Variations in debris distribution and thickness on Himalayan debris-covered glaciers
NASA Astrophysics Data System (ADS)
Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil
2016-04-01
Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.
Does size and buoyancy affect the long-distance transport of floating debris?
NASA Astrophysics Data System (ADS)
Ryan, Peter G.
2015-08-01
Floating persistent debris, primarily made from plastic, disperses long distances from source areas and accumulates in oceanic gyres. However, biofouling can increase the density of debris items to the point where they sink. Buoyancy is related to item volume, whereas fouling is related to surface area, so small items (which have high surface area to volume ratios) should start to sink sooner than large items. Empirical observations off South Africa support this prediction: moving offshore from coastal source areas there is an increase in the size of floating debris, an increase in the proportion of highly buoyant items (e.g. sealed bottles, floats and foamed plastics), and a decrease in the proportion of thin items such as plastic bags and flexible packaging which have high surface area to volume ratios. Size-specific sedimentation rates may be one reason for the apparent paucity of small plastic items floating in the world’s oceans.
A Detailed Study of Debris Flow Source Areas in the Northern Colorado Front Range.
NASA Astrophysics Data System (ADS)
Arana-Morales, A.; Baum, R. L.; Godt, J.
2014-12-01
Nearly continuous, heavy rainfall occurred during 9-13 September 2013 causing flooding and widespread landslides and debris flows in the northern Colorado Front Range. Whereas many recent studies have identified erosion as the most common process leading to debris flows in the mountains of Colorado, nearly all of the debris flows mapped in this event began as small, shallow landslides. We mapped the boundaries of 415 September 2013 debris flows in the Eldorado Springs and Boulder 7.5-minute quadrangles using 0.5-m-resolution satellite imagery. We characterized the landslide source areas of six debris flows in the field as part of an effort to identify what factors controlled their locations. Four were on a dip slope in sedimentary rocks in the Pinebrook Hills area, near Boulder, and the other two were in granitic rocks near Gross Reservoir. Although we observed no obvious geomorphic differences between the source areas and surrounding non-landslide areas, we noted several characteristics that the source areas all had in common. Slopes of the source areas ranged from 28° to 35° and most occurred on planar or slightly concave slopes that were vegetated with grass, small shrubs, and sparse trees. The source areas were shallow, irregularly shaped, and elongated downslope: widths ranged from 4 to 9 m, lengths from 6 to 40 m and depths ranged from 0.7 to 1.2 m. Colluvium was the source material for all of the debris flows and bedrock was exposed in the basal surface of all of the source areas. We observed no evidence for concentrated surface runoff upslope from the sources. Local curvature and roughness of bedrock and surface topography, and depth distribution and heterogeneity of the colluvium appear to have controlled the specific locations of these shallow debris-flow source areas. The observed distribution and characteristics of the source areas help guide ongoing efforts to model initiation of the debris flows.
Processes driving rapid morphological changes observed on the Khumbu Glacier, Nepal
NASA Astrophysics Data System (ADS)
Quincey, Duncan; Rowan, Ann; Gibson, Morgan; Irvine-Fynn, Tristram; King, Owen; Watson, Scott
2016-04-01
The response of many Himalayan glaciers to climatic change is complicated by the presence of a supraglacial debris cover, which leads to a suite of processes controlling mass loss that are not commonly found where glaciers are debris-free. Here, we present a range of field, surface topographic and ice-dynamical observations acquired from Khumbu Glacier in Nepal, to describe and quantify these processes in fine spatial and temporal resolution. Like many other debris-covered glaciers in the Himalaya, the debris-covered tongue of the Khumbu Glacier is heavily in recession. For at least two decades, the lower ablation area has been stagnant as surface lowering in the mid-ablation zone has led to ever decreasing driving stresses. Contemporary velocity data derived from TerraSAR-X imagery confirms that the active-inactive ice boundary can now be found 5 km from the glacier terminus and that the maximum velocity, immediately below the icefall, is around 70 m per year. These data show that in this upper part of the ablation zone, the glacier velocity has not changed during the last 20 years, suggesting that at least above the icefall the glacier remains healthy. Across the stagnant debris-covered tongue there have been marked surface morphological changes. Mapping from 2004 shows relatively few surface ponds, a homogeneous debris-covered surface, and a small area towards the terminus supporting soil formation and low vegetation. Mapping from field observations in 2014 shows an abundance of surface meltwater, a more heterogeneous surface texture associated with many exposed ice cliffs, and a long (3 km) zone of stable terrain where soils are developing and, in places, low scrub can be found. Most dramatically, a string of surface ponds occupying the true-left lowermost 2 km of ice have expanded and coalesced, suggesting the glacier has crossed a threshold leading towards large glacial lake development. Two fine-resolution DEMs derived from Structure-from-Motion in spring 2014 and autumn 2015 elucidate the processes driving mass loss across the debris-covered area. Recession is greatest around surface meltwater ponds and in the upper part of the ablation area where debris cover is thinnest. Comparison with an historic DEM from 1984 shows the evolution of the glacier surface topography, which has become increasingly irregular because of the development of surface ponds and associated ice cliffs. These observations suggest a continuous cycle of relief inversion drives surface lowering across large areas of the debris-covered surface, and we propose a conceptual model to illustrate this cycle that is applicable to all receding debris-covered glaciers in the region.
Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal
NASA Astrophysics Data System (ADS)
Wagnon, Patrick; Vincent, Christian; Shea, Joseph M.; Immerzeel, Walter W.; Kraaijenbrink, Philip; Shrestha, Dibas; Soruco, Alvaro; Arnaud, Yves; Brun, Fanny; Berthier, Etienne; Futi Sherpa, Sonam
2017-04-01
Approximately 25% of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is -0.93 m year-1 or -0.84 m water equivalent per year (w.e. a-1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37mw.e. a-1. The debris-covered portion of the glacier thus has an area averaged mass balance of -1.21+/-0.2mw.e. a-1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8mw.e. a-1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.
NASA Astrophysics Data System (ADS)
Rowan, Ann V.; Egholm, David L.; Quincey, Duncan J.; Glasser, Neil F.
2015-11-01
Many Himalayan glaciers are characterised in their lower reaches by a rock debris layer. This debris insulates the glacier surface from atmospheric warming and complicates the response to climate change compared to glaciers with clean-ice surfaces. Debris-covered glaciers can persist well below the altitude that would be sustainable for clean-ice glaciers, resulting in much longer timescales of mass loss and meltwater production. The properties and evolution of supraglacial debris present a considerable challenge to understanding future glacier change. Existing approaches to predicting variations in glacier volume and meltwater production rely on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. We developed a numerical model that couples the flow of ice and debris and includes important feedbacks between debris accumulation and glacier mass balance. To investigate the impact of debris transport on the response of a glacier to recent and future climate change, we applied this model to a large debris-covered Himalayan glacier-Khumbu Glacier in Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, Khumbu Glacier has lost 34% of its volume while its area has reduced by only 6%. We predict a decrease in glacier volume of 8-10% by AD2100, accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 yr. This detachment will accelerate rates of glacier decay, and similar changes are likely for other debris-covered glaciers in the Himalaya.
Evidence for debris flow gully formation initiated by shallow subsurface water on Mars
Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.
2010-01-01
The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.
NASA Astrophysics Data System (ADS)
Rowan, Ann; Quincey, Duncan; Egholm, David; Gibson, Morgan; Irvine-Fynn, Tristram; Porter, Philip; Glasser, Neil
2016-04-01
Many mountain glaciers are characterised in their lower reaches by thick layers of rock debris that insulate the glacier surface from solar radiation and atmospheric warming. Supraglacial debris modifies the response of these glaciers to climate change compared to glaciers with clean-ice surfaces. However, existing modelling approaches to predicting variations in the extent and mass balance of debris-covered glaciers have relied on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. Moreover, few data exist describing the mass balance of debris-covered glaciers and many observations are only made over short periods of time, but these data are needed to constrain and validate numerical modelling experiments. To investigate the impact of supraglacial debris on the response of a glacier to climate change, we developed a numerical model that couples the flow of ice and debris to include important feedbacks between mass balance, ice flow and debris accumulation. We applied this model to a large debris-covered Himalayan glacier - Khumbu Glacier in the Everest region of Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming air temperatures and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, the volume of Khumbu Glacier has reduced by 34%, while glacier area has reduced by only 6%. We predict a further decrease in glacier volume of 8-10% by AD2100 accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 years. For five months during the 2014 summer monsoon, we measured temperature profiles through supraglacial debris and proglacial discharge on Khumbu Glacier. We found that temperatures at the ice surface beneath 0.4-0.7 m of debris were sufficient to promote considerable amounts of ablation. Moreover, although temperatures within the debris layer decreased with depth at the start of the monsoon, later in the monsoon season thicker debris (0.7 m) appeared to retain more heat close to the glacier surface than thin debris (0.4 m). Remote sensing observations indicate that Khumbu Glacier is losing mass more rapidly than is predicted by our model, particularly as ice cliffs and supraglacial ponds enhance ablation locally, and our field observations suggest an additional mechanism for enhanced mass loss.
Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling
NASA Astrophysics Data System (ADS)
Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.
2016-02-01
In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.
Spaceborne Sensors Track Marine Debris Circulation in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Reahard, Ross; Mitchell, Brandie; Lee, Lucas; Pezold, Blaise; Brook, Chris; Mallett, Candis; Barrett, Shelby; Albin, Aaron
2011-01-01
Marine debris is a problem for coastal areas throughout the world, including the Gulf of Mexico. To aid the NOAA Marine Debris Program in monitoring marine debris dispersal and regulating marine debris practices, sea surface height and height anomaly data provided by the Colorado Center for Astrodynamics Research at the University of Colorado, Boulder, were utilized to help assess trash and other discarded items that routinely wash ashore in southeastern Texas, at Padre Island National Seashore. These data were generated from the NASA radar altimeter satellites TOPEX/Poseidon, Jason 1, and Jason 2, as well as the European altimeter satellites ERS-1, ERS-2 (European Remote Sensing Satellite), and ENVISAT (Environmental Satellite). Sea surface temperature data from MODIS were used to study of the dynamics of the Loop Current. Sea surface height and MODIS data analysis were used to show that warm water in the core of eddies, which periodically separate from the Loop Current, can be as high as 30 cm above the surrounding water. These eddies are known to directly transfer marine debris to the western continental shelf and the elevated area of water can be tracked using satellite radar altimeter data. Additionally, using sea surface height, geostrophic velocity, and particle path data, foretracking and backtracking simulations were created. These simulation runs demonstrated that marine debris on Padre Island National Seashore may arise from a variety of sources, such as commercial fishing/shrimping, the oil and gas industry, recreational boaters, and from rivers that empty into the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Gibson, Morgan J.; Glasser, Neil F.; Quincey, Duncan J.; Mayer, Christoph; Rowan, Ann V.; Irvine-Fynn, Tristram D. L.
2017-10-01
Distribution of supraglacial debris in a glacier system varies spatially and temporally due to differing rates of debris input, transport and deposition. Supraglacial debris distribution governs the thickness of a supraglacial debris layer, an important control on the amount of ablation that occurs under such a debris layer. Characterising supraglacial debris layer thickness on a glacier is therefore key to calculating ablation across a glacier surface. The spatial pattern of debris thickness on Baltoro Glacier has previously been calculated for one discrete point in time (2004) using satellite thermal data and an empirically based relationship between supraglacial debris layer thickness and debris surface temperature identified in the field. Here, the same empirically based relationship was applied to two further datasets (2001, 2012) to calculate debris layer thickness across Baltoro Glacier for three discrete points over an 11-year period (2001, 2004, 2012). Surface velocity and sediment flux were also calculated, as well as debris thickness change between periods. Using these outputs, alongside geomorphological maps of Baltoro Glacier produced for 2001, 2004 and 2012, spatiotemporal changes in debris distribution for a sub-decadal timescale were investigated. Sediment flux remained constant throughout the 11-year period. The greatest changes in debris thickness occurred along medial moraines, the locations of mass movement deposition and areas of interaction between tributary glaciers and the main glacier tongue. The study confirms the occurrence of spatiotemporal changes in supraglacial debris layer thickness on sub-decadal timescales, independent of variation in surface velocity. Instead, variation in rates of debris distribution are primarily attributed to frequency and magnitude of mass movement events over decadal timescales, with climate, regional uplift and erosion rates expected to control debris inputs over centurial to millennial timescales. Inclusion of such spatiotemporal variations in debris thickness in distributed surface energy balance models would increase the accuracy of calculated ablation, leading to a more accurate simulation of glacier mass balance through time, and greater precision in quantification of the response of debris-covered glaciers to climatic change.
Marine debris ingestion by coastal dolphins: what drives differences between sympatric species?
Di Beneditto, Ana Paula Madeira; Ramos, Renata Maria Arruda
2014-06-15
This study compared marine debris ingestion of the coastal dolphins Pontoporia blainvillei and Sotalia guianensis in a sympatric area in Atlantic Ocean. Among the 89 stomach contents samples of P. blainvillei, 14 (15.7%) contained marine debris. For S. guianensis, 77 stomach contents samples were analyzed and only one of which (1.30%) contained marine debris. The debris recovered was plastic material: nylon yarns and flexible plastics. Differences in feeding habits between the coastal dolphins were found to drive their differences regarding marine debris ingestion. The feeding activity of P. blainvillei is mainly near the sea bottom, which increases its chances of ingesting debris deposited on the seabed. In contrast, S. guianensis has a near-surface feeding habit. In the study area, the seabed is the main zone of accumulation of debris, and species with some degree of association with the sea bottom may be local bioindicators of marine debris pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparing two models for post-wildfire debris flow susceptibility mapping
NASA Astrophysics Data System (ADS)
Cramer, J.; Bursik, M. I.; Legorreta Paulin, G.
2017-12-01
Traditionally, probabilistic post-fire debris flow susceptibility mapping has been performed based on the typical method of failure for debris flows/landslides, where slip occurs along a basal shear zone as a result of rainfall infiltration. Recent studies have argued that post-fire debris flows are fundamentally different in their method of initiation, which is not infiltration-driven, but surface runoff-driven. We test these competing models by comparing the accuracy of the susceptibility maps produced by each initiation method. Debris flow susceptibility maps are generated according to each initiation method for a mountainous region of Southern California that recently experienced wildfire and subsequent debris flows. A multiple logistic regression (MLR), which uses the occurrence of past debris flows and the values of environmental parameters, was used to determine the probability of future debris flow occurrence. The independent variables used in the MLR are dependent on the initiation method; for example, depth to slip plane, and shear strength of soil are relevant to the infiltration initiation, but not surface runoff. A post-fire debris flow inventory serves as the standard to compare the two susceptibility maps, and was generated by LiDAR analysis and field based ground-truthing. The amount of overlap between the true locations where debris flow erosion can be documented, and where the MLR predicts high probability of debris flow initiation was statistically quantified. The Figure of Merit in Space (FMS) was used to compare the two models, and the results of the FMS comparison suggest that surface runoff-driven initiation better explains debris flow occurrence. Wildfire can breed conditions that induce debris flows in areas that normally would not be prone to them. Because of this, nearby communities at risk may not be equipped to protect themselves against debris flows. In California, there are just a few months between wildland fire season and the wet season to assess a community's risk and prepare. It is important, therefore, that researchers have a way to quickly and accurately assess the susceptibility for debris flows in recently burned areas.
Orbital debris and meteoroid population as estimated from LDEF impact data
NASA Technical Reports Server (NTRS)
Zhang, Jingchang; Kessler, Donald J.
1995-01-01
Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.
Cleanup Verification Package for the 600-47 Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Cutlip
This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris.
Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia
Eaton, L. Scott; Morgan, Benjamin A.; Kochel, R. Craig; Howard, Alan D.
2003-01-01
A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains.The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles. Radiocarbon dating indicates that debris flow activity since 25,000 YBP has recurred, on average, at least every 2500 years. The presence of stratified slope deposits, emplaced from 27,410 through 15,800 YBP, indicates hillslope stripping and reduced vegetation cover on upland slopes during the Wisconsinan glacial maximum.Regolith generated from mechanical weathering during the Pleistocene collected in low-order stream channels and was episodically delivered to the valley floor by debris flows. Debris fans prograded onto flood plains during the late Pleistocene but have been incised by Holocene stream entrenchment. The fan incision allows Holocene debris flows to largely bypass many of the higher elevation debris fan surfaces and deposit onto the topographically lower surfaces. These episodic, high-magnitude storm events are responsible for transporting approximately half of the sediment from high gradient, low-order drainage basins to debris fans and flood plains.
Sampling supraglacial debris thickness using terrestrial photogrammetry
NASA Astrophysics Data System (ADS)
Nicholson, Lindsey; Mertes, Jordan
2017-04-01
The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.
Estimation of the annual production and composition of C&D Debris in Galicia (Spain).
Martínez Lage, Isabel; Martínez Abella, Fernando; Herrero, Cristina Vázquez; Ordóñez, Juan Luis Pérez
2010-04-01
One of the key aspects that must be taken into consideration within the framework of Sustainable Construction is the management of Construction and Demolition (C&D) Debris. As for other types of waste, specific handling procedures are required to manage C&D Debris; these include reduction, reuse, recycling, and if all other possibilities fail, recovery or disposal. For public planning strategies aimed at the management of C&D Debris to be effective, it is first necessary to have specific knowledge of the type of waste materials generated in a particular region. After verifying that the methods available to determine the production and composition of C&D Debris are limited, this paper presents a procedure to ascertain the production and composition of C&D Debris, in any region. The procedure utilizes data on the surface areas of newly constructed buildings, renovations and demolitions, which are estimated from available data for recent years, as well as information on the quantity of debris generated per surface area in any type of construction site, which is obtained from recently executed constructions or from the ground plans of older buildings. The method proposed here has been applied to Galicia, one of Spain's autonomous communities, for which the quantity and composition of C&D Debris have been estimated for the horizon year 2011. Copyright 2009 Elsevier Ltd. All rights reserved.
Scales of Spatial Heterogeneity of Plastic Marine Debris in the Northeast Pacific Ocean
Goldstein, Miriam C.; Titmus, Andrew J.; Ford, Michael
2013-01-01
Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the “Great Pacific Garbage Patch,” has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20–40°N, 120–155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m−2 and in Fall 2010 was 0.021 particles m−2, but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm2. Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris. PMID:24278233
Scales of spatial heterogeneity of plastic marine debris in the northeast pacific ocean.
Goldstein, Miriam C; Titmus, Andrew J; Ford, Michael
2013-01-01
Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the "Great Pacific Garbage Patch," has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20-40°N, 120-155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m(-2) and in Fall 2010 was 0.021 particles m(-2), but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm(2). Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris.
Small-Scale Variations in Melt of the Debris-Covered Emmons Glacier, Mount Rainier, USA
NASA Astrophysics Data System (ADS)
Dits, T. M.; Nelson, L. I.; Moore, P. L.; Pasternak, J. H.
2014-12-01
In a warming climate the vitality of mid-latitude glaciers is an important measure of local response to global climate change. However, debris-covered glaciers can respond to climate change in a nonlinear manner. Supraglacial debris alters the energy balance at the atmosphere-glacier interface compared with debris-free glaciers, and can result in both accelerated and reduced ablation through complex processes that occur on a variety of scales. Emmons Glacier, on the northeast slope of Mount Rainier (Washington, USA), offers an opportunity to study these processes in supraglacial debris that are otherwise difficult to study in situ (e.g. Himalayan glaciers). Emmons Glacier underwent a steady advance in the late 20th century despite a warming climate, in part due to increased surface debris cover. Key energy balance variables were measured in August of 2013 and 2014 using a temporary weather station installed directly on the debris-covered terminus of Emmons Glacier. Ablation of debris-covered ice was monitored in situ with ablation stakes drilled into the debris-covered ice in a 3600 m2 grid, a size comparable to a single pixel in leading thermal remote-sensing platforms. Debris thickness at the study site ranged from 3-50 cm at the ablation stakes, and textures varied from sand and gravel to large boulders with open pore space. Daily ablation rates varied by a factor of 5 in this small area and were affected by debris thickness, texture, and moisture as well as local surface slope and aspect. On this scale, ablation rates correlated better with debris surface temperature than air temperature. Spatial gradients in ablation rate may strongly influence long-term melt rates through evolving surface topography and consequent redistribution of supraglacial debris, but cannot be resolved using thermal imagery from most current satellite platforms. A preliminary field experiment with a ground-based thermal infrared camera yielded temperature measurements with fine spatial resolution (<1m pixel) and compared well with direct temperature measurements of the debris surface. This result suggests that high resolution ground-based or low-altitude (UAV) thermal imagery could become a valuable tool for monitoring change in debris-covered glaciers.
NASA Astrophysics Data System (ADS)
Steiner, J. F.; Stigter, E.; Litt, M.; Shea, J.; Bierkens, M. F.; Immerzeel, W. W.
2017-12-01
Debris-covered glaciers play an important role in the water cycle in high altitude catchments in the Himalaya. The melt dynamics of these glaciers are complex as a result of the debris. A thin debris layer (up to a few cm) may act as a facilitator of melt, whereas a thick layer serves primarily as an insulator. The debris cover itself shows a strong diurnal variation in temperature and humidity resulting in a complex interaction with the atmospheric boundary layer (ABL). Energy balance models are a common way to quantify sub-debris melt, but the importance of turbulent fluxes in this energy balance have so far been poorly investigated. We hypothesize that they may play a substantial role during phases of wetting and drying. In this study, ABL characteristics and surface turbulent fluxes are measured using an automatic weather station including an eddy-correlation (EC) system on the debris-covered Lirung glacier in Nepal over a 10 day period in late 2016, during the transition period from monsoon to the drier post-monsoon. The measurements are combined with surface temperature measurements and thermal UAV flights covering the footprint area of the EC tower to quantify the surface fluxes over a larger area. Our results show that turbulent fluxes do play a substantial role in the energy balance of debris-covered glaciers, and need to be accounted for to accurately simulate glacier melt. The EC tower results are subsequently evaluated against a number of different bulk approaches to quantify sensible and latent heat fluxes and are evaluated against turbulence characteristics. If found accurate enough, these approaches require less advanced measurement set-ups and can be applied on a wider scale.
Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.
2008-01-01
Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows. ?? 2007.
Serafino, Cinzia; Gallina, Giuseppe; Cumbo, Enzo; Ferrari, Marco
2004-03-01
To evaluate surface cleanliness of root canal walls along post space after endodontic treatment using 2 different irrigant regimens, obturation techniques, and post space preparation for adhesive bonding. Forty teeth, divided into 4 groups, were instrumented, using Ni-Ti rotary files, irrigated with NaOCl or NaOCl+EDTA and obturated with cold lateral condensation (CLC) or warm vertical condensation (WVC) of gutta-percha. After post space preparation, etching, and washing procedure, canal walls were observed using a scanning electron microscope (SEM). Amount of debris, smear layer, sealer/gutta-percha remnants, and visibility of open tubules were rated. Higher amounts of rough debris, large sealer/gutta-percha remnants, thick smear layer, and no visibility of tubule orifices were recorded in all the groups at apical level of post space. At middle and coronal levels areas of clean dentin, alternating with areas covered by thin smear layer, smaller debris, gutta-percha remnants, and orifices of tubules partially or totally occluded by plugs were frequently observed. After endodontic treatment, obturation, and post space preparation SEM analysis of canal walls along post space shows large areas (covered by smear layer, debris, and sealer/gutta-percha remnants) not available for adhesive bonding and resin cementation of fiber posts.
NASA Technical Reports Server (NTRS)
Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.
2016-01-01
Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for the 3D imager to accurately measure the average cross sectional area of objects with known dimensions.
Wildfire impacts on the processes that generate debris flows in burned watersheds
Parise, M.; Cannon, S.H.
2012-01-01
Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However, only 12% of documented cases exhibited this process. When they do occur, the landslide failures range in thickness from a few tens of centimeters to more than 6 m, and generally involve the soil and colluvium-mantled hillslopes. Surficial landslide failures in burned areas most frequently occur in response to prolonged periods of storm rainfall, or prolonged rainfall in combination with rapid snowmelt or rain-on-snow events. ?? 2011 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Chand, M. B.; Kayastha, R. B.; Armstrong, R. L.
2016-12-01
Himalayan glaciers are characterized by the presence of extensive debris cover in ablation areas. It is essential to understand the thermal properties and assess the effect of debris in glacier ice melt rate in debris-covered glaciers. Meteorological conditions are recorded on the lower ablation zone of the debris-covered Ponkar Glacier, Bhimthang, Manang, Nepal during pre-monsoon season of 2016. Debris temperature at different depths is monitored for winter and pre-monsoon season to estimate the effective heat conduction. Similarly, melt under the debris is also measured for pre-monsoon season. The incoming and outgoing shortwave radiations are measured at 2 m above the surface and other variables including air temperature, humidity, wind speed, and precipitation are used to estimate surface energy balance. Energy flux is dominated by net shortwave radiation as the foremost source of melting, where contribution of net longwave radiation, sensible, latent, and conductive heat flux is low. The daily average temperature gradients of the debris layer from surface to 30 cm below for winter and pre-monsoon seasons are 0.04 oC cm-1 and 0.23 oC cm-1, respectively. Debris thermal conductivities are 0.30 W m-1 K-1 and 1.69 W m-1 K-1 for the winter and pre-monsoon season, respectively. The higher value of conductivity during pre-monsoon season is due to the higher air temperature and increased precipitation compared to the winter months. The daily mean measured ice melt under a debris layer of 11-20 cm ranges from 0.6 to 1.1 cm. Estimation of melt at a few points can be used to estimate the general melting pattern for the glacier surface, which can be improved by using the spatial distribution of debris thickness and surface temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, B.; Kahabka, J.
1995-06-01
This paper discusses the use of a mechanical brush cleaning technology recently used to remove biofouling from the Circulating Water (CW) System at New York Power Authority`s James A. FitzPatrick Nuclear Power Plant. The FitzPatrick plant had previously used chemical molluscicide to treat zebra mussels in the CW system. Full system treatment was performed in 1992 with limited forebay/screenwell treatment in 1993. The New York Power Authority (NYPA) decided to conduct a mechanical cleaning of the intake system in 1994. Specific project objectives included: (1) Achieve a level of surface cleaniness greater than 98%; (2) Remove 100% of debris, bothmore » existing sediment and debris generated as a result of cleaning; (3) Inspect all surfaces and components, identifying any problem areas; (4) Complete the task in a time frame within the 1994-95 refueling outage schedule window, and; (5) Determine if underwater mechanical cleaning is a cost-effective zebra mussel control method suitable for future application at FitzPatrick. A pre-cleaning inspection, including underwater video photography, was conducted of each area. Cleaning was accomplished using diver-controlled, multi-brush equipment included the electro-hydraulic powered Submersible Cleaning and Maintenance Platform (SCAMP), and several designs of hand-held machines. The brushes swept all zebra mussels off surfaces, restoring concrete and metal substrates to their original condition. Sensitive areas including pump housings, standpipes, sensor piping and chlorine injection tubing, were cleaned without degradation. Submersible vortex vacuum pumps were used to remove debris from the cavity. More than 46,000 ft{sup 2} of surface area was cleaned and over 460 cubic yards of dewatered debris were removed. As each area was completed, a post-clean inspection with photos and video was performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, R.E.; Tiner, P.F.; Williams, J.K.
1992-08-01
An inventory of surface debris in designated grid blocks at the White Wing Scrap Yard [Waste Area Grouping 11 (WAG 11)] was conducted intermittently from February through June 1992 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Environmental Restoration (ER) Program personnel. The objectives of this project are outlined in the following four phases: (1) estimate the amount (volume) and type (e.g., glass, metal and plastics) of surface waste material in 30 designated grid blocks (100- by 100-ft grids); (2) conduct limited air samplingmore » for organic chemical pollutants at selected locations (e.g., near drums, in holes, or other potentially contaminated areas); (3) conduct a walkover gamma radiation scan extending outward (approximately 50 ft) beyond the proposed location of the WAG 11 perimeter fence; and (4) recommend one grid block as a waste staging area. This recommendation is based on location and accessibility for debris staging/transport activities and on low levels of gamma radiation in the grid block.« less
Surface debris inventory at White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, R.E.; Tiner, P.F.; Williams, J.K.
1992-08-01
An inventory of surface debris in designated grid blocks at the White Wing Scrap Yard [Waste Area Grouping 11 (WAG 11)] was conducted intermittently from February through June 1992 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Environmental Restoration (ER) Program personnel. The objectives of this project are outlined in the following four phases: (1) estimate the amount (volume) and type (e.g., glass, metal and plastics) of surface waste material in 30 designated grid blocks (100- by 100-ft grids); (2) conduct limited air samplingmore » for organic chemical pollutants at selected locations (e.g., near drums, in holes, or other potentially contaminated areas); (3) conduct a walkover gamma radiation scan extending outward (approximately 50 ft) beyond the proposed location of the WAG 11 perimeter fence; and (4) recommend one grid block as a waste staging area. This recommendation is based on location and accessibility for debris staging/transport activities and on low levels of gamma radiation in the grid block.« less
NASA Astrophysics Data System (ADS)
Lattin, G.
2016-02-01
Monitoring debris at sea presents challenges not found in beach or riverine habitats, and is typically done with trawl nets of various apertures and mesh sizes, which limits the size of debris captured and the area surveyed. To partially overcome these limitations in monitoring floating debris, a Quadcopter drone with video transmitting and recording capabilities was deployed at the beginning and the end of manta trawl transects within the North Pacific Subtropical Gyre's eastern convergence zone. Subsurface tucker trawls at 10 meters were conducted at the same time as the manta trawls, in order to assess the effect of sea state on debris dispersal. Trawls were conducted on an 11 station grid used repeatedly since 1999. For drone observations, the operator and observer were stationed on the mother ship while two researchers collected observed debris using a rigid inflatable boat (RIB). The drone was flown to a distance of approximately 100 meters from the vessel in a zigzag or circular search pattern. Here we examine issues arising from drone deployment during the survey: 1) relation of area surveyed by drone to volume of water passing through trawl; 2) retrieval of drone-spotted and associated RIB spotted debris. 3) integrating post- flight image analysis into retrieved debris quantification; and 4) factors limiting drone effectiveness at sea. During the survey, debris too large for the manta trawl was spotted by the drone, and significant debris not observed using the drone was recovered by the RIB. The combination of drone sightings, RIB retrieval, and post flight image analysis leads to improved monitoring of debris at sea. We also examine the issue of the distribution of floating debris during sea states varying from 0-5 by comparing quantities from surface manta trawls to the tucker trawls at a nominal depth of 10 meters.
NASA Astrophysics Data System (ADS)
Pinheiro, Antonio L. B.; das Neves, Jerlucia C.; de Castro, Jurema F. L.; Santos, Jose Z. L. V.; Ribeiro de Sena, Kesia X. d. F.; Brugnera, Aldo, Jr.; Zanin, Fatima A. A.
2001-04-01
Wound infection constitutes a big risk for patients and it is usually associated to increased morbidity, mortality and hospital costs. It is accepted that local treatment of these infections is effective. The aim of this study was to compare histologically the effects of the CO2 laser and Chlorohexidine Gluconate on Staphylococcus aureus infected cutaneous wounds. Standardized wounds were infected with Staphylococcus aureus and treated during six days as follows: Group I: Chlorohexidine Gluconate, 1 min, six days; Group II: CO2 Laser, one day, maintaining surface debris; Group III: CO2 Laser, one day, removing the surface debris. Seven days after wounding the animals were killed and specimens taken for light microscopy. On control wounds, it was observed epithelial ulceration, and neutrophylic and lymphoplasmocitary inflammatory infiltrate. On group II, there was epithelial hyperplasia, areas of ulceration and intense neutrophylic and lymphoplasmocitary inflammatory infiltrate. On the other hand, on group III, there was a neutrophylic inflammatory infiltrate underneath the surface debris and below that intense lymphoplasmocitary inflammatory infiltrate. When the surface debris was removed, there was epithelial ulceration and mild lymphoplasmocitary inflammatory infiltrate and fibroblasts and collagen fibers. The result of this study shows that infected wounds treated with 4 percent Chlorohexidine shows a more pronounced inflammatory reaction when compared to that observed when the CO2 Laser is used, especially when surface debris are removed; Surface debris removal on Laser treated wounds results ona better and quicker healing; the surface debris may act as a culture medium for bacterial growth, or because of its characteristics, it may act as local irritant and delay healing.
Di Beneditto, Ana Paula Madeira; Siciliano, Salvatore
2017-12-15
The Magellanic penguin (Spheniscus magellanicus) is a marine sentinel for the southern Atlantic Ocean that is a proxy of environmental quality. The presence of marine debris (macro-debris) in the stomach contents of emaciated juvenile penguins stranded from 21°S to 23°S was compared at different times (2000 and 2008), and the debris ingestion pathway was determined. The frequency of marine debris in the stomachs doubled in less than a decade, and flexible plastics remained the main ingested item over time (68-70%). The pelagic octopus, Argonauta nodosa, which inhabits the sea surface, was the most important prey species recovered in the stomach contents. The poor physical condition of the penguins that reach the northern migration limit (study area) reduces the diving capacity of the animals and increases their vulnerability to debris ingestion. Considering their preferred prey and physical condition, we conclude that the penguins likely ingested the marine debris in surface waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nyman, Petter; Sherwin, Christopher; Sheridan, Gary; Lane, Patrick
2015-04-01
This study uses aerial imagery and field surveys to develop a statistical model for determining debris flow susceptibility in a landscape with variable terrain, soil and vegetation properties. A measure of landscape scale debris flow response was obtained by recording all debris flow affected drainage lines in the first year after fire in a ~258 000 ha forested area that was burned by the 2009 Black Saturday Wildfire in Victoria. A total of 12 500 points along the drainage network were sampled from catchments ranging in size from 0.0001 km2to 75 km2. Local slope and the attributes of the drainage areas (including the spatially averaged peak intensity) were extracted for each sample point. A logistic regression was used to model how debris flow susceptibility varies with the normalised burn ratio (dNBR, from Landsat imagery), rainfall intensity (from rainfall radar), slope (from DEM) and aridity (from long-term radiation, temperature and rainfall data).The model of debris flow susceptibility produced a good fit with the observed debris flow response of drainage networks within the burned area and was reliable in distinguishing between drainage lines which produced debris flows and those which didn't. The performance of the models was tested through multiple iterations of fitting and testing using unseen data. The local channel slope captured the effect of scale on debris flow susceptibility with debris flow probability approaching zero as the channel slope decreased with increasing drainage area. Aridity emerged as an important predictor of debris flow susceptibility, with increased likelihood of debris flows in drier parts of the landscape, thus reinforcing previous research in the region showing that post-fire surface runoff from wet Eucalypt forests is insufficient for initiating debris flows. Fire severity, measured as dNBR, was also a very important predictor. The inclusion of local channel slope as a predictor of debris flow susceptibility proved to be an effective approach for implicitly incorporating scale and relief as parameters. When combined with models of debris flow magnitude the results from this study can be used obtain continuous probability-magnitude relations of sediment flux from debris flows for drainage networks across entire burned areas.
Remote sensing-based detection and quantification of roadway debris following natural disasters
NASA Astrophysics Data System (ADS)
Axel, Colin; van Aardt, Jan A. N.; Aros-Vera, Felipe; Holguín-Veras, José
2016-05-01
Rapid knowledge of road network conditions is vital to formulate an efficient emergency response plan following any major disaster. Fallen buildings, immobile vehicles, and other forms of debris often render roads impassable to responders. The status of roadways is generally determined through time and resource heavy methods, such as field surveys and manual interpretation of remotely sensed imagery. Airborne lidar systems provide an alternative, cost-effective option for performing network assessments. The 3D data can be collected quickly over a wide area and provide valuable insight about the geometry and structure of the scene. This paper presents a method for automatically detecting and characterizing debris in roadways using airborne lidar data. Points falling within the road extent are extracted from the point cloud and clustered into individual objects using region growing. Objects are classified as debris or non-debris using surface properties and contextual cues. Debris piles are reconstructed as surfaces using alpha shapes, from which an estimate of debris volume can be computed. Results using real lidar data collected after a natural disaster are presented. Initial results indicate that accurate debris maps can be automatically generated using the proposed method. These debris maps would be an invaluable asset to disaster management and emergency response teams attempting to reach survivors despite a crippled transportation network.
Pinheiro, Antonio Luiz B; Cavalcanti Das Neves, Jérläcia; Lisboa De Castro, Jurema Freire; Lima Verde Santos, José Zilton; Da Fonseca Ribeiro De Sena, Kêsia Xisto; Brugnera, Aldo; Zanin, Fátima A; Matos De Oliveira, Marcos André
2002-06-01
The aim of this study was to compare histologically the effects of CO2 laser and chlorohexidine gluconate (4%) on Staphylococcus aureus-infected cutaneous wounds. Wound infection constitutes a big risk for patients, and it is usually associated with increased morbidity, mortality and hospital costs. It is accepted that local treatment of these infections is effective. Standardized wounds created on the dorsum of 36 rats were infected with Staphylococcus aureus and treated during 6 days as follows: group I, chlorohexidine gluconate (4%) applied to the wound surface during 1 min during 6 days; group II, single CO2 laser irradiation (8 W, CW, unfocused, 8-cm focal distance, 81,530 W/cm(2)), maintaining surface debris; group III, single CO2 laser irradiation (8 W, CW, unfocused, 8-cm focal distance, 81,530 W/cm(2)), removing the surface debris. Seven days after wounding, the animals were killed and specimens taken for light microscopy. On control wounds, epithelial ulceration and neutrophylic and lymphoplasmocitary inflammatory infiltrate was observed. On group II, there was epithelial hyperplasia, areas of ulceration and intense neutrophylic and lymphoplasmocitary inflammatory infiltrate. In group III, there was a neutrophylic inflammatory infiltrate underneath the surface debris and below that intense lymphoplasmocitary inflammatory infiltrate. When the surface debris was removed (group IV), there was epithelial ulceration and mild lymphoplasmocitary inflammatory infiltrate and fibroblasts and collagen fibers. The results of this study show that infected wounds treated with 4% chlorohexidine show a more pronounced inflammatory reaction when compared to that observed when the CO2 laser is used, especially when surface debris are removed; surface debris removal on laser-treated wounds results in better and more rapid healing; the surface debris may act as a culture medium for bacterial growth or, because of its characteristics, it may act as a local irritant and delay healing.
Modelling debris transport within glaciers by advection in a full-Stokes ice flow model
NASA Astrophysics Data System (ADS)
Wirbel, Anna; Jarosch, Alexander H.; Nicholson, Lindsey
2017-04-01
As mountain glaciers recede worldwide, an increasing proportion of the remaining glacierized area is expected to become debris covered. The spatio-temporal development of a surface debris cover has profound effects on the glacier behaviour and meltwater generation, yet little is known about how glacier dynamics influence the spatial distribution of an emerging debris cover. Motivated by this lack of understanding, we present a coupled model to simulate advection and resulting deformation of debris features within glaciers. The finite element model developed in python consists of an advection scheme coupled to a full-Stokes ice flow model, using FEniCS as the numerical framework. We show results from numerical tests that demonstrate its suitability to model advection-dominated transport of concentration in a divergence-free velocity field. The capabilities of the coupled model are demonstrated by simulating transport of debris features of different initial size, shape and location through modelled velocity fields of representative mountain glaciers. The results indicate that deformation of initial debris inputs, as a consequence of being transported through the glacier, plays an important role in determining the location and rate of debris emergence at the glacier surface. The presented work lays the foundation for comprehensive simulations of realistic patterns of debris cover, their spatial and temporal variability and the timescales over which debris covers can form.
NASA Technical Reports Server (NTRS)
Casey, Kimberly Ann; Kaab, Andreas
2012-01-01
We demonstrate spectral estimation of supraglacial dust, debris, ash and tephra geochemical composition from glaciers and ice fields in Iceland, Nepal, New Zealand and Switzerland. Surface glacier material was collected and analyzed via X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD) for geochemical composition and mineralogy. In situ data was used as ground truth for comparison with satellite derived geochemical results. Supraglacial debris spectral response patterns and emissivity-derived silica weight percent are presented. Qualitative spectral response patterns agreed well with XRF elemental abundances. Quantitative emissivity estimates of supraglacial SiO2 in continental areas were 67% (Switzerland) and 68% (Nepal), while volcanic supraglacial SiO2 averages were 58% (Iceland) and 56% (New Zealand), yielding general agreement. Ablation season supraglacial temperature variation due to differing dust and debris type and coverage was also investigated, with surface debris temperatures ranging from 5.9 to 26.6 C in the study regions. Applications of the supraglacial geochemical reflective and emissive characterization methods include glacier areal extent mapping, debris source identification, glacier kinematics and glacier energy balance considerations.
What do We Know the Snow Darkening Effect Over Himalayan Glaciers?
NASA Technical Reports Server (NTRS)
Yasunari, T. J.; Lau, K.-U.; Koster, R. D.; Suarez, M.; Mahanama, S. P.; Gautam, R.; Kim, K. M.; Dasilva, A. M.; Colarco, P. R.
2011-01-01
The atmospheric absorbing aerosols such as dust, black carbon (BC), organic carbon (OC) are now well known warming factors in the atmosphere. However, when these aerosols deposit onto the snow surface, it causes darkening of snow and thereby absorbing more energy at the snow surface leading to the accelerated melting of snow. If this happens over Himalayan glacier surface, the glacier meltings are expected and may contribute the mass balance changes though the mass balance itself is more complicated issue. Glacier has mainly two parts: ablation and accumulation zones. Those are separated by the Equilibrium Line Altitude (ELA). Above and below ELA, snow accumulation and melting are dominant, respectively. The change of ELA will influence the glacier disappearance in future. In the Himalayan region, many glacier are debris covered glacier at the terminus (i.e., in the ablation zone). Debris is pieces of rock from local land and the debris covered parts are probably not affected by any deposition of the absorbing aerosols because the snow surface is already covered by debris (the debris covered parts have different mechanism of melting). Hence, the contribution of the snow darkening effect is considered to be most important "over non debris covered part" of the Himalayan glacier (i.e., over the snow or ice surface area). To discuss the whole glacier retreat, mass balance of each glacier is most important including the discussion on glacier flow, vertical compaction of glacier, melting amount, etc. The contribution of the snow darkening is mostly associated with "the snow/ice surface melting". Note that the surface melting itself is not always directly related to glacier retreats because sometimes melt water refreezes inside of the glacier. We should discuss glacier retreats in terms of not only the snow darkening but also other contributions to the mass balance.
Cózar, Andrés; Martí, Elisa; Duarte, Carlos M.; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J.; Eguíluz, Victor M.; González-Gordillo, J. Ignacio; Pedrotti, Maria L.; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier
2017-01-01
The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris. PMID:28439534
Cózar, Andrés; Martí, Elisa; Duarte, Carlos M; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J; Eguíluz, Victor M; González-Gordillo, J Ignacio; Pedrotti, Maria L; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier
2017-04-01
The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.
NASA Astrophysics Data System (ADS)
Grindrod, Peter M.; Fawcett, Stephen A.
2011-10-01
Lobate debris aprons are common features in the mid-latitudes of Mars that are assumed to be the result of the flow of ice-rich material. We produce high-resolution digital elevation models of two of these features in the Tempe Terra region of Mars using HiRISE stereo images. We identify two main topographic features of different wavelength using a power spectrum analysis approach. Short wavelength features, between approximately 10 and 20 m in length, correspond to a polygonal surface texture present throughout our study area. Long wavelength features, between approximately 700 and 1800 m in length, correspond to broad ridges that are up to 20 m in amplitude. We interpret both topographic signals to be the likely result of climate change affecting the debris contribution and/or the flow regime of the lobate debris aprons. The apparent surface age of about 300 Ma could be evidence of an astronomical forcing mechanism recorded in these lobate debris aprons at this time in Mars' history.
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.
2003-01-01
Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.
Fazey, Francesca M C; Ryan, Peter G
2016-03-01
Recent estimates suggest that roughly 100 times more plastic litter enters the sea than is found floating at the sea surface, despite the buoyancy and durability of many plastic polymers. Biofouling by marine biota is one possible mechanism responsible for this discrepancy. Microplastics (<5 mm in diameter) are more scarce than larger size classes, which makes sense because fouling is a function of surface area whereas buoyancy is a function of volume; the smaller an object, the greater its relative surface area. We tested whether plastic items with high surface area to volume ratios sank more rapidly by submerging 15 different sizes of polyethylene samples in False Bay, South Africa, for 12 weeks to determine the time required for samples to sink. All samples became sufficiently fouled to sink within the study period, but small samples lost buoyancy much faster than larger ones. There was a direct relationship between sample volume (buoyancy) and the time to attain a 50% probability of sinking, which ranged from 17 to 66 days of exposure. Our results provide the first estimates of the longevity of different sizes of plastic debris at the ocean surface. Further research is required to determine how fouling rates differ on free floating debris in different regions and in different types of marine environments. Such estimates could be used to improve model predictions of the distribution and abundance of floating plastic debris globally. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tracking the sources and sinks of local marine debris in Hawai'i.
Carson, Henry S; Lamson, Megan R; Nakashima, Davis; Toloumu, Derek; Hafner, Jan; Maximenko, Nikolai; McDermid, Karla J
2013-03-01
Plastic pollution has biological, chemical, and physical effects on marine environments and economic effects on coastal communities. These effects are acute on southeastern Hawai'i Island, where volunteers remove 16 metric tons of debris annually from a 15 km coastline. Although the majority is foreign-origin, a portion is locally-generated. We used floating debris-retention booms in two urban waterways to measure the input of debris from Hilo, the island's largest community, and released wooden drifters in nearby coastal waters to track the fate of that debris. In 205 days, 30 kilograms of debris (73.6% plastic) were retained from two watersheds comprising 10.2% of Hilo's developed land area. Of 851 wooden drifters released offshore of Hilo in four events, 23.3% were recovered locally, 1.4% at distant locations, and 6.5% on other islands. Comparisons with modeled surface currents and wind were mixed, indicating the importance of nearshore and tidal dynamics not included in the model. This study demonstrated that local pollutants can be retained nearby, contribute to the island's debris-accumulation area, and quickly contaminate other islands. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mobile system for microwave removal of concrete surfaces
White, Terry L.; Bigelow, Timothy S.; Schaich, Charles R.; Foster, Jr., Don
1997-01-01
A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.
Mobile system for microwave removal of concrete surfaces
White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.
1997-06-03
A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.
Automated detection of ice cliffs within supraglacial debris cover
NASA Astrophysics Data System (ADS)
Herreid, Sam; Pellicciotti, Francesca
2018-05-01
Ice cliffs within a supraglacial debris cover have been identified as a source for high ablation relative to the surrounding debris-covered area. Due to their small relative size and steep orientation, ice cliffs are difficult to detect using nadir-looking space borne sensors. The method presented here uses surface slopes calculated from digital elevation model (DEM) data to map ice cliff geometry and produce an ice cliff probability map. Surface slope thresholds, which can be sensitive to geographic location and/or data quality, are selected automatically. The method also attempts to include area at the (often narrowing) ends of ice cliffs which could otherwise be neglected due to signal saturation in surface slope data. The method was calibrated in the eastern Alaska Range, Alaska, USA, against a control ice cliff dataset derived from high-resolution visible and thermal data. Using the same input parameter set that performed best in Alaska, the method was tested against ice cliffs manually mapped in the Khumbu Himal, Nepal. Our results suggest the method can accommodate different glaciological settings and different DEM data sources without a data intensive (high-resolution, multi-data source) recalibration.
Spatial and temporal patterns of debris flow deposition in the Oregon Coast Range, USA
May, Christine L.; Gresswell, Robert E.
2004-01-01
Patterns of debris-flow occurrence were investigated in 125 headwater basins in the Oregon Coast Range. Time since the previous debris-flows was established using dendrochronology, and recurrence interval estimates ranged from 98 to 357 years. Tributary basins with larger drainage areas had a greater abundance of potential landslide source areas and a greater frequency of scouring events compared to smaller basins. The flux rate of material delivered to the confluence with a larger river influenced the development of small-scale debris-flow fans. Fans at the mouths of tributary basins with smaller drainage areas had a higher likelihood of being eroded by the mainstem river in the interval between debris-flows, compared to bigger basins that had larger, more persistent fans. Valley floor width of the receiving channel also influenced fan development because it limited the space available to accommodate fan formation. Of 63 recent debris-flows, 52% delivered sediment and wood directly to the mainstem river, 30% were deposited on an existing fan before reaching the mainstem, and 18% were deposited within the confines of the tributary valley before reaching the confluence. Spatial variation in the location of past and present depositional surfaces indicated that sequential debris-flow deposits did not consistently form in the same place. Instead of being spatially deterministic, results of this study suggest that temporally variable and stochastic factors may be important for predicting the runout length of debris-flows.
Glacier Surface Lowering and Stagnation in the Manaslu Region of Nepal
NASA Astrophysics Data System (ADS)
Robson, B. A.; Nuth, C.; Nielsen, P. R.; Hendrickx, M.; Dahl, S. O.
2015-12-01
Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.
Debris thickness patterns on debris-covered glaciers
NASA Astrophysics Data System (ADS)
Anderson, Leif S.; Anderson, Robert S.
2018-06-01
Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.
Radionuclide activity concentrations in forest surface fuels at the Savannah River site
Anna M. Hejl; Roger D. Ottmar; G. Timothy Jannik; Teresa P. Eddy; Stephen I. Rathbun; Adwoa A. Commodore; John L. Pearce; Luke P. Naeler
2013-01-01
A study was undertaken at the United States Department of Energy's Savannah River Site (SRS), Aiken, South Carolina to investigate radionuclide activity concentrations in litter and duff from select areas at SRS. Litter (i.e., vegetative debris) and duff (i.e., highly decomposed vegetative debris) can often be the major fuels consumed during prescribed burns and...
Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic.
Lebreton, L; Slat, B; Ferrari, F; Sainte-Rose, B; Aitken, J; Marthouse, R; Hajbane, S; Cunsolo, S; Schwarz, A; Levivier, A; Noble, K; Debeljak, P; Maral, H; Schoeneich-Argent, R; Brambini, R; Reisser, J
2018-03-22
Ocean plastic can persist in sea surface waters, eventually accumulating in remote areas of the world's oceans. Here we characterise and quantify a major ocean plastic accumulation zone formed in subtropical waters between California and Hawaii: The Great Pacific Garbage Patch (GPGP). Our model, calibrated with data from multi-vessel and aircraft surveys, predicted at least 79 (45-129) thousand tonnes of ocean plastic are floating inside an area of 1.6 million km 2 ; a figure four to sixteen times higher than previously reported. We explain this difference through the use of more robust methods to quantify larger debris. Over three-quarters of the GPGP mass was carried by debris larger than 5 cm and at least 46% was comprised of fishing nets. Microplastics accounted for 8% of the total mass but 94% of the estimated 1.8 (1.1-3.6) trillion pieces floating in the area. Plastic collected during our study has specific characteristics such as small surface-to-volume ratio, indicating that only certain types of debris have the capacity to persist and accumulate at the surface of the GPGP. Finally, our results suggest that ocean plastic pollution within the GPGP is increasing exponentially and at a faster rate than in surrounding waters.
NASA Astrophysics Data System (ADS)
Bosson, Jean-Baptiste; Lambiel, Christophe
2014-05-01
The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on ice melt is mitigated and delayed. As well, debris-covered glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow cover, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former ice-cemented sediments, the negative mass balance may have led to the formation of ice-cored rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary ice, high mountain debris-covered glacier systems can contain interstitial magmatic ice. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead ice in deglaciated areas, the current extent of debris-covered glacier can be difficult to point out. Thus, the whole system, according to Little Ice Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-covered and only few ice outcrops in the upper slopes still witness the existence of former glaciers. Electrical resistivity tomographies, kinematic data and ground surface temperature show that heterogeneous responses to climate forcing are occurring despites their small areas (> 0.3 km2). This complex situation is related to Holocene climate history and especially to glacier systems evolution since LIA. The current dynamics depend of ground ice nature and distribution. Five main behaviours can be highlighted: - Debris covered glacier areas are the most active. Their responses to climate forcing are relatively fast, especially through massive ice melt-out each summer. - Ice-cored rock glacier areas are quite active. The existence of massive glacier ice under few meters of debris explain the important surface lowering during the snow free period . - Ice-cemented rock glacier areas are characterised by winter and summer subhorizontal downslope creeping. - Moraine areas containing dead ice have heterogeneous activities (directions and values of detected movements) related to the ice vanishing. - Deglaciated moraine areas are almost inactive, except modest superficial paraglacial rebalancing.
The healing of disturbed hillslopes by gully gravure
Osterkamp, W.R.; Toy, T.J.
1994-01-01
Results of accelerated erosion on certain constructed surfaces in southeastern Arizona appear similar to those described by Bryan as gully gravure. Twenty cross-section excavations in eight rills inclised into silt-rich lacustrine and fluvial deposits reveal partial filling of the rills by debris derived from overyling fluvial sand, gravel, and cobbles. Interstices of the coarse material gradually fill with fine-grained erosion products, decreasing permeability of the fill and deflecting subsequent runoff to the margins of the fill. Rills and rill fillings thus increase in width with time, and complete veneering of the surface by coarse debris ultimately may occur. Through incision, filling, lateral planation, and armoring, channels of the dissected surface heal and the new hillslope approaches an equilibrium condition. Natural hillslopes in the area with similar geologic conditions have inclinations of 16??-22??, have generally unbroken veneers of coarse debris, and appear subject to the same erosional processes identified at constructed hillslopes. -from Authors
Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona
Yanites, Brian J.; Webb, Robert H.; Griffiths, Peter G.; Magirl, Christopher S.
2006-01-01
Flow regulation by large dams affects downstream flow competence and channel maintenance. Debris flows from 740 tributaries in Grand Canyon, Arizona, transport coarse‐grained sediment onto debris fans adjacent to the Colorado River. These debris fans constrict the river to form rapids and are reworked during river flows that entrain particles and transport them downstream. Beginning in 1963, flood control operations of Glen Canyon Dam limited the potential for reworking of aggraded debris fans. We analyzed change in debris fans at the mouths of 75‐Mile and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented with ground surveys performed from 1987 to 2005. Our results quantify the debris fan aggradation that resulted from debris flows from 1984 to 2003. Volume, area, and river constriction increased at both debris fans. Profiles of the two debris fans show that net aggradation occurred in the middle of debris fans at stages above maximum dam releases, and surface shape shifted from concave to convex. Dam releases above power plant capacity partially reworked both debris fans, although reworking removed much less sediment than what was added by debris flow deposition. Large dam releases would be required to create additional reworking to limit the rate of debris fan aggradation in Grand Canyon.
NASA Astrophysics Data System (ADS)
Cama, M.; Lombardo, L.; Conoscenti, C.; Rotigliano, E.
2017-07-01
Debris flows can be described as rapid gravity-induced mass movements controlled by topography that are usually triggered as a consequence of storm rainfalls. One of the problems when dealing with debris flow recognition is that the eroded surface is usually very shallow and it can be masked by vegetation or fast weathering as early as one-two years after a landslide has occurred. For this reason, even areas that are highly susceptible to debris flow might suffer of a lack of reliable landslide inventories. However, these inventories are necessary for susceptibility assessment. Model transferability, which is based on calibrating a susceptibility model in a training area in order to predict the distribution of debris flows in a target area, might provide an efficient solution to dealing with this limit. However, when applying a transferability procedure, a key point is the optimal selection of the predictors to be included for calibrating the model in the source area. In this paper, the issue of optimal factor selection is analysed by comparing the predictive performances obtained following three different factor selection criteria. The study includes: i) a test of the similarity between the source and the target areas; ii) the calibration of the susceptibility model in the (training) source area, using different criteria for the selection of the predictors; iii) the validation of the models, both at the source (self-validation, through random partition) and at the target (transferring, through spatial partition) areas. The debris flow susceptibility is evaluated here using binary logistic regression through a R-scripted based procedure. Two separate study areas were selected in the Messina province (southern Italy) in its Ionian (Itala catchment) and Tyrrhenian sides (Saponara catchment), each hit by a severe debris flow event (in 2009 and 2011, respectively). The investigation attested that the best fitting model in the calibration areas resulted poorly performing in predicting the landslides of the test target area. At the same time, the susceptibility models calibrated with an optimal set of covariates in the source area allowed us to produce a robust and accurate prediction image for the debris flows activated in the Saponara catchment in 2011, exploiting only the data known after the Itala-2009 event.
New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range
Coe, Jeffrey A.; Kean, Jason W.; Godt, Jonathan W.; Baum, Rex L.; Jones, Eric S.; Gochis, David; Anderson, Gregory S
2016-01-01
Rainfall on 9–13 September 2013 triggered at least 1,138 debris flows in a 3430 km2 area of the Colorado Front Range. The historical record reveals that the occurrence of these flows over such a large area in the interior of North America is highly unusual. Rainfall that triggered the debris flows began after ~75 mm of antecedent rain had fallen, a relatively low amount compared to other parts of the United States. Most flows were triggered in response to two intense rainfall periods, one 12.5-hour-long period on 11–12 September, and one 8-hour-long period on 12 September. The maximum 10 min. intensities during these periods were 67 and 39 mm/hr. Ninety-five percent of flows initiated in canyons and on hogbacks at elevations lower than a widespread erosion surface of low slope and relief (25°), predominantly south- and east-facing slopes with upslope contributing areas 3300 m2. Areal concentrations of debris flows revealed that colluvial soils formed on sedimentary rocks were more susceptible to flows than soils on crystalline rocks. This event should serve as an alert to government authorities, emergency responders, and residents in the Front Range and other interior continental areas with steep slopes. Widespread debris flows in these areas occur infrequently but may pose a greater risk than in areas with shorter return periods, because the public is typically unprepared for them.
NASA Astrophysics Data System (ADS)
Janke, Jason R.; Ng, Sam; Bellisario, Antonio
2017-11-01
An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long-term, sustainable solutions, the importance of the water stored in rock glaciers or other alpine permafrost landforms, such as talus slopes, must be weighed against the economic value of mineral resources.
