12. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  13. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  14. Interaction and Instructed Second Language Acquisition

    ERIC Educational Resources Information Center

    Loewen, Shawn; Sato, Masatoshi

    2018-01-01

    Interaction is an indispensable component in second language acquisition (SLA). This review surveys the instructed SLA research, both classroom and laboratory-based, that has been conducted primarily within the interactionist approach, beginning with the core constructs of interaction, namely input, negotiation for meaning, and output. The review…

  15. A green strategy for federated and heterogeneous clouds with communicating workloads.

    PubMed

    Mateo, Jordi; Vilaplana, Jordi; Plà, Lluis M; Lérida, Josep Ll; Solsona, Francesc

    2014-01-01

    Providers of cloud environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. However, at the same time, they must guarantee an SLA (service-level agreement) to the users. The SLA is usually associated with a certain level of QoS (quality of service). As response time is perhaps the most widely used QoS metric, it was also the one chosen in this work. This paper presents a green strategy (GS) model for heterogeneous cloud systems. We provide a solution for heterogeneous job-communicating tasks and heterogeneous VMs that make up the nodes of the cloud. In addition to guaranteeing the SLA, the main goal is to optimize energy savings. The solution results in an equation that must be solved by a solver with nonlinear capabilities. The results obtained from modelling the policies to be executed by a solver demonstrate the applicability of our proposal for saving energy and guaranteeing the SLA.

  16. A Green Strategy for Federated and Heterogeneous Clouds with Communicating Workloads

    PubMed Central

    Plà, Lluis M.; Lérida, Josep Ll.

    2014-01-01

    Providers of cloud environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. However, at the same time, they must guarantee an SLA (service-level agreement) to the users. The SLA is usually associated with a certain level of QoS (quality of service). As response time is perhaps the most widely used QoS metric, it was also the one chosen in this work. This paper presents a green strategy (GS) model for heterogeneous cloud systems. We provide a solution for heterogeneous job-communicating tasks and heterogeneous VMs that make up the nodes of the cloud. In addition to guaranteeing the SLA, the main goal is to optimize energy savings. The solution results in an equation that must be solved by a solver with nonlinear capabilities. The results obtained from modelling the policies to be executed by a solver demonstrate the applicability of our proposal for saving energy and guaranteeing the SLA. PMID:25478589

  17. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns.

    PubMed

    Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa

    2017-12-31

    Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and temporal scales. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Seasonal and interannual variability of chlorophyll-a and associated physical synchronous variability in the western tropical Pacific

    NASA Astrophysics Data System (ADS)

    Hou, Xueyan; Dong, Qing; Xue, Cunjin; Wu, Shuchao

    2016-06-01

    Based on long-term satellite-derived ocean data sets and methods of empirical orthogonal function and singular value decomposition, we investigated the spatiotemporal variability of the chlorophyll-a concentration (CHL) on seasonal and interannual timescales in the western tropical Pacific associated with physical ocean variables of sea surface temperature (SST), sea level anomaly (SLA) and sea surface wind (SSW), and the El Niño Southern Oscillation (ENSO) index. The bio-physical synchronous variation on interannual timescale was also confirmed in terms of the scales of variability and oscillation periods in the time-frequency space using the methods of Fourier transform, Morlet wavelet transform, and wavelet coherence analysis. On a seasonal timescale, the first two modes of the monthly mean CHL fields described the consecutive spatiotemporal variation in CHL in the western tropical Pacific. CHL reached the maximum during late winter-early spring and minimum during summer-early autumn with the exception of the northeast of Papua New Guinea and the Solomon Islands. The CHL bloom in boreal winter-spring was closely associated with cold SST, high sea level along the North Equatorial Countercurrent meanders, and strong wind. On an interannual timescale, the variability of CHL exhibited a close correlation with SST, SLA, SSW, and ENSO. During El Niño, CHL increased in the oligotrophic western basin of the warm pool associated with cold SST, low SLA, and strong westerly winds but decreased in the mesotrophic eastern basin of the warm pool in association with warm SST, high SLA, and weak easterly trade winds. There may exist time-lag for the bio-physical covariation, i.e., CHL and SST varied simultaneously within 1 month, and CHL variations led SLA by approximately 0-3 months but lagged wind speed by about 1 month. In the time-frequency domain, the interannual variability in CHL and physical ocean variables had high common power, indicating that the variability scales and oscillation periods of CHL were significantly related to these of SST, SLA, and ENSO index. The significant anti-phase relationships were also shown between CHL and SST, CHL and SLA, and CHL and multivariate ENSO index through the wavelet coherence analysis.

  19. Effects of Titanium Surface Microtopography and Simvastatin on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells in Estrogen-Deprived Cell Culture.

    PubMed

    Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin

    This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin synergistically promoted osteoblastic differentiation of hBMSCs in ED condition and might be useful to promote osteointegration in osteoporotic bone.

  20. Ratio of Cut Surface Area to Leaf Sample Volume for Water Potential Measurements by Thermocouple Psychrometers

    PubMed Central

    Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.

    1984-01-01

    Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578

  1. SLA Developmental Stages and Teachers' Assessment of Written French: Exploring Direkt Profil as a Diagnostic Assessment Tool

    ERIC Educational Resources Information Center

    Granfeldt, Jonas; Ågren, Malin

    2014-01-01

    One core area of research in Second Language Acquisition is the identification and definition of developmental stages in different L2s. For L2 French, Bartning and Schlyter (2004) presented a model of six morphosyntactic stages of development in the shape of grammatical profiles. The model formed the basis for the computer program Direkt Profil…

  2. Leaf mass per area, not total leaf area, drives differences in above-ground biomass distribution among woody plant functional types.

    PubMed

    Duursma, Remko A; Falster, Daniel S

    2016-10-01

    Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Thesauri Used by SLA Documentation Division Members.

    ERIC Educational Resources Information Center

    Pope, Nolan F.; And Others

    This bibliography lists 115 citations for thesauri most frequently used by members of the Special Libraries Association (SLA) Documentation Division. Entries are arranged alphabetically by author/corporate author, followed by title, imprint and/or alternate source of availability if known, date, pagination, and subject index terms assigned…

  4. Extended, Embodied Cognition and Second Language Acquisition

    ERIC Educational Resources Information Center

    Atkinson, Dwight

    2010-01-01

    A "cognitivist" approach to cognition has traditionally dominated second language acquisition (SLA) studies. In this article, I examine two alternative approaches--"extended cognition" and "embodied cognition"--for how they might help us conceptualize SLA. More specifically, I present: (i) summaries of extended and embodied cognition, followed by…

  5. Second Language Acquisition and Applied Linguistics.

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2000-01-01

    Discusses the second language acquisition (SLA) process and the differential success of second language learners. Examines the fundamental challenges that this characterization faces, and highlights the contributions SLA is capable of in the coming decade. Offers topics for a training and development of curriculum for future applied linguists from…

  6. Introducing Positive Psychology to SLA

    ERIC Educational Resources Information Center

    MacIntyre, Peter D.; Mercer, Sarah

    2014-01-01

    Positive psychology is a rapidly expanding subfield in psychology that has important implications for the field of second language acquisition (SLA). This paper introduces positive psychology to the study of language by describing its key tenets. The potential contributions of positive psychology are contextualized with reference to prior work,…

  7. 77 FR 1062 - Arbitration Panel Decision Under the Randolph-Sheppard Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... hearing officer issued a written recommendation to the SLA rejecting Complainant's complaint about the appointment and selection process for Vending Facility 195. The hearing officer's recommendation was later... argument that the Committee's recommendations to the SLA were inconsistent with the Randolph-Sheppard Act...

  8. Needle-Age Related Variability in Nitrogen, Mobile Carbohydrates, and δ13C within Pinus koraiensis Tree Crowns

    PubMed Central

    Yan, Cai-Feng; Han, Shi-Jie; Zhou, Yu-Mei; Wang, Cun-Guo; Dai, Guan-Hua; Xiao, Wen-Fa; Li, Mai-He

    2012-01-01

    For both ecologists and physiologists, foliar physioecology as a function of spatially and temporally variable environmental factors such as sunlight exposure within a tree crown is important for understanding whole tree physiology and for predicting ecosystem carbon balance and productivity. Hence, we studied concentrations of nitrogen (N), non-structural carbohydrates (NSC = soluble sugars + starch), and δ13C in different-aged needles within Pinus koraiensis tree crowns, to understand the needle age- and crown position-related physiology, in order to test the hypothesis that concentrations of N, NSC, and δ13C are needle-age and crown position dependent (more light, more photosynthesis affecting N, NSC, and δ13C), and to develop an accurate sampling strategy. The present study indicated that the 1-yr-old needles had significantly higher concentration levels of mobile carbohydrates (both on a mass and an area basis) and Narea (on an area basis), as well as NSC-N ratios, but significantly lower levels of Nmass (on a mass basis) concentration and specific leaf area (SLA), compared to the current-year needles. Azimuthal (south-facing vs. north-facing crown side) effects were found to be significant on starch [both on a mass (STmass) and an area basis (STarea)], δ13C values, and Narea, with higher levels in needles on the S-facing crown side than the N-facing crown side. Needle Nmass concentrations significantly decreased but needle STmass, STarea, and δ13C values significantly increased with increasing vertical crown levels. Our results suggest that the sun-exposed crown position related to photosynthetic activity and water availability affects starch accumulation and carbon isotope discrimination. Needle age associated with physiological activity plays an important role in determining carbon and nitrogen physiology. The present study indicates that across-scale sampling needs to carefully select tissue samples with equal age from a comparable crown position. PMID:22493732

  9. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment.

    PubMed

    Zhang, E W; Wang, Y B; Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C

    2011-04-01

    The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability.

  10. Use of plant trait data in the ISBA-A-gs model

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe

    2014-05-01

    ISBA-A-gs is a CO2-responsive LSM (Calvet et al., 1998; Gibelin et al., 2006), able to simulate the diurnal cycle of carbon and water vapour fluxes, together with LAI and soil moisture evolution. The various components of ISBA-A-gs are based to a large extent on meta-analyses of trait data. (1) Photosynthesis: ISBA-A-gs uses the model of Goudriaan et al. (1985) modified by Jacobs (1994) and Jacobs et al. (1996). The main parameter is mesophyll conductance (gm). Leaf-level photosynthesis observations were used together with canopy level flux observations to derive gm together with other key parameters of the Jacobs model, including in drought conditions. This permitted implementing detailed representations of the soil moisture stress. Two different types of drought responses are distinguished for both herbaceous vegetation (Calvet, 2000) and forests (Calvet et al., 2004), depending on the evolution of the water use efficiency (WUE) under moderate stress: WUE increases in the early soil water stress stages in the case of the drought-avoiding response, whereas WUE decreases or remains stable in the case of the drought-tolerant response. (2) Plant growth: the leaf biomass is provided by a growth model (Calvet et al., 1998; Calvet and Soussana, 2001) driven by photosynthesis. In contrast to other land surface models, no GDD-based phenology model is used in ISBA-A-gs, as the vegetation growth and senescence are entirely driven by photosynthesis. The leaf biomass is supplied with the carbon assimilated by photosynthesis, and decreased by a turnover and a respiration term. Turnover is increased by a deficit in photosynthesis. The leaf onset is triggered by sufficient photosynthesis levels and a minimum LAI value is prescribed. The maximum annual value of LAI is prognostic, i.e. it can be predicted by the model. LAI is derived from leaf biomass using SLA values. The latter are derived from the leaf nitrogen concentration using plasticity parameters. (3) CO2 effect: the photosynthesis model is able to represent the antitranspirant effect of CO2. The plant growth model represents the fertilization effect of CO2. However, the nitrogen dilution triggered by the CO2 increase has to be represented. A pragmatic solution consists in decreasing the leaf nitrogen concentration parameter in response to CO2, using existing meta-analyses of this parameter (Calvet et al., 2008). The TRY database could be used to improve the current parameterizations, together with the mapping of the model parameters.

  11. Students: The Overlooked, Untapped Resource within Nearly Every Chapter.

    ERIC Educational Resources Information Center

    Wright, Larry L.

    1992-01-01

    Reports results of a survey of Special Libraries Association (SLA) chapter presidents that explored activities at the chapter level for library science students. Findings are reported on accredited library schools in the chapters, SLA student groups, student attendance at chapter meetings, direct involvement with students, marketing activities,…

  12. SLA Annual Salary Survey and Workplace Study, 2008

    ERIC Educational Resources Information Center

    Latham, John, Comp.

    2008-01-01

    The Special Libraries' Association (SLA) has conducted salary surveys since 1967, triennially from 1967 to 1990, biennially from 1990 to 1996 and annually from 1997 forward. The objectives of the annual Salary Survey are to: (1) Collect and analyze systematic, accurate information about the salaries of special librarians and information…

  13. SLA Annual Salary Survey and Workplace Study, 2007

    ERIC Educational Resources Information Center

    Latham, John, Comp.

    2007-01-01

    The Special Libraries' Association (SLA) has conducted salary surveys since 1967, triennially from 1967 to 1990, biennially from 1990 to 1996 and annually from 1997 forward. The objectives of the annual Salary Survey are to: (1) Collect and analyze systematic, accurate information about the salaries of special librarians and information…

  14. Consciousness in SLA: A Modular Perspective

    ERIC Educational Resources Information Center

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  15. Forty Years Later: Updating the Fossilization Hypothesis

    ERIC Educational Resources Information Center

    Han, ZhaoHong

    2013-01-01

    A founding concept in second language acquisition (SLA) research, fossilization has been fundamental to understanding second language (L2) development. The Fossilization Hypothesis, introduced in Selinker's seminal text (1972), has thus been one of the most influential theories, guiding a significant bulk of SLA research for four decades; 2012…

  16. Cognitive and Sociocultural Perspectives: Two Parallel SLA Worlds?

    ERIC Educational Resources Information Center

    Zuengler, Jane; Miller, Elizabeth R.

    2006-01-01

    Looking back at the past 15 years in the field of second language acquisition (SLA), the authors select and discuss several important developments. One is the impact of various sociocultural perspectives such as Vygotskian sociocultural theory, language socialization, learning as changing participation in situated practices, Bakhtin and the…

  17. Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.; Fu, R.; Costa, M. H.; Ganguly, S.; Saatchi, S. S.; Nemani, R. R.; Myneni, R.

    2011-12-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This has been variously interpreted as seasonal changes in leaf area resulting from net leaf flushing in the dry season and net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) only, from exchanging older leaves with newer ones, with total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based studies of higher leaf area in the dry season relative to the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. A more convincing explanation for the observed increase in NIR reflectance during the dry season and decrease during the wet season is one that invokes changes in both leaf area and leaf optical properties. Such an argument is consistent with known phonological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, reconciles the various seemingly divergent views.

  18. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission

    NASA Astrophysics Data System (ADS)

    Samanta, Arindam; Knyazikhin, Yuri; Xu, Liang; Dickinson, Robert E.; Fu, Rong; Costa, Marcos H.; Saatchi, Sassan S.; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2012-03-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This increase has been variously interpreted as seasonal change in leaf area resulting from net leaf flushing in the dry season or net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) resulting from the exchange of older leaves for newer ones, but with the total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based reports of higher leaf area in the dry season than the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. More plausibly, the increase in NIR reflectance during the dry season and the decrease during the wet season would result from changes in both leaf area and leaf optical properties. Such change would be consistent with known phenological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, would reconcile the various seemingly divergent views.

  19. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape

    Treesearch

    Paulo C. Olivas; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan; Joseph J. O' Brien; Harlyn Ordonez

    2013-01-01

    Many functional properties of forests depend on the leaf area; however, measuring leaf area is not trivial in tall evergreen vegetation. As a result, leaf area is generally estimated indirectly by light absorption methods. These indirect methods are widely used, but have never been calibrated against direct measurements in tropical rain forests, either at point or...

  20. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Treesearch

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  1. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    USDA-ARS?s Scientific Manuscript database

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  2. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean.

    PubMed

    Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu

    2018-03-29

    Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.

  3. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.

    2011-02-01

    The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.