NASA Astrophysics Data System (ADS)
Lukas, Sven; Benn, Douglas I.; Boston, Clare M.; Hawkins, Jack; Lehane, Niall E.; Lovell, Harold; Rooke, Michael
2014-05-01
Extensive supraglacial debris covers are widespread near the margins of many cold-based and polythermal surging and non-surging glaciers in Svalbard. Despite their importance for current glacier dynamics and a detailed understanding of how they will affect the de-icing of ice-marginal areas, little work has been carried out to shed light on the sedimentary processes operating in these debris covers. We here present data from five different forelands in Svalbard. In all five cases, surfaces within the debris cover can be regarded as stable where debris cover thickness exceeds that of the active layer; vegetation development and absence of buried ice exposures at the surface support this conclusion, although test pits and geophysical investigations have revealed the presence of buried ice at greater depths (> 1-3 m). These findings imply that even seemingly stable surfaces at present will be subject to change by de-icing in the future. Factors and processes that contribute towards a switch from temporarily stable to unstable conditions have been identified as: 1. The proximity to englacial or supraglacial meltwater channels. These channels enlarge due to thermo-erosion, which can lead to the eventual collapse of tunnel roofs and the sudden generation of linear instabilities in the system. Along such channels, ablation is enhanced compared to adjacent debris-covered ice, and continued thermo-erosion continuously exposes new areas of buried ice at the surface. This works in conjunction with 2. Debris flows that occur on all sloping ground and transfer material from stable to less stable (sloping) locations within the debris cover and eventually into supraglacial channels, from where material is then removed from the system. Several generations of debris flows have been identified in all five debris covers, strongly suggesting that these processes are episodic and that the loci of these processes switch. This in turn indicates that transfer of material by debris flows downslope can lead to localised thickening of the debris cover, thereby resulting in the creation of new temporarily-stable areas in downslope locations. 3. The renewed and continued re-distribution of material causes de-icing to proceed in a stepwise fashion. While de-icing is ongoing, this results in the formation of debris cones or even larger ridges and mounds that have been termed "moraine-mound complexes" by previous workers (e.g. Graham et al., 2007). These are temporary landforms that will not survive de-icing over longer timescales, and projection of continued reworking into the future shows that perhaps an undulating spread of material will remain (cf. Lukas, 2007). The formation of supraglacial lakes during overall melting can lead to the formation of thick sequences of sorted sediments that in turn insulate the underlying ice after lake drainage. The presence of such sorted sediments in current ridge-top locations in some of the debris covers gives further weight to the interpretation of a mode of stepwise de-icing; crumbling and erosion by snowmelt and wind attests the shortlived nature of such deposits in topographic highs. Our findings strongly support an interpretation of a de-icing mode that takes place in a stepwise fashion that leads to several generations of sediment transfer within the debris covers and repeated relief inversion. References Graham, D.J., Bennett, M.R., Glasser, N.F., Hambrey, M.J., Huddart, D., Midgley, N.G., 2007. 'A test of the englacial thrusting hypothesis of ''hummocky''moraine formation: case studies from the northwest Highlands, Scotland': Comments. Boreas 36, 103-107. Lukas, S., 2007. Englacial thrusting and (hummocky) moraine formation: a reply to comments by Graham et al. (2007). Boreas 36, 108-113.
Analysis of LDEF micrometeoroid/debris data and damage to composite materials
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; Manuelpillai, G.
1993-01-01
This report presented published LDEF micrometeoroid/debris impact data in a nomogram format useful for estimating the total number of hits that could be expected on a space structure as a function of time in orbit, angular location relative to ram, and exposed surface area. Correction factors accounting for different altitudes are given. These are normalized to the average LDEF altitude. Examples on how to use the nomograph are also included. In addition, impact data and damage areas observed on composite laminates (experiment AO 180) are discussed.
Compact friction and wear machine
NASA Astrophysics Data System (ADS)
Hannigan, James W.; Schwarz, Ricardo B.
1988-08-01
We have developed a compact ring-on-ring wear machine that measures the friction coefficient between large area surfaces as a function of time, normal stress, and sliding velocity. The machine measures the temperature of the sliding surfaces and collects the wear debris.
Differentiation of debris-flow and flash-flood deposits: implications for paleoflood investigations
Waythomas, Christopher F.; Jarrett, Robert D.; ,
1993-01-01
Debris flows and flash floods are common geomorphic processes in the Colorado Rocky Mountain Front Range and foothills. Usually, debris flows and flash floods are associated with excess summer rainfall or snowmelt, in areas were unconsolidated surficial deposits are relatively thick and slopes are steep. In the Front Range and foothills, flash flooding is limited to areas below about 2300m whereas, debris flow activity is common throughout the foothill and alpine zones and is not necessarily elevation limited. Because flash floods and debris flows transport large quantities of bouldery sediment, the resulting deposits appear somewhat similar even though such deposits were produced by different processes. Discharge estimates based on debris-flow deposits interpreted as flash-flood deposits have large errors because techniques for discharge retrodiction were developed for water floods with negligible sediment concentrations. Criteria for differentiating between debris-flow and flash-flood deposits are most useful for deposits that are fresh and well-exposed. However, with the passage of time, both debris-flow and flash-flood deposits become modified by the combined effects of weathering, colluviation, changes in surface morphology, and in some instances removal of interstitial sediment. As a result, some of the physical characteristics of the deposits become more alike. Criteria especially applicable to older deposits are needed. We differentiate flash-flood from debris-flow and other deposits using clast fabric measurements and other morphologic and sedimentologic techniques (e.g., deposit morphology, clast lithology, particle size and shape, geomorphic setting).
NASA Astrophysics Data System (ADS)
Scherler, D.; Egholm, D. L.
2017-12-01
Debris-covered glaciers are widespread in the Himalaya and other steep mountain ranges. They testify to active erosion of ice-free bedrock hillslopes that tower above valley glaciers, sometimes more than a kilometer high. It is well known that supraglacial debris cover significantly reduces surface ablation rates and thereby influences glacial mass balances and runoff. However, the dynamic evolution of debris cover along with climatic and topographic changes is poorly understood. Here, we present ice-free hillslope erosion rates derived from 10Be concentrations in the ablation-dominated medial moraine of the Chhota Shigri Glacier, Indian Himalaya. We combine our empirical, field-based approach with a numerical model of frost-related sediment production and glacial debris transport to (1) assess patterns of ice-free hillslope erosion that are permissible with observed patterns of debris cover, and (2) explore the coupled response of glaciers and ice-free hillslopes to climatic changes. Measured 10Be concentrations increase downglacier from 3×104 to 6×104 atoms (g quartz) -1, yielding hillslope erosion rates of 1.3-0.6 mm yr-1. The accumulation of 10Be during debris residence on the ice surface can only account for a small fraction (<20%) of the downglacier increase. Other potential explanations include (1) heterogeneous source areas with different average productions rates, and (2) homogeneous source areas but temporally variable erosion rates. We used the 10Be-derived hillslope erosion rates to define debris supply rates from ice-free bedrock hillslopes in the numerical ice and landscape evolution model iSOSIA. Based on available mass balance and ice thickness data, the calibrated model reproduces the medial moraine of the Chhota Shogri Glacier quite well, although uncertainties exist due to the transient disequilibrium of the glacier, i.e., the current debris cover was fed into the glacier during the Little Ice Age (LIA), and thus under different boundary conditions. We currently perform transient experiments during warming and cooling periods for testing models of frost-related and temperature-sensitive debris production, and for assessing the coupled sensitivity of hillslopes and glaciers to climate change.
Prevalence and composition of marine debris in Brown Booby (Sula leucogaster) nests at Ashmore Reef.
Lavers, Jennifer L; Hodgson, Jarrod C; Clarke, Rohan H
2013-12-15
Anthropogenic debris is ubiquitous in the marine environment and has been reported to negatively impact hundreds of species globally. Seabirds are particularly at risk from entanglement in debris due to their habit of collecting food and, in many cases, nesting material off the ocean's surface. We compared the prevalence and composition of debris in nests and along the beach at two Brown Booby (Sula leucogaster) colonies on Ashmore Reef, Timor Sea, a remote area known to contain high densities of debris transported by ocean currents. The proportion of nests with debris varied across islands (range 3-31%), likely in response to the availability of natural nesting materials. Boobies exhibited a preference for debris colour (white and black), but not type. The ephemeral nature of Brown Booby nests on Ashmore Reef may limit their utility as indicators of marine pollution, however monitoring is recommended in light of increasing demand for plastic products. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baum, R. L.; Coe, J. A.; Godt, J.; Kean, J. W.
2014-12-01
Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Eye-witness accounts and fire-department records put the times of greatest landslide activity during the times of heaviest rainfall on September 12 - 13. Antecedent soil moisture was relatively low, particularly at elevations below 2250 m where many of the debris flows occurred, based on 45 - 125 mm of summer precipitation and absence of rainfall for about 2 weeks before the storm. Mapping from post-event imagery and field observations indicated that most debris flows initiated as small, shallow landslides. These landslides typically formed in colluvium that consisted of angular clasts in a sandy or silty matrix, depending on the nature of the parent bedrock. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m, and source areas commonly occupied less than 500 m2. Although 49% of the source areas occurred in swales and 3 % in channels, where convergent flow might have contributed to pore-pressure build up during the rainfall, 48% of the source areas occurred on open slopes. Upslope contributing areas of most landslides (58%) were small (< 1000 m2) and 78% of the slides occurred on south-facing slopes (90°≤ aspect ≤270°). These observations pose challenges for modeling initiation of the debris flows. Effects of variable soil depth and properties, vegetation, and rainfall must be examined to explain the dominance of debris flows on south-facing slopes. Accounting for the small sizes and mixed swale and open-slope settings of source areas demands new approaches for resolving soil-depth and physical-properties variability. The low-moisture initial conditions require consideration of unsaturated zone effects. Ongoing fieldwork and computational modeling are aimed at addressing these challenges related to initiation of the September 2013 debris flows.
NASA Astrophysics Data System (ADS)
Mackay, Sean Leland
Antarctic debris-covered glaciers are potential archives of long-term climate change. However, the geomorphic response of these systems to climate forcing is not well understood. To address this concern, I conducted a series of field-based and numerical modeling studies in the McMurdo Dry Valleys of Antarctica (MDV), with a focus on Mullins and Friedman glaciers. I used data and results from geophysical surveys, ice-core collection and analysis, geomorphic mapping, micro-meteorological stations, and numerical-process models to (1) determine the precise origin and distribution of englacial and supraglacial debris within these buried-ice systems, (2) quantify the fundamental processes and feedbacks that govern interactions among englacial and supraglacial debris, (3) establish a process-based model to quantify the inventory of cosmogenic nuclides within englacial and supraglacial debris, and (4) isolate the governing relationships between the evolution of englacial /supraglacial debris and regional climate forcing. Results from 93 field excavations, 21 ice cores, and 24 km of ground-penetrating radar data show that Mullins and Friedman glaciers contain vast areas of clean glacier ice interspersed with inclined layers of concentrated debris. The similarity in the pattern of englacial debris bands across both glaciers, along with model results that call for negligible basal entrainment, is best explained by episodic environmental change at valley headwalls. To constrain better the timing of debris-band formation, I developed a modeling framework that tracks the accumulation of cosmogenic 3He in englacial and supraglacial debris. Results imply that ice within Mullins Glacier increases in age non-linearly from 12 ka to ˜220 ka in areas of active flow (up to >> 1.6 Ma in areas of slow-moving-to-stagnant ice) and that englacial debris bands originate with a periodicity of ˜41 ka. Modeling studies suggest that debris bands originate in synchronicity with changes in obliquity-paced, total integrated summer insolation. The implication is that the englacial structure and surface morphology of some cold-based, debris-covered glaciers can preserve high-resolution climate archives that exceed the typical resolution of Antarctic terrestrial deposits and moraine records.
NASA Astrophysics Data System (ADS)
Baum, R. L.; Coe, J. A.; Kean, J. W.; Jones, E. S.; Godt, J.
2015-12-01
Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m. Typical values of saturated hydraulic conductivity of soils and regolith units mapped in the source areas range from about 10-4 - 10-6 m/s, with a median value of 2.8 x 10-5 m/s based on number of source areas in each map unit. Rainfall intensities varied spatially and temporally, from 0 to 2.5 x 10-5 m/s (90 mm/hour), with two periods of relatively heavy rainfall on September 12 - 13. The distribution of debris flows appears to correlate with total storm rainfall, and reported times of greatest landslide activity coincide with times of heaviest rainfall. Process-based models of rainfall infiltration and slope stability (TRIGRS) representing the observed ranges of regolith depth, hydraulic conductivity, and rainfall intensity, provide additional insights about the timing and distribution of debris flows from this storm. For example, small debris flows from shallower source areas (<2 m) occurred late on September 11 and in the early morning of September 12, whereas large debris flows from deeper (3 - 5 m) source areas in the western part of the affected area occurred late on September 12. Timing of these flows can be understood in terms of the time required for pore pressure rise depending on regolith depth and rainfall intensity. The variable hydraulic properties combined with variable regolith depth and slope angles account for much of the observed range in timing in areas of similar rainfall intensity and duration. Modeling indicates that the greatest and most rapid pore pressure rise likely occurred in areas of highest rainfall intensity and amount. This is consistent with the largest numbers of debris flows occurring on steep canyon walls in areas of high total storm rainfall.
August 2014 Hiroshima landslide disaster and its societal impact
NASA Astrophysics Data System (ADS)
Fukuoka, Hiroshi; Sassa, Kyoji; Wang, Chunxiang
2015-04-01
In the early morning of August 20, 2014, Hiroshima city was hit by a number of debris flows along a linear rain band which caused extreme downpour. This disaster claimed 74 death, although this city experienced very similar disaster in 1999, claiming more than 30 residents lives. In the most severely affected debris flow torrent, more than 50 residents were killed. Most of the casualties arose in the wooden, vulnerable houses constructed in front of the exit of torrents. Points and lessons learnt from the disaster are as follows: 1. Extreme rainfall events : geology and geomorphology does not much affect the distribution of landslides initiation sites. 2. Area of causative extreme rainfall is localized in 2 km x 10 km along the rain band. 3. Authors collected two types of sands from the source scar of the initial debris slides which induced debris flows. Tested by the ring shear apparatus under pore-pressure control condition, clear "Sliding surface liquefaction" was confirmed for both samples even under small normal stress, representing the small thickness of the slides. These results shows even instant excess pore pressure could initiate the slides and trigger slide-induced debris flow by undrained loading onto the torrent deposits. 4. Apparently long-term land-use change affected the vulnerability of the community. Residential area had expanded into hill-slope (mountainous / semi-mountainous area) especially along the torrents. Those communities were developed on the past debris flow fan. 5. As the devastated area is very close to downtown of Hiroshima city, it gave gigantic societal impact to the Japanese citizens. After 1999 Hiroshima debris flow disaster, the Landslide disaster reduction law which intends to promote designation of landslide potential risk zones, was adopted in 2000. Immediately after 2014 disaster, national diet approved revision of the bill.
GIS-based modeling of debris flow processes in an Alpine catchment, Antholz valley, Italy
NASA Astrophysics Data System (ADS)
Sandmeier, Christine; Damm, Bodo; Terhorst, Birgit
2010-05-01
Debris flows are frequent natural hazards in mountain regions, which seriously can threat human lives and economic values. In the European Alps the occurrence of debris flows might even increase with respect to climate change, including permafrost degradation, glacier retreat and variable precipitation patterns. Thus, detailed understanding of process parameters and spatial distribution of debris flows is necessary to take appropriate protection measures for risk assessment. In this context, numerical models have been developed and applied successfully for simulation and prediction of debris-flow hazards and related process areas. In our study a GIS-based model is applied in an alpine catchment to address the following questions: Where are potential initiating areas of debris flows? How much material can be mobilized? What is the influence of topography and precipitation? The study area is located in the Antholz valley in the eastern Alps of Northern Italy. The investigated catchment of the Klammbach creek comprises 6.5 km² and is divided into two sub-catchments. Geologically it is dominated by metamorphic rock and altitudes range between 1310 and 3270 m. In summer 2005 a debris flow of more than 100000 m³ took place, originating from a steep, sparsely vegetated debris cone in the western part of the catchment. According to a regional study, the lower permafrost boundary in this area has risen by 250 m. In a first step, during a field survey, geomorphological mapping was performed, several channel cross-sections were measured and sediment samples were taken. Using mapping results and aerial images, a geomorphological map was created. In further steps, results from the field work, the geomorphological map and existing digital data sets, including a digital elevation model with 2.5 m resolution, are used to derive input data for the modeling of debris flow processes. The model framework ‘r.debrisflow' based on GRASS GIS is applied (Mergili, 2008*), as it is capable of simulating the potential spatial patterns of debris flow deposition, as well as their initiation and movement. Furthermore it is a freely available and opensource software and can thus be improved and extended. ‘r.debrisflow' couples a hydraulic, a slope stability, a sediment transport and a debris flow runout model, which are combined differently in 6 simulation modes. In a first step, model parameters are calibrated using the runout only mode with known parameters of the 2005 debris flow. Finally, the full mode will be used to evaluate the debris-flow potential of the whole catchment. First results from the geomorphological mapping reveal numerous surface forms, like levees, debris flow lobes or scars that indicate past and recent debris flow activity in the area. In both sub-catchments, there are large areas of unconsolidated, sparsely or unvegetated sediments, surrounded by high rock walls, which conduct precipitation rapidly into the debris. The two sub-catchments, however, have different topographic characteristics, which can be analyzed with the model in more detail. In a next step, the potential starting areas of future debris flows shall be identified and the potential amount of mobilized material shall be estimated by the model. *Mergili, M. (2008): Integrated modelling of debris flows with Open Source GIS. Ph.D. thesis. University of Innsbruck. http://www.uibk.ac.at/geographie/personal/mergili/dissertation.pdf
Ball, Lyndsay B.; Kress, Wade H.; Anderson, Eric D.; Teeple, Andrew; Ferguson, James W.; Colbert, Charles R.
2004-01-01
The former Tyson Valley Powder Farm near Eureka, Missouri, was used primarily as a storage facility for the production of small arms ammunition during 1941?47 and 1951?61. A secondary use of the site was for munitions testing and disposal. Surface exposures of small arms waste, characterized by brass shell casings and fragments, as well as other miscellaneous scrap metal are remnants of disposal practices that took place during U.S. Army operation and can be found throughout the site. Little historical information exists describing disposal practices, and more debris is believed to be buried in the subsurface. The U.S. Army Corps of Engineers has identified several areas of concern throughout the former Tyson Valley Powder Farm. A surface-geophysical investigation was performed by the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, to evaluate the areal and vertical extent of metallic debris in the subsurface within three of these areas of concern. Electromagnetic and magnetic methods were used to locate anomalies indicating relatively large concentrations of buried metallic debris within the selected areas of concern. Maps were created identifying twelve anomalous zones in the three areas of concern, and three of these zones were selected for further investigation. The extent and depth of the anomalies within these zones were explored using two-dimensional direct-current resistivity methods. Resistivity and time-domain induced polarization data were compared to the anomalous locations of the electromagnetic and magnetic surveys. The geophysical methods selected for this study were useful in determining the areal and vertical extent of metallic waste within the former Tyson Valley Powder Farm. However, electromagnetic and magnetic methods were not able to differentiate magnetic scrap metal from non-magnetic metallic small arms waste, most likely due to the small size and scattered distribution of the small arms waste, in addition to the mixing of both types of debris in the subsurface. Electromagnetic and magnetic data showed some zones of concentrated anomalies, while there was a general scattering of small anomalies throughout the site. Inverted resistivity sections, as well as induced polarization sections, showed the debris to have a maximum depth of approximately 1 to 2 meters below the surface.
Polyethylene wear debris in modular acetabular prostheses.
Chen, P C; Mead, E H; Pinto, J G; Colwell, C W
1995-08-01
The longevity of total hip arthroplasty has brought forth the recognition of aseptic loosening of prosthetic components as the leading cause of implant failure. Modularity of implants, although a significant improvement in versatility, may increase debris formation, a recognized cause of implant failure. This study was designed to measure the relative motion, and to assess the polyethylene wear debris production at the interface between the metal acetabular shell and the back side of the polyethylene liner, in modular hip prostheses. Five models from 4 manufacturers with different locking mechanisms and acetabular shell surface treatments were tested under long-term simultaneous sinusoidal and static loading (10(7) cycles at 3 Hz with +/- 2.5 Nmeter and 220 N static load). Results showed that there were marked differences in the security of the acetabular shell and polyethylene liner locking mechanism, wear pattern, damage sites, and amount of polyethylene debris on the acetabular shell and polyethylene liner surfaces. The range of polyethylene liner motion observed among the 5 models during 1 cycle of testing varied from an average of 0.96 degrees to movement too small to be detected by the test machines. Image and scanning electron microscopy analysis showed different wear patterns and a wide range in the average polyethylene liner surface wear area (0.26 cm2-4.61 cm2). In general, a stable locking mechanism and a smooth acetabular shell surface are essential in minimizing polyethylene liner wear and polyethylene debris production.
NASA Astrophysics Data System (ADS)
Litt, M.; Steiner, J. F.; Stigter, E.; Bierkens, M. F.; Shea, J. M.; Immerzeel, W. W.
2017-12-01
A significant area of Himalayan glaciers tongues is covered by debris. Turbulent exchanges of sensible and latent heat at the debris surface directly act on its surface energy balance (SEB). At the same time, the large turbulent water vapour exchanges at high altitude modify the debris water content and thus its thermal properties. These must be correctly accounted for in SEB models and a proper characterisation of the atmospheric surface layer (ASL) is therefore needed. We installed an eddy-correlation system (Campbell IRGASON) during a period of 15 days over the Lirung glacier in the Langtang Valley in Nepal in the Nepal Himalaya, during the transition period between the monsoon and the dry season. We present the main characteristics of our set-up and the implication of our ASL characterisation on the parameterisation of the turbulent fluxes. During the day, moderate winds blow up-valley and the ASL is mostly unstable. Latent (sensible) heat fluxes scale between 50 and 150 (50 and 250) Wm-2 during the day, thus drying and cooling the debris and playing a significant role in the SEB. During the night, weak down-glacier winds are observed and fluxes remain weak. Spectral analysis of the turbulent data indicate that flow characteristics do not fulfil theoretical requirements needed to estimate turbulent fluxes using bulk methods and at this site our data show they would work only for the sensible heat flux evaluation.
Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A
2011-06-01
The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
García-Garrido, V. J.; Mancho, A. M.; Wiggins, S.; Mendoza, C.
2015-11-01
The disappearance of Malaysia Airlines flight MH370 on the morning of 8 March 2014 is one of the great mysteries of our time. Perhaps the most relevant aspect of this mystery is that not a single piece of debris from the aircraft was found during the intensive surface search carried out for roughly 2 months following the crash. Difficulties in the search efforts, due to the uncertainty of the plane's final impact point and the time that had passed since the accident, bring the question on how the debris scattered in an always moving ocean, for which there are multiple data sets that do not uniquely determine its state. Our approach to this problem is based on the use of Lagrangian descriptors (LD), a novel mathematical tool coming from dynamical systems theory that identifies dynamic barriers and coherent structures governing transport. By combining publicly available information supplied by different ocean data sources with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the Australian Maritime Safety Authority (AMSA), and determining regions where one might have expected impact debris to be located, which were not subjected to any exploration.
Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado
Cannon, S.H.; Kirkham, R.M.; Parise, M.
2001-01-01
A torrential rainstorm on September 1, 1994 at the recently burned hillslopes of Storm King Mountain, CO, resulted in the generation of debris flows from every burned drainage basin. Maps (1:5000 scale) of bedrock and surficial materials and of the debris-flow paths, coupled with a 10-m Digital Elevation Model (DEM) of topography, are used to evaluate the processes that generated fire-related debris flows in this setting. These evaluations form the basis for a descriptive model for fire-related debris-flow initiation. The prominent paths left by the debris flows originated in 0- and 1st-order hollows or channels. Discrete soil-slip scars do not occur at the heads of these paths. Although 58 soil-slip scars were mapped on hillslopes in the burned basins, material derived from these soil slips accounted for only about 7% of the total volume of material deposited at canyon mouths. This fact, combined with observations of significant erosion of hillslope materials, suggests that a runoff-dominated process of progressive sediment entrainment by surface runoff, rather than infiltration-triggered failure of discrete soil slips, was the primary mechanism of debris-flow initiation. A paucity of channel incision, along with observations of extensive hillslope erosion, indicates that a significant proportion of material in the debris flows was derived from the hillslopes, with a smaller contribution from the channels. Because of the importance of runoff-dominated rather than infiltration-dominated processes in the generation of these fire-related debris flows, the runoff-contributing area that extends upslope from the point of debris-flow initiation to the drainage divide, and its gradient, becomes a critical constraint in debris-flow initiation. Slope-area thresholds for fire-related debris-flow initiation from Storm King Mountain are defined by functions of the form Acr(tan ??)3 = S, where Acr is the critical area extending upslope from the initiation location to the drainage divide, and tan ?? is its gradient. The thresholds vary with different materials. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lovell, Arminel; Carr, Rachel; Stokes, Chris
2017-04-01
Himalayan glaciers have shrunk rapidly during the past twenty years. Understanding the factors controlling these losses is vital for forecasting changes in water resources, as the Himalaya houses the headwaters of major river systems, with densely populated catchments downstream. However, our knowledge of Himalayan glaciers is comparatively limited, due to their high-altitude, remote location. This is particularly the case in the Annapurna-Manaslu region, which has received relatively little scientific attention to date. Here, we present initial findings from remotely sensed data analysis, and our first field campaign in October 2016. Feature tracking of Band 8 Landsat imagery demonstrates that velocities in the region reach a maximum of 70-100 m a-1 , which is somewhat faster than those reported in the Khumbu region (e.g. Quincey et al 2009). A number of glaciers have substantial stagnant ice tongues, and most are flowing faster in the upper ablation zone than in the lower sections. The most rapidly flowing glaciers are located in the south-east of the Annapurna-Manaslu region and tend to also be the largest. Interestingly, initial observations suggest that the debris-covered ablation zones in the south-east are flowing more rapidly than the smaller, clean-ice glaciers in the north of the region. Comparison of velocities between 2000-2001 and 2014-2015 suggests deceleration on some glacier tongues. In October 2016, we conducted fieldwork on Annapurna South Glacier, located at the foot of Annapurna I. Here, we collected a number of datasets, with the aim of assessing the relationship between surface elevation change, ice velocities and debris cover. These included: i) installing ablation stakes in areas with varying debris cover; ii) quantifying debris characteristics, using Wolman counting and by measuring thickness; iii) surveying the glacier surface, using a differential GPS; iv) monitoring ice cliff melting, using Structure from Motion and; v) measuring surface and sub-surface temperatures, using i-buttons. Initial results demonstrate large spatial variability in debris characteristics and thickness, which in turn appears to substantially influence melt rates. The surface topography is highly uneven and a number of ice cliffs are present, where melt rates appear to be much higher than in surrounding areas. Interestingly, we observed very few surface melt ponds or surface melt water, which we suggest maybe be due to the basal topography and/or debris characteristics, and aim to further investigate this during our 2017 fieldwork.
NASA Astrophysics Data System (ADS)
Azzoni, Roberto Sergio; Senese, Antonella; Zerboni, Andrea; Maugeri, Maurizio; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele
2016-03-01
In spite of the quite abundant literature focusing on fine debris deposition over glacier accumulation areas, less attention has been paid to the glacier melting surface. Accordingly, we proposed a novel method based on semi-automatic image analysis to estimate ice albedo from fine debris coverage (d). Our procedure was tested on the surface of a wide Alpine valley glacier (the Forni Glacier, Italy), in summer 2011, 2012 and 2013, acquiring parallel data sets of in situ measurements of ice albedo and high-resolution surface images. Analysis of 51 images yielded d values ranging from 0.01 to 0.63 and albedo was found to vary from 0.06 to 0.32. The estimated d values are in a linear relation with the natural logarithm of measured ice albedo (R = -0.84). The robustness of our approach in evaluating d was analyzed through five sensitivity tests, and we found that it is largely replicable. On the Forni Glacier, we also quantified a mean debris coverage rate (Cr) equal to 6 g m-2 per day during the ablation season of 2013, thus supporting previous studies that describe ongoing darkening phenomena at Alpine debris-free glaciers surface. In addition to debris coverage, we also considered the impact of water (both from melt and rainfall) as a factor that tunes albedo: meltwater occurs during the central hours of the day, decreasing the albedo due to its lower reflectivity; instead, rainfall causes a subsequent mean daily albedo increase slightly higher than 20 %, although it is short-lasting (from 1 to 4 days).
NASA Astrophysics Data System (ADS)
Rounce, D.; McKinney, D. C.
2013-12-01
Debris cover has a large impact on sub-debris ablation rates and glacier evolution. A thin debris layer may enhance ablation by reducing albedo increasing radiation absorption, while thicker debris insulates the glacier causing ablation to decrease. Debris thickness, thermal conductivity, and meteorological conditions may be measured in the field, but they require extensive fieldwork (Brock et al., 2010; Nicholson and Benn, 2012). This has forced many simplifications and assumptions in models. Satellite imagery combined with an energy balance model has been used with to extract information about debris cover remotely (Nakawo and Rana, 1999; Zhang et al., 2011). The spatial distribution of thermal resistances derived from these studies have agreed well with field values; however, the values were considerably lower than the field values. The difference has been attributed to the mixed pixel effect. Foster et al. (2012) developed an energy balance model that agrees well with debris thickness measured in the field. The model requires knowledge of the thermal conductivity and utilizes a relationship between air and surface temperature to lower sensible heat fluxes. We derive thermal resistances of debris-covered glaciers from satellite imagery in the Everest area. Previous satellite studies have assumed a linear debris temperature gradient, which is valid for time periods of 24 hours or greater (Nicholson and Benn, 2006); however, gradients during the day are nonlinear (Nicholson and Benn, 2006; Reid and Brock, 2010). Landsat 7 imagery is used to account for the non-linear gradient, using the ratio of temperature gradient in the upper 10cm versus the entire debris thickness. These values are derived from temperature profiles on Ngozumpa Glacier (Nicholson, 2004). Meteorological data are obtained from the Pyramid Station. The derived thermal resistances agree well with those found on debris-covered glaciers in the Everest region. Brock, B., Mihalcea, C., Kirkbride, M., Diolaiuti, G., Cutler, M., Smiraglia, C. Meteorology and surface energy fluxes in the 2005-2007 ablation seasons at the Miage debris-covered glacier. J. Geoph. Res., 115, 2010 Foster, L., Brock, B., Cutler, M., Diotri, F. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. J. Glaciol. 58(210):677-691, 2012 Nakawo, M., Rana, B. Estimate of Ablation Rate of Glacier Ice Under a Supraglacial Debris Layer. Geografiska Annaler 81(4):695-701, 1999 Nicholson, L. Modelling melt beneath supraglacial debris: implications for the climatic response of debris-covered glaciers. PhD thesis, Univ. of St Andrews, 2004 Nicholson, L., Benn, D. Calculating ice melt beneath a debris layer using meteorological data. J. Glaciol. 52(178):463-470, 2006 Nicholson, L., Benn, D. Properties of Natural Supraglacial Debris in Relation to Modelling Sub-Debris Ice Ablation. Earth Surf. Proc. and Landforms 38(5):490-501, 2012 Reid, T., Brock, B. An Energy-Balance Model for Debris-Covered Glaciers Including Heat Conduction through the Debris Layer. J. Glaciol. 56(199):903-916, 2010 Zhang, Y., Fujita, K., Liu, S., Liu, Q., Nuimura, T. Distribution of Debris Thickness and its Effect on Ice Melt at Hailuogou Glacier. J. Glaciol. 57(206):1147-1157, 2011
Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.
2013-01-01
Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.
Supraglacial Ponds Regulate Runoff From Himalayan Debris-Covered Glaciers
NASA Astrophysics Data System (ADS)
Irvine-Fynn, Tristram D. L.; Porter, Philip R.; Rowan, Ann V.; Quincey, Duncan J.; Gibson, Morgan J.; Bridge, Jonathan W.; Watson, C. Scott; Hubbard, Alun; Glasser, Neil F.
2017-12-01
Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one-fifth of the Earth's population. Between 13% and 36% of the region's glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a 7 month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 h. Given projections of increased debris cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the region's freshwater resource availability and cascading environmental effects downstream.
Coe, Jeffrey A.; Godt, Jonathan; Tachker, Pierre
2004-01-01
This report documents the spatial distribution of 3,800 landslides caused by 1997-98 El Ni?o winter rainfall in the vicinity of Crow Creek in Alameda and Contra Costa Counties, California. The report also documents 558 historical (pre-1997-98) landslides. Landslides were mapped from 1:12,000-scale aerial photographs and classified as either debris flows or slides. Slides include rotational and translational slides, earth flows, and complex slope movements. Debris flows and slides from the 1997-98 winter modified 1 percent of the surface of the 148.6 km2 study area. Debris flows were scattered throughout the area, regardless of the type of underlying bedrock geology. Slides, however, were concentrated in a soft sandstone, conglomerate, and clayey group of rock units. Digital map files accompany the report.
43 CFR 3482.1 - Exploration and resource recovery and protection plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; earth- or debris-disposal areas; existing bodies of surface water; and topographic and drainage features... to, mining sequence, production rate, estimated recovery factors, stripping ratios, highwall limits...
Observations of Human-Made Debris in Earth Orbit
NASA Technical Reports Server (NTRS)
Cowardia, Heather
2011-01-01
Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.
Drainage evolution in the debris avalanche deposits near Mount Saint Helens, Washington
NASA Technical Reports Server (NTRS)
Beach, G. L.; Dzurisin, D.
1984-01-01
The 18 May 1980 eruption of Mount St. Helens was initiated by a massive rockslide-debris avalanche which completely transformed the upper 25 km of the North Fork Toutle River valley. The debris was generated by one of the largest gravitational mass movements ever recorded on Earth. Moving at an average velocity of 35 m/s, the debris avalanche buried approximately 60 sq km of terrain to an average depth of 45 m with unconsolidated, poorly sorted volcaniclastic material, all within a period of 10 minutes. Where exposed and unaltered by subsequent lahars and pyroclastic flows, the new terrain surface was characterized predominantly by hummocks, closed depressions, and the absence of an identifiable channel network. Following emplacement of the debris avalanche, a complex interrelationship of fluvial and mass wasting processes immediately began operating to return the impacted area to an equilibrium status through the removal of material (potential energy) and re-establishment of graded conditions. In an attempt to chronicle the morphologic evolution of this unique environmental setting, a systematic series of interpretative maps of several selected areas was produced. These maps, which document the rate and character of active geomorphic processes, are discussed.
A surface fuel classification for estimating fire effects
Duncan C. Lutes; Robert E. Keane; John F. Caratti
2009-01-01
We present a classification of duff, litter, fine woody debris, and logs that can be used to stratify a project area into sites with fuel loading that yield significantly different emissions and maximum soil surface temperature. Total particulate matter smaller than 2.5?m in diameter and maximum soil surface temperature were simulated using the First...
Evidence of micro-debris ingestion by Sargassum-associated fishes in the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Vick, P.; Hernandez, F., Jr.; Muffelman, S.; Lestrade, O.
2016-02-01
Sargassum natans and S. fluitans collectively form a pelagic macroalgae complex (Sargassum) which is commonly found in surface waters of the Western-Central Atlantic Ocean (including the Gulf of Mexico). Mats and windrows of Sargassum support large and diverse assemblages of marine fishes and invertebrates, including many early life stages which use Sargassum as nursery areas. Sargassum is a near-surface habitat, and therefore is subject to oceanographic processes (e.g., Langmuir cells, frontal zones) that aggregate floating objects, including marine debris. Relatively little is known about the impacts of marine debris (which often gets broken down into "micro-debris") within Sargassum communities, although micro-debris particles may serve as vectors for toxic compounds if consumed by organisms. Here we present preliminary results from a pilot study examining the frequency of micro-debris occurrence in the stomachs of Sargassum-associated fishes. Neuston and plankton purse seine nets were used to collect Sargassum and associated fauna during surveys in the northern Gulf of Mexico (May, June and July 2014). Marine debris was present in all Sargassum collections, and ranged from relatively large items (e.g., soda bottles) to smaller particles (e.g., microplastics, monofilament threads). The associated fish community was dominated by relatively few taxa, including pipefishes, filefishes and the Sargassumfish, which collectively comprised approximately 85% of the total catch. Stomach contents from juvenile fishes contained mostly natural prey items, including copepods, small decapods, hydroids, and fishes. Micro-debris particles were observed in the stomachs of eight fish species, including juvenile Mahi Mahi, Planehead Filefish and Bermuda chub, among others. Overall, our initial observations suggest that there is some ingestion of micro-debris by fishes associated with Sargassum, although the frequency of occurrence is relatively low.
14 CFR 139.307 - Unpaved areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...
14 CFR 139.307 - Unpaved areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...
14 CFR 139.307 - Unpaved areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...
14 CFR 139.307 - Unpaved areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...
14 CFR 139.307 - Unpaved areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...
A Dynamical System Approach to the Surface Search of Debris from MH370
NASA Astrophysics Data System (ADS)
Mancho, Ana M.; Garcia-Garrido, V. J.; Wiggins, S.; Mendoza, C.
2015-11-01
The disappearance of Malaysia Airlines flight MH370 on the morning of the 8th of March 2014 is one of the great mysteries of our time. One relevant aspect of this mystery is that not a single piece of debris from the aircraft was found during the intensive surface search carried out in the months following the crash. Difficulties in the search efforts, due to the uncertainty in the plane's final impact point and the time passed since the accident, brought the question on how the debris was scattered in an always moving ocean, for which there were multiple datasets that do not uniquely determined its state. Our approach to this problem is based on dynamical systems tools that identify dynamic barriers and coherent structures governing transport. By combining different ocean data with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the search services and determining regions where one might have expected impact debris to be located and that have not been subjected to any exploration. This research has been supported by MINECO under grants MTM2014-56392-R and ICMAT Severo Ochoa project SEV-2011-0087 and ONR grant No. N00014- 01-1-0769. Computational support from CESGA is acknowledged.
NASA Astrophysics Data System (ADS)
Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael
2017-04-01
Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.
Skylab reactivation mission report
NASA Technical Reports Server (NTRS)
Chubb, W. B.
1980-01-01
On July 11, 1979, Skylab impacted the Earth's surface. The debris dispersion area stretched from the South Eastern Indian Ocean across a sparsely populated section of Western Australia. The events leading to the reentry of Skylab are discussed and a final assessment of the Skylab debris impact footprint is presented. Also included are detailed evaluations of the various Skylab systems that were reactivated when control of Skylab was regained in mid-1978 after having been powered down since February 4, 1974.
Fickert, T.; Friend, D.; Gruninger, F.; Molnia, B.; Richter, M.
2007-01-01
This study proposes a new hypothesis: Debris-covered glaciers served as Pleistocene biological refugia. This is based on detailed studies of vascular plant growth on six debris-mantled glaciers, literally around the world, as well as many casual observations also across the globe. We find that such glaciers are quite common and are distributed globally. Using Carbon Glacier, Mount Rainier, U.S.A., as a type locality and case study, we show aspects of the floristic and structural diversity as well as spatial patterns of plant growth on the glacier surface. Migration strategies, root characteristics, and origin and dispersal strategies for vascular plant species are documented. Also reported are special microclimatic conditions in these areas allowing for this remarkable plant ecology. We find that alpine taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures found on glacial debris with ice underneath, and that may have significantly altered the spatial distribution of such flora during full glacial conditions. This in turn creates previously undocumented areas from which alpine, and perhaps arctic, plant species reestablished in post-glacial time. This hypothesis is complementary to both the nunatak hypothesis and tabula rasa theory and possibly helps solve the ongoing controversy between them. ?? 2007 Regents of the University of Colorado.
NASA Astrophysics Data System (ADS)
Bremer, Magnus; Sass, Oliver; Vetter, Michael; Geilhausen, Martin
2010-05-01
Country-wide ALS datasets of high resolution become more and more available and can provide a solid basis for geomorphological research. On the other hand, terrain changes after geomorphological extreme events can be quickly and flexibly documented by TLS and be compared to the pre-existing ALS datasets. For quantifying net-erosion, net-sedimentation and transport rates of events like rock falls, landslides and debris flows, comparing TLS surveys after the event to ALS data before the event is likely to become a widespread and powerful tool. However, the accuracy and possible errors of fitting ALS and TLS data have to be carefully assessed. We tried to quantify sediment movement and terrain changes caused by a major debris-flow-event in the Halltal in the Karwendel Mountains (Tyrol, Austria). Wide areas of limestone debris were dissected and relocated in the course of an exceptional rainstorm event on 29th June 2008. The event occurred 64 years after wildfire-driven deforestation. In the area, dense dwarf pine (pinus mugo) shrub cover is widespread, causing specific problems in generating terrain models. We compared a pre-event ALS-dataset, provided by the federal-state of Tyrol, and a post-event TLS survey. The two scanner systems have differing system characteristics (scan angles, resolutions, application of dGPS, etc.), causing different systematic and random errors. Combining TLS and ALS point data was achieved using an algorithm of the RISCAN_PRO software (Multi Station Adjustment), enabling a least square fitting between the two surfaces. Adjustment and registration accuracies as well as the quality of applied vegetation filters, mainly eliminating non-groundpoints from the raw data, are crucial for the generation of high-quality terrain models and a reliable comparison of the two data sets. Readily available filter algorithms provide good performance for gently sloped terrain and high forest vegetation. However, the low krummholz vegetation on steep terrain proved difficult to be filtered. This is due to a small height difference between terrain and canopy, a very strong height variation of the terrain points compared to the height variation of the canopy points and a very high density of the vegetation. The letter leads to very low percentages of groundpoints (1 - 5%). A combined filtering approach using a surface-based filter and a morphological filter, adapted to the characteristics of the krummholz vegetation were applied to overcome these problems. In the next step, the datasets were compared, erosion- and sedimentation areas were detected and quantified (cut-and-fill) in view of the accuracy achieved. The position of the relocated surface areas were compared to the morphological structures of the initial surface (inclination, curvature, flowpaths, hydrological catchments). Considerable deviations between the datasets were caused, besides the geomorphic terrain changes, by systematic and random errors. Due to the scanner perspective, parts of the steep slopes are depicted inaccurately by ALS. Rugged terrain surfaces cause random errors of ALS/TLS adjustment when the ratio of point density to surface variability is low. Due to multiple returns and alteration of pulse shape, terrain altitude is frequently overestimated when dense shrub cover is present. This effect becomes stronger with larger footprints. Despite these problems, erosional and depositional areas of debris flows could be clearly identified and match the results of field surveys. Strongest erosion occurred along the flowpaths with the greatest runoff concentration, mainly at the bedrock-debris interface.
NASA Astrophysics Data System (ADS)
Petersen, E.; Holt, J. W.; Levy, J. S.; Lalich, D.
2017-12-01
Lobate debris aprons, lineated valley fill, and concentric crater fill are a class of Martian landform thought to be glaciers blanketed by a lithic debris layer. They are found in the mid latitudes (roughly 30-50°N and S) where surface ice is presently unstable. Shallow Radar (SHARAD) sounder observations are in many cases able to resolve the basal contact between the glacier and underlying bedrock, showing that the bulk composition of these features is water ice with < 20% lithic debris; they are thus often referred to as debris-covered glaciers (DCG). The basal contact of candidate glaciers is not always present in SHARAD radargrams, and variable reflection power between glacier sites suggests that non-detections may be due to a reduction of echo power below the noise floor. A likely candidate for signal loss is the variable roughness of different glacial surface textures. We test this mechanism of signal reduction via analysis of SHARAD reflections augmented by surface roughness analyses generated from HiRISE stereo DEMs. This method provides a means of constraining the electrical properties of the surface debris. We show that measured surface roughness is sufficient to explain basal reflection signal loss for five glacier sites in the region of Deuteronilus/Protonilus Mensae (R2 = 0.90), with the dielectric constant for the surface debris layer constrained to 4.9 ± 0.3. Assuming debris formed of basalt rock, this value is consistent with a porous debris layer containing up to 64% ice, or an ice-free debris layer with porosity of 28-34%. From this work, we conclude that (1) weak or non-existent basal reflections at these sites are due to roughness-induced radar signal loss and not due to differing properties of the basal interface, (2) all DCG candidates in this study exhibit similar bulk compositions of relatively pure water ice, and (3) the surface debris layer is formed of porous lithic debris which may contain a significant fraction of pore ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
This decision document presents the final remedies for OU3, which consists of 17 sites: No further action for the following 14 NFA (no further action) sites - Ohio Road Debris Area, Oklahoma Road Debris Area, KC-135 Crash Area, Dumpster Cleaning Area Site/Building 7841, Explosive Ordnance Disposal (EOD) Area-Cylinders, Golf Course Maintenance Shed Area, Chapman Pit Debris Area, 9000 Debris Area, Solvent/Paint Dock Area, Prima Beef Debris Area, Buildings 8951 and 8960 (DRMO), Old PX Gas Station UST, F-106A Crash Area, and Demineralization Plant; Further investigation for the Outdoor Firing Range and EOD Range; and Remedial action for the Contract Storagemore » Shed Area site to address the contaminated soils/sediments.« less
Modelling debris transport within glaciers by advection in a full-Stokes ice flow model
NASA Astrophysics Data System (ADS)
Wirbel, Anna; Jarosch, Alexander H.; Nicholson, Lindsey
2018-01-01
Glaciers with extensive surface debris cover respond differently to climate forcing than those without supraglacial debris. In order to include debris-covered glaciers in projections of glaciogenic runoff and sea level rise and to understand the paleoclimate proxy recorded by such glaciers, it is necessary to understand the manner and timescales over which a supraglacial debris cover develops. Because debris is delivered to the glacier by processes that are heterogeneous in space and time, and these debris inclusions are altered during englacial transport through the glacier system, correctly determining where, when and how much debris is delivered to the glacier surface requires knowledge of englacial transport pathways and deformation. To achieve this, we present a model of englacial debris transport in which we couple an advection scheme to a full-Stokes ice flow model. The model performs well in numerical benchmark tests, and we present both 2-D and 3-D glacier test cases that, for a set of prescribed debris inputs, reproduce the englacial features, deformation thereof and patterns of surface emergence predicted by theory and observations of structural glaciology. In a future step, coupling this model to (i) a debris-aware surface mass balance scheme and (ii) a supraglacial debris transport scheme will enable the co-evolution of debris cover and glacier geometry to be modelled.
Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.
2016-12-01
Debris-covered glacier tongues cover about 12% of the glacier surface in high mountain Asia and much of the melt water is generated from those glaciers. A thin layer of supraglacial debris enhances ice melt by lowering the albedo, while thicker debris insulates the ice and reduces melt. Data on debris thickness is therefore an important input for energy balance modelling of these glaciers. Thermal infrared remote sensing can be used to estimate the debris thickness by using an inverse relation between debris surface temperature and thickness. To date this has only been performed using coarse spaceborne thermal imagery, which cannot reveal small scale variation in debris thickness and its influence on the heterogeneous melt patterns on debris-covered glaciers. We deployed an unmanned aerial vehicle mounted with a thermal infrared sensor over the debris-covered Lirung Glacier in Nepal three times in May 2016 to reveal the spatial and temporal variability of surface temperature in high detail. The UAV survey matched a Landsat 8 overpass to be able to make a comparison with spaceborne thermal imagery. The UAV-acquired data is processed using Structure from Motion photogrammetry and georeferenced using DGPS-measured ground control points. Different surface types were distinguished by using data acquired by an additional optical UAV survey in order to correct for differences in surface emissivity. In situ temperature measurements and incoming solar radiation data are used to calibrate the temperature calculations. Debris thicknesses derived are validated by thickness measurements of a ground penetrating radar. Preliminary analysis reveals a spatially highly heterogeneous pattern of surface temperature over Lirung Glacier with a range in temperature of over 40 K. At dawn the debris is relatively cold and its temperature is influenced strongly by the ice underneath. Exposed to the high solar radiation at the high altitude the debris layer heats up very rapidly as sunrise progresses, and the influence of ice on debris surface temperature reduces considerably. Many patterns are revealed that cannot be detected from the Landsat data, both on small spatial and temporal scales. The high detail the UAV-borne thermal imagery provides in time and space has great potential in the research of debris cover and its characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, D A; Moody, K J; Grant, P M
Collection of solid debris from the National Ignition Facility (NIF) is being developed both as a diagnostic tool and as a means for measuring nuclear reaction cross sections relevant to the Stockpile Stewardship Program and nuclear astrophysics. The concept is straightforward; following a NIF shot, the debris that is produced as a result of the capsule and hohlraum explosion would be collected and subsequently extracted from the chamber. The number of nuclear activations that occurred in the capsule would then be measured through a combination of radiation detection and radiochemical processing followed by mass spectrometry. Development of the catcher ismore » challenging due to the complex environment of the NIF target chamber. The collector surface is first exposed to a large photon flux, followed by the debris wind that is produced. The material used in the catcher must be mechanically strong in order to withstand the large amount of energy it is exposed to, as well as be chemically compatible with the form and composition of the debris. In addition, the location of the catcher is equally important. If it is positioned too close to the center of the target chamber, it will be significantly ablated, which could interfere with the ability of the debris to reach the surface and stick. If it is too far away, the fraction of the debris cloud collected will be too small to result in a statistically significant measurement. Material, geometric configuration, and location must all be tested in order to design the optimal debris collection system for NIF. One of the first ideas regarding solid debris collection at NIF was to use the disposable debris shields (DDS), which are fielded over the final optics assemblies (FOA) 7 m away from the center of the target chamber. The DDS are meant to be replaced after a certain number of shots, and if the shields could be subsequently analyzed after removal, it would serve as a mechanism for fielding a relatively large collection area through the use of a part meant to be replaced regularly. The solid angle covered by one of the shields is roughly 10{sup -4} of 4{pi}. If several shields were analyzed at once, it would increase the solid angle of the collection area accordingly. The glass shields consist of ammonia hardened silica with a sol gel coating and kapton tape around the edge. The square sheets are 14-inch on each side. The original shields were 1 mm thick, but it was determined that a thicker shield (3.3 mm) was more effective in preventing debris from reaching the FOA. The Solid Radchem group received two sets of DDS as part of our evaluation of the potential use of the DDS as solid debris collectors. The first set consisted of two 3.3 mm shields, one each from the top and bottom of the chamber (the '3mm set'). The second set consisted of four 1mm shields, one from the top of the chamber and the other three from the bottom (the 'IFSA set'). For each set, the shields were cut into smaller subsamples, which were then imaged using scanning electron microscopy (SEM) followed by chemical leaching and mass spectrometry. The purpose was to evaluate both the quantity and identity of the debris that was present on the DDS surfaces, and to determine if any of the capsule debris was reaching the chamber walls. In addition, potential enhancement due to gravity in the chamber was evaluated by directly comparing shields fielded in the top and bottom of the chamber. Based on the results, the use of the DDS as debris collectors would be evaluated. The results from both sets were presented to the DDS Working Group. The slides are attached to this document. The 3mm set results are presented first, followed by the results from the IFSA set. In both cases it was determined that a small fraction of the overall debris field was collected on the DDS. This means that the debris that is formed during a NIF shot is condensing out of the plasma and depositing on surfaces closer to the target chamber center, or else it is simply falling to the bottom of the chamber. In either case, it was determined that using the DDS, or fielding a debris collector at the chamber wall, was not feasible for solid debris collection at NIF due to the small amount of debris that had been collected. In addition, since the glass shields suffered quite a bit of damage from particles impacting the surface, glass was ruled out as a collection medium.« less
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2012 CFR
2012-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2011 CFR
2011-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2013 CFR
2013-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2014 CFR
2014-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
Biodiversity: invasions by marine life on plastic debris.
Barnes, David K A
2002-04-25
Colonization by alien species poses one of the greatest threats to global biodiversity. Here I investigate the colonization by marine organisms of drift debris deposited on the shores of 30 remote islands from the Arctic to the Antarctic (across all oceans) and find that human litter more than doubles the rafting opportunities for biota, particularly at high latitudes. Although the poles may be protected from invasion by freezing sea surface temperatures, these may be under threat as the fastest-warming areas anywhere are at these latitudes.
NASA Astrophysics Data System (ADS)
Stuurman, C. M.; Holt, J.; Levy, J.
2016-12-01
On Earth and Mars, debris-covered glaciers (DCGs) often exhibit arcuate ridges transverse to the flow direction. Additionally, there exists some evidence linking internal structure (which is controlled in part by climate) in DCGs with surface microtopography. A better understanding of the relationship between englacial debris bands, compressional stresses, and debris-covered glacier microtopography will augment understanding of formational environments and mechanisms for terrestrial and martian DCGs. In order to better understand relationships between DCG surface morphology and internal debris bands, we combine field observations with finite-element modeling techniques to relate internal structure of DCGs to their surface morphologies. A geophysical survey including time-domain electromagnetic and ground-penetrating radar techniques of the Galena Creek Rock Glacier, WY was conducted over two field seasons in 2015/2016. Geomorphic analysis by surface observation and photogrammetry, including examination of a cirque-based thermokarst, was used to guide and complement geophysical sounding methods. Very clean ice below a 1 m thick layer of debris was directly observed on the walls of a 40 m diameter thermokarst pond near the accumulation zone. An englacial debris band 0.7 m thick dipping 30o intersected the wall of the pond. Transverse ridges occur at varying ridge-to-ridge wavelengths at different locations on the glacier. The GPR data supports the idea that surface ridges correlate with the intersection of debris layers and the surface. Modelling evidence is consistent with the observation of ridges at debris-layer/surface intersections, with compressional stresses buckling ice up-stream of the debris band.
Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal
2017-08-01
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2009-07-31
Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.« less
Geodetic mass balance measurements on debris and clean-ice tropical glaciers in Ecuador
NASA Astrophysics Data System (ADS)
La Frenierre, J.; Decker, C. R.; Jordan, E.; Wigmore, O.; Hodge, B. E.; Niederriter, C.; Michels, A.
2017-12-01
Glaciers are recognized as highly sensitive indicators of climate change in high altitude, low latitude environments. In the tropical Andes, various analyses of glacier surface area change have helped illuminate the manifestation of climate change in this region, however, information about actual glacier mass balance behavior is much more limited given the relatively small glaciers, difficult access, poor weather, and/or limited local resources common here. Several new technologies, including aerial and terrestrial LIDAR and structure-from-motion photogrammetry using small unmanned aerial vehicles (UAVs), make mass balance measurements using geodetic approaches increasingly feasible in remote mountain locations, which can both further our understanding of changing climatic conditions, and improve our ability to evaluate the downstream hydrologic impacts of ice loss. At Volcán Chimborazo, Ecuador, these new technologies, combined with a unique, 5-meter resolution digital elevation model derived from 1997 aerial imagery, make possible an analysis of the magnitude and spatial patterns of mass balance behavior over the past two decades. Here, we evaluate ice loss between 1997 and 2017 at the tongues of two adjacent glaciers, one debris-covered and detached from its accumulation area (Reschreiter Glacier), and one debris-free and intact (Hans Meyer Glacier). Additionally, we incorporate data from 2012 and 2013 terrestrial LIDAR surveys to evaluate the behavior of the Reschreiter at a finer temporal resolution. We find that on the Hans Meyer, the mean surface deflation rate since 1997 at the present-day tongue has been nearly 3 m yr-1, while on the lower-elevation Reschreiter, the mean deflation rate has been approximately 1 m yr-1. However, the processes by which debris-covered ice becomes exposed results in highly heterogeneous patterns of ice loss, with some areas experiencing surface deflation rates approaching 15 m yr-1 when energy absorption is unimpeded.
Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)
NASA Astrophysics Data System (ADS)
Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier
2013-04-01
Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.
NASA Astrophysics Data System (ADS)
Muir, J.; Phinn, S. R.; Armston, J.; Scarth, P.; Eyre, T.
2014-12-01
Coarse woody debris (CWD) provides important habitat for many species and plays a vital role in nutrient cycling within an ecosystem. In addition, CWD makes an important contribution to forest biomass and fuel loads. Airborne or space based remote sensing instruments typically do not detect CWD beneath the forest canopy. Terrestrial laser scanning (TLS) provides a ground based method for three-dimensional (3-D) reconstruction of surface features and CWD. This research produced a 3-D reconstruction of the ground surface and automatically classified coarse woody debris from registered TLS scans. The outputs will be used to inform the development of a site-based index for the assessment of forest condition, and quantitative assessments of biomass and fuel loads. A survey grade terrestrial laser scanner (Riegl VZ400) was used to scan 13 positions, in an open eucalypt woodland site at Karawatha Forest Park, near Brisbane, Australia. Scans were registered, and a digital surface model (DSM) produced using an intensity threshold and an iterative morphological filter. The DSMs produced from single scans were compared to the registered multi-scan point cloud using standard error metrics including: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), range, absolute error and signed error. In addition the DSM was compared to a Digital Elevation Model (DEM) produced from Airborne Laser Scanning (ALS). Coarse woody debris was subsequently classified from the DSM using laser pulse properties, including: width and amplitude, as well as point spatial relationships (e.g. nearest neighbour slope vectors). Validation of the coarse woody debris classification was completed using true-colour photographs co-registered to the TLS point cloud. The volume and length of the coarse woody debris was calculated from the classified point cloud. A representative network of TLS sites will allow for up-scaling to large area assessment using airborne or space based sensors to monitor forest condition, biomass and fuel loads.
Models of the diffuse radar backscatter from Mars
NASA Technical Reports Server (NTRS)
England, A. W.; Austin, R. T.
1991-01-01
The topographies of several debris flow units near the Mount St. Helens Volcano were measured at lateral scales of millimeters to meters in September 1990. The objective was to measure the surface roughness of the debris flows at scales smaller than, on the order of, and larger that the radar wavelength of common remote sensing radars. A laser profiling system and surveying instruments were used to obtain elevation data for square areas that varied in size from 10 to 32 cm. The elevation data were converted to estimates of the power spectrum of surface roughness. The conversions were based upon standard periodogram techniques, and upon a modified spectral estimation technique that was developed.
On the debris-level origins of adhesive wear
NASA Astrophysics Data System (ADS)
Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-François
2017-07-01
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.
On the debris-level origins of adhesive wear.
Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François
2017-07-25
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.
On the debris-level origins of adhesive wear
Warner, Derek H.; Molinari, Jean-François
2017-01-01
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes. PMID:28696291
Mars Global Surveyor observations of Martian fretted terrain
Carr, M.H.
2001-01-01
The Martian fretted terrain between latitudes 30?? and 50?? N and between 315?? and 360?? W has been reexamined in light of new Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data from Mars Global Surveyor. Much of the terrain in the 30??-50?? latitude belt in both hemispheres has a characteristic stippled or pitted texture at MOC (1.5 m) scale. The texture appears to result from partial removal of a formerly smooth, thin deposit as a result of sublimation and deflation. A complex history of deposition and exhumation is indicated by remnants of a former, thicker cover of layered deposits. In some hollows and on some slopes, particularly those facing the pole, are smooth textured deposits outlined by an outward facing escarpment. Throughout the study area are numerous escarpments with debris flows at their base. The escarpments typically have slopes in the 20??-30?? range. At the base of the escarpment is commonly a deposit with striae oriented at right angles to the escarpment. Outside this deposit is the main debris apron with a surface that typically slopes 2??-3?? and complex surface textures suggestive of compression, sublimation, and deflation. The presence of undeformed impact craters indicates that the debris flows are no longer forming. Fretted valleys contain lineated fill and are poorly graded. They likely form from fluvial valleys that were initially like those elsewhere on the planet but were subsequently widened and filled by the same mass-wasting processes that formed the debris aprons. Slope reversals indicate that downvalley flow of the lineated fill is minor. The ubiquitous presence of breaks in slope formed by mass wasting and the complex surface textures that result from mass wasting, deflation, and sublimation decreases the recognizability of the shorelines formerly proposed for this area.
NASA Astrophysics Data System (ADS)
Hayakawa, Yuichi S.; Obanawa, Hiroyuki; Yoshida, Hidetsugu; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi
2016-04-01
Debris avalanche caused by sector collapse of a volcanic mountain often forms depositional landforms with characteristic surface morphology comprising hummocks. Geomorphological and sedimentological analyses of debris avalanche deposits (DAD) at the northeastern face of Mt. Erciyes in central Turkey have been performed to investigate the mechanisms and processes of the debris avalanche. The morphometry of hummocks provides an opportunity to examine the volumetric and kinematic characteristics of the DAD. Although the exact age has been unknown, the sector collapse of this DAD was supposed to have occurred in the late Pleistocene (sometime during 90-20 ka), and subsequent sediment supply from the DAD could have affected ancient human activities in the downstream basin areas. In order to measure detailed surface morphology and depositional structures of the DAD, we apply structure-from-motion multi-view stereo (SfM-MVS) photogrammetry using unmanned aerial system (UAS) and a handheld camera. The UAS, including small unmanned aerial vehicle (sUAV) and a digital camera, provides low-altitude aerial photographs to capture surface morphology for an area of several square kilometers. A high-resolution topographic data, as well as an orthorectified image, of the hummocks were then obtained from the digital elevation model (DEM), and the geometric features of the hummocks were examined. A handheld camera is also used to obtain photographs of outcrop face of the DAD along a road to support the seimentological investigation. The three-dimensional topographic models of the outcrop, with a panoramic orthorectified image projected on a vertical plane, were obtained. This data enables to effectively describe sedimentological structure of the hummock in DAD. The detailed map of the DAD is also further examined with a regional geomorphological map to be compared with other geomorphological features including fluvial valleys, terraces, lakes and active faults.
40 CFR 268.45 - Treatment standards for hazardous debris.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Debris 1 Technology description Performance and/or design and operating standard Contaminant..., Cloth, Concrete, Paper, Pavement, Rock, Wood: Removal of at least 0.6 cm of the surface layer; treatment...: Treatment to a clean debris surface 3; Brick, Cloth, Concrete, Paper, Pavement, Rock, Wood: Debris must be...
40 CFR 268.45 - Treatment standards for hazardous debris.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Debris 1 Technology description Performance and/or design and operating standard Contaminant..., Cloth, Concrete, Paper, Pavement, Rock, Wood: Removal of at least 0.6 cm of the surface layer; treatment...: Treatment to a clean debris surface 3; Brick, Cloth, Concrete, Paper, Pavement, Rock, Wood: Debris must be...
40 CFR 268.45 - Treatment standards for hazardous debris.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Debris 1 Technology description Performance and/or design and operating standard Contaminant..., Cloth, Concrete, Paper, Pavement, Rock, Wood: Removal of at least 0.6 cm of the surface layer; treatment...: Treatment to a clean debris surface 3; Brick, Cloth, Concrete, Paper, Pavement, Rock, Wood: Debris must be...
40 CFR 268.45 - Treatment standards for hazardous debris.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hazardous Debris 1 Technology description Performance and/or design and operating standard Contaminant..., Cloth, Concrete, Paper, Pavement, Rock, Wood: Removal of at least 0.6 cm of the surface layer; treatment...: Treatment to a clean debris surface 3; Brick, Cloth, Concrete, Paper, Pavement, Rock, Wood: Debris must be...
40 CFR 268.45 - Treatment standards for hazardous debris.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Hazardous Debris 1 Technology description Performance and/or design and operating standard Contaminant..., Cloth, Concrete, Paper, Pavement, Rock, Wood: Removal of at least 0.6 cm of the surface layer; treatment...: Treatment to a clean debris surface 3; Brick, Cloth, Concrete, Paper, Pavement, Rock, Wood: Debris must be...
Rainfall threshold calculation for debris flow early warning in areas with scarcity of data
NASA Astrophysics Data System (ADS)
Pan, Hua-Li; Jiang, Yuan-Jun; Wang, Jun; Ou, Guo-Qiang
2018-05-01
Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008-2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other threshold models and configurations shows that the selected approach is the most promising starting point for further studies on debris flow early warning systems in areas with a scarcity of data.
Recent Advances in our Understanding of Debris-covered Glacier Response to Climate
NASA Astrophysics Data System (ADS)
Pellicciotti, F.
2016-12-01
Debris-covered glaciers are relevant in many mountainous regions, but both modelling and observational studies are less numerous compared to those on traditional "clean" glaciers. A number of conjectures about their behaviour and response to climate have been made. First, it is assumed that in a warming climate debris cover would increase because of slope instability and increased meltout of englacial debris. Second, large-scale remote sensing studies have suggested that their thinning rates are comparable to those of debris-free glaciers, in spite of the insulating effect of a debris mantle. This apparent anomaly has been explained conceptually through high rates of energy absorption at supraglacial cliffs and ponds, but no evidence for this argument exists at the glacier scale. We validate each of these assumptions based on numerical modelling, analysis of satellite data and field observations from High Mountain Asia and the well monitored Langtang catchment in the Himalaya, in particular. First, no change in debris-covered area is apparent for regions of stable or positive mass balance such as the Karakoram, in line with the reasoning that sustained negative mass balance triggers an increase in debris. Second, results from an ensemble of DEM differences for the Langtang glaciers show that thinning rates of the debris-covered glaciers are not equivalent to those of the debris-free glaciers, contradicting results from the large-scale studies. However, thinning rates are higher than would be expected for a debris-covered surface, and can be explained through physically-based models of cliffs and lakes. These dynamic features form on low-gradient glacier sections between stagnant and dynamic zones, evolve in time and can survive or disappear depending on their characteristics. Ablation from cliffs and lakes is very high and can account between 10 to 30% of mass losses from the glaciers, despite covering a small percentage of the glacier area. Among the mechanisms controlling their persistence and relationship to climate, a key finding is that coupling of cliffs and ponds is a prerequisite for their long term survival. Our study provides a significant step towards a better understanding of the response of debris-covered glaciers to climate change, and highlights avenues of future research.
NASA Astrophysics Data System (ADS)
Vatle, S. S.
2015-12-01
Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.
Satellite and field studies of man's impact on the surface in arid regions
Otterman, Joseph
1981-01-01
Models of the nadir reflectivity as a function of the fractional cover by plants or plant debris are presented and are applied to assessing the Negev vs Sinai differences and the sharp recovery (darkening) of the surface in a Sinai enclosure where anthropogenic pressures were stopped in 1974 by fencing off the area.
Debris flow initiation in proglacial gullies on Mount Rainier, Washington
NASA Astrophysics Data System (ADS)
Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul
2014-12-01
Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.
NASA Astrophysics Data System (ADS)
Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François
2017-07-01
Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research on exposure to debris is urgently needed. Empirical data on sea turtles and debris distributions, such as those collected aerially, are essential to better identify the location and the factors determining risks.
AIAA Survivability Technical Committee Draft
NASA Technical Reports Server (NTRS)
Shipman, Jim; Williamson, Joel
1997-01-01
A relatively new area of interest in aerospace systems survivability is the growing threat of spacecraft penetration by orbital debris. Orbital debris, or "space junk", is composed of the man-made remnants of non-functioning spacecraft still orbiting the Earth. NASA estimates that there are currently over 100,000 orbital debris particles 1 centimeter in diameter or larger that cannot be tracked by existing radar, with the population growing at approximately 4% per year in low earth orbits. With an average velocity of over 8.7 km/sec, these projectiles can penetrate and disable many vulnerable spacecraft systems. Since the likelihood of spacecraft penetration increases with spacecraft surface area, large spacecraft (such as the International Space Station) and communication satellite fleets (such as Iridium) have begun to adopt survivability enhancement strategies similar to those employed by combat aircraft. Collision avoidance maneuvers are commonly practiced by the Space Shuttle and are planned by the International Space Station to decrease their susceptibility to impact by trackable orbital debris; likewise, improved shielding, internal equipment placement, and improved crew operations following penetration can reduce the vulnerability of spacecraft to loss following orbital debris impact. Computer simulations such as the Manned Spacecraft and Crew Survivability (MSCSurv) program at the NASA-Marshall Space Flight Center have recently been developed to quantify and reduce the likelihood of crew or spacecraft loss following orbital debris penetration. The AIAA Survivability Technical Committee is working to enable the transfer of military-developed survivability technologies to help the aerospace industry cope with this growing threat.
Faure, Florian; Saini, Camille; Potter, Gaël; Galgani, François; de Alencastro, Luiz Felippe; Hagmann, Pascal
2015-08-01
This study examines the distribution, abundance and characteristics of surface micro- and mesoplastic debris in the Western Mediterranean Sea. 41 samples were collected in 2011 (summer) and 2012 (summer). Results, firstly, revealed that micro- (<5 mm) and mesoplastic debris were widely and uniformly distributed in this area with average concentrations of 130,000 parts/km(2) and 5700 parts/km(2), respectively. Importantly, a strong correlation between micro- and mesoplastic concentrations was identified. Secondly, a classification based on the shape and appearance of microplastics indicated the predominant presence of fragments (73%) followed by thin films (14%). Thirdly, the average mass ratio of microplastic to dry organic matter has been measured at 0.5, revealing a significant presence of microplastics in comparison to plankton. Finally, a correction method was applied in order to correct wind mixing effect on microplastics' vertical distribution. This data allows for a comprehensive view, for the first time, of the spatial distribution and nature of plastic debris in the Western Mediterranean Sea.
Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea.
Liubartseva, S; Coppini, G; Lecci, R; Creti, S
2016-02-15
Sea surface concentrations of plastics and their fluxes onto coastlines are simulated over 2009-2015. Calculations incorporate combinations of terrestrial and maritime litter inputs, the Lagrangian model MEDSLIK-II forced by AFS ocean current simulations, and ECMWF wind analyses. With a relatively short particle half-life of 43.7 days, the Adriatic Sea is defined as a highly dissipative basin where the shoreline is, by construction, the main sink of floating debris. Our model results show that the coastline of the Po Delta receives a plastic flux of approximately 70 kg(km day)(-1). The most polluted sea surface area (>10 g km(-2) floating debris) is represented by an elongated band shifted to the Italian coastline and narrowed from northwest to southeast. Evident seasonality is found in the calculated plastic concentration fields and the coastline fluxes. Complex source-receptor relationships among the basin's subregions are quantified in impact matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Spiro, Clifford Lawrence (Inventor); Burnell, Timothy Brydon (Inventor); Wengrovius, Jeffrey Hayward (Inventor)
1997-01-01
An insect abatement system prevents adhesion of insect debris to surfaces which must be kept substantially free of insect debris. An article is coated with an insect abatement coating comprising polyorganosiloxane with a Shore A hardness of less than 50 and a tensile strength of less than 4 MPa. A method for preventing the adhesion of insect debris to surfaces includes the step of applying an insect abatement coating to a surface which must be kept substantially free of insect debris.
Pyron, M.; Covich, A.P.; Black, R.W.
1999-01-01
In this paper, we report the sizes and distributional orientation of woody debris in a headwater rainforest stream in the Luquillo Experimental Forest (LEF), Puerto Rico. We also provide results of a 4-month study of a wood addition experiment designed to increase cover for benthic macroinvertebrates (freshwater shrimp). We added branch-sized woody debris to 20 pools in three streams. We trapped four species of freshwater shrimp (two species of benthic detritivores and two predatory shrimp species) during each of the 4 months following wood additions. An analysis of pool morphology (maximum depth, surface area and volume) provided a useful predictor of shrimp abundances. In general, numbers of shrimps increased with sizes of stream pools. A repeated measures ANOVA demonstrated no effect of woody debris additions on total numbers of shrimp per pool area. Two detritivore species (Atya lanipes, a filter feeder and Xiphocaris elongata, a shredder) decreased in abundance with increased woody debris and there was no statistical relationship between woody debris additions and predators (Macrobrachium carcinus and M. crenulatum). Small woody debris additions may have altered flow velocities that were important to filter-feeding Atya at the microhabitat scale, although the overall velocities within pools were not altered by wood additions. Lower numbers of Atya and Xiphocaris in two of the three streams may result from the occurrence of two predaceous fishes (American eel and mountain mullet) and more predatory Macrobrachium in these streams. One likely interpretation of the results of this study is that the stream pools in these study reaches had sufficient habitat structure provided by numerous rock crevices (among large rocks and boulders) to provide refuge from predators. Addition of woody debris did not add significantly to the existing structure. These results may not apply to stream channels with sand and gravel substrata where crevices and undercut banks are lacking and where woody debris often plays a major role by providing structure and refuge.
NASA Astrophysics Data System (ADS)
Azzoni, Roberto; Franzetti, Andrea; Ambrosini, Roberto; D'Agata, Carlo; Senese, Antonella; Minora, Umberto; Tagliaferri, Ilario; Diolaiuti, Guglielmina
2014-05-01
Supraglacial debris has an important role in the glacier energy budget and has strong influence on the glacial ecosystem. Sediment derives generally from rock inputs from nesting rockwalls and are abundant and continuous at the surface of debris-covered glaciers (i.e. DCGs; glaciers where the ablation area is mainly covered by rock debris) and sparse and fine on debris-free glaciers (DFGs). Recently, evidence for significant tongue darkening on retreating debris-free glaciers has been drawing increasing attention. Fine particles, the cryoconite, are locally abundant and may form cryoconite holes that are water-filled depressions on the surface of DFGs that form when a thin layer of cryoconite is heated by the sun and melts the underlying ice. There is increasing evidence that cryoconite holes also host highly diverse microbial communities and can significantly contribute to global carbon cycle. However, there is almost no study on microbial communities of the debris cover of DCGs and there is a lack of data from the temporal evolution of the microbial communities in the cryoconites. To fill these gaps in our knowledge we characterized the supraglacial debris of two Italian DCGs and we investigated the temporal evolution of microbial communities on cryoconite holes in DFG. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from samples collected distances from the terminus of two DCGs (Miage and Belvedere Glaciers - Western Italian Alps). Heterotrophic taxa dominated bacterial communities, whose structure changed during downwards debris transport. Organic carbon of these recently exposed substrates therefore is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We used ARISA fingerprinting and quantitative PCR to describe the structure and the evolution of the microbial communities and to estimate the number of the total bacteria and the copy of Rubisco genes found on cryoconite holes collected on a wide Italian DFG (Forni Glacier - Central Alps). The structure of the microbial communities in cryoconite holes seem to be determined mainly by a turnover process. This work was carried out under the umbrella of the SHARE Stelvio Project which has been funded by the Lombardy Region government and managed by FLA (Lombardy Foundation for the Enviroment) and EvK2-CNR Committee.
A fundamental approach to the sticking of insect residues to aircraft wings
NASA Technical Reports Server (NTRS)
Yi, O.; Eiss, N. S.; Wightman, J. P.
1988-01-01
The aircraft industry is concerned with the increase of drag on planes due to the sticking of insects on critical airfoil areas. The objectives of the present study were to investigate the effects of surface energy and elasticity on the number of insects sticking onto the polymer coatings on a modified aircraft wing and to determine the mechanism by which insects stick onto surfaces during high velocity impact. Analyses including scanning electron microscopy, electron spectroscopy for chemical analysis and contact angle measurements of uncoated and polymer coated aluminum surfaces were performed. A direct relation between the number of insects sticking on a sample and its surface energy was obtained. Since the sticky liquid from a burst open insect will not spread on the low energy surface, it will ball up providing poor adhesion between the insect debris and the surface. The incoming air flow can easily blow off the insect debris and thus reducing the number of insects that remain stuck on the surface. Also a direct relation between the number of insect sticking onto a surface and their modulus of elasticity was obtained.
Gewert, Berit; Ogonowski, Martin; Barth, Andreas; MacLeod, Matthew
2017-07-15
We collected plastic debris in the Stockholm Archipelago using a manta trawl, and additionally along a transect in the Baltic Sea from the island of Gotland to Stockholm in a citizen science study. The samples were concentrated by filtration and organic material was digested using hydrogen peroxide. Suspected plastic material was isolated by visual sorting and 59 of these were selected to be characterized with Fourier transform infrared spectroscopy. Polypropylene and polyethylene were the most abundant plastics identified among the samples (53% and 24% respectively). We found nearly ten times higher abundance of plastics near central Stockholm than in offshore areas (4.2×10 5 plastics km -2 compared to 4.7×10 4 plastics km -2 ). The abundance of plastic debris near Stockholm was similar to urban areas in California, USA, and the overall abundance in the Stockholm Archipelago was similar to plastic abundance reported in the northwestern Mediterranean Sea. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Debris flow run-out simulation and analysis using a dynamic model
NASA Astrophysics Data System (ADS)
Melo, Raquel; van Asch, Theo; Zêzere, José L.
2018-02-01
Only two months after a huge forest fire occurred in the upper part of a valley located in central Portugal, several debris flows were triggered by intense rainfall. The event caused infrastructural and economic damage, although no lives were lost. The present research aims to simulate the run-out of two debris flows that occurred during the event as well as to calculate via back-analysis the rheological parameters and the excess rain involved. Thus, a dynamic model was used, which integrates surface runoff, concentrated erosion along the channels, propagation and deposition of flow material. Afterwards, the model was validated using 32 debris flows triggered during the same event that were not considered for calibration. The rheological and entrainment parameters obtained for the most accurate simulation were then used to perform three scenarios of debris flow run-out on the basin scale. The results were confronted with the existing buildings exposed in the study area and the worst-case scenario showed a potential inundation that may affect 345 buildings. In addition, six streams where debris flow occurred in the past and caused material damage and loss of lives were identified.
Uncovering glacier dynamics beneath a debris mantle
NASA Astrophysics Data System (ADS)
Lefeuvre, P.-M.; Ng, F. S. L.
2012-04-01
Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of testing this model with field observations of DCGs, given the inherent difficulty that such glaciers may not be in steady state.
Risk assessment of debris flow hazards in natural slope
NASA Astrophysics Data System (ADS)
Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin
2016-04-01
The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)
Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California
NASA Astrophysics Data System (ADS)
D'Arcy, Mitch; Roda-Boluda, Duna C.; Whittaker, Alexander C.
2017-08-01
It is hotly debated whether and how climate changes are recorded by terrestrial stratigraphy. Basin sediments produced by catchment-alluvial fan systems may record past climate over a variety of timescales, and could offer unique information about how climate controls sedimentation. Unfortunately, there are fundamental uncertainties about how climatic variables such as rainfall and temperature translate into sedimentological signals. Here, we examine 35 debris flow fan surfaces in Owens Valley, California, that record deposition throughout the past 125,000 years, during which climate has varied significantly. We show that the last full glacial-interglacial cycle is recorded with high fidelity by the grain size distributions of the debris flow deposits. These flows transported finer sediment during the cooler glacial climate, and became systematically coarser-grained as the climate warmed and dried. We explore the physical mechanisms that might explain this signal, and rule out changes in sediment supply through time. Instead, we propose that grain size records past changes in storm intensity, which is responsible for debris flow initiation in this area and is decoupled from average rainfall rates. This is supported by an exponential Clausius-Clapeyron-style scaling between grain size and temperature, and also reconciles with climate dynamics and the initiation of debris flows. The fact that these alluvial fans exhibit a strong, sustained sensitivity to orbital climate changes sheds new light on how eroding landscapes and their sedimentary products respond to climatic forcing. Finally, our findings highlight the importance of threshold-controlled events, such as storms and debris flows, in driving erosion and sedimentation at the Earth's surface in response to climate change.
Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.
2009-01-01
The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.
Long Duration Exposure Facility (LDEF) experiment M0003 meteoroid and debris survey
NASA Technical Reports Server (NTRS)
Meshishnek, M. J.; Gyetvay, S. R.; Paschen, K. W.; Coggi, J. M.
1993-01-01
A survey of the meteoroid and space debris impacts on LDEF experiment M0003 was performed. The purpose of this survey was to document significant impact phenomenology and to obtain impact crater data for comparison to current space debris and micrometeoroid models. The survey consists of the following: photomicrographs of significant impacts in a variety of material types; accurate measurements of impact crater coordinates and dimensions for selected experiment surfaces; and databasing of the crater data for reduction, manipulation, and comparison to models. Large area surfaces that were studied include the experiment power and data system (EPDS) sunshields, environment exposure control canister (EECC) sunshields, and the M0003 signal conditioning unit (SCU) covers. Crater diameters down to 25 microns were measured and cataloged. Both leading (D8) and trailing (D4) edge surfaces were studied and compared. The EPDS sunshields are aluminum panels painted with Chemglaze A-276 white thermal control paint, the EECC sunshields are chromic acid-anodized aluminum, and the SCU covers are aluminum painted with S13GLO white thermal control paint. Typical materials that have documented impacts are metals, glasses and ceramics, composites, polymers, electronic materials, and paints. The results of this survey demonstrate the different response of materials to hypervelocity impacts. Comparison of the survey data to curves derived from the Kessler debris model and the Cour-Palais micrometeoroid model indicates that these models overpredict small impacts (less than 100 micron) and may underpredict large impacts (greater than 1000 micron) while having fair to good agreement for the intermediate impacts. Comparison of the impact distributions among the various surfaces indicates significant variations, which may be a function of material response effects, or in some cases surface roughness. Representative photographs and summary graphs of the impact data are presented.
NASA Astrophysics Data System (ADS)
Staley, Dennis; Negri, Jacquelyn; Kean, Jason
2016-04-01
Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.
NASA Astrophysics Data System (ADS)
Fickert, Thomas; Friend, Donald; Grüninger, Friederike; Molnia, Bruce; Richter, Michael
2017-04-01
As stated at the International Conference on Debris-Covered Glaciers in 2000, "debris-covered glaciers comprise a significant fraction of the global population of glaciers...." Given a minimum of debris thickness and sufficient stability, these surfaces host surprisingly diverse plant assemblages, both floristically and structurally. Observations of plant growth on glacier surfaces are reported from around the world - including mature forests with trees more than 50cm in diameter. Debris covered glacier surfaces are mobile habitats for plants, which migrate downhill with glacier movement, but are able to spread upward with strong anabatic valley winds. Plant growth is possible even on a very shallow debris cover. Depending on site conditions, floristic composition and structure of vegetation on debris covered glaciers represent a mosaic of environments, including subnival pioneer communities, glacier foreland early- to late-successional stages, and morainal locations. The taxa involved display a wide spectrum of adaptations to habitat conditions with particular migration and dispersal strategies. With a shallow debris cover, alpine/subnival taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures. In contrast, a greater thickness of debris cover allows even thermophilous plants of lower elevations to grow on glacier surfaces. Employing the principle of actualism, debris covered glaciers provided important and previously undocumented refugia for plants during the Pleistocene cold stages from which alpine and arctic plant species were able to re-establish and spread in post-glacial time. This assumption is complementary to the two competing ideas to explain the fate of alpine and/or arctic taxa during the Pleistocene, the nunatak hypothesis (i.e. in-situ survival of plants on unglaciated summits) and tabula rasa theory (i.e. displacement of plants and subsequent remigration). Vice versa debris covered glaciers might have served as refugia for cryophilic plants during Holocene warm stages.
Flood of October 1986 at Seward, Alaska
Jones, S.H.; Zenone, Chester
1988-01-01
Broad areas along the lower Resurrection River and Salmon Creek as well as the surfaces of several adjacent alluvial fans in the Seward area were flooded as a result of the intensive rainstorm of October 9-11, 1986. Severe erosion took place through the steep gradient, mountain canyons and near the apex of the fans, while rock and debris were deposited on the distal parts of the fans. In Godwin, Lost, Box Canyon, Japanese, and Spruce Creek basins, and perhaps others, landslides or debris avalanches dammed the streams temporarily. Subsequent failure or overtopping of these dams led to ' surge-release ' flooding; peak discharge of such a flood at Spruce Creek was 13,600 cu ft/sec, four times as great as any previously known maximum discharge from the basin and 2.5 times as great as the runoff rate from the debris dam. Flood discharges were determined indirectly--using the slope-area method--at ten high-gradient reaches on nine streams. Computed peak discharges for several small basins were the largest since records began in 1963. The largest rainfall-runoff rate unaffected by surge-release was 1 ,020 cu ft per sec per sq mi at Rudolph Creek, which has a drainage area of 1.00 sq mi. The 15.05 inches of rain that fell in one 24-hour period during the storm was assigned a recurrence interval of 100 years or greater. The length of the streamflow record available for most Seward area streams-25 years or less-is inadequate to reliably define flood frequency relations for recurrence intervals as great as 100 years. However, the slope-area determined discharge of Spruce Creek above the debris avalanche indicates a recurrence interval of a 100 years or greater. In addition, conventional flood-frequency analysis techniques are not applicable to peak discharges that are affected by surge-release phenomena. Large, damaging floods have repeatedly caused major damage in the Seward area, and the potential for catastrophic, debris-laden floods is an ever-present threat to areas bordering the many steep mountain streams. (Author 's abstract)
Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona
Wohl, E.E.; Pearthree, P.P.
1991-01-01
Numerous debris flows occurred in the Huachuca Mountains of southeastern Arizona during the summer rainy season of 1988 in areas that were burned by a forest fire earlier in the summer. Debris flows occurred following a major forest fire in 1977 as well, suggesting a causal link between fires and debris flows. Abundant evidence of older debris flows preserved along channels and in mountain front fans indicates that debris flows have occurred repeteadly during the late Quaternary in this environment. Soil development in sequences of debris-flow deposits indicates that debris flows probably recur over time intervals of several hundred to a thousand years in individual drainage basins in the study area. Surface runoff in the steep drainage basins of the Huachuca Mountains is greatly enhanced following forest fires, as the hillslopes are denuded of their vegetative cover. Water and sediment eroded from the hillslope regolith are rapidly introduced into the upper reaches of tributary channels by widespread rilling and slope wash during rainfall events. This influx of water and sediment destabilizes regolith previously accumulated in the channel, triggering debris flows that scour the channel to bedrock in the upper reaches. Following a debris flow, the scoured, trapezoidally-shaped channel gradually assumes a swale shape and the percentage of exposed bedrock declines, as material is introduced from the slopes. Debris flows do a tremendous amount of work in a very short time, however, and are the major channel-forming events. Where the tributary channels enter larger, trunk channels, the debris flows serve as the main source of very coarse sediment. The local slope and coarse particle distribution of the trunk channel depend on the competence of water flows in the channel to transport the material introduced by debris flows. Where the smaller channels drain directly to the mountain front, debris flows create extensive alluvial fans which dominate the morphology of the basin-range boundary. Time intervals between debris flows in the drainage basins of the Huachuca Mountains are probably controlled by complex interactions among climate, forest fires and slope processes. Fires destroy the protective vegetation that stabilizes the upper catchment slopes and inhibits erosion. However, not every fire that burns a catchment causes debris flows, because sufficient weathered material must accumulate in the upper channel reaches to initiate a large debris flow. If such accumulation has not occurred, the material introduced to a channel following a forest fire will move only a short distance down the channel. Thus, the episodic nature of debris flows probably depends on rates of slope weathering and erosion, which are in turn controlled by climate, both directly and through vegetation and forest fires. ?? 1991.
Schmalzried, T P; Jasty, M; Harris, W H
1992-07-01
Thirty-four hips in which there had been prosthetic replacement were selected for study because of the presence of linear (diffuse) or lytic (localized) areas of periprosthetic bone loss. In all hips, there was careful documentation of the anatomical location of the material that had been obtained for histological analysis, and the specific purpose of the removal of the tissue was for examination to determine the cause of the resorption of bone. Specimens from twenty-three hips were retrieved during an operation and from eleven hips, at autopsy. The area of bone loss was linear only in sixteen hips, lytic only in thirteen, and both linear and lytic in five. In all thirty-four hips, intracellular particulate debris was found in the macrophages that were present in the area of bone resorption. All thirty-four had intracellular particles of polyethylene, many of which were less than one micrometer in size. Thirty-one hips had extracellular particles of polyethylene as well. Twenty-two of the thirty-four hips had intracellular metallic debris; in ten, metallic debris was found extracellularly as well. Ten of the sixteen cemented specimens had intracellular and extracellular polymethylmethacrylate debris. In the mechanically stable prostheses--cemented and uncemented--polyethylene wear debris was identified in areas of bone resorption far from the articular surfaces. The number of macrophages in a microscopic field was directly related to the amount of particulate polyethylene debris that was visible by light microscopy. Although the gross radiographic appearances of linear bone loss and lytic bone loss were different, the histological appearance of the regions in which there was active bone resorption was similar. Regardless of the radiographic appearance and anatomical origin of the specimen, bone resorption was found to occur in association with macrophages that were laden with polyethylene debris. In general, the number of macrophages present had a direct relationship to the degree of bone resorption that was seen. We believe that these findings indicate that joint fluid penetrates far more extensively than previously thought, even in a well fixed component, along the interface between the prosthesis and bone and in the periprosthetic tissues; it is often more extensive than is shown by arthrography. We therefore suggest the concept of the effective joint space to include all periprosthetic regions that are accessible to joint fluid and thus accessible to particulate debris.(ABSTRACT TRUNCATED AT 400 WORDS)
Analysis of Cryokarstic Surface Patterns on Debris Aprons at the Mid-Latitudes of Mars
NASA Astrophysics Data System (ADS)
Orgel, Cs.
2011-03-01
This work focuses on the morphological analysis of the surface patterns (mounds, furrows, craters) and surface types (smooth surface, corn-like surface, polygonal mantling material, brain-like texture) on debris apron surfaces using HiRISE’s images.
Space Debris Surfaces - Probability of no penetration versus impact velocity and obliquity
NASA Technical Reports Server (NTRS)
Elfer, N.; Meibaum, R.; Olsen, G.
1992-01-01
A collection of computer codes called Space Debris Surfaces (SD-SURF), have been developed to assist in the design and analysis of space debris protection systems. An SD-SURF analysis will show which obliquities and velocities are most likely to cause a penetration to help the analyst select a shield design best suited to the predominant penetration mechanism. Examples of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration are presented.
NASA Astrophysics Data System (ADS)
Fukuoka, H.; Wang, C.
2015-12-01
Hiroshima city was hit by swarm debris flows along a narrow, and linear-shaped rain band of 2 km x 10 km which appeared in the early morning of August 20, 2014. Most of the flows were induced by shallow slide in the upstream. This disaster claimed 74 death, although this city experienced very similar disaster in 1999, claiming more than 30 residents lives. In the most severely affected debris flow torrent, more than 50 residents were killed. Most of the casualties arose in the wooden, vulnerable houses constructed in front of the exit of torrents. Points and lessons learnt from the disaster are as follows:1. Authors collected two types of sands from the source scar of the initial debris slides which induced debris flows. Tested by the ring shear apparatus under pore-pressure control condition, clear "Sliding surface liquefaction" was confirmed for both samples even under small normal stress, representing the small thickness of the slides. These results shows even instant excess pore pressure could initiate the slides and trigger slide-induced debris flow byundrained loading onto the torrent deposits.2. Apparently long-term land-use change since 1945 affected and raised the vulnerability of the community. Residential area had expanded into hill-slope (mountainous / semi-mountainous area) especially along the torrents. Those communities were developed on the past debris flow fan.3. As the devastated area is very close to downtown of Hiroshima city, it gave large societal impact to the Japanese citizens. After 1999 Hiroshima debris flow disaster, the Landslide disaster reduction law which intends to promote designation of landslide potential risk zones, was adopted in 2000. Immediately after 2014 disaster, national diet approved revision of the bill to promote rapid completion of the designation over the national territory. MLIT (Ministry of Land, Infrastructure, Tranportation and Tourism) decided to install X-band rain radars at more sites to cover whole city zones of the country. However, narrow extreme rain bands or spots which can not be detected effectively, often appear these years. It means more rain gauges conncted to the net should be implemented at upstreams of the communities facing torrent exits and on debris fan.
Sullivan, R.; Greeley, R.; Pappalardo, R.; Asphaug, E.; Moore, Johnnie N.; Morrison, D.; Belton, M.J.S.; Carr, M.; Chapman, C.R.; Geissler, P.; Greenberg, R.; Granahan, J.; Head, J. W.; Kirk, R.; McEwen, A.; Lee, P.; Thomas, P.C.; Veverka, J.
1996-01-01
The surface of 243 Ida is dominated by the effects of impacts. No complex crater morphologies are observed. A complete range of crater degradation states is present, which also reveals optical maturation of the surface (darkening and reddening of materials with increasing exposure age). Regions of bright material associated with the freshest craters might be ballistically emplaced deposits or the result of seismic disturbance of loosely-bound surface materials. Diameter/depth ratios for fresh craters on Ida are ???1:6.5, similar to Gaspra results, but greater than the 1:5 ratios common on other rocky bodies. Contributing causes include rim degradation by whole-body "ringing," relatively thin ejecta blankets around crater rims, or an extended strength gradient in near-surface materials due to low gravitational self-packing. Grooves probably represent expressions in surface debris of reactivated fractures in the deeper interior. Isolated positive relief features as large as 150 m are probably ejecta blocks related to large impacts. Evidence for the presence of debris on the surface includes resolved ejecta blocks, mass-wasting scars, contrasts in color and albedo of fresh crater materials, and albedo streaks oriented down local slopes. Color data indicate relatively uniform calcium abundance in pyroxenes and constant pyroxene/olivine ratio. A large, relatively blue unit across the northern polar area is probably related to regolith processes involving ejecta from Azzurra rather than representing internal compositional heterogeneity. A small number of bluer, brighter craters are randomly distributed across the surface, unlike on Gaspra where these features are concentrated along ridges. This implies that debris on Ida is less mobile and/or consistently thicker than on Gaspra. Estimates of the average depth of mobile materials derived from chute depths (20-60 m), grooves (???30 m), and shallowing of the largest degraded craters (20-50 m minimum, ???100 m maximum) suggest a thickness of potentially mobile materials of ???50 m, and a typical thickness for the debris layer of 50-100 m. ?? 1996 Academic Press, Inc.
High temperature reaction between sea salt deposit and (U,Zr)O2 simulated corium debris
NASA Astrophysics Data System (ADS)
Takano, Masahide; Nishi, Tsuyoshi
2013-11-01
In order to clarify the possible impacts of seawater injection on the chemical and physical state of the corium debris formed in the severe accident at Fukushima Daiichi Nuclear Power Plants, the high temperature reaction between sea salt deposit and (U,Zr)O2 simulated corium debris (sim-debris) was examined in the temperature range from 1088 to 1668 K. A dense layer of calcium and sodium uranate formed on the surface of a sim-debris pellet at 1275 K under airflow, with the thickness of over 50 μm. When the oxygen partial pressure is low, calcium is likely to dissolve into the cubic sim-debris phase to form solid solution (Ca,U,Zr)O2+x. The diffusion depth was 5-6 μm from the surface, subjected to 1275 K for 12 h. The crystalline MgO remains affixed on the surface as the main residue of salt components. A part of it can also dissolve into the sim-debris.
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.
2015-11-01
The mid-latitudes of Mars are host to a record of recent episodes of accumulations of ice-rich materials. The record includes debris aprons, interpreted to be debris-covered glaciers, that may represent the preserved remnants of a much more extensive ice sheet. We assessed the possibility of former glacial extents by examining debris aprons and the surrounding plains in Deuteronilus Mensae. Geomorphic units and stratigraphic relationships were mapped and documented from Mars Reconnaissance Orbiter (MRO) Context (CTX) and High Resolution Imaging Science Experiment (HiRISE) camera images, and crater retention ages were estimated from crater size-frequency distributions. Three major units are observed within the study area: debris aprons, lower plains, and upper plains. Debris aprons exhibit characteristics typical for these features documented elsewhere and in previous studies, including integrated flow lineations and patterns, convex-upward profiles, and knobby and brain terrain surface textures. A lower bound on the age for debris aprons is estimated to be 0.9 Ga. Debris aprons are superposed on a lower plains unit having a lower bound age of 3.3-3.5 Ga. A 50-100 m thick upper plains unit superposes both debris apron landforms and lower plains units and has a best-fit minimum age of 0.6 Ga. The upper plains unit exhibits characteristics of atmospherically-emplaced mantle material, including fine-grained nature, sublimation textures, cyclic layering, draping character, and widespread spatial distribution. Fracturing and subsequent sublimation/erosion of upper plains on debris aprons has contributed to many of the surface textures on debris aprons. The upper plains unit has also been eroded from the lower plains and plateaus, evidenced by isolated blocks of upper plains in the interiors of craters and on the walls and tops of plateaus. While no conclusive evidence diagnostic of former cold-based ice sheets are observed in the plains within the study region, such landforms and units may have been poorly developed or absent, as is often the case on Earth, and would have been covered and reworked by later mantling episodes. These observations suggest that emplacement of thick ice-rich mantle deposits extended at least to near the Early/Middle Amazonian boundary and overlapped with the waning stages of glaciation in Deuteronilus Mensae.
NASA Astrophysics Data System (ADS)
Juen, M.; Mayer, C.; Lambrecht, A.; Wirbel, A.; Kueppers, U.
2012-04-01
Currently many glaciers all over the world show negative mass balances. Because of the retreating ice masses, there is an increase of deglaciated slopes. In combination with increased melting of permafrost these areas can become unstable and account for an additional supply of weathered bedrock and sediments onto the glacier surface. Furthermore increasing ablation rates advance the melting out and accumulation of englacial till on the glacier surface. The experiment was performed during summer season 2010 at the middle tongue of Vernagtferner, a temperate glacier in the Oetztal Alps, Austria. The experimental setup was designed in a way to monitor the parameters which are most crucial for controlling sub-debris ice melt with regards to lithology, grain size and moisture content. Ten test plots were established with different debris grain sizes and debris thicknesses consisting of sieved natural material. The local metamorphic mica schist and volcanic debris were used for the experiment. Ablation was measured at stakes. Bare ice melt was observed continuously with a sonic ranger. Three automatic weather stations were installed to record meteorological data. To obtain information concerning the internal temperature distribution of the debris cover, thermistors were installed at various depths. For each individual plot thermal conductivity and thermal diffusivity have been estimated. The observations during the season revealed a clear dependence of the sub-debris ice melt on the layer thickness and the grain size. For the fine sand fraction the moisture content plays an important role, as these test fields were always water saturated. Highly porous volcanic material protects the ice much more effectively from melting than similar layer thicknesses of the local mica schist. Also the albedo plays an important role, where melt rates under dark debris are about 1.75 times higher than underneath brighter material. The analysis of thermal diffusivities indicates that lower values can be found in proximity to the debris/ice interface. Based on our experiences it can be concluded that test sites need intensive care in order to obtain representative data.
Optical Photometric Observations of GEO Debris
NASA Technical Reports Server (NTRS)
Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt
2010-01-01
We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus, the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.
Establishment of a Cutting Fluid Control System (Phase 1)
1981-01-01
that prevent or reduce welding of contacting areas and minimize both material transfer and generation of metallic debris within the contact zone...not on ceramic abrasives. Welding between ceramics and workpiece materials is, however, less of a problem than metal-metal contact phenomena in...fluid film (hatched area) - no wear and low friction. Mating surfaces contacting at asperities with local plastic deformation and welding - wear with
Wieczorek, G.F.; Stock, Gregory M.; Reichenbach, P.; Snyder, J.B.; Borchers, J.W.; Godt, J.W.
2008-01-01
Since 1857 more than 600 rock falls, rock slides, debris slides, and debris flows have been documented in Yosemite National Park, with rock falls in Yosemite Valley representing the majority of the events. On 26 December 2003, a rock fall originating from west of Glacier Point sent approximately 200 m 3 of rock debris down a series of joint-controlled ledges to the floor of Yosemite Valley. The debris impacted talus near the base of Staircase Falls, producing fragments of flying rock that struck occupied cabins in Curry Village. Several years later on 9 June 2007, and again on 26 July 2007, smaller rock falls originated from the same source area. The 26 December 2003 event coincided with a severe winter storm and was likely triggered by precipitation and/or frost wedging, but the 9 June and 26 July 2007 events lack recognizable triggering mechanisms. We investigated the geologic and hydrologic factors contributing to the Staircase Falls rock falls, including bedrock lithology, weathering, joint spacing and orientations, and hydrologic processes affecting slope stability. We improved upon previous geomorphic assessment of rock-fall hazards, based on a shadow angle approach, by using STONE, a three-dimensional rock-fall simulation computer program. STONE produced simulated rock-fall runout patterns similar to the mapped extent of the 2003 and 2007 events, allowing us to simulate potential future rock falls from the Staircase Falls detachment area. Observations of recent rock falls, mapping of rock debris, and simulations of rock fall runouts beneath the Staircase Falls detachment area suggest that rock-fall hazard zones extend farther downslope than the extent previously defined by mapped surface talus deposits.
Coe, Jeffrey A.; Reid, Mark E.; Brien, Dainne L.; Michael, John A.
2011-01-01
To better understand controls on debris-flow entrainment and travel distance, we examined topographic and drainage network characteristics of initiation locations in two separate debris-flow prone areas located 700 km apart along the west coast of the U.S. One area was located in northern California, the other in southern Oregon. In both areas, debris flows mobilized from slides during large storms, but, when stratified by number of contributing initiation locations, median debris-flow travel distances in Oregon were 5 to 8 times longer than median distances in California. Debris flows in Oregon readily entrained channel material; entrainment in California was minimal. To elucidate this difference, we registered initiation locations to high-resolution airborne LiDAR, and then examined travel distances with respect to values of slope, upslope contributing area, planform curvature, distance from initiation locations to the drainage network, and number of initiation areas that contributed to flows. Results show distinct differences in the topographic and drainage network characteristics of debris-flow initiation locations between the two study areas. Slope and planform curvature of initiation locations (landslide headscarps), commonly used to predict landslide-prone areas, were not useful for predicting debris-flow travel distances. However, a positive, power-law relation exists between median debris-flow travel distance and the number of contributing debris-flow initiation locations. Moreover, contributing area and the proximity of the initiation locations to the drainage network both influenced travel distances, but proximity to the drainage network was the better predictor of travel distance. In both study areas, flows that interacted with the drainage network flowed significantly farther than those that did not. In California, initiation sites within 60 m of the network were likely to reach the network and generate longtraveled flows; in Oregon, the threshold was 80 m.
Spatial variability in patterns of glacier change across the Manaslu region, Central Himalaya
NASA Astrophysics Data System (ADS)
Robson, Benjamin A.; Nuth, Christopher; Nielsen, Pål R.; Girod, Luc; Hendrickx, Marijn; Dahl, Svein Olaf
2018-02-01
This study assesses changes in glacier area, velocity and geodetic mass balance for the glaciers in the Manaslu region of Nepal, a previously undocumented region of the Himalayas. We studied changes between 1970 (for select glaciers), 2000, 2005 and 2013 using freely available Landsat satellite imagery, the SRTM Digital Elevation Model (DEM) and a DEM based on Worldview imagery. Our results show a complex pattern of mass changes across the region, with glaciers lowering on average by -0.25 ± 0.08 m a-1 between 2000 and 2013 which equates to a negative geodetic mass balance of -0.21 ± 0.16 m w.e.a-1. Over approximately the same time period (1999 to 2013) the glaciers underwent a -16.0% decrease in mean surface velocity over their debris-covered tongues as well as a reduction in glacier area of -8.2%. The rates of glacier change appear to vary between the different time periods, with glacier losses increasing in most cases. The glaciers on Manaslu itself underwent a change in surface elevation of -0.46 ± 0.03 m a-1 between 1970 and 2000 and -0.99 ± 0.08 m a-1 between 2000 and 2013. Rates of glacier area shrinkage for the same glaciers increased from -0.36 km2 a-1 between 1970 and 2001 to -2.28 km2 a-1 between 2005 and 2013. Glacier change varies across the region and seems to relate to a combination of glacier hypsometry, glacier elevation range and the presence and distribution of supraglacial debris. Lower-elevation, debris-free glaciers with bottom-heavy hypsometries are losing most mass. As the glaciers in the Manaslu region continue to stagnate, an accumulation and thickening of the debris-cover is likely, thereby insulating the glacier and further complicating future glacier responses to climate.
Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements
NASA Technical Reports Server (NTRS)
Matney, Mark
2015-01-01
Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.
2003-09-10
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jack Nowling moves a box filled with part of the Columbia debris. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas. An area of the Vehicle Assembly Building is being prepared to store the debris.
Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.
2011-01-01
During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.
NASA Astrophysics Data System (ADS)
Klug, Christoph; Nicholson, Lindsey; Rieg, Lorenzo; Sailer, Rudolf; Wirbel, Anna
2016-04-01
Debris-covered glaciers in the eastern Himalaya have pronounced surface relief consisting of hummocks and hollows, ice cliffs, lakes and former lake beds. This relief and spatially variable surface properties are expected to influence the spatially distributed surface energy balance and related ice mass loss and atmospheric interactions, but only a few studies have so far explicitly examined the nature of the surface terrain and its textures . In this work we present a new high-resolution digital terrain model (DTM) of a portion of the Khumbu Himal in the eastern Nepalese Himalaya, derived from Pléiades satellite imagery sampled in spring 2015. We use this DTM to study the terrain characteristics of five sample glaciers and analyse the inter- and intra- glacier variability of terrain characteristics in the context of glacier flow velocities and surface changes presented in previous studies in the area. In parallel to this analysis we also present the seasonal geodetic mass balance between spring and fall 2015, and relate it to the terrain properties, surface velocity and limited knowledge of the local lapse rates in meteorological conditions during this monsoon season.
2003-09-10
KENNEDY SPACE CENTER, FLA. -In the Columbia Debris Hangar, Don Eitel (left) wraps pieces of Columbia debris for storage. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.
Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne
2016-01-01
Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.
Currie, Jens J; Stack, Stephanie H; McCordic, Jessica A; Kaufman, Gregory D
2017-08-15
Marine debris poses considerable threat to biodiversity and ecosystems and has been identified as a stressor for a variety of marine life. Here we present results from the first study quantifying the amount and type of debris accumulation in Maui leeward waters and relate this to cetacean distribution to identify areas where marine debris may present a higher threat. Transect surveys were conducted within the 4-island region of Maui, Hawai'i from April 1, 2013 to April 15, 2016. Debris was found in all areas of the study region with higher concentrations observed where the Au'au, Kealaikahiki, and Alalakeiki channels converge. The degree of overlap between debris and cetaceans varied among species but was largest for humpback whales, which account for the largest portion of reported entanglements in the 4-island region of Maui. Identifying areas of high debris-cetacean density overlap can facilitate species management and debris removal efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.
2003-09-11
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Scott Thurston, NASA vehicle flow manager, addresses the media about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.
NASA Astrophysics Data System (ADS)
Massey, Chris
2017-04-01
The Kaikoura earthquake generated tens of thousands of landslides over a total area of about 10,000 km2, with the majority concentrated in a smaller area of about 3,500 km2. A noteworthy aspect of this event is the large number of landslides that occurred on the steep coastal cliffs south of Ward and extending to Oaro, north of Christchurch, which led to the closure of state highway routes. Another noteworthy feature of this earthquake is the large number (more than 190) of valley blocking landslides it generated. This was partly due to the presence of steep and confined slopes in areas of strong ground shaking. The largest valley blocking landslide has an approximate volume of 12(±2) M m3 and the debris travelled about 2.7 km down slope forming a dam on the Hapuku River. Given the sparse population in the vicinity of the landslides, only a few homes were impacted and there were no recorded deaths due to landslides. However, the long-term stability of cracked slopes and landslide "dams" from future strong earthquakes and significant rain events are an ongoing concern to central and local government agencies responsible for rebuilding homes and infrastructure. A particular concern is the potential for debris floods to affect downstream residences and infrastructure should some of the landslide dams breach catastrophically. The mapped landslide distribution reflects the complexity of the earthquake rupture—at least 13 faults ruptured to the ground surface or sea floor. The majority of landslides occurred in two geological and geotechnically distinct materials: Neogene sedimentary rocks (sandstones, limestones and siltstones) where first-time and reactivated rock-slides were the dominant landslide type, and Torlesse "basement" rocks (greywacke sandstones and argillite) where first-time rock and debris avalanches dominated. The largest landslides triggered by the earthquake are located either on or adjacent to faults that ruptured to the ground surface and so they are distributed across a wide area, and most have slide surfaces that correspond to geological discontinuities. Initial results from our landslide investigations suggest: predictive models relying only on ground-shaking estimates may underestimate the number and size of the larger landslides that occurred, surface faults may provide a plane of weakness or hydrological discontinuity, and adversely oriented surface faults may be indicative of the location of future large landslides.
Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi
NASA Astrophysics Data System (ADS)
Matthews, John Philip; Ostrovsky, Lev; Yoshikawa, Yutaka; Komori, Satoru; Tamura, Hitoshi
2017-08-01
The devastating tsunami triggered by the Tōhoku-Oki earthquake of 11 March 2011 caused a crisis at the Fukushima Daiichi nuclear power station where it overtopped the seawall defences. On retreating, the tsunami carried loose debris and wreckage seaward and marshalled buoyant material into extensive plumes. Widespread concern over the fate of these and numerous other Tōhoku tsunami depositions prompted attempts to simulate debris dispersion throughout the wider Pacific. However, the effects of locally perturbed wind and wave fields, active Langmuir circulation and current-induced attrition determine a complex and poorly understood morphology for large floating agglomerations. Here we show that the early post-tsunami evolution of marine-debris plumes near Fukushima Daiichi was also shaped by near-surface wind modifications that took place above relatively calm (lower surface roughness) waters covered by surface films derived from oil and other contaminants. High-spatial-resolution satellite tracking reveals faster-than-expected floating-debris motions and invigorated plume evolution within these regions, while numerical modelling of turbulent air flow over the low-drag, film-covered surface predicts typically metre-per-second wind strengthening at centimetric heights, sufficient to explain the observed debris-speed increases. Wind restructuring probably stimulates the dispersion of flotsam from both biological and anthropogenic sources throughout a global ocean of highly variable surface roughness.
Leite, Brisa Dos Santos; Fagundes, Nathalia Carolina Fernandes; Aragón, Mônica Lídia Castro; Dias, Carmen Gilda Barroso Tavares; Normando, David
2016-01-01
Debris buildup on the bracket-wire interface can influence friction. Cleansing brackets with air-powder polishing can affect this process. The aim of this study was to evaluate the frictional force and amount of debris remaining on orthodontic brackets subjected to prophylaxis with air-powder polishing. Frictional force and debris buildup on the surface of 28 premolar brackets were evaluated after orthodontic treatment. In one hemiarch, each bracket was subjected to air-powder polishing (n = 14) for five seconds, while the contralateral hemiarch (n = 14) served as control. Mechanical friction tests were performed and images of the polished bracket surfaces and control surfaces were examined. Wilcoxon test was applied for comparative analysis between hemiarches at p < 0.05. Brackets that had been cleaned with air-powder polishing showed lower friction (median = 1.27 N) when compared to the control surfaces (median = 4.52 N) (p < 0.01). Image analysis showed that the control group exhibited greater debris buildup (median = 2.0) compared with the group that received prophylaxis with air-powder polishing (median = 0.5) (p < 0.05). Cleansing orthodontic brackets with air-powder polishing significantly reduces debris buildup on the bracket surface while decreasing friction levels observed during sliding mechanics.
Hereford, R.; Thompson, K.S.; Burke, K.J.
1998-01-01
Carbonate boulders transported down steep tributary channels by debris flow came to rest on Holocene debris fans beside the Colorado River in Grand Canyon National Park. Weakly acidic rainfall and the metabolic activity of blue-green algae have produced roughly hemispheric dissolution pits as much as 2-cm deep on the initially smooth surfaces of the boulders. The average depth of dissolution pits increases with relative age of fan surfaces. The deepening rate averages 2.4 mm/1000 yr (standard error = 0.2 mm/1000 yr), as calculated from several radiometrically dated surfaces and an archeological structure. This linear rate, which appears constant over at least the past 3000 yr, is consistent with field relations limiting the maximum age of the fans and with the physical chemistry of limestone dissolution. Dissolution-pit measurements (n = 6973) were made on 617 boulders on 71 fan surfaces at the 26 largest debris fans in Grand Canyon. Among these fan surfaces, the average pit depth ranges from 1.2 to 17.4 mm, and the resulting pit dissolution ages range from 500 to 7300 cal yr B.P. Most (75%) surfaces are younger than 3000 yr, probably because of removal of older debris fans by the Colorado River. Many of the ages are close to 800, 1600, 2300, 3100, or 4300 cal yr B.P. If not the result of differential preservation of fan surfaces, this clustering implies periods of heightened debris-flow activity and increased precipitation.
Backwater development by woody debris
NASA Astrophysics Data System (ADS)
Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton
2017-04-01
Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.
Simulation of Micron-Sized Debris Populations in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark
2010-01-01
The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.
Simulation of Micron-Sized Debris Populations in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.
2010-01-01
The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.
Agustin, Alyssa E; Merrifield, Mark A; Potemra, James T; Morishige, Carey
2015-12-15
A twenty-two year record of marine debris collected on Tern Island is used to characterize the temporal variability of debris deposition at a coral atoll in the Northwestern Hawaiian Islands. Debris deposition tends to be episodic, without a significant relationship to local forcing processes associated with winds, sea level, waves, and proximity to the Subtropical Convergence Zone. The General NOAA Operational Modeling Environment is used to estimate likely debris pathways for Tern Island. The majority of modeled arrivals come from the northeast following prevailing trade winds and surface currents, with trajectories indicating the importance of the convergence zone, or garbage patch, in the North Pacific High region. Although debris deposition does not generally exhibit a significant seasonal cycle, some debris types contain considerable 3 cycle/yr variability that is coherent with wind and surface pressure over a broad region north of Tern. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessment of floating plastic debris in surface water along the Seine River.
Gasperi, Johnny; Dris, Rachid; Bonin, Tiffany; Rocher, Vincent; Tassin, Bruno
2014-12-01
This study is intended to examine the quality and quantity of floating plastic debris in the River Seine through use of an extensive regional network of floating debris-retention booms; it is one of the first attempts to provide reliable information on such debris at a large regional scale. Plastic debris represented between 0.8% and 5.1% of total debris collected by weight. A significant proportion consisted of food wrappers/containers and plastic cutlery, probably originating from voluntary or involuntary dumping, urban discharges and surface runoff. Most plastic items are made of polypropylene, polyethylene and, to a lesser extent, polyethylene terephthalate. By extrapolation, some 27 tons of floating plastic debris are intercepted annually by this network; corresponding to 2.3 g per Parisian inhabitant per year. Such data could serve to provide a first evaluation of floating plastic inputs conveyed by rivers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of the 90-Day Inhalation Toxicity of Petroleum and Oil Shale JP-5 Jet Fuel
1985-04-01
urothelium over the surface of the renal papillus, moderate to severe deposits of mineralized debris in medullary tubules (probably at the loop of Henle...and tubular degenera- tion. Hyperplastic areas along the pelvic urothelium were thought to result from mechanical irritation by mineralized de- bris
Marine Exposure of Preservative-Treated Small Wood Panels.
1981-04-01
southern noria attack and that creosote impedes teredine attack, pine sapwood , 0.24 to 0.39 growth rings per mm (6-8/in.), a study was initiated in 1969...whereas in piling, wave action and abrasion from The column showing "months exposure to index below floating debris must break away surface areas to
Conversion of "Waste Plastic" into Photocatalytic Nanofoams for Environmental Remediation.
de Assis, Geovania C; Skovroinski, Euzébio; Leite, Valderi D; Rodrigues, Marcelo O; Galembeck, André; Alves, Mary C F; Eastoe, Julian; de Oliveira, Rodrigo J
2018-03-07
Plastic debris is a major environmental concern, and to find effective ways to reuse polystyrene (PS) presents major challenges. Here, it is demonstrated that polystyrene foams impregnated with SnO 2 are easily generated from plastic debris and can be applied to photocatalytic degradation of dyes. SnO 2 nanoparticles were synthesized by a polymeric precursor method, yielding specific surface areas of 15 m 2 /g after heat treatment to 700 °C. Crystallinity, size, and shape of the SnO 2 particles were assessed by X-ray diffraction (XRD) and transmission electron microscopy (TEM), demonstrating the preparation of crystalline spherical nanoparticles with sizes around 20 nm. When incorporated into PS foams, which were generated using a thermally induced phase separation (TIPS) process, the specific surface area increased to 48 m 2 /g. These PS/SnO 2 nanofoams showed very good efficiency for photodegradation of rhodamine B, under UV irradiation, achieving up to 98.2% removal. In addition the PS/SnO 2 nanofoams are shown to retain photocatalytic activity for up to five reuse cycles.
The distribution of lobate debris aprons and similar flows on Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.
1979-01-01
Planet-wide mapping of lobate debris aprons and other similar flows on Mars shows a strong concentration in two latitudinal bands roughly 25 deg wide and centered at 40 deg N and 45 deg S. This distribution supports the idea that these flows form when erosional debris is transported downslope and becomes mixed with ice deposited from the atmosphere, as these latitudes should receive high seasonal H2O frost deposition relative to the rest of the planet. Flows are found in the northern hemisphere band wherever old highland surfaces occur but are found in the southern hemisphere only near the two major impact basins, Argyre and Hellas. These areas are apparently characterized by mass wasting that is rapid relative to most of the southern hemisphere highlands. The rate of mass wasting may be related to the degree of consolidation of highland material.
NASA Astrophysics Data System (ADS)
Fowler, A. C.; Mayer, C.
2017-11-01
Debris-covered glaciers are prone to the formation of a number of supraglacial geomorphological features, and generally speaking, their upper surfaces are far from level surfaces. Some of these features are due to radiation screening or enhancing properties of the debris cover, but theoretical explanations of the consequent surface forms are in their infancy. In this paper we consider a theoretical model for the formation of "ice sails", which are regularly spaced bare ice features which are found on debris-covered glaciers in the Karakoram.
2003-09-10
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jack Nowling transfers bags with debris pieces into a storage box. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.