  4. Prediction of leaf area in individual leaves of cherrybark oak seedlings (Quercus pagoda Raf.)

    Treesearch

    Yanfei Guo; Brian Lockhart; John Hodges

    1995-01-01

    The prediction of leaf area for cherrybark oak (Quercus pagoda Raf.) seedlings is important for studying the physiology of the species. Linear and polynomial models involving leaf length, width, fresh weight, dry weight, and internodal length were tested independently and collectively to predict leaf area. Twenty-nine cherrybark oak seedlings were...

  5. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  6. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    NASA Astrophysics Data System (ADS)

    Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.

    The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  7. New CALL-SLA Research Interfaces for the 21st Century: Towards Equitable Multilingualism

    ERIC Educational Resources Information Center

    Ortega, Lourdes

    2017-01-01

    The majority of the world is multilingual, but inequitably multilingual, and much of the world is also technologized, but inequitably so. Thus, researchers in the fields of computer-assisted language learning (CALL) and second language acquisition (SLA) would profit from considering multilingualism and social justice when envisioning new CALL-SLA…

  8. Psycholinguistic Techniques and Resources in Second Language Acquisition Research

    ERIC Educational Resources Information Center

    Roberts, Leah

    2012-01-01

    In this article, a survey of current psycholinguistic techniques relevant to second language acquisition (SLA) research is presented. I summarize many of the available methods and discuss their use with particular reference to two critical questions in current SLA research: (1) What does a learner's current knowledge of the second language (L2)…

  9. Exploring the Impact of Structured Learning Assistance (SLA) on College Writing

    ERIC Educational Resources Information Center

    Giraldo-García, Regina J.; Magiste, Edward J.

    2018-01-01

    This study determined that the addition of Structured Learning Assistance (SLA) attendance increased passage rates (from 66.5% to 82%) of first year students in English 101 courses. The model predicts first year students' performance in college writing, controlling for variables such as American College Test scores, and gender. A…

  10. Positive Psychology in SLA: An Agenda for Learner and Teacher Wellbeing

    ERIC Educational Resources Information Center

    Mercer, Sarah

    2017-01-01

    This article begins with an outline of the developments in Positive Psychology (PP) generally and specifically within SLA focusing on theoretical, empirical and practical developments. It moves on to consider PP's potential contribution to language teaching focusing on how it can help promote emotional, social and psychological wellbeing for…

  11. Expanding the Role of Connectionism in SLA Theory

    ERIC Educational Resources Information Center

    Language Learning, 2013

    2013-01-01

    In this article, I explore how connectionism might expand its role in second language acquisition (SLA) theory by showing how some symbolic models of bilingual and second language lexical memory can be reduced to a biologically realistic (i.e., neurally plausible) connectionist model. This integration or hybridization of the two models follows the…

  12. Beyond Repair: Conversation Analysis as an Approach to SLA

    ERIC Educational Resources Information Center

    Kasper, Gabriele

    2006-01-01

    As one of several approaches to SLA as social practice, Conversation Analysis (CA) has the capacity to examine in detail how opportunities for L2 learning arise in different interactional activities. Its particular strength, and one that distinguishes it from other social practice approaches, is its consistent focus on the orientations and…

  13. Language Learning in Mindbodyworld: A Sociocognitive Approach to Second Language Acquisition

    ERIC Educational Resources Information Center

    Atkinson, Dwight

    2014-01-01

    Based on recent research in cognitive science, interaction, and second language acquisition (SLA), I describe a sociocognitive approach to SLA. This approach adopts a "non-cognitivist" view of cognition: Instead of an isolated computational process in which input is extracted from the environment and used to build elaborate internal…

  14. Toward a Learning Behavior Tracking Methodology for CA-for-SLA

    ERIC Educational Resources Information Center

    Markee, Numa

    2008-01-01

    This paper is principally about methodology. It first summarizes five issues in the emerging research agenda of conversation analysis-for-second language acquisition (CA-for-SLA), and develops empirically based analyses of classroom talk that occurs over several days and months to illustrate how a longitudinal learning behavior tracking (LBT)…

  15. The Interpretability Hypothesis: Evidence from Wh-Interrogatives in Second Language Acquisition

    ERIC Educational Resources Information Center

    Tsimpli, Ianthi Maria; Dimitrakopoulou, Maria

    2007-01-01

    The second language acquisition (SLA) literature reports numerous studies of proficient second language (L2) speakers who diverge significantly from native speakers despite the evidence offered by the L2 input. Recent SLA theories have attempted to account for native speaker/non-native speaker (NS/NNS) divergence by arguing for the dissociation…

  16. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2015-04-01

    Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.

  17. Distribution, abundance and traditional management of Agave potatorum in the Tehuacán Valley, Mexico: bases for sustainable use of non-timber forest products.

    PubMed

    Delgado-Lemus, América; Casas, Alejandro; Téllez, Oswaldo

    2014-09-03

    Agave species have been used for thousands of years in the Tehuacán Valley, but the current mescal production has great impact on populations of the most used species. Harvesting of A. potatorum takes place before sexual reproduction and the over-extraction put local populations at high risk. In the community of San Luis Atolotilán (SLA), mescal has been produced for one century but the growing mescal trade is leading to intensified agave extraction. Our study evaluated distribution and abundance of A. potatorum, extraction rates, management practices and economic importance for SLA households. The unbalanced relation between availability and extraction rates would be an indicator of risk requiring sustainable management strategies. Our case study aspires contributing to analyze general patterns for sustainable use for this and other forest products highly extracted. We used bioclimatic modeling to project a map of potential distribution of the species, and ecological sampling to estimate the total availability of harvestable agaves within the territory of SLA. We used participant observation, surveys and semi-structured interviews with producers and households of SLA to document agave uses, technological and socio-economic aspects of mescal production, and to estimate extraction rates of agaves. Mescal production, medicine and fodder are the most important uses of A. potatorum. Its distribution area is nearly 608 ha where annually occur on average 7,296 harvestable plants, nearly 54 to 87% of them being harvested. Mescal production currently is a non-sustainable activity, requiring great changes in patterns of extraction and management adopting sustainable criteria. Local people started management planning to ensure the future availability of agaves, and the ecological information of this study has been helpful in constructing their decisions. Technical support for improving local experiences for managing populations' recovering is a priority. Interaction of scholars and local people for solving this problem is already taking place and strengthening this process may be determinant for successful results. Strategies for protecting particular populations, temporal substitution of agave species for mescal production, implementation of restoration and organization for fear commerce are needed for improving sustainable use of A. potatorum.

  18. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation.

    PubMed

    Zheng, Guoying; Guan, Binbin; Hu, Penghui; Qi, Xingying; Wang, Pingting; Kong, Yu; Liu, Zihao; Gao, Ping; Li, Rui; Zhang, Xu; Wu, Xudong; Sui, Lei

    2018-04-27

    To investigate the role of hierarchical micro/nanoscale topography of direct metal laser sintering (DMLS) titanium surfaces in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the possible underlying epigenetic mechanism. Three groups of titanium specimens were prepared, including DMLS group, sandblasted, large-grit, acid-etched (SLA) group and smooth titanium (Ti) group. BMSCs were cultured on discs followed by surface characterization. Cell adhesion and proliferation were examined by SEM and CCK-8 assay, while osteogenic-related gene expression was detected by real-time RT-PCR. Immunofluorescence, western blotting and in vivo study were also performed to evaluate the potential for osteogenic induction of materials. In addition, to investigate the underlying epigenetic mechanisms, immunofluorescence and western blotting were performed to evaluate the global level of H3K4me3 during osteogenesis. The H3K4me3 and H3K27me3 levels at the promoter area of the osteogenic gene Runx2 were detected by ChIP assay. The DMLS surface exhibits greater protein adsorption ability and shows better cell adhesion performance than SLA and Ti surfaces. Moreover, both in vitro and in vivo studies demonstrated that the DMLS surface is more favourable for the osteogenic differentiation of BMSCs than SLA and Ti surfaces. Accordingly, osteogenesis-associated gene expression in BMSCs is efficiently induced by a rapid H3K27 demethylation and increase in H3K4me3 levels at gene promoters upon osteogenic differentiation on DMLS titanium surface. Topographical cues of DMLS surfaces have greater potential for the induction of osteogenic differentiation of BMSCs than SLA and Ti surfaces both in vitro and in vivo. A potential epigenetic mechanism is that the appropriate topography allows rapid H3K27 demethylation and an increased H3K4me3 level at the promoter region of osteogenesis-associated genes during the osteogenic differentiation of BMSCs. © 2018 John Wiley & Sons Ltd.

  19. Historical mapping reveals causes and temporal patterns of woodland contraction in Austur-Skaftafellssýsla from the 12th century AD to present

    NASA Astrophysics Data System (ADS)

    Sigurmundsson, Friðþór S.; Gísladóttir, Guðrún; Erlendsson, Egill; Þorbjarnarson, Höskuldur

    2016-04-01

    Land-cover changes in Iceland over the last millennium encompass birch (Betula pubescens) woodland depletion and extensive soil erosion. Yet few studies have focused on spatial change of birch woodland coverage in Iceland over centuries and why and how the woodland depletion took place. The main objectives of this study are: (1) to map the woodland distribution today in Austur-Skaftafellssýsla (3041 km2) in southern Iceland; (2) to map woodland holdings over a period of 900 years from eleventh. AD 1100 to the early 20th century; (3) explain the relative impacts of socio-economic and natural forces on woodland cover over this period. We use a combined approach of historical reconstruction from diverse written archives, GIS techniques and field work. The woodland in Austur-Skaftafellssýsla now covers 73.2 km2 (2.5% of the study area). The woodland holdings, 44 in total, are regularly listed in the church inventories from 1179 to 1570 and are owned by the church. In the first complete register for the district in 1641 the woodland holdings were 73, owned and used by 58 estates, and distributed across Austur-Skaftafellssýsla. All the main patches of woodland remain today, with the exception of four minor woodlands which were exhausted near the end of the 19th century. The woodland was used for firewood and charcoal making as well as grazing during the study period but, crucially, in most cases only one estate had authority over each holding, none were commons. The main driving force behind the development of woodlands was socio-economic, rather than natural, where the form of ownership was fundamental for the fate of the woodland. Harsh climate and volcanism were not directly responsible for woodland depletion. The latter half of the 19th century was the period of greatest woodland loss. This period coincides with considerable expansion in livestock numbers, especially sheep and associated all year around grazing, at a time when the Little Ice Age culminated in Iceland. Keywords: Deforestation. Soil erosion. Land ownership. GIS. Historical mapping.

  20. Enhanced osteogenic differentiation of rat bone marrow mesenchymal stem cells on titanium substrates by inhibiting Notch3.

    PubMed

    Wang, Huiming; Jiang, Zhiwei; Zhang, Jing; Xie, Zhijian; Wang, Ying; Yang, Guoli

    2017-08-01

    The role of the Notch pathway has already been identified as a crucial regulator of bone development. However, the Notch signaling pathway has gone largely unexplored during osseointegration. This study aims to investigate the role of Notch signaling on osteogenic differentiation of rat derived bone marrow mesenchymal stem cells (BMSCs) on sandblasted, large-grit, acid-etched (SLA) treated Ti disks. The involved target genes in Notch pathways were identified by in vitro microarray and bioinformatics analyses with or without osteogenic induction. Adhesion, proliferation, and osteogenic related assay were subsequently conducted with target gene shRNA treatment. We found that 11 genes in the Notch signaling pathway were differentially expressed after osteogenic induction on SLA-treated Ti disks, which included up-regulated genes (Notch2, Dll1, Dll3, Ncstn, Ncor2, and Hes5) and down-regulated genes (Notch3, Lfng, Mfng, Jag2 and Maml2). With Notch3 shRNA treatment, the adhesion and proliferation of BMSCs on SLA-treated Ti disks were inhibited. Moreover, the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), calcium deposition, BMP2 and Runx2 increased significantly compared with that observed in control groups, suggesting that the function of Notch3 was inhibitory in the osteogenic differentiation of BMSCs on SLA-treated titanium. Inhibition Notch3 can enhance osteogenic differentiation of BMSCs on SLA-treated Ti disks, which potentially provides a gene target for improving osseointegration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Response to antiseptic agents of periodontal pathogens in in vitro biofilms on titanium and zirconium surfaces.

    PubMed

    Sánchez, M C; Fernández, E; Llama-Palacios, A; Figuero, E; Herrera, D; Sanz, M

    2017-04-01

    The aim of this study was to develop in vitro biofilms on SLA titanium (Ti-SLA) and zirconium oxide (ZrO 2 ) surfaces and to evaluate the effect of antiseptic agents on the number of putative periodontal pathogenic species. An in vitro biofilm model was developed on sterile discs of Ti-SLA and ZrO 2 . Three antiseptic agents [chlorhexidine and cetyl-pyridinium-chloride (CHX/CPC), essential oils (EEOOs) and cetyl-peridinium-chloride (CPC)] were applied to 72-h biofilms, immersing discs during 1min in the antiseptic solution, either with or without mechanical disruption. Viable bacteria [colony forming units (CFU/mL)] were measured by quantitative polymerase chain reaction (qPCR) combined with propidium monoazide. A generalized lineal model was constructed to determine the effect of the agents on the viable bacterial counts of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum on each surface. The exposure to each antiseptic solution resulted in a statistically significant reductions in the number of viable target species included in the in vitro multi-species biofilm, on both Ti-SLA and ZrO 2 (p<0.001) which was of up to 2 orders for A. actinomycetemcomitans, for P. gingivalis 2 orders on Ti-SLA and up to 3 orders on ZrO 2, and, for F. nucleatum up to 4 orders. No significant differences were found in counts of the tested bacteria between in vitro biofilms formed on both Ti-SLA and ZrO 2 , after topically exposure to the antimicrobial agents whether the application was purely chemical or combined with mechanical disruption. A. actinomycetemcomitans, P. gingivalis and F. nucleatum responded similarly to their exposure to antiseptics when grown in multispecies biofilms on titanium and zirconium surfaces, in spite of the described structural differences between these bacterial communities. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Spatial distribution of SPAD value and determination of the suitable leaf for N diagnosis in cucumber

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua

    2018-01-01

    To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.

  3. Correlations of leaf area with length and width measurements of leaves of black oak, white oak, and sugar maple

    Treesearch

    Philip M. Wargo

    1978-01-01

    Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...

  4. Phenological Versus Meteorological Controls on Land-atmosphere Water and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Puma, Michael J.; Koster, Randal D.; Cook, Benjamin I.

    2013-01-01

    Phenological dynamics and their related processes strongly constrain land-atmosphere interactions, but their relative importance vis-à-vis meteorological forcing within general circulation models (GCMs) is still uncertain. Using an off-line land surface model, we evaluate leaf area and meteorological controls on gross primary productivity, evapotranspiration, transpiration, and runoff at four North American sites, representing different vegetation types and background climates. Our results demonstrate that compared to meteorological controls, variation in leaf area has a dominant control on gross primary productivity, a comparable but smaller influence on transpiration, a weak influence on total evapotranspiration, and a negligible impact on runoff. Climate regime and characteristic variations in leaf area have important modulating effects on these relative controls, which vary depending on the fluxes and timescales of interest. We find that leaf area in energylimited evaporative regimes tends to exhibit greater control on annual gross primary productivity than in moisture-limited regimes, except when vegetation exhibits little interannual variation in leaf area. For transpiration, leaf area control is somewhat less in energylimited regimes and greater in moisture-limited regimes for maximum pentad and annual fluxes. These modulating effects of climate and leaf area were less clear for other fluxes and at other timescales. Our findings are relevant to land-atmosphere coupling in GCMs, especially considering that leaf area variations are a fundamental element of land use and land cover change simulations.

  5. Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests.