Surface Connectivity and Interocean Exchanges From Drifter-Based Transition Matrices
NASA Astrophysics Data System (ADS)
McAdam, Ronan; van Sebille, Erik
2018-01-01
Global surface transport in the ocean can be represented by using the observed trajectories of drifters to calculate probability distribution functions. The oceanographic applications of the Markov Chain approach to modeling include tracking of floating debris and water masses, globally and on yearly-to-centennial time scales. Here we analyze the error inherent with mapping trajectories onto a grid and the consequences for ocean transport modeling and detection of accumulation structures. A sensitivity analysis of Markov Chain parameters is performed in an idealized Stommel gyre and western boundary current as well as with observed ocean drifters, complementing previous studies on widespread floating debris accumulation. Focusing on two key areas of interocean exchange—the Agulhas system and the North Atlantic intergyre transport barrier—we assess the capacity of the Markov Chain methodology to detect surface connectivity and dynamic transport barriers. Finally, we extend the methodology's functionality to separate the geostrophic and nongeostrophic contributions to interocean exchange in these key regions.
NASA Technical Reports Server (NTRS)
Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)
1999-01-01
This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.
NASA Astrophysics Data System (ADS)
Zarsky, Jakub D.; Stibal, Marek; Hodson, Andy; Sattler, Birgit; Schostag, Morten; Hansen, Lars H.; Jacobsen, Carsten S.; Psenner, Roland
2013-09-01
The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier.
NASA Astrophysics Data System (ADS)
Monnier, Sébastien; Kinnard, Christophe
2017-08-01
Three glacier-rock glacier transitional landforms in the central Andes of Chile are investigated over the last decades in order to highlight and question the significance of their landscape and flow dynamics. Historical (1955-2000) aerial photos and contemporary (> 2000) Geoeye satellite images were used together with common processing operations, including imagery orthorectification, digital elevation model generation, and image feature tracking. At each site, the rock glacier morphology area, thermokarst area, elevation changes, and horizontal surface displacements were mapped. The evolution of the landforms over the study period is remarkable, with rapid landscape changes, particularly an expansion of rock glacier morphology areas. Elevation changes were heterogeneous, especially in debris-covered glacier areas with large heaving or lowering up to more than ±1 m yr-1. The use of image feature tracking highlighted spatially coherent flow vector patterns over rock glacier areas and, at two of the three sites, their expansion over the studied period; debris-covered glacier areas are characterized by a lack of movement detection and/or chaotic displacement patterns reflecting thermokarst degradation; mean landform displacement speeds ranged between 0.50 and 1.10 m yr-1 and exhibited a decreasing trend over the studied period. One important highlight of this study is that, especially in persisting cold conditions, rock glaciers can develop upward at the expense of debris-covered glaciers. Two of the studied landforms initially (prior to the study period) developed from an alternation between glacial advances and rock glacier development phases. The other landform is a small debris-covered glacier having evolved into a rock glacier over the last half-century. Based on these results it is proposed that morphological and dynamical interactions between glaciers and permafrost and their resulting hybrid landscapes may enhance the resilience of the mountain cryosphere against climate change.
Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.
2011-01-01
The Las Conchas Fire during the summer of 2011 was the largest in recorded history for the state of New Mexico, burning 634 square kilometers in the Jemez Mountains of north-central New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 321 basins burned by the Las Conchas Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of debris flows following the fire. In response to a design storm of 28.0 millimeters of rain in 30 minutes (10-year recurrence interval), the probabilities of debris flows estimated for basins burned by the Las Conchas Fire were greater than 80 percent for two-thirds (67 percent) of the modeled basins. Basins with a high (greater than 80 percent) probability of debris-flow occurrence were concentrated in tributaries to Santa Clara and Rio del Oso Canyons in the northeastern part of the burned area; some steep areas in the Valles Caldera National Preserve, Los Alamos, and Guaje Canyons in the east-central part of the burned area; tributaries to Peralta, Colle, Bland, and Cochiti canyons in the southwestern part of the burned area; and tributaries to Frijoles, Alamo, and Capulin Canyons in the southeastern part of the burned area (within Bandelier National Monument). Estimated debris-flow volumes ranged from 400 cubic meters to greater than 72,000 cubic meters. The largest volumes (greater than 40,000 cubic meters) were estimated for basins in Santa Clara, Los Alamos, and Water Canyons, and for two basins at the northeast edge of the burned area tributary to Rio del Oso and Vallecitos Creek. The Combined Relative Debris-Flow Hazard Rankings identify the areas of highest probability of the largest debris flows. Basins with high Combined Relative Debris-Flow Hazard Rankings include upper Santa Clara Canyon in the northern section of the burn scar, and portions of Peralta, Colle, Bland, Cochiti, Capulin, Alamo, and Frijoles Canyons in the southern section of the burn scar. Three basins with high Combined Relative Debris-Flow Hazard Rankings also occur in areas upstream from the city of Los Alamos—the city is home to and surrounded by numerous technical sites for the Los Alamos National Laboratory. Potential debris flows in the burned area could affect the water supply for Santa Clara Pueblo and several recreational lakes, as well as recreational and archeological resources in Bandelier National Monument. Debris flows could damage bridges and culverts along State Highway 501 and other roadways. Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into areas downstream from the modeled basins along the valley floors, where they could affect human life, property, agriculture, and infrastructure in those areas. Additionally, further investigation is needed to assess the potential for debris flows to affect structures at or downstream from basin outlets and to increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Las Conchas Fire.
Mapping Surface Temperatures on a Debris-Covered Glacier with an Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Kraaijenbrink, Philip D. A.; Shea, Joseph M.; Litt, Maxime; Steiner, Jakob F.; Treichler, Désirée; Koch, Inka; Immerzeel, Walter W.
2018-05-01
A mantel of debris cover often accumulates across the surface of glaciers in active mountain ranges with exceptionally steep terrain, such as the Andes, Himalaya and New Zealand Alps. Such a supraglacial debris layer has a major influence on a glacier's surface energy budget, enhancing radiation absorption and melt when the layer is thin, but insulating the ice when thicker than a few cm. Information on spatially distributed debris surface temperature has the potential to provide insight into the properties of the debris, its effects on the ice below and its influence on the near-surface boundary layer. Here, we deploy an unmanned aerial vehicle (UAV) equipped with a thermal infrared sensor on three separate missions over one day to map changing surface temperatures across the debris-covered Lirung Glacier in the Central Himalaya. We present a methodology to georeference and process the acquired thermal imagery, and correct for emissivity and sensor bias. Derived UAV surface temperatures are compared with distributed simultaneous in situ temperature measurements as well as with Landsat 8 thermal satellite imagery. Results show that the UAV-derived surface temperatures vary greatly both spatially and temporally, with -1.4±1.8, 11.0 ±5.2 and 15.3±4.7 °C for the three flights (mean±sd), respectively. The range in surface temperatures over the glacier during the morning is very large with almost 50 °C. Ground-based measurements are generally in agreement with the UAV imagery, but considerable deviations are present that are likely due to differences in measurement technique and approach, and validation is difficult as a result. The difference in spatial and temporal variability captured by the UAV as compared with much coarser satellite imagery is striking and it shows that satellite derived temperature maps should be interpreted with care. We conclude that UAVs provide a suitable means to acquire surface temperature maps of debris-covered glacier surfaces at high spatial and temporal resolution, but that there are caveats with regard to absolute temperature measurement.
Honghua Ruana; Yiqing Lib; Xiaoming Zouc
2005-01-01
Forest debris on ground surface can interact with soil biota and consequently change ecosystem processes across heterogeneous landscape. We examined the interactions between forest debris and litter decomposition in riparian and upland sites within a tropical wet forest. Our experiment included control and debris-removal treatments. Debris-removal reduced leaf litter...
NASA Astrophysics Data System (ADS)
Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.
2017-12-01
Dirty ice areas (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in areas of dirty ice is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the ice. However, in areas of dirty ice, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty ice ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty ice characteristics with a view to informing the construction of dirty ice melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty ice on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty ice ablation.
Formation of a deposit on workpiece surface in polishing nonmetallic materials
NASA Astrophysics Data System (ADS)
Filatov, Yu. D.; Monteil, G.; Sidorko, V. I.; Filatov, O. Y.
2013-05-01
During the last decades in the theory of machining nonmetallic materials some serious advances have been achieved in the field of applying fundamental scientific approaches to the grinding and polishing technologies for high-quality precision surfaces of electronic components, optical systems, and decorative articles made of natural and synthetic stone [1-9]. These achievements include a cluster model of material removal in polishing dielectric workpieces [1-3, 6-7] and a physical-statistical model of formation of debris (wear) particles and removal thereof from a workpiece surface [8-10]. The aforesaid models made it possible to calculate, without recourse to Preston's linear law, the removal rate in polishing nonmetallic materials and the wear intensity for bound-abrasive tools. Equally important for the investigation of the workpiece surface generation mechanism and formation of debris particles are the kinetic functions of surface roughness and reflectance of glass and quartz workpiece surfaces, which have been established directly in the course of polishing. During the in situ inspection of a workpiece surface by laser ellipsometry [11] and reflectometry [12] it was found out that the periodic change of the light reflection coefficient of a workpiece surface being polished is attributed to the formation of fragments of a deposit consisting of work material particles (debris particles) and tool wear particles [13, 14]. The subsequent studies of the mechanism of interaction between the debris particles and wear particles in the tool-workpiece contact zone, which were carried out based on classical concepts [15, 16], yielded some unexpected results. It was demonstrated that electrically charged debris and wear particles, which are located in the coolant-filled gap between a tool and a workpiece, move by closed circular trajectories enclosed in spheres measuring less than one fifth of the gap thickness. This implies that the probability of the debris and wear particles reaching the tool and workpiece surfaces and, especially, getting localized on the surfaces is extremely low, which contradicts the results of experimental examination of these surfaces. Based on the quantum-mechanical description of the process of scattering of the debris and wear particles that are as small as 3-4 nm in the tool-workpiece contact zone, the mechanism of formation of a workpiece microrelief and the mechanism of formation of a debris-particle deposit on the tool surface were clarified [17-21]. However, the mechanism of formation of the deposit fragments and their discrete arrangement on the workpiece surface in the process of polishing with a bound-abrasive tool has not been studied yet.
NASA Astrophysics Data System (ADS)
Su, Pengcheng; Sun, Zhengchao; li, Yong
2017-04-01
Luding-Kangding highway cross the eastern edge of Qinghai-Tibet Plateau where belong to the most deep canyon area of plateau and mountains in western Sichuan with high mountain and steep slope. This area belongs to the intersection among Xianshuihe, Longmenshan and Anninghe fault zones which are best known in Sichuan province. In the region, seismic intensity is with high frequency and strength, new tectonic movement is strong, rock is cracked, there are much loose solid materials. Debris flow disaster is well developed under the multiple effects of the earthquake, strong rainfall and human activity which poses a great threat to the local people's life and property security. So this paper chooses Kangding and LuDing as the study area to do the debris flow hazard assessment through the in-depth analysis of development characteristics and formation mechanism of debris flow. Which can provide important evidence for local disaster assessment and early warning forecast. It also has the important scientific significance and practical value to safeguard the people's life and property safety and the security implementation of the national major project. In this article, occurrence mechanism of debris flow disasters in the study area is explored, factor of evaluation with high impact to debris flow hazards is identified, the database of initial evaluation factors is made by the evaluation unit of basin. The factors with high impact to hazards occurrence are selected by using the stepwise regression method of logistic regression model, at the same time the factors with low impact are eliminated, then the hazard evaluation factor system of debris flow is determined in the study area. Then every factors of evaluation factor system are quantified, and the weights of all evaluation factors are determined by using the analysis of stepwise regression. The debris flows hazard assessment and regionalization of all the whole study area are achieved eventually after establishing the hazard assessment model. In this paper, regional debris flows hazard assessment method with strong universality and reliable evaluation result is presented. The whole study area is divided into 1674 units by automatically extracting and artificial identification, and then 11 factors are selected as the initial assessment factors of debris flow hazard assessment in the study area. The factors of the evaluation index system are quantified using the method of standardized watershed unit amount ratio. The relationship between debris flow occurrence and each evaluation factor is simulated using logistic regression model. The weights of evaluation factors are determined, and the model of debris flows hazard assessment is established in the study area. Danger assessment result of debris flow was applied in line optimization and engineering disaster reduction of Sichuan-Tibet highway (section of Luding-Kangding).
Martinez, Elodie; Maamaatuaiahutapu, Keitapu; Taillandier, Vincent
2009-09-01
Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.
Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska
NASA Astrophysics Data System (ADS)
Dufresne, A.; Geertsema, M.; Shugar, D. H.; Koppes, M.; Higman, B.; Haeussler, P. J.; Stark, C.; Venditti, J. G.; Bonno, D.; Larsen, C.; Gulick, S. P. S.; McCall, N.; Walton, M.; Loso, M. G.; Willis, M. J.
2018-02-01
On 17 October 2015, a landslide of roughly 60 × 106 m3 occurred at the terminus of Tyndall Glacier in Taan Fiord, southeastern Alaska. It caused a tsunami that inundated an area over 20 km2, whereas the landslide debris itself deposited within a much smaller area of approximately 2 km2. It is a unique event in that the landslide debris was deposited into three very different environments: on the glacier surface, on land, and in the marine waters of the fjord. Part of the debris traversed the width of the fjord and re-emerged onto land, depositing coherent hummocks with preserved source stratigraphy on an alluvial fan and adjacent moraines on the far side of the fjord. Imagery from before the landslide shows that the catastrophic slope failure was preceded by deformation and sliding for at least the two decades since the glacier retreated to its current terminus location, exposing steep and extensively faulted slopes. A small volume of the total slide mass remains within the source area and is topped by striated blocks (> 10 m across) and standing trees that were transported down the slope in intact positions during the landslide. Field work was carried out in the summer of 2016, and by the time this paper was written, almost all of the supraglacial debris was advected into the fjord and half the subaerial hummocks were buried by glacial advance; this rapid change illustrates how highly active sedimentary processes in high-altitude glacial settings can skew any landslide-frequency analyses, and emphasizes the need for timely field investigations of these natural hazards.
Distribution and features of landslides induced by the 2008 Wengchuan Earthquake, Sichuan, China
NASA Astrophysics Data System (ADS)
Chigira, M.; Xiyong, W.; Inokuchi, T.; Gonghui, W.
2009-04-01
2008 Sichuan earthquake with a magnitude of Mw 7.9 induced numerous mass movements around the fault surface ruptures of which maximum separations we observed were 3.6 m vertical and 1.5 m horizontal (right lateral). The affected area was mountainous areas with elevations from 1000 m to 4500 m on the west of the Sichuan Basin. The NE-trending Longmenshan fault zone runs along the boundary between the mountains on the west and the Sichuan basin (He and Tsukuda, 2003), of which Yinghsiuwan-Beichuan fault was the main fault that generated the 2008 earthquake (Xu, 2008). The basement rocks of the mountainous areas range from Precambrian to Cretaceous in age. They are basaltic rocks, granite, phyllite, dolostone, limestone, alternating beds of sandstone and shale, etc. There were several types of landslides ranging from small, shallow rockslide, rockfall, debris slide, deep rockslide, and debris flows. Shallow rockslide, rock fall, and debris slide were most common and occurred on convex slopes or ridge tops. When we approached the epicentral area, first appearing landslides were of this type and the most conspicuous was a failure of isolated ridge-tops, where earthquake shaking would be amplified. As for rock types, slopes of granitic rocks, hornfels, and carbonate rocks failed in wide areas to the most. They are generally hard and their fragments apparently collided and repelled to each other and detached from the slopes. Alternating beds of sandstone and mudstone failed on many slopes near the fault ruptures, including Yinghsiuwan near the epicenter. Many rockfalls occurred on cliffs, which had taluses on their feet. The fallen rocks tumbled down and mostly stopped within the talus surfaces, which is quite reasonable because taluses generally develop by this kind of processes. Many rockslides occurred on slopes of carbonate rocks, in which dolostone or dolomitic limestone prevails. Deep-seated rockslide occurred on outfacing slopes and shallow rockslide and rockfall occurred on infacing slopes. Infacing slopes generally are steeper than outfacing slopes and hence surface rocks on infacing slopes tend to be loosened by gravity. Detachment surfaces of carbonate rocks are generally not smooth surfaces but are rough surfaces with dimple-like depressions, which are made by dissolution of these rocks. This feature is one of the most important causes to induce landslide in carbonate rocks. Many gravitational deformations were observed on phyllite slopes. Landslides on the west of Beichuan city is probably of weathered phyllite, which had been preceded by gravitational deformation beforehand. Taochishan landslide in Beichuan occurred on probable outfacing slope of phyllite. The Formosat II images on Google earth indicated that this landslide was also preceded by gravitational deformation, which appeared as spur-crossing depressions with upslope-convex traces on plan. Satellite images indicated that some landslides had long lobate forms, suggesting that they were flow. One of them was Shechadientsu landslide 34 km northeast of Dujiangyan, occurring across the probable earthquake fault rupture. It was 1.5 km long with a maximum width of 250 m and an apparent friction angle of 22°. The top of this landslide area was a steep cliff of Precambrian granite, which failed to go down a small valley. The volume of the slope failure was estimated much less than the volume of the deposit. The small valley had sporadic patches of bedrock consisting of alternating beds of sandstone and mudstone of Triassic in age. The bedrock was covered by bluish grey, clayey, water-saturated debris, which was not disturbed and in turn covered by water-saturated brownish debris with rubbles. The landslide deposits had wrinkles on the surface and streaks of same color rock fragments. In addition, cross section near the distal part had clearly defined reverse grading, in which larger rubbles with a maximum diameter of 5 m concentrated at the surface part. These characteristics strongly suggest that valley-fill sediments mobilized by the earthquake and flowed down the valley, getting higher at the outer side of the valley bent. The largest landslide with an estimated volume of 1 billion m3 occurred on an outfacing carbonate rock slope, which had been preceded by gravitational deformation appearing as a ridge-top depression. The second largest one occurred on a smooth outfacing slope that had been undercut.
2003-09-10
KENNEDY SPACE CENTER, FLA. - James Harrison (left), Jack Nowling (center) and Amy Norris (right) pack up part of the debris stored in the Columbia Debris Hangar. An area of the Vehicle Assembly Building is being prepared to store the debris. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.
2003-09-10
KENNEDY SPACE CENTER, FLA. - James Harrison (left), Jack Nowling (center) and Amy Norris (right) pack up some of the debris stored in the Columbia Debris Hangar. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas. An area of the Vehicle Assembly Building is being prepared to store the debris.
Elliott, John G.; Ruddy, Barbara C.; Verdin, Kristine L.; Schaffrath, Keelin R.
2012-01-01
Debris flows are fast-moving, high-density slurries of water, sediment, and debris that can have enormous destructive power. Although debris flows, triggered by intense rainfall or rapid snowmelt on steep hillsides covered with erodible material, are a common geomorphic process in some unburned areas, a wildfire can transform conditions in a watershed with no recent history of debris flows into conditions that pose a substantial hazard to residents, communities, infrastructure, aquatic habitats, and water supply. The location, extent, and severity of wildfire and the subsequent rainfall intensity and duration cannot be known in advance; however, hypothetical scenarios based on empirical debris-flow models are useful planning tools for conceptualizing potential postwildfire debris flows. A prewildfire study to determine the potential for postwildfire debris flows in the Pikes Peak area in El Paso and Teller Counties, Colorado, was initiated in 2010 by the U.S. Geological Survey, in cooperation with the City of Colorado Springs, Colorado Springs Utilities. The study was conducted to provide a relative measure of which subwatersheds might constitute the most serious potential debris-flow hazards in the event of a large-scale wildfire and subsequent rainfall.
Microplastics profile along the Rhine River
Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia
2015-01-01
Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the ‘great garbage patches’. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km −2 on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km −2 was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems. PMID:26644346
Microplastics profile along the Rhine River
NASA Astrophysics Data System (ADS)
Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia
2015-12-01
Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the ‘great garbage patches’. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km -2 on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km -2 was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems.
Microplastics profile along the Rhine River.
Mani, Thomas; Hauk, Armin; Walter, Ulrich; Burkhardt-Holm, Patricia
2015-12-08
Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the 'great garbage patches'. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km (-2) on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km (-2) was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems.
Formation and mantling ages of lobate debris aprons on Mars: Insights from categorized crater counts
NASA Astrophysics Data System (ADS)
Berman, Daniel C.; Crown, David A.; Joseph, Emily C. S.
2015-06-01
Lobate debris aprons in the Martian mid-latitudes offer important insights into the history of the Martian climate and the role of volatiles in Martian geologic activity. Here we present the results of counts of small impact craters, categorized by morphology, on debris aprons in the Deuteronilus Mensae region and the area east of Hellas basin. Mars Reconnaissance Orbiter (MRO) ConTeXt Camera (CTX) images were used to document crater populations on the apron surfaces. Each crater was assessed and categorized according to its morphological characteristics (fresh, degraded, or filled). Fresh and most degraded craters likely superpose recent mantling deposits, whereas filled craters contain mantling deposits and thus indicate a minimum formation age for the apron (i.e., the age since stabilization of the debris apron surface following some modification but prior to mantling). Size-frequency distributions (SFDs) were compiled using established methodologies and plotted to assess their fit to the isochrons. The range or ranges in crater diameter over which each distribution paralleled the isochrons was determined by visual inspection, and general age constraints were noted from SFDs for all craters on a given surface and from each morphological class. The diameter range of each SFD segment observed to parallel an isochron was then input into the Craterstats2 analysis tool to calculate specific age estimates. The aprons were assessed both individually and as regional populations, which improved interpretation of the results and demonstrated the value and limitations of both approaches. The categorized counts reveal three groups of ages: (a) filled impact craters at larger diameters (>~500 m) typically show the oldest ages, between ~300 Ma and 1 Ga, (b) smaller diameter filled and degraded craters reveal ages of resurfacing events between ~10 Ma and 300 Ma, and (c) fresh crater populations (<~100 m diameter) indicate mantling deposits of less than ~10 Ma in age. These results indicate that the lobate debris apron populations formed (or their surfaces became stable) in the Early to Middle Amazonian Epochs, and were subsequently subjected to complex degradation by erosion and sublimation and/or melting of contained ice, culminating in episodes of deposition of ice-rich mantles in the Late Amazonian Epoch.
HVI-Test Setup for Debris Detector Verification
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Romberg, Oliver; Wiedemann, Carsten; Putzar, Robin; Drolshagen, Gerhard; Vorsmann, Peter
2013-08-01
Risk assessment concerning impacting space debris or micrometeoroids with spacecraft or payloads can be performed by using environmental models such as MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured data. Such data can be obtained from ground-based or space-based radars or telescopes, or by analysis of space hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are retrieved from orbit. An additional data source is in-situ impact detectors, which are purposed for the collection of space debris and micrometeoroids impact data. In comparison to the impact data gained by analysis of the retrieved surfaces, the detected data contains additional information regarding impact time and orbit. In the past, many such in-situ detectors have been developed, with different measurement methods for the identification and classification of impacting objects. However, existing detectors have a drawback in terms of data acquisition. Generally the detection area is small, limiting the collected data as the number of recorded impacts has a linear dependence to the exposed area. An innovative impact detector concept is currently under development at the German Aerospace Centre (DLR) in Bremen, in order to increase the surface area while preserving the advantages offered by dedicated in-situ impact detectors. The Solar Generator based Impact Detector (SOLID) is not an add-on component on the spacecraft, making it different to all previous impact detectors. SOLID utilises existing subsystems of the spacecraft and adapts them for impact detection purposes. Solar generators require large panel surfaces in order to provide the spacecraft with sufficient energy. Therefore, the spacecraft solar panels provide a perfect opportunity for application as impact detectors. Employment of the SOLID method in several spacecraft in various orbits would serve to significantly increase the spatial coverage concerning space debris and micrometeoroids. In this way, the SOLID method will allow the generation of a large amount of impact data for environmental model validation. The ground verification of the SOLID method was performed at Fraunhofer EMI. For this purpose, a test model was developed. This paper focuses on the test methodology and development of the Hypervelocity Impact (HVI) test setup, including pretesting at the German Aerospace Centre (DLR), Bremen. Foreseen hardware and software for the automatic damage assessment of the detector after the impact are also presented.
On the connection of permafrost and debris flow activity in Austria
NASA Astrophysics Data System (ADS)
Huber, Thomas; Kaitna, Roland
2016-04-01
Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.
The Solid Rocket Motor Slag Population: Results of a Radar-Based Regressive Statistical Evaluation
NASA Technical Reports Server (NTRS)
Horstman, Matthew F.; Xu, Yu-Lin
2008-01-01
Solid rocket motor (SRM) slag has been identified as a potential source of man-made orbital debris. The possibility that SRMs (in addition to generating dust particles in the sub-millimeter range) may generate particles up to centimeters in size has caused concern regarding their contribution to the debris environment. Returned surfaces from space do not have sufficient area or exposure time to provide a clear picture of the SRM millimeter and centimeter debris population. Currently, radar observation is probably the only way to collect data showing the debris contribution from SRMs. Such observation is used to sample the debris environment, but it is difficult to obtain accurate orbital elements for the detected debris objects. NASA has developed several models to describe the different orbital debris populations, based on assumed debris production mechanisms to create clouds of debris objects that can be propagated in time. The NASA model, LEGEND (LEO-to-GEO Environment Debris), functions as a time-tested debris model for most debris sources. However, the current LEGEND model does not include contributions from the SRM population. An SRM model has recently been developed by NASA, based on purely theoretical details of SRM production and known SRM launches, but verification with hard data is needed. Because the detections of individual SRM objects cannot be deterministically separated from the total debris observed by radar, the validation of the SRM model can only be done by combining it with the LEGEND breakup model and comparing it with data. By applying observational constraints, the degree of SRM slag contribution to the environment may be estimated. This serves as an observationally sound method from which to calibrate a purely theoretical model into something more realistic. For this study, we use the populations observed by the Haystack radar from 1996 to present. For the SRM debris, we use a historical database of SRM launches, propellant masses, and estimated locations and times of tailoff to produce and propagate the SRM debris clouds. Comparisons with radar data from the ensuing years were made, and the SRM model was altered with respect to size and mass production of slag particles to reflect the populations estimated from the data. The result is a model SRM population that fits within the bounds of the observed environment and estimates of the production and contribution of SRM debris to the environment.
NASA Astrophysics Data System (ADS)
Kovanen, Dori J.; Slaymaker, Olav
2008-07-01
Active debris flow fans in the North Cascade Foothills of Washington State constitute a natural hazard of importance to land managers, private property owners and personal security. In the absence of measurements of the sediment fluxes involved in debris flow events, a morphological-evolutionary systems approach, emphasizing stratigraphy, dating, fan morphology and debris flow basin morphometry, was used. Using the stratigraphic framework and 47 radiocarbon dates, frequency of occurrence and relative magnitudes of debris flow events have been estimated for three spatial scales of debris flow systems: the within-fan site scale (84 observations); the fan meso-scale (six observations) and the lumped fan, regional or macro-scale (one fan average and adjacent lake sediments). In order to characterize the morphometric framework, plots of basin area v. fan area, basin area v. fan gradient and the Melton ruggedness number v. fan gradient for the 12 debris flow basins were compared with those documented for semi-arid and paraglacial fans. Basin area to fan area ratios were generally consistent with the estimated level of debris flow activity during the Holocene as reported below. Terrain analysis of three of the most active debris flow basins revealed the variety of modes of slope failure and sediment production in the region. Micro-scale debris flow event systems indicated a range of recurrence intervals for large debris flows from 106-3645 years. The spatial variation of these rates across the fans was generally consistent with previously mapped hazard zones. At the fan meso-scale, the range of recurrence intervals for large debris flows was 273-1566 years and at the regional scale, the estimated recurrence interval of large debris flows was 874 years (with undetermined error bands) during the past 7290 years. Dated lake sediments from the adjacent Lake Whatcom gave recurrence intervals for large sediment producing events ranging from 481-557 years over the past 3900 years and clearly discernible sedimentation events in the lacustrine sediments had a recurrence interval of 67-78 years over that same period.
Sources of debris flow material in burned areas
Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.
2008-01-01
The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are much more important sources of debris than rills. Levees are very common, but the size and effect on the amount of debris that reaches a canyon mouth is highly variable. ?? 2007 Elsevier B.V. All rights reserved.
Mapping debris-flow hazard in Honolulu using a DEM
Ellen, Stephen D.; Mark, Robert K.; ,
1993-01-01
A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.
JSC Orbital Debris Website Description
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as required. These data also help in the analysis and interpretation of impact features on returned spacecraft surfaces. 4) Mitigation - Controlling the growth of the orbital debris population is a high priority for NASA, the United States, and the major space-faring nations of the world to preserve near-Earth space for future generations. Mitigation measures can take the form of curtailing or preventing the creation of new debris, designing satellites to withstand impacts by small debris, and implementing operational procedures ranging from utilizing orbital regimes with less debris, adopting specific spacecraft attitudes, and even maneuvering to avoid collisions with debris. Downloadable items include several documents in PDF format and executable software.and 5) Reentry - Because of the increasing number of objects in space, NASA has adopted guidelines and assessment procedures to reduce the number of non-operational spacecraft and spent rocket upper stages orbiting the Earth. One method of postmission disposal is to allow reentry of these spacecraft, either from orbital decay (uncontrolled entry) or with a controlled entry. Orbital decay may be achieved by firing engines to lower the perigee altitude so that atmospheric drag will eventually cause the spacecraft to enter. However, the surviving debris impact footprint cannot be guaranteed to avoid inhabited landmasses. Controlled entry normally occurs by using a larger amount of propellant with a larger propulsion system to drive the spacecraft to enter the atmosphere at a steeper flight path angle. It will then enter at a more precise latitude, longitude, and footprint in a nearly uninhabited impact region, generally located in the ocean.
Coe, Jeffrey A.; Michael, John A.; Burgos, Marianela Mercado
2011-01-01
This 1:12,000-scale map shows an inventory of debris flows caused by rainfall during 1996 in a 94.4 km2 area in the southern Coast Range of Oregon. This map and associated digital data are part of a larger U.S. Geological Survey study of debris flows in the southern Coast Range. Available evidence indicates that the flows were triggered by a rain storm that occurred between November 17 and 19. The closest rain gage in the Coast Range (Goodwin Peak) recorded 245 mm during the storm. Maximum rainfall intensity during the storm was 13.2 mm/hr on November 18. Debris flows were photogrammetrically mapped from 1:12,000-scale aerial photographs flown in May, 1997. The inventory is presented on imagery derived from LiDAR data acquired in 2008. We classified mapped debris flows into four categories based on the type of debris-flow activity: (1) discrete slide source areas, (2) predominantly erosion, (3) predominantly transport or mixed erosion and deposition, and (4) predominantly deposition. Locations of woody-debris jams are also shown on the map. The area encompassed by debris flows is 2.1 percent of the 94.4 km2 map area.
NASA Astrophysics Data System (ADS)
Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.
2010-09-01
Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity propagation, collision, and breakup models. Our analysis uses Two Line Element (TLE) sets and surface area data generated by this model sampled at the years 2019, 2029, and 2039. Data for the 2009 debris field is taken from the unclassified SatCat. By using Monte Carlo simulation techniques and varying the epoch of the military constellation relative to the debris field we were able to remove the bias of initial conditions. Additional analysis was conducted looking at the military utility impact of temporarily losing the use of Intelligence Surveillance and Reconnaissance (ISR) assets due to COLA maneuvers during a large classified scenario with stressful satellite tasking. This paper and presentation will focus only on unclassified results quantifying the potential reduction in the risk assumed by satellite flyers, and the potential reduction in Delta-V usage that is possible if we are able to improve our tracking performance in any of these three areas and reduce the positional uncertainty of space objects at the time of closest approach.
2003-09-11
KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a video cameraman records some of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.
2003-09-11
KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers focus on a piece of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.
2003-09-10
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Don Eitel (in front) and Jim Delie carry pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Amy Norris (left) packs some of the debris stored in the Columbia Debris Hangar. Jack Nowling works on the computer. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.
2003-09-10
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Larry Tarver (left) and Don Eitel bag and wrap pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.
2003-09-11
KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a photographer examines some of the debris collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.
Probabilistic forecasts of debris-flow hazard at the regional scale with a combination of models.
NASA Astrophysics Data System (ADS)
Malet, Jean-Philippe; Remaître, Alexandre
2015-04-01
Debris flows are one of the many active slope-forming processes in the French Alps, where rugged and steep slopes mantled by various slope deposits offer a great potential for triggering hazardous events. A quantitative assessment of debris-flow hazard requires the estimation, in a probabilistic framework, of the spatial probability of occurrence of source areas, the spatial probability of runout areas, the temporal frequency of events, and their intensity. The main objective of this research is to propose a pipeline for the estimation of these quantities at the region scale using a chain of debris-flow models. The work uses the experimental site of the Barcelonnette Basin (South French Alps), where 26 active torrents have produced more than 150 debris-flow events since 1850 to develop and validate the methodology. First, a susceptibility assessment is performed to identify the debris-flow prone source areas. The most frequently used approach is the combination of environmental factors with GIS procedures and statistical techniques, integrating or not, detailed event inventories. Based on a 5m-DEM and derivatives, and information on slope lithology, engineering soils and landcover, the possible source areas are identified with a statistical logistic regression model. The performance of the statistical model is evaluated with the observed distribution of debris-flow events recorded after 1850 in the study area. The source areas in the three most active torrents (Riou-Bourdoux, Faucon, Sanières) are well identified by the model. Results are less convincing for three other active torrents (Bourget, La Valette and Riou-Chanal); this could be related to the type of debris-flow triggering mechanism as the model seems to better spot the open slope debris-flow source areas (e.g. scree slopes), but appears to be less efficient for the identification of landslide-induced debris flows. Second, a susceptibility assessment is performed to estimate the possible runout distance with a process-based model. The MassMov-2D code is a two-dimensional model of mud and debris flow dynamics over complex topography, based on a numerical integration of the depth-averaged motion equations using shallow water approximation. The run-out simulations are performed for the most active torrents. The performance of the model has been evaluated by comparing modelling results with the observed spreading areas of several recent debris flows. Existing data on the debris flow volume, input discharge and deposits were used to back-analyze those events and estimate the values of the model parameters. Third, hazard is estimated on the basis of scenarios computed in a probabilistic way, for volumes in the range 20'000 to 350'000 m3, and for several combinations of rheological parameters. In most cases, the simulations indicate that the debris flows cause significant overflowing on the alluvial fans for volumes exceeding 100'000 m3 (height of deposits > 2 m, velocities > 5 m.s-1). Probabilities of debris flow runout and debris flow intensities are then computed for each terrain units.
NOAA-USGS Debris-Flow Warning System - Final Report
,
2005-01-01
Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a national scope.
Quantifying the Mass Flux, Erosion Rates and Geomorphological Impact of Surging Karakoram Glaciers
NASA Astrophysics Data System (ADS)
Quincey, D. J.; Glasser, N. F.; King, O.
2017-12-01
Surge-type glaciers switch between phases of rapid and slow flow on timescales of a few years to decades. Here, we describe glacier-surface debris changes, surface-elevation changes and velocity changes through surges lasting five to ten years on ten different Karakoram glaciers (Khurdopin, Gasherbrum, Kunyang, Braldu, Chong Khumdan, Qiogeli, Saxintulu, Shakesiga, Skamri and Unnamed). We use these data to characterise their geomorphological imprint on the landscape, calculate a minimum mass flux for each of the surges and provide first-order estimates of bed erosion rates. Surface debris transport through the surges includes widespread rearrangement of surface debris features, folding and the concentration of debris near glacier termini, confluences and margins. Ice and debris-flux is partly dependent on the style of the surge, and in particular whether a surge-front propagates down-glacier during the active phase. Erosion rates also depend on the style and longevity of the surge, but are largely comparable between each of the studied datasets. We conclude by estimating the geomorphic work undertaken during surge events in comparison to work carried out by non-surging glaciers in the same region.
Development of a debris flow model in a geotechnical centrifuge
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Wu, Wei
2013-04-01
Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.
Disaster debris estimation using high-resolution polarimetric stereo-SAR
NASA Astrophysics Data System (ADS)
Koyama, Christian N.; Gokon, Hideomi; Jimbo, Masaru; Koshimura, Shunichi; Sato, Motoyuki
2016-10-01
This paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6 m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099 m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs.
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.; Staley, Dennis M.; Worstell, Bruce B.
2009-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 Station fire in Los Angeles County, southern California. Statistical-empirical models developed for postfire debris flows are used to estimate the probability and volume of debris-flow production from 678 drainage basins within the burned area and to generate maps of areas that may be inundated along the San Gabriel mountain front by the estimated volume of material. Debris-flow probabilities and volumes are estimated as combined functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 1-year-recurrence thunderstorm and to a 12-hour-duration, 2-year recurrence storm. Debris-flow inundation areas are mapped for scenarios where all sediment-retention basins are empty and where the basins are all completely full. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire. Tributary basins that drain into Pacoima Canyon, Big Tujunga Canyon, Arroyo Seco, West Fork of the San Gabriel River, and Devils Canyon were identified as having probabilities of debris-flow occurrence greater than 80 percent, the potential to produce debris flows with volumes greater than 100,000 m3, and the highest Combined Relative Debris-Flow Hazard Ranking in response to both storms. The predicted high probability and large magnitude of the response to such short-recurrence storms indicates the potential for significant debris-flow impacts to any buildings, roads, bridges, culverts, and reservoirs located both within these drainages and downstream from the burned area. These areas will require appropriate debris-flow mitigation and warning efforts. Probabilities of debris-flow occurrence greater than 80 percent, debris-flow volumes between 10,000 and 100,000 m3, and high Combined Relative Debris-Flow Hazard Rankings were estimated in response to both short recurrence-interval (1- and 2-year) storms for all but the smallest basins along the San Gabriel mountain front between Big Tujunga Canyon and Arroyo Seco. The combination of high probabilities and large magnitudes determined for these basins indicates significant debris-flow hazards for neighborhoods along the mountain front. When the capacity of sediment-retention basins is exceeded, debris flows may be deposited in neighborhoods and streets and impact infrastructure between the mountain front and Foothill Boulevard. In addition, debris flows may be deposited in neighborhoods immediately below unprotected basins. Hazards to neighborhoods and structures at risk from these events will require appropriate debris-flow mitigation and warning efforts.
Anthropogenic Debris Ingestion by Avifauna in Eastern Australia
Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.
2016-01-01
Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986
The effect of wind mixing on the vertical distribution of buoyant plastic debris
NASA Astrophysics Data System (ADS)
Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D. W.; Law, K. L.
2012-04-01
Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.
First evidence of tyre debris characterization at the nanoscale by focused ion beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, M.; Pucillo, F.P.; Ballerini, M.
2004-07-15
In this paper, we present a novel technique for the nanoscale characterization of the outer and inner structure of tyre debris. Tyre debris is produced by the normal wear of tyres. In previous studies, the microcharacterization and identification were performed by analytical electron microscopy. This study is a development of the characterization of surface and microstructure of tyre debris. For the first time, tyre debris was analysed by focused ion beam (FIB), a technique with 2- to 5-nm resolution that does not require any sample preparation. We studied tyre debris produced in the laboratory. We made electron and ionic imagingmore » of the surface of the material, and after a ionic cut, we studied the internal microstructure of the same sample. The tyre debris was analysed by FIB without any sample preparations unlike the case of scanning and transmission electron microscopy (SEM and TEM). Useful information was derived to improve detection and monitoring techniques of pollution by tyre degradation processes.« less
Obliquity-paced climate change recorded in Antarctic debris-covered glaciers
Mackay, Sean L.; Marchant, David R.
2017-01-01
The degree to which debris-covered glaciers record past environmental conditions is debated. Here we describe a novel palaeoclimate archive derived from the surface morphology and internal debris within cold-based debris-covered glaciers in Antarctica. Results show that subtle changes in mass balance impart major changes in the concentration of englacial debris and corresponding surface topography, and that over the past ∼220 ka, at least, the changes are related to obliquity-paced solar radiation, manifest as variations in total summer energy. Our findings emphasize solar radiation as a significant driver of mass balance changes in high-latitude mountain systems, and demonstrate that debris-covered glaciers are among the most sensitive recorders of obliquity-paced climate variability in interior Antarctica, in contrast to most other Antarctic archives that favour eccentricity-paced forcing over the same time period. Furthermore, our results open the possibility that similar-appearing debris-covered glaciers on Mars may likewise hold clues to environmental change. PMID:28186094
2003-09-11
KENNEDY SPACE CENTER, FLA. - The media listen to Scott Thurston, NASA vehicle flow manager, talk about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.
2003-09-10
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Jim Delie (left) and Don Eitel select from the shelves wrapped pieces of debris to be packed into storage boxes. About 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris.
An enhanced temperature index model for debris-covered glaciers accounting for thickness effect
NASA Astrophysics Data System (ADS)
Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.
2016-08-01
Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.
An enhanced temperature index model for debris-covered glaciers accounting for thickness effect.
Carenzo, M; Pellicciotti, F; Mabillard, J; Reid, T; Brock, B W
2016-08-01
Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.
Damage areas on selected LDEF aluminum surfaces
NASA Technical Reports Server (NTRS)
Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.; Hennessy, Corey J.; Wagner, John D.
1993-01-01
With the U.S. about to embark on a new space age, the effects of the space environment on a spacecraft during its mission lifetime become more relevant. Included among these potential effects are degradation and erosion due to micrometeoroid and debris impacts, atomic oxygen and ultraviolet light exposure as well as material alteration from thermal cycling, and electron and proton exposure. This paper focuses on the effects caused by micrometeoroid and debris impacts on several LDEF aluminum plates from four different bay locations: C-12, C-10, C-01, and E-09. Each plate was coated with either a white, black, or gray thermal paint. Since the plates were located at different orientations on the satellite, their responses to the hypervelocity impacts varied. Crater morphologies range from a series of craters, spall zones, domes, spaces, and rings to simple craters with little or no spall zones. In addition, each of these crater morphologies is associated with varying damage areas, which appear to be related to their respective bay locations and thus exposure angles. More than 5% of the exposed surface area examined was damaged by impact cratering and its coincident effects (i.e., spallation, delamination and blow-off). Thus, results from this analysis may be significant for mission and spacecraft planners and designers.
Debris Flow Process and Climate Controls on Steepland Valley Form and Evolution
NASA Astrophysics Data System (ADS)
Struble, W.; Roering, J. J.
2017-12-01
In unglaciated mountain ranges, steepland bedrock valleys often dominate relief structure and dictate landscape response to perturbations in tectonics or climate; drainage divides have been shown to be dynamic and drainage capture is common. Landscape evolution models often use the stream power model to simulate morphologic changes, but steepland valley networks exhibit trends that deviate from predictions of this model. The prevalence of debris flows in steep channels has motivated approaches that account for commonly observed curvature of slope-area data at small drainage areas. Debris flow deposits correspond with observed curvature in slope-area data, wherein slope increases slowly as drainage area decreases; debris flow incision is implied upstream of deposits. In addition, shallow landslides and in-channel sediment entrainment in humid and arid regions, respectively, have been identified as likely debris flow triggering mechanisms, but the extent to which they set the slope of steep channels is unclear. While an untested model exists for humid landscape debris flows, field observations and models are lacking for regions with lower mean annual precipitation. The Oregon Coastal Ranges are an ideal humid setting for observing how shallow landslide-initiated debris flows abrade channel beds and/or drive exposure-driven weathering. Preliminary field observations in the Lost River Range and the eastern Sierra Nevada - semi-arid and unglaciated environments - suggest that debris flows are pervasive in steep reaches. Evidence for fluvial incision is lacking and the presence of downstream debris flow deposits and a curved morphologic signature in slope-area space suggests stream power models are insufficient for predicting and interpreting landscape dynamics. Investigation of debris flow processes in both humid and arid sites such as these seeks to identify the linkage between sediment transport and the characteristic form of steepland valleys. Bedrock weathering, fracture density, recurrence interval, bulking, and grain size may determine process-form linkages in humid and arid settings. Evaluation of debris flow processes in sites of varying climate presents the opportunity to quantify the role of debris flow incision in the evolution of steepland valleys and improve landscape evolution models.
Kaminuma, T; Ohtake, C; Kabuyama, N
2000-01-01
Plastic debris are important marine pollutants. Plastic debris consist of resin pellets and waste plastics. We are particularly interested in resin pellets. We made field survey of resin pellets at nearly 400 sites in 200 beaches in Japan and neighboring countries. The pellets were found at all most all Japan coasts we surveyed and at some beaches of Macao, Hong Kong, Xiamen, the north of Taipei, and Cheju Island in Korea. The number of pellets was more than 1000 pieces per m2 on the most abundant beach in Japan. Through further analysis using GC/ECD, endocrine disrupting chemicals, PCBs, DDTs, HCHs and Nonylphenol were detected in selected samples. Biota such as Bryozoa were observed on the surface of pellets washed up on the beaches in subtropical areas. Pellets has been suspected to affect wildlife and human health, but we have no report on affection to human.
Floating plastic debris in the Central and Western Mediterranean Sea.
Ruiz-Orejón, Luis F; Sardá, Rafael; Ramis-Pujol, Juan
2016-09-01
In two sea voyages throughout the Mediterranean (2011 and 2013) that repeated the historical travels of Archduke Ludwig Salvator of Austria (1847-1915), 71 samples of floating plastic debris were obtained with a Manta trawl. Floating plastic was observed in all the sampled sites, with an average weight concentration of 579.3 g dw km(-2) (maximum value of 9298.2 g dw km(-2)) and an average particle concentration of 147,500 items km(-2) (the maximum concentration was 1,164,403 items km(-2)). The plastic size distribution showed microplastics (<5 mm) in all the samples. The most abundant particles had a surface area of approximately 1 mm(2) (the mesh size was 333 μm). The general estimate obtained was a total value of 1455 tons dw of floating plastic in the entire Mediterranean region, with various potential spatial accumulation areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsunetaka, Haruka; Hotta, Norifumi; Imaizumi, Fumitoshi; Hayakawa, Yuichi S.; Yumen, Noriki
2015-04-01
Large-scale sediment movements, such as a deep-seated landslide, not only induce immediate sediment disasters but also produce a large amount of unstable sediment upstream. Most of the unstable sediment residing in the upstream area is discharged as debris flow. Hence, after the occurrence of large-scale sediment movement, debris flows have a long-term effect on the watershed regime. However, the characteristics of debris flow in upstream areas are not well understood, due to the topographic and grain-size conditions that are more complicated than the downstream area. This study was performed to reveal the relationship between such a riverbed condition and the characteristics of debris flow by field observations. The study site was Ichinosawa-subwatershed in the Ohya-kuzure basin, Shizuoka Prefecture, Japan. The basin experienced a deep-seated landslide about 300 years ago and is currently actively yielding sediment with a clear annual cycle. During the winter season, sediment is deposited on the valley bottom by freeze-thaw and weathering. In the summer season, the deposited sediment is discharged incrementally by debris flows related to storm events. Topographical survey and grain-size analysis were performed several times between November 2011 and November 2014. High-resolution digital elevation models (10 cm) were created from the results of a topographical survey using a terrestrial laser scanner. A grain-size analysis was conducted in the upper, middle, and lower parts of the study site. Debris flow occurrences were also monitored in the same period by a sensor-triggered video camera and interval camera. Rainfall was observed during the summer season for comparison with debris flow occurrence. Several debris flows of different magnitudes were observed during the study period. Although heavy rainfall events altered the bed inclination, the thickness of deposited sediment, and the grain-size distribution, more significant changes were detected after the debris flow. While the initial grain-size distribution in early spring was roughly identical across the study site, the subsequent changes in the grain-size distribution differed according to location. The source, transport and deposition areas of the debris flows differed among rainfall events, resulting in different transitions in topographic conditions at different locations. Furthermore, surges of debris flow not only induced erosion-deposited sediment but also suspended and deposited sediment in the same area during one typhoon event. A comparison of the results indicated that, in addition to the conditions of the triggering rainfall, topographic and grain-size conditions affected the debris flow occurrence and magnitude. These interactions also showed that the magnitude and form of the succeeding debris flow could be dominant, depending on changing riverbed condition by past debris flows in upstream areas.
Benthic plastic debris in marine and fresh water environments.
Corcoran, Patricia L
2015-08-01
This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.
Ruddy, Barbara C.; Stevens, Michael R.; Verdin, Kristine
2010-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the Fourmile Creek fire in Boulder County, Colorado, in 2010. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volumes of debris flows for selected drainage basins. Data for the models include burn severity, rainfall total and intensity for a 25-year-recurrence, 1-hour-duration rainstorm, and topographic and soil property characteristics. Several of the selected drainage basins in Fourmile Creek and Gold Run were identified as having probabilities of debris-flow occurrence greater than 60 percent, and many more with probabilities greater than 45 percent, in response to the 25-year recurrence, 1-hour rainfall. None of the Fourmile Canyon Creek drainage basins selected had probabilities greater than 45 percent. Throughout the Gold Run area and the Fourmile Creek area upstream from Gold Run, the higher probabilities tend to be in the basins with southerly aspects (southeast, south, and southwest slopes). Many basins along the perimeter of the fire area were identified as having low probability of occurrence of debris flow. Volume of debris flows predicted from drainage basins with probabilities of occurrence greater than 60 percent ranged from 1,200 to 9,400 m3. The predicted moderately high probabilities and some of the larger volumes responses predicted for the modeled storm indicate a potential for substantial debris-flow effects to buildings, roads, bridges, culverts, and reservoirs located both within these drainages and immediately downstream from the burned area. However, even small debris flows that affect structures at the basin outlets could cause considerable damage.
Response of Debris-Covered and Clean-Ice Glaciers to Climate Change from Observations and Modeling
NASA Astrophysics Data System (ADS)
Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Roe, G.; Huybers, K. M.
2017-12-01
Debris-covered glaciers form a significant percentage of the glacier area and volume in many mountainous regions of the world, and respond differently to climatic forcings as compared to clean-ice glaciers. In particular, debris-covered glaciers tend to downwaste with very little retreat, while clean-ice glaciers simultaneously thin and retreat. This difference has posed a significant challenge to quantifying glacier sensitivity to climate change, modeling glacier response to future climate change, and assessing the impacts of recent and future glacier changes on mountain environments and downstream populations. In this study, we evaluate observations of the geodetic mass balance and thinning profiles of 1000 glaciers across the Himalayas from 1975 to 2016. We use this large sampling of glacier changes over multiple decades to provide a robust statistical comparison of mass loss for clean-ice versus debris-covered glaciers over a period relevant to glacier dynamics. In addition, we force a glacier model with a series of climate change scenarios, and compare the modeled results to the observations. We essentially ask the question, "Are our theoretical expectations consistent with the observations?" Our observations show both clean-ice and debris-covered glaciers, regionally averaged, thinned in a similar pattern for the first 25-year observation period. For the more recent 15-year period, clean ice glaciers show significantly steepened thinning gradients across the surface, while debris-covered glaciers have continued to thin more uniformaly across the surface. Our preliminary model results generally agree with these observations, and suggest that both glacier types are expected to have a thinning phase followed by a retreat phase, but that the timing of the retreat phase is much later for debris-covered glaciers. Thus, these early results suggest these two glacier types are dynamically very similar, but are currently in different phases of response to recent climate change. This difference in phase of response will be carefully evaluated by integrating the modeling and observational components of this work. In addition, we will use this integrated framework to assess the expected impacts of differing glacier response on glacier-related resources in the Himalayas over the coming century.
Erosion and deposition on a debris-flow fan
NASA Astrophysics Data System (ADS)
Densmore, A. L.; Schuerch, P.; Rosser, N. J.; McArdell, B. W.
2011-12-01
The ability of a debris flow to entrain or deposit sediment controls the downstream evolution of flow volume, and ultimately dictates both the geomorphic impact of the flow and the potential hazard that it represents. Our understanding of the patterns of, and controls on, such flow volume changes remains extremely limited, however, partly due to a poor mechanistic grasp of the interactions between debris flows and their bed and banks. In addition, we lack a good understanding of the cumulative long-term effects of sequences of flows in a single catchment-fan system. Here we begin to address these issues by using repeated terrestrial laser scanning (TLS) to characterize the detailed surface change associated with the passage of multiple debris flows on the Illgraben fan, Switzerland. We calculate surface elevation change along a 300 m study reach, and from this derive the downfan rate of flow volume change, or lag rate; for comparison, we also derive the spatially-averaged lag rate over the entire ~2 km length of the fan. Lag rates are broadly comparable over both length scales, indicating that flow behavior does not vary significantly across the fan for most flows, but importantly we find that flow volume at the fan head is a poor predictor of volume at the fan toe. The sign and magnitude of bed elevation change scale with local flow depth; at flow depths < 2 m, erosion and deposition are approximately equally likely, but erosion becomes increasingly dominant for flow depths > 2 m. On the Illgraben fan, this depth corresponds to a basal shear stress of 3-4 kPa. Because flow depth is in part a function of channel cross-sectional topography, which varies strongly both within and between flows, this result indicates that erosion and deposition are likely to be highly dynamic. The dependence of flow volume change on both the channel topography and the flow history may thus complicate efforts to predict debris-flow inundation areas by simple flow routing. We then apply a 2d numerical model of debris-flow fan evolution to explore the key controls on debris-flow routing and topographic development over sequences of multiple flows. We find that fan topographic roughness plays an important role in both channel development and fan surface stability. We also find that, while first-order fan shape is largely insensitive to the input flow sequence, second-order variables such as the pattern of surface exposure ages and the distribution of channel characteristics hold more promise as robust recorders of past flow conditions. Further work is needed to understand the degree to which the TLS-derived (and Illgraben-specific) relationship between bed elevation change and flow depth can be applied in different settings, and to elucidate the role played by coarse debris in controlling patterns of erosion and deposition.
NASA Technical Reports Server (NTRS)
Elfer, N.; Meibaum, R.; Olsen, G.
1995-01-01
A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.
NASA Technical Reports Server (NTRS)
Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.
1993-01-01
Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.
Sinkhole formation by groundwater withdrawal: far west rand, South Africa.
Foose, R M
1967-09-01
Sinkholes up to 125 meters wide and 50 meters deep have developed catastrophically in thick unconsolidated debris above pinnacle-weathered dolomite after lowering of the groundwater surface by at least 160 meters. They are caused by shrinkage of desiccated debris, downward migration of debris into bedrock openings, and upward growth of multiple debris "caverns" by roof spalling.
Controls on debris flow bulking in proglacial gully networks on Mount Rainier, WA
NASA Astrophysics Data System (ADS)
Legg, N. T.; Meigs, A.; Grant, G. E.; Kennard, P.
2012-12-01
Conversion of floodwaters to debris flows due to sediment bulking continues to be a poorly understood phenomenon. This study examines the initiation zone of a series of six debris flows that originated in proglacial areas of catchments on the flank of Mount Rainier during one storm in 2006. One-meter spatial resolution aerial photographs and LiDAR DEMs acquired before and after the storm reveal the lack of a single mass failure to explain the debris flow deposits. Rather, the imagery show appreciable gully widening along reaches up to approximately 1.5 km in length. Based on gully discharges estimated from rainfall rates and estimates of sediment contribution from gully wall width change, we find that the sediment volumes contributed from gully walls are sufficient to bulk floodwaters up to debris flow concentrations. Points in gullies where width change began (upstream limit) in 2006 have a power law trend (R2 = 0.58) in terms of slope-drainage area. Reaches with noticeable width change, which we refer to as bulking reaches (BR), plot along a similar trend with greater drainage areas and gentler slopes. We then extracted slope and drainage area of all proglacial drainage networks to examine differences in morphology between debris flow basins (DFB) and non-debris flow basins (NDFB), hypothesizing that DFB would have a greater portion of their drainage networks with similar morphology to BR than NDFB. A comparison of total network length with greater slope and area than BR reveals that the two basins types are not statistically different. Lengths of the longest reaches with greater slope and drainage area than the BR trend, however, are statistically longer in DFB than in the NDFBs (p<0.05). These results suggest that debris flow initiation by sediment bulking does not operate as a simple threshold phenomenon in slope-area space. Instead debris flow initiation via bulking depends upon slope, drainage area, and gully length. We suspect the dependence on length relates to the poorly understood bulking process where feedback mechanisms working to progressively increase sediment concentrations likely operate. The apparent length dependence revealed in this study requires a shift in thought about the conditions leading to debris flow generation in catchments dominated by unconsolidated and transportable material.
NASA Astrophysics Data System (ADS)
Mancho, A. M.; Garcia-Garrido, V. J.; Wiggins, S.; Mendoza, C.
2015-12-01
The disappearance of Malaysia Airlines flight MH370 on the morning of the 8th of March 2014 is one of the great mysteries of our time. One relevant aspect of this mystery is that not a single piece of debris from the aircraft was found during the intensive surface search carried out in the months following the crash. Difficulties in the search efforts were due to the uncertainty in the plane's final impact point and the time passed since the accident and rise the question on how the debris was scattered in an always moving ocean, for which there exist multiple datasets that do not uniquely determine its state. Our approach to this problem is based on dynamical systems tools that identify dynamic barriers and coherent structures governing transport. By combining publicly available information supplied by different ocean data sources with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the search services and determining regions where one might have expected impact debris to be located and that were not subjected to any exploration. This research has been supported by MINECO under grants MTM2014-56392-R and ICMAT Severo Ochoa project SEV-2011-0087 and ONR grant No. N00014- 01-1-0769. Computational support from CESGA is acknowledged. References [1] V. J. García-Garrido, A. M. Mancho, S. Wiggins, and C. Mendoza. A dynamical systems perspective on the absence of debris associated with the disappearance of flight MH370. Nonlin. Processes Geophys. Discuss., 2,1197-1225, doi:10.5194/npgd-2-1197-2015, 2015
Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado
NASA Astrophysics Data System (ADS)
Godt, Jonathan W.; Coe, Jeffrey A.
2007-02-01
On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43 mm of rain in 4 h, 35 mm of which fell in the first 2 h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30°) in catchments with small contributing areas (< 8000 m 2), however, shallow landslides occurred on slopes that were significantly less steep than either overland flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths.
Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado
Godt, J.W.; Coe, J.A.
2007-01-01
On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (< 8000??m2), however, shallow landslides occurred on slopes that were significantly less steep than either overland flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths. ?? 2006 Elsevier B.V. All rights reserved.
Numerical investigation of debris materials prior to debris flow hazards using satellite images
NASA Astrophysics Data System (ADS)
Zhang, N.; Matsushima, T.
2018-05-01
The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.
Remote Sensing of Plastic Debris
NASA Astrophysics Data System (ADS)
Garaba, S. P.; Dierssen, H. M.
2016-02-01
Plastic debris is becoming a nuisance in the environment and as a result there has been a dire need to synoptically detect and quantify them in the ocean and on land. We investigate the possible utility of spectral information determined from hand held, airborne and satellite remote sensing tools in the detection and identification polymer source of plastic debris. Sampled debris will be compared to our derived spectral library of typical raw polymer sources found at sea and in household waste. Additional work will be to determine ways to estimate the abundance of plastic debris in target areas. Implications of successful remote detection, tracking and quantification of plastic debris will be towards validating field observations over large areas and at repeated time intervals both on land and at sea.
NASA Astrophysics Data System (ADS)
Bauer, C.; Kern, K.; Lieb, G. K.
2012-12-01
The aim of this study is the generation of indicative susceptibility maps on a regional scale that can be used as a decision support tool for land use management (i.e. risk potential on alpine infrastructure). The study in particular focuses on geomorphological processes (rockfall and debris flows in unconsolidated rock) that reshape the land surface by erosion, transport and deposition. When interacting with human activity (e.g. road, alpine trails) such naturally occurring processes can quickly become natural hazards. The study area is located in the Karavank Mountains, a border region between Austria and Slovenia, and covers approx. 200 sq km with maximum altitudes above 2.000 m a.s.l. (Hochstuhl: 2.237 m a.s.l.). The Karavanks form an east-west striking mountain chain (approx. 120 km total length) of the southeastern Alps that consists mainly of thick Triassic carbonate sequences and, with less extent, Paleozoic carbonate rocks crystalline rocks. The mountain chain is separated into the Northern Karavanks and the Southern Karavanks by a structural boundary (Periadriatic Line). In addition, the area is known for extreme weather events due to Adriatic cyclones with daily accumulated precipitation of more than 200 mm that regularly trigger hazardous and torrential processes like rockfall events and debris flows. To assess the triggering factors and trajectories, two different disposition and process models (one for rockfall and one for debris flow, respectively) were developed. The information about potential source areas was obtained by combining various types of information (e.g. DTM derivatives, geotechnical units, vegetation). Threshold slope values for potential rockfall source areas were attributed to different lithological units according to field observations. The defined threshold slope angles cover values from 42° in Triassic carbonates up to 46° in massive crystalline rocks. For debris flows areas with a slope inclination < 20° as well as areas with dense vegetation were excluded as potential source areas. In the next step, the rockfall runout zones were estimated empirically using the cone method. This model is based on the idea that an individual falling rock can reach any place in the area situated inside a cone of given aperture. In contrast, for modelling debris flows, a multiple flow directions method was used to calculate potential pathways and velocities. The method is implemented as a random walk in conjunction with a Monte Carlo approach (using 1000 iterations). Both models were calibrated with field observation data (e.g. GPS measurements) and in addition, model results were validated with high resolution aerial photographs. By overlaying the modelling results with road and trail network information, susceptibility maps were created. These maps clearly show that large parts of the existing Alpine infrastructure are potentially affected by the modelled processes. Therefore, the resulting susceptibility maps provide as a useful tool to indicate areas prone to rockfall and debris flow as well as for the maintenance of the road and trail networks.
Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun
2016-04-01
Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.
Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1?
NASA Astrophysics Data System (ADS)
Zale, R.; Huang, Y.-T.; Bigler, C.; Wood, J. R.; Dalén, L.; Wang, X.-R.; Segerström, U.; Klaminder, J.
2018-04-01
Unglaciated forelands and summits protruding from ice-sheets are commonly portrayed as areas where plants first establish at the end of glacial cycles. But is this prevailing view of ice-free refugia too simplistic? Here, we present findings suggesting that surface debris supported plant communities far beyond the rim of the Late Weichselian Ice-sheet during Greenland interstadial 1 (GI-1 or Bølling-Allerød interstadial). We base our interpretations upon findings from terrigenous sediments largely resembling 'plant-trash' deposits in North America (known to form as vegetation established on stagnant ice became buried along with glacial debris during the deglaciation). In our studied deposit, we found macrofossils (N = 10) overlapping with the deglaciation period of the area (9.5-10 cal kyr BP) as well as samples (N = 2) with ages ranging between 12.9 and 13.3 cal kyr BP. The latter ages indicate growth of at least graminoids during the GI-1 interstadial when the site was near the geographic center of the degrading ice-sheet. We suggest that exposure of englacial material during GI-1 created patches of supraglacial debris capable of supporting vascular plants three millennia before deglaciation. The composition and resilience of this early plant community remain uncertain. Yet, the younger group of macrofossils, in combination with pollen and ancient DNA analyses of inclusions, imply that shrubs (Salix sp., Betula sp. and Ericaceae sp) and even tree species (Larix) were present in the debris during the final deglaciation stage.
O'Connor, J. E.; Hardison, J.H.; Costa, J.E.
2001-01-01
The highest concentration of lakes dammed by Neoglacial moraines in the conterminous United States is in the Mount Jefferson and Three Sisters Wilderness Areas in central Oregon. Between 1930 and 1980, breakouts of these lakes have resulted in 11 debris flows. The settings and sequences of events leading to breaching and the downstream flow behavior of the resulting debris flows provide guidance on the likelihood and magnitude of future lake breakouts and debris flows.
Analysis of the Mobilization of Debris Flows
1974-10-01
31 17 . Debris-flow source area at Roofing Granule Quarry, San Bernardino County, California 39 18. Debris-flow source area at Roofing Granule...down a channel about 12 to 16 cm wide with a 35 degree slope. Water, oozing out of the landslide mass into 17 wmmaaaamam’j ■ma the debris channel...marble used as roofing granules (Fig. 17 ) 2 1/2 km north of the town of Wrightwood, about 65 km north- * east of Los Angeles, California (Fig. 1
Silva, Melanie Lopes da; Araújo, Fábio Vieira de; Castro, Rebeca Oliveira; Sales, Alessandro Souza
2015-03-15
In many areas of the world, studies of marine debris are conducted with an emphasis on analyzing their composition, quantification and distribution on sandy beaches. However, in Brazil, studies are still restricted to some areas of the coast, and the quantities and the spatial and temporal patterns are unknown. To enhance the marine debris information in these areas, we selected the Itaipu and Itacoatiara beaches in Niterói, RJ, to collect, quantify and qualify the solid residues present in their sands. We collected 12 samples and recorded 118.39 kg of residues in Itaipu and 62.94 kg in Itacoatiara. At both beaches, the largest portion of debris was located on the upper part of the beach. Several debris items were related to food and drink consumption on the beaches, which indicated the contribution of beach users to pollution. Most of the debris was plastic. The greatest amount of debris was found at Itaipu in January and February and at Itacoatiara in January and March, months related to both the holiday season and abundant rainfall. The results demonstrated the necessity to implement an Environmental Education project for these areas to reduce its degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alpine Cliff Backwearing Rates Derived From Cosmogenic 10-Be in Active Medial Moraines
NASA Astrophysics Data System (ADS)
Ward, D. J.; Anderson, R. S.
2008-12-01
We use cosmogenic 10Be concentrations in rock samples from an active, ice-cored medial moraine to constrain glacial valley sidewall backwearing rates in the Kichatna Mountains, Alaska Range, Alaska. Kilometer-tall granite walls that tower over active glaciers are some of the most dramatic landscape features of the Alaska Range. The sheer scale of the relief speaks to the relative rates of valley incision by glaciers and rockwall retreat, but these rates are difficult to determine independently of one another. We present a method that uses cosmogenic nuclides to measure rockwall backwearing rates in glaciated settings on timescales of 103 yr, with a straightforward sampling strategy that exploits active medial moraines. Ablation-dominated medial moraines form by exhumation of debris-rich ice in the ablation zone of a glacier. Exhumed debris insulates the underlying ice and reduces its ablation rate relative to bare ice, promoting formation of a ridge-like, ice cored moraine. The rock debris is primarily derived from supraglacial rockfalls, which become incorporated in the ice along the glacier margins in the accumulation area. These lateral bands of debris-rich ice merge to form a medial debris band when glacial tributaries converge. The debris is minimally mixed until it is exhumed on the moraine crest. In the simplest case, such a system serves as a conveyor belt, bringing material from a specific part of the ablation zone valley wall to a specific point on a medial moraine in the ablation zone. We collected 5 grab samples, each consisting of ~30 2-10 cm rock fragments of the same lithology, from a 4.5 km longitudinal transect on the crest of the medial moraine of the Shadows glacier. We sampled the crest to minimize the amount of post-exhumation transport and mixing that may have occurred; each sample probably contains rocks from only one to a few rockfall events. Measured 10Be concentrations range from 1.5x104 to 3x104 at/g-qtz and are higher downvalley. First-order interpretation of these results yields minimum erosion rates of 0.2 to 0.5 mm/yr, consistent with erosion rates measured by various means in other glacial environments. This interpretation assumes a simple source area geometry and 10Be production rate scaling. To interpret these measurements in their full geological and topographic context, we present numerical models to describe how the expected distribution of 10Be concentrations should vary with erosion rate. This relationship is affected by source area hypsography and the distributions of size and recurrence interval of rockfall events. We randomly sample events based on a power-law size-recurrence relationship (constrained by field observations) from a numerical grid of production rates derived from a DEM of the source area. This yields the expected probability distribution of 10Be concentrations in the rockfall debris for a given mean erosion rate, weighted by event volume and source hypsography. The measured 10Be concentrations are low enough that accumulation during burial, exhumation, and transport in the medial moraine could account for up to ~1/4 of the signal, given our best estimates of glacier's surface speed (~30 m/yr). The slight downvalley increase in the concentrations supports a component of exposure in the moraine during transport. The amount of exposure depends on factors such as the entry and exit points of debris incorporated into the glacial ice, and the glacial mass balance pattern, and downvalley surface speed. We assess these effects with analytical and numerical models of debris transport in medial moraines, following Anderson (2000).
NASA Astrophysics Data System (ADS)
Scaranello, M. A., Sr.; Keller, M. M.; dos-Santos, M. N.; Longo, M.; Pinagé, E. R.; Leitold, V.
2016-12-01
Coarse woody debris is an important but infrequently quantified carbon pool in tropical forests. Based on studies at 12 sites spread across the Brazilian Amazon, we quantified coarse woody debris stocks in intact forests and forests affected by different intensities of degradation by logging and/or fire. Measurement were made in-situ and for the first time field measurements of coarse woody debris were related to structural metrics derived from airborne lidar. Using the line-intercept method we established 84 transects for sampling fallen coarse woody debris and associated inventory plots for sampling standing dead wood in intact, conventional logging, reduced impact logging, burned and burned after logging forests. Overall mean and standard deviation of total coarse woody debris were 50.0 Mg ha-1 and 26.4 Mg ha-1 respectively. Forest degradation increased coarse woody debris stocks compared to intact forests by a factor of 1.7 in reduced impact logging forests and up to 3-fold in burned forests, in a side-by-side comparison of nearby areas. The ratio between coarse woody debris and biomass increased linearly with number of degradation events (R²: 0.67, p<0.01). Individual lidar-derived structural variables strongly correlated with coarse woody debris in intact and reduced impact logging forests: the 5th percentile of last returns for in intact forests (R²: 0.78, p<0.01) and forest gap area, mapped using lidar-derived canopy height model, for reduced impact logging forests (R²: 0.63, p<0.01). Individual gap area also played a weak but significant role in determining coarse woody debris in burned forests (R2: 0.21, p<0.05), but with contrasting trend. Both degradation-specific and general multiple models using lidar-derived variables were good predictor of coarse woody debris stocks in different degradation levels in the Brazilian Amazon. The strong relation of coarse woody debris with lidar derived structural variables suggests an approach for quantifying infrequently measured coarse woody debris over large areas.
Mud Flow Characteristics Occurred in Izuoshima Island, 2013
NASA Astrophysics Data System (ADS)
Takebayashi, H.; Egashira, S.; Fujita, M.
2015-12-01
Landslides and mud flows were occurred in the west part of the Izuoshima Island, Japan on 16 October 2013. The Izuoshima Island is a volcanic island and the land surface is covered by the volcanic ash sediment in 1m depth. Hence, the mud flow with high sediment concentration was formed. The laminar layer is formed in the debris flow from the bed to the fluid surface. On the other hand, the laminar flow is restricted near the bed in the mud flow and the turbulence flow is formed on the laminar flow layer. As a result, the equilibrium slope of the mud flow becomes smaller comparing to the debris flow. In this study, the numerical analysis mud flow model considering the effect of turbulence flow on the equilibrium slope of the mud flow is developed. Subsequently, the model is applied to the mud flow occurred in the Izuoshima Island and discussed the applicability of the model and the flow characteristics of the mud flow. The differences of the horizontal flow areas between the simulated results and the field data are compared and it was found that the outline of the horizontal shape of the flow areas is reproduced well. Furthermore, the horizontal distribution of the erosion and deposition area is reproduced by the numerical analysis well except for the residential area (Kandachi area). Kandachi area is judged as the erosion area by the field observation, but the sediment was deposited in the numerical analysis. It is considered that the 1.5hour heavy rain over 100mm/h after the mud flow makes the discrepancy. The difference of the horizontal distribution of the maximum flow surface elevation between the simulated results and the field data are compared and it was found that the simulated flow depth is overestimated slightly, because of the wider erosion area due to the coarse resolution elevation data. The averaged velocity and the depth of the mud flow was enough large to collapse the houses.
Lead in American Schools: What School Districts Should and Should Not Do.
ERIC Educational Resources Information Center
Institute for Environmental Assessment, Brooklyn Park, MN.
This paper examines the lead issue in school buildings, noting that even minimal exposures to lead can create diagnosable health problems in children. It includes comments about current regulations and laws pertaining to the areas of soil, water, air, debris disposal, surfaces, and level of lead in the blood. It also lists responses to lead that…
Defining interactions of in-stream hydrokinetic devices in the Tanana River, Alaska
NASA Astrophysics Data System (ADS)
Johnson, J.; Toniolo, H.; Seitz, A. C.; Schmid, J.; Duvoy, P.
2012-12-01
The acceptance, performance, and sustainability of operating in-stream hydrokinetic power generating devices in rivers depends on the impact of the river environment on hydrokinetic infrastructure as well as its impact on the river environment. The Alaska Hydrokinetic Energy Research Center (AHERC) conducts hydrokinetic "impact" and technology studies needed to support a sustainable hydrokinetic industry in Alaska. These include completed and ongoing baseline studies of river hydrodynamic conditions (river stage, discharge, current velocity, power, and turbulence; suspended and bed load sediment transport), ice, fish populations and behavior, surface and subsurface debris flows, and riverbed conditions. Technology and methods studies to minimize the effect of debris flows on deployed turbine system are in-progress to determine their effectiveness at reducing the probability of debris impact, diverting debris and their affect on available river power for conversion to electricity. An anchor point has been placed in the main flow just upstream of Main (Figure 1) to support projects and in preparation for future projects that are being planned to examine hydrokinetic turbine performance including power conversion efficiency, turbine drag and anchor chain loads, wake generation and effects on fish. Baseline fish studies indicate that hydrokinetic devices at the test site will have the most potential interactions with Pacific salmon smolts during their down-migration to the ocean in May and June. At the AHERC test site, the maximum turbulent kinetic energy (TKE) occurs just down stream from the major river bends (e.g., 000 and near the railroad bridge [upper center of the figure]) and over a deep hole at 440 (Figure 1), Minimum TKE occurs between main and 800. River current velocity measurements and simulations of river flow from 000 downstream past the railroad bridge indicate that the most stable current in the river reach is between Main and 800. The stable current and low TKE between Main and 800 indicate that this section of river may be the best site for deploying hydrokinetic devices. Woody debris exists as individual pieces or as large tangled masses on the surface, as full depth vertically oriented debris moving down river and as submerged debris posing a potential hazard to surface or subsurface deployed hydrokinetic devices. Submerged debris consists of logs, root balls, and small (mulch-like) debris. A surface debris diversion device has been tested and shown to be effective at diverting isolated debris and may reduce hazards for surface mounted devices.Figure 1. AHERC Tanana River test site at Nenana, AK.
Supraglacial lakes on Himalayan debris-covered glacier (Invited)
NASA Astrophysics Data System (ADS)
Sakai, A.; Fujita, K.
2013-12-01
Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water currents driven by winds at the lake surface with a positive feedback process. The risk of GLOFs (glacial lake outburst flood) are analysed for Himalayan glacial lakes. We proposed an objective index for GLOF probability, based on depression angle from the lakeshore, which allows the lakes to be assessed using remotely sensed digital elevation models (DEMs). The index was verified by pre-GLOF topography derived by spy satellite imageries. We screened 2800 Himalayan glacial lakes and identified 49 lakes with potential flood volumes over 10 million m3.
Oceanic barnacles act as foundation species on plastic debris: implications for marine dispersal.
Gil, Michael A; Pfaller, Joseph B
2016-01-27
Plastic has emerged as an abundant, stable substratum for oceanic dispersal of organisms via rafting. However, the ecological mechanisms underlying community diversity on plastic debris remain poorly understood. On a cruise from California to Hawai'i, we surveyed plastic debris, some likely originating from the 2011 Tōhoku tsunami, to examine the relationship between rafting community diversity and both habitat area and stalked barnacle (Lepas spp.) abundance. For sessile taxa richness, we observed an interaction in which the positive effect of debris area weakened the negative effect of barnacle cover. In contrast, for mobile taxa richness, including cohabiting species from opposite sides of the Pacific Ocean, barnacle abundance had a positive effect that was strongest at smaller debris sizes. These findings suggest that barnacles, through interactions with habitat area, have trait-dependent effects on other species, serving as both foundation species and competitors, mediating the diversity and dispersal potential of marine organisms on plastic debris.
How marine debris ingestion differs among megafauna species in a tropical coastal area.
Di Beneditto, Ana Paula Madeira; Awabdi, Danielle Rodrigues
2014-11-15
The marine debris ingested by megafauna species (Trichiurus lepturus, Chelonia mydas, Pontoporia blainvillei, and Sotalia guianensis) was recorded in a coastal area of southeastern Brazil (21-23°S). Marine debris was recorded in all species, mainly consisting of plastic material (flexible and hard plastics - clear, white, and colored- and nylon filaments). The 'pelagic predators' T. lepturus and S. guianesis showed the lowest percent frequencies of debris ingestion (0.7% and 1.3%, respectively), followed by the 'benthic predator' P. blainvillei (15.7%) and the 'benthic herbivorous C. mydas (59.2%). The debris found in C. mydas stomachs was opportunistically ingested during feeding activities on local macroalgal banks. In the study area, the benthic environment accumulates more anthropogenic debris than the pelagic environment, and benthic/demersal feeders are more susceptible to encounters and ingestion. The sub-lethal effects observed in C. mydas, such as intestinal obstruction due to hardened fecal material, should be considered a local conservation concern. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Wenbo; Jing, Shaocai; Yu, Wenjuan; Wang, Zhaoxian; Zhang, Guoping; Huang, Jianxi
2013-11-01
In this study, the high risk areas of Sichuan Province with debris flow, Panzhihua and Liangshan Yi Autonomous Prefecture, were taken as the studied areas. By using rainfall and environmental factors as the predictors and based on the different prior probability combinations of debris flows, the prediction of debris flows was compared in the areas with statistical methods: logistic regression (LR) and Bayes discriminant analysis (BDA). The results through the comprehensive analysis show that (a) with the mid-range scale prior probability, the overall predicting accuracy of BDA is higher than those of LR; (b) with equal and extreme prior probabilities, the overall predicting accuracy of LR is higher than those of BDA; (c) the regional predicting models of debris flows with rainfall factors only have worse performance than those introduced environmental factors, and the predicting accuracies of occurrence and nonoccurrence of debris flows have been changed in the opposite direction as the supplemented information.
Oceanic barnacles act as foundation species on plastic debris: implications for marine dispersal
Gil, Michael A.; Pfaller, Joseph B.
2016-01-01
Plastic has emerged as an abundant, stable substratum for oceanic dispersal of organisms via rafting. However, the ecological mechanisms underlying community diversity on plastic debris remain poorly understood. On a cruise from California to Hawai’i, we surveyed plastic debris, some likely originating from the 2011 Tōhoku tsunami, to examine the relationship between rafting community diversity and both habitat area and stalked barnacle (Lepas spp.) abundance. For sessile taxa richness, we observed an interaction in which the positive effect of debris area weakened the negative effect of barnacle cover. In contrast, for mobile taxa richness, including cohabiting species from opposite sides of the Pacific Ocean, barnacle abundance had a positive effect that was strongest at smaller debris sizes. These findings suggest that barnacles, through interactions with habitat area, have trait-dependent effects on other species, serving as both foundation species and competitors, mediating the diversity and dispersal potential of marine organisms on plastic debris. PMID:26813348
Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ
NASA Astrophysics Data System (ADS)
Reavis, K. J.; Wasklewicz, T. A.
2014-12-01
Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.
2003-09-11
KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers pause at the mockup of the leading edge of Columbia’s left wing. About 83,000 pieces of debris from Columbia were shipped to KSC from search and recovery efforts in East Texas. About 83,000 pieces of debris were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.
Seo, Seongwon; Hwang, Yongwoo
1999-08-01
Construction and demolition (C&D) debris is generated at the site of various construction activities. However, the amount of the debris is usually so large that it is necessary to estimate the amount of C&D debris as accurately as possible for effective waste management and control in urban areas. In this paper, an effective estimation method using a statistical model was proposed. The estimation process was composed of five steps: estimation of the life span of buildings; estimation of the floor area of buildings to be constructed and demolished; calculation of individual intensity units of C&D debris; and estimation of the future C&D debris production. This method was also applied in the city of Seoul as an actual case, and the estimated amount of C&D debris in Seoul in 2021 was approximately 24 million tons. Of this total amount, 98% was generated by demolition, and the main components of debris were concrete and brick.
Rengers, Francis K.; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.
2016-01-01
We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.
Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell
2007-04-01
Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total.
Clukey, Katherine E.; Lepczyk, Christopher A.; Balazs, George H.; Work, Thierry M.; Lynch, Jennifer M.
2017-01-01
Ingestion of marine debris is an established threat to sea turtles. The amount, type, color and location of ingested plastics in the gastrointestinal tracts of 55 sea turtles from Pacific longline fisheries from 2012 to 2016 were quantified, and compared across species, turtle length, body condition, sex, capture location, season and year. Six approaches for quantifying amounts of ingested plastic strongly correlated with one another and included: number of pieces, mass, volume and surface area of plastics, ratio of plastic mass to body mass, and percentage of the mass of gut contents consisting of plastic. All olive ridley (n = 37), 90% of green (n = 10), 80% of loggerhead (n = 5) and 0% of leatherback (n = 3) turtles had ingested plastic; green turtles ingested significantly more than olive ridleys. Most debris was in the large intestines. No adverse health impacts (intestinal lesions, blockage, or poor body condition) due directly to plastic ingestion were noted.
Floating Marine Debris in waters of the Mexican Central Pacific.
Díaz-Torres, Evelyn R; Ortega-Ortiz, Christian D; Silva-Iñiguez, Lidia; Nene-Preciado, Alejandro; Orozco, Ernesto Torres
2017-02-15
The presence of marine debris has been reported recently in several oceans basins; there is very little information available for Mexican Pacific coasts, however. This research examined the composition, possible sources, distribution, and density of Floating Marine Debris (FMD) during nine research surveys conducted during 2010-2012 in the Mexican Central Pacific (MCP). Of 1820 floating objects recorded, 80% were plastic items. Sources of FMD were determined using key objects, which indicated that the most were related to the presence of the industrial harbor and of a growing fishing industry in the study area. Densities were relatively high, ranging from 40 to 2440objects/km 2 ; the highest densities were recorded in autumn. FMD were distributed near coastal regions, mainly in Jalisco, influenced by river outflow and surface currents. Our results seem to follow worldwide trends and highlight the need for further studies on potential ecological impacts within coastal waters of the MCP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inter-annual variation in the density of anthropogenic debris in the Tasman Sea.
Rudduck, Osha-Ann; Lavers, Jennifer L; Fischer, Andrew M; Stuckenbrock, Silke; Sharp, Paul B; Banati, Richard B
2017-11-15
An increasing number of studies highlight the risk of plastic pollution in the marine environment. However, systematic longitudinal data on the distribution and abundance of plastic debris remain sparse. Here we present the results of a two-year study of plastic pollution within the Tasman Sea, contrasted with a further year of data from the same region, in order to document how the density of debris varies across years in this area. Surface net tows were collected between Hobart, Tasmania and Sydney, Australia during the spring of 2013 and 2014 and compared with a subset of data from autumn 2012 from the same region. Substantial inter-annual variation in mean plastic abundance was observed over the three year period, ranging from to 248.04-3711.64pieceskm -2 , confirming the need for multiple years of sampling to fully estimate the extent of, and trends in, plastic pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clukey, Katharine E; Lepczyk, Christopher A; Balazs, George H; Work, Thierry M; Lynch, Jennifer M
2017-07-15
Ingestion of marine debris is an established threat to sea turtles. The amount, type, color and location of ingested plastics in the gastrointestinal tracts of 55 sea turtles from Pacific longline fisheries from 2012 to 2016 were quantified, and compared across species, turtle length, body condition, sex, capture location, season and year. Six approaches for quantifying amounts of ingested plastic strongly correlated with one another and included: number of pieces, mass, volume and surface area of plastics, ratio of plastic mass to body mass, and percentage of the mass of gut contents consisting of plastic. All olive ridley (n=37), 90% of green (n=10), 80% of loggerhead (n=5) and 0% of leatherback (n=3) turtles had ingested plastic; green turtles ingested significantly more than olive ridleys. Most debris was in the large intestines. No adverse health impacts (intestinal lesions, blockage, or poor body condition) due directly to plastic ingestion were noted. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Guo, Xiaojun; Cui, Peng; Li, Yong; Ma, Li; Ge, Yonggang; Mahoney, William B.
2016-01-01
The Ms 8.0 Wenchuan Earthquake has greatly altered the rainfall threshold for debris flows in the affected areas. This study explores the local intensity-duration (I-D) relationship based on 252 post-earthquake debris flows. It was found that I = 5.25 D-0.76 accounts for more than 98% of the debris flow occurrences with rainfall duration between 1 and 135 h; therefore the curve defines the threshold for debris flows in the study area. This gives much lower thresholds than those proposed by the previous studies, suggesting that the earthquake has greatly decreased the thresholds in the past years. Moreover, the rainfall thresholds appear to increase annually in the period of 2008-2013, and present a logarithmic increasing tendency, indicating that the thresholds will recover in the future decades.
Assessing Landslide Mobility Using GIS: Application to Kosrae, Micronesia
NASA Astrophysics Data System (ADS)
Reid, M. E.; Brien, D. L.; Godt, J.; Schmitt, R. G.; Harp, E. L.
2015-12-01
Deadly landslides are often mobile landslides, as exemplified by the disastrous landslide that occurred near Oso, Washington in 2014 killing 43. Despite this association, many landslide susceptibility maps do not identify runout areas. We developed a simple, GIS-based method for identifying areas potentially overrun by mobile slides and debris flows. Our method links three processes within a DEM landscape: landslide initiation, transport, and debris-flow inundation (from very mobile slides). Given spatially distributed shear strengths, we first identify initiation areas using an infinite-slope stability analysis. We then delineate transport zones, or regions of potential entrainment and/or deposition, using a height/length runout envelope. Finally, where these transport zones intersect the channel network, we start debris-flow inundation zones. The extent of inundation is computed using the USGS model Laharz, modified to include many debris-flow locations throughout a DEM. Potential debris-flow volumes are computed from upslope initiation areas and typical slide thicknesses. We applied this approach to the main island of Kosrae State, Federated States of Micronesia (FSM). In 2002, typhoon Chata'an triggered numerous landslides on the neighboring islands of Chuuk State, FSM, resulting in 43 fatalities. Using an infinite-slope stability model calibrated to the Chuuk event, we identified potential landslide initiation areas on Kosrae. We then delineated potential transport zones using a 20º runout envelope, based on runout observations from Chuuk. Potential debris-flow inundation zones were then determined using Laharz. Field inspections on Kosrae revealed that our resulting susceptibility map correctly classified areas covered by previous debris-flow deposits and did not include areas covered by fluvial deposits. Our map has the advantage of providing a visual tool to portray initiation, transport, and runout zones from mobile landslides.
2003-09-11
KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers look at pieces of tile collected during search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.
Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation
NASA Astrophysics Data System (ADS)
Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.
2004-12-01
Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.
NASA Technical Reports Server (NTRS)
Miglionico, C.; Stein, C.; Murr, L. E.
1991-01-01
A preliminary study of materials exposed in space in LEO for nearly six years in the NASA Long-Duration Exposure Facility is presented. It is demonstrated that it will be necessary to isolate surface debris and reaction products from materials exposed in space. Replication techniques originally designed for electron microscopy examination of surfaces can be applied to lift off and isolate such surface features. Debris and reaction products were examined through a variety of analytical techniques, including the surface morphology by SEM, and internal microstructures by STEM and TEM, EDS, and SAD. The results illustrate the role that atomic oxygen and micrometeorites play in surface alteration and reaction in LEO space environments, as well as the role of debris created from other proximate materials.
NASA Astrophysics Data System (ADS)
Ourmieres, Yann; Mansui, Jérémy; Molcard, Anne; Galgani, François; Poitou, Isabelle
2018-03-01
The aim of the present study is to evidence the role of a boundary current and meteorological conditions in the transport and stranding of floating marine debris. The used data are from a beach survey and an inter-annual unique effort of marine debris sightings along the French Riviera in the North-Western Mediterranean region. Offshore data have been collected during oceanic cruises while beach surveys were performed around Antibes city. Debris were found on 97% of the ocean transects, with a large spatial and temporal variability, showing contrasted areas of low ( 1 item/km2) and of high (> 10 items/km2) debris densities. Results suggest that the debris spatio-temporal distribution is related to the Northern current (NC) dynamics, the regional boundary current, with accumulation patterns in its core and external edge. By playing a role in the alongshore transport, such a boundary current can form a cross-shore transport barrier. Stranding events can then occur after strong on-shore wind bursts modifying the sea surface dynamics and breaking this transport barrier. It is also shown that episodic enhancement of the stranding rate can be explained by combining the NC dynamics with the wind forcing and the rainfall effect via the local river run-off. Conversely, off-shore wind bursts could also free the marine litter from the boundary current and export them towards the open sea.
Clark, D.H.; Clark, M.M.; Gillespie, A.R.
1994-01-01
Ice-walled melt ponds on the surfaces of active valley-floor rock glaciers and Matthes (Little Ice Age) moraines in the southern Sierra Nevada indicate that most of these landforms consist of glacier ice under thin (ca. 1 - 10 m) but continuous covers of rock-fall-generated debris. These debris blankets effectively insulate the underlying ice and greatly reduce rates of ablation relative to that of uncovered ice. Such insulation explains the observations that ice-cored rock glaciers in the Sierra, actually debris-covered glaciers, are apparently less sensitive to climatic warming and commonly advance to lower altitudes than do adjacent bare-ice glaciers. Accumulation-area ratios and toe-to-headwall-altitude ratios used to estimate equilibrium-line altitudes (ELAs) of former glaciers may therefore yield incorrect results for cirque glaciers subject to abundant rockfall. Inadvertent lumping of deposits from former debris-covered and bare-ice glaciers partially explains an apparently anomalous regional ELA gradient reported for the pre-Matthes Recess Peak Neoglacial advance. Distinguishing such deposits may be important to studies that rely on paleo-ELA estimates. Moreover, Matthes and Recess Peak ELA gradients along the crest evidently depend strongly on local orographic effects rather than latitudinal climatic trends, indicating that simple linear projections and regional climatic interpretations of ELA gradients of small glaciers may be unreliable.
NASA Astrophysics Data System (ADS)
Fastook, James L.; Head, James W.; Marchant, David R.
2014-01-01
Lobate debris aprons (LDA) are lobate-shaped aprons surrounding scarps and isolated massifs that are concentrated in the vicinity of the northern Dichotomy Boundary on Mars. LDAs have been interpreted as (1) ice-cemented talus aprons undergoing viscous flow, (2) local debris-covered alpine-like glaciers, or (3) remnants of the collapse of a regional retreating ice sheet. We investigate the plausibility that LDAs are remnants of a more extensive regional ice sheet by modeling this process. We find that as a regional ice sheet collapses, the surface drops below cliff and massif bedrock margins, exposing bedrock and regolith, and initiating debris deposition on the surface of a cold-based glacier. Reduced sublimation due to debris-cover armoring of the proto-LDA surface produces a surface slope and consequent ice flow that carries the armoring debris away from the rock outcrops. As collapse and ice retreat continue the debris train eventually reaches the substrate surface at the front of the glacier, leaving the entire LDA armored by debris cover. Using a simplified ice flow model we are able to characterize the temperature and sublimation rate that would be necessary to produce LDAs with a wide range of specified lateral extents and thicknesses. We then apply this method to a database of documented LDA parameters (height, lateral extent) from the Dichotomy Boundary region, and assess the implications for predicted climate conditions during their formation and the range of formation times implied by the model. We find that for the population examined here, typical temperatures are in the range of -85 to -40 °C and typical sublimation rates lie in the range of 6-14 mm/a. Lobate debris apron formation times (from the point of bedrock exposure to complete debris cover) cluster near 400-500 ka. These results show that LDA length and thickness characteristics are consistent with climate conditions and a formation scenario typical of the collapse of a regional retreating ice sheet and exposure of bedrock cliffs. This scenario helps resolve many of the unusual characteristics of lobate debris aprons (LDA) and lineated valley fill (LVF). For example, the distribution of LVF is very consistent with extensive flow of glacial ice from plateau icefields, and the acquisition of a debris cover in the waning stages of retreat of the regional cover as the bedrock scarps are exposed. The typical concentric development of LDA around massifs is much more consistent with ice sheet retreat than insolation-related local accumulation and flow. We thus conclude that the retreating ice-sheet model is robust and should be investigated and tested in more detail. In addition, these results clearly show that the lobate debris aprons in the vicinity of the Dichotomy Boundary could not have attained temperatures near or above the ice melting point and retained their current shape, a finding that supports subzero temperatures for the last several hundred million years, the age of the LDA surfaces. A further implication is that the LDA ice has been preserved for at least several hundred million years, and could potentially contain the record of the climate of Mars, preserved since that time below a sublimation lag deposit.
NASA Astrophysics Data System (ADS)
Tanarro, Luis M.; Palacios, David; Zamorano, Jose J.; Andres, Nuria
2017-04-01
Most studies conducted on rock and debris-covered glaciers only include simplified geomorphological maps representing main units (ridges, furrows, front, and thermokarst depressions). The aim of this study is to develop a detailed geomorphological mapping of the Hóladalsjökull debris-covered glacier (65°42' N; 18°57' W) and the Fremri-Grjótárdalur rock glacier (65°43' N 19° W), located near Hólar, a village in the central area of the Trolläskagi peninsula (northern Iceland). The mapping process has been conducted using standard stereo-photointerpretation of aerial photographs and stereo-plotting of a topographic map at 1:2000 scale. Also, landforms have been represented in different transects. Lastly, the geomorphological map has been designed using the elevation digital model, and a 3D pdf file has been generated, allowing for better viewing and understanding the different units and their modelling. The geomorphological mapping of the Hóladalsjökull debris-covered glacier and the Fremri-Grjótárdalur rock glacier represents the prominent walls of their valley heads and their summits, which form a flat highland at 1,200-1,330 metres above sea level, covered by blockfield and patterned ground features. Rockfall and slide landforms are common processes at the foot of these 100-170 metre-high cirque-walls. Debris-covered glaciers and rock glaciers are born right under these walls, building up a spoon-shaped hollow around glacial ice, surrounded by young moraine ridges at their fronts. The dominant features in the Hóladalsjökull debris-covered glacier are large longitudinal ridges and furrows, stretching over 1.5 km in length in the central and western areas. Medium-sized thermokarst depressions (between 15-40 metres in diameter), often running parallel to the furrows, dot the surface of the debris-covered glacier. Parallel alternate ridges and furrows can be seen near the snout. Ridges are rugged and fall around 30-40 metres, with over 30 degree slopes, whereas furrows have smoother hillsides. The snout of the debris-covered glacier is around 900 m high. Several units of rock glaciers from different overlapping ages can be distinguished in the Fremri-Grjótárdalur cirque. Deep and meandering furrows have developed in the contact areas between the main lobes. The lobes of the youngest rock glaciers, located at the cirque head, reach a length of between 0.5 km and 1 km. Their morphology changes from their rooting zone, with alternate smooth furrows and ridges extending towards their front, where steep ridges and furrows appear, and ends in a steep front between 896 and 922 m high. These rock glaciers overlap one another on a fossil rock glacier, rising another 400 m until they reach a height of 850 m. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain
NASA Astrophysics Data System (ADS)
Schoch, Anna; Hoffmann, Thomas; Dikau, Richard
2014-05-01
Sediment fluxes in mountain headwater streams are strongly conditioned by sediment supply from hillslopes and thus hillslope-channel coupling, defined as linkages connecting slopes and channels through sediment transport processes. Sediment supply from hillslopes can have major influences on channel characteristics. The main goal of my research is to achieve a better understanding of these influences on mountain headwater streams in two study areas. This is conducted through the investigation of "channel-reach morphology" according to MONTGOMERY AND BUFFINGTON (1997), morphometric and sedimentological characteristics of the channels and analysis of the slope-channel coupling system. The study was conducted in two valleys in the Swiss National Park, i.e. Val dal Botsch (VdB) and Val Mueschauns (VMu). In both headwaters slopes and channel are coupled effectively due to the small spatial vicinity and frequent debris flow processes connecting the two system components. Both catchments were glaciated in the Pleistocene but show contrasting glacial imprints today. While VdB has a V-shaped morphometry that is dominated by unconsolidated sediments (mainly talus and moraine material), VMu is U-shaped in the upper valley segments and the surface is mainly covered with bedrock. Several methods for data collection and analyses were used: (1) Channel-reach morphology classification, (2) DEM-based analysis of long profiles, ksn-values, slope-area plots and measurement of cross sections in the field, (3) investigation of sedimentological characteristics with pebble counts as well as (4) mapping of recent linkages between slopes and channel and determination of connectivity (effectivity of coupling) using a heuristic approach. The results show that sediment input into both headwater streams is dominated by debris flows. The debris flow catchments, as parts of the slope system, have the highest connectivity to the channels. Channel changes are greatest where debris flows cause massive sediment input. Channel changes include an increase in sediment size and density of boulders, a decline in grain roundness and particle sorting as well as slope steepening and alterations of cross sections due to channel incision into the deposited debris flow material. Channel-reach morphology can be modified as well, e.g. from step pool to cascade. The intensity of the influence on channels varies among the investigated debris flows. A comparison of the larger debris flows reveals that debris flows with catchments dominated by bedrock and large areal extend (absolute and relative to main channel drainage area) have the strongest influence on channels. These results suggest that the variable influence on the channel is linked to differences in the Pleistocene glacial imprint of the two study areas. Geomorphic heritage plays a crucial role in recent alpine systems. Reference: MONTGOMERY, D. R. AND J. M. BUFFINGTON (1997): Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109 (5), 596-611.
Mechanism of shallow disrupted slide induced by extreme rainfall
NASA Astrophysics Data System (ADS)
Igwe, O.; Fukuoka, H.
2010-12-01
On July 16, 2010, extreme rainfall attacked western Japan and it caused very intense rainfall in Shobara city, Hiroshima prefecture, Japan. This rainfall induced hundreds of shallow disrupted slides and many of those became debris flows. One of this debris flows attacked a house standing in front of the exit of a channel, and claimed a resident’s life. Western Japan had repeatedly similar disasters in the past. Last event took place from July 19 to 26, 2009, when western Japan had a severe rainstorms and caused floods and landslides. Most of the landslides are debris slide - debris flows. Most devastated case took place in Hofu city, Japan. On July 21, extremely intense rainstorm caused numerous debris flows and mud flows in the hillslopes. Some of the debris flows destroyed residential houses and home for elderly people, and finally killed 14 residents. One of the unusual feature of both disaster was that landslides are distributed in very narrow area. In the 2010 Shobara city disaster, all of the landslides were distributed in 5 km x 3 km, and in the 2009 Hofu city disaster, most devastated zone of landslides were 10 km x 5 km. Rain radars of Meteorological Agency of Government of Japan detected the intense rainfall, however, the spatial resolution is usually larger than 5 km and the disaster area is too small to predict landslides nor issue warning. Furthermore, it was found that the growth rate of baby clouds was very quick. The geology of both areas are rhyolite (Shobara) and granite (Hofu), so the areal assessment of landslide hazard should be prepared before those intense rainfall will come. As for the Hofu city case, it was proved that debris flows took place in the high precipitation area and covered by covered by weathered granite sands and silts which is called “masa". This sands has been proved susceptible against landslides under extreme rainfall conditions. However, the transition from slide - debris flow process is not well revealed, except authors past experiment on the similar masa samples in June 1999 Hiroshima debris flow case. Authors have embedded pore pressure control system for the undrained ring shear apparatus. Strongly weathered sandy soils were sampled just on the smooth and flat granitic sliding surface of one of the upstream small-scale landslides. Those contained finer grains and lower permeability rather than the one sampled in the Hiroshima case. Sample was consolidated by smaller stress corresponding to the site condition, and saturated by overnight circulating de-aired water. Normal stress and shear stress corresponding the slope condition was given, then, pore pressure (back pressure) was raised artificially at constant rate. When the effective stress reached the failure line, suddenly measured pore pressure monitored at about 2 mm above the shear plane, quickly increased. This sudden change abruptly accelerate the shear displacement. Stress condition soon reached the steady state and remained there thereafter. The reason of the excess pore pressure generation was the negative dilatancy, following a slight positive dilatancy. Most of the negative dilatancy could be explained by collapse of loose soil skelton as well as grain crushing during deformation and shearing.
Tillery, Anne C.; Matherne, Anne Marie
2013-01-01
A preliminary hazard assessment was developed of the debris-flow potential from 56 drainage basins burned by the Little Bear Fire in south-central New Mexico in June 2012. The Little Bear Fire burned approximately 179 square kilometers (km2) (44,330 acres), including about 143 km2 (35,300 acres) of National Forest System lands of the Lincoln National Forest. Within the Lincoln National Forest, about 72 km2 (17,664 acres) of the White Mountain Wilderness were burned. The burn area also included about 34 km2 (8,500 acres) of private lands. Burn severity was high or moderate on 53 percent of the burn area. The area burned is at risk of substantial postwildfire erosion, such as that caused by debris flows and flash floods. A postwildfire debris-flow hazard assessment of the area burned by the Little Bear Fire was performed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Forest Service, Lincoln National Forest. A set of two empirical hazard-assessment models developed by using data from recently burned drainage basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burn area drainage network and for selected drainage basins within the burn area. The models incorporate measures of areal burn extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. Relative hazard rankings of postwildfire debris flows were produced by summing the estimated probability and volume ranking to illustrate those areas with the highest potential occurrence of debris flows with the largest volumes. The probability that a drainage basin could produce debris flows and the volume of a possible debris flow at the basin outlet were estimated for three design storms: (1) a 2-year-recurrence, 30-minute-duration rainfall of 27 millimeters (mm) (a 50 percent chance of occurrence in any given year); (2) a 10-year-recurrence, 30-minute-duration rainfall of 42 mm (a 10 percent chance of occurrence in any given year); and (3) a 25-year-recurrence, 30-minute-duration rainfall of 51 mm (a 4 percent chance of occurrence in any given year). Thirty-nine percent of the 56 drainage basins modeled have a high (greater than 80 percent) probability of debris flows in response to the 2-year design storm; 80 percent of the modeled drainage basins have a high probability of debris flows in response to the 25-year design storm. For debris-flow volume, 7 percent of the modeled drainage basins have an estimated debris-flow volume greater than 100,000 cubic meters (m3) in response to the 2-year design storm; 9 percent of the drainage basins are included in the greater than 100,000 m3 category for both the 10-year and the 25-year design storms. Drainage basins in the greater than 100,000 m3 volume category also received the highest combined hazard ranking. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be needed prior to rainstorms within these drainage basins, their outlets, or areas downstream from these drainage basins within the 2- to 3-year period of vulnerability. This work is preliminary and is subject to revision. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.
Glaciation of alpine valleys: The glacier - debris-covered glacier - rock glacier continuum
NASA Astrophysics Data System (ADS)
Anderson, Robert S.; Anderson, Leif S.; Armstrong, William H.; Rossi, Matthew W.; Crump, Sarah E.
2018-06-01
Alpine ice varies from pure ice glaciers to partially debris-covered glaciers to rock glaciers, as defined by the degree of debris cover. In many low- to mid-latitude mountain ranges, the few bare ice glaciers that do exist in the present climate are small and are found where snow is focused by avalanches and where direct exposure to radiation is minimized. Instead, valley heads are more likely to be populated by rock glaciers, which can number in the hundreds. These rock-cloaked glaciers represent some of the most identifiable components of the cryosphere today in low- to mid-latitude settings, and the over-steepened snouts pose an often overlooked hazard to travel in alpine terrain. Geomorphically, rock glaciers serve as conveyor belts atop which rock is pulled away from the base of cliffs. In this work, we show how rock glaciers can be treated as an end-member case that is captured in numerical models of glaciers that include ice dynamics, debris dynamics, and the feedbacks between them. Specifically, we focus on the transition from debris-covered glaciers, where the modern equilibrium line altitude (ELA) intersects the topography, to rock glaciers, where the modern ELA lies above the topography. On debris-covered glaciers (i.e., glaciers with a partial rock mantle), rock delivered to the glacier from its headwall, or from sidewall debris swept into the glacier at tributary junctions, travels englacially to emerge below the ELA. There it accumulates on the surface and damps the rate of melt of underlying ice. This allows the termini of debris-covered glaciers to extend beyond debris-free counterparts, thereby decreasing the ratio of accumulation area to total area of the glacier (AAR). In contrast, rock glaciers (i.e., glaciers with a full rock mantle) occur where and when the environmental ELA rises above the topography. They require avalanches and rockfall from steep headwalls. The occurrence of rock glaciers reflects this dependence on avalanche sources because they are most common on lee sides of ridges and peaks where wind-blown snow enhances the strength of the avalanche source. To maintain positive mass balance, the avalanche cone developed in the winter must be sufficiently thick not to melt entirely in the summer, thus providing an ice accumulation area for the rock glacier. In the absence of rockfall, this would support a short cirque glacier. The presence of debris, however, facilitates the development of rock glaciers with lengths of hundreds of meters, thicknesses of tens of meters, and speeds of meters per year that are well described by numerical models. Numerical models are used to explore the alpine glacier response to its climate history. In warming climates, a debris-covered glacier can transform into a much shorter rock glacier, leaving in its wake a thinning ice-cored moraine. Rock glaciers will persist in landscapes well beyond debris-free counterparts because they have much longer response times to climate change. The headwaters of alpine basins with steep headwalls will therefore oscillate between glacier and rock glacier occupation over glacial-interglacial cycles, maintaining a means by which rock from the headwall can be conveyed away. This enhances the asymmetry of alpine ridgelines, with downwind valleys biting deeply into the range crests, as originally noted by G.K. Gilbert.
Apparatus for controlling nuclear core debris
Jones, Robert D.
1978-01-01
Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.
Multirisk analysis along the Road 7, Mendoza Province, Argentina
NASA Astrophysics Data System (ADS)
Wick, Emmanuel; Baumann, Valérie; Michoud, Clément; Derron, Marc-Henri; Jaboyedoff, Michel; Rune Lauknes, Tom; Marengo, Hugo; Rosas, Mario
2010-05-01
The National Road 7 crosses Argentina from East to West, linking Buenos Aires to the Chile border. This road is an extremely important corridor crossing the Andes Cordillera, but it is exposed to numerous natural hazards, such as rockfalls, debris flows and snow avalanches. The study area is located in the Mendoza Province, between Potrerillos and Las Cuevas in the Chilean border. This study has for main goals to achieve a regional mapping of geohazards susceptibility along the Road 7 corridor using modern remote sensing and numerical modelling techniques completed by field investigations. The main topics are: - Detection and monitoring of deep-seated gravitational slope deformations by time-series satellite radar interferometry (InSAR) methods. The area of interest is mountainous with almost no vegetation permitting an optimized InSAR processing. Our results are based on applying the small-baseline subset (SBAS) method to a time-series of Envisat ASAR images. - Rockfalls susceptibility mapping is realized using statistical analysis of the slope angle distribution, including external knowledge on the geology and land cover, to detect the potential source areas (quantitative DEM analysis). The run-outs are assessed with numerical methods based on the shallow angle method with Conefall. A second propagation is performed using the alpha-beta methodology (3D numerical modelling) with RAS and is compared to the first one. - Debris flow susceptibility mapping is realized using DF-IGAR to detect starting and spreading areas. Slope, flow accumulations, contributive surfaces, plan curvature, geological and land use dataset are used. The spreading is simulated by a multiple flow algorithm (rules the path that the debris flow will follow) coupled to a run-out distance calculation (energy-based). - Snow avalanches susceptibility mapping is realized using DF-IGAR to map sources areas and propagations. To detect the sources areas, slope, altitude, land-use and minimum surfaces are needed. DF-IGAR simulates the spreading by means of the "Perla" methodology. Furthermore, RAS performs the spreading based on the "alpha-beta" method. All these methods are based on Aster and SRTM DEM (grid 30 m) and observations of both optical and radar satellite imagery (Aster, Quickbird, Worldview, Ikonos, Envisat ASAR) and aerial photographs. Several field campaigns are performed to calibrate the regional models with adapted parameters. Susceptibility maps of the entire area for rockfalls, debris flows and snow avalanches at a scale of 1:100'000 are created. Those maps and the field investigations are cross-checked to identify and prioritize hotspots. It appears that numerous road sectors are subject to highly active phenomena. Some mitigation works already exist but they are often under-dimensioned, inadequate or neglected. Recommendations for priority and realistic mitigation measures along the endangered road sectors identified are proposed.
The Influence of Solid Rocket Motor Retro-Burns on the Space Debris Environment
NASA Astrophysics Data System (ADS)
Stabroth, S.; Homeister, M.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.
The ESA space debris population model MASTER Meteoroid and Space Debris Terrestrial Environment Reference considers firings of solid rocket motors SRM as a debris source with the associated generation of slag and dust particles The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit The current model version MASTER-2005 is based on the simulation of 1 076 orbital SRM firings which contributed to the long-term debris environment A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope HST solar array measurements very well However the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility LDEF surfaces This points into the direction of some past SRM firings not included in the current event database The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere Thus they produce no long-term effect on the debris environment However a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces In this paper the influence of SRM retro-burns on the short- and long-term debris environment is analysed The existing firing database is updated with gathered
The deformation of ice-debris landforms in the Khumbu Region from InSAR
NASA Astrophysics Data System (ADS)
Schmidt, D. A.; Barker, A. D.; Hallet, B.
2014-12-01
We present new interferometric synthetic aperture radar (InSAR) results for the Khumbu region, Nepal, using PALSAR data from the ALOS1 satellite. Glaciers and ice-debris landforms represent a critical water resource to communities in the Himalayas and other relatively arid alpine environments. Changes in climate have impacted this resource as the volume of ice decreases. The monitoring of rock glaciers and debris covered glaciers is critical to the assessment of these natural resources and associated hazards (e.g. Glacial Lake Outburst Floods--GLOFs). Satellite data provide one means to monitor ice-containing landforms over broad regions. InSAR measures the subtle deformation of the surface, with mm precision, that is related to deformation or changes in ice volume within rock glaciers and debris-covered glaciers. While previous work in the region had used C-band (6 cm wavelength) SAR data from the ERS satellite, we utilize L-band data (24 cm) from the ALOS satellite, which provides better coherence, especially where the phase gradient is large. After processing 20 differential interferograms that span from 2008 to 2011, we focus on the 5 interferograms with the best overall coherence. Based on three 45-day interferograms and two 3-year interferograms, all of which have relatively small perpendicular baselines (<260 m), we report line-of-sight surface displacement rates within the Khumbu region and calculate the down-slope surface speed of the active glaciers. From the 3-year interferograms, we map the boundary of active movement along the perimeter of the debris-covered toe of Khumbu Glacier. Movement over this longer time period leads to a loss of coherence, clearly delimiting actively moving areas. Of particular note, active movement is detected in the glacier-moraine dam of Imja Lake, which has implications for GLOF hazard. The significant vertical relief in the Himalaya region poses a challenge for doing differential radar interferometry, as artifacts in the digital elevation model (DEM) can propagate into the differential interferograms. Additionally, large changes in topography or glacier surfaces between the acquisition time of the DEM and SAR scenes can appear as artifacts. We carefully evaluate the differential phase for potential DEM artifacts and attempt to isolate these signals.
Orbital Debris Research in the United States
NASA Technical Reports Server (NTRS)
Stansbery, Gene
2009-01-01
The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.
Calibration of numerical models for small debris flows in Yosemite Valley, California, USA
Bertolo, P.; Wieczorek, G.F.
2005-01-01
This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.
NASA Astrophysics Data System (ADS)
Tang, H.; McGuire, L.; Rengers, F. K.; Kean, J. W.; Staley, D. M.
2017-12-01
Wildfire significantly changes the hydrological characteristics of soil for a period of several years and increases the likelihood of flooding and debris flows during high-intensity rainfall in steep watersheds. Hazards related to post-fire flooding and debris flows increase as populations expand into mountainous areas that are susceptible to wildfire, post-wildfire flooding, and debris flows. However, our understanding of post-wildfire debris flows is limited due to a paucity of direct observations and measurements, partially due to the remote locations where debris flows tend to initiate. In these situations, numerical modeling becomes a very useful tool for studying post-wildfire debris flows. Research based on numerical modeling improves our understanding of the physical mechanisms responsible for the increase in erosion and consequent formation of debris flows in burned areas. In this contribution, we study changes in sediment transport efficiency with time since burning by combining terrestrial laser scanning (TLS) surveys of a hillslope burned during the 2016 Fish Fire with numerical modeling of overland flow and sediment transport. We also combine the numerical model with measurements of debris flow timing to explore relationships between post-wildfire rainfall characteristics, soil infiltration capacity, hillslope erosion, and debris flow initiation at the drainage basin scale. Field data show that an initial rill network developed on the hillslope, and became more efficient over time as the overall rill density decreased. Preliminary model results suggest that this can be achieved when flow driven detachment mechanisms dominate and raindrop-driven detachment is minimized. Results also provide insight into the hydrologic and geomorphic conditions that lead to debris flow initiation within recently burned areas.
NASA Technical Reports Server (NTRS)
Miller, Joshua E.
2016-01-01
Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.
Mitigation of Debris Flow Damage--Â A Case Study of Debris Flow Damage
NASA Astrophysics Data System (ADS)
Lin, J. C.; Jen, C. H.
Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.
Uncertainties in predicting debris flow hazards following wildfire [Chapter 19
Kevin D. Hyde; Karin Riley; Cathelijne Stoof
2017-01-01
Wildfire increases the probability of debris flows posing hazardous conditions where valuesâatârisk exist downstream of burned areas. Conditions and processes leading to postfire debris flows usually follow a general sequence defined here as the postfire debris flow hazard cascade: biophysical setting, fire processes, fire effects, rainfall, debris flow, and valuesâatâ...
Triggering conditions and mobility of debris flows associated to complex earthflows
NASA Astrophysics Data System (ADS)
Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.
2005-03-01
Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging between 2000 to 5000 m 3. Slope failures induced by 25-year return period rainfall can trigger large debris flow events (30,000 to 50,000 m 3) that can reach the alluvial fan and cause damage.
Impact of recent extreme Arizona storms
Magirl, C.S.; Webb, R.H.; Schaffner, M.; Lyon, S.W.; Griffiths, P.G.; Shoemaker, C.; Unkrich, C.L.; Yatheendradas, S.; Troch, Peter A.; Pytlak, E.; Goodrich, D.C.; Desilets, S.L.E.; Youberg, A.; Pearthree, P.A.
2007-01-01
Heavy rainfall on 27–31 July 2006 led to record flooding and triggered an historically unprecedented number of debris flows in the Santa Catalina Mountains north of Tucson, Ariz. The U.S. Geological Survey (USGS) documented record floods along four watercourses in the Tucson basin, and at least 250 hillslope failures spawned damaging debris flows in an area where less than 10 small debris flows had been documented in the past 25 years. At least 18 debris flows destroyed infrastructure in the heavily used Sabino Canyon Recreation Area (http://wwwpaztcn.wr.usgs.gov/rsch_highlight/articles/20061 l.html). In four adjacent canyons, debris flows reached the heads of alluvial fans at the boundary of the Tucson metropolitan area. While landuse planners in southeastern Arizona evaluate the potential threat of this previously little recognized hazard to residents along the mountain front, an interdisciplinary group of scientists has collaborated to better understand this extreme event.
Age and Stratigraphic Relationships in Massif-Debris-Apron Terrain in Western Phlegra Montes, Mars
NASA Astrophysics Data System (ADS)
Kress, A.; Head, J. W.; Safaeinili, A.; Holt, J.; Plaut, J.; Posiolova, L.; Phillips, R.; Seu, R.; Sharad Team
2010-03-01
SHARAD returns from lobate debris aprons (LDA) near Phlegra Montes may show similarly high ice contents to other LDA on Mars; geomorphology and surface ages of the deposits confirm this detection and support a debris-covered-glacier origin for LDA.
NASA Astrophysics Data System (ADS)
Giese, Alexandra; Boone, Aaron; Morin, Samuel; Lejeune, Yves; Wagnon, Patrick; Dumont, Marie; Hawley, Robert
2016-04-01
Glaciers whose ablation zones are covered in supraglacial debris comprise a significant portion of glaciers in High Mountain Asia and two-thirds in the South Central Himalaya. Such glaciers evade traditional proxies for mass balance because they are difficult to delineate remotely and because they lose volume via thinning rather than via retreat. Additionally, their surface energy balance is significantly more complicated than their clean counterparts' due to a conductive heat flux from the debris-air interface to the ice-debris boundary, where melt occurs. This flux is a function of the debris' thickness; thermal, radiative, and physical properties; and moisture content. To date, few surface energy balance models have accounted for debris moisture content and phase changes despite the fact that they are well-known to affect fluxes of mass, latent heat, and conduction. In this study, we introduce a new model, ISBA-DEB, which is capable of solving not only the heat equation but also moisture transport and retention in the debris. The model is based upon Meteo-France's Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil and vegetation model, significantly adapted for debris and coupled with the snowpack model Crocus within the SURFEX platform. We drive the model with continuous ERA-Interim reanalysis data, adapted to the local topography (i.e. considering local elevation and shadowing) and downscaled and de-biased using 5 years of in-situ meteorological data at Changri Nup glacier [(27.859N, 86.847E)] in the Khumbu Himal. The 1-D model output is then evaluated through comparison with measured temperature in and ablation under a 10-cm thick debris layer on Changri Nup. We have found that introducing a non-equilibrium model for water flow, rather than using the mixed-form Richard's equation alone, promotes greater consistency with moisture observations. This explicit incorporation of moisture processes improves simulation of the snow-debris-ice column's temperature gradient - and, thus, energy fluxes - through time.