    PubMed

    Hagiwara, Yusuke; Matsuoka, Shunsuke; Hobara, Satoru; Mori, Akira S; Hirose, Dai; Osono, Takashi

    2015-10-01

    Fungal decomposition of lignin leads to the whitening, or bleaching, of leaf litter, especially in temperate and tropical forests, but less is known about such bleaching in forests of cooler regions, such as boreal and subalpine forests. The purposes of the present study were to examine the extent of bleached area on the surface of leaf litter and its variation with environmental conditions in subboreal and subalpine forests in Japan and to examine the microfungi associated with the bleaching of leaf litter by isolating fungi from the bleached portions of the litter. Bleached area accounted for 21.7%-32.7% and 2.0%-10.0% of total leaf area of Quercus crispula and Betula ermanii, respectively, in subboreal forests, and for 6.3% and 18.6% of total leaf area of B. ermanii and Picea jezoensis var. hondoensis, respectively, in a subalpine forest. In subboreal forests, elevation, C/N ratio and pH of the FH layer, and slope aspect were selected as predictor variables for the bleached leaf area. Leaf mass per area and lignin content were consistently lower in the bleached area than in the nonbleached area of the same leaves, indicating that the selective decomposition of acid unhydrolyzable residue (recalcitrant compounds such as lignin, tannins, and cutins) enhanced the mass loss of leaf tissues in the bleached portions. Isolates of a total of 11 fungal species (6 species of Ascomycota and 5 of Basidiomycota) exhibited leaf-litter-bleaching activity under pure culture conditions. Two fungal species (Coccomyces sp. and Mycena sp.) occurred in both subboreal and subalpine forests, which were separated from each other by approximately 1100 km.

  6. Using Small Drone (UAS) Imagery to Bridge the Gap Between Field- and Satellite-Based Measurements of Vegetation Structure and Change

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Estes, L. D.; Gago, X.; Debats, S. R.; Caylor, K. K.; Manfreda, S.; Oudemans, P.; Ciraolo, G.; Maltese, A.; Nadal, M.; Estrany, J.

    2016-12-01

    Leaf area is an important ecosystem variable that relates to vegetation biomass, productivity, water and nutrient use in natural and agricultural systems globally. Since the 1980s, optical satellite image-based estimates of leaf area based on indices such as Normalized Difference Vegetation Index (NDVI) have greatly improved understanding of vegetation structure, function, and responses to disturbance at landscape (10^3 km2) to continental (10^6 km2) spatial scales. However, at landscape scales, satellites have failed to capture many leaf area patterns indicative of vegetation succession, crop types, stress and other conditions important for ecological processes. Small drones (UAS - unmanned aerial systems) offer new means for assessing leaf area and vegetation structure at higher spatial resolutions (<1 m) and land cover features such as substrate exposure that may affect estimates of vegetation structure in satellite data. Yet it is unclear how differences in spatial and spectral resolution between UAS and satellite data affect their relationships to each other, and to common field measurements of leaf area (e.g. LiCOR photosensors) and land cover. Constraining these relationships is important for leveraging UAS data to improve scaling of field data on leaf area and biomass to satellite data from Landsat, Sentinel-2, and increasing numbers of commercial sensors. Here, we quantify relationships among field, UAS and satellite estimates of vegetation leaf area and biomass in three case study landscapes spanning semi-arid Mediterranean (Matera, Southern Italy and Mallorca, Spain) and North American temperate ecosystems (New Jersey, USA). We assess how land cover and sensor spectral characteristics affect UAS and satellite-derived NDVI, leaf-area and biomass estimates. Then, we assess the fidelity of UAS, WorldView-2, and Landsat leaf-area and biomass estimates to field-measured landscape changes and variability, including vegetation recovery from fire (Mallorca), and leaf-area and biomass variability due to orchard type and agro-ecosystem management (Matera, New Jersey). Finally, we highlight promising ways forward for improving field data collection and the use of UAS observations to monitor vegetation leaf-area and biomass change at landscape scales in natural and agricultural systems.

  7. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    PubMed

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  8. Polish Listening SPAN: A New Tool for Measuring Verbal Working Memory

    ERIC Educational Resources Information Center

    Zychowicz, Katarzyna; Biedron, Adriana; Pawlak, Miroslaw

    2017-01-01

    Individual differences in second language acquisition (SLA) encompass differences in working memory capacity, which is believed to be one of the most crucial factors influencing language learning. However, in Poland research on the role of working memory in SLA is scarce due to a lack of proper Polish instruments for measuring this construct. The…

  9. Professional Competencies for the Digital Age: What Library Schools Are Doing to Prepare Special Librarians

    ERIC Educational Resources Information Center

    Varlejs, Jana

    2003-01-01

    What library/information science education offerings are relevant to preparing graduates for careers in the special library sector? The strengths and weaknesses of education for special librarianship; the match between SLA's competencies statement and what is being taught in LIS master's degree programs; and the role of SLA in continuing education…

  10. The Role of Technology in SLA Research

    ERIC Educational Resources Information Center

    Chun, Dorothy M.

    2016-01-01

    In this review article for the 20th Anniversary Issue, I look back at research from the last two decades on the role of computer technology in understanding and facilitating second language acquisition (SLA) and forward to what future research might investigate. To be discussed are both how technology has been used to conduct research on SLA…

  11. Learning without Awareness Revisited: Extending Williams (2005)

    ERIC Educational Resources Information Center

    Hama, Mika; Leow, Ronald P.

    2010-01-01

    The role of awareness or consciousness in learning has been a relatively contentious issue in non-SLA fields (e.g., cognitive psychology). With the publications of Williams (2004, 2005), a similar debate appears to be brewing in the field of SLA. Contrary to Leow (2000), who reported that unawareness did not appear to play an important role in…

  12. SLA 2002: Putting Knowledge to Work. Papers Presented at the Special Libraries Association Conference (Los Angeles, California, June 9-12, 2002).

    ERIC Educational Resources Information Center

    Special Libraries Association, Washington, DC.

    This document contains the following papers from the 2002 Special Libraries Association Conference: (1) "Competencies for the 21st Century Information Professional: Translating the SLA Competencies into Business Competencies" (Sue Henczel); (2) "Compromises along the Way: Balancing Speed to Market with Sustainability While…

  13. SLA: A Time for New Initiatives-- CI Division Formed, Fundraising Goal Set, Certification Coming

    ERIC Educational Resources Information Center

    DiMattia, Susan; Blumenstein, Lynn

    2004-01-01

    Several initiatives were announced at the Special Libraries Association (d.b.a. SLA) conference, June 4-9, at the Gaylord Opryland Hotel in Nashville. A petition drive resulted in formation of a Competitive Intelligence (CI) Division from the former CI Section of the Leadership and Management Division. The board encouraged the member-driven…

  14. Deconstructing the "I" and "SLA" in ISLA: One Curricular Approach

    ERIC Educational Resources Information Center

    Leow, Ronald P.; Cerezo, Luis

    2016-01-01

    Instructed second language acquisition (ISLA) has been referenced in the larger field of the SLA literature for over two and a half decades. Currently, there are several theoretical underpinnings accounting for processes assumed to play a role in ISLA and quite an impressive number of studies have empirically addressed some aspect(s) of ISLA.…

  15. The Relationship between SLA Research and Language Pedagogy: Teachers' Perspectives

    ERIC Educational Resources Information Center

    Nassaji, Hossein

    2012-01-01

    There is currently a substantial body of research on second language (L2) learning and this body of knowledge is constantly growing. There are also many attempts in most teacher education programs around the world to inform practicing and prospective L2 teachers about second language acquisition (SLA) research and its findings. However, an…

  16. Review Article: Recent Publications on Research Methods in Second Language Acquisition

    ERIC Educational Resources Information Center

    Ionin, Tania

    2013-01-01

    The central goal of the field of second language acquisition (SLA) is to describe and explain how second language learners acquire the target language. In order to achieve this goal, SLA researchers work with second language data, which can take a variety of forms, including (but not limited to) such commonly used methods as naturalistic…

  17. Quantitative Research Methods, Study Quality, and Outcomes: The Case of Interaction Research

    ERIC Educational Resources Information Center

    Plonsky, Luke; Gass, Susan

    2011-01-01

    This article constitutes the first empirical assessment of methodological quality in second language acquisition (SLA). We surveyed a corpus of 174 studies (N = 7,951) within the tradition of research on second-language interaction, one of the longest and most influential traditions of inquiry in SLA. Each report was coded for methodological…

  18. A Database Design and Development Case: Smile Land Academy

    ERIC Educational Resources Information Center

    Harris, Ranida; Harris, Ken; Eplion, David

    2013-01-01

    This case describes the situation of Smile Land Academy (SLA), a real-world based childcare center. SLA has grown from a very small company to a fairly large-sized organization (30 employees with 150 children). Unfortunately, its system for record-keeping, summarization of data, and reporting has not kept pace. The hard copies and spreadsheet…

  19. The Effectiveness of Computer-Mediated Communication on SLA: A Meta-Analysis and Research Synthesis

    ERIC Educational Resources Information Center

    Lin, Huifen

    2012-01-01

    Over the past two decades, a large body of research has been conducted on the effectiveness of computer-mediated communication (CMC) employed as either standalone or instructional tools in SLA classrooms. Findings from this large body of work, however, are not conclusive, making it important to identify factors that would inform its successful…

  20. Phrase Frequency, Proficiency and Grammaticality Interact in Non-Native Processing: Implications for Theories of SLA

    ERIC Educational Resources Information Center

    Shantz, Kailen

    2017-01-01

    This study reports on a self-paced reading experiment in which native and non-native speakers of English read sentences designed to evaluate the predictions of usage-based and rule-based approaches to second language acquisition (SLA). Critical stimuli were four-word sequences embedded into sentences in which phrase frequency and grammaticality…

  1. Leaf mass area, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama

    DOE Data Explorer

    Ely, Kim [Brookhaven National Lab; Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean

    2017-01-01

    Leaf mass per unit area measured on a monthly basis from Feb to April 2016 at SLZ and PNM. Data from BCI only available for March. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, leaf spectra, gas exchange and leaf chemistry.

  2. Simplification of a light-based model for estimating final internode length in greenhouse cucumber canopies.

    PubMed

    Kahlen, Katrin; Stützel, Hartmut

    2011-10-01

    Light quantity and quality affect internode lengths in cucumber (Cucumis sativus), whereby leaf area and the optical properties of the leaves mainly control light quality within a cucumber plant community. This modelling study aimed at providing a simple, non-destructive method to predict final internode lengths (FILs) using light quantity and leaf area data. Several simplifications of a light quantity and quality sensitive model for estimating FILs in cucumber have been tested. The direct simplifications substitute the term for the red : far-red (R : FR) ratios, by a term for (a) the leaf area index (LAI, m(2) m(-2)) or (b) partial LAI, the cumulative leaf area per m(2) ground, where leaf area per m(2) ground is accumulated from the top of each plant until a number, n, of leaves per plant is reached. The indirect simplifications estimate the input R : FR ratio based on partial leaf area and plant density. In all models, simulated FILs were in line with the measured FILs over various canopy architectures and light conditions, but the prediction quality varied. The indirect simplification based on leaf area of ten leaves revealed the best fit with measured data. Its prediction quality was even higher than of the original model. This study showed that for vertically trained cucumber plants, leaf area data can substitute local light quality data for estimating FIL data. In unstressed canopies, leaf area over the upper ten ranks seems to represent the feedback of the growing architecture on internode elongation with respect to light quality. This highlights the role of this domain of leaves as the primary source for the specific R : FR signal controlling the final length of an internode and could therefore guide future research on up-scaling local processes to the crop level.

  3. The Role of Teachers' Future Self Guides in Creating L2 Development Opportunities in Teacher-Led Classroom Discourse: Reclaiming the Relevance of Language Teacher Cognition

    ERIC Educational Resources Information Center

    Kubanyiova, Magdalena

    2015-01-01

    Understanding the relationship between teachers' use of language in teacher-led discourse (TLD; Toth, 2008) and opportunities for L2 development is a well-established area of SLA research. This study examines one teacher's role in creating such opportunities in TLD in her EFL classes in a state secondary school by examining the inner resources…

  4. Clinical application of stereolithographic surgical guide with a handpiece guidance apparatus: a case report.

    PubMed

    Ozan, Oguz; Seker, Emre; Kurtulmus-Yilmaz, Sevcan; Ersoy, Ahmet Ersan

    2012-10-01

    The success of implant-supported restorations depends on the treatment planning and the transfer of planning through the surgical field. Recently, new computer-aided design and manufacturing (CAD/CAM) techniques, such as stereolithographic (SLA) rapid prototyping, have been developed to fabricate surgical guides to improve the precision of implant placement. The objective of the present case is to introduce a recently developed SLA surgical guide system into the rehabilitation of a 62-year-old male patient with mandibular edentulism. After obtaining a cone-beam computerized tomography (CBCT) scan of the mandible with a radiographic template, the images were transferred into a 3-dimensional (3D) image-based software for implant planning. The StentCad Beyond SLA surgical guide system, which is a combination of a currently used surgical template with pilot hollows and a surgical handpiece guidance apparatus, was designed to transfer a preoperatively defined implant position onto the surgical site without any drill-surgical guide contact. For the fabrication of this system, a surgical handpiece was scanned by a laser optical scanner and a mucosa-supported surgical guide was designed according to the patient's 3D model, which was attained from the CBCT images. Four dental implants were inserted through the SLA surgical guide system by a torque-controlled surgical handpiece to the interforaminal region via a flapless surgical procedure. Implants were assessed 3 months after surgery, and an implant-retained mandibular overdenture was fabricated. The present case emphasizes that CAD/CAM SLA surgical guides, along with CBCT images and scanning data, may help clinicians plan and place dental implants.

  5. Microstructured Titanium Regulates Interleukin Production by Osteoblasts, an Effect Modulated by Exogenous BMP-2

    PubMed Central

    Hyzy, Sharon; Olivares-Navarrete, Rene; Hutton, Daphne L.; Tan, Christian; Boyan, Barbara D.; Schwartz, Zvi

    2013-01-01

    Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra=0.2μm), sandblasted/acid-etched (SLA, Ra=3.2μm), or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blocking Smad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol), or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration. PMID:23123301

  6. Climate influences the leaf area/sapwood area ratio in Scots pine.

    PubMed

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  7. A Meta-Synthesis of Empirical Research on the Effectiveness of Computer-Mediated Communication (CMC) in SLA

    ERIC Educational Resources Information Center

    Lin, Huifen

    2015-01-01

    This meta-analysis reports the results of a systematic synthesis of primary studies on the effectiveness of computer-mediated communication (CMC) in second language acquisition (SLA) for the period 2000-2012. By extracting information on 21 features from each primary study, this meta-analysis intends to summarize the CMC research literature for…

  8. A Measure of Proficiency or Short-Term Memory? Validation of an Elicited Imitation Test for SLA Research

    ERIC Educational Resources Information Center

    Kim, Youjin; Tracy-Ventura, Nicole; Jung, Yeonjoo

    2016-01-01

    Elicited imitation requires listeners to listen and repeat sentences as accurately as possible. In second language acquisition (SLA) research it has been used for a variety of purposes. Recently, versions of the same elicited imitation test (EIT) have been created in 6 languages with the purpose of measuring second language proficiency (Ortega…

  9. Modularity, Working Memory, and Second Language Acquisition: A Research Program

    ERIC Educational Resources Information Center

    Truscott, John

    2017-01-01

    Considerable reason exists to view the mind, and language within it, as modular, and this view has an important place in research and theory in second language acquisition (SLA) and beyond. But it has had very little impact on the study of working memory and its role in SLA. This article considers the need for modular study of working memory,…

  10. Utility of Krashen's Five Hypotheses in the Saudi Context of Foreign Language Acquisition/Learning

    ERIC Educational Resources Information Center

    Gulzar, Malik Ajmal; Gulnaz, Fahmeeda; Ijaz, Attiya

    2014-01-01

    In the last twenty years, the paradigm that has dominated the discipline of language teaching is the SLA theory and Krashen's five hypotheses which are still proving flexible to accommodate earlier reforms. This paper reviews second language acquisition (SLA) theory to establish an understanding of its role in the EFL/ESL classrooms. Other areas…

  11. Experimental Designs in Sentence Processing Research: A Methodological Review and User's Guide

    ERIC Educational Resources Information Center

    Keating, Gregory D.; Jegerski, Jill

    2015-01-01

    Since the publication of Clahsen and Felser's (2006) keynote article on grammatical processing in language learners, the online study of sentence comprehension in adult second language (L2) learners has quickly grown into a vibrant and prolific subfield of SLA. As online methods begin to establish a foothold in SLA research, it is important…

  12. Dimensions of L2 Performance and Proficiency: Complexity, Accuracy and Fluency in SLA. Language Learning & Language Teaching. Volume 32

    ERIC Educational Resources Information Center

    Housen, Alex, Ed.; Kuiken, Folkert, Ed.; Vedder, Ineke, Ed.