Skinner, Kenneth D.
2013-01-01
A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.
Exploiting LSPIV to assess debris-flow velocities in the field
NASA Astrophysics Data System (ADS)
Theule, Joshua I.; Crema, Stefano; Marchi, Lorenzo; Cavalli, Marco; Comiti, Francesco
2018-01-01
The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes and for the assessment of related hazards. Large-scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris-flow events, each of them consisting of several surges featuring different sediment concentrations, flow stages, and velocities, have been analysed at the inlet of a sediment trap in a stream in the eastern Italian Alps (Gadria Creek). Free software has been employed for preliminary treatment (orthorectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements of the orthorectified imagery and with front velocity measured from the hydrographs in a channel recorded approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows and permit the most crucial aspects to be identified in order to improve the accuracy of debris-flow velocity measurements.
Rainfall Generated Debris flows on Mount Shasta: July 21, 2015
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Courtney, A.; Bachmann, S.; Rodriguez, H.; Rust, B.; Schneider, F.; Veich, D.
2015-12-01
Convective storms on the evening of July 21, 2015 generated a number of debris flows on the SE flank of Mount Shasta Volcano, Shasta-Trinity National Forest. Widespread rilling, gullying and sheet erosion occurred throughout the affected area. These storms damaged roads by scouring drainage ditches, blocking culverts, eroding road prisms, and depositing debris where streams emerged from their incised channels and flowed over their alluvial fans. Effects were limited geographically to a narrow band about 6 miles wide trending in a northeasterly direction. Debris flows were identified at Pilgrim Creek and nearby channels, and Mud Creek appears to have experienced sediment laden flows rather than debris flows. Doppler radar data reveal that the storm cells remained nearly stationary for two hours before moving in a northeasterly direction. Debris flows triggered by convective storms occur often at Mount Shasta, with a similar event recorded in 2003 and a larger one in 1935, which also involved glacial melt. The 1935 debris flow at Whitney Creek buried Highway 97 north of Weed, CA, and took out the railroad above the highway. In September, 2014, a large debris flow occurred in Mud Creek, but it was associated solely with glacial melt and was not accompanied by rain. The 2014 event at Mud Creek filled the channel and parts of the floodplain with debris. This debris was in turn reworked and eroded by sediment laden flows on July 21, 2015. This study was initiated in August, 2015, and began with field inventories to identify storm effects. Lidar data will be used to identify possible avulsion points that could result in unexpected flash flooding outside of the main Mud Creek channel and on adjacent streams. The results of this study will provide critical information that can be used to assess flash flood risk and better understand how to manage those risks. Finally, some conclusions may be drawn on the kinds of warning systems that may be appropriate for possible flash flood events and possible effective road designs for stream crossings and road surface drainage.
2003-09-11
KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, photographers focus on part of the cockpit collected from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.
NASA Astrophysics Data System (ADS)
Fernández-Fernández, José M.; Palacios, David; García-Ruiz, José M.; Andrés, Nuria; Schimmelpfennig, Irene; Gómez-Villar, Amelia; Santos-González, Javier; Álvarez-Martínez, Javier; Arnáez, José; Úbeda, José; Léanni, Laëtitia; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim; Aster Team
2017-08-01
In this study, fossil debris-covered glaciers are investigated and dated in the Sierra de la Demanda, northern Spain. They are located in glacial valleys of approximately 1 km in length, where several moraines represent distinct phases of the deglaciation period. Several boulders in the moraines and fossil debris-covered glaciers were selected for analysis of 10Be surface exposure dating. A minimum age of 17.8 ± 2.2 ka was obtained for the outermost moraine in the San Lorenzo cirque, and was attributed to the global Last Glacial Maximum (LGM) or earlier glacial stages, based on deglaciation dates determined in other mountain areas of northern Spain. The youngest moraines were dated to approximately 16.7 ± 1.4 ka, and hence correspond to the GS-2a stadial (Oldest Dryas). Given that the debris-covered glaciers fossilize intermediate moraines, it was deduced that they developed between the LGM and the Oldest Dryas, coinciding with a period of extensive deglaciation. During this deglaciation phase, the cirque headwalls likely discharged large quantities of boulders and blocks that covered the residual ice masses. The resulting debris-covered glaciers evolved slowly because the debris mantle preserved the ice core from rapid ablation, and consequently they remained active until the end of the Late Glacial or the beginning of the Holocene (for the San Lorenzo cirque) and the Holocene Thermal Maximum (for the Mencilla cirque). The north-facing part of the Mencilla cirque ensured longer preservation of the ice core.
NASA Astrophysics Data System (ADS)
Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.
2017-12-01
As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered first, and the priority is decided in order of age distribution, population density by period, and class difference of residential facility. The results of this study are expected be used as basic data for establishing a safety net for landslide by evacuation systems for disasters. Keyword: Landslide, Debris flow, Early warning system, evacuation
Roeloffs, Evelyn A.
1994-01-01
A numerical simulation of the ground-water flow system in the Castle Lake debris dam, calibrated to data from the 1991 and 1992 water years, was used to estimate factors of safety against heave and internal erosion. The Castle Lake debris dam, 5 miles northwest of the summit of Mount St. Helens, impounds 19,000 acre-ft of water that could pose a flood hazard in the event of a lake breakout. A new topographic map of the Castle Lake area prior to the 1980 eruption of Mount St. Helens was prepared and used to calculate the thickness of the debris avalanche deposits that compose the dam. Water levels in 22 piezometers and discharges from seeps on the dam face measured several times per year beginning in 1990 supplemented measurements in 11 piezometers and less frequent seep discharge measurements made since 1983. Observations in one group of piezometers reveal heads above the land surface and head gradients favoring upward flow that correspond to factors of safety only slightly greater than 2. The steady-state ground-water flow system in the debris dam was simulated using a threedimensional finite difference computer program. A uniform, isotropic model having the same shape as the dam and a hydraulic conductivity of 1.55 ft/day simulates the correct water level at half the observation points, but is in error by 10 ft or more at other points. Spatial variations of hydraulic conductivity were required to calibrate the model. The model analysis suggests that ground water flows in both directions between the debris dam and Castle Lake. Factors of safety against heave and internal erosion were calculated where the model simulated upward flow of ground water. A critical gradient analysis yields factors of safety as low as 2 near the piezometers where water level observations indicate low factors of safety. Low safety factors are also computed near Castle Creek where slumping was caused by a storm in January, 1990. If hydraulic property contrasts are present in areas of the debris dam unsampled by piezometers, then low safety factors may exist that are not evident in the numerical model analysis. Numerical model simulations showed that lowering Castle Lake by 40 feet increases many factors of safety by 0.1, but increases greater than 1 are limited to the area of 1990 slumping.
NASA Astrophysics Data System (ADS)
Yang, W.
2017-12-01
Knowledge of the meteorology and energy fluxes of debris-free and debris-covered glaciers is important for understanding the varying response of glaciers to climate change. Field measurements at the debris-free Parlung No. 4 Glacier and the debris-covered 24K Glacier in the southeastern Tibetan Plateau were carried out to compare the meteorology and surface energy fluxes and to understand the factors controlling the melting process. The meteorological comparisons displayed temporally synchronous fluctuations in air temperature, relative humidity, incoming longwave radiation (Lin), but notable differences in precipitation, incoming shortwave radiation (Sin) and wind speed. Under the prevailing regional precipitation and debris conditions, more Lin (42 W/m2) was supplied from warmer and more humid air and more Sin (58 W/m2) was absorbed at the 24K Glacier. The relatively high energy supply led mainly to an increased energy output via turbulent heat fluxes and outgoing longwave radiation, rather than glacier melting beneath the thick debris. The sensitivity experiment showed that melting rates were sensitive to variations in energy supply with debris thicknesses of less than 10 cm. In contrast, energy supply to the ablation zone of the Parlung No. 4 Glacier mainly resulted in snow/ice melting, the magnitude of which was significantly influenced by the energy supplied by Sin and the sensible heat flux.
The Morsárjökull rock avalanche in the southern part of the Vatnajökull glacier, south Iceland
NASA Astrophysics Data System (ADS)
Sæmundsson, Şorsteinn; Sigurősson, Ingvar A.; Pétursson, Halldór G.; Decaulne, Armelle; Jónsson, Helgi P.
2010-05-01
On the 20th of March 2007 a large rock avalanche fell on Morsárjökull, one of the outlet glaciers from the southern part of the Vatnajökull ice cap, in south Iceland. This is considered to be one of the largest rock avalanches which have occurred in Iceland during the last decades. It is believed that it fell in two separate stages, the main part fell on the 20th of March and the second and smaller one, on the 17th of April 2007. The Morsárjökull outlet glacier is about 4 km long and surrounded by up to 1000 m high valley slopes. The outlet glacier is fed by two ice falls which are partly disconnected to the main ice cap of Vatnajökull, which indicates that the glacier is mainly fed by ice avalanches. The rock avalanche fell on the eastern side of the uppermost part of the Morsárjökull outlet glacier and covered about 1/5 of the glacier surface, an area of about 720,000 m2. The scar of the rock avalanche is located on the north face of the headwall above the uppermost part of the glacier. It is around 330 m high, reaching from about 620 m up to 950 m, showing that the main part of the slope collapsed. It is estimated that about 4 million m3 of rock debris fell on the glacier, or about 10 million tons. The accumulation lobe is up to 1.6 km long, reaching from 520 m a.s.l., to about 350 m a.s.l. Its width is from 125 m to 650 m, or on average 480 m. The total area which the lobe covers is around 720.000 m2 and its mean thickness 5.5 m. The surface of the lobe shows longitudinal ridges and grooves and narrow flow-like lobes, indicating that the debris mass evolved down glacier as a mixture of a slide and debris flow. The debris mass is coarse grained and boulder rich. Blocks over 5 to 8 m in diameter are common on the edges of the lobe up to 1.6 km from the source. No indication was observed of any deformation of the glacier surface under the debris mass. The first glaciological measurements of Morsárjökull outlet glacier were carried out in the year 1896 and it is evident that since that time the glacier has retreated considerably and during the last decade the melting has been very rapid. It is thought that undercutting of the mountain slope by glacial erosion and the retreat of the glacier are the main contributing factors leading to the rock avalanche. The glacial erosion has destabilized the slope, which is mainly composed of palagonite and dolerite rocks, affected by geothermal alteration. Hence a subsequent fracture formation has weakened the strength of the bedrock. However the exact triggering factor is not known. No seismic activity or meteorological signal such as heavy rainfall or intensive snowmelt recorded prior to the rock avalanche which could be interpreted as triggering factors. From 2007 considerable changes have been observed on the glacier. The ice-front has retreated considerably and the debris lobe of the rock avalanche has moved downward along with the glacier ice about 90-100 m per year. The rocky material, by insulating the ice, has reduced its melting, leading to a relative "thickening" of the ice beneath the rock avalanche debris up to 11-15 m per year. After three melting seasons the debris mass was about 29 m above the surrounding ice surface.
Kubota, Masahisa; Takayama, Katsumi; Namimoto, Daisuke
2005-06-01
Research results about the movement and accumulation of floating marine debris drifting throughout the world's oceans are reviewed in this paper. A mechanism for this accumulation and movement is strongly associated with surface currents consisting of the Ekman drift and the geostrophic current, because all floating marine debris is passive to surface currents. The basic published mechanism for the North Pacific is common across the world's ocean. After marine debris accumulates in the narrow Ekman convergence zone, it is moved to the east by geostrophic currents. The most important thing is that floating marine debris concentrates in some specific regions, independent of the initial quantity of marine debris. In order to resolve this problem and to avoid an asbestos-like problem, the use of biodegradable polymers is important in our daily life.
Incidence of marine debris in seabirds feeding at different water depths.
Tavares, D C; de Moura, J F; Merico, A; Siciliano, S
2017-06-30
Marine debris such as plastic fragments and fishing gears are accumulating in the ocean at alarming rates. This study assesses the incidence of debris in the gastrointestinal tracts of seabirds feeding at different depths and found stranded along the Brazilian coast in the period 2010-2013. More than half (55%) of the species analysed, corresponding to 16% of the total number of individuals, presented plastic particles in their gastrointestinal tracts. The incidence of debris was higher in birds feeding predominantly at intermediate (3-6m) and deep (20-100m) waters than those feeding at surface (<2m). These results suggest that studying the presence of debris in organisms mainly feeding at the ocean surface provides a limited view about the risks that this form of pollution has on marine life and highlight the ubiquitous and three-dimensional distribution of plastic in the oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferrographic analysis of wear debris generated in a sliding elastohydrodynamic contact
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Nagaraj, H. S.; Winer, W. O.
1977-01-01
The ferrograph was used to analyze wear debris generated in a sliding elastohydrodynamic contact. The amount of wear debris correlates well with the ratio of film thickness to composite surface roughness. Essentially all of the generated wear particles were of the normal rubbing wear type.
2003-09-11
KENNEDY SPACE CENTER, FLA. - During a media tour of the Columbia Debris Hangar, a photographer gets a close-up of the mockup of the leading edge of Columbia’s left wing. About 83,000 pieces of debris were shipped to KSC from search and recovery efforts in East Texas. About 83,000 pieces of debris from Columbia were shipped to KSC, which represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. The debris is being packaged for storage in an area of the Vehicle Assembly Building.
NASA Technical Reports Server (NTRS)
Spiro, Clifford Lawrence (Inventor); Fric, Thomas Frank (Inventor); Leon, Ross Michael (Inventor)
1997-01-01
Insect debris is removed from or prevented from adhering to insect impingement areas of an aircraft, particularly on an inlet cowl of an engine, by heating the area to 180.degree.-500.degree. C. An apparatus comprising a means to bring hot air from the aircraft engine to a plenum contiguous to the insect impingement area provides for the heating of the insect impingement areas to the required temperatures. The plenum can include at least one tube with a plurality of holes contained in a cavity within the inlet cowl. It can also include an envelope with a plurality of holes on its surface contained in a cavity within the inlet cowl.
Monitoring surface albedo change with Landsat
NASA Technical Reports Server (NTRS)
Otterman, J.
1977-01-01
A pronounced decrease of the surface albedo (reflectivity) has been observed in an area in the Northern Sinai, fenced-in in the summer of 1974. Analysis of the Landsat Multispectral Scanner System digital data from an April 1977 pass indicates a reduction in the albedo in the exclosure by 13%, as compared to the outside, which continues to be subjected to overgrazing and anthropogenic pressures. The reduction of reflectivity is approximately the same in all the spectral bands, and is therefore attributable to accumulation of dead plants and plant debris, and not directly to live vegetation.
Mobility statistics and automated hazard mapping for debris flows and rock avalanches
Griswold, Julia P.; Iverson, Richard M.
2008-01-01
Power-law equations that are physically motivated and statistically tested and calibrated provide a basis for forecasting areas likely to be inundated by debris flows, rock avalanches, and lahars with diverse volumes. The equations A=α1V2/3 and B=α2V2/3 are based on the postulate that the maximum valley cross-sectional area (A) and total valley planimetric area (B) likely to be inundated by a flow depend only on its volume (V) and the topography of the flow path. Testing of these equations involves determining whether or not they fit data for documented flows satisfactorily, and calibration entails determining best-fit values of the coefficients α1 and α2 for debris flows, rock avalanches, and lahars. This report describes statistical testing and calibration of the equations by using field data compiled from many sources, and it describes application of the equations to delineation of debris-flow hazard zones. Statistical results show that for each type of flow (debris flows, rock avalanches, and lahars), the dependence of A and B on V is described well by power laws with exponents equal to 2/3. This value of the exponent produces fits that are effectively indistinguishable from the best fits obtained by using adjustable power-law exponents. Statistically calibrated values of the coefficients α1 and α2 provide scale-invariant indices of the relative mobilities of rock avalanches (α1 = 0.2, α2 = 20), nonvolcanic debris flows (α1 = 0.1, α2 = 20), and lahars (α1 = 0.05, α2 = 200). These values show, for example, that a lahar of specified volume can be expected to inundate a planimetric area ten times larger than that inundated by a rock avalanche or nonvolcanic debris flow of the same volume. The utility of the calibrated debris-flow inundation equations A=0.1V2/3 and B=20V2/3 is demonstrated by using them within the GIS program LAHARZ to delineate nested hazard zones for future debris flows in an area bordering the Umpqua River in the south-central Oregon Coast Range. This application requires use of high-resolution topographic data derived form LIDAR surveys, knowledge of local geology to specify a suitable range of prospective debris-flow volumes, and development and use of a new algorithm for identification of prospective debris-flow source areas in finely dissected terrain.
Mapping coastal marine debris using aerial imagery and spatial analysis.
Moy, Kirsten; Neilson, Brian; Chung, Anne; Meadows, Amber; Castrence, Miguel; Ambagis, Stephen; Davidson, Kristine
2017-12-19
This study is the first to systematically quantify, categorize, and map marine macro-debris across the main Hawaiian Islands (MHI), including remote areas (e.g., Niihau, Kahoolawe, and northern Molokai). Aerial surveys were conducted over each island to collect high resolution photos, which were processed into orthorectified imagery and visually analyzed in GIS. The technique provided precise measurements of the quantity, location, type, and size of macro-debris (>0.05m 2 ), identifying 20,658 total debris items. Northeastern (windward) shorelines had the highest density of debris. Plastics, including nets, lines, buoys, floats, and foam, comprised 83% of the total count. In addition, the study located six vessels from the 2011 Tōhoku tsunami. These results created a baseline of the location, distribution, and composition of marine macro-debris across the MHI. Resource managers and communities may target high priority areas, particularly along remote coastlines where macro-debris counts were largely undocumented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drift analysis of MH370 debris in the southern Indian Ocean
NASA Astrophysics Data System (ADS)
Gao, Jia; Mu, Lin; Bao, Xianwen; Song, Jun; Ding, Yang
2018-05-01
Malaysian Airlines Flight MH370 disappeared on 8 March 2014, while flying from Kuala Lumpur to Beijing. A flaperon from the flight was found on Reunion Island in July 2015. Two more confirmed pieces of debris were found in Mauritius and Tanzania, and 19 unconfirmed items were found off Mozambique, South Africa, and Madagascar. Drift buoys originating from the designated underwater search area arrived in Reunion Island, Mauritius, and Tanzania. Some of these buoys took a similarly long time as did real debris to reach these destinations, following a heading northeast and then west. For the present study, a maritime object drift prediction model was developed. "High resolution surface currents, Stokes drift, and winds" were processed, and a series of model experiments were constructed. The predicted trajectories of the modeled objects were similar to the observed trajectories of the drift buoys. Many modeled objects drifted northward then westward, ending up in Reunion Island, Mauritius, and Tanzania with probabilities of 5‰, 5‰, and 19‰, respectively. At the end of the simulation, most objects were located near 10°S in the western Indian Ocean. There were significant differences between experiments with different leeway factors, possibly because of the influence of southeast trade winds. The north part of the underwater search area is most likely to be the crash site, because the predicted trajectories of objects originating here are consistent with the many pieces of debris found along the east coast of Africa and the absence of such findings on the west coast of Australia.
Updating the New Zealand Glacier Inventory
NASA Astrophysics Data System (ADS)
Baumann, S. C.; Anderson, B.; Mackintosh, A.; Lorrey, A.; Chinn, T.; Collier, C.; Rack, W.; Purdie, H.
2017-12-01
The last complete glacier inventory of New Zealand dates from the year 1978 (North Island 1988) and was manually constructed from oblique aerial photographs and geodetic maps (Chinn 2001). The inventory has been partly updated by Gjermundsen et al. (2011) for the year 2002 (40% of total area) and by Sirguey & More (2010) for the year 2009 (32% of total area), both using ASTER satellite imagery. We used Landsat 8 OLI/TIRS satellite data from February/March 2016 to map the total glaciated area. Clean and debris-covered ice were mapped semi-automatically. The band ratio approach was used for clean ice (ratio: red/SWIR). We mapped debris-covered ice using a supervised classification (maximum likelihood). Manual post processing was necessary due to misclassifications (e.g. lakes, clouds) or mapping in shadowed areas. It was also necessary to manually combine the clean and debris-covered parts into single glaciers. Additional input data for the post processing were Sentinel 2 images from the same time period, orthophotos from Land Information New Zealand (resolution: 0.75 m, date: Nov 2014), and the 1978/88 outlines from the GLIMS database (http://www.glims.org/). As the Sentinel 2 data were more heavily cloud covered compared to the Landsat 8 images, they were only used for post processing and not for the classification itself. Initial results show that New Zealand glaciers covered an area of about 1050 km² in 2016, a reduction of 16% since 1978. Approximately 17% of glacier area was covered in surface debris. The glaciers in the central Southern Alps around Mt Cook reduced in area by 24%. Glaciers in the North Island of New Zealand reduced by 71% since 1988, and only 2 km² of ice cover remained in 2016. Chinn, TJH (2001). "Distribution of the glacial water resources of New Zealand." Journal of Hydrology (NZ) 40(2): 139-187 Gjermundsen, EF, Mathieu, R, Kääb, A, Chinn, TJH, Fitzharris, B & Hagen, JO (2011). "Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978-2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data." Journal of Glaciology 57(204): 667-683 Sirguey, P & More, B (2010). GLIMS Glacier Database. Boulder, NSIDC
The friction and wear of carbon-carbon composites for aircraft brakes
NASA Astrophysics Data System (ADS)
Hutton, Toby
Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy conditions. Type I debris was stable on the wear surfaces to a temperature of 110C, after which it was gradually converted to film material or Type II surface debris by the action of heat and shear. Type I debris was associated with high erratic friction coefficients (ja.=0.55- 0.65) and high wear rates (~ 8 mg/min), whereas. Type II debris was associated low smooth friction (|LI=0.35-0.45) and low wear rates (~ 4 mg/min). Analysis of the wear debris produced from testing on large dynamometers under the simulated conditions of taxiing and landing indicated that the structure of the wear debris became highly disordered as a result of the wear process. However, evidence from XRD, TGA and DGS suggested that, under very high energy conditions, such as those encountered in a rejected take off (RTO), the wear debris was partially regraphitised at the wear face by the action of heat and shear. The results from analysis of the wear surfaces and the wear debris supported the theory that a regenerative process or friction film formation, delamination and repair operated on the wear surfaces of these brake materials.
Procedures for analysis of debris relative to Space Shuttle systems
NASA Technical Reports Server (NTRS)
Kim, Hae Soo; Cummings, Virginia J.
1993-01-01
Debris samples collected from various Space Shuttle systems have been submitted to the Microchemical Analysis Branch. This investigation was initiated to develop optimal techniques for the analysis of debris. Optical microscopy provides information about the morphology and size of crystallites, particle sizes, amorphous phases, glass phases, and poorly crystallized materials. Scanning electron microscopy with energy dispersive spectrometry is utilized for information on surface morphology and qualitative elemental content of debris. Analytical electron microscopy with wavelength dispersive spectrometry provides information on the quantitative elemental content of debris.
Verdin, Kristine L.; Dupree, Jean A.; Stevens, Michael R.
2013-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2013 West Fork Fire Complex near South Fork in southwestern Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within and just downstream from the burned area, and to estimate the same for 54 drainage basins of interest within the perimeter of the burned area. Input data for the debris-flow models included topographic variables, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm; (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm; and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm. Estimated debris-flow probabilities at the pour points of the 54 drainage basins of interest ranged from less than 1 to 65 percent in response to the 2-year storm; from 1 to 77 percent in response to the 10-year storm; and from 1 to 83 percent in response to the 25-year storm. Twelve of the 54 drainage basins of interest have a 30-percent probability or greater of producing a debris flow in response to the 25-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 2,400 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages also were predicted to produce substantial debris flows. One of the 54 drainage basins of interest had the highest combined hazard ranking, while 9 other basins had the second highest combined hazard ranking. Of these 10 basins with the 2 highest combined hazard rankings, 7 basins had predicted debris-flow volumes exceeding 100,000 cubic meters, while 3 had predicted probabilities of debris flows exceeding 60 percent. The 10 basins with high combined hazard ranking include 3 tributaries in the headwaters of Trout Creek, four tributaries to the West Fork San Juan River, Hope Creek draining toward a county road on the eastern edge of the burn, Lake Fork draining to U.S. Highway 160, and Leopard Creek on the northern edge of the burn. The probabilities and volumes for the modeled storms indicate a potential for debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located within and immediately downstream from the burned area. U.S. Highway 160, on the eastern edge of the burn area, also is susceptible to impacts from debris flows.
The influence of solid rocket motor retro-burns on the space debris environment
NASA Astrophysics Data System (ADS)
Stabroth, Sebastian; Homeister, Maren; Oswald, Michael; Wiedemann, Carsten; Klinkrad, Heiner; Vörsmann, Peter
The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.
Photometric Studies of Orbital Debris at GEO
NASA Technical Reports Server (NTRS)
Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt
2009-01-01
Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.
Cochran, Kimberly; Townsend, Timothy; Reinhart, Debra; Heck, Howell
2007-01-01
Methodology for the accounting, generation, and composition of building-related construction and demolition (C&D) at a regional level was explored. Six specific categories of debris were examined: residential construction, nonresidential construction, residential demolition, nonresidential demolition, residential renovation, and nonresidential renovation. Debris produced from each activity was calculated as the product of the total area of activity and waste generated per unit area of activity. Similarly, composition was estimated as the product of the total area of activity and the amount of each waste component generated per unit area. The area of activity was calculated using statistical data, and individual site studies were used to assess the average amount of waste generated per unit area. The application of the methodology was illustrated using Florida, US approximately 3,750,000 metric tons of building-related C&D debris were estimated as generated in Florida in 2000. Of that amount, concrete represented 56%, wood 13%, drywall 11%, miscellaneous debris 8%, asphalt roofing materials 7%, metal 3%, cardboard 1%, and plastic 1%. This model differs from others because it accommodates regional construction styles and available data. The resulting generation amount per capita is less than the US estimate - attributable to the high construction, low demolition activity seen in Florida.
Falls, Fred W.; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas, soil, and water were assessed for organic and inorganic constituents at the former hospital landfill located in a 75-acre study area near the Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, from April to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone of a creek adjacent to the landfill and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Results from the hyporheic-zone assessment in the unnamed tributary adjacent to the study area indicated that total petroleum hydrocarbons and octane were the most frequently detected organic compounds in groundwater beneath the creek bed. The highest concentrations for these compounds were detected in the upstream samplers of the hyporheic-zone study area. The effort to delineate landfill activity in the study area focused on the western 14 acres of the 75-acre study area where the hyporheic-zone study identified the highest concentrations of organic compounds. This also is the part of the study area where a debris field also was identified in the southern part of the 14 acres. The southern part of this 14-acre study area, including the debris field, is steeper and not as heavily wooded, compared to the central and northern parts. Fifty-two soil-gas samplers were used for the July 2010 soil-gas survey in the 14-acre study area and mostly detected total petroleum hydrocarbons, and gasoline and diesel compounds. The highest soil-gas masses for total petroleum hydrocarbons, diesel compounds, and the only valid detection of perchloroethene were in the southern part of the study area to the west of the debris field. However, all other detections of total petroleum hydrocarbons greater than 10 micrograms and diesel greater than 0.04 micrograms, and all detections of the combined mass of benzene, toluene, ethylbenzene, and xylene were found down slope from the debris field in the central and northern parts of the study area. Five soil-gas samplers were deployed and recovered from September 16 to 22, 2010, and were analyzed for organic compounds classified as chemical agents or explosives. Chloroacetophenones (a tear gas component) were the only compounds detected above a method detection level and were detected at the same location as the highest total petroleum hydrocarbons and diesel detections in the southern part of the 14-acre study area. Composite soil samples collected at five locations were analyzed for 35 inorganic constituents. None of the inorganic constituents exceeded the regional screening levels. One surface-water sample collected in the western end of the hyporheic-zone study area had a trichlorofluoromethane concentration above the laboratory reporting level and estimated concentrations of chloroform, fluoranthene, and isophorone below laboratory reporting levels.
NASA Astrophysics Data System (ADS)
Tung, Ying-Hung; Hu, Jyr-Ching
2017-04-01
Our study focused on the Lushan Settlement, located in the slate belt of Central Range in Taiwan. We adopted L-band ALOS SAR data to generate the line of sight (LOS) velocities in study area using PS-InSAR technique constrained by continuous GPS data in the period from 2007 to 2010. The result revealed a subsidence rate in LOS up to -15 mm/yr. In addition, the borehole inclinometers, installed by Central Geological Survey, recorded a slip depth more than 120 m just in the northeastern of the village. Based on the results of PS-InSAR, records of inclinometers and field geological study, we adopt 2-D and 3-D numerical simulations by using Particle Flow Code to investigate scenario-based runout paths, particle velocities and landslide-affected area, which are useful information for decision support and future landslide hazard assessment. We analyzed different scenarios based on a dipping of the potential sliding surface varying from 20 to 5 degree. In each scenario, sliding of the unstable slope with a high frictional coefficient of the subsurface implied that the sliding surface of this creeping slope has still been developing. Furthermore, with 3-dimentaion models we analyzed the runout paths of rock mass, velocities of movement, and catastrophic landslide-impact area in the scenario that once the sliding surface fully develops or shear failure happens. Generally, the total runout distance could be more than 400 m, and the largest debris thickness might reach 100 m. Because of a low dipping angle of the sliding surface, the movement could last several minutes with a maxima velocity about 2 m/s. Moreover, a landslide-dam will form and capacity of dam could be predicted. In the worst case, the settlement, which is on the slope crown, might be destroyed and buried by debris.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, F.
A method for containment and deflection of inorganic and organic aqueous surface pollutants, such as an oil slick, flotsam, debris, and jellyfish, and an apparatus for the operation of such method are described. This method comprises the generation of an air or bubble barrier which permits the passage of surface vessels and large fish, but halts the movement of floating surface pollutants by the creation of a flexible continuous band of surface turbulence. The system in one specific application is designed to protect harbor and beach areas and fishing grounds from contamination with oil from oil tankers and also actsmore » as an air wall to keep harmful jellyfish from beach areas. The system can also be employed to recover oil from sunken or leaking tankers at sea by containment and collection of the oil released within the circumference of the bubble barrier wall created in a geometric pattern about the location of the stricken vessel. (10 claims)« less
NASA Astrophysics Data System (ADS)
Ewertowski, Marek; Evans, David; Roberts, David; Tomczyk, Aleksandra; Ewertowski, Wojciech
2016-04-01
Ongoing glacier retreat results in the continuous exposure of proglacial areas. Such areas contain invaluable information about glacial process-form relationships manifest in specific landform assemblages. However, preservation potential of freshly exposed glacial landforms is very low, as proglacial terrains are one of the most dynamic parts of the landscape. Therefore, rapid mapping and geomorphological characterisation of such areas is important from a glaciological and geomorphological point of view for proper understanding and reconstruction of glacier-landform dynamics and chronology of glacial events. Annual patterns of recession and relatively small areas exposed every year, mean that the performing of regular aerial or satellite survey is expensive and therefore impractical. Recent advances in technology enables the development of low-cost alternatives for traditional aerial surveys. Small unmanned aerial vehicles (UAV) can be used to acquire high-resolution (several cm) low-altitude photographs. The UAV-based photographs can be subsequently processed through the structure-from-motion process to generate detailed orthophotomaps and digital elevation models. In this study we present case studies from the forelands of various glaciers on Iceland and Svalbard representing different types of proglacial landscapes: Fláajökull (annual push moraines); Hofellsjökul (bedrock bedforms and push moraines); Fjallsjökull (marginal drainage network); Rieperbreen (crevasse squeeze ridges and longitudinal debris stripes); Ayerbreen (transverse debris ridges); Foxfonna (longitudinal debris stripes);Hørbyebreen (geometric ridge network); Nordenskiöldbreen (fluted till surface); Ebbabreen (controlled moraine complex). UAV campaigns were conducted using a low-cost quadcopter platform. Resultant orthophotos and DEMs enabled mapping and assessment of recent glacial landscape development in different types of glacial landsystems. Results of our study indicate that preservation potential of geometric ridge networks and debris stripes produced by polythermal glaciers on Svalbard is very low (< 5 years), whereas subtle landforms indicative for temperate conditions: annual push moraines (Iceland)and flutings (Iceland and Svalbard) - can survive decades without being seriously modified.
NASA Technical Reports Server (NTRS)
Opiela, J. N.; Liou, J.-C.; Anz-Meador, P. D.
2010-01-01
Over a period of five weeks during the summer of 2009, personnel from the NASA's Orbital Debris Program Office and Meteoroid Environment Office performed a post-flight examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator. The objective was to record details about all micrometeoroid and orbital debris (MMOD) impact features with diameters of 300 micron and larger. The WFPC-2 was located in a clean room at NASA's Goddard Space Flight Center. Using a digital microscope, the team examined and recorded position, diameter, and depth information for each of 685 craters. Taking advantage of the digital microscope's data storage and analysis features, the actual measurements were extracted later from the recorded images, in an office environment at the Johnson Space Center. Measurements of the crater include depth and diameter. The depth was measured from the undisturbed paint surface to the deepest point within the crater. Where features penetrate into the metal, both the depth in metal and the paint thickness were measured. In anticipation of hypervelocity tests and simulations, several diameter measurements were taken: the spall area, the area of any bare metal, the area of any discolored ("burned") metal, and the lips of the central crater. In the largest craters, the diameter of the crater at the surface of the metal was also measured. The location of each crater was recorded at the time of inspection. This paper presents the methods and results of the crater measurement effort, including the size and spatial distributions of the impact features. This effort will be followed by taking the same measurements from hypervelocity impact targets simulating the WFPC-2 radiator. Both data sets, combined with hydrocode simulation, will help validate or improve the MMOD environment in low Earth orbit.
Sensitivity Analysis of Launch Vehicle Debris Risk Model
NASA Technical Reports Server (NTRS)
Gee, Ken; Lawrence, Scott L.
2010-01-01
As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.
Energy release from a stream of infalling prominence debris on 2011 September 7-8
NASA Astrophysics Data System (ADS)
Inglis, A. R.; Gilbert, H. R.; Ofman, L.
2017-12-01
In recent years high-resolution and high-cadence EUV imaging has revealed a new phenomenon, impacting prominence debris, where prominence material from failed or partial eruptions can impact the lower atmosphere and release energy. We present a clear example of this phenomenon occurring on 2011 September 7-8. The initial eruption of prominence material was associated with an X1.8-class flare from AR11283, occurring at 22:30 UT on 2011 September 7, resulting in a semi-continuous stream of this material returning to the solar surface between 00:20 - 00:40 UT on 2011 September 8. A substantial area remote from the original active region experienced brightening in multiple EUV channels observed by SDO/AIA. Using the differential emission measure, we estimated the energetic properties of this event. We found that the radiated energy of the impacted plasma was of order 10^27 ergs, while the upper limit on the thermal energy peaked at 10^28 ergs. Based on these estimates we were able to determine the mass content of the debris to be in the range 2x10^14 < m < 2x10^15 g. Given typical promimence masses, the likely debris mass is towards the lower end of this range. This clear example of a prominence debris event shows that significant energy release takes place during these events, and that such impacts may be used as a novel diagnostic tool for investigating prominence material properties.
NASA Astrophysics Data System (ADS)
Godfrey, C. M.; Peterson, C. J.; Lombardo, F.
2017-12-01
Efforts to enhance the resilience of communities to tornadoes requires an understanding of the interconnected nature of debris and damage propagation in both the built and natural environment. A first step toward characterizing the interconnectedness of these elements within a given community involves detailed post-event surveys of tornado damage. Such damage surveys immediately followed the 22 January 2017 EF3 tornadoes in the southern Georgia towns of Nashville and Albany. After assigning EF-scale ratings to impacted structures, the authors geotagged hundreds of pieces of debris scattered around selected residential structures and outbuildings in each neighborhood and paired each piece of debris with its source structure. Detailed information on trees in the vicinity of the structures supplements the debris data, including the species, dimensions, location, fall direction, and level of damage. High-resolution satellite imagery helps to identify the location and fall direction of hundreds of additional forest trees. These debris and treefall patterns allow an estimation of the near-surface wind field using a Rankine vortex model coupled with both a tree stability model and an infrastructure fragility model that simulates debris flight. Comparisons between the modeled damage and the actual treefall and debris field show remarkable similarities for a selected set of vortex parameters, indicating the viability of this approach for estimating enhanced Fujita scale levels, determining the near-surface wind field of a tornado during its passage through a neighborhood, and identifying how debris may contribute to the overall risk from tornadoes.
NASA Technical Reports Server (NTRS)
Rudd, Lawrence; Merenyi, Erzsebet
2004-01-01
Worldwide debris flows destroy property and take human lives every year (Costa, 1984). As a result of extensive property damage and loss of life there is a pressing need to go beyond just describing the nature and extent of debris flows as they occur. Most of the research into debris-flow initiation has centered on rainfall, slope angle, and existing debris-flow deposits (Costa and Wieczorek, 1987). The factor of source lithology has been recently addressed by studies in the sedimentary terranes of Grand Canyon (Webb et al., 1996; Griffiths et al., 1996) and on the Colorado Plateau as a whole.3 On the Colorado Plateau shales dominated by kaolinite and illite clays are significantly more likely to be recent producers of debris-flows than are shales in which smectite clays dominate.3 Establishing the location of shales and colluvial deposits containing kaolinite and illite clays in sedimentary terranes on the Colorado Plateau is essential to predicting where debris flows are likely to occur. AVIRIS imagery can be used to distinguish between types of clay minerals (Chabrillat et al., 2001), providing the basis for surface-materials maps. The ultimate product of this study will be a model that can be used to estimate the debris-flow hazard in Cataract Canyon, Utah. This model will be based on GIS overlay analysis of debris-flow initiation factor maps, including surface-materials maps derived from AVIRIS data.
Deformation of debris-ice mixtures
NASA Astrophysics Data System (ADS)
Moore, Peter L.
2014-09-01
Mixtures of rock debris and ice are common in high-latitude and high-altitude environments and are thought to be widespread elsewhere in our solar system. In the form of permafrost soils, glaciers, and rock glaciers, these debris-ice mixtures are often not static but slide and creep, generating many of the landforms and landscapes associated with the cryosphere. In this review, a broad range of field observations, theory, and experimental work relevant to the mechanical interactions between ice and rock debris are evaluated, with emphasis on the temperature and stress regimes common in terrestrial surface and near-surface environments. The first-order variables governing the deformation of debris-ice mixtures in these environments are debris concentration, particle size, temperature, solute concentration (salinity), and stress. A key observation from prior studies, consistent with expectations, is that debris-ice mixtures are usually more resistant to deformation at low temperatures than their pure end-member components. However, at temperatures closer to melting, the growth of unfrozen water films at ice-particle interfaces begins to reduce the strengthening effect and can even lead to profound weakening. Using existing quantitative relationships from theoretical and experimental work in permafrost engineering, ice mechanics, and glaciology combined with theory adapted from metallurgy and materials science, a simple constitutive framework is assembled that is capable of capturing most of the observed dynamics. This framework highlights the competition between the role of debris in impeding ice creep and the mitigating effects of unfrozen water at debris-ice interfaces.
The New NASA Orbital Debris Engineering Model ORDEM 3.0
NASA Technical Reports Server (NTRS)
Krisko, P. H.
2014-01-01
The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 microns through 1 m in non-GEO and 10 cm through 1 m in GEO are modeled. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours from existing data sources and from new sources that weren't available to past versions. Returned surfaces, ground tests, and remote sensors all contribute data. The returned surface and ground test data reveal material characteristics of small particles. Densities of fragmentation debris particles smaller than 10 cm are grouped in ORDEM 3.0 in terms of high-, medium-, and lowdensities, along with RORSAT sodium-potassium droplets. Supporting models have advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intacts, mission related debris (MRD), and explosion and collision fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific, well defined populations are added like the Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium (NaK) droplets, recent major accidental and deliberate collision fragments, and known anomalous debris event fragments. For microdebris of sizes 10 microns to 1 mm the ODPO uses an in-house Degradation/Ejecta model in which a MLE technique is used with returned surface data to estimate populations. This paper elaborates on the upgrades of this model over previous versions highlighting the material density splits and consequences of that to the penetration risk to spacecraft.
Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.
2008-01-01
Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in that it includes a measure of burn severity and an estimate of modeling errors. The application of this model, in conjunction with models for the probability of debris flows, will enable more complete and rapid assessments of debris flow hazards following wildfire.
Response of a Brook Trout Population and Instream Habitat to a Catastrophic Flood and Debris Flow
Criag N. Roghair; C. Andrew Dolloff; Martin K. Underwood
2002-01-01
In June 1995, a massive flood and debris flow impacted fish and habitat along the lower 1.9 km of the Staunton River, a headwater stream located in Shenandoah National Park, Virginia. In the area affected by debris flow, the stream bed was scoured and new substrate materials were deposited, trees were removed from a 30-m-wide band in the riparian area, and all fish...
NASA Astrophysics Data System (ADS)
Bolch, T.; Strel, A.
2017-12-01
The reactions of glaciers to climate change are relatively well known and numerous remote sensing and modelling studies exist. Also debris-covered glaciers are meanwhile relatively well investigated. However, rock glaciers react differently but respective studies are less frequent despite the fact that they also occur in many mountain ranges and can be of significance in relation to hydrology, geomorphology and hazards. Rock glaciers are abundant in Tien Shan and rock glaciers with areas larger 1 km² are common. However, investigating rock glaciers by remote sensing is difficult because their topographical changes are of lower magnitude and less evident than the changes of glaciers. Hence, high resolution imagery and digital terrain models (DTMs) are needed to study these periglacial landforms. We used 1971 Corona KH-4B (resolution 2m), 2012 GeoEye (0.5m) and 2016 Pléiades (0.5m) stereo images to map and investigate the velocity and surface elevation changes of the rock glaciers in the central part of Ile Alatau (Northern Tien Shan) in Kazakhstan. DTMs with a resolution of 5 m were generated and subsequently co-registered. Surface displacements were calculated by feature tracking. Overall we identified almost 50 active rock glaciers covering an area of about 18km², which is more than 40% of the glacier cover of the year 2016 in the investigated valleys. Moraine-type rock glaciers are more common than talus-type rock glaciers. The average surface velocity of the rock glaciers was 0.44 ± 0.30 m a-1 with rates of up to 2m a-1. On average the rock glaciers showed only a slight insignificant surface lowering of 0.04 m a-1 for the period 1971-2012 and of 0.06 m a-1 for 2012-2016. Most of the investigated rock glaciers showed similar distinct patters of change: A surface elevation gain at their fronts indicating an advance, a significant lowering in the upper probably glacier affected parts of the rock glaciers and areas of elevation gain and lowering in between caused by flow patterns and loss of subsurface ice. Analogues results were found for rock glaciers at Ak-Shirak range in Central Tien Shan using similar data. Hence, changes of rock glaciers differ significantly from debris-free and debris-covered glaciers. Work is underway to investigate the rock glaciers more in detail including in-situ measurements using geophysics.
Multi-scale roughness spectra of Mount St. Helens debris flows
NASA Technical Reports Server (NTRS)
Austin, Richard T.; England, Anthony W.
1993-01-01
A roughness spectrum allows surface structure to be interpreted as a sum of sinusoidal components with differing wavelengths. Knowledge of the roughness spectrum gives insight into the mechanisms responsible for electromagnetic scattering at a given wavelength. Measured spectra from 10-year-old primary debris flow surfaces at Mount St. Helens conform to a power-law spectral model, suggesting that these surfaces are scaling over the measured range of spatial frequencies. Measured spectra from water-deposited surfaces deviate from this model.
2005-01-01
runout length are presented by Innes (1983), Jeyapalan and others (1983), and Hungr and oth- ers (1984). Once the hazard map is created, development...dating of debris flow deposits in the Scottish Highlands: Earth Surface Processes and Land- forms, v. 8, p. 579–588. Jeyapalan , J.K., Duncan, J.M. and
NASA Astrophysics Data System (ADS)
Hayakawa, Yuichi S.; Yoshida, Hidetsugu; Obanawa, Hiroyuki; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi; Kontani, Ryoichi
2018-02-01
Debris avalanches caused by volcano sector collapse often form characteristic depositional landforms such as hummocks. Sedimentological and geomorphological analyses of debris avalanche deposits (DADs) are crucial to clarify the size, mechanisms, and emplacement of debris avalanches. We describe the morphology of hummocks on the northeastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion and multi-view stereo (SfM-MVS) photogrammetry, we obtained high-definition digital elevation model (DEM) and orthorectified images of the hummocks to investigate their geometric features. We estimated the source volume of the DAD by reconstructing the topography of the volcano edifice using a satellite-based DEM. We examined the topographic cross sections based on the slopes around the scar regarded as remnant topography. Spatial distribution of hummocks is anomalously concentrated at a certain distance from the source, unlike those that follow the distance-size relationship. The high-definition land surface data by RPAS and SfM revealed that many of the hummocks are aligned toward the flow direction of the debris avalanche, suggesting that the extensional regime of the debris avalanche was dominant. However, some displaced hummocks were also found, indicating that the compressional regime of the flow contributed to the formation of hummocks. These indicate that the flow and emplacement of the avalanche were constrained by the topography. The existing caldera wall forced the initial eastward flow to move northward, and the north-side caldera wall forced the flow into the narrow and steepened outlet valley where the sliding debris underwent a compressional regime, and out into the unconfined terrain where the debris was most likely emplaced on an extensional regime. Also, the estimated volume of 12-15 × 108 m3 gives a mean thickness of 60-75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche must have flowed further downstream and beyond the current DAD extent. Assessments of the DAD incorporating the topographic constraints can provide further insights into the risk and mitigation of potential disasters in the study area.
Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.
2012-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 High Park fire near Fort Collins in Larimer County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and to estimate the same for 44 selected drainage basins along State Highway 14 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall (25 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall (43 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall (51 millimeters). Estimated debris-flow probabilities along the drainage network and throughout the drainage basins of interest ranged from 1 to 84 percent in response to the 2-year-recurrence, 1-hour-duration rainfall; from 2 to 95 percent in response to the 10-year-recurrence, 1-hour-duration rainfall; and from 3 to 97 in response to the 25-year-recurrence, 1-hour-duration rainfall. Basins and drainage networks with the highest probabilities tended to be those on the eastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Estimated debris-flow volumes range from a low of 1,600 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, roads, bridges, and culverts located both within and immediately downstream from the burned area. Colorado State Highway 14 is also susceptible to impacts from debris flows.
2003-09-11
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Scott Thurston, NASA vehicle flow manager, addresses the media about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.
NASA Technical Reports Server (NTRS)
1991-01-01
The topics presented are covered in viewgraph form. Programmatic objectives are: (1) to improve characterization of the orbital debris environment; and (2) to provide a passive sensor test bed for debris collision detection systems. Technical objectives are: (1) to study LEO debris altitude, size and temperature distribution down to 1 mm particles; (2) to quantify ground based radar and optical data ambiguities; and (3) to optimize debris detection strategies.
NASA Astrophysics Data System (ADS)
Jackson, M.; Laber, J. L.; Boldt, E.
2010-12-01
The National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS) and the United States Geological Survey (USGS) have developed a prototype debris flow early warning system for Southern California. The system uses USGS-defined rainfall rate thresholds for debris flows and burn area hazard maps to protect interests in and near burn areas of damaging and potentially deadly debris flows. Although common throughout Southern California, as witnessed by the December 25, 2003 storm in which sixteen people were swept to their deaths by debris flows generated from a recent burn area near Devore, debris flows are commonly misunderstood by the public. They are often perceived as rare events, are difficult to warn for with sufficient lead time, and present unique challenges when communicating proper calls to action to best save lives and property. Many improvements to the system have been realized since the project’s inception in 2005, including using more refined rainfall rate thresholds, use of burn area hazard maps, and the establishment of a tiered system to categorize the potential severity of flash floods and debris flows. These efforts have collectively resulted in a reduction of warning false alarms. However, the massive 400,000 hectare 2009 Station burn area in the Angeles National Forest of Los Angeles County has created numerous challenges to the early warning system. The geology of the area burned is highly susceptible to debris flows, due in part to the burn severity, soil types and steep slopes. Most importantly, the burn area is adjacent to and uphill of the highly populated lower foothills of the San Fernando Valley. NOAA/NWS and the USGS have thus worked closely with local response and preparedness agencies to analyze and communicate the threat and assist in developing a unified command response plan in preparation for flash flood and debris flows from this burn area. The early warning system was put to the ultimate test on February 6, 2010 when intense rainfall over the burn area produced very damaging but fortunately nonfatal flash flooding and debris flows. Unfortunately public and local agency response to NWS forecasts, watches, and warnings issued for this event was minimal. Possible causes of, and actions needed to improve upon, this minimal response are examined, including 1) complacency due to previous watch and warning false alarms, 2) underestimating the hazard threat due to local residents having not personally experienced a severe debris flow event in recent history if ever, 3) misinterpretation of NWS point precipitation forecasts and current limits of predictability related to forecasting specific locations and amounts of intense rainfall beyond 12-24 hours, 4) the challenges of ensuring NWS information is consistently received and interpreted among the multiple agencies and jurisdictions of the unified command, and 5) the likelihood that most people did not hear NWS warnings due to the event taking place late at night. Also examined are proper calls to action to protect life and property at a time when evacuations may put people in harm's way.
Staley, Dennis M.
2014-01-01
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Springs fire in Ventura County, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 9 of the 99 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 28 of the 99 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings, and that residents adhere to any evacuation orders.
Modeling four occurred debris flow events in the Dolomites area (North-Eastern Italian Alps)
NASA Astrophysics Data System (ADS)
Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino
2016-04-01
Four occurred debris flows in the Dolomites area (North-Eastern Italian Alps) are modeled by back-analysis. The four debris flows events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006, at Rovina di Cancia (Belluno) on the 18th of July 2009 and at Rio Val Molinara (Trento) on the 15th of August 2010. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. The second event the deviation of debris flow from the usual path due to an obstruction with the excavation of a channel in the scree and the downstream spreading in a wood. The third event concerns the routing of debris flow in a channel with an ending the reservoir, its overtopping and final spreading in the inhabited area. The fourth event concerns the routing of debris flow along the main channel downstream the initiation area until spreading just upstream a village. All the four occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph. The routing of the solid-liquid hydrograph is simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. Nearly the same parameters for computing erosion and deposition were used for all the four occurred events. The maps of erosion and deposition depths are obtained by comparing the results of post-event surveys with the pre-event DEM. The post-event surveys were conducted by using different instruments (LiDAR and GPS) or the combination photos-single points depth measurements (in this last case it is possible obtaining the deposition/erosion depths by means of stereoscopy techniques).
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ammo Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ranch Fire in Ventura and Los Angeles Counties, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
IntroductionThe objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Harris Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Rice Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Poomacha Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Witch Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Buckweed Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Canyon Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Santiago Fire in Orange County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Orbital debris: Technical issues and future directions
NASA Technical Reports Server (NTRS)
Potter, Andrew (Editor)
1992-01-01
An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.
Orbital debris research at NASA Johnson Space Center, 1986-1988
NASA Technical Reports Server (NTRS)
Reynolds, Robert C.; Potter, Andrew E., Jr.
1989-01-01
Research on orbital debris has intensified in recent years as the number of debris objects in orbit has grown. The population of small debris has now reached the level that orbital debris has become an important design factor for the Space Station. The most active center of research in this field has been the NASA Lyndon B. Johnson Space Center. Work is being done on the measurement of orbital debris, development of models of the debris population, and development of improved shielding against hypervelocity impacts. Significant advances have been made in these areas. The purpose of this document is to summarize these results and provide references for further study.
Pike, R.J.; Sobieszczyk, S.
2008-01-01
GIS analysis at 30-m resolution reveals that effectiveness of slope-destabilizing processes in the San Francisco Bay area varies with compass direction. Nearly half the soil slip/debris flows mapped after the catastrophic rainstorm of 3-5 January 1982 occurred on slopes that face S to WSW, whereas fewer than one-quarter have a northerly aspect. Azimuthal analysis of hillside properties for susceptible terrain near the city of Oakland suggests that the skewed aspect of these landslides primarily reflects vegetation type, ridge and valley alignment, and storm-wind direction. Bedrock geology, soil expansivity, and terrain height and gradient also were influential but less so; the role of surface curvature is not wholly resolved. Normalising soil-slip aspect by that of the region's NNW-striking topography shifts the modal azimuth of soil-slip aspect from SW to SE, the direction of origin of winds during the 1982 storm-but opposite that of the prevailing WNW winds. Wind from a constant direction increases rainfall on windward slopes while diminishing it on leeward slopes, generating a modelled difference in hydrologically effective rainfall of up to 2:1 on steep hillsides in the Oakland area. This contrast is consistent with numerical simulations of wind-driven rain and with rainfall thresholds for debris-flow activity. We conclude that storm winds from the SE in January 1982 raised the vulnerability of the Bay region's many S-facing hillsides, most of which are covered in shallow-rooted shrub and grass that offer minimal resistance to soil slip. Wind-driven rainfall also appears to have controlled debris-flow location in a major 1998 storm and probably others. Incorporating this overlooked influence into GIS models of debris-flow likelihood would improve predictions of the hazard in central California and elsewhere.
Staley, Dennis M.; Gartner, Joseph E.; Smoczyk, Greg M.; Reeves, Ryan R.
2013-01-01
Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. We use empirical models to predict the probability and magnitude of debris flow occurrence in response to a 10-year rainstorm for the 2013 Mountain fire near Palm Springs, California. Overall, the models predict a relatively high probability (60–100 percent) of debris flow for six of the drainage basins in the burn area in response to a 10-year recurrence interval design storm. Volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 8 of the 14 basins identified as having potential debris-flow volumes greater than 100,000 cubic meters. These results suggest there is a high likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service–issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.
Plastic in surface waters of the Inside Passage and beaches of the Salish Sea in Washington State.
Davis, Wallace; Murphy, Anne G
2015-08-15
We summarize results of two independent studies on plastic pollution in the marine environment that overlap in time and space. One study evaluated the abundance of anthropogenic debris on 37 sandy beaches bordering the Salish Sea in Washington State while the other characterized plastic debris in surface waters of the Salish Sea and the Inside Passage to Skagway, Alaska. Both studies concluded that foam, primarily expanded polystyrene was the dominant pollutant. Plastic was found in surface waters the full length of the Inside Passage but was concentrated near harbors. At the wrack line, an average square meter of Washington's 1180km of sandy beaches in the Salish Sea had 61 pieces of anthropogenic debris weighing approximately 5g. The total loading for the entire 1m wide band is estimated to be 72,000,000 pieces and 5.8metric tons. Most anthropogenic debris on beaches is generated within the region. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radar evidence for ice in lobate debris aprons in the mid- latitudes of Mars
NASA Astrophysics Data System (ADS)
Plaut, J. J.; Holt, J. W.; Safaeinili, A.; Head, J. W.; Phillips, R. J.; Seu, R.
2008-12-01
Martian "lobate debris aprons" (LDAs) are masses of material 100s of m thick up to 10s of km wide that occur adjacent to escarpments in certain mid-latitude regions of Mars. Their morphology has led many workers to hypothesize that ice played an important role in their formation and subsequent evolution. Data from the Shallow Radar (SHARAD) instrument on the Mars Reconnaissance Orbiter indicate that LDAs indeed consist predominantly of ice. SHARAD signals penetrate the LDA material to depths up to 1 km. A reflection is typically observed at a time delay consistent with detection of an interface between the LDA material and the pre-depositional substrate. The echo strength of the basal reflections is strong, indicating minimal attenuation of the signal, which is consistent with a water-ice-dominated composition. The largest populations of ice-cored LDAs are in the Deuteronilus Mensae (40-51° N, 14-35° E) and Eastern Hellas (40-46° N, 100- 108° E) areas. At these latitudes, water ice is unstable at the surface. LDAs appear to be mantled by a relatively thin (<10 m) debris layer that protects the ice core from sublimation. Mass wasting of slopes of massifs, valley and crater walls maintains this debris mantle and explains the local preservation of LDAs adjacent to these slopes. LDAs are likely the remnants of much larger ice sheets and glaciers from an epoch in Martian history when substantial precipitation occurred at the mid-latitudes. The water ice currently preserved in LDAs likely represents the largest reservoir of near surface H2O outside of the polar regions. Their presence at the mid-latitudes make them intriguing targets for in situ exploration and possible resource utilization.
Volcano fact sheet; glacier-generated debris flows at Mount Rainier
Walder, J.S.; Driedger, C.L.
1993-01-01
Mount Rainier is a young volcano whose slopes are undergoing rapid change by a variety of geologic processes, including debris flows. Debris flows are churning masses of water, rock and mud that travel rapidly down the volcano's steep, glacially carved valleys, leaving in their wake splintered trees, picnic sites buried in mud, and damaged roads. Debris flows typically contain as much as 65 to 70 percent rock and soil by volume and have the appearance of wet concrete. At Mount Rainier National Park, these flows invariably begin in remote areas nearly inaccessible to people, but may move rapidly downstream into areas frequented by visitors.
Marine debris contamination along undeveloped tropical beaches from northeast Brazil.
Santos, Isaac R; Friedrich, Ana Cláudia; Ivar do Sul, Juliana Assunção
2009-01-01
We hypothesize that floating debris leaving polluted coastal bays accumulate on nearby pristine beaches. We examined composition, quantities and distribution of marine debris along approximately 150 km of relatively undeveloped, tropical beaches in Costa do Dendê (Bahia, Brazil). The study site is located south of Salvador City, the largest urban settlement from NE Brazil. Strong spatial variations were observed. Plastics accounted for 76% of the sampled items, followed by styrofoam (14%). Small plastic fragments resultant from the breakdown of larger items are ubiquitous all over the area. Because the dominant littoral drift in Bahia is southward, average beach debris densities (9.1 items/m) along Costa do Dendê were threefold higher than densities previously observed north of Salvador City. River-dominated and stable beaches had higher debris quantities than unstable, erosional beaches. Areas immediately south of the major regional embayments (Camamu and Todos os Santos) were the preferential accumulation sites, indicating that rivers draining populous areas are the major source of debris to the study site. Our results provide baseline information for future assessments. Management actions should focus on input prevention at the hydrographic basin level rather than on cleaning services on beaches.
Timing of susceptibility to post-fire debris flows in the western USA
DeGraff, Jerome V.; Cannon, Susan H.; Gartner, Joseph E.
2015-01-01
Watersheds recently burned by wildfires can have an increased susceptibility to debris flow, although little is known about how long this susceptibility persists, and how it changes over time. We here use a compilation of 75 debris-flow response and fire-ignition dates, vegetation and bedrock class, rainfall regime, and initiation process from throughout the western U.S. to address these issues. The great majority (85 percent) of debris flows occurred within the first 12 months following wildfire, with 71 percent within the first six months. Seven percent of the debris flows occurred between 1 and 1.5 years after a fire, or during the second rainy season to impact an area. Within the first 1.5 years following fires, all but one of the debris flows initiated through runoff-dominated processes, and debris flows occurred in similar proportions in forested and non-forested landscapes. Geologic materials affected how long debris-flow activity persisted, and the timing of debris flows varied within different rainfall regimes. A second, later period of increased debris flow susceptibility between 2.2 and 10 years after fires is indicated by the remaining 8 percent of events, which occurred primarily in forested terrains and initiated largely through landslide processes. The short time period between fire and debris-flow response within the first 1.5 years after ignition, and the longer-term response between 2.2 and 10 years after fire, demonstrate the necessity of both rapid and long-term reactions by land managers and emergency-response agencies to mitigate hazards from debris flows from recently burned areas in the western U.S.
Tillery, Anne C.; Haas, Jessica R.
2016-08-11
Wildfire can substantially increase the probability of debris flows, a potentially hazardous and destructive form of mass wasting, in landscapes that have otherwise been stable throughout recent history. Although the exact location, extent, and severity of wildfire or subsequent rainfall intensity and duration cannot be known, probabilities of fire and debris‑flow occurrence for given locations can be estimated with geospatial analysis and modeling. The purpose of this report is to provide information on which watersheds might constitute the most serious potential debris-flow hazards in the event of a large-scale wildfire and subsequent rainfall in the Jemez Mountains. Potential probabilities and estimated volumes of postwildfire debris flows in both the unburned and previously burned areas of the Jemez Mountains and surrounding areas were estimated using empirical debris-flow models developed by the U.S. Geological Survey in combination with fire behavior and burn probability models developed by the U.S. Forest Service.Of the 4,998 subbasins modeled for this study, computed debris-flow probabilities in 671 subbasins were greater than 80 percent in response to the 100-year recurrence interval, 30-minute duration rainfall event. These subbasins ranged in size from 0.01 to 6.57 square kilometers (km2), with an average area of 0.29 km2, and were mostly steep, upstream tributaries to larger channels in the area. Modeled debris-flow volumes in 465 subbasins were greater than 10,000 cubic meters (m3), and 14 of those subbasins had modeled debris‑flow volumes greater than 100,000 m3.The rankings of integrated relative debris-flow hazard indexes for each subbasin were generated by multiplying the individual subbasin values for debris-flow volume, debris‑flow probability, and average burn probability. The subbasins with integrated hazard index values in the top 2 percent typically are large, upland tributaries to canyons and channels primarily in the Upper Rio Grande and Rio Grande-Santa Fe watershed areas. No subbasins in this group have basin areas less than 1.0 km2. Many of these areas already had significant mass‑wasting episodes following the Las Conchas Fire in 2011. Other subbasins with integrated hazard index values in the top 2 percent are scattered throughout the Jemez River watershed area, including some subbasins in the interior of the Valles Caldera. Only a few subbasins in the top integrated hazard index group are in the Rio Chama watershed area.This prewildfire assessment approach is valuable to resource managers because the analysis of the debris-flow threat is made before a wildfire occurs, which facilitates prewildfire management, planning, and mitigation. In north‑central New Mexico, widespread watershed restoration efforts are being done to safeguard vital watersheds against the threat of catastrophic wildfire. This study was designed to help select ideal locations for the restoration efforts that could have the best return on investment.
NASA Astrophysics Data System (ADS)
Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.
2003-04-01
A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an underlain shearing zone, where the shear stress exceeded the yield strength of the sediments. Mud-matrix, and clast-dominated debris flow deposits are the pervasive ones. Intensely sheared thin layers (5- to 20 cm) with sharp bases, displayed as successive layers at the base of mud/debris flow deposits, or as isolated depositional units interbedded in hemipelagic sediments, are as interesting, as enigmatic. They are interpreted as basal self-lubricating layers, of having high shear stress and pore pressures, over which the mud/debris flows were able to travel for very long distances.
Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.
2012-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 Waldo Canyon fire near Colorado Springs in El Paso County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and potential volume of debris flows along the drainage network of the burned area and to estimate the same for 22 selected drainage basins along U.S. Highway 24 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (29 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (42 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (48 millimeters). Estimated debris-flow probabilities at the pour points of the the drainage basins of interest ranged from less than 1 to 54 percent in response to the 2-year storm; from less than 1 to 74 percent in response to the 10-year storm; and from less than 1 to 82 percent in response to the 25-year storm. Basins and drainage networks with the highest probabilities tended to be those on the southern and southeastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Nine of the 22 drainage basins of interest have greater than a 40-percent probability of producing a debris flow in response to the 10-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 1,500 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located both within and immediately downstream from the burned area. U.S. Highway 24, on the southern edge of the burn area, is also susceptible to impacts from debris flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MYERS DA
This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around themore » site with large metallic subsurface debris or metallic infrastructure.« less
Improving The Near-Earth Meteoroid And Orbital Debris Environment Definition With LAD-C
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. C.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Tabata, M.; Stansbery, E. G.; Westphal, A. J.; Yano, H.
2006-01-01
To improve the near-Earth meteoroid and orbital debris environment definition, a large area particle sensor/collector is being developed to be placed on the International Space Station (ISS). This instrument, the Large Area Debris Collector (LAD-C), will attempt to record meteoroid and orbital debris impact flux, and capture the same particles with aerogel. After at least one year of deployment, the whole system will be brought back for additional laboratory analysis of the captured meteoroids and orbital debris. This project is led by the U.S. Naval Research Laboratory (NRL) while the U.S. Department of Defense (DoD) Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. Additional contributing team members of the consortium include the NASA Orbital Debris Program Office, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of Kent (UK), and University of California at Berkeley. The deployment of LAD-C on the ISS is planned for 2008, with the system retrieval in late 2009.
Duhec, Aurélie V; Jeanne, Richard F; Maximenko, Nikolai; Hafner, Jan
2015-07-15
The abundance, composition, and potential sources of marine debris were investigated on remote Alphonse Island, during the austral winter 2013. A total of 4743 items, weighing 142 kg, were removed from 1 km of windward beach, facing the prevailing southeasterly trade winds. Our study demonstrates the prevalence of plastic debris as a world-wide marine contaminant. Characteristics of the debris suggest it originated primarily from land-based sources. To determine their potential geographic sources we used the Surface Current from Diagnostic model of near-surface ocean currents, forced by satellite sea level and wind data. While preliminary evidence indicated the Southeast Asia to be the main source of the flotsam, the model highlighted Somalia as another potential primary source. Our study concludes that most of the collected debris entered the sea as a result of inadequate waste management and demonstrates how anthropogenic waste can negatively impact even the most remote environments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Piazza, Michele; Squizzato, Francesco; Chincarini, Chiara; Fedrigo, Marny; Castellani, Chiara; Angelini, Annalisa; Grego, Franco; Antonello, Michele
2018-03-01
The objective of this study was to perform a quantitative analysis and to identify predictors of embolic filter debris (EFD) load during carotid artery stenting (CAS) in asymptomatic patients. All patients with asymptomatic carotid stenosis >70% undergoing CAS between 2008 and 2016 were included in a prospective database. A distal filter protection device was used in all patients. At the end of the procedure, the filter was fixed in formalin and then analyzed with a stereomicroscope. Morphometric analysis was performed with Image-Pro Plus software (Media Cybernetics, Rockville, Md). The total area of the filter membrane and the area covered by particulate material were quantified. The quantity of membrane occupied by debris was expressed as percentage of covered surface area. Anatomic and clinical variables were evaluated for their association with EFD load using multiple logistic regression. Among the 278 patients undergoing CAS, an open-cell stent was implanted in 211 patients (76%); 67 patients (24%) received a closed-cell stent. Overall technical success and clinical success were both 99%; no perioperative death was reported. Stroke rate was 1.8% (major, n = 1 [0.4%]; minor, n = 4 [1.4%]); transient ischemic attacks occurred in 5% of cases (n = 14). The quantitative analysis of the filter revealed that EFD was present in 74% of cases (n = 207). The mean EFD load was 10% of the filter surface (median, 1; range, 0-80); it was <10% in 203 patients (73%), between 11% and 20% in 39 patients (14%), between 21% and 30% in 14 patients (5%), and >31% in 22 (8%). Patients with any type of ischemic neurologic event after CAS (stroke and transient ischemic attack) had a significantly higher mean EFD load compared with uneventful cases (26.7% ± 19.0% vs 8.5% ± 13.5%; P < .001). The observational frequency distribution analysis identified the presence of >12.5% EFD load as the optimal cutoff for the association with clinically relevant perioperative ischemic events (sensitivity, 78%; specificity, 77%; area under the curve, 0.81). The multivariate analysis demonstrated that age >75 years (odds ratio [OR], 2.56; P = .003), pre-existing ipsilateral ischemic cerebral lesions (OR, 2.09; P = .047), hypoechogenic plaque on the preoperative duplex ultrasound examination (OR, 6.05; P < .001), and plaque length >15 mm (OR, 1.79; P = .049) were independent predictors of EFD load >12.5%. The majority of asymptomatic carotid stenoses treated with CAS have detectable embolic debris in the protecting filter. Age >75 years, pre-existing ipsilateral cerebral ischemic lesions, hypoechogenic plaque, and plaque length >15 mm should be taken into consideration as independent predictors of clinically relevant embolic debris during the procedure. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Origin, distribution, and rapid removal of hydrothermally formed clay at Mount Baker, Washington
Frank, David
1983-01-01
Clay minerals are locally abundant in two hydrothermal areas at Mount Baker-Sherman Crater and the Dorr Fumarole Field. The silt- and clay-size fractions of volcanic debris that is undergoing alteration at and near the ground surface around areas of current fumarolic activity in Sherman Crater are largely dominated by alunite and a silica phase, either opal or cristobalite, but contain some kaolinite and smectite. Correspondingly, the chemistry of solutions at the surface of the crater, as represented by the crater lake, favors the formation of alunite over kaolinite. In contrast, vent-filling debris that was ejected to the surface from fumaroles in 1975 contains more than 20 percent clay-size material in which kaolinite and smectite are dominant. The youngest eruptive deposit (probably 19th century) on the crater rim was also altered prior to ejection and contains as much as 27 percent clay-size material in which kaolinite, smectite, pyrophyllite, and mixed-layer illitesmectite are abundant. The hydrothermal products, kaolinite and alunite, are present in significant amounts in five large Holocene mudflows that originated at the upper cone of Mount Baker. The distribution of kaolinite in crater and valley deposits indicates that, with the passage of time, increasingly greater amounts of this clay mineral have been incorporated into large mass movements from the upper cone. Either erosion has cut into more kaolinitic parts of the core of Sherman Crater, or the amount of kaolinite has increased through time in Sherman Crater.
Massive edifice failure at Aleutian arc volcanoes
Coombs, M.L.; White, S.M.; Scholl, D. W.
2007-01-01
Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the edge of the Aleutian ridge appears to strongly control their likelihood for, and direction of, past collapse. The ridge's steep drop to the north greatly increases potential runout length for slides that originate at the island chain. ?? 2007 Elsevier B.V. All rights reserved.
Só, Marcus Vinícius Reis; De Figueiredo, Jose Antônio Poli; Freitas Fachin, Elaine Vianna; Húngaro Duarte, Marco Antônio; Pereira, Jefferson Ricardo; Kuga, Milton Carlos; Da Rosa, Ricardo Abreu
2012-09-01
To evaluate the efficacy of ProTaper Universal rotary retreatment system and the influence of sealer type on the presence of filling debris in the reinstrumented canals viewed in an operative clinical microscope. Forty-five palatal root canals of first molars were filled with gutta-percha and one of the following sealers: G1, EndoFill; G2, AH Plus; G3, Sealapex. The canals were then reinstrumented with ProTaper Universal rotary system. Roots were longitudinally sectioned and examined under an operative clinical microscope (10×), and the amount of filling debris on canal walls was analyzed using the AutoCAD 2004 software. A single operator used a specific software tool to outline the canal area and the filling debris area in each third (cervical, middle, and apical), as well as the total canal area. Data were analyzed by Kruskal-Wallis test and Tukey test at P < 0.05. Sealapex demonstrated significant differences in the average of filling debris area/canal among the 3 thirds. This group revealed that apical third showed more debris than the both cervical and middle third (P < 0.0001). Endofill presented significantly more filling debris than Sealapex in the cervical third (P < 0.05). In the middle (P = 0.12) and apical third (P = 0.10), there were no differences amongst groups. Debris was left in all canal thirds, regardless of the retreatment technique. The greatest differences between techniques and sealers were found in the cervical third. Copyright © 2012 Wiley Periodicals, Inc.
Photometric Studies of GEO Orbital Debris
NASA Technical Reports Server (NTRS)
Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt
2009-01-01
The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.
A deployable mechanism concept for the collection of small-to-medium-size space debris
NASA Astrophysics Data System (ADS)
St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément
2018-03-01
Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time.
Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean.
Doyle, Miriam J; Watson, William; Bowlin, Noelle M; Sheavly, Seba B
2011-02-01
The purpose of this study was to examine the distribution, abundance and characteristics of plastic particles in plankton samples collected routinely in Northeast Pacific ecosystems, and to contribute to the development of ideas for future research into the occurrence and impact of small plastic debris in marine pelagic ecosystems. Plastic debris particles were assessed from zooplankton samples collected as part of the National Oceanic and Atmospheric Administration's (NOAA) ongoing ecosystem surveys during two research cruises in the Southeast Bering Sea in the spring and fall of 2006 and four research cruises off the U.S. west coast (primarily off southern California) in spring, summer and fall of 2006, and in January of 2007. Nets with 0.505 mm mesh were used to collect surface samples during all cruises, and sub-surface samples during the four cruises off the west coast. The 595 plankton samples processed indicate that plastic particles are widely distributed in surface waters. The proportion of surface samples from each cruise that contained particles of plastic ranged from 8.75 to 84.0%, whereas particles were recorded in sub-surface samples from only one cruise (in 28.2% of the January 2007 samples). Spatial and temporal variability was apparent in the abundance and distribution of the plastic particles and mean standardized quantities varied among cruises with ranges of 0.004-0.19 particles/m³, and 0.014-0.209 mg dry mass/m³. Off southern California, quantities for the winter cruise were significantly higher, and for the spring cruise significantly lower than for the summer and fall surveys (surface data). Differences between surface particle concentrations and mass for the Bering Sea and California coast surveys were significant for pair-wise comparisons of the spring but not the fall cruises. The particles were assigned to three plastic product types: product fragments, fishing net and line fibers, and industrial pellets; and five size categories: <1 mm, 1-2.5 mm, >2.5-5 mm, >5-10 mm, and >10 mm. Product fragments accounted for the majority of the particles, and most were less than 2.5 mm in size. The ubiquity of such particles in the survey areas and predominance of sizes <2.5 mm implies persistence in these pelagic ecosystems as a result of continuous breakdown from larger plastic debris fragments, and widespread distribution by ocean currents. Detailed investigations of the trophic ecology of individual zooplankton species, and their encounter rates with various size ranges of plastic particles in the marine pelagic environment, are required in order to understand the potential for ingestion of such debris particles by these organisms. Ongoing plankton sampling programs by marine research institutes in large marine ecosystems are good potential sources of data for continued assessment of the abundance, distribution and potential impact of small plastic debris in productive coastal pelagic zones. © 2010 Elsevier Ltd. All rights reserved.
The Range Safety Debris Catalog Analysis in Preparation for the Pad Abort One Flight Test
NASA Technical Reports Server (NTRS)
Kutty, Prasad; Pratt, William
2010-01-01
With each flight test a Range Safety Data Package is assembled to understand the potential consequences of various failure scenarios. Debris catalog analysis considers an overpressure failure of the Abort Motor and the resulting debris field created 1. Characterize debris fragments generated by failure: weight, shape, and area 2. Compute fragment ballistic coefficients 3. Compute fragment ejection velocities.
Field and flume investigations of the effects of logjams and woody debris on streambed morphology
NASA Astrophysics Data System (ADS)
Leung, V.; Montgomery, D. R.; McHenry, M. L.
2014-12-01
Interactions among wood debris, fluid flow and sediment transport in rivers are first-order controls on channel morphodynamics, affecting streambed morphology, sediment transport, sediment storage and aquatic habitat. Woody debris increases the hydraulic and topographic complexity in rivers, leading to a greater diversity of aquatic habitats and an increase in the number of large pools that are important fish habitat and breeding grounds. In the past decade, engineered logjams have become an increasingly used tool in river management for simultaneously decreasing the rate of riverbank migration and improving aquatic habitat. Sediment deposits around woody debris build up riverbanks and counteract bank migration caused by erosion. Previous experiments on flow visualization around model woody debris suggest the amount of sediment scour and deposition are primarily related to the presence of roots and the obstructional area of the woody debris. We present the results of fieldwork and sediment transport experiments of streambed morphology around stationary woody debris. Field surveys on the Hoh River and the Elwha River, WA, measure the local streambed morphology around logjams and individual pieces of woody debris. We quantified the amount of local scour and dam-removal related fine sediment deposition around natural and engineered logjams of varying sizes and construction styles, located in different geomorphic settings. We also quantified the amount of local scour around individual pieces of woody debris of varying sizes, geometries and orientations relative to flow. The flume experiments tested the effects of root geometry and log orientation of individual stationary trees on streambed morphology. The flume contained a deformable sediment bed of medium sand. We find that: 1) the presence of roots on woody debris leads to greater areas of both sediment scour and deposition; and 2) the amount of sediment scour and deposition are related to the wood debris cross-sectional area, oriented orthogonal to flow. A better understanding of the underlying sediment physics and hydraulics around naturally occurring woody debris in rivers can provide guidance and criteria for use in river restoration and engineering as well as scientific insights into a complex interdisciplinary problem.
NASA Astrophysics Data System (ADS)
Cheng, Weiming; Wang, Nan; Zhao, Min; Zhao, Shangmin
2016-03-01
The geomorphic setting of the tectonically active area around Beijing is a result of complex interactions involving Yanshan neotectonic movements and processes of erosion and deposition. The Beijing Mountain study area contains the junction of two mountain ranges (the Yanshan Mountains and the Taihang Mountains). Tectonic activity has significantly influenced the drainage system and the geomorphic situation in the area, leading to a high probability of the development of debris flows, which is one of the major abrupt geological disasters in the region. Based on 30-m-resolution ASTER GDEM data, a total of 752 drainage basins were extracted using ArcGIS software. A total of 705 debris flow valleys were visually interpreted from ALOS satellite images and published documents. Seven geomorphic indices were calculated for each basin including the relief amplitude, the hypsometric integral, the stream length gradient, the basin shape indices, the fractal dimension, the asymmetry factor, and the ratio of the valley floor width to the height. These geomorphic indices were divided into five classes and the ratio of the number of the debris flow valleys to the number of the drainage basins for each geomorphic index was computed and analyzed for every class. Average class values of the seven indices were used to derive an index of relative active tectonics (IRAT). The ratio of the number of the debris flow valleys to the number of the drainage basins was computed for every class of IRAT. The degree of probable risk level was then defined from the IRAT classes. Finally, the debris flow hazard was evaluated for each drainage basin based on the combined effect of probable risk level and occurrence frequency of the debris flows. The result showed a good correspondence between IRAT classes and the ratio of the number of the debris flow valleys to the number of the drainage basins. Approximately 65% of the drainage basins with occurred debris flow valleys are at a high risk level, while 43% of the drainage basins without occurred debris flow valleys are at a high risk level. A comparison with results from past studies demonstrated that the accuracy of these findings is greater than 85%, indicating that the basin topography created by rapid tectonic deformations is more favorable for debris flows.
Categorized Crater Counts on Martian Lobate Debris Aprons
NASA Astrophysics Data System (ADS)
Berman, D. C.; Crown, D. A.; Joseph, E. C.
2015-05-01
We have developed a new approach for analyzing crater size-frequency distributions designed to interpret formation and modification ages from complex geologic surfaces, such as those of ice-rich debris aprons.
Antimicrobial Efficacy of Contact Lens Care Solutions Against Neutrophil-Enhanced Bacterial Biofilms
Hinojosa, Jorge A.; Patel, Naiya B.; Zhu, Meifang; Robertson, Danielle M.
2017-01-01
Purpose Neutrophil-derived extracellular debris has been shown to accelerate bacterial biofilm formation on hydrogel and silicone hydrogel contact lens surfaces compared to lenses inoculated with bacteria alone. The purpose of this study was to evaluate the disinfection efficacy of four standard commercial contact lens cleaning regimens against neutrophil-enhanced bacterial biofilms formed on silicone hydrogel contact lenses. Methods Four reference strains were used: Pseudomonas aeruginosa, Serratia marcescens, Stenotrophomonas maltophilia, and Staphylococcus aureus. Human neutrophils were isolated from peripheral blood by venipuncture. Unworn Lotrafilcon B lenses were incubated overnight in each respective strain with stimulated neutrophils. Contact lenses were then cleaned using one of four contact lens care solutions according to manufacturer instructions. Bacterial viability was assessed by colony counts and confocal microscopy. Volume of residual debris on lens surfaces after cleaning was quantified using IMARIS software. Results All four solutions tested showed effective antimicrobial activity against each bacterial strain; however, substantial amounts of nonviable bacteria and cellular debris remained on the lens surface despite concomitant digital cleaning. Conclusions Necrotic cellular debris that accumulates under the posterior lens surface during wear of an inoculated contact lens is not fully removed during routine cleaning and disinfection. Translational Relevance The accumulation of residual cellular debris on the contact lens surface may contribute to new colonization of the lens and represents a significant risk factor for a contact lens–related adverse event. Additional studies are needed to correlate these findings with risk for corneal infiltrative and/or infectious events in a standard animal model. PMID:28473944
Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti
NASA Technical Reports Server (NTRS)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.;
2017-01-01
We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.
NASA Technical Reports Server (NTRS)
Barker, Ed; Abercromby, Kira J.; Abell, Paul
2009-01-01
A key objective of NASA s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the 0.6 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectra is flat and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar panels with a strong band gap feature near 1 micron. The two spacecraft are spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer features of white paint - indicating that the surface paint on the SL-12 may be different than the IUS. This study shows that the surface materials of debris appear different spectrally than intact rocket bodies and spacecraft and therefore are not believed to be solar panel material or pristine white paint. Further investigation is necessary in order to eliminate materials as possible choices for the debris pieces.
NASA Astrophysics Data System (ADS)
Albercromby, Kira J.; Abell, Paul; Barker, Ed
2009-03-01
A key objective of NASA's Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the ~ 0.65 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectrum has a slight slope and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar cells with a strong band gap feature near 1 micron. The two spacecraft were spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer features of white paint - indicating that the surface paint on the SL-12 may be different than the IUS. This study shows that the surface materials of debris appear different spectrally than intact rocket bodies and spacecraft and therefore are not believed to be solar cell material or pristine white paint. Further investigation is necessary in order to eliminate materials as possible choices for the debris pieces.
Effects of Deadly California Debris Flows Seen in Before/After Images from NASA's UAVSAR
2018-02-12
Extreme winter rains in January 2018 following the Thomas Fire in Ventura and Santa Barbara Counties caused severe debris flows, resulting in significant loss of life and considerable property damage in the town on Montecito, just east of Santa Barbara. NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne radar platform detected changes caused by the debris flows between two images acquired on Nov. 2, 2017, and Feb. 5, 2018. An enhanced image pair (top left) shows disturbed areas in orange. In areas of severe surface disruption from the fire scar and debris flows the two image pairs can't be matched and decorrelate (top right). In the middle panels, the radar images are overlaid on the structure damage map produced by the County of Santa Barbara. The fire scars and damage correspond well with the risk map (lower left) and damage map (lower right). With an operational system, products such as these have the potential to augment information available for search and rescue, and for damage assessment for government agencies or the insurance industry. Radar has the advantage of being available in all weather conditions, as it can image through clouds. NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), developed and managed by the Jet Propulsion Laboratory, Pasadena, California, can record changes on the ground beneath the aircraft that occur between multiple flights, which take exactly the same flight path. The instrument is used to monitor how volcanoes, earthquakes, and other natural hazards are changing Earth. The JPL UAVSAR team collected and processed the imagery for Principal Investigator Andrea Donnellan who performed the analysis. She has been conducting ground change research using UAVSAR in this and other regions of California since 2009. https://photojournal.jpl.nasa.gov/catalog/PIA22243
[Research progress in post-fire debris flow].
Di, Xue-ying; Tao, Yu-zhu
2013-08-01
The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.
Cannon, S.H.; Gartner, J.E.; Wilson, R.C.; Bowers, J.C.; Laber, J.L.
2008-01-01
Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity-duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings. Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10??min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3??h, with most of the rain falling in less than 1??h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0??mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D-??0.7 and I = 9.5D-??0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours). Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16??h, of low-intensity (2-10??mm/h) rainfall. The storms lasted between 5.5 and 33??h, with average intensities between 1.3 and 20.4??mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D-0.4, and I = 7.2D-0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D-0.5 is approximately 25??mm/h higher than that developed for the first year following fires. The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes. Crown Copyright ?? 2007.
Glacial lakes amplify glacier recession in the central Himalaya
NASA Astrophysics Data System (ADS)
King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann
2016-04-01
The high altitude and high latitude regions of the world are amongst those which react most intensely to climatic change. Across the Himalaya glacier mass balance is predominantly negative. The spatial and temporal complexity associated with this ice loss across different glacier clusters is poorly documented however, and our understanding of the processes driving change is limited. Here, we look at the spatial variability of glacier hypsometry and glacial mass loss from three catchments in the central Himalaya; the Dudh Koshi basin, Tama Koshi basin and an adjoining section of the Tibetan Plateau. ASTER and SETSM digital elevation models (2014/15), corrected for elevation dependant biases, co-registration errors and along or cross track tilts, are differenced from Shuttle Radar Topographic Mission (SRTM) data (2000) to yield surface lowering estimates. Landsat data and a hypsometric index (HI), a classification scheme used to group glaciers of similar hypsometry, are used to examine the distribution of glacier area with altitude in each catchment. Surface lowering rates of >3 m/yr can be detected on some glaciers, generally around the clean-ice/debris-cover boundary, where dark but thin surface deposits are likely to enhance ablation. More generally, surface lowering rates of around 1 m/yr are more pervasive, except around the terminus areas of most glaciers, emphasising the influence of a thick debris cover on ice melt. Surface lowering is only concentrated at glacier termini where glacial lakes have developed, where surface lowering rates are commonly greater than 2.5 m/yr. The three catchments show contrasting hypsometric distributions, which is likely to impact their future response to climatic changes. Glaciers of the Dudh Koshi basin store large volumes of ice at low elevation (HI > 1.5) in long, debris covered tongues, although their altitudinal range is greatest given the height of mountain peaks in the catchment. In contrast, glaciers of the Tama Koshi store large amounts of ice in broad accumulation zones and are more equidimensional (HI -1.2 to 1.2). Glaciers flowing onto the Tibetan Plateau have a similar hypsometric distribution to glaciers of the Dudh Koshi, but terminate at a higher altitude overall, approximately 500 m higher than glaciers of the Dudh Koshi or Tama Koshi. We estimate the approximate Equilibrium Line Altitudes (ELA) of the last 15 years to be above a substantial portion (66%- Dudh Koshi; 87%- Tama Koshi; 83% Tibetan Plateau) of the glacierised area for all three catchments. Future ice recession may therefore be governed primarily by glacier hypsometry, but is likely to be amplified by the continued development of new, or growth of current glacial lakes.
NASA Technical Reports Server (NTRS)
Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.
2010-01-01
This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.
An integrated study to evaluate debris flow hazard in alpine environment
NASA Astrophysics Data System (ADS)
Tiranti, Davide; Crema, Stefano; Cavalli, Marco; Deangeli, Chiara
2018-05-01
Debris flows are among the most dangerous natural processes affecting the alpine environment due to their magnitude (volume of transported material) and the long runout. The presence of structures and infrastructures on alluvial fans can lead to severe problems in terms of interactions between debris flows and human activities. Risk mitigation in these areas requires identifying the magnitude, triggers, and propagation of debris flows. Here, we propose an integrated methodology to characterize these phenomena. The methodology consists of three complementary procedures. Firstly, we adopt a classification method based on the propensity of the catchment bedrocks to produce clayey-grained material. The classification allows us to identify the most likely rheology of the process. Secondly, we calculate a sediment connectivity index to estimate the topographic control on the possible coupling between the sediment source areas and the catchment channel network. This step allows for the assessment of the debris supply, which is most likely available for the channelized processes. Finally, with the data obtained in the previous steps, we modelled the propagation and depositional pattern of debris flows with a 3D code based on Cellular Automata. The results of the numerical runs allow us to identify the depositional patterns and the areas potentially involved in the flow processes. This integrated methodology is applied to a test-bed catchment located in Northwestern Alps. The results indicate that this approach can be regarded as a useful tool to estimate debris flow related potential hazard scenarios in an alpine environment in an expeditious way without possessing an exhaustive knowledge of the investigated catchment, including data on historical debris flow events.
NASA Astrophysics Data System (ADS)
Kang, Sinhang; Lee, Seung-Rae
2018-05-01
Many debris flow spreading analyses have been conducted during recent decades to prevent damage from debris flows. An empirical approach that has been used in various studies on debris flow spreading has advantages such as simple data acquisition and good applicability for large areas. In this study, a GIS-based empirical model that was developed at the University of Lausanne (Switzerland) is used to assess the debris flow susceptibility. Study sites are classified based on the types of soil texture or geological conditions, which can indirectly consider geotechnical or rheological properties, to supplement the weaknesses of Flow-R which neglects local controlling factors. The mean travel angle for each classification is calculated from a debris flow inventory map. The debris flow susceptibility is assessed based on changes in the flow-direction algorithm, an inertial function with a 5-m DEM resolution. A simplified friction-limited model was applied to the runout distance analysis by using the appropriate travel angle for the corresponding classification with a velocity limit of 28 m/s. The most appropriate algorithm combinations that derived the highest average of efficiency and sensitivity for each classification are finally determined by applying a confusion matrix with the efficiency and the sensitivity to the results of the susceptibility assessment. The proposed schemes can be useful for debris flow susceptibility assessment in both the study area and the central region of Korea, which has similar environmental factors such as geological conditions, topography and rainfall characteristics to the study area.
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1988-01-01
The probable amount, sizes, and relative velocities of debris are discussed, giving examples of the damage caused by debris, and focusing on the use of mathematical models to forecast the debris environment and solar activity now and in the future. Most debris are within 2,000 km of the earth's surface. The average velocity of spacecraft-debris collisions varies from 9 km/sec at 30 degrees of inclination to 13 km/sec near polar orbits. Mathematical models predict a 5 percent per year increase in the large-fragment population, producing a small-fragment population increase of 10 percent per year until the year 2060, the time of critical density. A 10 percent increase in the large population would cause the critical density to be reached around 2025.
Debris Hazards Due to Overloaded Conventional Construction Facades
2015-12-01
NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8...Park, CA, USA Abstract Large blast events will fail building components, such as the façade and supporting structure. Facades present the...largest loading surface, are relatively weak, and will fail first and most violently when subjected to blast loads. The range of façade and structural
Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.
Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter
2013-12-01
Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Staley, Dennis M.
2013-01-01
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Rim fire in Yosemite National Park and the Stanislaus National Forest, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 28 of the 1,238 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 901 of the 1,238 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.
Three occurred debris flows in North-Eastern Italian Alps: documentation and modeling
NASA Astrophysics Data System (ADS)
Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino
2015-04-01
Three occurred events of debris flows are documented and modeled by back-analysis. The three debris flows events are those occurred at Rio Lazer on the 4th of November 1966, at Fiames on the 5th of July 2006 and at Rovina di Cancia on the 18th of July 2009. All the three sites are located in the North-Eastern Italian Alps. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. Map of deposition pattern of sediments are built by using post-events photos through stereoscopy techniques. The second event concerns the routing of debris flow along the main channel descending from Pomagagnon Fork. Due to the obstruction of the cross-section debris flow deviated from the original path on the left side and routed downstream by cutting a new channel on the fan. It dispersed in multiple paths when met the wooden area. Map of erosion and deposition depths are built after using a combination of Lidar and GPS data. The third event concerns the routing of debris flow in the Rovina di Cancia channel that filled the reservoir built at the end of the channel and locally overtopped the retaining wall on the left side. A wave of mud and debris inundated the area downstream the overtopping point. Map of erosion and deposition depths are obtained by subtracting two GPS surveys, pre and post event. All the three occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph downstream the triggering areas. The routing of the solid-liquid hydrograph was simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. The same parameters for computing erosion and deposition were used for the three occurred events.
NASA Astrophysics Data System (ADS)
Leung, V.; Montgomery, D. R.
2010-12-01
The interactions between woody debris, fluid flow and sediment transport in rivers play a fundamental role in ecogeomorphology, affecting channel roughness, streambed morphology, and sediment transport and storage. In particular, woody debris increases the hydraulic and topographic complexity in rivers, leading to a greater diversity of aquatic habitats and an increase in the number of large pools that are important fish habitat and breeding grounds. In the past decade, engineered logjams have become an increasingly used tool in river management for simultaneously decreasing the rate of riverbank migration and improving aquatic habitat. Sediment deposits around woody debris build up riverbanks and counteract bank migration caused by erosion. Previous experiments of flow visualization around model woody debris suggest the amount of sediment scour and deposition are primarily related to the presence of roots and the obstructional area of the woody debris. We present the results of field surveys and sediment transport experiments of streambed morphology around stationary woody debris on a mobile bed. These experiments test the effects of root presence, root geometry and log orientation of individual stationary trees on streambed morphology. The flume contains a deformable sediment bed of medium sand, and has subcritical and turbulent flow, corresponding to flow conditions found in nature. Field surveys on the Hoh River, WA, measure the local streambed morphology around woody debris (e.g. pool and gravel-bar length, width and depth), as well as woody debris characteristics (e.g. tree diameter, tree length, root diameter and root depth). We quantified the amount of local sediment scour and deposition around woody debris of varying sizes, geometries and orientations relative to flow. We find that: 1) the presence of roots on woody debris leads to greater areas of both sediment scour and deposition; and 2) the amount of sediment scour and deposition are related to the root cross-sectional area, oriented orthogonal to flow. Sediment transport around woody debris is episodic and occurs during flood events, making it difficult to take active measurements. A combined methodology of flume experiments and fieldwork allows for a general understanding of sediment transport around woody debris that includes the complexities of natural systems. A better understanding of the underlying sediment physics and hydraulics around naturally occurring woody debris in rivers can provide guidance and criteria for use in river restoration and engineering as well as scientific insights into a complex interdisciplinary problem.
Controls on the Seafloor Exposure of Detachment Fault Surfaces
NASA Astrophysics Data System (ADS)
Olive, J. A. L.; Parnell-Turner, R. E.; Escartin, J.; Smith, D. K.; Petersen, S.
2017-12-01
Morphological and seismological evidence suggests that asymmetric accretion involving oceanic detachment faulting takes place along 40% of the Northern Mid-Atlantic Ridge. However, seafloor exposures of corrugated slip surfaces -a telltale sign of this kind of faulting- remain scarce and spatially limited according to multibeam bathymetric surveys. This raises the question of whether geomorphic processes can hinder the exposure of pristine fault surfaces during detachment growth. We address this problem by analyzing ≤2-m resolution bathymetry data from four areas where corrugated surfaces emerge from the seafloor (13º20'N, 16º25'N, 16º36'N, and TAG). We identify two key processes capable of degrading or masking a corrugated large-offset fault surface. The first is gravitational mass wasting of steep (>25º) slopes, which is widespread in the breakaway region of most normal faults. The second is blanketing of the shallow-dipping termination area by a thin apron of hanging wall-derived debris. We model this process using critical taper theory, and infer low effective friction coefficients ( 0.15) on the emerging portion of detachment faults. A corollary to this result is that faults emerging from the seafloor with an angle <10º are more likely to blanket themselves under an apron of hanging wall debris. Optimal exposure of detachment surfaces therefore occurs when the fault emerges at slopes between 10° and 25º. We generalize these findings into a simple model for the progressive exhumation and flexural rotation of detachment footwalls, which accounts for the continued action of seafloor geomorphic processes. Our model suggests that many moderate-offset `blanketed' detachments may exist along slow mid-ocean ridges, but their corrugated surfaces are unlikely to be detected in shipboard multibeam bathymetry (e.g., TAG). Furthermore, many `irregular massifs' may correspond to the degraded footwalls of detachment faults.
Debris ingestion by juvenile marine turtles: an underestimated problem.
Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva
2015-04-15
Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, B.
2017-12-01
Mountain watershed in Western China is prone to flash floods. The Wenchuan earthquake on May 12, 2008 led to the destruction of surface, and frequent landslides and debris flow, which further exacerbated the flash flood hazards. Two giant torrent and debris flows occurred due to heavy rainfall after the earthquake, one was on August 13 2010, and the other on August 18 2010. Flash floods reduction and risk assessment are the key issues in post-disaster reconstruction. Hydrological prediction models are important and cost-efficient mitigation tools being widely applied. In this paper, hydrological observations and simulation using remote sensing data and the WMS model are carried out in the typical flood-hit area, Longxihe watershed, Dujiangyan City, Sichuan Province, China. The hydrological response of rainfall runoff is discussed. The results show that: the WMS HEC-1 model can well simulate the runoff process of small watershed in mountainous area. This methodology can be used in other earthquake-affected areas for risk assessment and to predict the magnitude of flash floods. Key Words: Rainfall-runoff modeling. Remote Sensing. Earthquake. WMS.
Search strategy in a complex and dynamic environment (the Indian Ocean case)
NASA Astrophysics Data System (ADS)
Loire, Sophie; Arbabi, Hassan; Clary, Patrick; Ivic, Stefan; Crnjaric-Zic, Nelida; Macesic, Senka; Crnkovic, Bojan; Mezic, Igor; UCSB Team; Rijeka Team
2014-11-01
The disappearance of Malaysia Airlines Flight 370 (MH370) in the early morning hours of 8 March 2014 has exposed the disconcerting lack of efficient methods for identifying where to look and how to look for missing objects in a complex and dynamic environment. The search area for plane debris is a remote part of the Indian Ocean. Searches, of the lawnmower type, have been unsuccessful so far. Lagrangian kinematics of mesoscale features are visible in hypergraph maps of the Indian Ocean surface currents. Without a precise knowledge of the crash site, these maps give an estimate of the time evolution of any initial distribution of plane debris and permits the design of a search strategy. The Dynamic Spectral Multiscale Coverage search algorithm is modified to search a spatial distribution of targets that is evolving with time following the dynamic of ocean surface currents. Trajectories are generated for multiple search agents such that their spatial coverage converges to the target distribution. Central to this DSMC algorithm is a metric for the ergodicity.
Studies of fluid instabilities in flows of lava and debris
NASA Technical Reports Server (NTRS)
Fink, Jonathan H.
1987-01-01
At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows.
Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg
2009-01-01
Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914
Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona
Webb, Robert H.; Pringle, Patrick T.; Rink, Glenn R.
1989-01-01
A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content of less than about 40 percent by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows also occur in the Cambrian Muav Limestone and underlying Bright Angel Shale and the Quaternary basalts in the western Grand Canyon. Debris-flow frequency and magnitude were studied in detail in the Lava-Chuar Creek drainage at Colorado River mile 65.5; in the Monument Creek drainage at mile 93.5; and in the Crystal Creek drainage at mile 98.2. Debris flows have reached the Colorado River on an average of once every 20 to 30 years in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 years in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 years, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cubic feet per second. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cubic feet per second. The debris flow of 1966 in the Crystal Creek drainage had a discharge estimated between 9,200 and 14,000 cubic feet per second. Determination of the effective cross-sectional area was a problem in all calculations involving superelevations on bends because areas near superelevation marks were 1.5 to 3.5 times larger than areas of upstream or downstream cross sections. Debris flows in the Grand Canyon generally are composed of 10 to 40 percent sand by weight and may represent a significant source of beach-building sand along the Colorado River. The particle-size distributions are very poorly sorted and the largest transported boulders were in the Crystal Creek drainage. The large boulders transported into the Colorado River by debris flows create or change hydraulic controls (rapids); these controls appear to be governed by the magnitude and frequency of tributary-flow events and the history of discharges on the Colorado River. Reworking of debris fans by the Colorado River creates debris bars that constrain the size of eddy systems and forms secondary rapids and riffles below tributary mouths.
Predicting Debris-Slide Locations in Northwestern California
Mark E. Reid; Stephen D. Ellen; Dianne L. Brien; Juan de la Fuente; James N. Falls; Billie G. Hicks; Eric C. Johnson
2007-01-01
We tested four topographic models for predicting locations of debris-slide sources: 1) slope; 2) proximity to stream; 3) SHALSTAB with "standard" parameters; and 4) debris-slide-prone landforms, which delineates areas similar to "inner gorge" and "headwall swale" using experience-based rules. These approaches were compared in three diverse...
Empirical model for the volume-change behavior of debris flows
Cannon, S.H.; ,
1993-01-01
The potential travel down hillsides; movement stops where the volume-change behavior of flows as they travel down hillsides ; movement stops where the volume of actively flowing debris becomes negligible. The average change in volume over distance for 26 recent debris flows in the Honolulu area was assumed to be a function of the slope over which the debris flow traveled, the degree of flow confinement by the channel, and an assigned value for the type of vegetation through which the debris flow traveled. Analysis of the data yielded a relation that can be incorporated into digital elevation models to characterize debris-flow travel on Oahu.
Development of the Space Debris Sensor (SDS)
NASA Technical Reports Server (NTRS)
Hamilton, Joe; Liou, J. -C.; Anz-Meador, P.; Matney, M.; Christiansen, E.
2017-01-01
Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is an impact sensor designed to detect and characterize collisions with small orbital debris: from 50 microns to greater than 1millimeter debris size detection; Characterizes debris size, speed, direction, and density. The Space Debris Sensor (SDS) is a flight demonstration of DRAGONS on the International Space Station: Approximately 1 square meter of detection area facing the ISS velocity vector; Minimum two year mission on Columbus External Payloads Facility (EPF); Minimal obstruction from ISS hardware; Development is nearing final checkout and integration with the ISS; Current launch schedule is SpaceX13, about September 2017, or SpaceX14, about Jan 2018.
Drift simulation of MH370 debris using superensemble techniques
NASA Astrophysics Data System (ADS)
Jansen, Eric; Coppini, Giovanni; Pinardi, Nadia
2016-07-01
On 7 March 2014 (UTC), Malaysia Airlines flight 370 vanished without a trace. The aircraft is believed to have crashed in the southern Indian Ocean, but despite extensive search operations the location of the wreckage is still unknown. The first tangible evidence of the accident was discovered almost 17 months after the disappearance. On 29 July 2015, a small piece of the right wing of the aircraft was found washed up on the island of Réunion, approximately 4000 km from the assumed crash site. Since then a number of other parts have been found in Mozambique, South Africa and on Rodrigues Island. This paper presents a numerical simulation using high-resolution oceanographic and meteorological data to predict the movement of floating debris from the accident. Multiple model realisations are used with different starting locations and wind drag parameters. The model realisations are combined into a superensemble, adjusting the model weights to best represent the discovered debris. The superensemble is then used to predict the distribution of marine debris at various moments in time. This approach can be easily generalised to other drift simulations where observations are available to constrain unknown input parameters. The distribution at the time of the accident shows that the discovered debris most likely originated from the wide search area between 28 and 35° S. This partially overlaps with the current underwater search area, but extends further towards the north. Results at later times show that the most probable locations to discover washed-up debris are along the African east coast, especially in the area around Madagascar. The debris remaining at sea in 2016 is spread out over a wide area and its distribution changes only slowly.
Small satellites and space debris issues
NASA Astrophysics Data System (ADS)
Yakovlev, M.; Kulik, S.; Agapov, V.
2001-10-01
The objective of this report is the analysis of the tendencies in designing of small satellites (SS) and the effect of small satellites on space debris population. It is shown that SS to include nano- and pico-satellites should be considered as a particularly dangerous source of space debris when elaborating international standards and legal documents concerning the space debris problem, in particular "International Space Debris Mitigation Standard". These issues are in accordance with the IADC goals in its main activity areas and should be carefully considered within the IADC framework.
Spring Defrosting of Mass-Movement Material at South High Latitudes
NASA Technical Reports Server (NTRS)
2003-01-01
Southern hemisphere spring on Mars will begin this year around May 6, 2003. During the spring, the MOC operations team will be documenting changes as the seasonal carbon dioxide frost cap retreats southward. In preparation for this year's southern spring, the team has been examining images obtained during the last southern spring, which occurred in 2001. This pair of images shows gullies and associated scars formed by mass-movement down a slope in the south polar region. The first view, in mid-spring, was acquired in August 2001; it shows a terrain that is largely devoid of the frost that covered everything during winter. However, the aprons of debris from the mass-movements (landslides) are still frosted. By late spring, in the second picture (right), the frost on the aprons had finally sublimed away, and the debris was seen to be not much brighter than their surroundings. The second picture was taken in November 2001, about a week before the first day of summer. The fact that the aprons of debris retained frost in mid-spring, whereas the surrounding terrain did not, probably indicates that the debris underlying the frost has different thermal properties than the surroundings. The debris might be more coarse-grained (sand or gravel, perhaps), and remained cooler in the daytime than the surrounding, dust-mantled surfaces. The images are both illuminated from the bottom/lower right. North is toward the bottom, and the area imaged is located near 70.9oS, 339.3oW.Daanen, R.P.; Grosse, G.; Darrow, M.M.; Hamilton, T.D.; Jones, Benjamin M.
2012-01-01
We present the results of a reconnaissance investigation of unusual debris mass-movement features on permafrost slopes that pose a potential infrastructure hazard in the south-central Brooks Range, Alaska. For the purpose of this paper, we describe these features as frozen debris-lobes. We focus on the characterisation of frozen debris-lobes as indicators of various movement processes using ground-based surveys, remote sensing, field and laboratory measurements, and time-lapse observations of frozen debris-lobe systems along the Dalton Highway. Currently, some frozen debris-lobes exceed 100 m in width, 20 m in height and 1000 m in length. Our results indicate that frozen debris-lobes have responded to climate change by becoming increasingly active during the last decades, resulting in rapid downslope movement. Movement indicators observed in the field include toppling trees, slumps and scarps, detachment slides, striation marks on frozen sediment slabs, recently buried trees and other vegetation, mudflows, and large cracks in the lobe surface. The type and diversity of observed indicators suggest that the lobes likely consist of a frozen debris core, are subject to creep, and seasonally unfrozen surface sediment is transported in warm seasons by creep, slumping, viscous flow, blockfall and leaching of fines, and in cold seasons by creep and sliding of frozen sediment slabs. Ground-based measurements on one frozen debris-lobe over three years (2008–2010) revealed average movement rates of approximately 1 cm day−1, which is substantially larger than rates measured in historic aerial photography from the 1950s to 1980s. We discuss how climate change may further influence frozen debris-lobe dynamics, potentially accelerating their movement. We highlight the potential direct hazard that one of the studied frozen debris-lobes may pose in the coming years and decades to the nearby Trans Alaska Pipeline System and the Dalton Highway, the main artery for transportation between Interior Alaska and the North Slope.
NASA Astrophysics Data System (ADS)
Smith, Hugh G.; Sheridan, Gary J.; Nyman, Petter; Child, David P.; Lane, Patrick N. J.; Hotchkis, Michael A. C.; Jacobsen, Geraldine E.
2012-02-01
Fine sediment supply has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides ( 137Cs, 210Pb ex and 239,240Pu) as tracers to measure proportional contributions of fine sediment (< 10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While 137Cs and 210Pb ex have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The ranges in estimated proportional hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment were 22-69% and 32-74%. The greater susceptibility of 210Pb ex to apparent reductions in the ash content of channel deposits relative to hillslope sources resulted in its exclusion from the final analysis. No systematic change in the proportional source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the tracing analysis with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and fine sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on changing source contributions of fine sediment during debris flow events.
NASA Astrophysics Data System (ADS)
Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael
2013-04-01
The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (<10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.
U.S. Constructed Area Approaches the Size of Ohio
NASA Astrophysics Data System (ADS)
Elvidge, Christopher D.; Milesi, Cristina; Dietz, John B.; Tuttle, Benjamin T.; Sutton, Paul C.; Nemani, Ramakrishna; Vogelmann, James E.
2004-06-01
The construction and maintenance of impervious surfaces-buildings, roads, parking lots, roofs, etc.-constitutes a major human alteration of the land surface, changing the local hydrology, climate, and carbon cycling. Three types of national coverage data were used to model the spatial distribution and density of impervious surface area (ISA) for the conterminous U.S.A. The results (Figure 1) indicate that total ISA of the 48 states and Washington, D.C., is 112,610 km2 (+/- 12,725 km2), which is slightly smaller than the state of Ohio (116,534 km2) and slightly larger than the area of herbaceous wetlands (98,460 km2) of the conterminous United States. The same characteristics that make impervious surfaces ideal for use in construction produce a series of effects on the environment. Impervious surfaces alter sensible and latent heat fluxes, causing urban heat islands. In heavily vegetated areas, the proliferation of ISA reduces the sequestration of carbon from the atmosphere. ISA alters the character of watersheds by increasing the frequency and magnitude of surface runoff pulses. Watershed effects of ISA begin to be detectable once 10% of the surface is covered by impervious surfaces, altering the shape of stream channels, raising water temperatures, and sweeping urban debris and pollutants into aquatic environments. Consequences of ISA include reduced numbers and diversity of species in fish and aquatic insects, and degradation of wetlands and riparian zones.
Debris flow-induced topographic changes: effects of recurrent debris flow initiation.
Chen, Chien-Yuan; Wang, Qun
2017-08-12
Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.
Characterization of Debris from the DebriSat Hypervelocity Test
NASA Technical Reports Server (NTRS)
Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.
2015-01-01
The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.
Surveyor V: Television pictures
Shoemaker, E.M.; Batson, R.M.; Holt, H.E.; Morris, E.C.; Rennilson, J.J.; Whitaker, E.A.
1967-01-01
Surveyor V landed in a small crater, 8.5 meters wide and 12.5 meters long, which was probably formed by drainage of surficial fragmental debris into a subsurface fissure. The lunar surface debris layer is exposed in the walls of this crater. At depths below about 10 centimeters, the debris appears to be composed mainly of shock-compressed aggregates, ranging from a few millimeters up to 3 centimeters in diameter, set in a matrix of less-coherent finer particles. Rocky chips and fragments larger than a millimeter are dispersed as a subordinate constituent of the debris.
NASA Astrophysics Data System (ADS)
Mejía-Navarro, Mario; Wohl, Ellen E.; Oaks, Sherry D.
1994-08-01
Glenwood Springs, Colorado, lies at the junction of the Roaring Fork and Colorado Rivers, surrounded by the steep peaks of the Colorado Rocky Mountains. Large parts of the region have had intensive sheet erosion, debris flows, and hyperconcentrated floods triggered by landslides and slumps. The latter come from unstable slopes in the many tributary channels on the mountainsides, causing concentration of debris in channels and a large accumulation of sediment in colluvial wedges and debris fans that line the river valleys. Many of the landslide and debris-flow deposits exist in a state resembling suspended animation, ready to be destabilized by intense precipitation and/or seismic activity. During this century urban development in the Roaring Fork River valley has increased rapidly. The city of Glenwood Springs continues to expand over unstable debris fans without any construction of hazard mitigation structures. Since 1900, Glenwood Springs has had at least 21 damaging debris flows and floods; on July 24, 1977 a heavy thunderstorm spread a debris flow over more than 80 ha of the city. This paper presents a method that uses Geographic Information Systems (GIS) to assess geological hazards, vulnerability, and risk in the Glenwood Springs area. The hazards evaluated include subsidence, rockfall, debris flows, and floods, and in this paper we focus on debris flows and subsidence. Information on topography, hydrology, precipitation, geomorphic processes, bedrock and surficial geology, structural geology, soils, vegetation, and land use, was processed for hazard assessment using a series of algorithms. ARC/INFO and GRASS GIS softwares were used to produce maps and tables in a format accessible to urban planners. After geological hazards were defined for the study area, we estimated the vulnerability ( Ve) of various elements for an event of intensity i. Risk is assessed as a function of hazard and vulnerability. We categorized the study area in 14 classes for planning procedures; 7 classes defined as areas suitable for human settlement, and 7 classes defined as unsuitable for building, and most effectively reserved for parks and forests.
A new debris sensor based on dual excitation sources for online debris monitoring
NASA Astrophysics Data System (ADS)
Hong, Wei; Wang, Shaoping; Tomovic, Mileta M.; Liu, Haokuo; Wang, Xingjian
2015-09-01
Mechanical systems could be severely damaged by loose debris generated through wear processes between contact surfaces. Hence, debris detection is necessary for effective fault diagnosis, life prediction, and prevention of catastrophic failures. This paper presents a new in-line debris sensor for hydraulic systems based on dual excitation sources. The proposed sensor makes magnetic lines more concentrated while at the same time improving magnetic field uniformity. As a result the sensor has higher sensitivity and improved precision. This paper develops the sensor model, discusses sensor structural features, and introduces a measurement method for debris size identification. Finally, experimental verification is presented indicating that that the sensor can effectively detect 81 μm (cube) or larger particles in 12 mm outside diameter (OD) organic glass pipe.
Earth observation taken by the Expedition 29 crew
2011-10-07
ISS029-E-020003 (7 Oct. 2011) --- Parinacota Volcano in the Chile-Bolivia border region, South America is featured in this image photographed by an Expedition 29 crew member on the International Space Station. Volcan Parinacota (?flamingo lake? in the regional Aymara language) is a potentially active stratovolcano located on the Altiplano, a high plateau situated within the Andes Mountains of west-central South America. While no direct observations of eruptive activity are recorded, surface exposure age-dating of lava flows suggests that activity occurred as recently as 290 AD approximately 300 years, according to scientists. Local Aymara stories also suggest that the volcano has erupted during the past 1,000 years. This detailed photograph highlights the symmetrical cone of Parinacota, with its well-developed summit crater (elevation 6,348 meters above sea level) at center. Dark brown to dark gray surfaces to the east and west of the summit include lava flows, pyroclastic deposits, and ash. A companion volcano, Pomerape, is located across a low saddle to the north ? scientists believe this volcano last erupted during the Pleistocene Epoch (extending from approximately 3 million to 12,000 years ago). The summits of both volcanoes are covered by white permanent snowpack and small glaciers. Together, the two volcanoes form the Nevados de Payachata volcanic area. Eruptive activity at Parinacota has directly influenced development of the local landscape beyond the emplacement of volcanic deposits ? approximately 8,000 years ago the western flank of the volcano collapsed, creating a debris avalanche that traveled 22 kilometers to the west. This debris avalanche blocked drainages, leading to the formation of Lake Chungara to the south (upper right). The uneven, hummocky surface of the debris avalanche deposit provides ample catchments for water, as evidenced by the numerous small ponds and Cotacotani Lake to the west.
Distribution and avoidance of debris on epoxy resin during UV ns-laser scanning processes
NASA Astrophysics Data System (ADS)
Veltrup, Markus; Lukasczyk, Thomas; Ihde, Jörg; Mayer, Bernd
2018-05-01
In this paper the distribution of debris generated by a nanosecond UV laser (248 nm) on epoxy resin and the prevention of the corresponding re-deposition effects by parameter selection for a ns-laser scanning process were investigated. In order to understand the mechanisms behind the debris generation, in-situ particle measurements were performed during laser treatment. These measurements enabled the determination of the ablation threshold of the epoxy resin as well as the particle density and size distribution in relation to the applied laser parameters. The experiments showed that it is possible to reduce debris on the surface with an adapted selection of pulse overlap with respect to laser fluence. A theoretical model for the parameter selection was developed and tested. Based on this model, the correct choice of laser parameters with reduced laser fluence resulted in a surface without any re-deposited micro-particles.
User's Manual for Space Debris Surfaces (SD_SURF)
NASA Technical Reports Server (NTRS)
Elfer, N. C.
1996-01-01
A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design which is best suited to the predominant penetration mechanism. The analysis also indicates the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs and Microsoft EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII version 1.2a or 1.3 (Cosmic released). The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs.
NASA Astrophysics Data System (ADS)
Zhang, S.; Zhang, L. M.
2017-01-01
The 2008 Wenchuan earthquake triggered the largest number of landslides among the recent strong earthquake events around the world. The loose landslide materials were retained on steep terrains and deep gullies. In the period from 2008 to 2015, numerous debris flows occurred during rainstorms along the Provincial Road 303 (PR303) near the epicentre of the earthquake, causing serious damage to the reconstructed highway. Approximately 5.24 × 106 m3 of debris-flow sediment was deposited shortly after the earthquake. This paper evaluates the evolution of the debris flows that occurred after the Wenchuan earthquake, which helps understand long-term landscape evolution and cascading effects in regions impacted by mega earthquakes. With the aid of a GIS platform combined with field investigations, we continuously tracked movements of the loose deposit materials in all the debris flow gullies along an 18 km reach of PR303 and the characteristics of the regional debris flows during several storms in the past seven years. This paper presents five important aspects of the evolution of debris flows: (1) supply of debris flow materials; (2) triggering rainfall; (3) initiation mechanisms and types of debris flows; (4) runout characteristics; and (5) elevated riverbed due to the deposited materials from the debris flows. The hillslope soil deposits gradually evolved into channel deposits and the solid materials in the channels moved towards the ravine mouth. Accordingly, channelized debris flows became dominant gradually. Due to the decreasing source material volume and changes in debris flow characteristics, the triggering rainfall tends to increase from 30 mm h- 1 in 2008 to 64 mm h- 1 in 2013, and the runout distance tends to decrease over time. The runout materials blocked the river and elevated the riverbed by at least 30 m in parts of the study area. The changes in the post-seismic debris flow activity can be categorized into three stages, i.e., active, unstable, and recession.
Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.
We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less
Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model
NASA Astrophysics Data System (ADS)
Weitz, N.; Zanetti, M.; Osinski, G. R.; Fastook, J. L.