    2012-01-01

    Research into complexity, accuracy and fluency (CAF) as basic dimensions of second language performance, proficiency and development has received increased attention in SLA. However, the larger picture in this field of research is often obscured by the breadth of scope, multiple objectives and lack of clarity as to how complexity, accuracy and…

  13. Is the Oceanography of the New Zealand Subantarctic Region Responding to the Tropics?

    NASA Astrophysics Data System (ADS)

    Forcen-Vazquez, A. N.

    2016-02-01

    The Campbell Plateau, south of New Zealand plays an important role in New Zealand's regional climate and its oceanography may have a significant impact on fluctuations in fish stocks and marine mammal populations. It is located between the Subtropical and Subantarctic Fronts and exhibits marked variability over long time scales. It has been previously assumed, because of its location, that the Campbell Plateau oceanography is driven by Subantarctic and polar processes. Recent analysis, presented here, suggests this in not the case, and instead forcing comes from the tropics and subtropics. This is supported by positive correlations of Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) with the Southern Oscillation Index (SOI) with SOI leading changes on the Campbell Plateau by two months for SLA and seven months for SST. Here we will present evidence of the similarity between the Campbell Plateau and the Tasman Sea SLA trends which suggests a closer relationship with the subtropical region. Satellite collected SLA data and SST from the last two decades are investigated to understand trends and long-term variability over the Campbell Plateau and its relationship with the surrounding open ocean, and other potential remote drivers of variability.

  14. Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2.

    PubMed

    Sitkiewicz, Izabela; Nagiec, Michal J; Sumby, Paul; Butler, Stephanie D; Cywes-Bentley, Colette; Musser, James M

    2006-10-24

    The molecular basis of pathogen clone emergence is relatively poorly understood. Acquisition of a bacteriophage encoding a previously unknown secreted phospholipase A(2) (designated SlaA) has been implicated in the rapid emergence in the mid-1980s of a new hypervirulent clone of serotype M3 group A Streptococcus. Although several lines of circumstantial evidence suggest that SlaA is a virulence factor, this issue has not been addressed experimentally. We found that an isogenic DeltaslaA mutant strain was significantly impaired in ability to adhere to and kill human epithelial cells compared with the wild-type parental strain. The mutant strain was less virulent for mice than the wild-type strain, and immunization with purified SlaA significantly protected mice from invasive disease. Importantly, the mutant strain was significantly attenuated for colonization in a monkey model of pharyngitis. We conclude that transductional acquisition of the ability of a GAS strain to produce SlaA enhanced the spread and virulence of the serotype M3 precursor strain. Hence, these studies identified a crucial molecular event underlying the evolution, rapid emergence, and widespread dissemination of unusually severe human infections caused by a distinct bacterial clone.

  15. Applications of Mesenchymal Stem Cells in Sinus Lift Augmentation as a Dental Implant Technology.

    PubMed

    Parnia, Feridoun; Yazdani, Javad; Maleki Dizaj, Solmaz

    2018-01-01

    The potential application of stem cell biology in human dentistry is a new and emerging field of research. The objective of the current review was to study the efficiency of mesenchymal stem cells (MSCs) in sinus lift augmentation (SLA). A literature review was performed in PubMed Central using MeSH keywords such as sinus lift, MSCs, dental implants, and augmentation. The searches involved full-text papers written in English, published in the past 10 years (2007-2017). The review included in vitro and in vivo studies on the use of MSCs in SLA. Electronic searching provided 45 titles, and among them, 8 papers were chosen as suitable based on the inclusion requirements of this review. The reviewed studies have revealed the potential of MSCs in SLA. According to these papers, stem cell therapy combined with different biomaterials may considerably improve bone regeneration in previous steps of dental implantation and may veritably lead to efficient clinical usages in the recent future. However, the identification of an ideal source of stem cells as well as long-term studies is vital to assess the success rate of this technology. Further clinical trials are also needed to approve the potential of MSCs in SLA.

  16. Can a minimalist model of wind forced baroclinic Rossby waves produce reasonable results?

    NASA Astrophysics Data System (ADS)

    Watanabe, Wandrey B.; Polito, Paulo S.; da Silveira, Ilson C. A.

    2016-04-01

    The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.

  17. Leaf area and tree increment dynamics of even-aged and multiaged lodgepole pine stands in Montana

    Treesearch

    Cassandra L. Kollenberg; Kevin L. O' Hara

    1999-01-01

    Age structure and distribution of leaf area index (LAI) of even and multiaged lodgepole pine (Pinus contorta var. latifolia Engelm.) stands were examined on three study areas in western and central Montana. Projected leaf area was determined based on a relationship with sapwood cross-sectional area at breast height. Stand structure and LAI varied considerably between...

  18. The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1

    PubMed Central

    Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George

    2002-01-01

    Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354

  19. The Sla2p/HIP1/HIP1R family: similar structure, similar function in endocytosis?

    PubMed

    Gottfried, Irit; Ehrlich, Marcelo; Ashery, Uri

    2010-02-01

    HIP1 (huntingtin interacting protein 1) has two close relatives: HIP1R (HIP1-related) and yeast Sla2p. All three members of the family have a conserved domain structure, suggesting a common function. Over the past decade, a number of studies have characterized these proteins using a combination of biochemical, imaging, structural and genetic techniques. These studies provide valuable information on binding partners, structure and dynamics of HIP1/HIP1R/Sla2p. In general, all suggest a role in CME (clathrin-mediated endocytosis) for the three proteins, though some differences have emerged. In this mini-review we summarize the current views on the roles of these proteins, while emphasizing the unique attributes of each family member.

  20. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees.

    PubMed

    Meinzer, Frederick C; Campanello, Paula I; Domec, Jean-Christophe; Genoveva Gatti, M; Goldstein, Guillermo; Villalobos-Vega, Randol; Woodruff, David R

    2008-11-01

    This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (A(L):A(S)) and wood density (rho(w)). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETR(max)) per unit leaf area declined sharply with increasing A(L):A(S), as did the ratio of ETR(max) to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing rho(w). At the branch scale, A(L):A(S) and total leaf N content per unit sapwood area increased with rho(w), resulting in a 30% increase in ETR(max) per unit sapwood area with a doubling of rho(w). These compensatory adjustments in A(L):A(S), N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing rho(w) on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in rho(w).

  1. Seasonal Dynamics in Leaf Area Index in Intensively Managed Loblolly Pine

    Treesearch

    Timothy B. Harrington; Jason A. Gatch; Bruce E. Borders

    2002-01-01

    Leaf area index (LAI; leaf area per ground area) was measured monthly or bimonthly for two years (March 1999 to February 2001) with the LAI-2000 in intensively managed plantations of loblolly pine (Pinus taeda L.) at Eatonton and Waycross GA. Since establishment of the three age classes at each site, the stands have received combinations of complete...

  2. Structural adjustments in resprouting trees drive differences in post-fire transpiration.

    PubMed

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

    2014-02-01

    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes in forests capable of resprouting, which is frequently done on the basis of the leaf area index.

  3. Costs of measuring leaf area index of corn

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Hollinger, S. E.

    1984-01-01

    The magnitude of plant-to-plant variability of leaf area of corn plants selected from uniform plots was examined and four representative methods for measuring leaf area index (LAI) were evaluated. The number of plants required and the relative costs for each sampling method were calculated to detect 10, 20, and 50% differences in LAI using 0.05 and 0.01 tests of significance and a 90% probability of success (beta = 0.1). The natural variability of leaf area per corn plant was nearly 10%. Additional variability or experimental error may be introduced by the measurement technique employed and by nonuniformity within the plot. Direct measurement of leaf area with an electronic area meter had the lowest CV, required that the fewest plants be sampled, but required approximately the same amount of time as the leaf area/weight ratio method to detect comparable differences. Indirect methods based on measurements of length and width of leaves required more plants but less total time than the direct method. Unless the coefficients for converting length and width to area are verified frequently, the indirect methods may be biased. When true differences in LAI among treatments exceed 50% of mean, all four methods are equal. The method of choice depends on the resources available, the differences to be detected, and what additional information, such as leaf weight or stalk weight, is also desired.

  4. Formulaic Sequence(FS) Cannot Be an Umbrella Term in SLA: Focusing on Psycholinguistic FSs and Their Identifcation

    ERIC Educational Resources Information Center

    Myles, Florence; Cordier, Caroline

    2017-01-01

    The term "formulaic sequence" (FS) is used with a multiplicity of meanings in the SLA literature, some overlapping but others not, and researchers are not always clear in defining precisely what they are investigating, or in limiting the implicational domain of their findings to the type of formulaicity they focus on. The first part of…

  5. The Roles of Attention and (Un)awareness in SLA: Conceptual Replication of N. C. Ellis & Sagarra (2010a) and Leung & Williams (2012)

    ERIC Educational Resources Information Center

    Leow, Ronald P.

    2015-01-01

    There is no doubt that attention and (un)awareness in second/foreign language (L2 learning) are two constructs that have permeated, explicitly or implicitly, second language acquisition (SLA) studies since their inception. Indeed, we have witnessed several empirical studies attempting to probe more deeply into the roles of these two constructs in…

  6. Service Level Agreements in Service-Oriented Architecture Environments

    DTIC Science & Technology

    2008-09-01

    the WS-Agreement [ Seidel 2007]. Indeed, core concepts of the WSLA were brought into the WS-Agreement, which also contains ideas from the Service...A Categorization Scheme for SLA Metrics. http://ibis.in.tum.de/staff/paschke/docs/MKWI2006_SLA_Paschke.pdf (2006). [ Seidel 2007] Seidel , Jan...addr-metadata-20070731/(2007). [Wohlstadter 2004] Wohlstadter, Eric; Tai, Stefan ; Mikalsen, Thomas; Rouvellou, Isabelle; & Devanbu, Premkumar

  7. Cohort profile of the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register: current status and recent enhancement of an Electronic Mental Health Record-derived data resource.

    PubMed

    Perera, Gayan; Broadbent, Matthew; Callard, Felicity; Chang, Chin-Kuo; Downs, Johnny; Dutta, Rina; Fernandes, Andrea; Hayes, Richard D; Henderson, Max; Jackson, Richard; Jewell, Amelia; Kadra, Giouliana; Little, Ryan; Pritchard, Megan; Shetty, Hitesh; Tulloch, Alex; Stewart, Robert

    2016-03-01

    The South London and Maudsley National Health Service (NHS) Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register and its Clinical Record Interactive Search (CRIS) application were developed in 2008, generating a research repository of real-time, anonymised, structured and open-text data derived from the electronic health record system used by SLaM, a large mental healthcare provider in southeast London. In this paper, we update this register's descriptive data, and describe the substantial expansion and extension of the data resource since its original development. Descriptive data were generated from the SLaM BRC Case Register on 31 December 2014. Currently, there are over 250,000 patient records accessed through CRIS. Since 2008, the most significant developments in the SLaM BRC Case Register have been the introduction of natural language processing to extract structured data from open-text fields, linkages to external sources of data, and the addition of a parallel relational database (Structured Query Language) output. Natural language processing applications to date have brought in new and hitherto inaccessible data on cognitive function, education, social care receipt, smoking, diagnostic statements and pharmacotherapy. In addition, through external data linkages, large volumes of supplementary information have been accessed on mortality, hospital attendances and cancer registrations. Coupled with robust data security and governance structures, electronic health records provide potentially transformative information on mental disorders and outcomes in routine clinical care. The SLaM BRC Case Register continues to grow as a database, with approximately 20,000 new cases added each year, in addition to extension of follow-up for existing cases. Data linkages and natural language processing present important opportunities to enhance this type of research resource further, achieving both volume and depth of data. However, research projects still need to be carefully tailored, so that they take into account the nature and quality of the source information. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Efficacy of standard (SLA) and modified sandblasted and acid-etched (SLActive) dental implants in promoting immediate and/or early occlusal loading protocols: a systematic review of prospective studies.

    PubMed

    Chambrone, Leandro; Shibli, Jamil Awad; Mercúrio, Carlos Eduardo; Cardoso, Bruna; Preshaw, Philip M

    2015-04-01

    To assess the survival percentage, clinical and radiographic outcomes of sandblasted and acid-etched (SLA) dental implants and its modified surface (SLActive) in protocols involving immediate and early occlusal loading. MEDLINE, EMBASE and the Cochrane Oral Health Group's Trials Register CENTRAL were searched in duplicate up to, and including, June 2013 to include randomised controlled trials (RCTs) and prospective observational studies of at least 6-month duration published in all languages. Studies limited to patients treated with SLA and/or SLActive implants involving a treatment protocol describing immediate and early loading of these implants were eligible for inclusion. Data on clinical and/or radiographic outcomes following implant placement were considered for inclusion. Of the 447 potentially eligible publications identified by the search strategy, seven RCTs comprising a total of 853 implants (8% titanium plasma-sprayed, 41.5% SLA and 50.5% SLActive) and 12 prospective observational studies including 1394 SLA and 145 SLActive implants were included in this review. According to the Cochrane Collaboration's tool for assessing risk of bias, one of the studies was considered to be at a low risk of bias, whereas the remaining studies were considered to be at an unclear risk. Regarding the observational studies, all of them presented a medium methodological quality based on the Modified Newcastle-Ottawa scale. There were no significant differences reported in the studies in relation to implant loss or clinical parameters between the immediate/early loading and delayed loading protocols. Overall, 95% of SLA and 97% of SLActive implants still survive at the end of follow-up. Despite of the positive findings achieved by the included studies, few RCTs were available for analysis for SLActive implants. Study heterogeneity, scarcity of data and the lack of pooled estimates represent a limitation between studies' comparisons and should be considered when interpreting the present findings. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration.

    PubMed

    McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A

    2010-04-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. Published by Elsevier Ltd.

  10. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN

    PubMed Central

    Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica

    2016-01-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234

  11. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    PubMed

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Does initial spacing influence crown and hydraulic architecture of Eucalyptus marginata?

    PubMed

    Grigg, A H; Macfarlane, C; Evangelista, C; Eamus, D; Adams, M A

    2008-05-01

    Long-term declines in rainfall in south-western Australia have resulted in increased interest in the hydraulic characteristics of jarrah (Eucalyptus marginata Donn ex Smith) forest established in the region's drinking water catchments on rehabilitated bauxite mining sites. We hypothesized that in jarrah forest established on rehabilitated mine sites: (1) leaf area index (L) is independent of initial tree spacing; and (2) more densely planted trees have less leaf area for the same leaf mass, or the same sapwood area, and have denser sapwood. Initial stand densities ranged from about 600 to 9000 stems ha(-1), and trees were 18 years old at the time of sampling. Leaf area index was unaffected by initial stand density, except in the most sparsely stocked stands where L was 1.2 compared with 2.0-2.5 in stands at other spacings. The ratio of leaf area to sapwood area (A(l):A(s)) was unaffected by tree spacing or tree size and was 0.2 at 1.3 m height and 0.25 at the crown base. There were small increases in sapwood density and decreases in leaf specific area with increased spacing. Tree diameter or basal area was a better predictor of leaf area than sapwood area. At the stand scale, basal area was a good predictor of L (r(2) = 0.98, n = 15) except in the densest stands. We conclude that the hydraulic attributes of this forest type are largely independent of initial tree spacing, thus simplifying parameterization of stand and catchment water balance models.

  13. Penetration of sunlight into a canopy - Explicit models based on vertical and horizontal leaf projections

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Brakke, T.

    1986-01-01

    The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.

  14. Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: clinical data from 94 implants.

    PubMed

    Ersoy, Ahmet Ersan; Turkyilmaz, Ilser; Ozan, Oguz; McGlumphy, Edwin A

    2008-08-01

    Dental implant placement requires precise planning with regard to anatomic limitations and restorative goals. The aim of this study was to evaluate the match between the positions and axes of the planned and placed implants using stereolithographic (SLA) surgical guides. Ninety-four implants were placed using SLA surgical guides generated from computed tomography (CT) between 2005 and 2006. Radiographic templates were used for all subjects during CT imaging. After obtaining three-dimensional CT images, each implant was virtually placed on the CT images. SLA surgical guides, fabricated using an SLA machine with a laser beam to polymerize the liquid photo-polymerized resin, were used during implant placement. A new CT scan was taken for each subject following implant placement. Special software was used to fuse the images of the planned and placed implants, and the locations and axes were compared. Compared to the planned implants, the placed implants showed angular deviation of 4.9 degrees+/-2.36 degrees, whereas the mean linear deviation was 1.22+/-0.85 mm at the implant neck and 1.51+/-1 mm at the implant apex. Compared to the implant planning, the angular deviation and linear deviation at the neck and apex of the placed maxillary implants were 5.31 degrees+/-0.36 degrees, 1.04+/-0.56 mm, and 1.57+/-0.97 mm, respectively, whereas corresponding figures for placed mandibular implants were 4.44 degrees+/-0.31 degrees, 1.42+/-1.05 mm, and 1.44+/-1.03 mm, respectively. SLA surgical guides using CT data may be reliable in implant placement and make flapless implant placement possible.

  15. Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and Polyjet prototype technologies: A comparative study.

    PubMed

    Rebong, Raymund E; Stewart, Kelton T; Utreja, Achint; Ghoneima, Ahmed A

    2018-05-01

    The aim of this study was to assess the dimensional accuracy of fused deposition modeling (FDM)-, Polyjet-, and stereolithography (SLA)-produced models by comparing them to traditional plaster casts. A total of 12 maxillary and mandibular posttreatment orthodontic plaster casts were selected from the archives of the Orthodontic Department at the Indiana University School of Dentistry. Plaster models were scanned, saved as stereolithography files, and printed as physical models using three different three-dimensional (3D) printers: Makerbot Replicator (FDM), 3D Systems SLA 6000 (SLA), and Objet Eden500V (Polyjet). A digital caliper was used to obtain measurements on the original plaster models as well as on the printed resin models. Comparison between the 3D printed models and the plaster casts showed no statistically significant differences in most of the parameters. However, FDM was significantly higher on average than were plaster casts in maxillary left mixed plane (MxL-MP) and mandibular intermolar width (Md-IMW). Polyjet was significantly higher on average than were plaster casts in maxillary intercanine width (Mx-ICW), mandibular intercanine width (Md-ICW), and mandibular left mixed plane (MdL-MP). Polyjet was significantly lower on average than were plaster casts in maxillary right vertical plane (MxR-vertical), maxillary left vertical plane (MxL-vertical), mandibular right anteroposterior plane (MdR-AP), mandibular right vertical plane (MdR-vertical), and mandibular left vertical plane (MdL-vertical). SLA was significantly higher on average than were plaster casts in MxL-MP, Md-ICW, and overbite. SLA was significantly lower on average than were plaster casts in MdR-vertical and MdL-vertical. Dental models reconstructed by FDM technology had the fewest dimensional measurement differences compared to plaster models.

  16. Comparison of removal torques between laser-treated and SLA-treated implant surfaces in rabbit tibiae

    PubMed Central

    Kang, Nam-Seok; Li, Lin-Jie

    2014-01-01

    PURPOSE The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. MATERIALS AND METHODS Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ×25, ×150 and ×1,000 magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). RESULTS In the experimental group, the surface analysis showed uniform porous structures under ×25, ×150 and ×1,000 magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). CONCLUSION In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants. PMID:25177474

  17. Two-dimensional speckle tracking echocardiography prognostic parameters in patients after acute myocardial infarction.

    PubMed

    Haberka, Maciej; Liszka, Jerzy; Kozyra, Andrzej; Finik, Maciej; Gąsior, Zbigniew

    2015-03-01

    The aim of the study was to evaluate the left ventricle (LV) function with speckle tracking echocardiography (STE) and to assess its relation to prognosis in patients after acute myocardial infarction (AMI). Sixty-three patients (F/M = 16/47 pts; 62.33 ± 11.85 years old) with AMI (NSTEMI/STEMI 24/39 pts) and successful percutaneous coronary intervention (PCI) with stent implantation (thrombolysis in myocardial infarction; TIMI 3 flow) were enrolled in this study. All patients underwent baseline two-dimensional conventional echocardiography and STE 3 days (baseline) and 30 days after PCI. All patients were followed up for cardiovascular clinical endpoints, major adverse cardiovascular endpoint (MACE), and functional status (Canadian Cardiovascular Society and New York Heart Association). During the follow-up (31.9 ± 5.1 months), there were 3 cardiovascular deaths, 15 patients had AMI, 2 patients had cerebral infarction, 24 patients reached the MACE. Baseline LV torsion (P = 0.035), but none of the other strain parameters were associated with the time to first unplanned cardiovascular hospitalization. Univariate analysis showed that baseline longitudinal two-chamber and four-chamber strain (sLa2 0 and sLa4 0) and the same parameters obtained 30 days after the AMI together with transverse four-chamber strain (sLa2 30, sLa4 30, and sTa4 30) were significantly associated with combined endpoint (MACE). The strongest association in the univariate analysis was found for the baseline sLa2. However, in multivariable analysis only a left ventricular remodeling (LVR - 27% pts) was significantly associated with MACE and strain parameters were not associated with the combined endpoint. The assessment of LV function with STE may improve cardiovascular risk prediction in postmyocardial infarction patients. © 2014, Wiley Periodicals, Inc.

  18. Sea level anomaly on the Patagonian continental shelf: Trends, annual patterns and geostrophic flows

    PubMed Central

    Saraceno, M.; Piola, A. R.; Strub, P. T.

    2016-01-01

    Abstract We study the annual patterns and linear trend of satellite sea level anomaly (SLA) over the southwest South Atlantic continental shelf (SWACS) between 54ºS and 36ºS. Results show that south of 42°S the thermal steric effect explains nearly 100% of the annual amplitude of the SLA, while north of 42°S it explains less than 60%. This difference is due to the halosteric contribution. The annual wind variability plays a minor role over the whole continental shelf. The temporal linear trend in SLA ranges between 1 and 5 mm/yr (95% confidence level). The largest linear trends are found north of 39°S, at 42°S and at 50°S. We propose that in the northern region the large positive linear trends are associated with local changes in the density field caused by advective effects in response to a southward displacement of the South Atlantic High. The causes of the relative large SLA trends in two southern coastal regions are discussed as a function meridional wind stress and river discharge. Finally, we combined the annual cycle of SLA with the mean dynamic topography to estimate the absolute geostrophic velocities. This approach provides the first comprehensive description of the seasonal component of SWACS circulation based on satellite observations. The general circulation of the SWACS is northeastward with stronger/weaker geostrophic currents in austral summer/winter. At all latitudes, geostrophic velocities are larger (up to 20 cm/s) close to the shelf‐break and decrease toward the coast. This spatio‐temporal pattern is more intense north of 45°S. PMID:27840784

  19. Magnetic Resonance Thermometry-Guided Stereotactic Laser Ablation of Cavernous Malformations in Drug-Resistant Epilepsy: Imaging and Clinical Results

    PubMed Central

    McCracken, D. Jay; Willie, Jon T.; Fernald, Brad; Saindane, Amit M.; Drane, Daniel L.; Barrow, Daniel L.; Gross, Robert E.

    2016-01-01

    BACKGROUND Surgery is indicated for cerebral cavernous malformations (CCM) that cause medically refractory epilepsy. Real-time magnetic resonance thermography (MRT)-guided stereotactic laser ablation (SLA) is a minimally invasive approach to treating focal brain lesions. SLA of CCM has not previously been described. OBJECTIVE To describe MRT-guided SLA, a novel approach to treating CCM-related epilepsy, with respect to feasibility, safety, imaging, and seizure control in 5 consecutive patients. METHODS Five patients with medically refractory epilepsy undergoing standard presurgical evaluation were found to have corresponding lesions fulfilling imaging characteristics of CCM and were prospectively enrolled. Each underwent stereotactic placement of a saline-cooled cannula containing an optical fiber to deliver 980-nm diode laser energy via twist drill craniostomy. MR anatomic imaging was used to evaluate targeting prior to ablation. MR imaging provided evaluation of targeting and near real-time feedback regarding extent of tissue thermocoagulation. Patients maintained seizure diaries, and remote imaging (6–21 months post-ablation) was obtained in all patients. RESULTS Imaging revealed no evidence of acute hemorrhage following fiber placement within presumed CCM. MRT during treatment and immediate post-procedure imaging confirmed desired extent of ablation. We identified no adverse events or neurological deficits. Four of 5 (80%) patients achieved freedom from disabling seizures after SLA alone (Engel class 1 outcome), with follow-up ranging 12–28 months. Reimaging of all subjects (6–21 months) indicated lesion diminution with surrounding liquefactive necrosis, consistent with the surgical goal of extended lesionotomy. CONCLUSION Minimally invasive MRT-guided SLA of epileptogenic CCM is a potentially safe and effective alternative to open resection. Additional experience and longer follow-up are needed. PMID:27959970

  20. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials.

    PubMed

    Murphy, M; Walczak, M S; Thomas, A G; Silikas, N; Berner, S; Lindsay, R

    2017-01-01

    Targeting understanding enhanced osseointegration kinetics, the goal of this study was to characterize the surface morphology and composition of Ti and TiZr dental implant substrates subjected to one of two surface treatments developed by Straumann. These two treatments are typically known as SLA and SLActive, with the latter resulting in more rapid osseointegration. A range of techniques was applied to characterize four different substrate/surface treatment combinations (Ti SLA , Ti SLActive , TiZr SLA , and TiZr SLActive ). Contact angle measurements established their hydrophilic/hydrophobic nature. Surface morphology was probed with scanning electron microscopy. X-ray diffraction, Raman μ-spectroscopy, and X-ray photoelectron spectroscopy were used to elucidate the composition of the near-surface region. Consistent with previous work, surface morphology was found to differ only at the nanoscale, with both SLActive substrates displaying nano-protrusions. Spectroscopic data indicate that all substrates exhibit surface films of titanium oxide displaying near TiO 2 stoichiometry. Raman μ-spectroscopy reveals that amorphous TiO 2 is most likely the only phase present on Ti SL A , whilst rutile-TiO 2 is also evidenced on Ti SLActive , TiZr SLA , and TiZr SLActive . For TiZr alloy substrates, there is no evidence of discrete phases of oxidized Zr. X-ray photoelectron spectra demonstrate that all samples are terminated by adventitious carbon, with it being somewhat thicker (∼1nm) on Ti SL A and TiZr SLA . Given previous in vivo studies, acquired data suggest that both nanoscale protrusions, and a thinner layer of adventitious carbon contribute to the more rapid osseointegration of SLActive dental implants. Composition of the surface oxide layer is apparently less important in determining osseointegration kinetics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Oestrous synchronization, ovarian superovulation and intraspecific transfers from a closed breeding colony of inbred SLA miniature pigs.

    PubMed

    Arlaud, J J; Baker, L; Williams, R L; French, A J

    2010-12-01

    The inbred SLA miniature pig is a unique animal model developed for organ transplantation studies and pre-clinical experimental purposes. Reported oestrous synchronization and superovulation treatments were examined in two SLA haplotypes (AA and DD) to allow collection of embryos for both practical embryo transfer and experimental technologies from a closed breeding colony. Pre-puberal miniature pigs were poor responders to oestrous synchronization treatments, while post-puberal sows were equivalent to commercial sows. Following superovulation, the ovulation number (corpora .hemorrhagica) was higher (p < 0.05) in the cycling sows when compared with non-cycling sows. Ovulations were equivalent to commercial pre-puberal gilts and non-cycling sows (p > 0.05). No difference in ovulation number between haplotypes was observed, which differs from the previous report (DD>AA). Collection of zygotes for pronuclear injection was the highest in the non-cycling post-puberal miniature pig group (p < 0.05), although significantly lower when compared with the commercial pig treatment groups (p < 0.05). The incidence of cystic endometrial hyperplasia in our colony was equivalent to rates observed in commercial pigs. Pronuclear visualization following centrifugation was the highest in the non-cycling miniature sow group and approximates to about 25% of ovulations and about half the rate observed in the commercial pigs (50%). Miniature pig embryos transferred between SLA haplotypes and transfer of DD embryos to commercial pigs resulted in live births at a higher efficiency than previously reported. This study demonstrates the feasibility of undertaking assisted reproductive technologies in a closed breeding colony of inbred SLA miniature pigs without compromise to the breeding programmes. © 2009 Blackwell Verlag GmbH.

  2. The Efficacy of FlexMaster's IntroFile, PreRaCe and Gates Glidden Drills in Straight-Line Access: A CBCT Assessment.

    PubMed

    Farhad Mollashahi, Narges; Sohrabi, Mahdi; Farhad Mollashahi, Leila; Mehdizadeh, Mojdeh

    2014-01-01

    An overlooked but important part of successful root canal treatment is a straight-line access (SLA). The purpose of this in vitro study was to compare the efficacy of IntroFile and PreRaCe rotary instruments with Gates Glidden (GG) drills in gaining SLA by cone-beam computed tomography (CBCT). A total of forty five extracted mandibular first molars were selected and mounted in dental like arches. Subsequently, they were randomly classified into three groups (n=15). After preparation of a standard access cavity, orifices of the mesiobuccal canal was reached and a #10 file was inserted to explore the canals until the file tip was visible at the apex. Then, preoperative CBCT images were taken. SLA was gained in three groups; group 1, FlexMaster's IntroFile (FM); group 2, PreRaCe (RC) and group 3, GG. Again, the first binding file at the working length (WL) was placed in the canal and postoperative CBCT images in similar positions were taken. The pre/post operative morphology of the canal was evaluated for changes. Data was analyzed using the one-way ANOVA and post-hoc Bonferroni analysis. The average amount of reduction in coronal canal curvature in FM, RC and GG groups was 2.43±1.79, 3.17±2.05 and 8.7±3.45, respectively. This descending trend was statistically significant. The difference between pre/post SLA changes in FM and RC groups was significant compared to GG group, while there were no significant differences between RC and FM. GG drills produced extraordinary results in reducing coronal curvature of the canal and achieving SLA. They are also more effective than nickel-titanium (NiTi) rotary instruments in canals with coronal curvature.

  3. Leaf Area Adjustment As an Optimal Drought-Adaptation Strategy

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Beyer, F.; Thompson, S. E.; Vico, G.; Weih, M.

    2014-12-01

    Leaf phenology plays a major role in land-atmosphere mass and energy exchanges. Much work has focused on phenological responses to light and temperature, but less to leaf area changes during dry periods. Because the duration of droughts is expected to increase under future climates in seasonally-dry as well as mesic environments, it is crucial to (i) predict drought-related phenological changes and (ii) to develop physiologically-sound models of leaf area dynamics during dry periods. Several optimization criteria have been proposed to model leaf area adjustment as soil moisture decreases. Some theories are based on the plant carbon (C) balance, hypothesizing that leaf area will decline when instantaneous net photosynthetic rates become negative (equivalent to maximization of cumulative C gain). Other theories draw on hydraulic principles, suggesting that leaf area should adjust to either maintain a constant leaf water potential (isohydric behavior) or to avoid leaf water potentials with negative impacts on photosynthesis (i.e., minimization of water stress). Evergreen leaf phenology is considered as a control case. Merging these theories into a unified framework, we quantify the effect of phenological strategy and climate forcing on the net C gain over the entire growing season. By accounting for the C costs of leaf flushing and the gains stemming from leaf photosynthesis, this metric assesses the effectiveness of different phenological strategies, under different climatic scenarios. Evergreen species are favored only when the dry period is relatively short, as they can exploit most of the growing season, and only incur leaf maintenance costs during the short dry period. In contrast, deciduous species that lower maintenance costs by losing leaves are advantaged under drier climates. Moreover, among drought-deciduous species, isohydric behavior leads to lowest C gains. Losing leaves gradually so as to maintain a net C uptake equal to zero during the driest period in the growing season provides the highest gain. Since these strategies are all defined based on often-modeled quantities, they can be implemented in ecosystem models depending on plant functional type and climate.

  4. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    PubMed

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    PubMed

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    NASA Astrophysics Data System (ADS)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  7. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    PubMed

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  8. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR) and leaf rolling and GSSG. These results showed that in apoplastic and symplastic areas, ASC-GSH cycle enzymes leading ROS detoxification may have a role in controlling leaf rolling.

  9. Leaf traits in parental and hybrid species of Sorbus (Rosaceae).

    PubMed

    Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam

    2012-09-01

    Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.

  10. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1989-01-01

    Effects of different ratios incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce (Lactuca sativa L.) in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16% of total irradiance (82 W m-2) from ln lamps. Although leaf dry weight and area were 12-17% greater at 84% ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84% ln was compared with 50% ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84% ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50% ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50% ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84% ln for 8 days continuously.

  11. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  12. Evaluation of four methods for estimating leaf area of isolated trees

    Treesearch

    P.J. Peper; E.G. McPherson

    2003-01-01

    The accurate modeling of the physiological and functional processes of urban forests requires information on the leaf area of urban tree species. Several non-destructive, indirect leaf area sampling methods have shown good performance for homogenous canopies. These methods have not been evaluated for use in urban settings where trees are typically isolated and...

  13. ESTIMATION OF LEAF AREA INDEX IN OPEN-CANOPY PONDEROSA PINE FORESTS AT DIFFERENT SUCCESSIONAL STAGES AND MANAGEMENT REGIMES IN OREGON. (R828309)

    EPA Science Inventory

    Abstract

    Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...

  14. A Comparison of Simulated and Field-Derived Leaf Area Index (LAI) and Canopy Height Values from Four Forest Complexes in the Southeastern USA

    EPA Science Inventory

    Vegetative leaf area is a critical input to models that simulate human and ecosystem exposure to atmospheric pollutants. Leaf area index (LAI) can be measured in the field or numerically simulated, but all contain some inherent uncertainty that is passed to the exposure assessmen...

  15. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture.

    PubMed

    Fanourakis, Dimitrios; Briese, Christoph; Max, Johannes Fj; Kleinen, Silke; Putz, Alexander; Fiorani, Fabio; Ulbrich, Andreas; Schurr, Ulrich

    2014-04-11

    Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s-1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows.

  16. A Response to Block's (1996) Paper, "Not So Fast: Some Thoughts on Theory Culling, Relativism, Accepted Findings, and the Heart and Soul of SLA."

    ERIC Educational Resources Information Center

    Sheen, Ron

    1999-01-01

    Responds to Block's 1996 paper "Not So Fast: Some Thoughts on Theory Culling, Relativism, Accepted Findings, and the Heart and Soul of SLA," which deals in part with blackboxing, the practice of citing references in support of some given position. Maintains that Block raises an important issue but fails to demonstrate important…

  17. Art Concepts - Apollo VIII

    NASA Image and Video Library

    1968-12-02

    S68-51306 (December 1968) --- North American Rockwell artist's concept illustrating a phase of the scheduled Apollo 8 lunar orbit mission. Here, the Apollo 8 spacecraft lunar module adapter (SLA) panels, which have supported the Command and Service Modules, are jettisoned. This is done by astronauts firing the service module reaction control engines. A signal simultaneously deploys and jettisons the panels, separating the spacecraft from the SLA and deploying the high gain (deep space) antenna.

  18. SLA-PGN-primed dendritic cell-based vaccination induces Th17-mediated protective immunity against experimental visceral leishmaniasis: a crucial role of PKCβ.

    PubMed

    Jawed, Junaid Jibran; Majumder, Saikat; Bandyopadhyay, Syamdas; Biswas, Satabdi; Parveen, Shabina; Majumdar, Subrata

    2016-07-01

    Emergence of drug resistance during visceral leishmaniasis (VL) is a major obstacle imposed during successful therapy. An effective vaccine strategy against this disease is therefore necessary. Our present study exploited the SLA (soluble leishmanial antigen) and PGN (peptidoglycan) stimulated bone marrow-derived dendritic cells (DCs) as a suitable vaccine candidate during experimental VL. SLA-PGN-stimulated DCs showed a significant decrease in hepatic and splenic parasite burden, which were associated with increased production of nitric oxide and pro-inflammatory cytokines such as IL-12, IFN-γ and IL-17. Elevated level of IL-17 was accompanied with the generation of more Th17 cells. Further studies on DC provided the evidence that these SLA-PGN-stimulated DCs played an important role in providing necessary cytokines such as IL-6, IL-23 and TGF-β for the generation of Th17 cells. Interestingly, inhibition of protein kinase C-β (PKCβ) in DCs led to decreased production of Th17 polarizing cytokines, causing reduction of the Th17 population size. Altogether, our finding highlighted the important role of DC-based PKCβ in regulation of the function and generation of Th17 cells. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Analysis of swine leukocyte antigen class I gene profiles and porcine endogenous retrovirus viremia level in a transgenic porcine herd inbred for xenotransplantation research

    PubMed Central

    Sypniewski, Daniel; Gałka, Sabina; Sołtysik, Dagna; Loch, Tomasz; Nowak, Ewa; Smorąg, Zdzisław; Bednarek, Ilona

    2018-01-01

    Molecular characterization of swine leukocyte antigen (SLA) genes is important for elucidating the immune responses between swine-donor and human-recipient in xenotransplantation. Examination of associations between alleles of SLA class I genes, type of pig genetic modification, porcine endogenous retrovirus (PERV) viral titer, and PERV subtypes may shed light on the nature of xenograft acceptance or rejection and the safety of xenotransplantation. No significant difference in PERV gag RNA level between transgenic and non-transgenic pigs was noted; likewise, the type of applied transgene had no impact on PERV viremia. SLA-1 gene profile type may correspond with PERV level in blood and thereby influence infectiveness. Screening of pigs should provide selection of animals with low PERV expression and exclusion of specimens with PERV-C in the genome due to possible recombination between A and C subtypes, which may lead to autoinfection. Presence of PERV-C integrated in the genome was detected in 31.25% of specimens, but statistically significant increased viremia in specimens with PERV-C was not observed. There is a need for multidirectional molecular characterization (SLA typing, viremia estimation, and PERV subtype screening) of animals intended for xenotransplantation research in the interest of xeno-recipient safety. PMID:29366300

  20. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    PubMed Central

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-01-01

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20% ± 10.89%) was much greater than those of machined (33.58% ± 8.63%), SLA (58.47% ± 12.89), or ANO Ti (59.62% ± 18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant. PMID:25955650

  1. Distribution, abundance and traditional management of Agave potatorum in the Tehuacán Valley, Mexico: bases for sustainable use of non-timber forest products

    PubMed Central

    2014-01-01

    Background Agave species have been used for thousands of years in the Tehuacán Valley, but the current mescal production has great impact on populations of the most used species. Harvesting of A. potatorum takes place before sexual reproduction and the over-extraction put local populations at high risk. In the community of San Luis Atolotilán (SLA), mescal has been produced for one century but the growing mescal trade is leading to intensified agave extraction. Our study evaluated distribution and abundance of A. potatorum, extraction rates, management practices and economic importance for SLA households. The unbalanced relation between availability and extraction rates would be an indicator of risk requiring sustainable management strategies. Our case study aspires contributing to analyze general patterns for sustainable use for this and other forest products highly extracted. Methods We used bioclimatic modeling to project a map of potential distribution of the species, and ecological sampling to estimate the total availability of harvestable agaves within the territory of SLA. We used participant observation, surveys and semi-structured interviews with producers and households of SLA to document agave uses, technological and socio-economic aspects of mescal production, and to estimate extraction rates of agaves. Results Mescal production, medicine and fodder are the most important uses of A. potatorum. Its distribution area is nearly 608 ha where annually occur on average 7,296 harvestable plants, nearly 54 to 87% of them being harvested. Mescal production currently is a non-sustainable activity, requiring great changes in patterns of extraction and management adopting sustainable criteria. Local people started management planning to ensure the future availability of agaves, and the ecological information of this study has been helpful in constructing their decisions. Technical support for improving local experiences for managing populations’ recovering is a priority. Interaction of scholars and local people for solving this problem is already taking place and strengthening this process may be determinant for successful results. Conclusions Strategies for protecting particular populations, temporal substitution of agave species for mescal production, implementation of restoration and organization for fear commerce are needed for improving sustainable use of A. potatorum. PMID:25185769

  2. Interannual Variation in Stand Transpiration is Dependent Upon Tree Species

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.

    2003-12-01

    In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.

  3. Effect of weed control treatments on total leaf area of plantation black walnut (Juglans nigra)

    Treesearch

    Jason Cook; Michael R. Saunders

    2013-01-01

    Determining total tree leaf area is necessary for describing tree carbon balance, growth efficiency, and other measures used in tree-level and stand-level physiological growth models. We examined the effects of vegetation control methods on the total leaf area of sapling-size plantation black walnut trees using allometric approaches. We found significant differences in...

  4. The bias of a 2D view: Comparing 2D and 3D mesophyll surface area estimates using non-invasive imaging

    USDA-ARS?s Scientific Manuscript database

    The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...

  5. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community

    NASA Astrophysics Data System (ADS)

    Zheng, S. X.; Ren, H. Y.; Lan, Z. C.; Li, W. H.; Wang, K. B.; Bai, Y. F.

    2010-03-01

    Understanding the mechanistic links between environmental drivers, human disturbance, plant functional traits, and ecosystem properties is a fundamental aspect of biodiversity-ecosystem functioning research. Recent studies have focused mostly on leaf-level traits or community-level weighted traits to predict species responses to grazing and the consequent change in ecosystem functioning. However, studies of leaf-level traits or community-level weighted traits seldom identify the mechanisms linking grazing impact on leaf traits to ecosystem functioning. Here, using a multi-organization-level approach, we examined the effects of grazing on leaf traits (i.e., leaf area, leaf dry mass and specific leaf area) and ecosystem functioning across six communities of three vegetation types along a soil moisture gradient in the Xilin River Basin of Inner Mongolia grassland, China. Our results showed that the effects of grazing on leaf traits differed substantially when scaling up from leaf-level to species, functional group (i.e., life forms and water ecotype types), and community levels; and they also varied with vegetation type or site conditions. The effects of grazing on leaf traits diminished progressively along the hierarchy of organizational levels in the meadow, whereas the impacts were predominantly negative and the magnitude of the effects increased considerably at higher organizational levels in the typical steppe. Soil water and nutrient availability, functional trade-offs between leaf size and number of leaves per individual, and differentiation in avoidance and tolerance strategies among coexisting species are likely to be responsible for the observed responses of leaf traits to grazing at different levels of organization and among vegetation types. Our findings also demonstrate that, at both the functional group and community levels, standing aboveground biomass increased with leaf area and specific leaf area. Compared with the large changes in leaf traits and standing aboveground biomass, the soil properties were relatively unaffected by grazing. Our study indicates that a multi-organization-level approach provides more robust and comprehensive predictions of the effects of grazing on leaf traits and ecosystem functioning.

  6. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part 2; Detecting Leaf Area and Surface Resistance During Transition Seasons

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.

  7. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    PubMed

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  8. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  9. Large seasonal swings in leaf area of Amazon rainforests

    PubMed Central

    Myneni, Ranga B.; Yang, Wenze; Nemani, Ramakrishna R.; Huete, Alfredo R.; Dickinson, Robert E.; Knyazikhin, Yuri; Didan, Kamel; Fu, Rong; Negrón Juárez, Robinson I.; Saatchi, Sasan S.; Hashimoto, Hirofumi; Ichii, Kazuhito; Shabanov, Nikolay V.; Tan, Bin; Ratana, Piyachat; Privette, Jeffrey L.; Morisette, Jeffrey T.; Vermote, Eric F.; Roy, David P.; Wolfe, Robert E.; Friedl, Mark A.; Running, Steven W.; Votava, Petr; El-Saleous, Nazmi; Devadiga, Sadashiva; Su, Yin; Salomonson, Vincent V.

    2007-01-01

    Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation–atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of ≈25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests. PMID:17360360

  10. Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Borel, Christoph

    2009-05-01

    In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.

  11. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    NASA Astrophysics Data System (ADS)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  12. Government Information: An Endangered Resource of the Electronic Age. Proceedings of the Annual State-of-the-Art Institute (1st, Washington, DC, October 19-22, 1986).

    ERIC Educational Resources Information Center

    Special Libraries Association, Washington, DC.

    These proceedings contain edited versions of 14 papers on government information and its relation to the library and information community that were presented at a state-of-the-art institute sponsored by the Special Library Association (SLA). Following a foreword by Steve Bell of ABC News and an introduction by David R. Bender of the SLA, papers…

  13. A Study of the Constraints Affecting Resumption in Turkish and Mandarin Chinese Relative Clauses, and the Transfer of These Constraints to English as a Second Language

    ERIC Educational Resources Information Center

    Hitz, John

    2012-01-01

    Odlin (2003) observes that there is no consensus among researchers regarding the importance of L1 transfer in second-language acquisition (henceforth SLA). To test whether L1 transfer is a significant factor in SLA of English relative clauses (RCs), an English-language acceptability judgment task (AJT) with a four-point rating scale was…

  14. Resource Provisioning in SLA-Based Cluster Computing

    NASA Astrophysics Data System (ADS)

    Xiong, Kaiqi; Suh, Sang

    Cluster computing is excellent for parallel computation. It has become increasingly popular. In cluster computing, a service level agreement (SLA) is a set of quality of services (QoS) and a fee agreed between a customer and an application service provider. It plays an important role in an e-business application. An application service provider uses a set of cluster computing resources to support e-business applications subject to an SLA. In this paper, the QoS includes percentile response time and cluster utilization. We present an approach for resource provisioning in such an environment that minimizes the total cost of cluster computing resources used by an application service provider for an e-business application that often requires parallel computation for high service performance, availability, and reliability while satisfying a QoS and a fee negotiated between a customer and the application service provider. Simulation experiments demonstrate the applicability of the approach.

  15. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  16. Current knowledge about the hydrophilic and nanostructured SLActive surface

    PubMed Central

    Wennerberg, Ann; Galli, Silvia; Albrektsson, Tomas

    2011-01-01

    This review summarizes the present documentation for the SLActive surface, a hydrophilic and nanostructured surface produced by Straumann Company in Switzerland, and covers the results from 15 in vitro, 17 in vivo, and 16 clinical studies. The SLActive surface is a development of the large grit-blasted and acid-etched SLA surface, and is further processed to a high degree of hydrophilicity. In general, the in vitro and in vivo studies of the SLActive surface demonstrate a stronger cell and bone tissue response than for the predecessor, the SLA surface, produced by the same company. However, in most studies, this difference disappears after 6–8 weeks. In the clinical studies, a stronger bone response was reported for the SLActive surface during the early healing phase when compared with the SLA surface. However, the later biological response was quite similar for the two surfaces and both demonstrated very good clinical results. PMID:23674916

  17. Autoimmune hepatitis-specific antibodies against soluble liver antigen and liver cytosol type 1 in patients with chronic viral hepatitis.

    PubMed

    Rigopoulou, Eirini I; Mytilinaiou, Maria; Romanidou, Ourania; Liaskos, Christos; Dalekos, George N

    2007-02-04

    Non-organ specific autoantibodies are highly prevalent in patients with chronic hepatitis C (HCV). Among them, anti-liver kidney microsomal type 1 (LKM1) antibody--the serological marker of type 2 autoimmune hepatitis (AIH-2)--is detected in up to 11% of the HCV-infected subjects. On the other hand, anti-liver cytosol type 1 antibodies (anti-LC1)--either in association with anti-LKM1, or in isolation--and anti-soluble liver antigen antibodies (anti-SLA) have been considered as useful and specific diagnostic markers for AIH. However, their specificity for AIH has been questioned by some recent studies, which have shown the detection of anti-LC1 and anti-SLA by immunoprecipitation assays in HCV patients irrespective of their anti-LKM1 status. The aim of the present study was to test the anti-LC1 and anti-SLA presence by specific enzyme linked immunosorbent assays (ELISAs), in a large group of Greek HCV-infected patients with or without anti-LKM1 reactivity as firstly, immunoprecipitation assays are limited to few specialized laboratories worldwide and cannot be used routinely and secondly, to assess whether application of such tests has any relevance in the context of patients with viral hepatitis since antibody detection based on such ELISAs has not been described in detail in large groups of HCV patients. One hundred and thirty eight consecutive HCV patients (120 anti-LKM1 negative and 18 anti-LKM1 positive) were investigated for the presence of anti-LC1 and anti-SLA by commercial ELISAs. A similar number (120) of chronic hepatitis B virus (HBV) infected patients seronegative for anti-LKM1 was also tested as pathological controls. Six out of 18 (33%) anti-LKM(pos)/HCV(pos) patients tested positive for anti-LC1 compared to 1/120 (0.83%) anti-LKM(neg)/HCV(pos) patients and 0/120 (0%) of the anti-LKM1(neg)/HBV(pos) patients (p < 0.001 for both comparisons). Anti-SLA antibodies were not present in any of the HCV (with or without anti-LKM1) or HBV-infected patients. We showed that anti-LC1 and anti-SLA autoantibodies are not detected by conventional assays in a large group of anti-LKM1 negative patients with chronic hepatitis B and C infections. Based on these results we cannot find any justification for the application of anti-LC1 and anti-SLA tests in the routine laboratory testing of viral hepatitis-related autoantibody serology with the only potential exception being the anti-LC1 screening in anti-LKM1(pos)/HCV(pos) patients.

  18. Autoimmune hepatitis-specific antibodies against soluble liver antigen and liver cytosol type 1 in patients with chronic viral hepatitis

    PubMed Central

    Rigopoulou, Eirini I; Mytilinaiou, Maria; Romanidou, Ourania; Liaskos, Christos; Dalekos, George N

    2007-01-01

    Background Non-organ specific autoantibodies are highly prevalent in patients with chronic hepatitis C (HCV). Among them, anti-liver kidney microsomal type 1 (LKM1) antibody – the serological marker of type 2 autoimmune hepatitis (AIH-2)- is detected in up to 11% of the HCV-infected subjects. On the other hand, anti-liver cytosol type 1 antibodies (anti-LC1) – either in association with anti-LKM1, or in isolation- and anti-soluble liver antigen antibodies (anti-SLA) have been considered as useful and specific diagnostic markers for AIH. However, their specificity for AIH has been questioned by some recent studies, which have shown the detection of anti-LC1 and anti-SLA by immunoprecipitation assays in HCV patients irrespective of their anti-LKM1 status. The aim of the present study was to test the anti-LC1 and anti-SLA presence by specific enzyme linked immunosorbent assays (ELISAs), in a large group of Greek HCV-infected patients with or without anti-LKM1 reactivity as firstly, immunoprecipitation assays are limited to few specialized laboratories worldwide and cannot be used routinely and secondly, to assess whether application of such tests has any relevance in the context of patients with viral hepatitis since antibody detection based on such ELISAs has not been described in detail in large groups of HCV patients. Methods One hundred and thirty eight consecutive HCV patients (120 anti-LKM1 negative and 18 anti-LKM1 positive) were investigated for the presence of anti-LC1 and anti-SLA by commercial ELISAs. A similar number (120) of chronic hepatitis B virus (HBV) infected patients seronegative for anti-LKM1 was also tested as pathological controls. Results Six out of 18 (33%) anti-LKMpos/HCVpos patients tested positive for anti-LC1 compared to 1/120 (0.83%) anti-LKMneg/HCVpos patients and 0/120 (0%) of the anti-LKM1neg/HBVpos patients (p < 0.001 for both comparisons). Anti-SLA antibodies were not present in any of the HCV (with or without anti-LKM1) or HBV-infected patients. Conclusion We showed that anti-LC1 and anti-SLA autoantibodies are not detected by conventional assays in a large group of anti-LKM1 negative patients with chronic hepatitis B and C infections. Based on these results we cannot find any justification for the application of anti-LC1 and anti-SLA tests in the routine laboratory testing of viral hepatitis-related autoantibody serology with the only potential exception being the anti-LC1 screening in anti-LKM1pos/HCVpos patients. PMID:17274827

  19. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Effects of different ratios of incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16 percent of total irradiance (82 W/sq m) from ln lamps. Although leaf dry weight and area were 12-17 percent greater at 84 percent ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84 percent ln was compared with 50 percent ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84 percent ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50 percent ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50 percent ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84 percent ln for 8 days continuously.

  20. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum: Bud outgrowth is sensitive to leaf area

    DOE PAGES

    Kebrom, Tesfamichael H.; Mullet, John E.

    2014-12-12

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Budmore » outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h postdefoliation of the second leaf.At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.« less

  1. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.

  2. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display.

    PubMed

    Lusk, Christopher H; Pérez-Millaqueo, Manuel M; Saldaña, Alfredo; Burns, Bruce R; Laughlin, Daniel C; Falster, Daniel S

    2012-07-01

    The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LAR(d)) was used to indicate plant light interception potential: LAR(d) is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LAR(d) was about twice that of conifers. Although specific leaf area was the most pervasive influence on LAR(d), differences in self-shading also significantly influenced LAR(d) of large seedlings. The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition.

  3. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display

    PubMed Central

    Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.

    2012-01-01

    Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929

  4. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Treesearch

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  5. The effect of leaf size on the microwave backscattering by corn

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1986-01-01

    Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.

  6. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.).

    PubMed

    Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent

    2016-12-01

    Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2  m -2 . The slightly higher prediction in India and slightly lower prediction in Niger reflected GxE interactions. Until more understanding is obtained on the possible GxE interaction effects on the canopy development, a generic PLAPOW value of 2.71, no correction for sowing density, and a phyllochron on 53 °C could be used to model canopy development in peanut.

  7. 78 FR 72579 - Revisions to the Arizona State Implementation Plan, Maricopa County Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ....01 Leaf Blower Use Restrictions 07/02/07 05/25/12 and Training; Leaf Blowers Equipment Sellers... recommend stronger control of emissions from leaf blowers, expanding leaf blowers requirements beyond county employees, control of leaf blowers in vacuum mode, control of leaf blowers on permitted sites, and greater...

  8. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Barrow, Alaska, 2012-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Alistair; Ely, Kim; Serbin, Shawn

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from the Barrow Environmental Observatory, Barrow, Alaska. Species measured; Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica, Saxifraga punctata and Potentilla hyparctica.

  9. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    PubMed

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  10. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees

    PubMed Central

    He, Wei-Ming; Sun, Zhen-Kai

    2016-01-01

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints. PMID:26854019

  11. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture

    PubMed Central

    2014-01-01

    Background Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. Results The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s−1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. Conclusions LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows. PMID:24721154

  12. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest.

    PubMed

    Coble, Adam P; VanderWall, Brittany; Mau, Alida; Cavaleri, Molly A

    2016-09-01

    Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Enabling a Better Aft Heat Shield Solution for Future Mars Science Laboratory Class Vehicles

    NASA Technical Reports Server (NTRS)

    McGuire, Mary K.; Covington, Melmoth A.; Goldstein, Howard E.; Arnold, James O.; Beck, Robin

    2013-01-01

    System studies are described that compare masses and estimated manufacturing costs of options for the as-flown Mars Science Laboratory (MSL) aft body Thermal Light Weight Ablator (SLA) 561-V and its thickness was not optimized using the standard TPS Sizer Tool widely used for heat shield design. Use of the TPS sizing tool suggests that optimization of the SLA thickness could reduce the aft heat shield mass by 40 percent. Analysis of the predicted aft-shell aerothermodynamics suggests that the bulk of MSL class entry vehicle heat shields could incorporate Advanced Flexible Reusable Surface Insulation (AFRSI). AFRSI has a wellestablished record of relatively inexpensive manufacturing and flight certification based on its use on the lee side of the Space Shuttle. Runs with the TPS Sizer show that the AFRSI solution would be 60 percent lighter than the as-flown SLA. The issue of Reaction Control System (RCS) heating on the aft shell could be addressed by locally impregnating the AFRSI with silicone to enhance its robustness to short bursts ofheating. Stagnation point arcjet testing has shown that silicone impregnated AFRSI performs well at heat rates of 115 W/cm2 and 0.1 atmospheres for a duration of 40 seconds, far beyond conditions that are expected for MSL class vehicles. The paper concludes with a discussion of manufacturing processes for AFRSI, impregnation approaches and relative cost comparisons to the SLA solution.

  14. The Novel Fission Yeast Protein Pal1p Interacts with Hip1-related Sla2p/End4p and Is Involved in Cellular Morphogenesis

    PubMed Central

    Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N.; Balasubramanian, Mohan K.

    2005-01-01

    The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Δ mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis. PMID:15975911

  15. The novel fission yeast protein Pal1p interacts with Hip1-related Sla2p/End4p and is involved in cellular morphogenesis.

    PubMed

    Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N; Balasubramanian, Mohan K

    2005-09-01

    The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Delta mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis.

  16. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Treesearch

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  17. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurments of height and crown dimensions

    Treesearch

    Scott D. Roberts; Thomas J. Dean; David L. Evans; John W. McCombs; Richard L. Harrington; Partick A. Glass

    2005-01-01

    Accurate estimates of leaf area index (LAI) could provide useful information to forest managers, but due to difficulties in measurement, leaf area is rarely used in decision-making. A reliable approach to remotely estimating LA1 would greatly facilitate its use in forest management. This study investigated the potential for using small-footprint iDAR, a laser-based...

  18. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  19. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  20. Error analysis of leaf area estimates made from allometric regression models

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H.; Chhikara, R. S.

    1986-01-01

    Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing).

  1. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    PubMed

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  2. Tree ecophysiology research at Taylor Woods

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  3. Preliminary application of tapered glass capillary microbeam in MeV-PIXE mapping of longan leaf for elemental concentration distribution analysis

    NASA Astrophysics Data System (ADS)

    Natyanun, S.; Unai, S.; Yu, L. D.; Tippawan, U.; Pussadee, N.

    2017-09-01

    This study was aimed at understanding elemental concentration distribution in local longan leaf for how the plant was affected by the environment or agricultural operation. The analysis applied the MeV-microbeam particle induced X-ray emission (PIXE) mapping technique using a home-developed tapered glass capillary microbeam system at Chiang Mai University. The microbeam was 2-MeV proton beam in 130 µm in diameter. The studying interest was in the difference in the elemental concentrations distributed between the leaf midrib and lamina areas. The micro proton beam analyzed the leaf sample across the leaf midrib edge to the leaf lamina area for total 9 data requisition spots. The resulting data were colored to form a 1D-map of the elemental concentration distribution. Seven dominant elements, Al, S, Cl, K, Ca, Sc and Fe, were identified, the first six of which were found having higher concentrations in the midrib area than in the lamina area, while the Fe concentration was in an opposite trend to that of the others.

  4. Testing the adaptive plasticity of Iris pumila leaf traits to natural light conditions using phenotypic selection analysis

    NASA Astrophysics Data System (ADS)

    Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela

    1998-12-01

    A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.

  5. In vitro and in vivo mechanical stability of orthodontic mini-implants.

    PubMed

    Cho, Il-Sik; Kim, Sung-Kyun; Chang, Young-Il; Baek, Seung-Hak

    2012-07-01

    To compare in vivo and in vitro mechanical stability of orthodontic mini-implants (OMIs) treated with a sandblasted, large-grit, and anodic-oxidation (SLAO) method vs those treated with a sandblasted, large-grit, and acid-etching (SLA) method. Fifty-four titanium OMIs (cylindrical shape, drill-free type; diameter  =  1.45 mm, length  =  8 mm, Biomaterials Korea Inc, Seoul, Korea) were allocated into control, SLA, and SLAO groups (N  =  12 for in vivo and N  =  6 for in vitro studies per group). In vitro study was carried out on a polyurethane foam bone block (Sawbones, Pacific Research Laboratories Inc, Vashon, Wash). In vivo study was performed in the tibias of Beagles (6 males, age  =  1 year, weight  =  10 to 13 kg; OMIs were removed at 8 weeks after installation). For insertion and removal of OMIs, the speed and maximum torque of the surgical engine were set to 30 rpm and 40 Ncm, respectively. Maximum torque (MT), total energy (TE), and near peak energy (NPE) during the insertion and removal procedures were statistically analyzed. In the in vitro study, although the control group had a higher insertion MT value than the SLA and SLAO groups (P < .01), no differences in insertion TE and NPE or in any of the removal variables were noted among the three groups. In the in vivo study, the control group exhibited higher values for all insertion variables compared with the SLA and SLAO groups (MT, P < .001; TE, P < .01; NPE, P < .001). Although no difference in removal TE and removal NPE was noted among the three groups, the SLAO group presented with a higher removal MT than the SLA and control groups (P < .001). SLAO treatment may be an effective tool in reducing insertion damage to surrounding tissue and improving the mechanical stability of OMIs.

  6. Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis.

    PubMed

    Carvalho, Augusto M; Magalhães, Andréa; Carvalho, Lucas P; Bacellar, Olívia; Scott, Phillip; Carvalho, Edgar M

    2013-11-09

    The main clinical forms of tegumentary leishmaniasis are cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). L.braziliensis infection is characterized by an exaggerated production of IFN-gamma and TNF-alpha, cytokines involved in parasite destruction, but also in the pathology. Maintenance of an antigen-specific immune response may be important for resistance to re-infection and will contribute for vaccine development. In the present work we investigated the immune response in CL and ML cured individuals. Participants in the present study included 20 CL and 20 ML patients, who were evaluated prior to, as well as 2 to 15 years after therapy. IFN-gamma, IL-2 and TNF-alpha production were determined by ELISA in supernatants of mononuclear cells stimulated with soluble L.braziliensis antigen (SLA). The frequency of memory CD4+ T cell populations was determined by FACS. Here we show that the majority of CL and ML patients did not produce in vitro IFN-gamma in response to SLA after cure. In the cured individuals who responded to SLA, effector memory (CD45RA-CCR7-) CD4+ T cells were the ones producing IFN-gamma. Because a large percent of CL and ML cured patients lost SLA-induced IFN-gamma production in peripheral blood, we performed Leishmania skin test (LST). A positive LST was found in 87.5% and 100% of CL and ML cured individuals, respectively, who did not produce IFN-gamma or IL-2 in vitro. This study shows that in spite of losing in vitro antigen-specific response to Leishmania, cured CL and ML subjects retain the ability to respond to SLA in vivo. These findings indicate that LST, rather than IFN-gamma production, may be a better assessment of lasting immunity to leishmaniasis in human studies, and thus a better tool for assessing immunization after vaccine. Furthermore, in cured individuals which maintains Leishmania-specific IFN-gamma production, effector memory CD4+ T cells were the main source of this cytokine.

  7. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.

  8. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig.

    PubMed

    Tungatt, Katie; Dolton, Garry; Morgan, Sophie B; Attaf, Meriem; Fuller, Anna; Whalley, Thomas; Hemmink, Johanneke D; Porter, Emily; Szomolay, Barbara; Montoya, Maria; Hammond, John A; Miles, John J; Cole, David K; Townsend, Alain; Bailey, Mick; Rizkallah, Pierre J; Charleston, Bryan; Tchilian, Elma; Sewell, Andrew K

    2018-05-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens.

  9. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig

    PubMed Central

    Morgan, Sophie B.; Attaf, Meriem; Szomolay, Barbara; Miles, John J.; Townsend, Alain; Bailey, Mick; Charleston, Bryan; Tchilian, Elma

    2018-01-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens. PMID:29772011

  10. A resonance frequency analysis of sandblasted and acid-etched implants with different diameters: a prospective clinical study during the initial healing period

    PubMed Central

    2017-01-01

    Purpose The possibility of immediate or early loading has become popular in implant dentistry. A prerequisite for the immediate or early loading of an implant prosthesis is the achievement of initial stability in the implant. Moreover, in response to clinicians' interest in verifying clinical stability to determine the optimal time point for functional loading, a non-invasive method to assess implant stability has been developed on the basis of resonance frequency analysis (RFA). The primary objective of this study was to monitor the stability of sandblasted, large-grit, and acid-etched (SLA) implants with different diameters during the early phases of healing by RFA. The secondary objective was to evaluate how the initial stability of implants varied depending on different surface modifications and other contributing factors. Methods Thirty-five implants (25 SLA implants and 10 resorbable blasting media [RBM] implants) placed in 20 subjects were included. To measure implant stability, RFA was performed at baseline and at 1, 2, 3, 4, 6, and 10 weeks after surgery. Results The longitudinal changes in the implant stability quotient (ISQ) values were similar for the SLA implants with different diameters and for the RBM implants. During the initial healing period, the ISQ decreased after installation and reached its lowest values at 1 week and 2 weeks, respectively. The mean ISQ values in the SLA implants were significantly higher in Ø 5.0 mm implants than in Ø 4.0 mm implants. Men showed a higher ISQ than women. Mandibular sites showed a higher ISQ than maxillary sites. Conclusions All implants used in this study are suitable for immediate or early loading under appropriate indications. A wider diameter and SLA surface treatment of implants could improve the stability, if the implant is fixed with at least 30 Ncm of insertion torque. PMID:28462009

  11. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  12. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream.

    PubMed

    Uieda, V S; Carvalho, E M

    2015-05-01

    Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  13. Does citrus leaf miner impair hydraulics and fitness of citrus host plants?

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo

    2013-12-01

    Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus  ×  paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.

  14. Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index

    Treesearch

    C. Song; M.B. Dickinson

    2008-01-01

    Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a...

  15. Extracting scene feature vectors through modeling, volume 3

    NASA Technical Reports Server (NTRS)

    Berry, J. K.; Smith, J. A.

    1976-01-01

    The remote estimation of the leaf area index of winter wheat at Finney County, Kansas was studied. The procedure developed consists of three activities: (1) field measurements; (2) model simulations; and (3) response classifications. The first activity is designed to identify model input parameters and develop a model evaluation data set. A stochastic plant canopy reflectance model is employed to simulate reflectance in the LANDSAT bands as a function of leaf area index for two phenological stages. An atmospheric model is used to translate these surface reflectances into simulated satellite radiance. A divergence classifier determines the relative similarity between model derived spectral responses and those of areas with unknown leaf area index. The unknown areas are assigned the index associated with the closest model response. This research demonstrated that the SRVC canopy reflectance model is appropriate for wheat scenes and that broad categories of leaf area index can be inferred from the procedure developed.

  16. Leaf morphological effects predict effective path length and enrichment of 18O in leaf water of different Eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Merchant, A.; Callister, A.; Dawson, T. E.; Arndt, S. K.

    2006-12-01

    Stable isotopes have been a valuable tool to study water or carbon fluxes of plants and ecosystems. In particular oxygen isotopes (δ18O) in leaf water or plant organic material are now beginning to be established as a simple and integrative measure for plant - water relations. Current δ18O models, however, are still limited in their application to a broad range of different species and ecosystems. It remains for example unclear, if species-specific effects such as different leaf morphologies need to be included in the models for a precise understanding and prediction of δ18O signals. In a common garden experiment (Currency Creek Arboretum, South Australia), where over 900 different Eucalyptus species are cultivated in four replicates, we tested effects of leaf morphology and anatomy on δ18O signals in leaf water of 25 different species. In particular, we determined for all species enrichment in 18O of mean lamina leaf water above source water (Δ18O) as related to leaf physiology as well as leaf thickness, leaf area, specific leaf area and weight and selected anatomical properties. Our data revealed that diurnal Δ18O in leaf water at steady state was significantly different among the investigated species and with differences up to 10% at midday. Fitting factors (effective path length) of leaf water Δ18O models were also significantly different among the investigated species and were highly affected by species-specific morphological parameters. For example, leaf area explained a high percentage of the differences in effective path length observed among the investigated species. Our data suggest that leaf water δ18O can act as powerful tool to estimate plant - water relations in comparative studies but that additional leaf morphological parameters need to be considered in existing δ18O models for a better interpretation of the observed δ18O signals.

  17. Aviation Proof of Concept: The Transition of Marine Corps Aviation Maintenance Computer Assets and Systems into the Navy Marine Corps Intranet

    DTIC Science & Technology

    2010-03-01

    Blackberry Services Increment 1 SLAPC: 103.8 SERVICE NAME: HELP DESK SLA: 104 Performance Category: Average Speed of Answer - Telephone Calls...Category: Blackberry Services Increment 1 SLAPC: 103.8 SERVICE NAME: HELP DESK SLA: 104 Performance Category: Average Speed of Answer - Telephone...legacy VPNs for existing tunnels , until MCNOSC agrees to shut down of legacy B-1’s. o Shut down of legacy B-1’s will transfer VPN’s tunnels to

  18. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  19. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  20. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

    PubMed

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-04-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.

  1. Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia.

    PubMed

    Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali

    2012-12-30

    Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P < 0.01). Decline in net CO(2) assimilation rate was due mainly to stomatal closure. Significant differences between studied strains in leaf gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of acid mist and air pollutants on yellow-poplar seedling height and leaf growth

    Treesearch

    Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen

    1985-01-01

    One-year-old yellow-poplar seedlings were treated with acid mist at pH 2.5, 3.5, 4.5, and 5.5 either alone or in combination with 0.1 ppm 03, S02, and NO2 or NO2 plus S02. After 4 and 8 weeks of treatment, height, leaf area, and leaf and new shoot weight were determined and growth analysis variables calculated. Height, leaf area, and dry weight decreased with...

  3. Tree ecophysiology research at Taylor Woods (P-53)

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  4. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Treesearch

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  5. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash

    Treesearch

    James S. Meadows; John D. Hodges

    2002-01-01

    The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...

  6. Temporal relationships between spectral response and agronomic variables of a corn canopy

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Markham, B. L.; Tucker, C. J.; Mcmurtrey, J. E., III

    1981-01-01

    Attention is given to an experiment in which spectral radiance data collected in three spectral regions are related to corn canopy variables. The study extends the work of Tucker et al. (1979) in that more detailed measurements of corn canopy variables were made using quantitative techniques. Wet and dry green leaf biomass is considered along with the green leaf area index, chlorotic leaf biomass, chlorotic leaf area, and leaf water content. In addition, spectral data were collected with a hand-held radiometer having Landsat-D Thematic Mapper (TM) bands TM3 (0.63-0.69 micrometers), TM4 (0.76-0.90 micrometers), and TM5 (1.55-1.75 micrometers). TM3, TM4, and TM5 seem to be well situated spectrally for making remotely sensed measurements related to chlorophyll concentration, leaf density, and leaf water content.

  7. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes

    PubMed Central

    Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert

    2013-01-01

    Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477

  8. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    PubMed Central

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  9. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  10. The optimal design of service level agreement in IAAS based on BDIM

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochen; Zhan, Zhiqiang

    2013-03-01

    Cloud Computing has become more and more prevalent over the past few years, and we have seen the importance of Infrastructure-as-a-service (IaaS). This kind of service enables scaling of bandwidth, memory, computing power and storage. But the SLA in IaaS also faces complexity and variety. Users also consider the business of the service. To meet the most users requirements, a methodology for designing optimal SLA in IaaS from the business perspectives is proposed. This method is different from the conventional SLA design method, It not only focuses on service provider perspective, also from the customer to carry on the design. This methodology better captures the linkage between service provider and service client by considering minimizing the business loss originated from performance degradation and IT infrastructure failures and maximizing profits for service provider and clients. An optimal design in an IaaS model is provided and an example are analyzed to show this approach obtain higher profit.

  11. Seizure Suppression by High Temperature via cAMP Modulation in Drosophila.

    PubMed

    Saras, Arunesh; Tanouye, Mark A

    2016-10-13

    Bang-sensitive (BS) Drosophila mutants display characteristic seizure-like activity (SLA) and paralysis after mechanical shock . After high-frequency electrical stimulation (HFS) of the brain, they generate robust seizures at very low threshold voltage. Here we report an important phenomenon, which effectively suppresses SLA in BS mutants. High temperature causes seizure suppression in all BS mutants (para bss1 , eas, sda) examined in this study. This effect is fully reversible and flies show complete recovery from BS paralysis once the temperature effect is nullified. High temperature induces an increase in seizure threshold after a brief pulse of heat shock (HS). By genetic screening, we identified the involvement of cAMP in the suppression of seizures by high temperature. We propose that HS induces adenylyl cyclase which in turn increases cAMP concentration which eventually suppresses seizures in mutant flies. In summary, we describe an unusual phenomenon, where high temperature can suppress SLA in flies by modulating cAMP concentration. Copyright © 2016 Saras and Tanouye.

  12. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    NASA Astrophysics Data System (ADS)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  13. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.

    PubMed

    Thomas, Sean C

    2010-05-01

    Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

  14. Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa.

    PubMed

    Pasquet-Kok, Jessica; Creese, Christine; Sack, Lawren

    2010-12-01

    Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO(2) , vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area-based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass-based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts. © 2010 Blackwell Publishing Ltd.

  15. Monocot Leaves are Eaten Less than Dicot Leaves in Tropical Lowland Rain Forests: Correlations with Toughness and Leaf Presentation

    PubMed Central

    Grubb, Peter J.; Jackson, Robyn V.; Barberis, Ignacio M.; Bee, Jennie N.; Coomes, David A.; Dominy, Nathaniel J.; De La Fuente, Marie Ann S.; Lucas, Peter W.; Metcalfe, Daniel J.; Svenning, Jens-Christian; Turner, Ian M.; Vargas, Orlando

    2008-01-01

    Background and Aims In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion. Methods At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants. Key Results At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots. Conclusions The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed. PMID:18387972

  16. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    PubMed Central

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments. PMID:23265941

  17. Prognocean Plus: the Science-Oriented Sea Level Prediction System as a Tool for Public Stakeholders

    NASA Astrophysics Data System (ADS)

    Świerczyńska, M. G.; Miziński, B.; Niedzielski, T.

    2015-12-01

    The novel real-time system for sea level prediction, known as Prognocean Plus, has been developed as a new generation service available through the Polish supercomputing grid infrastructure. The researchers can access the service at https://prognocean.plgrid.pl/. Although the system is science-oriented, we wish to discuss herein its potentials to enhance ocean management studies carried out routinely by public stakeholders. The system produces the short- and medium-term predictions of global altimetric gridded Sea Level Anomaly (SLA) time series, updated daily. The spatial resolution of the SLA forecasts is 1/4° x 1/4°, while the temporal resolution of prognoses is equal to 1 day. The system computes the predictions of time-variable ocean topography using five data-based models, which are not computationally demanding, enabling us to compare their skillfulness in respect to physically-based approaches commonly used by different sea level prediction systems. However, the aim of the system is not only to compute the predictions for science purposes, but primarily to build a user-oriented platform that serves the prognoses and their statistics to a broader community. Thus, we deliver the SLA forecasts as a rapid service available online. In order to provide potential users with the access to science results the Web Map Service (WMS) for Prognocean Plus is designed. We regularly publish the forecasts, both in the interactive graphical WMS service, available from the browser, as well as through the Web Coverage Service (WCS) standard. The Prognocean Plus system, as an early-response system, may be interesting for public stakeholders. It may be used for marine navigation as well as for climate risk management (delineate areas vulnerable to local sea level rise), marine management (advise offered for offshore activities) and coastal management (early warnings against coastal floodings).

  18. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells

    PubMed Central

    Kim, Kyobum; Dean, David; Wallace, Jonathan; Breithaupt, Rob; Mikos, Antonios G.; Fisher, John P.

    2011-01-01

    Scaffold design parameters, especially physical construction factors such as mechanical stiffness of substrate materials, pore size of 3D porous scaffolds, and channel geometry, are known to influence the osteogenic signal expression and subsequent differentiation of a transplanted cell population. In this study of photocrosslinked poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) scaffolds, the effect of DEF incorporation ratio and pore size on the osteogenic signal expression of rat bone marrow stromal cells (BMSCs) was investigated. Results demonstrated that DEF concentrations and pore sizes that led to increased scaffold mechanical stiffness also upregulated osteogenic signal expression, including bone morphogenic protein-2 (BMP-2), fibroblast growth factors-2 (FGF-2), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and Runx2 transcriptional factor. Similar scaffold fabrication parameters supported rapid BMSC osteoblastic differentiation, as demonstrated by increased alkaline phosphatase (ALP) and osteocalcin expression. When scaffolds with random architecture, fabricated by porogen leaching, were compared to those with controlled architecture, fabricated by stereolithography (SLA), results showed that SLA scaffolds with the highly permeable and porous channels also have significantly higher expression of FGF-2, TGF-β1, and VEGF. Subsequent ALP expression and osteopontin secretion were also significantly increased in SLA scaffolds. Based upon these results, we conclude that scaffold properties provided by additive manufacturing techniques such as SLA fabrication, particularly increased mechanical stiffness and high permeability, may stimulate dramatic BMSC responses that promote rapid bone tissue regeneration. PMID:21396709

  19. Text-Content-Analysis based on the Syntactic Correlations between Ontologies

    NASA Astrophysics Data System (ADS)

    Tenschert, Axel; Kotsiopoulos, Ioannis; Koller, Bastian

    The work presented in this chapter is concerned with the analysis of semantic knowledge structures, represented in the form of Ontologies, through which Service Level Agreements (SLAs) are enriched with new semantic data. The objective of the enrichment process is to enable SLA negotiation in a way that is much more convenient for a Service Users. For this purpose the deployment of an SLA-Management-System as well as the development of an analyzing procedure for Ontologies is required. This chapter will refer to the BREIN, the FinGrid and the LarKC projects. The analyzing procedure examines the syntactic correlations of several Ontologies whose focus lies in the field of mechanical engineering. A method of analyzing text and content is developed as part of this procedure. In order to so, we introduce a formalism as well as a method for understanding content. The analysis and methods are integrated to an SLA Management System which enables a Service User to interact with the system as a service by negotiating the user requests and including the semantic knowledge. Through negotiation between Service User and Service Provider the analysis procedure considers the user requests by extending the SLAs with semantic knowledge. Through this the economic use of an SLA-Management-System is increased by the enhancement of SLAs with semantic knowledge structures. The main focus of this chapter is the analyzing procedure, respectively the Text-Content-Analysis, which provides the mentioned semantic knowledge structures.

  20. Autonomous Distributed Congestion Control Scheme in WCDMA Network

    NASA Astrophysics Data System (ADS)

    Ahmad, Hafiz Farooq; Suguri, Hiroki; Choudhary, Muhammad Qaisar; Hassan, Ammar; Liaqat, Ali; Khan, Muhammad Umer

    Wireless technology has become widely popular and an important means of communication. A key issue in delivering wireless services is the problem of congestion which has an adverse impact on the Quality of Service (QoS), especially timeliness. Although a lot of work has been done in the context of RRM (Radio Resource Management), the deliverance of quality service to the end user still remains a challenge. Therefore there is need for a system that provides real-time services to the users through high assurance. We propose an intelligent agent-based approach to guarantee a predefined Service Level Agreement (SLA) with heterogeneous user requirements for appropriate bandwidth allocation in QoS sensitive cellular networks. The proposed system architecture exploits Case Based Reasoning (CBR) technique to handle RRM process of congestion management. The system accomplishes predefined SLA through the use of Retrieval and Adaptation Algorithm based on CBR case library. The proposed intelligent agent architecture gives autonomy to Radio Network Controller (RNC) or Base Station (BS) in accepting, rejecting or buffering a connection request to manage system bandwidth. Instead of simply blocking the connection request as congestion hits the system, different buffering durations are allocated to diverse classes of users based on their SLA. This increases the opportunity of connection establishment and reduces the call blocking rate extensively in changing environment. We carry out simulation of the proposed system that verifies efficient performance for congestion handling. The results also show built-in dynamism of our system to cater for variety of SLA requirements.

Top