2018-07-01
Impact craters in the mid-latitudes of Mars are commonly filled to variable degrees with some combination of ice, dust, and rocky debris. Concentric surface features visible in these craters have been linked to debris transportation and glacial and periglacial processes. Concentric crater fill (CCF) observed today are interpreted to be the remains of repeated periods of accumulation and sublimation during the last tens to hundreds of million years. Previous work suggests that during phases of high obliquity, ice accumulates in crater interiors and begins to flow down steep crater slopes, slowly filling the crater. During times of low obliquity ice is protected from sublimation through a surface debris layer consisting of dust and rocky material. Here, we use an ice flow line model to understand the development of concentric crater fill. In a regional study of Utopia Planitia craters, we address questions about the influence of crater size on the CCF formation process, the time scales needed to fill an impact crater with ice, and explore commonly described flow features of CCF. We show that observed surface debris deposits as well as asymmetric flow features can be reproduced with the model. Using surface mass balance data from global climate models and a credible obliquity scenario, we find that craters less than 80 km in diameter can be entirely filled in less than 8 My, beginning as recently as 40 Ma ago. Uncertainties in input variables related to ice viscosity do not change the overall behavior of ice flow and the filling process. We model CCF for the Utopia Planitia region and find subtle trends for crater size versus fill level, crater size versus sublimation reduction by the surface debris layer, and crater floor elevation versus fill level.
NASA Astrophysics Data System (ADS)
Celis, C.; Sepulveda, S. A.; Castruccio, A.; Lara, M.
2017-12-01
Debris and mudflows are some of the main geological hazards in the mountain foothills of Central Chile. The risk of flows triggered in the basins of ravines that drain the Andean frontal range into the capital city, Santiago, increases with time due to accelerated urban expansion. Susceptibility assessments were made by several authors to detect the main active ravines in the area. Macul and San Ramon ravines have a high to medium debris flow susceptibility, whereas Lo Cañas, Apoquindo and Las Vizcachas ravines have a medium to low debris flow susceptibility. This study emphasizes in delimiting the potential hazardous zones using the numerical simulation program RAMMS-Debris Flows with the Voellmy model approach, and the debris-flow model LAHARZ. This is carried out by back-calculating the frictional parameters in the depositional zone with a known event as the debris and mudflows in Macul and San Ramon ravines, on May 3rd, 1993, for the RAMMS approach. In the same scenario, we calibrate the coefficients to match conditions of the mountain foothills of Santiago for the LAHARZ model. We use the information obtained for every main ravine in the study area, mainly for the similarity in slopes and material transported. Simulations were made for the worst-case scenario, caused by the combination of intense rainfall storms, a high 0°C isotherm level and material availability in the basins where the flows are triggered. The results show that the runout distances are well simulated, therefore a debris-flow hazard map could be developed with these models. Correlation issues concerning the run-up, deposit thickness and transversal areas are reported. Hence, the models do not represent entirely the complexity of the phenomenon, but they are a reliable approximation for preliminary hazard maps.
Model simulations of flood and debris flow timing in steep catchments after wildfire
NASA Astrophysics Data System (ADS)
Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.
2016-08-01
Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.
Model simulations of flood and debris flow timing in steep catchments after wildfire
Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J
2016-01-01
Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.
Highly concentrated EDTA gel improves cleaning efficiency of root canal preparation in vitro.
Putzer, P; Hoy, L; Günay, H
2008-12-01
Debris and smear layer, as a product of mechanical root canal instrumentation, reduce the effectiveness of pharmacological substances to prevent post-treatment diseases and impair direct contact of filling materials with a clean dentinal surface. The aim of this in vitro study was to investigate the presence and localization of debris and smear layer via scanning electron microscope analysis after standardized root canal preparation with different chelating agents. Dentin surfaces received treatment with: (1) 15% ethylenediaminetetraacetic acid (EDTA), (2) 18.6% EDTA (3) and 24% EDTA or without any demineralizing chemicals as control. Forty vertically split human premolars were sputtered and divided into coronal, middle, and apical sections, followed by a randomized, blinded score evaluation using five scores. Pairwise comparisons of all treatment groups against a control group have been performed by Mann-Whitney U test and the Kruskal-Wallis test. Debris grades showed no significant difference between the three regions of the root canals, except for 18.6% EDTA in the central third. Smear layer and smear plug removal was concentration-dependent. Removal of the smear layer in the three areas showed that there was a statistically significant difference between all parts when using 18.6% and 24% EDTA concentrations compared with the control. The best smear layer removal in the apical region was observed using a 24% EDTA gel as chelating agent and lubricant. The usage of EDTA gel >/=18.6% presented a better cleaning regime when compared to the control group.
NASA Astrophysics Data System (ADS)
Liou, J.-C.; Anz-Meador, P.; Opiela, J.; Christiansen, E.; Cowardin, H.; Davidson, W.; Ed-Wards, D.; Hedman, T.; Herrin, J.; Hyde, J.; Juarez, Q.; Lear, D.; McNamara, K.; Moser, D.; Ross, D.; Stansbery, E.
The STS-125 Atlantis astronauts retrieved the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) during a very successful servicing mission to the HST in May 2009. The radiator attached to WFPC2 has dimensions of 2.2 m by 0.8 m. Its outermost layer is a 4-mm thick aluminum plate covered with a white thermal control coating. This radiator had been exposed to space since the deployment of WFPC2 in 1993. Due to its large surface area and long exposure time, the radiator serves as a unique witness plate for the micrometeoroid and orbital debris (MMOD) environment between 560 and 620 km altitude. The NASA Orbital Debris Program Office is leading an effort, with full support from the HST Program at GSFC, NASA Curation Office at JSC, NASA Hypervelocity Impact Technology Facility at JSC, and NASA Meteoroid Environment Office at MSFC, to inspect the exposed radiator surface. The objective is to measure and analyze the MMOD impact damage on the radiator, and then apply the data to validate or improve the near-Earth MMOD environment definition. The initial inspection was completed in September 2009. A total of 685 MMOD impact features (larger than about 0.3 mm) were identified and documented. This paper will provide an overview of the inspection, the analysis of the data, and the initial effort to use the data to model the MMOD environment.
TerraSAR-X/TanDEM-X data for natural hazards research in mountainous regions of Uzbekistan
NASA Astrophysics Data System (ADS)
Semakova, Eleonora; Bühler, Yves
2017-07-01
Accurate and up-to-date digital elevation models (DEMs) are important tools for studying mountain hazards. We considered natural hazards related to glacier retreat, debris flows, and snow avalanches in two study areas of the Western Tien-Shan mountains, Uzbekistan. High-resolution DEMs were generated using single TerraSAR-X/TanDEM-X datasets. The high quality and actuality of the DEMs were proved through a comparison with Shuttle Radar Topography Mission, Advanced Spaceborne Emission and Reflection Radiometer, and Topo DEMs, using Ice, Cloud, and Land Elevation Satellite data as the reference dataset. For the first study area, which had high levels of economic activity, we applied the generated TanDEM-X DEM to an avalanche dynamics simulation using RAMMS software. Verification of the output results showed good agreement with field observations. For the second study area, with a wide spatial distribution of glaciers, we applied the TanDEM-X DEM to an assessment of glacier surface elevation changes. The results can be used to calculate the local mass balance in glacier ablation zones in other areas. Models were applied to estimate the probability of moraine-dammed lake formation and the affected area of a possible debris flow resulting from glacial lake outburst. The natural hazard research methods considered here will minimize costly ground observations in poorly accessible mountains and mitigate the impacts of hazards on the environment of Uzbekistan.
NASA Technical Reports Server (NTRS)
Wiegmann, Bruce M.; Hovater, Mary; Kos, Larry
2012-01-01
NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple sensors (including advanced star trackers), real-time vehicle pointing inputs, and more complex orbital debris images. This system is also adaptable to other sensor optics, missions, and installed sensor testing.
NASA Astrophysics Data System (ADS)
Blahut, J.; Luna, B. Quan; Akbas, S. O.; van Westen, C. J.
2009-04-01
On Sunday morning of 13th July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of Valtellina valley between Morbegno and Berbenno. One of the largest debris flows occurred in Selvetta, a fraction of Colorina municipality. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. At first several rock blocks about 2 m3 in size fell down from the direction of the torrent. The blocks were followed by a wave of debris and mud that immediately destroyed one building and caused damage to other nine houses. A stream flow following the debris flow consisting of fine mud with high water content that partially washed away the accumulation of deposits from the debris phase could also be distinguished. Geomorphologic investigations allowed identification of five main sections of the flow: 1) the proper scarp; 2) path in the forested area; 3) path on the alpine meadows; 4) accelerating section; 5) accumulation area. The initiation area of the flow is situated at 1760 m. a.s.l. (1480 m above the deposition zone) in a coniferous forest. The proper scarp consisted of an area of approximately 20 m2 in size, and a height of about 0.8 m. The final volume of the debris was estimated by field mapping to be between 12 000 and 15 000 m3. It was observed that erosion and entrainment played an important role in the development of the debris flow. The Selvetta event was modelled with the FLO2D program. FLO2D is an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. Entrainment was modeled at each section of the flow, and different hydrographs were produced in agreement with the behavior of the debris flow during its course. The significance of calculated values of pressure and velocity were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which is defined as the ratio between the monetary loss and the reconstruction value. Two different empirical vulnerability curves were obtained, which are functions of debris flow velocity and pressure, respectively.
NASA Astrophysics Data System (ADS)
De La Fuente, J. A.; Mikulovsky, R. P.
2016-12-01
Wildfires in summer 2014 burned more than 200,000 acres on the Klamath National Forest in Northern California, east of Seiad, CA. Much of the area burned at high and moderate severity, and is underlain by Slinkard Pluton granitic rock. During winter 2014-2015, there were a few debris flows in small streams, and some clogged culverts on the road system, but overall road damage was minor. In July of 2015, a strong convective storm triggered several large debris flows, including East Fork Walker and No Name Creeks. These and other debris flows damaged road stream crossings, and delivered a large volume of sediment to the stream network. LiDAR differencing is being used to identify and quantify erosion and deposition from that storm. Field inventories revealed widespread rills and small gullies on steep, burned hillslopes, particularly where underlain by granitic rock. Resulting debris flows were of the sediment bulking variety, and no landslide-triggered debris flows were observed. This may be because intense summer storms are of short duration, and are unlikely to saturate the surface mantle, due also to water repellant soil conditions. It is unknown if erosion during the first winter affected the response to the July storm. Storms around January 17, 2016 initiated many road fill failures, and most were limited to the outer half of the road. Field investigations revealed that granitic road fills failed in a variety of settings, including planar hillslopes, on the flanks of ridges, channel crossings, and at road dips. In virtually all cases, vegetation on the fills, up to 50 years old, had been killed by the 2014 fire. Some fills developed small cracks and scarps, whereas others failed catastrophically as debris slides/flows. Few sediment-bulking debris flows were observed in January, 2016. Road damage exceeded two million dollars, and qualified for Emergency Relief Federally Owned funding (ERFO). The effects of the July, 2015 storm were dominated by sheet wash, rilling, flooding, and debris flows, and road damage was concentrated at stream crossings. In contrast, storms in winter 2015-2016 produced many road fill failures, often far from stream crossings, and these were probably associated with deeper saturation of the regolith. Thus, it is critical that road repair measures address both overland flow and saturation responses.
San Francisco Bay Area Base Line Trash Loading (25001 - 50000 gal/yr)
Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.
San Francisco Bay Area Base Line Trash Loading (0-2500 gal/yr)
Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.
San Francisco Bay Area Base Line Trash Loading (2501 - 5000 gal/yr)
Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.
San Francisco Bay Area Base Line Trash Loading (5000 - 25000 gal/yr)
Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.
San Francisco Bay Area Base Line Trash Reduction - over 50,000 gal/yr
Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.
The impact of debris on the Florida manatee
Beck, C.A.; Barros, N.B.
1991-01-01
The endangered Florida manatee ingests debris while feeding. From 1978 through 1986, 439 salvaged manatees were examined. Debris was in the gastrointestinal tract of 63 (14.4%) and four died as a direct result of debris ingestion. Monofilament fishing line was the most common debris found (N=49). Plastic bags, string, twine, rope, fish hooks, wire, paper, cellophane, synthetic sponges, rubber bands, and stockings also were recovered. Entanglement in lines and nets killed 11 manatees from 1974 through 1985. Numerous free-ranging manatees have missing or scarred flippers from entanglements, or debris still encircling one or both flippers. We recommend local cleanups, education of the public, and fishing restrictions in high use areas to significantly reduce harm to manatees.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (e) Any chute opening, into which workmen dump debris, shall be protected by a substantial guardrail approximately 42 inches above the floor or other surface on which the men stand to dump the material. Any space... of materials or debris loaded therein. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (e) Any chute opening, into which workmen dump debris, shall be protected by a substantial guardrail approximately 42 inches above the floor or other surface on which the men stand to dump the material. Any space... of materials or debris loaded therein. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (e) Any chute opening, into which workmen dump debris, shall be protected by a substantial guardrail approximately 42 inches above the floor or other surface on which the men stand to dump the material. Any space... of materials or debris loaded therein. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (e) Any chute opening, into which workmen dump debris, shall be protected by a substantial guardrail approximately 42 inches above the floor or other surface on which the men stand to dump the material. Any space... of materials or debris loaded therein. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (e) Any chute opening, into which workmen dump debris, shall be protected by a substantial guardrail approximately 42 inches above the floor or other surface on which the men stand to dump the material. Any space... of materials or debris loaded therein. ...
LAD-C: A large area debris collector on the ISS
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. D.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Stansbery, E. G.; Tabata, M.; Westphal, A. J.; Yano, H.
2006-01-01
The Large Area Debris Collector (LAD-C) is a 10 sq m aerogel and acoustic sensor system under development by the U.S. Naval Research Laboratory (NRL) with main collaboration from the NASA Orbital Debris Program Office at Johnson Space Center, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of California at Berkeley, and University of Kent at Canterbury (UK). The U.S. Department of Defense (DoD) Space Test Program (STP) has assumed the responsibility for having the system manifested and deployed on the International Space Station (ISS), and then having it retrieved and returned to Earth after one to two years. LAD-C will attempt to utilize the ISS as a scientific platform to characterize the near-Earth meteoroid and orbital debris environment in the size regime where little data exist. In addition to meteoroid and orbital debris sample return, the acoustic sensors will record impact time, location, signal strength, and acoustic waveform data of the largest collected samples. A good time-dependent meteoroid and orbital debris flux estimate can be derived. Analysis of the data will also enable potential source identification of some of the collected samples. This dynamical link can be combined with laboratory composition analysis of impact residuals extracted from aerogel to further our understanding of orbital debris population, and the sources of meteoroids, asteroids and comets.
Detailed scour measurements around a debris accumulation
Mueller, David S.; Parola, Arthur C.
1998-01-01
Detailed scour measurements were made at Farm-Market 2004 over the Brazos River near Lake Jackson, Tex. during flooding in October 1994. Woody debris accumulations on bents 6, 7, and 8 obstructed flow through the bridge, causing scour of the streambed. Measurements at the site included three-dimensional velocities, channel bathymetry, water-surface elevations, water-surface slope, and discharge. Channel geometry upstream from the bridge caused approach conditions to be nonuniform.
Dahlström, Niklas; Nilsson, Christer
2004-03-01
Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.
NASA Astrophysics Data System (ADS)
Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A.
2017-02-01
The huge volcanic debris avalanche occurred at 4.5 ka is a major event in the evolution of the Cotopaxi volcano, Ecuador. The present volcanic hazard in the Cotopaxi region is related to lahars generated by volcanic eruptions and concurrent ice melting. This paper presents the geological and geotechnical field and laboratory characterization of the 4.5 ka Cotopaxi debris avalanche deposit and of the younger unconsolidated pyroclastic deposits, representing the probable source of future shallow landslides. The debris avalanche formed a deposit with a well-developed hummocky topography, and climbed a difference in height of about 260 m along the slopes of the adjacent Sincholagua volcano. The debris avalanche deposit includes four lithofacies (megablock, block, mixed, and sheared facies) that represent different flow regimes and degrees of substratum involvement. The facies distribution suggests that, in the proximal area, the debris avalanche slid predominantly confined to the valleys along the N and NE flank of the volcanic cone, emplacing a stack of megablocks. When the flow reached the break in slope at the base of the edifice, it became unconfined and spread laterally over most of the area of the Rio Pita valley. A dynamic block fragmentation and dilation occurred during the debris avalanche transport, emplacing the block facies. The incorporation of the older Chalupas Ignimbrite is responsible for the mixed facies and the sheared facies. Geotechnical results include a full-range grain size characterization, which enabled to make broader considerations on possible variability among the sampled facies. Consolidated drained triaxial compression tests, carried out on the fine fraction < 4.76 mm, point out that shear strength for cohesionless sandy materials is only due to effective friction angle, and show a quite homogeneous behaviour over the set of tested samples. The investigated post-4.5 pyroclastic deposits constitute a 5-12 m thick sequence of poorly consolidated materials that are interlayered with lava flows. Their geotechnical analyses have evidenced a strong variability in grain size distribution, reflecting the depositional processes, and a generally high porosity. Consolidated drained triaxial compression tests delineated a similar shear stress-strain behaviour among the different units, where shear strength is only due to friction angle. Failure surfaces are always well developed, indicating that the poorly consolidated pyroclastic cover could undergo failure leading to the formation of a gravity driven instability phenomena, like granular or debris flows, which are mainly controlled by the fine fraction. This work underlies the general necessity for a site-specific, and interdisciplinary approach in the characterization of volcanic successions to provide reliable data for gravitational instability studies.
Micrometeoroid/space debris effects on materials
NASA Technical Reports Server (NTRS)
Zwiener, James M.; Finckenor, Miria M.
1993-01-01
The Long Duration Exposure Facility (LDEF) micrometeoroid/space debris impact data has been reduced in terms that are convenient for evaluating the overall quantitative effect on material properties. Impact crater flux has been evaluated as a function of angle from velocity vector and as a function of crater size. This data is combined with spall data from flight and ground testing to calculate effective solar absorption and emittance values versus time. Results indicate that the surface damage from micrometeoroid/space debris does not significantly affect the overall surface optical thermal physical properties. Of course the local damage around impact craters radically alter optical properties. Damage to composites and solar cells on an overall basis was minimal.
Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre.
Goldstein, Miriam C; Goodwin, Deborah S
2013-01-01
Substantial quantities of small plastic particles, termed "microplastic," have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG) since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the "rafting assemblage," are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp.), which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem.
Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre
Goodwin, Deborah S.
2013-01-01
Substantial quantities of small plastic particles, termed “microplastic,” have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG) since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the “rafting assemblage,” are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp.), which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem. PMID:24167779
Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set.
Law, Kara Lavender; Morét-Ferguson, Skye E; Goodwin, Deborah S; Zettler, Erik R; Deforce, Emelia; Kukulka, Tobias; Proskurowski, Giora
2014-05-06
We present an extensive survey of floating plastic debris in the eastern North and South Pacific Oceans from more than 2500 plankton net tows conducted between 2001 and 2012. From these data we defined an accumulation zone (25 to 41 °N, 130 to 180 °W) in the North Pacific subtropical gyre that closely corresponds to centers of accumulation resulting from the convergence of ocean surface currents predicted by several oceanographic numerical models. Maximum plastic concentrations from individual surface net tows exceeded 10(6) pieces km(-2), with concentrations decreasing with increasing distance from the predicted center of accumulation. Outside the North Pacific subtropical gyre the median plastic concentration was 0 pieces km(-2). We were unable to detect a robust temporal trend in the data set, perhaps because of confounded spatial and temporal variability. Large spatiotemporal variability in plastic concentration causes order of magnitude differences in summary statistics calculated over short time periods or in limited geographic areas. Utilizing all available plankton net data collected in the eastern Pacific Ocean (17.4 °S to 61.0 °N; 85.0 to 180.0 °W) since 1999, we estimated a minimum of 21,290 t of floating microplastic.
Pedrotti, Maria Luiza; Petit, Stéphanie; Elineau, Amanda; Bruzaud, Stéphane; Crebassa, Jean-Claude; Dumontet, Bruno; Martí, Elisa; Gorsky, Gabriel; Cózar, Andrés
2016-01-01
The composition, size distribution, and abundance of floating plastic debris in surface waters of the Mediterranean Sea were analyzed in relation to distance to land. We combined data from previously published reports with an intensive sampling in inshore waters of the Northwestern Mediterranean. The highest plastic concentrations were found in regions distant from from land as well as in the first kilometer adjacent to the coastline. In this nearshore water strip, plastic concentrations were significantly correlated with the nearness to a coastal human population, with local areas close to large human settlements showing hundreds of thousands of plastic pieces per km2. The ratio of plastic to plankton abundance reached particularly high values for the coastal surface waters. Polyethylene, polypropylene and polyamides were the predominant plastic polymers at all distances from coast (86 to 97% of total items), although the diversity of polymers was higher in the 1-km coastal water strip due to a higher frequency of polystyrene or polyacrylic fibers. The plastic size distributions showed a gradual increase in abundance toward small sizes indicating an efficient removal of small plastics from the surface. Nevertheless, the relative abundance of small fragments (< 2 mm) was higher within the 1-km coastal water strip, suggesting a rapid fragmentation down along the shoreline, likely related with the washing ashore on the beaches. This study constitutes a first attempt to determine the impact of plastic debris in areas closest to Mediterranean coast. The presence of a high concentration of plastic including tiny plastic items could have significant environmental, health and economic impacts.
Petit, Stéphanie; Elineau, Amanda; Bruzaud, Stéphane; Crebassa, Jean-Claude; Dumontet, Bruno; Martí, Elisa; Gorsky, Gabriel; Cózar, Andrés
2016-01-01
The composition, size distribution, and abundance of floating plastic debris in surface waters of the Mediterranean Sea were analyzed in relation to distance to land. We combined data from previously published reports with an intensive sampling in inshore waters of the Northwestern Mediterranean. The highest plastic concentrations were found in regions distant from from land as well as in the first kilometer adjacent to the coastline. In this nearshore water strip, plastic concentrations were significantly correlated with the nearness to a coastal human population, with local areas close to large human settlements showing hundreds of thousands of plastic pieces per km2. The ratio of plastic to plankton abundance reached particularly high values for the coastal surface waters. Polyethylene, polypropylene and polyamides were the predominant plastic polymers at all distances from coast (86 to 97% of total items), although the diversity of polymers was higher in the 1-km coastal water strip due to a higher frequency of polystyrene or polyacrylic fibers. The plastic size distributions showed a gradual increase in abundance toward small sizes indicating an efficient removal of small plastics from the surface. Nevertheless, the relative abundance of small fragments (< 2 mm) was higher within the 1-km coastal water strip, suggesting a rapid fragmentation down along the shoreline, likely related with the washing ashore on the beaches. This study constitutes a first attempt to determine the impact of plastic debris in areas closest to Mediterranean coast. The presence of a high concentration of plastic including tiny plastic items could have significant environmental, health and economic impacts. PMID:27556233
RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeffer, J.
2008-06-10
The 48-acre David Witherspoon, Inc. (DWI) 1630 Site operated as an unregulated industrial landfill and scrap yard. The Tennessee Division of Superfund (TDSF) closed the landfill in 1974. During the period of operation, the site received solid and liquid wastes from salvage and industrial operations. The site consists of five separate tracts of land including a small portion located across the Norfolk Southern Railroad track. The landfill occupies approximately 5 acres of the site, and roughly 20 acres of the 48 acres contains surface and buried debris associated with the DWI dismantling business operation. Beginning in 1968, the state ofmore » Tennessee licensed DWI to receive scrap metal at the DWI 1630 Site, contaminated with natural uranium and enriched uranium (235U) not exceeding 0.1 percent by weight (TDSF 1990). The U.S. Department of Energy (DOE) has agreed to undertake remedial actions at the DWI 1630 Site as specified under a Consent Order with the Tennessee Department of Environment and Conservation (TDEC) (Consent Order No. 90-3443, April 4, 1991), and as further delineated by a Memorandum of Understanding (MOU) between DOE and the State of Tennessee (MOU Regarding Implementation of Consent Orders, October 6, 1994). The soil and debris removal at the DWI 1630 Site is being performed by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. Remediation consists of removing contaminated soil and debris from the DWI 1630 site except for the landfill area and repairing the landfill cap. The DWI 1630 remediation waste that is being disposed at the Environmental Management Waste Management Facility (EMWMF) as defined as waste lot (WL) 146.1 and consists primarily of soils and soil like material, incidental debris and secondary waste generated from the excavation of debris and soil from the DWI 1630 site. The WL 146.1 includes soil, soil like material (e.g., shredded or chipped vegetation, ash), discrete debris items (e.g., equipment, drums, large scrap metal, cylinders, and cable) and populations of debris type items (e.g., piles of bricks, small scrap metal, roofing material, scaffolding, and shelving) that are located throughout the DWI 1630 site. The project also generates an additional small volume of secondary waste [e.g., personal protective equipment (PPE), and miscellaneous construction waste] that is bagged and included in bulk soil shipments to the EMWMF. The Waste Acceptance Criteria (WAC) for the EMWMF does not allow for material that does not meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs). The waste being excavated in certain areas of the DWI 1630 site contained soil that did not meet RCRA LDR criteria; therefore this waste had to be segregated for treatment or alternate disposal offsite. This document identifies the approach taken by the DWI 1630 project to further characterize the areas identified during the Phase II Remedial Investigation (RI) as potentially containing RCRA-characteristic waste. This document also describes the methodology used to determine excavation limits for areas determined to be RCRA waste, post excavation sampling, and the treatment and disposal of this material.« less
Design of improved ceramic/polymeric composites
NASA Astrophysics Data System (ADS)
Seghi, Steven Monte
This thesis describes an optimized approach for fabrication of boron nitride matrix composites reinforced with carbon fibers. The boron nitride was introduced via liquid infiltration of borazine oligomer to obtain high density (rho ˜ 1.75g/cc) composites and d002 spacings of 3.35A, which afforded excellent hydrolytic stability. The friction and wear properties were explored using an inertial dynamometer for potential replacement of current C/C in aircraft brakes. One set of tested composites provided outstanding wear resistance, incurring nearly zero wear across the entire range tested. In contrast to C/C, the coefficient of friction (COF) was relatively stable with respect to energy level, varying only 0.2 to 0.3. The wear surface morphologies were examined and it was found that low volume BN composites wore by a mechanism similar to C/C. The wear rates were controlled by the formation of a friction film from the wear debris. In the case of BN composites, this film incurred wear via an abrasive and brittle fracture mechanism while C/C exhibited only abrasive wear. As the BN content increased, a film still formed from the debris but large particles of BN emerged that limited direct contact of the surfaces thus effectively eliminating abrasive wear so the underlying film wore via brittle fracture. The removed wear debris was easily reincorporated into the film, with the suspected aid of boron oxide, thus keeping the wear rates low. The last chapter deals with the design, fabrication, and evaluation of a new coupling agent for glass fiber/epoxy matrix composites. This interface consisted of a thin coating of activated carbon (ACI) with high surface area to take advantage of mechanical interlocking. Furthermore, the surface chemistry was modified to provide varying degrees of bonding to the resin. These ACI provided equivalent moduli when compared to similar composites using commercial coupling agents. Hygrothermal aging showed the basic surface chemistry ACI to be extremely resistant to mechanical property degradation. The ACI systems displayed two distinct failure modes, fiber/matrix fracture and fiber debonding, controlled by the interface strength and thus the surface chemistry. These different failure modes led to a damage evolution study via thermoelastic stress analysis.
Interactions between geomorphology and vegetation in the Western Swiss Alps: first investigations
NASA Astrophysics Data System (ADS)
Giaccone, Elisa; Mariéthoz, Grégoire; Lambiel, Christophe
2017-04-01
The influence of earth surface processes can modify the microhabitat conditions and the species richness, composition and distribution patterns of plant communities. It is therefore important to understand how geomorphology affects the distribution of plant species to predict future vegetation evolution in a context of climate change. To better analyse the influence of geomorphology on vegetation growth in the alpine periglacial belt, we are studying various geomorphological processes (e.g. cryoturbation and solifluction), permafrost, nivation and ground surface characteristics at three focus sites of the Vaud Alps (Western Swiss Alps). The sites are located at an altitude range comprised between 2000 and 2600 m a.s.l. The geomorphology is characterized mainly by the presence of small glaciers, large moraine deposits, rock glaciers and debris slopes. Monitoring of the ground surface temperatures, permafrost mapping, vegetation survey and drone flights have been carried out to investigate in detail the environmental variables. Initial results show a heterogeneous vegetation cover depending on time since deglaciation, debris size, ground stability and soil age. Debris pioneer species are present on moraines, rock glaciers and debris slope; grassland are developed in zones not affected by LIA glacier advances or other interfering processes such as avalanches. The high-resolution images obtained from drone flights (5 cm/pixel) allow a detailed study of the granulometry. In order to use such geomorphological information on a wider area of interest, the local data acquired on focus sites have to be spatialized to a regional scale. This is accomplished by developing an approach based on remote sensing and multiple-point geostatistics that performs a semi-automated geomorphological mapping (SAGM). The SAGM is based on a training image composed by a geomorphological map yet existent, an orthophoto, the slope, the aspect, the curvature, the granulometry classification and the NDVI. The SAGM will be first elaborated for the focus sites and will then be extended to the entire Vaud Alps above 2000 m a.s.l. This information will be used to better understand the geomorphology-vegetation interactions and their spatialization.
NASA Technical Reports Server (NTRS)
See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.
1995-01-01
Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).
LDEF data: Comparisons with existing models
NASA Astrophysics Data System (ADS)
Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.
1993-04-01
The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.
NASA Astrophysics Data System (ADS)
See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.
1995-02-01
Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).
LDEF data: Comparisons with existing models
NASA Technical Reports Server (NTRS)
Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.
1993-01-01
The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.
Spacecraft-plasma-debris interaction in an ion beam shepherd mission
NASA Astrophysics Data System (ADS)
Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo
2018-05-01
This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.
Physical properties of glasses exposed to Earth-facing and trailing-side environments on LDEF
NASA Technical Reports Server (NTRS)
Wiedlocher, David E.; Kinser, Donald L.; Weller, Robert A.; Weeks, Robert A.; Mendenhall, Marcus H.
1993-01-01
The exposure of 108 glass samples and 12 glass-ceramic samples to Earth-orbit environments permitted measurements which establish the effects of each environment. Examination of five glass types and one glass ceramic located on both the Earth-facing side and the trailing edge revealed no reduction in strength within experimental limits. Strength measurements subjected less than 5 percent of the sample surface area to stresses above 90 percent of the glass's failure strength. Seven micrometeorite or space debris impacts occurred on trailing edge samples. One of those impacts occurred in a location which was subjected to 50 percent of the applied stress at failure. Micrometeorite or space debris impacts were not observed on Earth-facing samples. The physical shape and structure of the impact sites were carefully examined using stereographic scanning electron microscopy. These impacts induce a stress concentration at the damaged region which influences mechanical strength. The flaw size produced by such damage was examined to determine the magnitude of strength degradation in micrometeorite or space-debris impacted glasses. Scanning electron microscopy revealed topographical details of impact sites which included central melt zones and glass fiber production. The overall crater structure is similar to much larger impacts of large meteorite on the Moon in that the melt crater is surrounded by shocked regions of material which fracture zones and spall areas. Residual stresses arising from shock compression and cooling of the fused zone cannot currently be included in fracture mechanics analyses based on simple flaw size examination.
The Continuous Monitoring of Flash Flood Velocity Field based on an Automated LSPIV System
NASA Astrophysics Data System (ADS)
Li, W.; Ran, Q.; Liao, Q.
2014-12-01
Large-scale particle image velocimetry (LSPIV) is a non-intrusive tool for flow velocity field measurement and has more advantages against traditional techniques, with its applications on river, lake and ocean, especially under extreme conditions. An automated LSPIV system is presented in this study, which can be easily set up and executed for continuous monitoring of flash flood. The experiment site is Longchi village, Sichuan Province, where 8.0 magnitude earthquake occurred in 2008 and debris flow happens every year since then. The interest of area is about 30m*40m of the channel which has been heavily destroyed by debris flow. Series of videos obtained during the flood season indicates that flood outbreaks after rainstorm just for several hours. Measurement is complete without being influenced by this extreme weather condition and results are more reliable and accurate due to high soil concentration. Compared with direct measurement by impellor flow meter, we validated that LSPIV works well at mountain stream, with index of 6.7% (Average Relative Error) and 95% (Nash-Sutcliffe Coefficient). On Jun 26, the maximum flood surface velocity reached 4.26 m/s, and the discharge based on velocity-area method was also decided. Overall, this system is safe, non-contact and can be adjusted according to our requirement flexibly. We can get valuable data of flood which is scarce before, which will make a great contribution to the analysis of flood and debris flow mechanism.
NASA Astrophysics Data System (ADS)
Traper, Sandra; Pöppl, Ronald; Rascher, Eric; Sass, Oliver
2016-04-01
In recent times different types of natural disasters like debris flow events have attracted increasing attention worldwide, since they can cause great damage and loss of infrastructure or even lives is not unusual when it comes to such an event. The engagement with debris flows is especially important in mountainous areas like Austria, since Alpine regions have proved to be particularly prone to the often harmful consequences of such events because of increasing settlement of previously uninhabited regions. Due to those frequently damaging effects of debris flows, research on this kind of natural disaster often focuses on mitigation and recovery measures after an event and on how to restore the initial situation. However, a view on the situation of an area, where severe debris flows recently occurred and are well documented, before the actual event can aid in discovering important preparatory factors that contribute to initiating debris flows and hillslope-channel connectivity in the first place. Valuable insights into the functioning and preconditions of debris flows and their potential connectivity to the main channel can be gained. The study focuses on two geologically different areas in the Austrian Alps, which are both prone to debris flows and have experienced rather severe events recently. Based on data from debris flow events in two regions in Styria (Austria), the Kleinsölk and the Johnsbach valleys, the aim of the study is to identify factors which influence the development of debris flows and the potential of such debris flows to reach the main channel potentially clogging up the river (hillslope-channel connectivity). The degree of hillslope-channel coupling was verified in extensive TLS and ALS surveys, resulting in DEMs of different resolution and spatial extension. Those factors are obtained, analyzed and evaluated with DEM-based GIS- and statistical analyses. These include factors that are attributed to catchment topography, such as slope angle, curvature, size, shape as well as topographic channel parameters. Together with factors of land cover/use and lithology those features provide the independent variables for further statistical analyses. With the help of several logistic regressions the likelihoods of influencing topographical and lithological factors and factors of land cover/use leading to debris flow events and those for debris flows to reach the main channel (hillslope-channel connectivity) are computed. First results will be presented at the EGU General Assembly 2016.
Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia.
Syakti, Agung Dhamar; Bouhroum, Rafika; Hidayati, Nuning Vita; Koenawan, Chandra Joei; Boulkamh, Abdelaziz; Sulistyo, Isdy; Lebarillier, Stephanie; Akhlus, Syafsir; Doumenq, Pierre; Wong-Wah-Chung, Pascal
2017-09-15
Qualitative analysis of the structures of the polymers composing floating plastic debris was performed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the aging of the debris was assessed by measuring carbonyl group formation on the particle surfaces. Plastic material made up >75% of the 2313 items collected during a three-year survey. The size, shape and color of the microplastic were correlated with the polymer structure. The most abundant plastic materials were polypropylene (68%) and low-density polyethylene (11%), and the predominant colors of the plastics were white, blue and green. Cilacap Bay, Indonesia, was contaminated with microplastic at a concentration of 2.5mg·m 3 . The carbonyl index demonstrated that most of the floating microplastic was only slightly degraded. This study highlights the need to raise environmental awareness through citizen science education and adopting good environmental practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
As main meal for sperm whales: plastics debris.
de Stephanis, Renaud; Giménez, Joan; Carpinelli, Eva; Gutierrez-Exposito, Carlos; Cañadas, Ana
2013-04-15
Marine debris has been found in marine animals since the early 20th century, but little is known about the impacts of the ingestion of debris in large marine mammals. In this study we describe a case of mortality of a sperm whale related to the ingestion of large amounts of marine debris in the Mediterranean Sea (4th published case worldwide to our knowledge), and discuss it within the context of the spatial distribution of the species and the presence of anthropogenic activities in the area that could be the source of the plastic debris found inside the sperm whale. The spatial distribution modelled for the species in the region shows that these animals can be seen in two distinct areas: near the waters of Almería, Granada and Murcia and in waters near the Strait of Gibraltar. The results shows how these animals feed in waters near an area completely flooded by the greenhouse industry, making them vulnerable to its waste products if adequate treatment of this industry's debris is not in place. Most types of these plastic materials have been found in the individual examined and cause of death was presumed to be gastric rupture following impaction with debris, which added to a previous problem of starvation. The problem of plastics arising from greenhouse agriculture should have a relevant section in the conservation plans and should be a recommendation from ACCOBAMS due to these plastics' and sperm whales' high mobility in the Mediterranean Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.
Landfill Remediation Feasibility Study, Devens, Massachusetts. Volume 2. Appendices A Through F
1997-01-01
number of demolition debris disposal areas throughout Fort Devens . These disposal areas are in addition to the Shepley’s Hill Landfill which has served as...manner, in particular the cost savings from lower operating and maintenance requirements at a consolidated disposal area. Fort Devens , Massachusetts...information summarizes the current situation at Shepley’s Hill Landfill and the significant debris disposal areas at Fort Devens (see also Table 1). AOC 5
Bio-Environment-Induced Degradation and Failure of Internal Fixation Implants.
Zhou, Yan; Perkins, Luke A; Wang, Guodong; Zhou, Dongsheng; Liang, Hong
2015-10-15
Internal fixations provide fast healing but their failure remains problematic to patients. Here, we report an experimental study in failure of three typical cases of metals: a bent intramedullary stainless steel nail, a broken exterior pure Ti plate, and a broken intramedullary stainless steel nail. Characterization of the bent nail indicates that those metals are vulnerable to corrosion with the evidence of increased surface roughness and embrittlement. Depredated surface of the Ti plate resulted debris particles in the surrounding tissue of 15.2 ± 6.5 μm in size. Nanoparticles were observed in transmission electron microscope. The electron diffraction pattern of the debris indicates a combination of nanocrystalline and amorphous phases. The failure mode of the broken nail made of stainless steel was found to be fatigue initiated from the surface. This study clearly shows the biological-attack induced surface degradation resulting in debris and fatigue. Future design and selection of implant materials should consider such factors for improvement.
Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.
2011-01-01
In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya. In addition, Interstate Highway 25, Raton Creek and the rail line in Railroad Canyon, County road A-27, and State Highway 526 in Sugarite Canyon may also be affected where they cross drainages downstream from recently burned basins. Although this assessment indicates that a rather large debris flow (approximately 42,000 cubic meters) may be generated from the basin above the City of Raton (basin 9) in response to the design storm, the probability of such an event is relatively low (approximately 10 percent). Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into the City of Raton. In addition, even small debris flows may affect structures at or downstream from basin outlets and increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Track Fire.
Highway Safety Program Manual: Volume 16: Debris Hazard Control and Cleanup.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
Volume 16 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on debris hazard control and cleanup. The purpose and objectives of such a program are outlined. Federal authority in the area of highway safety and policies regarding a debris control…
Code of Federal Regulations, 2011 CFR
2011-04-01
... prescribe with respect to each debris dam or other works the rate of tax payable in the area served by the particular debris dam or works. The Secretary of the Army will notify the Secretary of the Treasury of the rate of tax fixed with respect to each debris dam or works as such rate becomes known. (b) Measure of...
Code of Federal Regulations, 2010 CFR
2010-04-01
... prescribe with respect to each debris dam or other works the rate of tax payable in the area served by the particular debris dam or works. The Secretary of the Army will notify the Secretary of the Treasury of the rate of tax fixed with respect to each debris dam or works as such rate becomes known. (b) Measure of...
Rapid Assessment of Tree Debris Following Urban Forest Ice Storms
Richard J. Hauer; Angela J. Hauer; Dudley R. Hartel; Jill R. Johnson
2011-01-01
This paper presents a rapid assessment method to estimate urban tree debris following an ice storm. Data were collected from 60 communities to quantify tree debris volumes, mostly from public rights-of-way, following ice storms based on community infrastructure, weather parameters, and urban forest structure. Ice thickness, area of a community, and street distance are...
Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787).
Costa, Leonardo Lopes; Rangel, Danilo Freitas; Zalmon, Ilana Rosental
2018-03-01
Sandy beaches are sites of marine debris stranding, but the interaction of beach biota with waste is poorly studied. The objective of this study was to investigate whether the ghost crab Ocypode quadrata selects marine debris by types using a non-destructive method on sandy beaches of Southeastern Brazil. We found marine debris in 7% of 1696 surveyed burrows, and the ghost crabs selectivity was mainly by soft plastic (30%), straw (11%), rope (6%) and foam (4%). Burrows with marine debris showed higher occupation rate (~68%) compared to burrows without debris (~28%), indicating that these materials may increase the capacity of ghost crabs to memorize their burrows placement (homing). The percentage of marine debris was not always related to their amount in the drift line, but ghost crabs used more debris near urbanized areas. Future studies should test whether ghost crabs are using marine debris for feeding, homing or other mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wooten, R.M.; Gillon, K.A.; Witt, A.C.; Latham, R.S.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.; Lee, L.G.
2008-01-01
In September 2004, rain from the remnants of Hurricanes Frances and Ivan triggered at least 155 landslides in the Blue Ridge Mountains of North Carolina. At least 33 debris flows occurred in Macon County, causing 5 deaths, destroying 16 homes, and damaging infrastructure. We mapped debris flows and debris deposits using a light-detecting and ranging digital elevation model, remote imagery and field studies integrated in a geographic information system. Evidence of past debris flows was found at all recent debris flow sites. Orographic rainfall enhancement along topographic escarpments influenced debris flow frequency at higher elevations. A possible trigger for the Wayah and fatal Peeks Creek debris flows was a spiral rain band within Ivan that moved across the area with short duration rainfall rates of 150-230 mm/h. Intersecting bedrock structures in polydeformed metamorphic rock influence the formation of catchments within structural-geomorphic domains where debris flows originate. ?? 2007 Springer-Verlag.
Risk assessment of debris flow in Yushu seismic area in China: a perspective for the reconstruction
NASA Astrophysics Data System (ADS)
Lan, H. X.; Li, L. P.; Zhang, Y. S.; Gao, X.; Liu, H. J.
2013-11-01
The 14 April 2010 Ms = 7.1 Yushu Earthquake (YE) had caused severe damage in the Jiegu township, the residential centre of Yushu Tibetan Autonomous Prefecture, Qinghai Province, China. In view of the fragile geological conditions after YE, risk assessment of secondary geohazards becomes an important concern for the reconstruction. A quantitative methodology was developed to assess the risk of debris flow by taking into account important intensity information. Debris flow scenarios were simulated with respect to rainfall events with 10, 50 and 100 yr returning period, respectively. The possible economic loss and fatalities caused by damage to buildings were assessed both in the settlement area and in the low hazard settlement area regarding the simulated debris flow events. Three modelled building types were adopted, i.e. hollow brick wood (HBW), hollow brick concrete (HBC) and reinforced concrete (RC) buildings. The results suggest that HBC structure achieves a good balance for the cost-benefit relationship compared with HBW and RC structures and thus could be an optimal choice for most of the new residential buildings in the Jiegu township. The low hazard boundary presents significant risk reduction efficiency in the 100 yr returning debris flow event. In addition, the societal risk for the settlement area is unacceptable when the 100 yr returning event occurs but reduces to ALARP (as low as reasonably practicable) level as the low hazard area is considered. Therefore, the low hazard area was highly recommended to be taken into account in the reconstruction. Yet, the societal risk might indeed approach an unacceptable level if one considers that YE has inevitably increased the occurrence frequency of debris flow. The quantitative results should be treated as a perspective for the reconstruction rather than precise numbers of future losses, owing to the complexity of the problem and the deficiency of data.
POST Earthquake Debris Management — AN Overview
NASA Astrophysics Data System (ADS)
Sarkar, Raju
Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction and demolition debris following an earthquake.
POST Earthquake Debris Management - AN Overview
NASA Astrophysics Data System (ADS)
Sarkar, Raju
Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction and demolition debris following an earthquake.
Environmental studies of the World Trade Center area after the September 11, 2001 attack
Clark, Roger N.; Green, Robert O.; Swayze, Gregg A.; Meeker, Greg; Sutley, Steve; Hoefen, Todd M.; Livo, K. Eric; Plumlee, Geoff; Pavri, Betina; Sarture, Chuck; Wilson, Steve; Hageman, Phil; Lamothe, Paul; Vance, J. Sam; Boardman, Joe; Brownfield, Isabelle; Gent, Carol; Morath, Laurie C.; Taggart, Joseph; Theodorakos, Peter M.; Adams, Monique
2001-01-01
This web site describes the results of an interdisciplinary environmental characterization of the World Trade Center (WTC) area after September 11, 2001.Information presented in this site was first made available to the World Trade Center emergency response teams on September 18, 2001 (Thermal hot spot information), and September 27, 2001 (maps and compositional results).The Airborne Visible / Infrared Imaging Spectrometer (AVIRIS), a hyperspectral remote sensing instrument, was flown by JPL/NASA over the World Trade Center (WTC) area on September 16, 18, 22, and 23, 2001 ( Link to the AVIRIS JPL data facility). A 2-person USGS crew collected samples of dusts and airfall debris from more than 35 localities within a 1-km radius of the World trade Center site on the evenings of September 17 and 18, 2001. Two samples were collected of indoor locations that were presumably not affected by rainfall (there was a rainstorm on September 14). Two samples of material coating a steel beam in the WTC debris were also collected. The USGS ground crew also carried out on-the-ground reflectance spectroscopy measurements during daylight hours to field calibrate AVIRIS remote sensing data. Radiance calibration and rectification of the AVIRIS data were done at JPL/NASA. Surface reflectance calibration, spectral mapping, and interpretation were done at the USGS Imaging Spectroscopy Lab in Denver. The dust/debris and beam-insulation samples were analyzed for a variety of mineralogical and chemical parameters using Reflectance Spectroscopy (RS), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), chemical analysis, and chemical leach test techniques in U.S. Geological Survey laboratories in Denver, Colorado.
NASA Astrophysics Data System (ADS)
Brook, Martin; Winkler, Stefan
2016-04-01
Glaciation on the central North Island of New Zealand is limited to the volcanoes of Tongariro National Park, including Mt Ruapehu, the largest and most active andesitic stratovolcano on the North Island. At 2797 m asl, Mt Ruapehu represents the only peak in the North Island to currently intercept the permanent snowline, with small cirque glaciers descending to an altitude of ~2300 m. During the last glacial maximum (LGM), small ice-caps existed on Mt Ruapehu and the Tongariro Massif (15 km to the NNE of Ruapehu), with a series of small (<10 km-long) valley glaciers radiating out from domes centered on the summit areas to altitudes of ~1200 m. Holocene glacier advances have left smaller deposits inboard of some of the LGM moraines. However, understanding of moraine deposition and reconstructing former glacier extent is limited by: (1) the fragmentary nature of glacier moraines in this high precipitation environment; and (2) the broad range of possible process-origins for unconsolidated debris ridges on active volcanoes. Here, we describe the clast roundness, clast shape and textural characteristics associated with active and former glaciers on Mt Ruaephu and the Tongariro Massif, in order to assist in classifying the process-origin of sediments on glaciated volcanic mountains. Supraglacial inputs include rockfall, tephra, and avalanche material delivered to the surface of glaciers. Basal debris, where observed at the terminus of active cirque glaciers, consists mainly of incorporated fluvial material. Following deposition, reworking is mainly by proglacial streams, debris flows and lahars. Within the vicinity of glaciers, the dominant facies appear to be: (i) bouldery gravel with angular clasts on steep slopes surrounding glaciers, (ii) silty-sandy boulder gravel, with mainly subangular clasts, forming lateral moraines, (iii) boulder/cobble gravel with mainly subrounded clasts and associated laminated sediments representing fluvially-reworked material; and (iv) debris-avalanche deposits including fragmental rock clasts with an unsorted inter-clast matrix. As some of these deposits appear to include unambiguous indicators of glacial transport, interpretation of unconsolidated debris ridges on volcanic mountains should not necessarily exclude the contribution of glacial processes.
Mechanical seal having a single-piece, perforated mating ring
Khonsari, Michael M [Baton Rouge, LA; Somanchi, Anoop K [Fremont, CA
2007-08-07
A mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) with reduced contact surface temperature, reduced contact surface wear, or increased life span. The mechanical seal comprises a rotating ring and a single-piece, perforated mating ring, which improves heat transfer by controllably channeling coolant flow through the single-piece mating ring such that the coolant is in substantially uniform thermal contact with a substantial portion of the interior surface area of the seal face, while maintaining the structural integrity of the mechanical seal and minimizing the potential for coolant flow interruptions to the seal face caused by debris or contaminants (e.g., small solids and trash) in the coolant.
Landslide overview map of the conterminous United States
Radbruch-Hall, Dorothy H.; Colton, Roger B.; Davies, William E.; Lucchitta, Ivo; Skipp, Betty A.; Varnes, David J.
1982-01-01
The accompanying landslide overview map of the conterminous United States is one of a series of National Environmental Overview Maps that summarize geologic, hydrogeologic, and topographic data essential to the assessment of national environmental problems. The map delineates areas where large numbers of landslides exist and areas which are susceptible to landsliding. It was prepared by evaluating the geologic map of the United States and classifying the geologic units according to high, medium, or low landslide incidence (number) and high, medium, or low susceptibility to landsliding. Rock types, structures, topography, precipitation, landslide type, and landslide incidence are mentioned for each physical subdivision of the United States. The differences in slope stability between the Colorado Plateau, the Appalachian Highlands, the Coast Ranges of California, and the Southern Rocky Mountains are compared in detail, to illustrate the influence of various natural factors on the types of landsliding that occur in regions having different physical conditions. These four mountainous regions are among the most landslide-prone areas in the United States. The Colorado Plateau is a deformed platform where interbedded sedimentary rocks of varied lithologic properties have been gently warped and deeply eroded. The rocks are extensively fractured. Regional fracture systems, joints associated with individual geologic structures, and joints parallel to topographic surfaces, such as cliff faces, greatly influence slope stability. Detached blocks at the edges of mesas, as well as columns, arched recesses, and many natural arches on the Colorado Plateau, were formed wholly or in part by mass movement. In the Appalachian Highlands, earth flows, debris flows, and debris avalanches predominate in weathered bedrock and colluvium. Damaging debris avalanches result when persistent steady rainfall is followed by a sudden heavy downpour. Landsliding in unweathered bedrock is controlled locally by joint systems similar to those on the Colorado Plateau. In some places, outward gravitational movement of valley walls due to stress release has formed anticlines and caused thrusting in the center of valleys. In the Coast Ranges of California, slopes are steep, and rocks are varied and extensively deformed. One of the most slide-prone terrains of the Coast Ranges is the tectonic melange of the Franciscan assemblage, on which huge masses of debris are moving slowly downslope. In southern California, debris flows generated by soil slips are particularly damaging. Similar flows are common in poorly consolidated Tertiary rocks of the central part of the State. Like the debris avalanches of the Appalachian Highlands, the flows form during intense rainfall after previous steady rain. The Southern Rocky Mountains are complex in rock type and climate, so that the landslides there are also complex. Slides range from rock-falls at one extreme to slumps and debris flows at the other. They include ?sackungen,? which are distinguished by ridgetop grabens associated with uphill-facing scarps on ridge sides, both features of gravitational origin. Extensive regional joint patterns have not been recognized, and shallow soil slips are only a minor hazard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Patrick
This Corrective Action Decision Document/Corrective Action Plan provides the rationale and supporting information for the selection and implementation of corrective actions at Corrective Action Unit (CAU) 413, Clean Slate II Plutonium Dispersion (TTR). CAU 413 is located on the Tonopah Test Range and includes one corrective action site, TA-23-02CS. CAU 413 consists of the release of radionuclides to the surface and shallow subsurface from the Clean Slate II (CSII) storage–transportation test conducted on May 31, 1963. The CSII test was a non-nuclear detonation of a nuclear device located inside a concrete bunker covered with 2 feet of soil. To facilitatemore » site investigation and the evaluation of data quality objectives decisions, the releases at CAU 413 were divided into seven study groups: 1 Undisturbed Areas 2 Disturbed Areas 3 Sedimentation Areas 4 Former Staging Area 5 Buried Debris 6 Potential Source Material 7 Soil Mounds Corrective action investigation (CAI) activities, as set forth in the CAU 413 Corrective Action Investigation Plan, were performed from June 2015 through May 2016. Radionuclides detected in samples collected during the CAI were used to estimate total effective dose using the Construction Worker exposure scenario. Corrective action was required for areas where total effective dose exceeded, or was assumed to exceed, the radiological final action level (FAL) of 25 millirem per year. The results of the CAI and the assumptions made in the data quality objectives resulted in the following conclusions: The FAL is exceeded in surface soil in SG1, Undisturbed Areas; The FAL is assumed to be exceeded in SG5, Buried Debris, where contaminated debris and soil were buried after the CSII test; The FAL is not exceeded at SG2, SG3, SG4, SG6, or SG7. Because the FAL is exceeded at CAU 413, corrective action is required and corrective action alternatives (CAAs) must be evaluated. For CAU 413, three CAAs were evaluated: no further action, clean closure, and closure in place. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of analytical data from the CAI, review of future and current operations at CAU 413, and the detailed and comparative analysis of CAAs, clean closure was selected as the preferred CAA for CAU 413 by the U.S. Air Force, Nevada Division of Environmental Protection, and U.S. Department of Energy at the CAA meeting held on August 24, 2016.« less
An integrated approach for hazard assessment and mitigation of debris flows in the Italian Dolomites
NASA Astrophysics Data System (ADS)
Pasuto, Alessandro; Soldati, Mauro
2004-07-01
This paper shows the results of research on a debris flow occurring on 4 September 1997 in the territory of Cortina d'Ampezzo (Dolomites, Italy) where it caused a significant threat owing to the intense urban development, typical of several Alpine valleys. The event, which affected the talus fans at the foot of Mt. Pomagagnon near the village of Fiames, blocked the state road no. 51 "Alemagna" and, after sparing some houses, barred the course of the Torrent Boite and formed an impoundment. This debris flow aroused great concern among local authorities and the Belluno Civil Engineers Board; therefore, the construction of embankments for protecting the buildings threatened by the debris flow was started immediately. This area was studied in detail during this research in order to identify the hazard situations of the whole slope. The investigations made use of an integrated approach including historical, geomorphological, geostructural, meteorological, pedological, and forest-management aspects. Furthermore, assessments of the debris volumes potentially removable in the source area were carried out. The geomorphological evolution of the area was reconstructed, pinpointing the morphological changes occurring in the past 45 years. Taking into account the increased frequency and magnitude of recent events and considering the location of roads and buildings in the accumulation area, the risk conditions were analysed in order to identify a risk zonation and to propose mitigation measures.
The impact of debris on marine life.
Gall, S C; Thompson, R C
2015-03-15
Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser
NASA Astrophysics Data System (ADS)
Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu
2018-02-01
Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.
Evaluating tsunami hazards from debris flows
Watts, P.; Walder, J.S.; ,
2003-01-01
Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.
NASA Astrophysics Data System (ADS)
Taylor, Richard J.; Massey, Chris; Fuller, Ian C.; Marden, Mike; Archibald, Garth; Ries, William
2018-04-01
Using a combination of airborne LiDAR (2005) and terrestrial laser scanning (2007, 2008, 2010, 2011), sediment delivery processes and sediment connectivity in an 20-ha gully complex, which significantly contributes to the Waipaoa sediment cascade, are quantified over a 6-year period. The acquisition of terrain data from high-resolution surveys of the whole gully-fan system provides new insights into slope processes and slope-channel linkages operating in the complex. Raw terrain data from the airborne and ground-based laser scans were converted into raster DEMs with a vertical accuracy between surveys of <±0.1 m. Grid elevations in each successive DEM were subtracted from the previous DEM to provide models of change across the gully and fan complex. In these models deposition equates to positive and erosion to negative vertical change. Debris flows, slumping, and erosion by surface runoff (gullying in the conventional sense) generated on average 95,232 m3 of sediment annually, with a standard deviation of ± 20,806 m3. The volumes of debris eroded from those areas dominated by surface erosion processes were higher than in areas dominated by landslide processes. Over the six-year study period, sediment delivery from the source zones to the fan was a factor of 1.4 times larger than the volume of debris exported from the fan into Te Weraroa Stream. The average annual volume of sediment exported to Te Weraroa Stream varies widely from 23,195 to 102,796 m3. Fluctuations in the volume of stored sediment within the fan, rather than external forcing by rainstorms or earthquakes, account for this annual variation. No large rainfall events occurred during the monitoring period; therefore, sediment volumes and transfer processes captured by this study are representative of the background conditions that operate in this geomorphic system.
Arnholt, Christina M; MacDonald, Daniel W; Malkani, Arthur L; Klein, Gregg R; Rimnac, Clare M; Kurtz, Steven M; Kocagoz, Sevi B; Gilbert, Jeremy L
2016-12-01
Metal debris and ion release has raised concerns in joint arthroplasty. The purpose of this study was to characterize the sources of metallic ions and particulate debris released from long-term (in vivo >15 years) total knee arthroplasty femoral components. A total of 52 CoCr femoral condyles were identified as having been implanted for more than 15 years. The femoral components were examined for incidence of 5 types of damage (metal-on-metal wear due to historical polyethylene insert failure, mechanically assisted crevice corrosion at taper interfaces, cement interface corrosion, third-body abrasive wear, and inflammatory cell-induced corrosion [ICIC]). Third-body abrasive wear was evaluated using the Hood method for polyethylene components and a similar method quantifying surface damage of the femoral condyle was used. The total area damaged by ICIC was quantified using digital photogrammetry. Surface damage associated with corrosion and/or CoCr debris release was identified in 51 (98%) CoCr femoral components. Five types of damage were identified: 98% of femoral components exhibited third-body abrasive wear (mostly observed as scratching, n = 51/52), 29% of femoral components exhibited ICIC damage (n = 15/52), 41% exhibited cement interface damage (n = 11/27), 17% exhibited metal-on-metal wear after wear-through of the polyethylene insert (n = 9/52), and 50% of the modular femoral components exhibited mechanically assisted crevice corrosion taper damage (n = 2/4). The total ICIC-damaged area was an average of 0.11 ± 0.12 mm 2 (range: 0.01-0.46 mm 2 ). Although implant damage in total knee arthroplasty is typically reported with regard to the polyethylene insert, the results of this study demonstrate that abrasive and corrosive damage occurs on the CoCr femoral condyle in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Visible Light Spectroscopy of GEO Debris
NASA Technical Reports Server (NTRS)
Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.
2012-01-01
Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.
Impact of debris dams on hyporheic interaction along a semi-arid stream
NASA Astrophysics Data System (ADS)
Lautz, Laura K.; Siegel, Donald I.; Bauer, Robert L.
2006-01-01
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi-arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface.Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi-arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS-P, a one-dimensional, surface-water, solute-transport model from which we extracted the storage exchange rate and cross-sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short-term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non-gaining reach, stream water was diverted to the subsurface by debris dams and captured by large-scale near-stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams.